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Abstract

Tracking planar structures is a more specific subproblem of general homography
estimation which is an old and basic task in computer vision. While classic ap-
proaches developed over the years tried to achieve better performance and robust-
ness, they still often fail in hard, real-life cases. On the other hand some new, deep
learning based solutions obtained better performance when dealing with practical
challenging factors like significant lighting changes or dynamic scenes, they rather
tackle the problem of general image alignment on synthetic datasets and cannot
be used for planar tracking easily. In this thesis we propose a combined algorithm
for planar structures tracking along with its implementation. It is based on classic
homography estimation approaches but also utilizes novel deep learning techniques
for relocalization in hard cases. Our solution achieves significantly better precision
that previous state-of-the-art approaches and low computational cost being able to
run in real-time on ordinary desktop machine.

Śledzenie płaskich powierzchni jest podproblemem bardziej ogólnego i wręcz podsta-
wowego w wizji komputerowej zadania, jakim jest estymacja homografii. Podczas gdy
tradycyjne metody ulepszane z biegiem lat osiągały coraz lepszą skuteczