
Port of Mimiker Operating System for
RISC-V Architecture

(Port systemu operacyjnego Mimiker na architekturę RISC-V)

Michał Błaszczyk

Praca inżynierska

Promotorzy: mgr Krystian Bacławski
dr Marek Materzok

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

14 lutego 2022

Abstract

In my thesis, I will describe the process of porting an operating system for a new
architecture. The operating system of choice is Mimiker, whereas the target architec-
ture is RISC-V. Preparing a port involves significant work around the most crucial
components of the system and requires an in-depth understanding of the architec-
ture along with introduced software and hardware environments. As the outcome
of my work, Mimiker has been adopted to a wide range of hardware platforms with
a fully open design.

W mojej pracy opiszę proces portowania systemu operacyjnego na nową archi-
tekturę. Wybranym systemem operacyjnym jest Mimiker, zaś docelowa architektura
to RISC-V. Przygotowanie portu wiąże się z wykonaniem znaczącej pracy w obrębie
najbardziej kluczowych komponentów systemu oraz wymaga dogłębnej wiedzy na
temat architektury wraz z narzuconym środowiskiem programowym i sprzętowym.
Jako rezultat mojej pracy Mimiker został przystosowany do szerokiego zakresu plat-
form sprzętowych z w pełni otwartym projektem.

To my Mom and Dad, for their love, patience, hard work, and faith.
Because it wasn’t easy and they were always there for me.

Contents

1 Introduction 13

1.1 With great power comes great responsibility 13

1.2 Porting an operating system . 14

1.3 Instruction set architecture (ISA) . 15

1.4 Why RISC-V? . 16

1.4.1 Open hardware . 16

1.4.2 Open implementations . 16

1.4.3 Educational architecture . 16

1.4.4 Architecture of the future . 17

1.5 Mimiker . 17

2 Abstractions 19

2.1 RISC-V ISA . 19

2.1.1 What is RISCV? . 20

2.1.2 Why do extensions matter? 20

2.1.3 How to utilize an extension? 21

2.1.4 What is the kernel overhead of using an extension? 22

2.1.5 Keeping track of the architectural state of an unprivileged
extension . 22

2.1.6 Terminology . 23

2.1.7 Endianness . 25

2.1.8 Instruction length . 25

2.1.9 Why is instruction length important? 25

7

8 CONTENTS

2.1.10 Memory . 26

2.1.11 Assumed architectural state 26

2.1.12 Privilege levels . 27

2.1.13 Employed software stack . 27

2.1.14 Machine mode ISA . 28

2.1.15 Supervisor mode ISA . 31

2.2 Hart-level interrupt controller (HLIC) 37

2.3 Interrupt handling at the platform level 37

2.4 Platform-level interrupt controller (PLIC) 38

2.4.1 A PLIC context . 38

2.4.2 Exemplary setup . 39

2.4.3 Interrupt handling process . 39

2.4.4 Why use PLIC in Mimiker? 39

2.5 Advanced core local interruptor (ACLINT) 40

2.5.1 MTIMER . 40

2.5.2 MSWI . 40

2.5.3 SSWI . 40

2.6 SiFive core local interruptor (CLINT) 41

2.6.1 Why use CLINT in Mimiker? 41

2.7 LiteX . 41

2.7.1 Mimiker RISC-V target platform 41

2.8 Supervisor binary interface (SBI) . 42

2.8.1 Extensions and functions . 42

2.8.2 Calling scheme . 42

2.8.3 Timer extension . 43

2.8.4 Mimiker SBI library . 43

2.8.5 SBI implementation . 43

2.9 OpenSBI . 44

2.9.1 Platform implementation . 45

2.9.2 OpenSBI on LiteX . 45

CONTENTS 9

2.9.3 Supervisor mode initial environment 46

2.10 Application binary interface (ABI) 46

2.10.1 Calling convention . 47

2.10.2 ELF . 47

2.10.3 DWARF . 48

2.11 Device tree . 48

2.11.1 Device tree formats . 48

3 Mimiker port 49

3.1 Memory map . 49

3.1.1 Physical address space . 50

3.1.2 Why is the physical memory map important? 50

3.1.3 Virtual address space . 51

3.2 RISC-V kernel . 51

3.2.1 Kernel linker script . 51

3.2.2 Direct map . 54

3.2.3 Libkern . 54

3.2.4 Generic assembly . 55

3.2.5 thread0 . 56

3.2.6 Bare memory boot . 56

3.2.7 Virtual memory boot . 59

3.2.8 Board stack . 61

3.2.9 Board initialization . 62

3.2.10 Trap handling . 63

3.2.11 Thread entry setup . 68

3.2.12 Context switch . 70

3.2.13 Physical address map (pmap) management 72

3.2.14 Communication with user space 83

3.2.15 Syscalls . 86

3.2.16 Signals . 87

10 CONTENTS

3.3 Device drivers . 89

3.3.1 Bus interface . 89

3.3.2 Interrupt controller interface 90

3.3.3 Timer interface . 91

3.3.4 UART interface . 92

3.3.5 Interrupt events . 93

3.3.6 Root bus device . 93

3.3.7 CLINT . 94

3.3.8 PLIC . 96

3.3.9 LiteUART . 98

3.4 System libraries . 99

3.4.1 Linker script . 99

3.4.2 crt0 . 100

3.4.3 String functions . 101

3.4.4 Syscalls . 101

3.4.5 Nonlocal goto . 103

4 Tools and usage 107

4.1 Toolchain . 107

4.1.1 Building the toolchain . 108

4.2 Building Mimiker . 108

4.3 Mimiker RISC-V hardware repository 109

4.3.1 LiteX VexRiscv . 109

4.3.2 Supported FPGA boards . 110

4.3.3 Basic build . 110

4.4 Building OpenSBI . 110

4.5 Renode . 111

4.5.1 Why Renode? . 111

4.5.2 Acquiring Renode . 111

4.5.3 Scripts . 111

CONTENTS 11

4.5.4 Platform descriptions . 112

4.5.5 Integrating Renode with Mimiker 114

4.5.6 Running Mimiker on Renode 115

4.6 Verilator . 116

4.6.1 Why do we want a cycle-accurate simulator? 116

4.6.2 Litex VexRiscv simulator . 116

4.7 Running Mimiker RISC-V on FPGA 116

5 Summary 119

5.1 Contributions . 119

5.1.1 Mimiker RISC-V hardware 119

5.1.2 Mimiker RISC-V software . 119

5.1.3 Results . 120

5.1.4 Future work . 120

Bibliography 121

Chapter 1

Introduction

Wherever we go, whatever we do, we are surrounded by electronic devices. Inte-
grated chips can be found in our phones, smartwatches, cars, kitchen appliances,
just to name a few. We are constantly finding new ways to exploit electronics, and
thereby digital devices are bound to become even more pervasive.

The majority of released digital devices are sophisticated enough to contain an
on-chip processor. A processor (or central processing unit (CPU)) is the brain of a
computer. The most basic characteristic of a CPU is its architecture. The two most
dominant architectures are x86 and ARM, but for several years, there has been a new
alternative.

RISC-V has already made a great impact on the industry. As an open archi-
tecture with customization among its main objectives, RISC-V is the architecture of
choice for many companies that design digital devices. The number of applications
has already grown from thousands to millions and has finally reached billions.

1.1 With great power comes great responsibility

After the RISC-V specifications [7][8] had been ratified and released to the public,
first implementations started to grow. But what is the usage of a processor if there
is no software to run on it?

Whenever a new architecture is created, along with the effort concentrated on
specifications, parallel work is needed to supply basic software tools in order to enable
software development. Among the most crucial elements regarding the software are:

• compiler – a new backend needs to be created,

• linker – relocations defined by the architecture must be implemented,

• assembler – the new instruction set must be incorporated,

13

14 CHAPTER 1. INTRODUCTION

• libc – an implementation of the standard C library must be provided to permit
basic software development (for the most basic solutions, it would be a port
of the Newlib library).

The work on hardware and software specifications along with the development
and maintenance of the software tools creates a wide and healthy RISC-V ecosystem.
The ecosystem is powered by the RISC-V community which has grown over the years
and includes a broad range of members, starting from enthusiasts and students,
reaching one of the most skilled industry experts.

But the software development isn’t constrained to the basic programming tools.
With the arrival of HiFive Unleashed, the world saw the first RISC-V board equipped
enough to run Linux. But how do you run an operating system on a board based
on a new architecture?

1.2 Porting an operating system

Before even considering running an operating system on a RISC-V based board, we
should wonder why would we want an operating system on a RISC-V board.

With the software development tools mentioned in the first section, we are able
to write and compile code that can run on a RISC-V processor. Although it may
not seem much, it is! There are plenty of simple embedded systems that don’t need
anything more. Instead of having a sophisticated operating system, such platforms
are only equipped with simple firmware built solely from the basic tools. Such a
runtime is basically restricted to controlling simple peripheral devices contained on
the board. However, such a solution works only for very specific applications. If we
deal with general-purpose boards and want them to run elaborate applications, we
need an operating system.

A conventional operating system consists of three components:

• Kernel – controls the hardware and provides an execution environment for all
user space processes.

• System libraries – basic libraries linked with user applications. Examples in-
clude the standard C library and C math library.

• User space programs – applications that run in the environment delivered
by the kernel. User processes communicate with the kernel via system calls
(syscalls).

An operating system kernel is a composition of hierarchical layers. For our
needs, three main layers can be distinguished (bottom to top):

1.3. INSTRUCTION SET ARCHITECTURE (ISA) 15

• Hardware – this layer is responsible for managing hardware resources. It oper-
ates directly on the underlying hardware and differs for each target platform.
The main purpose of this layer is to implement the platform-independent in-
terfaces exposed by the next layer.

• Abstraction – a thin layer that bridges the hardware layer with the core layer.
It defines interfaces to abstract from a particular platform. Above this layer,
every device is viewed as a model which supports some well-defined meth-
ods and provides some established attributes. Such models do not restrict to
peripheral devices, a CPU is also perceived as a model.

• Core – this layer builds upon the abstraction layer. Provided with abstract
models, it contains all machine-independent components of the kernel. Exam-
ples include memory management, scheduler, syscall implementation, process
management, and much more.

The task of creating a port of an operating system focuses on expanding the
hardware layer of the operating system so that it includes implementations of the
interfaces fulfilled by devices accommodated in the target platform including the
employed CPU.

This thesis will describe the process of porting the Mimiker operating system
for the RISC-V architecture concentrating on the 32-bit variant.

1.3 Instruction set architecture (ISA)

An instruction set architecture (ISA) is an abstract model of a processor. It de-
scribes the components of the hardware which are seen and managed by the system
programmer. Among the specified things are register description, available instruc-
tions, privilege levels, memory model, exception handling, and memory translation
systems.

We can distinguish two main types of architectures:

• Reduced instruction set architecture (RISC) – a RISC ISA exhibits the Unix
philosophy, that is, each instruction performs a single and rather a simple
task. Most RISC ISAs are load/store architectures meaning that the memory
accesses are possible only via load and store instructions. An exemplary RISC
ISA is Aarch64.

• Complex instruction set architecture (CISC) – a CISC instruction can perform
numerous tasks at once, for example, add two registers and store the result
directly to designated memory location. CISC architectures usually present
many sophisticated addressing modes. An example of a CISC architecture is
x86.

16 CHAPTER 1. INTRODUCTION

RISC-V is a load/store RISC ISA.

1.4 Why RISC-V?

Although have justified that operating systems are needed and desirable, we haven’t
considered the other point of view. Why would an operating system want to support
the RISC-V architecture?

1.4.1 Open hardware

Perhaps the most revolutionary aspect of RISC-V is its openness. Whereas most
companies (e.g. Arm Ltd. and Intel) make their architectures proprietary and
charge royalties from any company that wishes to make its own implementation of
the ISA, RISC-V is an open ISA and can be implemented by anyone without charging
any fees.

1.4.2 Open implementations

To have an open-source microarchitecture you need an open ISA. RISC-V is just it.

There is a number of open-source RISC-V CPU implementations. Most of such
projects are FPGA friendly, thereby, all we need to have a running RISC-V CPU is
an FPGA board capable of accommodating selected implementation.

Among the most popular open source implementations are VexRiscv [1] and
PicoRV32 [2].

Besides open implementations made by individuals, there are open implemen-
tations made by professional companies. SiFive has already produced RISC-V CPUs
with freely available design files.

1.4.3 Educational architecture

Open microarchitectures present a wide range of complexity levels, starting from
single-cycle implementations, advancing to pipelined solutions, reaching sophisti-
cated out-of-order designs with a number of heterogeneous mechanisms employed
for branch prediction and prefetching.

Such versatility and accessibility make RISC-V the architecture of choice for
enthusiasts and students.

A number of top worldwide known universities have already migrated their main
digital logic design and computer architecture courses to RISC-V [9][10].

1.5. MIMIKER 17

The University of Wrocław is not an exception. Digital logic lecture familiarizes
students with RISC-V ISA and addresses single cycle and pipelined implementations
[11]. Moreover, as a university, we are especially interested in RISC-V, as we are
starting an effort to create a unique out-of-order implementation of the RISC-V
architecture on our own. A project devoted to this task will be guided by Marek
Materzok.

With Mimiker running on RISC-V, we would have a complete implementation
of a computer system developed entirely at the University of Wrocław.

1.4.4 Architecture of the future

In 2014, the inventors of RISC-V announced their goal for RISC-V to become the
standard ISA for all computing devices [3].

Considering the impact RISC-V has already made on the industry, the growing
interest around it, more and more companies employing the architecture in their
chips, RISC-V has a great chance of fulfilling the promise given by its inventors and
becoming a dominant architecture of the future.

1.5 Mimiker

Mimiker is an open-source, research operating system inspired by the world of Unix,
in particular by its *BSD flavor [4].

Mimiker is developed at the University of Wrocław in a project guided by
Krystian Bacławski.

In the beginning, Mimiker was written for the Malta-R development platform [5]
which contains a MIPS CPU. However, around one year ago, MIPS Technologies has
announced discontinuation for the MIPS processor family. Currently, the company
is moving to make chips based on RISC-V.

Even before the aforementioned news was published, a decision had been made
to prepare a port for the Aarch64 architecture. The rationale was that the Malta
board is impossible to acquire, while Aarch64 based boards are widely available for
reasonable prices. The person responsible for the port was Paweł Jasiak, and as a
result of his work Mimiker can be run on the Raspberry Pi 3 board [6].

The effort of my work is concentrated on running Mimiker on platforms designed
using the LiteX SoC builder utilizing a 32-bit RISC-V softcore. Although LiteX is the
main goal, other boards based on RISC-V can also be supported by adding required
device drivers and platform description in the form of a device tree file.

Chapter 2

Abstractions

In general, to prepare a port of an operating system, a fair amount of knowledge is
needed. As we will write low-level code to control the target CPU, we need to know
the interface to the hardware, namely the RISC-V ISA. When we become familiar
with the architecture, we will discover a typical hardware environment a RISC-V
CPU operates in, this involves interrupt controllers and timer. Next, we will explore
the characteristics of the target board. After covering these topics, we will move to
the software components. The supervisor binary interface will be crucial. Besides
that, we will discuss the application binary interface and device tree standard.

This chapter describes the most important abstractions defined by RISC-V,
LiteX, SBI, ABI, and device tree.

2.1 RISC-V ISA

All knowledge regarding RISC-V is presented in the form of specifications maintained
on GitHub by the RISC-V Foundation organization.

The specifications are partitioned into two groups:

• ISA – the primary goal of these specifications is the maintenance of the RISC-V
ISA. They contain the base volumes of the manual, extension drafts, the formal
specification of the ISA, ACLINT, PLIC, and more [7].

• Non-ISA – these are all remaining specifications relevant to RISC-V. Among
the contained specifications the following can be found: SBI, ABI, ACPI, and
RISC-V specific extensions to UEFI [8].

The ultimate source of knowledge regarding RISC-V ISA is the RISC-V Instruc-
tion Set Manual. The manual is structured into two volumes:

• Volume I: Unprivileged ISA – describes the core architecture along with un-

19

20 CHAPTER 2. ABSTRACTIONS

privileged extensions. The volume finishes with a detailed description of the
applied memory model [12].

• Volume II: Privileged Architecture – covers privilege modes, privileged regis-
ters, basic privileged architectures, and optional extensions [13].

This section will only cover the most essential aspects of the manual from the
perspective of a system programmer attempting to port an operating system. If the
reader would like to delve into details, it is advised to reach for the actual RISC-V
manual.

2.1.1 What is RISCV?

RISC-V isn’t a typical ISA. In fact, RISC-V is a collection of ISAs.

The unprivileged architecture defines four base ISAs and a number of optional
extensions. Each core ISA is called an integer ISA and defines the architectural
state and available instructions (computational, memory, control flow, fence, trap).
The core ISAs are distinguished by native pointer size (32, 64, 128) and the amount
of implemented integer instructions (all or just a subset). The list of defined exten-
sions is constantly growing and currently includes integer multiply/divide extension
(”M”), floating-point extensions (”F”, ”D”, and ”Q”), atomic extension (”A”), and
more.

The privileged architecture is composed of base machine mode ISA, optional
supervisor and hypervisor base ISAs, and a few extensions to the core ISAs.

Besides the standard (unprivileged and privileged) extensions, custom exten-
sions may be provided by each vendor, for instance, to accelerate a specific type of
computations. Herein, we will restrict our reasoning to standard extensions.

Each implementation of RISC-V must support at least a single integer ISA and
machine mode ISA. Besides this core, an implementation is likely to support some
standard extensions. Most RISC-V CPUs provide at least ”M” and ”A” extensions.

2.1.2 Why do extensions matter?

So let’s say we have a RISC-V CPU. Why would we even bother about the extensions
it supports?

Performance

The truth is, in the case of unprivileged extensions, the awareness of all supported
extensions isn’t mandatory. If the operating system can function relying just on a
handful of unprivileged extensions (e.g. ”M” and ”A”), then we can simply ignore

2.1. RISC-V ISA 21

other extensions and the system will work. The penalty of such an approach is a
potential loss in performance. If our CPU supports the double-precision floating-
point extension and we don’t utilize it, all floating-point operations will be emulated
using integers. The compiler will replace each floating-point operation with a call
to a function implementing the operation with integer computational instructions.
This scheme is known as soft floating-point. This won’t cause any incorrectness in
our programs but can result in significant delays in execution.

Hardware control

While it is beneficial to be aware of supported unprivileged extensions, in general, we
must be aware of privileged extensions. When porting an operating system, we need
to know which privilege modes are supported, what are the available virtual memory
translation modes, and which optional status and control registers are implemented.

2.1.3 How to utilize an extension?

Utilizing an extension differs depending on the privilege level it regards.

Unprivileged extensions

To employ an unprivileged extension, in most cases, all we need to do is provide
the compiler with appropriate target architecture where we specify all supported
extensions (the -march GCC option), and select the appropriate ABI to specify the
argument passing method (the -mabi GCC option) [14]. The compiler should be
smart enough to make use of the extensions and automatically generate efficient
code. For example, in the case of compressed instructions extension (”C”), the com-
piler should detect instructions with a compressed counterpart and embrace them
in the generated object file. Unfortunately, the compiler might not be sufficiently
skilled or maybe simply unable, to put some extensions in use in all scenarios. Some-
times, the programmer needs to help the compiler by directly translating a snippet
of code (e.g. using embedded assembly), or by explicitly highlighting the code that
needs special attention (perhaps via compiler-specific attributes).

Privileged extensions

The process of employing a privileged extension depends on the exact extension.
User mode extension provides essential code isolation which is a profound principle
in operating system design, thereby is implicitly used in the sole organization of
an operating system. Supervisor base ISA extension supplies primary mechanisms
needed to implement the most basic features of the kernel (e.g. exception handling).
Other extensions (e.g. optional CSRs and translation modes) may be utilized in the

22 CHAPTER 2. ABSTRACTIONS

implementation of an abstract CPU model (the hardware layer of the kernel) by
explicit usage in the code (e.g. in physical memory map management module).

2.1.4 What is the kernel overhead of using an extension?

From a kernel developer’s point of view, when utilizing an extension, there is usually
some software overhead to incur.

Unprivileged extensions

This is the easier part. An unprivileged extension can optionally define an additional
architectural state. If the extension doesn’t introduce any visible state, then there
is no software overhead in the kernel. However, if the extension does enhance the
architectural state, then the machine context of a user thread grows and overhead
occurs.

Privileged extensions

When it comes to privileged extensions, it is often the case, that a complete kernel
module must be built to adequately utilize an extension. A privileged extension
is often intended to implementing some known mechanism (e.g. virtual memory)
that is crucial regarding the inner working of the kernel and thereby requires some
thorough interface to be constructed upon it.

2.1.5 Keeping track of the architectural state of an unprivileged
extension

From a kernel’s perspective, we can distinguish two kinds of threads

• User threads – these threads periodically switch between user and kernel space
and constitute user space processes.

• Kernel threads – these threads operate fully in kernel space. A good example
of such a thread is an interrupt thread destined for servicing delegated handlers
in an outright environment.

In most architectures, whenever a context switch from a user thread occurs, the
kernel will save the whole architectural state of the thread (which mostly consists of
integer and floating-point registers) to restore it while switching back to this thread.
The process of saving the whole context is unconditional and occurs whenever a
context switch is performed.

2.1. RISC-V ISA 23

RISC-V introduces a mechanism meant for reducing the copying performed while
saving the user thread’s context. The supervisor level status register contains a state
for each of the following:

• floating-point architectural context,

• vector extension architectural context,

• summarized state of all other extensions’ architectural contexts.

Four state values are defined:

• Off

• Initial

• Clean

• Dirty

We will use the extension context state information for the floating-point unit
to speed up the context switch implementation.

Currently, the only extension, besides floating-point extensions, that define
some additional architectural state is the vector extension. As we don’t support
the vector extension, state information for this extension, as well as for the other
extensions (which are not there yet) will be ignored.

The exact meaning along with some exemplary scenarios of the aforementioned
values can be found in section 3.1.6.6 of the privileged volume [13].

2.1.6 Terminology

RISC-V defines some essential notions used throughout the specifications. This sec-
tion serves to explain the most crucial ones from our point of view.

Hardware terminology

A RISC-V core is defined to be a hardware component with an independent instruc-
tion fetch unit.

A core can deploy multithreading, in which case it has its internal pipeline
shared between multiple hardware threads. A hardware thread in RISC-V terminol-
ogy is called a hart.

24 CHAPTER 2. ABSTRACTIONS

Software terminology

RISC-V introduces a rather unique software stack by presenting the notion of an
execution environment and expands it to all privilege levels, except for the machine
mode which has unrestricted access to the underlying hardware.

Execution environment Every software in the software stack runs in some exe-
cution environment. An execution environment interface (EEI) provides an interface
between the software executing in the environment and the execution environment
itself.

The most common example of an EEI is ABI in a typical operating system. User
processes operate in userspace under the control of the kernel which is the application
execution environment. ABI provides means for the user space to communicate with
the kernel through syscalls (e.g. write request).

Besides the aforementioned example of EEI that is commonly applied in op-
erating systems, RISC-V extends this notion to other, more privileged levels. The
supervisor mode software executes in the supervisor execution environment which
is the next privilege level (hypervisor or machine mode) and uses supervisor binary
interface (SBI) to issue services from the lower layer. The same applies to hypervisor
mode software if the hypervisor extension is present.

SBI plays important role in RISC-V operating system development. Such a
solution makes the kernel much more portable and simplifies virtualization. SBI
and implementations are discussed in 2.8.

Hart From the perspective of machine mode, a RISC-V hardware thread (hart)
can be perceived as an entity consisting of some context and independent control
flow. RISC-V broadens the notion of hart and defines it as an autonomous context
and control flow, considered in a specific execution environment (see section 1.1 of
[12]). Thereby, a hardware thread is a hart viewed by machine mode. Another great
example of a RISC-V hart is a user thread operating in user mode.

Control and status registers (CSRs)

Each hart has a separate address space for control and status registers (CSRs).

Accesses to CSRs are made using dedicated instructions starting with the
”CSR” prefix which atomically read-modify-write a selected register. The subset
of visible CSRs differs depending on the privilege level the hart operates in. For ex-
ample, if the only supported extension is ”F”, then the only read-write CSR visible
to user mode hart is the floating-point control and status register fcsr.

It is important to be aware of writable CSRs of a hart in a specific execution

2.1. RISC-V ISA 25

environment, as they contribute to the context of the hart and thereby become
relevant when performing operations on the context in the kernel (e.g. save/load).

2.1.7 Endianness

In RISC-V endianness has to be considered separately for instructions and data:

• Instructions – always little-endian order,

• Data – modifiable independently for each privilege mode (in specific CSR).

Mimiker assumes little-endian order, thereby, from that point onward, we re-
strict our consideration to little-endian scenarios.

2.1.8 Instruction length

Generally, RISC-V employs 32-bit, naturally aligned instructions. The default scheme
may be changed by additional extensions as RISC-V instruction encoding supports
any instruction length dividable by 16 (in bits). Currently, the only extension that
modifies the basic instruction encoding is the compressed instructions extension
which introduces short instructions encoded on just two bytes.

In order to avoid calculating instruction size in the kernel, we will assume
instructions to be 32-bits long (i.e. no ”C” extension).

2.1.9 Why is instruction length important?

Although instruction length may seem irrelevant at the first glance, it has an impact
on the performance of a system and becomes crucial when venturing into the kernel.

Instruction cache utilization

Instruction length determines how many instructions can fit into an instruction
cache line. If more instructions can be accommodated in the cache, the fetch unit
can be kept busy which improves utilization of available instruction window slots and
refines the overall performance. This is the reason why the compressed instructions
extension is so appealing.

Syscall

A syscall causes a trap into the kernel. Upon encountering a trap in RISC-V, PC
points at the current instruction (i.e. the faulting instruction). After the syscall is

26 CHAPTER 2. ABSTRACTIONS

handled (assuming no restart), the PC at which the thread will resume execution
needs to be incremented to point to the instruction after the syscall. The applied
offset is equal to the length of the syscall instruction.

Fork

When forking a new thread, the new thread’s PC must be set to the instruction
after the syscall which implements a fork request. This scenario is different from the
syscall scenario described above, as the new thread will enter the userspace for the
first time.

Kernel debugger

If a kernel supports debugging of its inner workings (by implementing a debug
stub), it may be necessary to be aware of the instruction size, depending on the
implementation of the step request.

2.1.10 Memory

The size of the memory address space of a hart is implied by supported base integer
ISAs.

Memory is byte-addressable and its layout is stated by the execution environ-
ment. Some memory areas may be empty or forbidden in which case access will
result in an exception (page fault or protection violation), other regions may con-
tain data/instructions, or maybe marked as I/O regions.

RISC-V deploys the RISC-V weak memory ordering (RVWMO) memory consis-
tency model. Weak memory ordering introduces some difficulties in SMP systems
as different cores may observe memory operations in a different order.

Whether unaligned data accesses are supported depends on the actual imple-
mentation. They may be:

• not implemented (misaligned data access causes an exception to be raised),

• implemented in hardware,

• implemented in software (perhaps, by more privileged mode).

2.1.11 Assumed architectural state

The architectural state is part of the context of a user thread and a subset of that
state composes the context of a kernel thread. To be able to manage thread contexts
in the kernel, we need to establish the shape of the assumed architectural state.

2.1. RISC-V ISA 27

As of this moment, there are three contributors to an architectural state:

• base integer ISA – defines 32 integer registers and the program counter (PC)
register,

• floating-point extensions – define 32 floating-point registers and the floating-
point control and status register (fcsr),

• vector extension – defines 32 vector registers and a number of additional CSRs.

In my solution, I provided support for three target architectural states:

• integer,

• integer + single-precision floating-point,

• integer + single-precision floating-point + double-precision floating-point.

2.1.12 Privilege levels

The main idea behind privilege levels is isolation. Distinguishing different privilege
levels and delegating some software to more restricted environments provides natural
protection for more sensitive components (e.g. operating system kernel).

RISC-V defines three privilege levels (less to more privileged):

• user mode – intended for user applications,

• supervisor mode – destined for operating system kernel,

• machine mode – usually hosts runtime firmware.

Although user and supervisor modes are not mandatory, they are needed for
running a conventional operating system on a RISC-V CPU.

2.1.13 Employed software stack

RISC-V supports various software stacks depending on supported privilege levels, for
example, simple embedded systems may be equipped in a CPU that provides only
the base machine mode ISA, hence, the software stack consists of a single layer, and
isolation doesn’t exist.

When porting an operating system, the exact structure of the software stack is
not important (and shouldn’t be in order to provide easy virtualization), however,
when the port is ready and we have to prepare an environment for running the result
(either emulator, simulator, or hardware), details begin to matter.

We will assume the most typical software stack:

28 CHAPTER 2. ABSTRACTIONS

• user and supervisor privilege levels are supported,

• hypervisor extension isn’t supported (i.e. the execution environment for the
kernel is provided by runtime firmware running in machine mode).

2.1.14 Machine mode ISA

Although kernel operates entirely in supervisor mode, there are notions in machine
mode ISA which impact some components of the kernel, for instance, physical mem-
ory protection and physical memory attributes. Besides, when considering an SBI
implementation, it’s valuable to understand some basic mechanisms provided by the
base machine mode ISA, for example, interrupt and exception delegation. Finally,
when investigating the ACLINT specification it’s precious to be familiar with timer
memory-mapped registers defined in the ISA.

Machine trap delegation

By default, whenever a processor encounters an exception or decides to handle an
asserted interrupt, it suspends further instruction fetch and regardless of the current
privilege level the hart is operating in, the control flow is redirected to machine mode
trap handling routine. Although simple and straightforward, this is not a trap
handling mechanism we would consider useful when it comes to operating systems.
If an environment call from userspace resulted in a jump over the kernel directly to
the machine mode runtime, this would be a complete disaster (as syscall handling
is implemented in the kernel).

For an operating system to work, we would like most user mode traps to be
handled in supervisor mode. But what about supervisor mode traps? On the one
hand, we would like supervisor environment calls to be handled by machine mode
SBI implementation (that’s the whole point of SBI). On the other hand, this doesn’t
apply to all traps, for instance, if we expected runtime firmware to handle supervisor
page faults, that would mean we anticipate it knows the virtual memory map of the
kernel!

It’s apparent that a mechanism is needed to delegate some user and supervisor
traps for handling in supervisor mode while preserving the default behavior for
others.

Exception delegation The medeleg CSR serves for exception delegation to su-
pervisor mode. If an exception is marked to be delegated, whenever that exception
occurs in user or supervisor mode, it will be handled by kernel exception handling
routine.

2.1. RISC-V ISA 29

Interrupt delegation The mideleg CSR is destined for interrupt delegation to
supervisor mode and functions analogously to the exception delegation register.

Timer memory-mapped registers

Without a time measurement facility, the kernel would be unable to provide mul-
titasking and all modules relying on the callout [32] mechanism wouldn’t function
as expected. If we want to have a functional operating system, we need to measure
time. If we want to measure time, we need a device generating interrupts at constant
intervals, namely a timer.

RISC-V platforms provide a real-time timer operating with constant frequency.
The timer is exposed as a 64-bit memory-mapped register accessible for reading and
writing in machine mode. Less privileged levels (optionally including user mode)
may read the value of the register by reading the time CSR.

Beside the memory-mapped time register (referred to by the specification as
mtime), platforms supply 64-bit time compare memory-mapped register for each
hart (mtimecmp). It can be accessed exclusively by machine mode software and is
used to generate timer interrupts. Whenever mtime contains a value greater or equal
to mtimecmp a machine mode timer interrupt is asserted.

Physical memory attributes (PMA)

In many architectures, page table entries beside basic permission bits (readable,
writable, and executable) contain attributes that describe some characteristics of a
physical memory region (usually a single page). Among memory attributes config-
urable in such a way are cacheability (non-cached, write-through, or write back),
memory ordering, access granularity, and atomicity. RISC-V terms such properties
physical memory attributes (PMAs).

RISC-V made an insight that such attributes constitute primary properties of
the underlying hardware and exposing them in a virtual memory system breaks the
abstraction and may be error-prone as an attribute selected for a specific region
may in fact conflict with the actual properties of that memory range. To enforce the
abstraction and remove potential conflicts, RISC-V doesn’t embed any properties
beside the permission bits inside a page table entry. Instead, PMAs are maintained
and checked in a hardware structure known as the PMA checker.

Although the applied solution is elegant and justified, it creates an issue. While
in most cases attributes of a physical memory region are fixed and established at
design time (thus a need to modify any of them never occurs), in some cases a
modification might be needed. The specification suggests, that if it is apparent (or
cannot be excluded) that dynamic configuration of some physical memory attributes
may be needed, the design should provide a way for achieving this task, for example,

30 CHAPTER 2. ABSTRACTIONS

via memory-mapped registers. If some means for PMA modification were supplied,
runtime firmware would have to be extended to handle them and some interface for
supervisor mode would be eligible (perhaps an enhancement in SBI).

Mimiker and PMAs

Mimiker contains a machine-dependent kernel module for physical address map man-
agement (pmap) inspired by the corresponding module in FreeBSD [15].

The pmap module exposes an API to the remaining components of the ker-
nel. The method employed for entering new mappings into a specified physical
address map accepts flags that can specify desirable cacheability. However, the tar-
get platforms of the 32-bit RISC-V port have fixed PMAs, thereby, in the RISC-V
implementation of the aforementioned module, the provided cacheability flags are
simply discarded.

One could argue, that ignoring the supplied flags reduces the portability of the
code. What if we wanted to run Mimker on a different RISC-V based board? It
would be preferable to change as little code as possible, therefore, why not make an
SBI call inside the pmap module to request a modification of PMAs to honor the
new cacheability options? If it’s not supported then it will be discarded and nothing
will change. While it seems like a reasonable idea, there is a single problem. At
the time of writing this thesis, there is no SBI call to address PMA modification. If
an appropriate extension to SBI appears in the future, the code most certainly will
require the described change.

Physical memory protection (PMP)

Whereas PMA checker serves for specifying and enforcing physical memory at-
tributes. The physical memory protection (PMP) unit is destined for defining and
checking physical memory access permissions.

The supported permissions are:

• readable – physical memory range is readable,

• writable – physical memory range is writable,

• executable – physical memory range supports instruction fetching.

While PMAs describe some profound properties of physical memory, PMP is
configurable on a per hart basis and serves for protection and isolation in an SMP
system.

The PMP unit is configured through a set of machine mode CSRs.

2.1. RISC-V ISA 31

2.1.15 Supervisor mode ISA

RISC-V supervisor mode ISA defines the environment in which our kernel will oper-
ate. We will divide our discussion into three parts:

• CSRs – some most basic control and status registers, essential for implementing
fundamental kernel mechanisms,

• virtual memory translation system – translation mode used by 32-bit RISC-V
CPUs equipped with memory management unit (MMU),

• Memory management fence – an instruction regarding address translation con-
trol.

Supervisor CSRs

Supervisor mode CSRs constitute an interface used by the kernel to control the
underlying hardware (e.g. memory translation and exception handling).

Status register (sstatus)

The sstatus register controls and reflects the current state of a supervisor hart.
The register is divided into several fields, which can be classified into two categories:

• fields meaningful only when the hart has an active trap (i.e. is busy handling
an exception or an interrupt),

• remaining fields.

Within each class, we will only explore fields crucial from our point of view.

To begin with, let us examine the first group:

• SPIE – contains the value of SIE before the trap was taken,

• SPP – identifies the privilege mode that encountered the trap.

The second group consists of the following members:

• SIE – globally enables or disables interrupts in supervisor mode,

• FS – keeps track of the floating-point architectural state,

• SUM – enables or disables supervisor access to user pages.

32 CHAPTER 2. ABSTRACTIONS

Trap vector register (stvec)

The stvec register serves for:

• specifying the address of trap handling routine,

• selecting the trap handling mode.

In RISC-V, all exceptions delegated for handling in supervisor mode, jump to a
common trap vector specified in the stvec register.

The specified mode controls how interrupts are handled. Interrupts can either
jump to the same location as exceptions (direct mode), or each exception can have
a dedicated interrupt vector (vectored mode).

In Mimiker, we employ the direct trap handling mode.

Interrupt control registers

RISC-V defines three supervisor mode interrupts:

• software interrupt (SSI),

• timer interrupt (STI),

• external interrupt (SEI).

Besides the aforementioned interrupts, each RISC-V based platform can define
some custom interrupts, for example, a UART interrupt in a single-core system.

The sie register controls which of the supervisor interrupts are enabled.

The sip register reflects asserted supervisor interrupts. From the three super-
visor interrupts defined by the specification, the only one that can be cleared via
this register is the software interrupt. The timer interrupt should be cleared by an
SBI call, and the external interrupt should be cleared through the platform level in-
terrupt controller (PLIC, described in a dedicated section) or some platform-specific
memory-mapped registers.

Scratch register (sscratch)

The sscratch register is simply an additional register for supervisor mode usage.
It isn’t destined for any particular application, however, it is commonly used to
support the trap handling mechanism.

When a kernel thread encounters a trap, before any processing can be done,
we have to save the machine context of the thread on the kernel stack. It doesn’t

2.1. RISC-V ISA 33

present any problems, as all we have to do is decrement the stack pointer, fetch
each register composing the context and write it to the allocated space (called trap
frame). However, there is a problem regarding user threads. When a user thread
encounters a trap, we can’t just decrement the stack pointer to allocated space for
the context as it points somewhere within the user-space stack (RISC-V doesn’t
automatically switch stacks as Aarch64 does).

To solve this problem we will apply the following scheme for managing the
sscratch register:

• When a user thread executes in userspace, then sscratch contains a pointer
to the context save area on the kernel stack.

• When a user thread executes in kernel space, the sscratch holds zero.

Although sscratch seems useless in kernel mode when the described scheme
is applied, there is one advantage. In trap handler, instead of extracting SPP bits
to obtain whether the trap came from user or kernel, we can simply examine the
value of the sscratch register. Zero means that the trap has occurred in kernel
mode, while a non-zero value implies that the trap was caused when the thread was
executing in user mode.

Exception program counter register (sepc)

The sepc register contains the address of the instruction that encountered the latest
trap.

When the return from exception (SRET) is executed, the next instruction fetch
is made from the address contained in sepc.

In case of interrupts, the trap is taken before executing the instruction at sepc,
so there is no problem with re-executing the faulting instruction.

Cause register (scause)

The scause register identifies the latest trap occurred. It has a dedicated bit that
serves for distinguishing interrupts from exceptions and provides a code that further
describes the trap.

The full list of defined exception codes can be found in section 3.1.15 of the
privileged ISA [13].

34 CHAPTER 2. ABSTRACTIONS

Trap value register (stval)

From a kernel’s perspective, all we need to handle an interrupt is the code obtained
from the scause register. However, in the case of an exception, the exception code
may not be enough.

Whatever environment call a user hart does, the exception code is always the
same, and claims purely and simply that a user-mode environment call has been
made. The kernel must examine the trap frame of the calling hart to determine
which syscall has been requested and to fetch all the parameters enforced by the
signature of the syscall.

In the case of an environment call, all remaining information can be acquired
from the trap frame, but some exceptions need even more. To reason about a page
fault exception, the kernel needs to know the address that has caused the exception
to occur. Such address is called the faulting address and can be read from the trap
value register (stval).

The value of stval is dependent on a particular exception, but in most cases
provides the faulting address (if relevant).

Address translation and protection register (satp)

The satp register selects and controls the virtual memory translation system. It
consists of three components:

• MODE – specifies the translation mode to use,

• PPN – the physical page number of the root page directory of the translation
hierarchy,

• ASID – current address space identifier.

In a 32-bit system, virtual memory can be either disabled (MODE = 0), or the
Sv32 memory translation scheme can be applied (MODE = 1).

32-bit virtual memory translation system (Sv32)

When the Sv32 memory translation mode is selected, each user and supervisor mode
virtual address is translated via two-level page table structure into a supervisor
physical address, which is then examined by the PMP unit, and further translated
into a machine physical address. Although it isn’t specified where exactly the check
should be applied, somewhere along the way, the PMA checker must be incorporated.

The page size in Sv32 is 4KiB.

2.1. RISC-V ISA 35

Virtual addresses An Sv32 virtual address has the layout pictured in table 2.1.
The indexes are used for navigation through the paging structure. In general, level
0 index selects an entry in the page directory located using the address found in
satp, whereas level 1 index points to a leaf entry in the page table obtained in the
first step.

bits [31:22] bits [21:12] bits [11:0]

Level 0 index Level 1 index Page offset

Table 2.1: Sv32 virtual address format

Physical addresses The format of an Sv32 physical address is shown in table
2.2. The physical page number is attained from a leaf page table entry found by
traversing the page table structure for a given virtual address. The page offset is
directly copied from the corresponding field in the corresponding virtual address.

bits [33:12] bits [11:0]

Physical page number (PPN) Page offset

Table 2.2: Sv32 physical address format

Although a physical address is 34-bit long, we will assume that only the first
32 bits are meaningful (thereby, we assume the upper two bits to be hardwired to
zero).

Page table entries (PTEs) In the Sv32 memory translation scheme, each page
table entry has format depicted in table 2.3.

bits[31:10] bits [9:8] bits [7:0]

Physical page number (PPN) RSW Access and permission bits

Table 2.3: Sv32 page table entry format

RSW stands for reserved for software usage. These bits are used by the kernel.

The access and permission bits field consists of eight single bit members. The
following list presents the bits from least significant to most significant:

• Valid (V) – if a PTE is marked as invalid (V = 0), then all remaining bits
in the entry are meaningless to the hardware, and the kernel is free to utilize
them in any way.

• Readable (R) – states whether the pointed page is readable.

• Writable (W) – indicates whether the pointed page is writable.

36 CHAPTER 2. ABSTRACTIONS

• Executable (X) – implies if the destination page permits instruction fetching.

• User (U) – denotes a user mapping. A user-mode hart can only access user
pages.

• Global (G) – designates that the mapping is visible for all address spaces (i.e.
the ASID is negligible).

• Accessed (A) – indicates whether the page has already been accessed.

• Dirty (D) – tells if the contents of the page have been modified.

A PTE points to next level page table if and only if R = W = X = 0. If a
PTE in a page directory doesn’t point to the next level page table, then it creates
a mapping for a super page which is a 4MiB page.

Table 2.4 shows all permissible settings of the access and permission bits (the
global bit isn’t shown as it’s irrelevant). Any other configuration will result in a
page fault when used in address translation.

Description D A U XWR V

page table pointer * * * 000 1
user readable * 1 1 **1 1
user writable 1 1 1 *11 1
user executable * 1 1 1** 1
kernel readable * 1 0 **1 1
kernel writable 1 1 0 *11 1
kernel executable * 1 0 1** 1

Table 2.4: Permissible settongs of the Sv32 PTE access and permission bits

In Mimiker, we assume access and dirty bits to be unsupported and emulate
them in the software.

Memory management fence instruction

Whenever we modify a mapping in the memory translation structure, we need to
ensure two conditions:

1. The modification is contributed to the physical memory before any subsequent
implicit references read the mapping.

2. The obsolete mapping must be erased from the translation lookaside buffer
(TLB).

The supervisor instruction SFENCE.VMA satisfies these requirements.

2.2. HART-LEVEL INTERRUPT CONTROLLER (HLIC) 37

The instruction accepts two register arguments. The first provides the virtual
address (if the zero register is used, then the instruction regards all virtual ad-
dresses), and the second specifies the address space identifier (if the zero register is
used, then the operation concerns all address spaces).

On some implementations, the only implemented variant of the SFENCE.VMA
instruction is the one with the zero register as both source arguments. On such
implementations, other combinations may cause an invalid instruction exception.
An example of such implementation is VexRiscv.

Mimiker relies on the aforementioned most general variant of the SFENCE.VMA
instruction.

2.2 Hart-level interrupt controller (HLIC)

Each RISC-V hart contains a local interrupt controller which routes every inter-
rupt before it finally reaches the hart. This interrupt controller is called hart-level
interrupt controller (HLIC) [16].

The RISC-V specification [13] defines three interrupt sources. The sources are:

• software interrupts,

• timer interrupt,

• external interrupts.

From the supervisor mode software, HLIC is controlled by the supervisor mode
interrupt CSRs described in the previous section (sie and sip), and the only inter-
rupts visible to the kernel are the interrupts managed by these registers.

2.3 Interrupt handling at the platform level

Supervisor software interrupts are caused by SBI calls issued by other harts to
implement inter-processor communication (e.g. to synchronize or exchange threads).
Supervisor timer interrupts are asserted by the SBI implementation as a result of
receiving a machine mode timer interrupt (as only machine mode has access to the
timer). Finally, supervisor external interrupt occurs whenever there is at least one
peripheral device requesting attention.

In contrast to software and timer interrupts where the fact that an interrupt
has occurred is all we need to handle it, an external interrupt is merely an indication
that some device requires special care. The kernel needs to investigate exactly which
device is causing the interrupt.

38 CHAPTER 2. ABSTRACTIONS

The actions required to obtain the asserting device highly depend on the actual
platform. We can distinguish two schemes employed by RISC-V based hardware
platforms:

• the platform consists of a single hart without a peripheral-level interrupt con-
troller (PLIC),

• the platform contains a PLIC.

In platforms without PLIC, the platform will expose some memory-mapped
registers accessible from the supervisor mode. At least two registers should be
provided:

• interrupt mask register – to enable fine-grained masking of external interrupts,

• interrupt pending register – to provide the kernel with information on which
devices require urgent attention.

In Mimiker, we assume PLIC to be present, however, we plan to extend the
code to support single-core platforms without PLIC.

2.4 Platform-level interrupt controller (PLIC)

The RISC-V platform-level interrupt controller specification was invented to stan-
dardize how peripheral interrupts are handled [17].

As PLIC interrupt priorities are optional and not used in my implementation,
we will omit them in the following discussion.

2.4.1 A PLIC context

A PLIC is characterized by a number of interrupt sources (up to 1023), and several
contexts. A PLIC context consists of the following components:

• enable bits – a single bit for each interrupt source,

• claim/complete register – used for identifying pending interrupts and for sig-
naling end of interrupt (EOI).

Each PLIC context can be linked with one or more privileged modes (supervisor
or machine) from one or more harts. Whenever there is a pending interrupt that is
enabled in a given context, the external interrupt is asserted for each privilege mode
linked with this context.

2.4. PLATFORM-LEVEL INTERRUPT CONTROLLER (PLIC) 39

2.4.2 Exemplary setup

To better understand PLIC, let’s examine a usage scenario.

Let’s consider a hypothetical RISC-V based platform containing two harts. The
platform incorporates the following elements:

• two harts, each implementing machine, and supervisor privilege modes,

• PLIC with 32 interrupt sources and 3 contexts,

• UART device capable of generating an interrupt (TX FIFO empty or RX FIFO
non-empty).

The UART device is connected to PLIC interrupt source 1. PLIC context 0
and 1 are connected to machine and supervisor mode of hart 0, respectively. PLIC
context 2 is connected to both machine and supervisor mode of hart 1. Contexts 1
and 2 enable interrupt source 1, while context 0 keeps it disabled.

Now, let’s say that a byte has been queued into the receiver hardware queue,
thereby PLIC source 1 becomes pending. Since context 0 ignores the interrupt,
nothing happens from its perspective. At the same time, context 1 signals a super-
visor external interrupt for hart 0, whereas context 2 signals machine and supervisor
external interrupts for hart 1.

2.4.3 Interrupt handling process

When an external interrupt occurs, the following steps should be taken:

1. The claim/complete register should be read to obtain the interrupt source.

2. Proper operations should be performed on the asserting device to satisfy the
interrupt.

3. The claim/complete register should be written with the interrupt source num-
ber to signal the end of the interrupt.

2.4.4 Why use PLIC in Mimiker?

As Mimiker is restricted to a single core, PLIC isn’t mandatory. However, some
benefits justify incorporating PLIC:

• Portability – PLIC is widely used in the RISC-V world. An outright PLIC
driver makes an operating system much more portable than relying on some
platform-specific solutions. If we were to port Mimiker on some of the SiFive
boards, PLIC would be inevitable.

40 CHAPTER 2. ABSTRACTIONS

• Isolation – PLIC contexts can provide isolation between different privilege
modes, for instance, machine mode runtime firmware may wish to operate on
external devices independently of the supervisor mode kernel.

2.5 Advanced core local interruptor (ACLINT)

The RISC-V advanced core local interruptor specification [19] defines three memory-
mapped devices:

• Machine-level timer device (MTIMER) – standardizes how machine timer
memory-mapped registers are implemented.

• Machine-level software interrupt device (MSWI) – defines a standard interface
for managing machine software interrupts.

• Supervisor-level software interrupt device (SSWI) – defines a standard inter-
face for generating software interrupts.

2.5.1 MTIMER

The MTIMER device provides a single fixed-frequency 64-bit monotonic mtime reg-
ister which is shared among all connected harts, and a single mtimecmp register for
each connected hart.

2.5.2 MSWI

The MSWI device provides the msip register for each connected hart. Each register
is 32-bits long with the upper 31 bits hardwired to 0. The least significant bit serves
for setting and clearing the machine software interrupt on the corresponding hart.

2.5.3 SSWI

The SSWI device supplies the setssip register for each connected hart. The
setssip registers work analogously to the msip registers, with two differences:

• setssip regards supervisor software interrupts,

• setssip only can generate an interrupt, the interrupt can be cleared via mip
or sip.

2.6. SIFIVE CORE LOCAL INTERRUPTOR (CLINT) 41

2.6 SiFive core local interruptor (CLINT)

The SiFive core local interruptor (CLINT) is a compound of MTIMER and MSWI
ACLINT compatible devices, thereby, providing an implementation for the machine
memory-mapped timer registers along with means to control machine software in-
terrupts for each connected hart [18].

CLINT is the most common implementation of ACLINT devices (excluding the
SSWI device). CLINT was the inspiration for the ACLINT specification.

2.6.1 Why use CLINT in Mimiker?

Although CLINT (and ACLINT in general) is intended for deployment in systems
with multiple RISC-V harts, it is still profitable to support CLINT in Mimiker. It
can be argued as follows:

• Portability – as with PLIC, it is the most valuable benefit.

• Small overhead – while it may seem costly to provide a CLINT in a unicore
system, in fact, we still need to implement the machine memory-mapped reg-
isters (which in CLINT is done by the MTIMER device). The only overhead
is the requirement to implement an additional 4-byte msip register with the
ability to set and clear machine mode software interrupt.

2.7 LiteX

LiteX is an open-source SoC builder [20]. It is hosted on GitHub and maintained
by the Enjoy-Digital company.

LiteX supports many soft cores and provides some essential peripheral devices
including PCIe and Ethernet cores.

The tool is very flexible and can be used in various ways depending on the user’s
background and needs. We utilize LiteX to accomplish the following goals:

• provide an implementation of a platform to run the prepared Mimiker port,

• generate a device tree conveying the target platform,

• generate a platform description used by our system emulator.

2.7.1 Mimiker RISC-V target platform

The Mimiker RISC-V port is destined to run on LiteX generated platforms incorpo-
rating a 32-bit RISC-V softcore. Additionally, the following assumptions have been

42 CHAPTER 2. ABSTRACTIONS

made:

• the softcore provides a CLINT device,

• the softcore provides a PLIC device,

• the LiteX UART (LiteUART) peripheral is employed and its interrupt is con-
nected to PLIC.

CLINT, PLIC, and LiteUART devices are mandatory to run Mimiker. In the
future, I would like to add support for soft cores which don’t support CLINT or
PLIC.

From that point onward, whenever we refer to a Mimiker RISC-V target platform
we mean a LiteX platform fulfilling the aforementioned assumptions.

2.8 Supervisor binary interface (SBI)

The RISC-V supervisor binary interface (SBI) specification defines an interface be-
tween the supervisor software and supervisor execution environment (machine mode
software in our case) [21].

SBI defines exactly two things:

• a set of available services (in the form of extensions and functions),

• a binary encoding (i.e. calling convention on the binary level).

2.8.1 Extensions and functions

Much like the RISC-V ISA, SBI defines a mandatory base called the base extension,
along with a number of optional extensions intended for a particular application.
Besides the standard extensions, each implementation may provide custom SBI ex-
tensions.

Each SBI extension (including the base extension) is identified by an extension
identifier (EID) and defines a number of functions, each distinguished by a relative
function identifier (FID) and providing some service for the calling hart. The only
exception of that principle is legacy extensions which define only a single function
and are identified solely by the EID.

2.8.2 Calling scheme

SBI calls resemble function calls with two differences:

2.8. SUPERVISOR BINARY INTERFACE (SBI) 43

• a call is made using the environment call instruction (ECALL) instead of the
regular routine call instruction (CALL),

• argument registers a7 and a6 are destined for EID and FID, respectively.

Upon return, a0 contains an error code, whereas a1 contains a return value.
The validity of the aforementioned registers depends on the signature of the specific
function.

2.8.3 Timer extension

For now, besides the base extension, Mimiker only uses one additional extension -
the timer extension.

The timer extension defines a single function called set timer. The set timer
function accepts a single 64-bit argument specifying when the next timer interrupt
should occur. Calling the function with a parameter greater than the current value
of the time CSR will clear any pending timer interrupt.

2.8.4 Mimiker SBI library

In order to nimbly incorporate SBI calls to kernel, some handy wrappers should be
provided to make the code more legible. Besides, some functions can be called once
during kernel bootstrap and the results can be cached (e.g. get machine architecture
ID). Furthermore, employing SBI requires some initial reasoning to be performed,
for instance, to ensure that all functionalities the kernel relies on are supported.
Such operations make a great candidate for an initialization function of a kernel
module.

In Mimiker, I have provided an SBI kernel library. The library is ported from
FreeBSD (with slight modifications).

The key function of the module is the sbi call function which implements a
generic SBI call. Each SBI function wrapper is implemented by calling this function
with appropriate EID and FID.

2.8.5 SBI implementation

When preparing to run the code on an emulator or hardware, we must provide
a supervisor execution environment (SEE) also known as SBI implementation, as
someone needs to receive and fulfill requests issued by the kernel.

Considering the software stack we have chosen, an SBI implementation will take
the form of software running in machine mode. Such software is known as runtime
firmware.

44 CHAPTER 2. ABSTRACTIONS

1 static sbi_ret_t sbi_call(unsigned long ext, unsigned long func,
2 unsigned long arg0, unsigned long arg1,
3 unsigned long arg2, unsigned long arg3,
4 unsigned long arg4) {
5 register register_t a0 __asm("a0") = (register_t)(arg0);
6 register register_t a1 __asm("a1") = (register_t)(arg1);
7 register register_t a2 __asm("a2") = (register_t)(arg2);
8 register register_t a3 __asm("a3") = (register_t)(arg3);
9 register register_t a4 __asm("a4") = (register_t)(arg4);
10 register register_t a6 __asm("a6") = (register_t)(func);
11 register register_t a7 __asm("a7") = (register_t)(ext);
12

13 __asm __volatile("ecall"
14 : "+r"(a0), "+r"(a1)
15 : "r"(a2), "r"(a3), "r"(a4), "r"(a6), "r"(a7)
16 : "memory");
17

18 return (sbi_ret_t){
19 .error = a0,
20 .value = a1,
21 };
22 }

Listing 1: SBI call wrapper (sbi.c)

There are many SBI implementations with the most popular one being OpenSBI.
We use OpenSBI to create the software stack for running Mimiker.

2.9 OpenSBI

OpenSBI is an open-source reference implementation of SBI destined to be used as
runtime firmware [22].

OpenSBI isn’t meant for any particular platform. The main component of
OpenSBI is a platform-independent static library called libsbi.a. The library can
be used in two ways:

• to build more sophisticated firmware, for example, custom SBI implementation
or bootloader,

• it can be integrated with a platform-specific component to generate a com-
pound library or runtime firmware.

2.9. OPENSBI 45

2.9.1 Platform implementation

It is important to realize that although SBI provides some abstract models to the
kernel, the models must be implemented in a platform-specific way.

Each target platform must provide an sbi platform struct containing a full de-
scription of the target platform. The most vital member accommodated in the plat-
form structure is an sbi platform operations struct. sbi platform operations
defines an interface used by SBI to handle platform-specific operations. Most of the
functions composing the interface are init/exit callbacks, for instance, ipi init,
ipi exit, timer init, and timer exit.

In the platform-independent layer, OpenSBI contains drivers for the most com-
mon devices including all ACLINT devices and PLIC. In the majority of cases, to
implement a platform in OpenSBI, we have to describe incorporated devices (e.g.
MTIMER base address) and announce them inappropriate init functions exposed in
the platform operations interface.

Besides the implementation of the platform structure, (in a simple scenario)
each platform must specify an entry point address of the supervisor mode software.

OpenSBI provides some reference platform implementations (e.g. implementa-
tion used by QEMU) along with a template to simplify adding new targets. Unfor-
tunately, OpenSBI doesn’t contain implementation for LiteX generated platforms.

2.9.2 OpenSBI on LiteX

Enjoy-digital provides an open-source OpenSBI platform implementation for the
LiteX VexRiscv platform [23], however, the code is seriously obsolete and doesn’t
include PLIC.

Using the supplied template combined with the aforementioned code, I prepared
an updated implementation for the target LiteX VexRiscv platform. Although the
code is destined for this particular platform, it should work correctly for all target
platforms we support. The implementation includes the following functionalities:

• Console – I provided a primitive LiteUART driver used to implement the
legacy console extensions and to print any OpenSBI logs (including the initial
ASCII art).

• ACLINT – I utilized the supported OpenSBI drivers for MTIMER and MSWI
devices.

• PLIC – I included a PLIC device (which is currently unused by the implemen-
tation, as the supplied LiteUART driver doesn’t rely on interrupts).

46 CHAPTER 2. ABSTRACTIONS

The entry point for Mimiker is dependent on the exact physical memory layout
of the target platform.

2.9.3 Supervisor mode initial environment

OpenSBI defines the following initial state for each hart upon entering the supervisor
mode:

• satp register is set to 0 thereby the virtual memory translation is off and the
hart operates on physical addresses,

• supervisor interrupts are globally disabled (i.e. SIE in sstatus if cleared),

• a0 contains the hart identifier of the hart,

• a1 contains the physical address of device tree blob (DTB),

• the state of remaining registers is undefined and the hart shouldn’t assume
any specific values.

Besides the initial setup of registers, OpenSBI delegates supervisor interrupts
(SSI, STI, and SEI) and page fault exceptions for handling in supervisor mode.

Although only the three page fault exceptions are delegated, the supervisor
should still expect to encounter a broader range of exceptions as OpenSBI may
redirect exceptions that are initially processed in machine mode, down to supervisor
mode. A good example of such a scenario is the illegal instruction exception. When
an illegal instruction is encountered, control is redirected to the machine mode trap
handler. If the instruction is emulated by OpenSBI, then the handler returns in
the standard fashion, and instruction fetch resumes. However, if the instruction
isn’t emulated, OpenSBI will set supervisor CSRs related to exception handling and
return from exception (MRET) to supervisor trap handler. From the perspective of
supervisor mode, it appears exactly as if the exception was handled directly by the
supervisor mode.

2.10 Application binary interface (ABI)

Whereas supervisor binary interface defines available functions exposed by the su-
pervisor execution environment along with calling convention (i.e. SBI is just an
environment execution interface (EEI)), application binary interface (ABI) is differ-
ent.

Application binary interface defines communication between two binary mod-
ules at each privilege level. Every two binary modules making up a user, supervisor,
or machine mode program communicate with each other using ABI.

2.10. APPLICATION BINARY INTERFACE (ABI) 47

RISC-V defines a number of ABIs which differ regarding argument and return
value passing [24].

In contrast to SBI, a generic ABI doesn’t contain a definition of the interface
between user-mode applications and supervisor mode kernel. The syscall interface
is OS-dependent and thereby not included.

The processor-specific ABI is composed of the following components:

• calling convention,

• RISC-V-specific ELF aspects,

• RISC-V-specific DWARF aspects.

2.10.1 Calling convention

The RISC-V calling convention defines:

• Register convention – for each register set (integer, floating-point, and vector)
determines which registers should be preserved across procedure calls, and
what is the destination of each register (e.g. which one is used to store return
address).

• Argument and result passing – how are integer and floating-point arguments
passed within procedure calls, how aggregated types are handled, variadic
functions, stack alignment, and more.

• defined ABIs – The choice of specific ABI depends on supported extensions.

• C/C++ basic type sizes and alignments – for each ABI defines sizes and align-
ment of primitive data types (e.g. char, int, void *, and double).

2.10.2 ELF

The ELF component of the RISC-V psABI defines all ELF-related RISC-V notions
and definitions. This includes the following:

• available code models (small and medium),

• new definitions regarding the ELF format itself (e.g. RISC-V machine target),

• linker relocations.

48 CHAPTER 2. ABSTRACTIONS

2.10.3 DWARF

The chapter dedicted to DWARF debugging format defines a mapping between
DWARF register numbers and RISC-V registers (integer, floating-point, vector, and
CSRs).

2.11 Device tree

Device tree provides a standardized way of describing the organization of a computer
[25]. A device tree is organized in a set of nodes. A node usually represents a single
device which in turn defines a set of properties and potentially a number of subnodes
representing its child devices.

Device tree is used mainly in embedded systems which don’t provide a way for
discovering attached devices (e.g. PCI device enumeration).

A typical device tree contains the following components:

• kernel command line,

• initial ramdisk boundaries,

• a compound node (usually called ”cpus”) that contains a node for each pro-
vided CPU,

• a memory node,

• a reserved memory node,

• a compound node (usually called ”soc”) that accommodates a node for each
peripheral device.

2.11.1 Device tree formats

Device tree defines two file formats:

• device tree source (DTS) – a human-readable device tree format,

• device tree blob (DTB) – a compiled DTS.

Additionally, a compiled device tree source is sometimes referred to as flattened
device tree (FDT).

Chapter 3

Mimiker port

Mimiker machine-dependent components can be divided into elements constituting
kernel space and elements composing user space.

Kernel machine-dependent components can be further divided into constituents
reliant on the CPU architecture and elements reliant on the target platform.

The target architecture introduces:

• a CPU model,

• architecture-specific devices, for instance, interrupt controllers (HLIC and
PLIC) and timer (MTIMER).

The target platform defines:

• physical memory map (ROM, SRAM, DRAM, I/O regions),

• peripheral devices (e.g. UART and eMMC controller).

Userspace machine-dependent components confine to system libraries.

We will structure our discussion as follows. First, we will examine the phys-
ical memory map and virtual memory layout. Afterward, we will elaborate on
the implementation of the architecture-dependent components, excluding RISC-V
implied device drivers. Thereafter, we will discuss device drivers required by the
architecture and target platform. Finally, we will move to user space and explore
machine-dependent aspects of system libraries.

3.1 Memory map

In order to prepare a port of an operating system, we need to become familiar with
the physical address space presented by the target platform and establish a layout

49

50 CHAPTER 3. MIMIKER PORT

of the virtual address space in which the kernel and user processes will operate.

3.1.1 Physical address space

The layout of physical memory is dependent on the target platform. A typical
physical memory map of a LiteX generated platform looks like this (small addresses
to high addresses):

• a small address range corresponding to an on-chip ROM memory,

• a range mapped to an SRAM memory of similar size as the ROM region,

• a significant address span representing DRAM (called the main memory),

• irregular range for memory-mapped devices.

3.1.2 Why is the physical memory map important?

From our perspective, the most important properties of the physical address space
are:

• the boundaries of the DRAM backed address range,

• the beginning of the I/O region, and which portions of it are inhabited (i.e.
the boundaries of each memory-mapped device).

Main memory boundaries

At the very beginning of the kernel bootstrap process, before memory translation
is turned on, the kernel operates on physical addresses. The portion of the kernel
that operates on bare memory is called the boot segment. As Mimiker is linked as
a static binary, we need to specify the physical address of the boot segment in the
kernel linker script in order to appropriately resolve any relocations.

Moreover, the main memory range is crucial to construct a direct map (dmap)
needed to manage memory translation structures.

Besides, main memory boundaries are required by the physical memory man-
agement module (physmem) [33]. physmem must be aware of every unreserved main
memory region, as it maintains information about each physical page in the system.

I/O space

The root bus device contains a manager meant for resource allocation on behalf of
child devices and buses. The manager must be given the boundaries of the I/O
space of the platform.

3.2. RISC-V KERNEL 51

3.1.3 Virtual address space

Except for the boot segment, all remaining segments constituting the kernel image
operate fully in virtual address space.

Whereas physical memory layout is defined by the target platform, virtual mem-
ory layout is wholly programmable. It is up to the kernel developer to establish a
layout of the virtual memory.

In RISC-V, there is a single translation structure for both kernel and userspace.
The majority of operating systems ported to architectures with this feature employ
one of the following virtual memory layouts:

• fifty-fifty – the bottom half of the virtual address space is devoted to user
programs, while the top half is meant for the kernel.

• three-quarters to one-quarter – the bottom three-quarters is intended for userspace
and the remaining part is used by the kernel.

For this port, I chose the fifty-fifty variant. The kernel macro defining the start
of the virtual address space of the kernel is called KERNEL SPACE BEGIN and is defined
to 0x80000000.

3.2 RISC-V kernel

This section will describe the implementation of architecture-dependent components
of the Mimiker kernel with the exception of device drivers related to the CPU which
will be discussed in the next section.

3.2.1 Kernel linker script

Linker scripts are used to specify the final layout of the generated binary. They
describe the output format of the binary, program entry point, how input sections
are mapped to output sections, what is the address (virtual and load) of each output
section, and how program headers are constructed.

Preprocessed linker scripts

In Mimimker, each architecture has a dedicated linker script. Nevertheless, we would
like to have a single linker script for as many platforms as possible. However, there
is a problem. As described in 3.1, main memory boundaries are platform-specific
and the physical address of the boot segment must be specified in the linker script.
Having said that, there is also good news. The address of the boot segment seems

52 CHAPTER 3. MIMIKER PORT

to be the only platform-specific aspect that has to be contained in the RISC-V kernel
linker script for Mimiker.

The above reasoning was my motivation for introducing preprocessed linker
scripts. Preprocessed linker scripts are processed using the C preprocessor (cpp) to
obtain an actual linker script used by the linker to produce kernel executable binary.

Equipped with preprocessed linker scripts, we can establish the following con-
vention:

• each RISC-V target platform defines a macro KERNEL PHYS which expresses the
physical address of the boot segment (not to confuse with the start address of
the main memory),

• the kernel linker script for RISC-V utilizes the aforementioned macro instead
of using any explicit value.

Kernel output format

The linker generates a standard 32-bit little-endian ELF executable. Although some
emulators and bootloaders are capable of processing ELF binaries, our emulator for
LiteX platforms (Renode) anticipates a raw binary image. The generated ELF is
used for debugging (as it accommodates debug info), and the final raw binary is
produced using the objcopy tool from our toolchain.

It is worth mentioning, that using a raw binary has some benefits, for instance:

• a raw binary is usually much smaller than the corresponding ELF,

• using a raw binary enables us to use a simpler bootloader as all it has to do is
to copy the binary image to the specified address.

Kernel entry point

The entry point of the kernel is defined to be the start function defined in start.S.

Output sections

The provided kernel linker script employs the following output sections:

• .boot – composes the boot segment. It is loaded at KERNEL PHYS and operates
on bare physical memory.

• .text – contains the code of all kernel modules and libraries.

• .eh frame – contains metadata including CFI related contents.

3.2. RISC-V KERNEL 53

• .rodata – read-only kernel data.

• .data – initialized data.

• .sdata – small data and read-only data input sections. Global pointer is
defined to point around the middle of this section.

• .bss – uninitialized data. This in a nobits section meaning that it occupies
no space in the file (ELF as well as raw binary).

Besides the listed sections, there are many sections corresponding to linker sets.

The start.o file needs to be the first file included in the .boot section ➊ as it
contains kernel entry point and our output format is raw binary.

Virtual memory address (VMA) of the .text section ➋ is defined to be at the
start of the virtual address space plus the offset of the .text load memory address
(LMA) from KERNEL PHYS. This enables us to convert a virtual address within the im-
age to the corresponding physical address by clearing bits set in KERNEL SPACE BEGIN
and adding KERNEL PHYS.

1 .boot KERNEL_PHYS : AT(KERNEL_PHYS) ALIGN(4096)
2 {
3 __boot = ABSOLUTE(.);
4 ➊KEEP(riscv/riscv.ka:start.o)
5 *(.boot .boot.*)
6 . = ALIGN(4096);
7 __eboot = ABSOLUTE(.);
8 } : boot
9

10 HIDDEN(_boot_size = __eboot - __boot);
11

12 ➋.text KERNEL_SPACE_BEGIN + _boot_size : AT(__eboot) ALIGN(4096)
13 {
14 __kernel_start = ABSOLUTE(.);
15 __text = ABSOLUTE(.);
16 *(.text .text.*)
17 __etext = ABSOLUTE(.);
18 } : text

Listing 2: .boot and .text sections (riscv.ld.in)

Kernel segments

A loadable program header is called a segment. Mimiker kernel image consists of
four segments that aggregate selected output sections.

54 CHAPTER 3. MIMIKER PORT

Beside the segments corresponding to program headers, the .bss section con-
stitutes the bss segment.

Kernel linker symbols

The linker script defines a few linker symbols which have external linkage within
the kernel and are used during bootstrap, for instance, to map segments to virtual
memory and zero the bss segment.

3.2.2 Direct map

A direct map is a contiguous kernel virtual memory area that is mapped one to one
to the entire main memory. It is used to manipulate physical pages, for instance, to
modify mappings in memory management structures, or to zero or copy a designated
physical page.

I divided the virtual address space of the kernel into two parts:

• the first half contains allocatable virtual memory and kernel image (excluding
the boot segment),

• the second half is devoted to the direct map.

For the 32-bit variant of the architecture, the above scheme assumes that the
size of the main memory doesn’t exceed 1GiB.

3.2.3 Libkern

Each user space program can be linked against the standard C library to benefit
from a wide range of handy functions, for example, string manipulation functions.
But if we wanted to call memcpy within a kernel module?

The libkern library is a small kernel library implementing a selected subset of
functions defined by the standard library.

Mimiker builds libkern from the same source files as libc for user programs using
its flexible build system. If the programmer needs a not yet included functionality
provided by libc, makefiles can be modified to include the desirable feature.

How is libkern machine-dependent?

Some of the functions composing libkern are implemented separately for each archi-
tecture as they are written directly in assembly to gain better performance.

3.2. RISC-V KERNEL 55

3.2.4 Generic assembly

Although my work is focused on the 32-bit variant of RISC-V, I strongly believe
that we will expand to include the 64-bit counterpart in the range of supported
architectures. This encouraged me to employ a generic RISC-V assembly introduced
by NetBSD [26].

Generic assembly introduces a C preprocessor macro for each assembly instruc-
tion that has a different mnemonic in 32- and 64-bit variants. All other instructions
remain in the usual form.

1 # if __riscv_xlen == 64
2 # define PTR_L ld
3 # define PTR_S sd
4 # define PTR_LR lr.d
5 # define PTR_SC sc.d
6 # define PTR_WORD .dword
7 # define PTR_SCALESHIFT 3
8 # else
9 # define PTR_L lw
10 # define PTR_S sw
11 # define PTR_LR lr.w
12 # define PTR_SC sc.w
13 # define PTR_WORD .word
14 # define PTR_SCALESHIFT 2
15 # endif

Listing 3: Generic integer assembly (asm.h)

The same abstraction is applied to floating-point operations dependent on the
precision of supported extension.

1 # ifdef __riscv_d
2 # define FP_L fld
3 # define FP_S fsd
4 # elif defined(__riscv_f)
5 # define FP_L flw
6 # define FP_S fsw
7 # endif

Listing 4: Generic floating-point assembly (asm.h)

Besides the described features, generic assembly supplies some aliases for com-
mon assembly instructions which usage is optional.

56 CHAPTER 3. MIMIKER PORT

3.2.5 thread0

Although it is not a machine-dependent aspect, it is worthwhile to wonder which
software entity is responsible for performing the bootstrap process.

The control flow that performs the bootstrap of the kernel is known as thread0.
thread0 is a statically allocated thread constituting a statically allocated process
termed proc0. Although it is attached to a process, it never enters user space. In
fact, the only reason why it has a parent process is to unify the fork logic as thread0
issues a fork to spawn the init process after the bootstrap is done.

After the init process is created, thread0 turns into the idle thread of the hart
it executes on.

3.2.6 Bare memory boot

The RISC-V kernel boot process is divided into two stages:

• bare memory boot – operates directly in physical memory,

• virtual memory boot – runs in virtual memory in the environment prepared
by the former phase.

The bare memory boot is contained in the boot segment and its sole goal is to
bring the kernel into virtual address space.

Kernel entry point

The first boot stage begins with start which is the entry point of the kernel.

As we employ linker relaxations [39], the first thing we should do is set up the
global pointer for the kernel ➊.

If we were to run the kernel on a multihart system, we would have to distinguish
one hart to perform the global initialization and redirect the remaining harts to
execute the hart-local initialization. For the time being, Mimiker utilizes only a
single hart with hart identifier equal to 0 ➋. If there is more, they will stay idle.

As stack pointer is among the registers that remain in an undefined state upon
entry, we have to set an initial stack before calling any functions ➌.

At the end, we move to riscv init and pass the DTB address as the argument
➍.

1 _ENTRY(_start)
2 ➊LOAD_GP()
3

3.2. RISC-V KERNEL 57

4 ➋bnez a0, halt
5

6 /* Move to the initial stack. */
7 ➌PTR_LA sp, initstack_end
8

9 mv a0, a1
10 ➍tail riscv_init
11 halt:
12 wfi
13 j halt
14 _END(_start)

Listing 5: Kernel entry point (start.S)

RISC-V init

The remaining part of the bare memory boot is performed within riscv init. The
purpose of this function is to set up an environment for the second stage boot and
handle the control over to riscv boot which implements the virtual memory boot
phase.

To prepare the environment, we have to create a kernel page directory along
with a few page tables. These constructs require some additional physical memory
to be allocated. The boot memory allocator was designed for this purpose. The
allocator accepts a requested size, rounds it up to page size multiple, and extends
the end of the kernel image in physical memory. The initialization function ➊ sets
the kernel’s physical brk pointer to the end of the kernel’s image and sets the top
boundary that the brk pointer can reach.

After we allocate memory for the page directory, we map the kernel image (i.e.
text, rodata, data, and bss segments) into virtual memory.

The virtual memory boot phase has to have access to the DTB as it contains
kernel command line, ramdisk address, and information regarding CPU and all
peripheral devices. However, there is an issue. When we turn on memory translation,
we can no longer access the DTB using its physical address. Moreover, we cannot
use the direct map as to construct the direct map we need to know the main memory
boundaries which are contained in the DTB itself. To solve this problem, we will
temporarily map the DTB and the kernel page directory into the virtual memory
area destined for the direct map. When the mappings are no longer needed, they
will be overwritten by the direct map.

Before we will move to the second stage, there is still one more thing to do.
While performing kernel machine-independent initialization, we will initialize the
physmem module. The physmem initialization function will allocate a structure for
each physical page and insert the structure into a free list used by the buddy system

58 CHAPTER 3. MIMIKER PORT

(i.e. physical page allocation algorithm). The allocated structures will be mapped
right after the kernel image in virtual memory by the pmap module. However, if
during that process, pmap will encounter an invalid page directory entry, it will try
to allocate a physical page for a page table using the physical page allocator which
is not initialized yet. This will result in a kernel panic. To avoid this scenario, I
introduced the vm page ensure pts function which serves the purpose of ensuring
that some established amount of page directory entries mapping virtual addresses
right after the kernel image are valid (i.e. they point to allocated page tables).

Afterward, it is time to enable address translation and move to the virtual
memory boot phase implemented by riscv boot. To accomplish that, we use the
following scheme:

1. We don’t map the boot segment into virtual memory.

2. We ensure that boot physical addresses don’t overlap with virtual addresses of
the mapped kernel image ➊. This requisite is crucial as we assume that the first
instruction fetch after enabling memory translation ➏ causes an instruction
fetch page fault.

3. We temporarily set the supervisor trap vector stvec ➋.

4. We set the DTB physical address and the kernel page directory physical ad-
dress as the arguments for riscv boot ➌.

5. We set the stack pointer to the virtual memory boot stack pointer ➍.

6. Finally, we enable the virtual memory translation system ➎.

1 __boot_text __noreturn void riscv_init(paddr_t dtb) {
2 ➊if (!(__eboot < __kernel_start || __kernel_end < __boot))
3 halt();
4

5 bootmem_init();
6

7 /* Create kernel page directory. */
8 pd_entry_t *pde = bootmem_alloc(PAGESIZE);
9

10 map_kernel_image(pde);
11 map_dtb(dtb, pde);
12 map_pd(pde);
13 vm_page_ensure_pts(pde);
14

15 /* Temporarily set the trap vector. */
16 ➋csr_write(stvec, riscv_boot);
17

18 /*
19 * Move to VM boot stage.
20 */

3.2. RISC-V KERNEL 59

21 const paddr_t satp = SATP_MODE_SV32 | ((paddr_t)pde >> PAGE_SHIFT);
22 void *boot_sp = &boot_stack[PAGESIZE];
23

24 __sfence_vma();
25

26 ➌__asm __volatile("mv a0, %0\n\t"
27 "mv a1, %1\n\t"
28 ➍"mv sp, %2\n\t"
29 ➎"csrw satp, %3\n\t"
30 ➏"nop" /* triggers instruction fetch page fault */
31 :
32 : "r"(dtb), "r"(pde), "r"(boot_sp), "r"(satp)
33 : "a0", "a1");
34

35 __unreachable();
36 }

Listing 6: RISC-V init (boot.c)

3.2.7 Virtual memory boot

The purpose of the virtual memory boot stage is to bring the kernel to the state
where the board initialization process can be performed.

The first thing to do is setting registers to obey the kernel register usage con-
vention ➊:

• tp – the thread pointer register always points to the PCPU structure of the
hart,

• gp – the global pointer should be set close to the middle of the small data
output section (.sdata),

• sscratch – the use scheme of this register was described in 2.1.15.

The stvec register must be set to the address of the trap handling routine
(cpu exception handler) ➋. The trap handling mode of choice is the direct mode,
that is, all exceptions and interrupts trap to the same trap vector.

Although the bss segment has already been mapped, the physical pages backing
that segment contain undefined contents. Therefore, before we can advance, the bss
virtual memory area has to be zeroed.

The first kernel mode that gets initialized is the klog module which is used for
logging kernel messages [34]. It is essential to initialize it as soon as possible as it is
used throughout the entire kernel and implements such major functions as assert
and panic.

60 CHAPTER 3. MIMIKER PORT

Now it’s time to process the DTB. The data retrieved from the DTB is main-
tained in a dedicated kernel module called kernel environment (kenv) [35]. The
module is used across the bootstrap process including the board initialization phase.
The board stack function (described in the next subsection) handles this task and
returns a new stack pointer that points at the bottom of stack of thread0.

Before we can depart to board initialization, we need to supply the pmap module
with the physical address of the kernel page directory and build the direct map
required for further operation of the pmap module. These tasks are accomplished
by pmap bootstrap. The direct map may be created as the DTB has been processed
and main memory boundaries can be read from the kernel environment.

Eventually, we switch to the thread0’s stack and proceed to board initialization
➌.

1 static __noreturn void riscv_boot(paddr_t dtb, paddr_t pde) {
2 /*
3 * Set initial register values.
4 */
5 ➊__set_tp();
6 csr_write(sscratch, 0);
7

8 /*
9 * Set trap vector base address:
10 * - MODE = Direct - All exceptions set PC to BASE
11 */
12 ➋csr_write(stvec, cpu_exception_handler);
13

14 clear_bss();
15

16 init_klog();
17

18 void *sp = board_stack(dtb, BOOT_DTB_VADDR);
19

20 pmap_bootstrap(pde, BOOT_PD_VADDR);
21

22 /*
23 * Switch to thread0's stack and perform `board_init`.
24 */
25 ➌__asm __volatile("mv sp, %0\n\t"
26 "tail board_init" ::"r"(sp));
27 __unreachable();
28 }

Listing 7: RISC-V boot (boot.c)

3.2. RISC-V KERNEL 61

3.2.8 Board stack

As building the kernel environment requires extensive usage of the DTB module, we
need to initialize that module first ➊.

When forking the init process, the new thread’s user machine context is copied
from the context of thread0. However, the statically allocated thread0 doesn’t have
a statically assigned user machine context. To avoid a kernel oops, we set the user
machine context pointer of thread0 to a buffer allocated on its stack ➋.

Kernel environment consists of the following members:

• main memory start address and size,

• reserved memory start address and size (we assume a single reserved range for
OpenSBI),

• ramdisk start address and size,

• tokens specified in the kernel command line.

The kernel command line is further divided into kernel arguments and init
program arguments. The kernel arguments group includes the absolute path to the
init program. The two groups of arguments are separated by ”–”.

All the elements described above are delivered as properties in the DTB. They
will be retrieved and copied into the thread0’s stack.

Along with copying the properties into the stack, two argument vectors will be
constructed. The first one composes the kernel environment and contains pointers
to all the above elements excluding the tokens corresponding to init arguments. The
second one constitutes the argument vector for the init program.

➌ shows the allocation of both vectors. They are contained within a single
buffer and the two additional pointers serve for terminating the vectors.

After the vectors are populated and the properties are copied to the stack. The
vectors are handed to the kenv module.

Since the virtual memory boot has started, thread0 has been executing on a
temporary virtual memory stack. board stack returns a pointer to the bottom of
the thread0’s stack so that the virtual memory boot process can switch to it.

1 void *board_stack(paddr_t dtb_pa, vaddr_t dtb_va) {
2 ➊dtb_early_init(dtb_pa, dtb_va);
3

4 kstack_t *stk = &thread0.td_kstack;
5

6 ➋thread0.td_uctx = kstack_alloc_s(stk, mcontext_t);
7

62 CHAPTER 3. MIMIKER PORT

8 ➌const size_t nptrs = count_args() + 2;
9 char **kenvp = kstack_alloc(stk, nptrs * sizeof(char *));
10

11 process_dtb(kenvp, stk);
12 kstack_fix_bottom(stk);
13

14 init_kenv(kenvp);
15

16 ➍return stk->stk_ptr;
17 }

Listing 8: RISC-V board stack (board.c)

3.2.9 Board initialization

Board initialization is the last machine-dependent phase of the bootstrap. The
purpose of this stage is to perform any remaining operations that weren’t performed
earlier, for instance, due to the lack of the kernel environment.

While we have already initialized the klog module, the kernel command line
could have contained a customized klog mask (which is used for filtering kernel
logs). Thereby, we need to update the mask which is achieved by klog config.

As was claimed in 2.8.4, the SBI module requires some initial processing to be
done before the kernel can rely on SBI services.

Before physical memory management module will be initialized, we must pro-
vide it with the information of available main memory regions. The unusable main
memory regions are:

• kernel image (including pages allocated by boot memory allocator),

• device tree blob,

• OpenSBI,

• initial ramdisk.

All remaining regions are usable and should be reported to physmem. physmem regions
takes care of it.

Until now, interrupts have been globally disabled (as SBI ensures that sstatus.SIE
is 0 upon entry to the supervisor mode). Before we will advance, we will mask each
individual supervisor interrupt and enable interrupts globally ➊. Each specific in-
terrupt will be enabled when some device will register to utilize it.

The remaining part of the bootstrap is performed by machine-independent
kernel init.

3.2. RISC-V KERNEL 63

1 void __noreturn board_init(void) {
2 init_kasan();
3 klog_config();
4 init_sbi();
5 physmem_regions();
6 /* Disable each supervisor interrupt. */
7 ➊csr_clear(sie, SIE_SEIE | SIE_STIE | SIE_SSIE);
8 intr_enable();
9 kernel_init();
10 }

Listing 9: RISC-V board initialization (board.c)

3.2.10 Trap handling

As we deploy the direct trap handling mode, the first thing we do after a trap occurs
is obtain whether the trap has been caused in supervisor mode or rather in user mode
as both cases are handled differently.

Regardless of the privilege mode that has caused the trap, before a more so-
phisticated C handler can be called, a trap frame must be created. A trap frame
consists of:

• integer registers,

• program counter,

• status register,

• trap value (stval, usually the faulting address),

• trap cause (scause).

In Mimiker, the trap frame has the same layout as the CPU context, thereby
there is no need to introduce a new construct and the ctx t structure is used instead.

If the trap came from the supervisor, the trap frame can be allocated directly
on the stack. Otherwise, the trap frame is saved at the address retrieved from the
sscratch register which points to the user machine context save area allocated on
the kernel stack of the current thread.

Beside composing a trap frame, if the trap came from user mode, then we
need to set the registers to obey the kernel register usage convention (tp, gp, and
sscratch).

After these tasks are accomplished, the trap handler C function is called which
examines the cause of the trap and calls a destined handler. intr root handler han-

64 CHAPTER 3. MIMIKER PORT

dles interrupts, user trap handler handles user exceptions, and kern trap handler
covers kernel exceptions.

Kernel exception handler

The only permissible kernel exceptions are page fault exceptions. In general, kernel
page fault exceptions should happen rarely as almost all kernel mappings are wired
(i.e. non-pageable). Page faults are handled by the page fault handler function
described below.

As we don’t provide a kernel debug stub, all remaining exceptions result in an
error log and kernel panic.

User exception handler

In general, user mode exceptions are translated into signals:

• Access and misalignment exceptions result in SIGBUS being delivered to the
process.

• If a floating-point unit (FPU) is implemented, the first illegal instruction ex-
ception caused by a floating-point instruction results in the FPU being enabled
for the current thread. All remaining illegal instruction exceptions are trans-
lated into SIGILL.

• Breakpoint exception triggers SIGTRAP delivery.

User page fault exceptions are handled in the same fashion as kernel page faults.

The user environment exception is used in the syscall calling convention. The
syscall implementation is described in 3.2.15.

Page fault handler

The page fault handler function plays an essential role in to primary kernel mech-
anisms:

• access bit emulation,

• demand paging.

First, we need to establish which physical address map manages the faulting
address ➊. If the address lies within kernel virtual address space, then it’s the kernel
pmap. Otherwise, the user pmap is used.

3.2. RISC-V KERNEL 65

pmap access bit emulation mechanism must be given the access permissions of
the faulting access, which can be determined based on the exception code ➋.

pmap emulate bits emulates the referenced and modified permission bits and
is discussed in 3.2.13. The return value of the function should be interpreted as
follows:

1. EFAULT – there’s no mapping for the faulting address.

2. EACCES – the faulting access violates the permissions of the faulting address
mapping.

3. EINVAL – an invalid condition has been found. This can only occur in kernel
mode and will most likely result in a kernel panic.

If there is no mapping for the faulting address, we will try to page-in the cor-
responding physical page.

To begin with, we have to establish the virtual map that manages the faulting
address (similar to determining pmap, either kernel’s or user’s).

vm page fault is a machine-independent function that will try to find a virtual
memory area corresponding to the faulting address, and if permissions haven’t been
violated, will call the pager of the object corresponding to the obtained virtual
memory area. Afterward, the mapping will be entered into the physical address
map.

Error handling depends on privilege mode and whether the fault has occurred
during data copying between kernel and userspace (i.e. when on fault routine is set).
The on fault mechanism is described in 3.2.14.

1 static void page_fault_handler(ctx_t *ctx) {
2 thread_t *td = thread_self();
3

4 unsigned code = ctx_code(ctx);
5 void *epc = (void *)_REG(ctx, PC);
6 vaddr_t vaddr = _REG(ctx, TVAL);
7

8 klog("%s at %p, caused by reference to %lx!",
9 exceptions[code], epc, vaddr);
10

11 ➊pmap_t *pmap = pmap_lookup(vaddr);
12 if (!pmap) {
13 klog("No physical map defined for %lx address!", vaddr);
14 goto fault;
15 }
16

17 vm_prot_t access;
18 ➋if (code == SCAUSE_INST_PAGE_FAULT)
19 access = VM_PROT_EXEC;

66 CHAPTER 3. MIMIKER PORT

20 else if (code == SCAUSE_LOAD_PAGE_FAULT)
21 access = VM_PROT_READ;
22 else
23 access = VM_PROT_WRITE;
24

25 int error = pmap_emulate_bits(pmap, vaddr, access);
26 if (!error)
27 return;
28

29 if (error == EACCES || error == EINVAL)
30 goto fault;
31

32 vm_map_t *vmap = vm_map_lookup(vaddr);
33 if (!vmap) {
34 klog("No virtual address space defined for %lx!", vaddr);
35 goto fault;
36 }
37

38 if (!vm_page_fault(vmap, vaddr, access))
39 return;
40

41 fault:
42 if (td->td_onfault) {
43 /* Handle copyin/copyout faults. */
44 _REG(ctx, PC) = td->td_onfault;
45 td->td_onfault = 0;
46 } else if (user_mode_p(ctx)) {
47 /* Send a segmentation fault signal to the user program. */
48 sig_trap(ctx, SIGSEGV);
49 } else {
50 /* Panic when kernel-mode thread uses wrong pointer. */
51 kernel_oops(ctx);
52 }
53 }

Listing 10: RISC-V page fault handler (board.c)

Interrupt handler

intr root handler is a machine-independent function that calls a platform-dependent
root filter routine. The root filter routine is an interrupt handler registered by the
root bus device of the target platform which is the root interrupt controller. The
handling flow will travel from the root interrupt controller, down through child in-
terrupt controllers, to finally reach a leaf interrupt controller which will service all
asserting devices attached to the specified interrupt line.

3.2. RISC-V KERNEL 67

Returning from a trap

If the trap was an interrupt, then we have to check whether a context switch is
needed. Preemption may be necessary because for example:

• The trap was a timer interrupt and the time slice of the current thread has
finished.

• The filter routine of a device that has caused the interrupt has delegated some
work to the interrupt thread. As a result, the dedicated interrupt thread has
been awakened and happens to have higher priority than the current thread.

The check and potentially switch out, are performed by machine-independent
on exc leave.

In case of a supervisor mode trap, all that’s left to do is load the saved context
from the trap frame (under disabled interrupts) and issue a supervisor return from
trap (SRET) instruction.

Returning from a user-mode trap

The first observation is that when returning from a user-mode exception, we have
to call the on exc leave function as the exception could have been a syscall that,
for instance, could have created a higher priority thread. Moreover, if the trap was
a syscall, we need to deliver the result of the call to the thread.

As we mentioned earlier, most user-mode exceptions are translated to signals,
thereby, we need to deliver any pending and unmasked signals. This is described in
detail in 3.2.16.

Finally, we can move to the low-level user trap return routine called user exc leave.

On entrance, we globally disable interrupts as the following sequence shouldn’t
be interrupted.

If FPU isn’t implemented (i.e. floating-point exceptions are not supported),
then the scheme is very similar to what is done for the supervisor mode trap return.
However, if FPU is implemented then we potentially might need to restore the
floating-point context.

If the current thread employs FPU and it has been switched out for a while,
then the kernel must have saved its floating-point context. Since the only way out
from the kernel back to user space is through user exc leave, this is the place
where we need to restore the saved floating-point context.

After handling the floating-point context, we restore the context saved in the
trap frame and return to the aborted userspace instruction via SRET.

68 CHAPTER 3. MIMIKER PORT

1 user_exc_leave:
2 /* Disable interrupts. */
3 li t0, SSTATUS_SIE
4 csrc sstatus, t0
5

6 #if FPU
7 /* Read private thread flags. */
8 PTR_L t0, PCPU_CURTHREAD(tp)
9 INT_L t1, TD_PFLAGS(t0)
10

11 /* Skip FPU restoring if FPE context is not used. */
12 li t2, TDP_FPUINUSE
13 and t2, t1, t2
14 beqz t2, skip_fpu_restore
15

16 /* Restore FPE context iff a context has been saved. */
17 li t2, TDP_FPUCTXSAVED
18 and t2, t1, t2
19 beqz t2, skip_fpu_restore
20

21 /* Clear TDP_FPUCTXSAVED flag. */
22 li t2, ~TDP_FPUCTXSAVED
23 and t1, t1, t2
24 INT_S t1, TD_PFLAGS(t0)
25

26 /* Restore FPE context. */
27 PTR_L t0, TD_UCTX(t0)
28 load_fpu_ctx t0, t1
29

30 skip_fpu_restore:
31 #endif
32 load_ctx 0
33 csrrw sp, sscratch, sp
34 sret

Listing 11: RISC-V user trap return (exception.S)

3.2.11 Thread entry setup

The thread entry setup function implements machine-dependent part of the thread
creation process. It is destined for setting the entry point for a thread. target is
the destination entry point and arg is an argument for the entry function.

To achieve the desirable goal, we utilize three different contexts:

• kctx – kernel context saved and restored during context switch.

• kframe – kernel trap frame. This context is populated upon supervisor trap

3.2. RISC-V KERNEL 69

entry and restored while returning from a supervisor trap (in kern exc leave).

• uctx – User machine context. Saved when entering user trap and restored
while returning from user trap (in user exc leave).

As the first instruction of the thread is executed after a context switch, the
initial context of the thread will be the context restored during context switch,
that is, kctx. Although we could set the PC in kctx to the target function, we
cannot set the argument in this way as the argument register is caller-saved and
thereby isn’t saved nor restored by the context switch routine. However, a kernel
trap frame contains PC as well as all integer registers, hence kframe can be used
to accommodate the desirable values. To utilize kframe, we set the PC of the kctx
context to kern exc leave and the corresponding stack pointer to kframe ➊ as
kern exc leave restores context pointed by stack pointer. In addition to setting
the entry point and the argument in kframe, we also set the return address to
thread exit and the stack pointer to uctx. Setting the stack pointer to uctx is
justified by the fact that in the case of creating a user thread (i.e. forking), the
entry point will be set to user exc leave which restores the user machine context
pointed by the stack pointer.

In case of forking a new thread, the uctx context will be filled in the imple-
mentation of the fork syscall using the contents of the requesting thread. In this
scenario, the entry point argument and kframe return address are discarded.

1 void thread_entry_setup(thread_t *td, entry_fn_t target, void *arg) {
2 kstack_t *stk = &td->td_kstack;
3

4 kstack_reset(stk);
5

6 mcontext_t *uctx = kstack_alloc_s(stk, mcontext_t);
7 ctx_t *kframe = kstack_alloc_s(stk, ctx_t);
8 ctx_t *kctx = kstack_alloc_s(stk, ctx_t);
9

10 td->td_uctx = uctx;
11 td->td_kframe = NULL;
12 td->td_kctx = kctx;
13

14 /* Initialize registers in order to switch to kframe context. */
15 ➊ctx_init(kctx, kern_exc_leave, kframe);
16

17 /* This is the context that kern_exc_leave will restore. */
18 ctx_init(kframe, target, uctx);
19 ctx_setup_call(kframe, (register_t)thread_exit, (register_t)arg);
20 }

Listing 12: RISC-V context switch (thread.c)

70 CHAPTER 3. MIMIKER PORT

3.2.12 Context switch

Context switch transfers control over the hart from one thread (from) to another
(to). The calling thread (which must be pointed by from) will be suspended until
it is switched back on the CPU.

The context switch process is accomplished by the machine-dependent ctx switch
funtion.

As ctx switch is a regular function, it has to obey the calling convention.
Additionally, we save the stack pointer register along with the status register.

Although the destination thread will resume its execution in the kernel (after
the call to ctx switch), it may potentially move to user space (e.g. if the destination
thread is a user thread interrupted by a timer interrupt) which would clobber the
floating-point state of the source thread. To avoid losing the FPU context, we must
save it before switching out. The saved FPU context is the one that will be restored
while executing user exc leave.

The actual saving of the floating-point context is optional. The context will be
saved only if:

• the source thread utilizes the floating-point unit,

• the context hasn’t been saved yet,

• the floating-point context state is marked as dirty.

Please note that the context will be marked as saved regardless of the third
condition ➊.

After the dirty context is saved, we mark the FPU context as clean in the status
register of the source thread ➋.

Thereafter, we switch to the kernel stack of the destination thread, update the
current thread pointer (in PCPU), and switch the virtual memory map if necessary.

Finally, we restore the context of the target thread.

1 /*
2 * long ctx_switch(thread_t *from, thread_t *to)
3 */
4 ENTRY(ctx_switch)
5 /* `ctx_switch` must be called with interrupts disabled. */
6 csrr t0, sstatus
7 li t1, SSTATUS_SIE
8 and t1, t0, t1
9 bnez t1, halt
10

11 /* Save context of `from` thread. */

3.2. RISC-V KERNEL 71

12 save_ctx t0
13 PTR_S sp, TD_KCTX(a0)
14

15 #if FPU
16 /* Read private thread flags. */
17 INT_L t1, TD_PFLAGS(a0)
18

19 /* If FPU isn't used or FPE context has already been saved,
20 * then skip the saving. */
21 li t2, TDP_FPUINUSE|TDP_FPUCTXSAVED
22 and t2, t1, t2
23 li t3, TDP_FPUINUSE
24 bne t2, t3, skip_fpu_save
25

26 /* Get UCTX pointer for `from` thread. */
27 PTR_L t4, TD_UCTX(a0)
28

29 /* Save the FPE context only if it's dirty. */
30 li t2, SSTATUS_FS_MASK
31 and t3, t0, t2
32 li t2, SSTATUS_FS_DIRTY
33 ➊bne t3, t2, set_ctxsaved
34

35 /* Mark FPE state clean. */
36 li t2, ~SSTATUS_FS_MASK
37 and t0, t0, t2
38 ➋li t2, SSTATUS_FS_CLEAN
39 or t0, t0, t2
40 INT_S t0, CTX_SR(t4)
41

42 set_ctxsaved:
43 /* Set TDP_FPUCTXSAVED flag. */
44 li t0, TDP_FPUCTXSAVED
45 or t1, t1, t0
46 INT_S t1, TD_PFLAGS(a0)
47

48 /* Save FP regs. */
49 save_fpu_ctx t4, t0
50

51 skip_fpu_save:
52 #endif
53 /* Switch stack pointer to `to` thread. */
54 PTR_L sp, TD_KCTX(a1)
55

56 /* Update `curthread` pointer to reference `to` thread. */
57 PTR_S a1, PCPU_CURTHREAD(tp)
58

59 /* Switch address space if necessary. */
60 mv a0, a1
61 call vm_map_switch
62

72 CHAPTER 3. MIMIKER PORT

63 /* Restore `to` thread context. */
64 load_ctx t0
65

66 ret
67 halt:
68 wfi
69 j halt
70 END(ctx_switch)

Listing 13: RISC-V context switch (switch.S)

3.2.13 Physical address map (pmap) management

The physical address map management (pmap) module is a machine-dependent man-
ager of memory translation structures for both kernel and each user-space process.

The main usage of pmap is to enter and remove mappings of virtual pages to
physical ones. As an example, whenever the kernel malloc module [36] runs out of
memory areas, it calls the kmem module [37] which, in turn, allocates a requested
number of kernel virtual memory pages along with the corresponding number of
physical memory pages and maps each virtual page into a physical page using the
pmap module. A good example regarding user space is the demand paging mentioned
in 3.2.10. After the page is paged in, pmap is used to enter the mapping into the
physical map of the process that has caused the page fault.

To begin with, we will have a look at the machine-independent pmap API to
gain familiarity with what the module does. Next, we will explore some of the most
crucial aspects of the implementation.

The pmap API can be divided into three components:

• generic – contains generic functions applicable regardless of the type of map-
ping,

• pageable – functions related to pageable mappings,

• wired – functions regarding wired kernel mappings.

Wired mappings may only be used by the kernel. A wired physical page must
never be paged out.

Pageable mappings are the only type of mappings used to populate physical
maps of user processes. A physical page mapped using a pageable mapping may be
paged out by the demand paging mechanism.

The wired and pageable interfaces should not be mixed.

3.2. RISC-V KERNEL 73

The pmap t structure used throughout the API is a machine-dependent struc-
ture representing a physical map. The API operates solely on pointers to these
structures.

If the operation fulfilled by a pmap API function requires flushing the trans-
lation lookaside buffer (TLB), then an appropriate flush is performed inside the
module and no further action is required from the user.

Generic API

pmap predicators verify whether a single virtual address or a virtual memory range
are managed by a pointed physical map.

1 bool pmap_address_p(pmap_t *pmap, vaddr_t va);
2 bool pmap_contains_p(pmap_t *pmap, vaddr_t start, vaddr_t end);

Listing 14: pmap perdicators (pmap.h)

Determine the boundaries of virtual memory range managed by a physical map.

1 vaddr_t pmap_start(pmap_t *pmap);
2 vaddr_t pmap_end(pmap_t *pmap);

Listing 15: pmap boundaries (pmap.h)

Returns a handle to the physical map that manages a specified virtual address.

1 pmap_t *pmap_lookup(vaddr_t va);

Listing 16: pmap lookup (pmap.h)

Called at the very beginning of machine-independent bootstrap. Used to ini-
tialize the kernel physical address map.

1 void init_pmap(void);

Listing 17: pmap module initialization (pmap.h)

Return a handle to kernel or user physical map.

74 CHAPTER 3. MIMIKER PORT

1 pmap_t *pmap_kernel(void);
2 pmap_t *pmap_user(void);

Listing 18: Privilege mode’s pmap (pmap.h)

Physical address map creation and destruction.

1 pmap_t *pmap_new(void);
2 void pmap_delete(pmap_t *pmap);

Listing 19: pmap creation and destruction (pmap.h)

Clears specified physical page.

1 void pmap_zero_page(vm_page_t *pg);

Listing 20: pmap zero page (pmap.h)

Copies the contents of the source physical page to the destination physical page.

1 void pmap_copy_page(vm_page_t *src, vm_page_t *dst);

Listing 21: pmap copy page (pmap.h)

Activates pointed physical map.

1 void pmap_activate(pmap_t *pmap);

Listing 22: pmap activate (pmap.h)

Raises the kernel brk pointer to at least maxvaddr.

1 void pmap_growkernel(vaddr_t maxkvaddr);

Listing 23: pmap activate (pmap.h)

3.2. RISC-V KERNEL 75

Pageable API

Creates a mapping for a specified virtual page to a pointed physical page with
provided protection and cacheability. This function may also be used to alter an
existing mapping.

1 void pmap_enter(pmap_t *pmap, vaddr_t va, vm_page_t *pg, vm_prot_t prot,
2 unsigned flags);

Listing 24: Enter pageable mapping (pmap.h)

Returns the physical address corresponding to a given virtual address within a
specified physical map.

1 bool pmap_extract(pmap_t *pmap, vaddr_t va, paddr_t *pap);

Listing 25: pmap extract (pmap.h)

Removes specified virtual memory range from supplied physical address map.

1 void pmap_remove(pmap_t *pmap, vaddr_t start, vaddr_t end);

Listing 26: Remove pageable mapping (pmap.h)

Alters protection of given virtual memory range.

1 void pmap_protect(pmap_t *pmap, vaddr_t start, vaddr_t end, vm_prot_t prot);

Listing 27: pmap protect (pmap.h)

Removes a given physical page from all physical maps that contain a mapping
pointing at this page.

1 void pmap_page_remove(vm_page_t *pg);

Listing 28: pmap remove page (pmap.h)

Manage the referenced and modified bits. A physical page is said to be refer-
enced or modified if at least one virtual page that is mapped to the physical page
has been referenced or modified, respectively.

76 CHAPTER 3. MIMIKER PORT

1 void pmap_set_referenced(vm_page_t *pg);
2 void pmap_set_modified(vm_page_t *pg);
3 bool pmap_is_modified(vm_page_t *pg);
4 bool pmap_is_referenced(vm_page_t *pg);
5 bool pmap_clear_modified(vm_page_t *pg);
6 bool pmap_clear_referenced(vm_page_t *pg);

Listing 29: pmap remove page (pmap.h)

Verifies if access with provided permission to specified virtual address would
succeed and emulates the referenced and modified bits.

1 int pmap_emulate_bits(pmap_t *pmap, vaddr_t va, vm_prot_t prot);

Listing 30: pmap remove page (pmap.h)

Wired API

This is a counterpart of pmap enter used for kernel wired mappings.

1 void pmap_kenter(vaddr_t va, paddr_t pa, vm_prot_t prot, unsigned flags);

Listing 31: Enter wired mapping (pmap.h)

Returns a physical address corresponding to a given kernel virtual address.

1 bool pmap_kextract(vaddr_t va, paddr_t *pap);

Listing 32: pmap kernel extract (pmap.h)

This is a counterpart of pmap remove used for kernel wired mappings. Instead
of specifying range boundaries, it accepts a starting address and size.

1 void pmap_kremove(vaddr_t va, size_t size);

Listing 33: Remove wired mapping (pmap.h)

3.2. RISC-V KERNEL 77

State structure

The pmap module maintains a pmap t structure for the kernel and each user-space
process.

The most underlying members of the structure are address space identifier
(asid) and physical address of the page directory (pde).

The supervisor address translation and protection (satp) member caches the
value that is written to the satp register over physical address map activation. This
value never changes during the existence of a physical map.

Additionally, pmap t contains a list of all allocated pages used for the memory
management structure (pte pages), a list of physical pages that are mapped by this
physical map (pv list), and a link on the list of all physical maps corresponding to
user processes (pmap link).

1 typedef struct pmap {
2 mtx_t mtx; /* protects all fields in this structure */
3 asid_t asid; /* address space identifier */
4 paddr_t pde; /* directory page table physical address */
5 paddr_t satp; /* supervisor address translation and protection */
6 vm_pagelist_t pte_pages; /* pages we allocate in page table */
7 LIST_ENTRY(pmap) pmap_link; /* link on `user_pmaps` */
8 TAILQ_HEAD(, pv_entry) pv_list; /* all mapped pages */
9 } pmap_t;

Listing 34: RISC-V pmap state (pmap.c)

Bootstrap

The pmap bootstrap module is called by the virtual memory boot phase even before
init pmap gets called.

The main goal of this function is to build a direct map. After the main memory
boundaries are retrieved from the kernel environment and some basic assumptions
are verified, the direct map is built using 4MiB super pages ➊.

Besides building the direct map, the function stores the provided physical ad-
dress of the kernel page directory which is used by the kernel physical map.

1 void pmap_bootstrap(paddr_t pd_pa, vaddr_t pd_va) {
2 uint32_t dmap_size = kenv_get_ulong("mem_size");
3

4 /* Obtain basic parameters. */
5 dmap_paddr_base = kenv_get_ulong("mem_start");
6 dmap_paddr_end = dmap_paddr_base + dmap_size;
7 kernel_pde = pd_pa;

78 CHAPTER 3. MIMIKER PORT

8

9 /* Assume physical memory starts at the beginning of L0 region. */
10 assert(is_aligned(dmap_paddr_base, L0_SIZE));
11

12 /* We must have enough virtual addresses. */
13 assert(dmap_size <= DMAP_MAX_SIZE);
14

15 /* We assume 32-bit physical address space. */
16 assert(dmap_paddr_base < dmap_paddr_end);
17

18 klog("Physical memory range: %p - %p",
19 dmap_paddr_base, dmap_paddr_end - 1);
20

21 klog("dmap range: %p - %p", DMAP_VADDR_BASE,
22 DMAP_VADDR_BASE + dmap_size - 1);
23

24 /* Build direct map using 4MiB superpages. */
25 pd_entry_t *pde = (void *)pd_va;
26 ➊size_t idx = L0_INDEX(DMAP_VADDR_BASE);
27 for (paddr_t pa = dmap_paddr_base; pa < dmap_paddr_end;
28 pa += L0_SIZE, idx++) {
29 pde[idx] = PA_TO_PTE(pa) | PTE_KERN;
30 }
31 }

Listing 35: RISC-V pmap bootstrap (pmap.c)

Physical map creation

The pmap module has a dedicated memory pool for pmap t structures. Whenever a
new physical map is needed it is allocated from the pool. Similarly, when a physical
map gets destroyed, the corresponding structure is released and goes back to the
pool.

First, a physical page for the page directory must be allocated. The address of
the page will be reflected in the pde field ➊.

The setup function allocates a new address space identifier, initializes the guard-
ing mutex and contained lists, and calculates the value of the satp register for the
new physical map.

Contrary to Aarch64, RISC-V uses a single structure to translate both user
and supervisor virtual addresses. Whenever we switch to a new address space, the
physical map has to be switched as well. However, this creates a problem as kernel
mappings should always be accessible regardless of the current user process. To solve
this issue, we copy all kernel page directory entries to the user page directory while
creating a new physical map ➋. There are no conflicts as kernel virtual addresses
are mapped by the upper half of a page directory, whereas user virtual addresses

3.2. RISC-V KERNEL 79

are mapped by the bottom half. To make it work, we have to broadcast any change
in the kernel page directory to all user physical maps. That is why each pmap t
structure contains a link on a list of all user physical maps. Fortunately, new kernel
page tables aren’t created very often thereby the overhead is not significant.

1 pmap_t *pmap_new(void) {
2 pmap_t *pmap = pool_alloc(P_PMAP, M_ZERO);
3 vm_page_t *pg = pmap_pagealloc();
4 ➊pmap->pde = pg->paddr;
5 pmap_setup(pmap);
6

7 /* Install kernel pagetables. */
8 const size_t off = PAGESIZE / 2;
9 WITH_MTX_LOCK (&kernel_pmap.mtx) {
10 ➋memcpy((void *)phys_to_dmap(pmap->pde) + off,
11 (void *)phys_to_dmap(kernel_pde) + off, PAGESIZE / 2);
12 }
13

14 TAILQ_INSERT_TAIL(&pmap->pte_pages, pg, pageq);
15 klog("Page directory table allocated at %p", pmap->pde);
16

17 WITH_MTX_LOCK (&user_pmaps_lock) {
18 LIST_INSERT_HEAD(&user_pmaps, pmap, pmap_link);
19 }
20

21 return pmap;
22 }

Listing 36: RISC-V pmap creation (pmap.c)

Physical map activation

Whenever we switch between threads operating in different virtual address spaces
(e.g. a user process thread and a kernel thread), we have to switch to the address
space of the target thread. The activation of virtual address space is fulfilled by the
activation of the corresponding physical map.

In RISC-V, all we have to do to switch the memory translation structure is
change the pointer to the page directory. For correctness, the address space identifier
also needs to be changed ➊.

1 void pmap_activate(pmap_t *pmap) {
2 SCOPED_NO_PREEMPTION();
3

4 pmap_t *old = PCPU_GET(curpmap);
5 if (pmap == old)
6 return;
7

80 CHAPTER 3. MIMIKER PORT

8 ➊csr_write(satp, pmap->satp);
9 PCPU_SET(curpmap, pmap);
10

11 __sfence_vma();
12 }

Listing 37: RISC-V pmap activation (pmap.c)

Page table walk

Each of the following two functions performs a walk-through two-level memory man-
agement structure.

The lookup function serves for locating the page table entry corresponding to a
given virtual address. The direct map is used to access the physical pages composing
the physical map. Although the only relevant application of super pages is the direct
map mapping, we still have to consider them when traversing the page directory.

pmap ensure pte must ensure that a page table entry for specified virtual ad-
dress exists. If the corresponding page directory entry is invalid, then a page table
will be allocated and the modification will be distributed to all user physical maps
➊.

1 static pt_entry_t *pmap_lookup_pte(pmap_t *pmap, vaddr_t va) {
2 pd_entry_t *pdep;
3 paddr_t pa = pmap->pde;
4

5 /* Level 0 */
6 pdep = (pd_entry_t *)phys_to_dmap(pa) + L0_INDEX(va);
7 pd_entry_t pde = *pdep;
8 if (!is_valid_pde(pde))
9 return NULL;
10

11 /* A direct map superpage? */
12 if (is_leaf_pte(pde))
13 return (pt_entry_t *)pdep;
14

15 pa = PTE_TO_PA(pde);
16

17 /* Level 1 */
18 return (pt_entry_t *)phys_to_dmap(pa) + L1_INDEX(va);
19 }
20

21 static pt_entry_t *pmap_ensure_pte(pmap_t *pmap, vaddr_t va) {
22 assert(mtx_owned(&pmap->mtx));
23

24 pd_entry_t *pdep;
25 paddr_t pa = pmap->pde;

3.2. RISC-V KERNEL 81

26

27 /* Level 0 */
28 pdep = (pd_entry_t *)phys_to_dmap(pa) + L0_INDEX(va);
29 if (!is_valid_pde(*pdep)) {
30 pa = pmap_alloc_pde(pmap, va);
31 *pdep = make_pde(pa);
32 ➊pmap_distribute_l0(pmap, va, *pdep);
33 } else {
34 pa = PTE_TO_PA(*pdep);
35 }
36

37 /* Level 1 */
38 return (pt_entry_t *)phys_to_dmap(pa) + L1_INDEX(va);
39 }

Listing 38: RISC-V page table walk (pmap.c)

Entering a mapping

Creating a kernel wired mapping is a straightforward operation. We simply form an
appropriate PTE, ensure that a PTE exists, and apply the new PTE.

pmap write pte will perform a flush TLB.

While entering a pageable mapping is similar, there are some differences:

• The permission bits in the final PTE differ depending on the privilege level.
This is done to implement the access bit emulation described in 3.2.13.

• Each physical page contains a list of so-called physical to virtual entries (pv entry t)
that states which physical maps contain a mapping pointing to the page. If
an appropriate mapping doesn’t already exist (i.e. this is not a modification
of the mapping), it must be created.

• Page flags regarding permission bit emulation must be initialized.

1 void pmap_kenter(vaddr_t va, paddr_t pa, vm_prot_t prot, unsigned flags) {
2 pmap_t *pmap = pmap_kernel();
3

4 assert(page_aligned_p(pa) && page_aligned_p(va));
5 assert(pmap_address_p(pmap, va));
6

7 klog("Enter unmanaged mapping from %p to %p", va, pa);
8

9 pt_entry_t pte = make_pte(pa, prot, flags, true);
10

11 WITH_MTX_LOCK (&pmap->mtx) {
12 pt_entry_t *ptep = pmap_ensure_pte(pmap, va);

82 CHAPTER 3. MIMIKER PORT

13 pmap_write_pte(pmap, ptep, pte, va);
14 }
15 }
16

17 void pmap_enter(pmap_t *pmap, vaddr_t va, vm_page_t *pg, vm_prot_t prot,
18 unsigned flags) {
19 paddr_t pa = pg->paddr;
20

21 assert(page_aligned_p(va));
22 assert(pmap_address_p(pmap, va));
23

24 klog("Enter virtual mapping %p for frame %p", va, pa);
25

26 bool kern_mapping = (pmap == pmap_kernel());
27 pt_entry_t pte = make_pte(pa, prot, flags, kern_mapping);
28

29 WITH_MTX_LOCK (&pv_list_lock) {
30 WITH_MTX_LOCK (&pmap->mtx) {
31 pv_entry_t *pv = pv_find(pmap, va, pg);
32 if (!pv)
33 pv_add(pmap, va, pg);
34 pmap_set_init_flags(pg, kern_mapping);
35 pt_entry_t *ptep = pmap_ensure_pte(pmap, va);
36 pmap_write_pte(pmap, ptep, pte, va);
37 }
38 }
39 }

Listing 39: RISC-V virtual memory mapping (pmap.c)

Permission bit emulation

In Mimiker, we assume that the referenced and modified access bits are emulated in
software. The structure that represents a physical page keeps track of the value of
these bits in the form of flags in a bit vector. Although RISC-V specification claims
that the corresponding accessed and dirty bits must be supported, we cannot utilize
them as they may be managed directly in hardware which wouldn’t be reflected in
the page structure flags.

Permission bit tracking is only performed for physical pages mapped using page-
able mappings on behalf of user processes.

To emulate the referenced bit, we initially clear the valid bit for each user
pageable mapping. When a virtual page is accessed, a page fault will be triggered.
If the access is valid, the corresponding physical page will be marked as referenced
and the mapping will be marked as valid ➊.

The modified bit is emulated by initially clearing the writable permission bit.

3.2. RISC-V KERNEL 83

Similarly, upon a store page fault, the corresponding physical page will be marked
as modified and the writable bit in the mapping will be set ➋. However, an issue
arises. If we have cleared the writable bit, how do we know upon the page fault
that the mapping allows writing? As was mentioned in 2.1.15, we have two spare
bits reserved for software in each PTE. To solve our problem, we can encode the
writable permission in one of these bits.

1 int pmap_emulate_bits(pmap_t *pmap, vaddr_t va, vm_prot_t prot) {
2 paddr_t pa;
3

4 WITH_MTX_LOCK (&pmap->mtx) {
5 if (!pmap_extract_nolock(pmap, va, &pa))
6 return EFAULT;
7

8 pt_entry_t pte = *pmap_lookup_pte(pmap, va);
9

10 if ((prot & VM_PROT_READ) && !(pte & PTE_SW_READ))
11 return EACCES;
12

13 if ((prot & VM_PROT_WRITE) && !(pte & PTE_SW_WRITE))
14 return EACCES;
15

16 if ((prot & VM_PROT_EXEC) && !(pte & PTE_X))
17 return EACCES;
18 }
19

20 vm_page_t *pg = vm_page_find(pa);
21 assert(pg);
22

23 WITH_MTX_LOCK (&pv_list_lock) {
24 /* Kernel non-pageable memory? */
25 if (TAILQ_EMPTY(&pg->pv_list))
26 return EINVAL;
27 }
28

29 ➊pmap_set_referenced(pg);
30 ➋if (prot & VM_PROT_WRITE)
31 pmap_set_modified(pg);
32

33 return 0;
34 }

Listing 40: RISC-V virtual memory mapping (pmap.c)

3.2.14 Communication with user space

Many syscall signatures include a pointer as an argument. A pointer can be used
either to specify an input buffer (e.g. read syscall) or to provide a destination buffer

84 CHAPTER 3. MIMIKER PORT

(e.g. write syscall). Regardless of the exact interpretation of the pointer, some data
will be copied between user space and kernel space. However, if the supplied pointer
is faulty, we run into trouble. Since the copying is performed in the kernel, any
fault will eventually result in a kernel panic. Instead of halting the whole kernel, we
would like to intercept any faults caused by data copying between user and kernel
and return an error code to indicate that the operation has failed. This functionality
is provided by the data copying kernel module.

The data copying module introduces three machine-dependent functions with
a machine-independent API.

API

Copies specified amount of data from user space into kernel space.

1 int copyin(const void *restrict udaddr, void *restrict kaddr, size_t len);

Copies specified amount of data from kernel space to userspace.

1 int copyout(const void *restrict kaddr, void *restrict udaddr, size_t len);

Copies at most len bytes of a null-terminated string from user space into kernel
space. lencopied is used to return the actual number of copied bytes.

1 int copyinstr(const void *restrict udaddr, void *restrict kaddr, size_t len,
2 size_t *restrict lencopied);

Each of the defined functions returns 0 in case of success and a non-zero error
code if any problem is encountered, including any fatal page fault exceptions.

Implementation

All three functions are implemented similarly. Although we will only examine the
implementation of the copyin function, the same ideas are employed to realize the
remaining functions.

In the first place, the function performs some basic validation of provided argu-
ments, for instance, does the userspace pointer point within the user address space
➊.

3.2. RISC-V KERNEL 85

The fatal page fault exception interception is implemented as follows:

• The thread t structure accommodates the td onfault pointer.

• Whenever a fatal page fault occurs, page fault handler checks if the on fault
pointer is set. If the answer is positive, the trap frame is modified to return
control to the address indicated by the on fault pointer, and the on fault
pointer is cleared.

• Before we begin the actual copying, we set the on fault pointer to the address
of the copyerr routine ➋.

• If the copping is successful, we clear the pointer ➌ on our own and return zero
to indicate success.

However, one problem remains. Contrary to Aarch64, in our implementation
of libc, RISC-V uses a generic implementation of the machine-dependent functions.
Since the generic implementation is written in C, we cannot make any assumptions
regarding its treatment of registers. Especially, it may utilize the callee-saved reg-
isters, stack pointer, and return address. To preserve these registers, we have to
save them before the call and restore them afterward (potentially in the error rou-
tine). The registers are saved on the stack and the pointer to the location is saved
in the machine-dependent fields of PCPU (to make it accessible from the on fault
function).

1 ENTRY(copyin)
2 /* len > 0 */
3 beqz a2, 1f
4

5 /* (uintptr_t)udaddr < (uintptr_t)(udaddr + len) */
6 PTR_ADD t0, a0, a2
7 bgeu a0, t0, reterr
8

9 /* (uintptr_t)(udaddr + len) <= USER_SPACE_END */
10 ➊REG_LI t1, USER_SPACE_END
11 bgtu t0, t1, reterr
12

13 ➋onfault_set_and_save t0, t1, copyerr
14 call bcopy
15 ➌onfault_clr_and_load t0, t1
16

17 1:
18 mv a0, zero
19 ret
20 END(copyin)
21

22 ENTRY(copyerr)
23 ctx_load

86 CHAPTER 3. MIMIKER PORT

24 reterr:
25 REG_LI a0, EFAULT
26 ret
27 END(copyerr)

Listing 41: RISC-V copyin (copy.S)

3.2.15 Syscalls

The only machine-dependent aspect regarding syscalls is the calling convention in-
troduced in the OS-specific ABI.

In Mimiker, I applied the standard convention deployed in Linux:

• register a7 contains the code identifying a particular request,

• registers a0-a5 are used as arguments for the syscall.

We can distinguish two components of the machine-dependent code related to
syscalls:

• user environment call handling – this is part of the kernel trap handling module
and it discussed in this section,

• libc syscall wrappers – this is part of the libc system library and is discussed
in 3.4.4.

User environment call handling

After retrieving the code ➊, we have to gather all arguments for the syscall. This is
done by simply copying register values from the trap frame ➋.

After adjusting the code if needed ➌, we fetch the structure that describes
the machine-independent implementation of the syscall. Subsequently, we call the
implementation and form a syscall result structure based on the outcome of the call.

1 static void syscall_handler(mcontext_t *uctx, syscall_result_t *result) {
2 register_t args[SYS_MAXSYSARGS];
3 ➊register_t code = _REG(uctx, A7);
4

5 ➋memcpy(args, &_REG(uctx, A0), sizeof(args));
6

7 ➌if (code > SYS_MAXSYSCALL) {
8 args[0] = code;
9 code = 0;
10 }

3.2. RISC-V KERNEL 87

11

12 ➍sysent_t *se = &sysent[code];
13 size_t nargs = se->nargs;
14

15 assert(nargs <= SYS_MAXSYSCALL);
16

17 thread_t *td = thread_self();
18 register_t retval = 0;
19

20 assert(td->td_proc);
21

22 int error = se->call(td->td_proc, (void *)args, &retval);
23

24 result->retval = error ? -1 : retval;
25 result->error = error;
26 }

Listing 42: RISC-V user environment call handling (trap.c)

3.2.16 Signals

A signal is an asynchronous message sent to a process or a user thread. Signals can
be sent either by the kernel or by a process (a process can even send a signal to
itself). Signals sent directly by the kernel are user-level counterparts of exceptions
encountered by a thread composing the process. Signals issued by other processes
are used for interprocess communication.

API

The Mimiker signal API defines two machine-dependent functions.

Prepares the user context of the calling thread for the execution of the signal
handler indicated by provided sigaction t structure. After the handler is executed,
the kernel should apply a specified signal mask for the thread.

1 int sig_send(signo_t sig, sigset_t *mask, sigaction_t *sa,
2 ksiginfo_t *ksi);

Signal trampoline. Used to restore the thread’s context after the signal is han-
dled. sigcode points at the start of the signal trampoline in kernel virtual address
space, whereas esigcode points at the end.

88 CHAPTER 3. MIMIKER PORT

1 extern char sigcode[];
2 extern char esigcode[];

Implementation

sig send copies the following components to the stack of the target thread (using
copyout):

• the signal trampoline function ➊,

• the corresponding siginfo t structure containing an extensive description of
the signal ➋,

• the user context to resume after the signal is handled ➌.

Afterward, we modify the context saved in the trap frame so that:

• the thread will resume at the beginning of the signal handler ➍,

• registers a0-a2 contain signal number, pointer to the provided signal info struc-
ture, and pointer to the user context that encountered the signal (and will be
restored), respectively ➎,

• the return address points at the beginning of the signal trampoline copied to
thread’s stack ➏.

1 int sig_send(signo_t sig, sigset_t *mask, sigaction_t *sa,
2 ksiginfo_t *ksi) {
3 thread_t *td = thread_self();
4 mcontext_t *uctx = td->td_uctx;
5

6 ucontext_t uc;
7 mcontext_copy(&uc.uc_mcontext, uctx);
8 uc.uc_sigmask = *mask;
9

10 ➊register_t sc_code = sig_stack_push(uctx, sigcode, esigcode - sigcode);
11 ➋register_t sc_info = sig_stack_push(uctx, &ksi->ksi_info,
12 sizeof(siginfo_t));
13 ➌register_t sc_uctx = sig_stack_push(uctx, &uc, sizeof(ucontext_t));
14

15 ➍_REG(uctx, PC) = (register_t)sa->sa_handler;
16 ➎_REG(uctx, A0) = (register_t)sig;
17 _REG(uctx, A1) = sc_info;
18 _REG(uctx, A2) = sc_uctx;
19 ➏_REG(uctx, RA) = sc_code;
20

3.3. DEVICE DRIVERS 89

21 return 0;
22 }

Listing 43: RISC-V signal sending (signal.c)

The signal trampoline employs the sigreturn syscall to restore the machine
context of the thread and apply the signal mask set by sig send.

1 ENTRY(sigcode)
2 mv a0, sp /* address of ucontext to restore */
3 li a7, SYS_sigreturn
4 ecall
5

6 /* Just in case `sigreturn` fails. */
7 ebreak
8

9 /* `esigcode` is used just to compute size of the following code. */
10 EXPORT(esigcode)
11 END(sigcode)

Listing 44: RISC-V signal trampoline (sigcode.S)

3.3 Device drivers

This section will describe device drivers for the essential devices we assume to be
present in a target LiteX RISC-V platform.

Interfaces

An interface is an abstract device model. It presents a set of functionalities that
must be implemented by an actual device driver. A device may implement more
than one interface, for instance, a system controller device can implement the bus
interface along with the interrupt controller interface.

Interfaces are platform-independent. Implementations of the interfaces are
highly platform-dependent.

3.3.1 Bus interface

Each function composing the bus interface accepts only a single device pointer that
specifies a requesting device. This is an obsolete design and newer interfaces take two
device arguments: one for requesting device and one for the device that implements
the interface.

90 CHAPTER 3. MIMIKER PORT

Allocates a resource of a specified type on behalf of a pointed device. The calling
device must specify the acceptable range within which the resource of provided size
will be allocated. rid supplies a resource identifier that will be assigned to the
resource, whereas flags guides the process of allocation.

1 resource_t *(*alloc_resource)(device_t *dev, res_type_t type, int rid,
2 rman_addr_t start, rman_addr_t end,
3 size_t size, rman_flags_t flags);

Releases an allocated resource.

1 void (*release_resource)(device_t *dev, resource_t *r);

Activates a given resource. Usually, activation means mapping the resource into
kernel virtual memory.

1 int (*activate_resource)(device_t *dev, resource_t *r);

Deactivates an active resource.

1 void (*deactivate_resource)(device_t *dev, resource_t *r);

Besides the bus interface. It is the responsibility of a bus device to create a
software representation for each of its child devices and attach it to the kernel’s
device tree structure.

3.3.2 Interrupt controller interface

Initially, the interrupt controller interface was merged with the bus controller. I
distinguished the two interfaces for the needs of my PLIC device driver.

Allocates an interrupt identified by irq. Usually, an interrupt may be allocated
by more than one device.

1 resource_t *(*intr_alloc)(device_t *ic, device_t *dev, int rid,
2 unsigned irq);

3.3. DEVICE DRIVERS 91

Releases an interrupt resource.

1 void (*intr_release)(device_t *ic, device_t *dev, resource_t *r);

Registers a new interrupt source for interrupt identified by provided resource.
Whenever the interrupt occurs, a specified filter function will be called. If a service
function is provided, the filter function can delegate processing to the service function
which will be executed in an interrupt thread environment. A provided argument is
used as the parameter for the filter and service routines. name describes the interrupt
source.

1 void (*intr_setup)(device_t *ic, device_t *dev, resource_t *r,
2 ih_filter_t *filter, ih_service_t *service,
3 void *arg, const char *name);

Removes the interrupt source registered by a specified device (dev) for interrupt
identified by pointed resource.

1 void (*intr_teardown)(device_t *ic, device_t *dev, resource_t *r);

3.3.3 Timer interface

Starts pointed timer. Sets the starting timer to a specified value. The timer will
trigger a timer interrupt with the frequency established by provided period. flags
are used to further configure the timer.

1 int (*start)(timer_t *tm, unsigned flags, const bintime_t start,
2 const bintime_t period);

Stops a timer (i.e. interrupt will no longer be generated).

1 int (*stop)(timer_t *tm);

Retrieves the time measured by a specified timer.

92 CHAPTER 3. MIMIKER PORT

1 bintime_t (*gettime)(timer_t *tm);

3.3.4 UART interface

In the following functions, state is a pointer to the implementation-specific state,
provided while registering a UART device.

Returns true if the receiver hardware queue is non-empty.

1 bool (*rx_ready)(void *state);

Retrieves a single byte from the corresponding UART device. The function will
only be called when the receiver queue is known to be non-empty.

1 uint8_t (*getc)(void *state);

Returns true if the transmitter hardware queue is not full.

1 bool (*tx_ready_t)(void *state);

Sends a single byte via the corresponding UART device. The function will only
be called when the transmitter queue is known to be not full.

1 void (*putc)(void *state, uint8_t byte);

Enables transmitter interrupt.

1 void (*tx_enable)(void *state);

Disables transmitter interrupt.

1 void (*tx_disable)(void *state);

3.3. DEVICE DRIVERS 93

3.3.5 Interrupt events

Interrupt controllers drivers employ the machine-independent interrupt event con-
struct (intr event t) which is a software representation of an interrupt line.

While creating an interrupt event for each interrupt line managed by a con-
troller, the controller must provide the event with two functions of ie action t
type.

1 typedef void ie_action_t(intr_event_t *);

One function is used to enable the corresponding interrupt, whereas the other
one is applied to disable the interrupt.

intr event run handlers will invoke the filter function for each registered in-
terrupt source.

3.3.6 Root bus device

For each architecture, the root bus device (rootdev) is a compound device accom-
modating two components:

• core local interrupt controller,

• root bus which is an ancestor of all devices.

For RISC-V rootdev consists of:

• HLIC,

• bus corresponding to the soc device tree node.

HLIC

HLIC implements the interrupt controller interface 3.3.2.

The following two functions are passed to interrupt events to manage the un-
derlying interrupt.

1 static void hlic_intr_disable(intr_event_t *ie) {
2 unsigned irq = ie->ie_irq;
3 csr_clear(sie, 1 << irq);
4 }
5

94 CHAPTER 3. MIMIKER PORT

6 static void hlic_intr_enable(intr_event_t *ie) {
7 unsigned irq = ie->ie_irq;
8 csr_set(sie, 1 << irq);
9 }

Listing 45: RISC-V HLIC interrupt control (litex riscv rootdev.c)

HLIC is the root interrupt controller. Whenever an interrupt occurs, the trap
handling module will call the HLIC interrupt handling routine (hlic intr handler)
which is registered as the interrupt root filter.

1 static void hlic_intr_handler(ctx_t *ctx, device_t *bus) {
2 rootdev_t *rd = bus->state;
3 unsigned long cause = _REG(ctx, CAUSE) & SCAUSE_CODE;
4 assert(cause < HLIC_NIRQS);
5

6 intr_event_t *ie = rd->intr_event[cause];
7 if (!ie)
8 panic("Unknown HLIC interrupt %u!", cause);
9

10 intr_event_run_handlers(ie);
11

12 if (cause != HLIC_IRQ_TIMER_SUPERVISOR &&
13 cause != HLIC_IRQ_EXTERNAL_SUPERVISOR) {
14 csr_clear(sip, ~(1 << cause));
15 }
16 }

Listing 46: RISC-V HLIC interrupt handler (litex riscv rootdev.c)

Root bus

rootdev implements the bus interface 3.3.1.

rootdev manages the entire I/O region of the platform.

3.3.7 CLINT

CLINT implements the MTIMER ACLINT device and thus implements the timer
interface 3.3.3.

During an invocation of the timer start routine, we convert provided period
into MTIMER ticks ➊, register as a source for the supervisor timer interrupt ➋ and
schedule the first timer interrupt using the timer SBI extension ➌.

3.3. DEVICE DRIVERS 95

1 static int mtimer_start(timer_t *tm, unsigned flags, const bintime_t start,
2 const bintime_t period) {
3 device_t *dev = tm->tm_priv;
4 clint_state_t *clint = dev->state;
5

6 ➊clint->mtimer_step = bintime_mul(period, tm->tm_frequency).sec;
7

8 ➋intr_setup(dev, clint->mtimer_irq, mtimer_intr, NULL, clint, "MTIMER");
9

10 WITH_INTR_DISABLED {
11 uint64_t count = rdtime();
12 ➌sbi_set_timer(count + clint->mtimer_step);
13 }
14

15 return 0;
16 }

Listing 47: RISC-V MTIMER start (clint.c)

Whenever a timer interrupt handler is invoked, we must call a callback func-
tion registered for this timer by the kernel module that utilizes the timer. This is
accomplished by a call to the tm trigger function ➊.

Scheduling the next timer interrupt will increase the mtimecmp register and
thereby clear the pending interrupt.

1 static intr_filter_t mtimer_intr(void *data) {
2 clint_state_t *clint = data;
3 register_t sip = csr_read(sip);
4

5 if (sip & SIP_STIP) {
6 ➊tm_trigger(&clint->mtimer);
7

8 uint64_t prev = rdtime();
9 sbi_set_timer(prev + clint->mtimer_step);
10

11 return IF_FILTERED;
12 }
13

14 return IF_STRAY;
15 }

Listing 48: RISC-V MTIMER interrupt handler (clint.c)

The gettime implementation reads the value of the timer CSR and converts
the number of ticks to number of seconds.

96 CHAPTER 3. MIMIKER PORT

1 static bintime_t mtimer_gettime(timer_t *tm) {
2 uint64_t count = rdtime();
3 bintime_t res = bintime_mul(tm->tm_min_period, (uint32_t)count);
4 bintime_t high_bits = bintime_mul(tm->tm_min_period,
5 (uint32_t)(count >> 32));
6 bintime_add_frac(&res, high_bits.frac << 32);
7 res.sec += (high_bits.sec << 32) + (high_bits.frac >> 32);
8 return res;
9 }

Listing 49: RISC-V MTIMER gettime (clint.c)

3.3.8 PLIC

PLIC implements the interrupt controller interface 3.3.2.

Whereas HLIC has a constant number of interrupts, the number of interrupts
controlled by PLIC may differ depending on the hardware implementation. Thereby,
the actual number of interrupts is specified as a device tree property of the PLIC’s
node. The property is called ”riscv,ndev” and is retrieved from the DTB during the
attachment of the driver ➊.

As we don’t utilize the priorities which are optionally provided by PLIC, we
set the priority of each interrupt to 1 ➋ and the threshold register of the supervisor
PLIC context to 0 ➌.

PLIC is routed through HLIC to the supervisor external interrupt and registers
as an interrupt source just like any other peripheral device ➍.

1 static int plic_attach(device_t *ic) {
2 plic_state_t *plic = ic->state;
3

4 /* Obtain the number of sources. */
5 ➊plic->nirqs = dtb_dev_cell(ic, "riscv,ndev");
6

7 /* We'll need interrupt event for each interrupt source. */
8 plic->intr_event =
9 kmalloc(M_DEV, plic->nirqs * sizeof(intr_event_t *),
10 M_WAITOK | M_ZERO);
11 if (!plic->intr_event)
12 return ENXIO;
13

14 rman_init(&plic->rm, "PLIC interrupt sources");
15 rman_manage_region(&plic->rm, 1, plic->nirqs);
16

17 plic->mem = device_take_memory(ic, 0, RF_ACTIVE);
18 assert(plic->mem);
19

3.3. DEVICE DRIVERS 97

20 /*
21 * In case PLIC supports priorities, set each priority to 1
22 * and the threshold to 0.
23 */
24 ➋for (unsigned irq = 0; irq < plic->nirqs; irq++) {
25 out4(PLIC_PRIORITY(irq), 1);
26 }
27 ➌out4(PLIC_THRESHOLD_SV, 0);
28

29 plic->irq = device_take_irq(ic, 0, RF_ACTIVE);
30 assert(plic->irq);
31

32 ➍intr_setup(ic, plic->irq, plic_intr_handler, NULL, plic, "PLIC");
33

34 return 0;
35 }

Listing 50: RISC-V PLIC attachment (plic.c)

PLIC interrupt enabling and disabling is performed via the enable bits of the
supervisor PLIC context.

1 static void plic_intr_disable(intr_event_t *ie) {
2 plic_state_t *plic = ie->ie_source;
3 unsigned irq = ie->ie_irq;
4

5 uint32_t en = in4(PLIC_ENABLE_SV(irq));
6 en &= ~(1 << (irq % 32));
7 out4(PLIC_ENABLE_SV(irq), en);
8 }
9

10 static void plic_intr_enable(intr_event_t *ie) {
11 plic_state_t *plic = ie->ie_source;
12 unsigned irq = ie->ie_irq;
13

14 uint32_t en = in4(PLIC_ENABLE_SV(irq));
15 en |= 1 << (irq % 32);
16 out4(PLIC_ENABLE_SV(irq), en);
17 }

Listing 51: RISC-V PLIC interrupt control (plic.c)

The PLIC interrupt handling scheme was described in 2.4.3.

98 CHAPTER 3. MIMIKER PORT

1 static intr_filter_t plic_intr_handler(void *arg) {
2 plic_state_t *plic = arg;
3

4 /* Claim any pending interrupt. */
5 uint32_t irq = in4(PLIC_CLAIM_SV);
6

7 if (irq) {
8 intr_event_run_handlers(plic->intr_event[irq]);
9 /* Complete the interrupt. */
10 out4(PLIC_CLAIM_SV, irq);
11 return IF_FILTERED;
12 }
13

14 return IF_STRAY;
15 }

Listing 52: RISC-V PLIC interrupt handler (plic.c)

3.3.9 LiteUART

LiteUART implements the UART interface 3.3.4.

LiteUART is controlled via LiteX CSRs.

1 static bool liteuart_rx_ready(void *state) {
2 liteuart_state_t *liteuart = state;
3 return csr_read(LITEUART_CSR_RXEMPTY) == 0;
4 }
5

6 static uint8_t liteuart_getc(void *state) {
7 liteuart_state_t *liteuart = state;
8 return csr_read(LITEUART_CSR_RXTX);
9 }
10

11 static bool liteuart_tx_ready(void *state) {
12 liteuart_state_t *liteuart = state;
13 return csr_read(LITEUART_CSR_TXFULL) == 0;
14 }
15

16 static void liteuart_putc(void *state, uint8_t c) {
17 liteuart_state_t *liteuart = state;
18 csr_write(LITEUART_CSR_RXTX, c);
19 }
20

21 static void liteuart_tx_enable(void *state) {
22 liteuart_state_t *liteuart = state;
23 csr_set(LITEUART_CSR_EV_ENABLE, LITEUART_EV_TX);
24 }
25

3.4. SYSTEM LIBRARIES 99

26 static void liteuart_tx_disable(void *state) {
27 liteuart_state_t *liteuart = state;
28 csr_clr(LITEUART_CSR_EV_ENABLE, LITEUART_EV_TX);
29 }

Listing 53: LiteUART interface implementation (liteuart.c)

The interrupt handler calls a platform-independent UART interrupt handler
(uart intr ➊). However, uart intr cannot be directly used as the interrupt handler
since LiteUART requires an asserted interrupt to be explicitly cleared via the event
pending LiteX CSR ➋.

1 static intr_filter_t liteuart_intr(void *data) {
2 device_t *dev = data;
3 uart_state_t *uart = dev->state;
4 liteuart_state_t *liteuart = uart->u_state;
5

6 uint32_t ev_pending = csr_read(LITEUART_CSR_EV_PENDING);
7

8 if (!(ev_pending & (LITEUART_EV_TX | LITEUART_EV_RX)))
9 return IF_STRAY;
10

11 ➊intr_filter_t res = uart_intr(data);
12

13 ➋csr_write(LITEUART_CSR_EV_PENDING, ev_pending);
14 return res;
15 }

Listing 54: LiteUART interrupt handler (liteuart.c)

3.4 System libraries

Mimiker provides two system libraries with machine-dependent components: csu
and libc.

This section will describe machine-dependent components of the aforementioned
libraries.

3.4.1 Linker script

The csu library contains a machine-dependent default linker script used while linking
user programs.

The user linker script is much simpler than the sophisticated kernel linker script.

The layout of the script is the same regardless of the target architecture. The
only RISC-V-specific aspects in the script are:

100 CHAPTER 3. MIMIKER PORT

• setting of the global pointer,

• small input sections.

3.4.2 crt0

The csu library contains two modules:

• crt0 – machine-dependent implementation of assembly startup routine (start),

• crt0-common – machine-independent implementation of C startup routine
(start).

start is the default entry point of user programs. Its sole responsibility is to
set the global pointer and compute the input parameters for machine-independent
start.

While performing an exec syscall, the kernel will put the following elements on
the stack of the new process (stack bottom to top):

• environment strings,

• agrument strings,

• environment vector (envp),

• argument vector (argv),

• argument counter.

1 ENTRY(_start)
2 PTR_ADDI sp, sp, -CALLFRAME_SIZ
3 PTR_S zero, CALLFRAME_RA(sp)
4 PTR_S sp, CALLFRAME_SP(sp)
5

6 /* Prepare global pointer. */
7 LOAD_GP()
8

9 /* Grab argc from below stack. */
10 LONG_L a0, CALLFRAME_SIZ(sp)
11

12 /* Prepare argv pointing at argument vector below stack. */
13 PTR_ADDI a1, sp, CALLFRAME_SIZ + SZREG
14

15 /* Prepare envp, it starts at argv + argc + 1. */
16 LONG_ADDI t0, a0, 1 /* argv is NULL terminated */
17 LONG_SLLI t0, t0, LONG_SCALESHIFT
18 PTR_ADD a2, a1, t0
19

3.4. SYSTEM LIBRARIES 101

20 /* Jump to start in crt0-common.c. */
21 j _C_LABEL(___start)
22 END(_start)

Listing 55: RISC-V crt0 (crt0.S)

3.4.3 String functions

Some of the libc string functions (bcopy, memcpy, memmove, and strlen) are written
directly in assembly for performance reasons.

Mimiker deploys the standard C library implementation from NetBSD. Other
architectures simply utilize the corresponding implementation found in the original
codebase. However, NetBSD doesn’t provide an architecture-specific implementa-
tion of the string functions for RISC-V. Thereby, I ported the generic implementation
of the functions. From now on, every new architecture can employ the generic im-
plementation instead of providing an architecture-specific one.

3.4.4 Syscalls

Each architecture must provide a set of macros used by libc in a machine-independent
fashion to define wrappers for syscalls.

Syscall macros

Defines a function with a specified name that implements a missing syscall.

1 SYSCALL_MISSING(name)

Defines a function with a specified name that performs a syscall identified by
code provided as num. Used for syscalls that cannot fail.

1 SYSCALL_NOERROR(name, num)

Defines a function with a specified name that performs a syscall identified by
code provided as num.

1 SYSCALL(name, num)

102 CHAPTER 3. MIMIKER PORT

Implementation

1 #define SYSCALL_MISSING(name) \
2 ENTRY(name); \
3 j _C_LABEL(__sc_missing); \
4 END(name)
5

6 #define SYSCALL_NOERROR(name, num) \
7 ENTRY(name); \
8 REG_LI a7, num; \
9 ecall; \
10 ret; \
11 END(name)
12

13 #define SYSCALL(name, num) \
14 ENTRY(name); \
15 REG_LI a7, num; \
16 ecall; \
17 bnez a1, 0f; \
18 ret; \
19 0 : j _C_LABEL(__sc_error); \
20 END(name)

Listing 56: RISC-V syscall macros (syscall.h)

Auxiliary functions

The implementation of RISC-V syscall macros embraces two auxiliary functions:
sc error and sc missing. These functions are machine-dependent and lie within
libc.

sc error handles a syscall error by setting the errno variable to reflect the
syscall error code.

1 ENTRY(__sc_error)
2 /* Set call frame and save syscall error. */
3 PTR_ADDI sp, sp, -CALLFRAME_SIZ
4 PTR_S ra, CALLFRAME_RA(sp)
5 REG_S s0, CALLFRAME_S0(sp)
6 mv s0, a1
7

8 /* Obtain errno pointer. */
9 call __errno
10

11 /* Set errno to syscall error. */
12 INT_S s0, (a0)
13

14 /* Return indicating error. */
15 REG_LI a0, -1

3.4. SYSTEM LIBRARIES 103

16 REG_L s0, CALLFRAME_S0(sp)
17 PTR_L ra, CALLFRAME_RA(sp)
18 PTR_ADDI sp, sp, CALLFRAME_SIZ
19 ret
20 END(__sc_error)

Listing 57: RISC-V syscall error (sc error.S)

sc missing handles unimplemented syscalls. If a syscall is unimplemented,
then each call behaves as if the syscall were implemented and the implementation
returned ENOSYS error code.

1 ENTRY(__sc_missing)
2 /*
3 * Behave as if the syscall returned ENOSYS.
4 */
5 REG_LI a0, -1
6 REG_LI a1, ENOSYS
7 j _C_LABEL(__sc_error)
8 END(__sc_missing)

Listing 58: RISC-V missing syscall (sc error.S)

3.4.5 Nonlocal goto

Nonlocal goto functions are used for transferring control flow from one function to
an established location within another function.

In Mimiker, we have six different nonlocal goto functions grouped in pairs [27]:

• setjmp and longjmp – don’t manipulate the signal mask,

• setjmp and longjmp – restore the signal mask,

• sigsetjmp and siglongjmp – signal mask handling depends on provided ar-
guments.

The implementation of each nonlocal goto function is machine-dependent.

In Mimiker, the jmpbuf type is defined to be an alias for ucontext t.

setjmp and longjmp

setjmp stores the following elements:

• all callee-saved integer and floating-point registers (if hard floating-point is
employed),

104 CHAPTER 3. MIMIKER PORT

• PC (it points right after the call ➊),

• thread pointer (tp) and global pointer (gp),

• floating-point control and status register (fcsr).

longjmp restores the saved context and adjusts the return value to distinguish
the first return from setjmp from any other returns.

1 ENTRY(_setjmp)
2 ➊REG_S ra, UC_GREGS_PC(a0)
3 REG_S sp, UC_GREGS_SP(a0)
4 REG_S gp, UC_GREGS_GP(a0)
5 REG_S tp, UC_GREGS_TP(a0)
6 REG_S s0, UC_GREGS_S0(a0)
7 REG_S s1, UC_GREGS_S1(a0)
8 REG_S s2, UC_GREGS_S2(a0)
9 REG_S s3, UC_GREGS_S3(a0)
10 REG_S s4, UC_GREGS_S4(a0)
11 REG_S s5, UC_GREGS_S5(a0)
12 REG_S s6, UC_GREGS_S6(a0)
13 REG_S s7, UC_GREGS_S7(a0)
14 REG_S s8, UC_GREGS_S8(a0)
15 REG_S s9, UC_GREGS_S9(a0)
16 REG_S s10, UC_GREGS_S10(a0)
17 REG_S s11, UC_GREGS_S11(a0)
18

19 INT_L t0, UC_FLAGS(a0)
20 li t1, _UC_CPU
21 or t0, t0, t1
22

23 #ifndef __riscv_float_abi_soft
24 frcsr t1
25 REG_S t1, UC_FPREGS_FCSR(a0)
26 FP_S fs0, UC_FPREGS_FS0(a0)
27 FP_S fs1, UC_FPREGS_FS1(a0)
28 FP_S fs2, UC_FPREGS_FS2(a0)
29 FP_S fs3, UC_FPREGS_FS3(a0)
30 FP_S fs4, UC_FPREGS_FS4(a0)
31 FP_S fs5, UC_FPREGS_FS5(a0)
32 FP_S fs6, UC_FPREGS_FS6(a0)
33 FP_S fs7, UC_FPREGS_FS7(a0)
34 FP_S fs8, UC_FPREGS_FS8(a0)
35 FP_S fs9, UC_FPREGS_FS9(a0)
36 FP_S fs10, UC_FPREGS_FS10(a0)
37 FP_S fs11, UC_FPREGS_FS11(a0)
38

39 li t1, _UC_FPU
40 or t0, t0, t1
41 #endif
42 INT_S t0, UC_FLAGS(a0)

3.4. SYSTEM LIBRARIES 105

43

44 mv a0, zero
45 ret
46 END(_setjmp)

Listing 59: RISC-V setjmp (setjmp.S)

setjmp and longjmp

setjmp performs the same operations as setjmp and additionally saves the signal
mask.

longjmp extracts and validates relevant fields from supplied jump environment,
restores the saved signal mask, and applies the saved machine context using the
setcontext syscall.

1 void longjmp(jmp_buf env, int val) {
2 ucontext_t *sc_uc = (ucontext_t *)env;
3 ucontext_t uc;
4

5 bzero(&uc, sizeof(ucontext_t));
6

7 /* Ensure non-zero SP. */
8 if (!_REG(sc_uc, SP))
9 goto err;
10

11 /* Ensure non-zero return vaule. */
12 val = val ? val : 1;
13

14 uc.uc_flags =
15 _UC_CPU | ((sc_uc->uc_flags & _UC_STACK) ? _UC_SETSTACK :
16 _UC_CLRSTACK);
17

18 /* Restore sigmask. */
19 sigprocmask(SIG_SETMASK, &sc_uc->uc_sigmask, NULL);
20

21 /* Save return value in context. */
22 _REG(&uc, RV) = val;
23

24 /* Copy saved registers. */
25 _REG(&uc, RA) = _REG(sc_uc, RA);
26 _REG(&uc, SP) = _REG(sc_uc, SP);
27 _REG(&uc, GP) = _REG(sc_uc, GP);
28 _REG(&uc, TP) = _REG(sc_uc, TP);
29 _REG(&uc, S0) = _REG(sc_uc, S0);
30 _REG(&uc, S1) = _REG(sc_uc, S1);
31 _REG(&uc, S2) = _REG(sc_uc, S2);
32 _REG(&uc, S3) = _REG(sc_uc, S3);
33 _REG(&uc, S4) = _REG(sc_uc, S4);

106 CHAPTER 3. MIMIKER PORT

34 _REG(&uc, S5) = _REG(sc_uc, S5);
35 _REG(&uc, S6) = _REG(sc_uc, S6);
36 _REG(&uc, S7) = _REG(sc_uc, S7);
37 _REG(&uc, S8) = _REG(sc_uc, S8);
38 _REG(&uc, S9) = _REG(sc_uc, S9);
39 _REG(&uc, S10) = _REG(sc_uc, S10);
40 _REG(&uc, S11) = _REG(sc_uc, S11);
41 _REG(&uc, PC) = _REG(sc_uc, PC);
42

43 # ifndef __riscv_float_abi_soft
44 /* Copy FPE state. */
45 if (sc_uc->uc_flags & _UC_FPU) {
46 /* FP callee saved registers are: f8-9, f18-27. */
47 memcpy(&_FPREG(&uc, 8), &_FPREG(sc_uc, 8),
48 (10 - 8) * sizeof(__fpreg_t));
49 memcpy(&_FPREG(&uc, 18), &_FPREG(sc_uc, 18),
50 (28 - 18) * sizeof(__fpreg_t));
51 _FPCSR(&uc) = _FPCSR(sc_uc);
52 uc.uc_flags |= _UC_FPU;
53 }
54 # endif
55

56 setcontext(&uc);
57 err:
58 longjmperror();
59 abort();
60 /* NOTREACHED */
61 }

Listing 60: RISC-V longjmp (longjmp.c)

sigsetjmp and siglongjmp

sigsetjmp calls either setjmp or setjmp depending on the savesigs argument.

siglongjmp calls either longjmp or longjmp depending on the arguments pro-
vided to the corresponding sigsetjmp call.

Chapter 4

Tools and usage

When developing an operating system kernel, the two most essential tools are:

• toolchain – a basic set of tools used for compilation, inspecting, and trans-
forming generated binaries, and more,

• emulator – a system emulator provides an abstract platform compatible with
the target platform (e.g. QEMU).

Besides an emulator, it is advantageous to have a cycle-accurate simulator of
the target platform since it almost perfectly conveys the target hardware.

Furthermore, an additional set of tools is needed when moving to work with
actual hardware.

This chapter focuses on practical applications of the Mimiker RISC-V port. First
of all, we will describe the toolchain and explain the building process. Then, we will
show how to compile the whole operating system and analyze generated items. Sub-
sequently, we will depict the Mimiker RISC-V hardware repository. Thereafter, we
will examine the Renode system emulator and a simulator generated using Verilator.
Finally, we will show how to run Mimiker on an FPGA board.

4.1 Toolchain

Mimiker employs a customized GNU toolchain. The toolchain consists of the fol-
lowing elements:

• GCC,

• GNU Binutils,

• GNU Debugger.

107

108 CHAPTER 4. TOOLS AND USAGE

Each of the components is built for each target architecture, thereby, whenever
a new architecture is introduced, the building scripts must be expanded to include
the target architecture.

The GNU toolchain is responsible for building the entire kernel, system libraries,
and user space programs.

4.1.1 Building the toolchain

The GNU toolchain building directory is located at toolchain/gnu.

The contained README provides a list of prerequisites required to build the
toolchain.

The build process is controlled through the config.mk makefile. For instance,
by default, a build is performed for each target architecture. If the user wishes to
only build the toolchain for a selected architecture, the TARGETS variable should be
customized.

The building is performed by simply executing make. In the build directory.

The result of the building process is several Debian packages, each containing
the toolchain built for a specific architecture.

4.2 Building Mimiker

The Mimiker build system is described in a README located at build.

Mimiker provides a few build parameters with the most essential one being
BOARD which specifies the target board of the build. The full list of provided options
can be found by inspecting config.mk. The most relevant options are responsible for
enabling optional kernel modules, for instance, kernel address sanitizer (KASAN).
However, not all configurations are supported by the RISC-V port yet.

By default, the target platform is set to the Malta board and all optional kernel
features are disabled.

The board introduced by this port is called litex-riscv, thereby, the simplest
way of compiling Mimiker for the RISC-V port is by executing the following command
in the root directory of the codebase:
make BOARD=litex-riscv

The kernel is compiled to the form of a static ELF executable (sys/mimiker.elf)
and is further converted to produce a raw binary image (sys/mimiker.img). The
ELF is used to provide GDB with debug info, whereas the binary image will be
handed over to the bootloader. The compiled kernel contains all essential device
drivers thus the user doesn’t have to bother about it.

4.3. MIMIKER RISC-V HARDWARE REPOSITORY 109

All user-space programs and system libraries are compiled to produce static
binaries and are placed in a typical directory hierarchy that composes an initial
ramdisk (initrd.cpio) which is employed as the rootfs in Mimiker.

4.3 Mimiker RISC-V hardware repository

The Mimiker RISC-V hardware repository [28] maintains hardware-related compo-
nents of the Mimiker RISC-V project.

A typical supported RISC-V platform will consists of the following elements:

• device tree – a description of the target platform,

• OpenSBI port – implementation of the platform-specific OpenSBI components,

• Renode platform description (repl) and script (resc) – provided to the Renode
system emulator,

• simulator – cycle-accurate behavioral simulator generated using Verilator,

• platform implementation – for instance, full HDL code, or scripts used to guide
a platform building tool.

For the time being, the only provided platform is LiteX VexRiscv.

4.3.1 LiteX VexRiscv

The litex directory contains scripts that:

• create desirable SoC along with any required firmware (e.g. LiteX BIOS),

• generate a DTB,

• provide a Renode platform description,

• run a Verilator generated simulator,

• load bitstream to FPGA and boot LiteX on the target board.

To utilize any of the provided functionalities, the user must install LiteX first.
Instructions on how LiteX is installed can be found in the official repository [20].

Besides LiteX, there are some other prerequisites, however, in the majority of
cases, an absence of any of the tools will be signaled to the user and most of the
tools can be installed from standard packages.

110 CHAPTER 4. TOOLS AND USAGE

4.3.2 Supported FPGA boards

For now, the supplied scripts support two target FPGA boards:

• Icesugar-pro,

• Arty A7.

Whenever building a SoC, the target FPGA board must be specified.

4.3.3 Basic build

A basic build for Arty A7 is performed by executing
./make.py --board arty_a7

This will generate some basic hardware related files (e.g. LiteX CSR map),
LiteX BIOS image along with some libraries (e.g. libc), DTB (/litex/images/rv32.dtb),
and repl (litex/build/arty a7).

4.4 Building OpenSBI

Regardless of whether we are running the RISC-V port on a system emulator, simula-
tor, or real hardware, we must provide an OpenSBI image that will serve as runtime
firmware in the software stack.

The OpenSBI building process is described in detail in the main README of the
official repository [21].

To build OpenSBI for our target platform, the following steps must be per-
formed:

1. Clone the official OpenSBI repository.

2. Copy patches/opensbi/litex from the Mimiker RISC-V repository to platforms
in the cloned repository.

3. Expose the toolchain by executing
export CROSS_COMPILE=riscv32-mimiker-elf-.

4. Issue a build with
make PLATFORM=litex/vexriscv.

After the build is done, a binary image of produced firmware (fw jump.bin)
will be located at build/platform/litex/vexriscv/firmware.

4.5. RENODE 111

4.5 Renode

Renode is an open-source development framework used to emulate physical hardware
systems [29].

Renode provides detailed documentation and a set of useful tutorials which can
be found at the main site.

4.5.1 Why Renode?

In the case of Malta and RPi3 boards, Mimiker relies on the QEMU system emulator
[38]. Why would we make an exception for LiteX RISC-V boards?

Versatility

Whereas QEMU supports only a handful of boards that are compatible with some
commercial products (e.g. HiFive Unleashed), Renode allows us to create our cus-
tomized platforms using some basic building blocks.

Automatic platform generation

LiteX contains a utility that can generate a Renode platform description given a
json file with LiteX CSR map.

4.5.2 Acquiring Renode

Renode can be installed from packages, extracted from portable release, or built
from source.

Although simple and comfortable, there is a problem with the first two options.
Renode is under active development and new issues and bugs are fixed daily. How-
ever, at the time of writing this thesis, the latest official release has been around for
over nine months.

I encourage the reader to either build Renode from source or download the
latest build from Antmicro’s server [30].

4.5.3 Scripts

Renode scripts have a .resc file extension and are used to automate system emula-
tion.

112 CHAPTER 4. TOOLS AND USAGE

We will explore resc scripts by examining the script used for running the
Mimiker RISC-V port in Renode. The script can be found in the Mimiker RISC-V
hardware repository at patches/renode/scripts/single-node.

First, the script creates an emulated guest called machine.

Afterward, we load the target platform description in the context of created
machine.

The reset macro will load the kernel image, DTB, OpenSBI firmware image,
and initial ramdisk at specified locations in the main memory. After the loading is
done, the control will be handed to OpenSBI. In terms of traditional boot flow, the
reset macro plays the role of the bootloader.

In the end, the reset macro is executed and OpenSBI takes control.

1 $name="litex-vexriscv-mimiker"
2

3 using sysbus
4

5 @mach create $name
6 @machine LoadPlatformDescription
7 @platforms/cpus/litex_vexriscv_mimiker.repl
8

9 ### Launch script uses socket terminal integration for UARTs.
10

11 $opensbi=@fw_jump.bin
12 $kernel=@sys/mimiker.img
13 $dtb=@sys/dts/litex-riscv.dtb
14 $initrd=@initrd.cpio
15

16 macro reset
17 """
18 sysbus LoadBinary $kernel 0x40000000
19 sysbus LoadBinary $dtb 0x40ef0000
20 sysbus LoadBinary $opensbi 0x40f00000
21 sysbus LoadBinary $initrd 0x42000000
22

23 cpu PC 0x40f00000
24 """
25

26 runMacro $reset

Listing 61: LiteX VexRiscv Renode script (litex vexriscv mimiker.resc)

4.5.4 Platform descriptions

A Renode platform description (repl) defines devices composing the platform along
with connections between the devices.

4.5. RENODE 113

Although LiteX can generate an appropriate repl automatically, the generating
script is obsolete, and thereby the resulting description is not adjusted to the latest
Renode build. For this reason, we supply our repl (based on the generated one).
The platform description can be found in the Mimiker RISC-V hardware repository
at patches/renode/platforms/cpus.

MSWI and MTIMER interrupts are connected to HLIC interrupts 3 and 7,
respectively.

PLIC has two contexts. One linked with the machine mode of the hart and one
linked with supervisor mode.

The UART interrupt is connected to the first PLIC interrupt.

1 cpu: CPU.VexRiscv @ sysbus
2 cpuType: "rv32ima"
3 privilegeArchitecture: PrivilegeArchitecture.Priv1_10
4 builtInIrqController: false
5 timeProvider: clint
6

7 rom: Memory.MappedMemory @ sysbus 0x0
8 size: 0x000010000
9

10 sram: Memory.MappedMemory @ sysbus 0x10000000
11 size: 0x00002000
12

13 ram: Memory.MappedMemory @ sysbus 0x40000000
14 size: 0x10000000
15

16 soc_controller: Miscellaneous.LiteX_SoC_Controller @ sysbus 0xf0000000
17

18 uart0: UART.LiteX_UART @ sysbus 0xf0001000
19 IRQ -> plic@1
20

21 clint: IRQControllers.CoreLevelInterruptor @ sysbus 0xf0010000
22 frequency: 100000000
23 numberOfTargets: 1
24 [0, 1] -> cpu@[3, 7]
25

26 plic: IRQControllers.PlatformLevelInterruptController @ sysbus 0xf0c00000
27 numberOfSources: 31
28 numberOfContexts: 2
29 prioritiesEnabled: false
30 [0,1] -> cpu@[11, 9]

Listing 62: RISC-V virtual memory mapping (pmap.c)

114 CHAPTER 4. TOOLS AND USAGE

4.5.5 Integrating Renode with Mimiker

Mimiker has a dedicated launch script used for running the operating system in an
emulated environment.

Before my changes were introduced, the QEMU emulator was assumed. In my
solution, each target board has to explicitly specify the emulator of choice (QEMU
or Renode).

Besides expanding the general logic to have regard to both emulators, I had to
implement an object representing the Renod emulator, that is, the RENODE class.

For each provided UART device, we create a socket ➊ that exposes the virtual
UART to the host system.

If the user has specified the debug option, we have to start a GDB server ➋

which can be connected to using the target remote GDB command.

Finally, we overwrite the kernel command line property of the DTB generated
by LiteX script. We achieve this goal as follows:

1. We create a device tree overlay with command line taken from the user ➌.

2. We compile the DTS into DTB ➍.

3. We combine the DTB taken from the hardware repository with the created
overlay to obtain a final device tree blob ➎.

1 class RENODE(Launchable):
2 def __init__(self):
3 super().__init__('renode', 'renode')
4

5 self.options = getopts('renode.options')
6

7 script = getvar('renode.script', failok=False)
8 self.options += [f'-e include @scripts/single-node/{script}']
9

10 ➊for i, uart in enumerate(getvar('renode.uarts')):
11 port = uart['port']
12 dev = f'uart{i}'
13 self.options += ['-e emulation CreateServerSocketTerminal ' +
14 f'{port} "{dev}" False']
15 self.options += [f'-e connector Connect sysbus.{dev} {dev}']
16

17 ➋if getvar('config.debug'):
18 gdbport = getvar('config.gdbport', failok=False)
19 self.options += [f'-e machine StartGdbServer {gdbport}']
20

21 with open('bootargs.dts', 'w') as bootargs_dts_file:
22 ➌bootargs_dts_file.write(

4.5. RENODE 115

23 BOOTARGS_DTS_TEMPLATE.format(
24 ' '.join(getvar('config.args')))
25)
26 ➍subprocess.check_call(
27 'dtc -O dtb -o bootargs.dtbo bootargs.dts', shell=True
28)
29 dtb = os.path.join('sys/dts/', '{}.dtb'.format(getvar('board')))
30 ➎subprocess.check_call(
31 'fdtoverlay -i {} -o {} bootargs.dtbo'.format(dtb, dtb),
32 shell=True
33)
34 os.remove('bootargs.dts')
35 os.remove('bootargs.dtbo')
36

37 self.options += ['-e start']

Listing 63: Renode launch class (launch)

4.5.6 Running Mimiker on Renode

To run the port in Renode, the user should perform the following steps:

1. Copy the resc script and the repl to the corresponding paths in the Renode
installation directory.

2. Place the OpenSBI firmware binary in the main directory of the Mimiker
repository.

3. Copy the generated DTB to sys/dts and rename it to litex-riscv.dtb.

4. Run the Mimiker launch script.

The launch script command-line options can be listed by executing
./launch --help

A typical invocation specifies the target board (the --board option) along with
a single kernel argument defining the init program (init=<absolute path>).

The init program constitutes the first user-space process and in the majority of
cases is set to the Korn shell (ksh) port prepared for Mimiker.

A command line used to run ksh on the RISC-V port in the emulated environ-
ment may look like this
./launch --board litex-riscv init=/bin/ksh

116 CHAPTER 4. TOOLS AND USAGE

4.6 Verilator

Verilator is an open-source tool used for generating a cycle-accurate C++ model of
the hardware given a hardware description written in Verilog [31].

4.6.1 Why do we want a cycle-accurate simulator?

Such a simulator is an exact reflection of the target hardware, thereby, allowing us to
robustly test the software without the need for any interaction with real hardware.

4.6.2 Litex VexRiscv simulator

The Mimiker RISC-V hardware repository provides a script for running a Verilator
generated simulator. The created model simulates the board for which the basic
build (using litex/make.py) has been performed, thereby, a build must be per-
formed first.

The script file is litex/sim.py. As usual, the --help option can be utilized to
view all command line parameters.

Before the simulator can be started, the user must provide the following files
and place them in the litex/images directory:

• Image – the raw binary image of the built kernel (mimiker.img),

• rootfs.cpio – ramdisk image (initrd.cpio),

• opensbi.bin – the raw binary image of the built OpenSBI firmware (fw jump.bin).

The most straightforward way for running the simulator is by executing
./sim.py

4.7 Running Mimiker RISC-V on FPGA

To run Mimiker on the LiteX VexRiscv hardware platform the following steps must
be performed (the presented commends employ the Arty A7 board):

1. The bitstream needs to be built. This requires Xilinx Avado and is issued by
executing
./make.py --board arty_a7 --build

2. The built bitstream must be loaded to the FPGA board by issuing
./make.py --board arty_a7 --load

4.7. RUNNING MIMIKER RISC-V ON FPGA 117

3. As for the simulator, the target images must be placed in litex/images.

4. Finally, the lxterm tool provided with LiteX is used to boot LiteX on the
target board (the user should determine the exact ttyUSB identifier of the
connected board)
lxterm --speed 1e6 /dev/ttyUSB? --images images/boot.json

For the time being, the user must build the bitstream on his or her own. How-
ever, we plan to provide a downloadable prebuilt bitstream for users not interested
in SoC development.

Chapter 5

Summary

It is a challenging task to prepare a port of an operating system. It requires a fair
knowledge of the target architecture and associated software and hardware environ-
ments, along with a thorough understanding of the most vital components of the
target operating system.

Although it is a demanding process, there is certainly wisdom unutterable to
be had from it. Operating system development is sublime art and it has changed
my life.

5.1 Contributions

As the effort of the Mimiker RISC-V project is divided into software and hardware
components, I will present my contributions applying the same split.

5.1.1 Mimiker RISC-V hardware

I have provided an implementation of the execution environment for the Mimiker
RISC-V kernel along with a platform description and a script supplied to the Renode
system emulator.

All remaining elements, including the Mimiker SoC building scripts and simu-
lator, have been provided by Marek Materzok.

5.1.2 Mimiker RISC-V software

I have implemented the abstract CPU model employed by Mimiker, provided drivers
for devices required by target architecture and target platform, and supplied imple-
mentation of machine-dependent parts of Mimiker’s system libraries.

119

120 CHAPTER 5. SUMMARY

5.1.3 Results

As the result of my work, Mimiker has been adapted to a wide range of LiteX
platforms incorporating a RISC-V softcore.

The presented port is fully operative in the emulated environment provided by
Renode. All userspace programs are responsible and usable just as for other ports.

Although it is possible to run Mimiker on a cycle-accurate simulator employing
a single host thread and obtain proper operation, issues arise as the number of
threads grows. Similarly, problems occur when running on actual hardware.

5.1.4 Future work

Although a lot has been done, there is more to be done.

First of all, the vast majority of described contributions have not been merged
yet. My main effort will concentrate on introducing the existing changes to the main
branch.

All issues exposed by running on the simulator and real hardware must be fixed.

Some significant components have not been integrated with the RISC-V port
yet. These are:

• kernel address space sanitizer (KASAN),

• CFI directives,

• CI automated tests,

• architecture customized userspace tests.

The provided port is meant for LiteX generated platforms incorporating a
RISC-V 32-bit CPU equipped with CLINT and PLIC devices. It would be beneficial
to drop the CLINT and PLIC assumption and add support for platforms lacking
any of these devices. Moreover, we could lift the 32-bit assumption thereby enabling
Mimiker on 64-bit RISC-V CPUs. Finally, by adding appropriate device drivers, we
could run Mimiker on entirely new boards, for instance, HiFive Unleashed.

Bibliography

[1] VexRiscv repository, https://github.com/SpinalHDL/VexRiscv

[2] PicoRV32 repository, https://github.com/YosysHQ/picorv32

[3] Krste Asanović, David A. Patterson
Instruction Sets Should Be Free: The Case For RISC-V

[4] Mimiker web page, https://mimiker.ii.uni.wroc.pl

[5] Malta-R development platform,
MIPS® Malta™-R Development Platform User’s Manual

[6] Paweł Jasiak
Port of Mimiker Operating System for AArch64 Architecture

[7] RISC-V ISA GitHub page, https://github.com/riscv

[8] RISC-V non-ISA GitHub page, https://github.com/riscv-non-isa

[9] Jason Lowe-Power, Christopher Nitta
The Davis In-Order (DINO) CPU

[10] Stephen A. Zekany, Jielun Tan, James A. Connolly, Ronald G.
Dreslinski
RISC-V Reward: Building Out-of-Order Processors in a Computer Architecture
Design Course with an Open-Source ISA

[11] Marek Materzok, DigitalJS: a Visual Verilog Simulator for Teaching

[12] The RISC-V Instruction Set Manual Volume I: Unprivileged ISA Version
20191213

[13] The RISC-V Instruction Set Manual Volume II: Privileged Architecture Version
20211203

[14] RISC-V GCC options
https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html#

RISC-V-Options

121

https://github.com/SpinalHDL/VexRiscv
https://github.com/YosysHQ/picorv32
https://mimiker.ii.uni.wroc.pl
https://github.com/riscv
https://github.com/riscv-non-isa
https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html#RISC-V-Options
https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html#RISC-V-Options

122 BIBLIOGRAPHY

[15] FreeBSD manpages, pmap(9)
https://www.freebsd.org/cgi/man.cgi?query=pmap&apropos=0&sektion=

0&manpath=FreeBSD+13.0-current&arch=default&format=html

[16] Linux kernel documentation, RISC-V Hart-Level Interrupt Controller
(HLIC)
https://www.kernel.org/doc/Documentation/devicetree/bindings/

interrupt-controller/riscv%2Ccpu-intc.txt

[17] RISC-V Platform-Level Interrupt Controller Specification Version 1.0

[18] SiFive E31 Manual v19.08p0

[19] RISC-V Advanced Core Local Interruptor Specification Version 1.0

[20] LiteX repository https://github.com/enjoy-digital/litex

[21] RISC-V Supervisor Binary Interface Specification Version 1.0-rc2

[22] OpenSBI repository
https://github.com/riscv-software-src/opensbi

[23] OpenSBI on LieX VexRiscv
https://github.com/litex-hub/opensbi/tree/0.

8-linux-on-litex-vexriscv

[24] RISC-V ABIs Specification Version 1.0-rc1

[25] Devicetree Specification Release v0.3-40-g7e1cc17

[26] NetBSD source code – sys/arch/riscv/include/asm.h

[27] NetBSD manpages, setjmp(3)
https://man.netbsd.org/setjmp.3

[28] Mimiker RISCV hardware repository
https://github.com/tilk/mimiker_riscv_hardware

[29] Renode web page, https://renode.io/

[30] Latest Renode builds, https://dl.antmicro.com/projects/renode/
builds/

[31] Verilator web page, https://www.veripool.org/verilator/

[32] NetBSD manpages, callout(9)
https://man.netbsd.org/callout.9

[33] Mimiker source code – include/sys/vm_physmem.h
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/vm_

physmem.h?r=093d1520

https://www.freebsd.org/cgi/man.cgi?query=pmap&apropos=0&sektion=0&manpath=FreeBSD+13.0-current&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=pmap&apropos=0&sektion=0&manpath=FreeBSD+13.0-current&arch=default&format=html
https://www.kernel.org/doc/Documentation/devicetree/bindings/interrupt-controller/riscv%2Ccpu-intc.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/interrupt-controller/riscv%2Ccpu-intc.txt
https://github.com/enjoy-digital/litex
https://github.com/riscv-software-src/opensbi
https://github.com/litex-hub/opensbi/tree/0.8-linux-on-litex-vexriscv
https://github.com/litex-hub/opensbi/tree/0.8-linux-on-litex-vexriscv
https://man.netbsd.org/setjmp.3
https://github.com/tilk/mimiker_riscv_hardware
https://renode.io/
https://dl.antmicro.com/projects/renode/builds/
https://dl.antmicro.com/projects/renode/builds/
https://www.veripool.org/verilator/
https://man.netbsd.org/callout.9
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/vm_physmem.h?r=093d1520
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/vm_physmem.h?r=093d1520

BIBLIOGRAPHY 123

[34] Mimiker source code – include/sys/klog.h
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/

klog.h?r=6429a3a2

[35] Mimiker source code – include/sys/kenv.h
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/

kenv.h?r=bf94105b

[36] Mimiker source code – include/sys/malloc.h
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/

malloc.h?r=e9ef8e55

[37] Mimiker source code – include/sys/kmem.h
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/

kmem.h?r=03df3238

[38] QEMU web page, https://www.qemu.org/

[39] Shiva Chen, Hsiangkai Wang
Compiler Support For Linker Relaxation in RISC-V

https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/klog.h?r=6429a3a2
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/klog.h?r=6429a3a2
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/kenv.h?r=bf94105b
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/kenv.h?r=bf94105b
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/malloc.h?r=e9ef8e55
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/malloc.h?r=e9ef8e55
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/kmem.h?r=03df3238
https://mimiker.ii.uni.wroc.pl/source/xref/mimiker/include/sys/kmem.h?r=03df3238
https://www.qemu.org/

	Introduction
	With great power comes great responsibility
	Porting an operating system
	Instruction set architecture (ISA)
	Why RISC-V?
	Open hardware
	Open implementations
	Educational architecture
	Architecture of the future

	Mimiker

	Abstractions
	RISC-V ISA
	What is RISCV?
	Why do extensions matter?
	How to utilize an extension?
	What is the kernel overhead of using an extension?
	Keeping track of the architectural state of an unprivileged extension
	Terminology
	Endianness
	Instruction length
	Why is instruction length important?
	Memory
	Assumed architectural state
	Privilege levels
	Employed software stack
	Machine mode ISA
	Supervisor mode ISA

	Hart-level interrupt controller (HLIC)
	Interrupt handling at the platform level
	Platform-level interrupt controller (PLIC)
	A PLIC context
	Exemplary setup
	Interrupt handling process
	Why use PLIC in Mimiker?

	Advanced core local interruptor (ACLINT)
	MTIMER
	MSWI
	SSWI

	SiFive core local interruptor (CLINT)
	Why use CLINT in Mimiker?

	LiteX
	Mimiker RISC-V target platform

	Supervisor binary interface (SBI)
	Extensions and functions
	Calling scheme
	Timer extension
	Mimiker SBI library
	SBI implementation

	OpenSBI
	Platform implementation
	OpenSBI on LiteX
	Supervisor mode initial environment

	Application binary interface (ABI)
	Calling convention
	ELF
	DWARF

	Device tree
	Device tree formats

	Mimiker port
	Memory map
	Physical address space
	Why is the physical memory map important?
	Virtual address space

	RISC-V kernel
	Kernel linker script
	Direct map
	Libkern
	Generic assembly
	thread0
	Bare memory boot
	Virtual memory boot
	Board stack
	Board initialization
	Trap handling
	Thread entry setup
	Context switch
	Physical address map (pmap) management
	Communication with user space
	Syscalls
	Signals

	Device drivers
	Bus interface
	Interrupt controller interface
	Timer interface
	UART interface
	Interrupt events
	Root bus device
	CLINT
	PLIC
	LiteUART

	System libraries
	Linker script
	crt0
	String functions
	Syscalls
	Nonlocal goto

	Tools and usage
	Toolchain
	Building the toolchain

	Building Mimiker
	Mimiker RISC-V hardware repository
	LiteX VexRiscv
	Supported FPGA boards
	Basic build

	Building OpenSBI
	Renode
	Why Renode?
	Acquiring Renode
	Scripts
	Platform descriptions
	Integrating Renode with Mimiker
	Running Mimiker on Renode

	Verilator
	Why do we want a cycle-accurate simulator?
	Litex VexRiscv simulator

	Running Mimiker RISC-V on FPGA

	Summary
	Contributions
	Mimiker RISC-V hardware
	Mimiker RISC-V software
	Results
	Future work

	Bibliography

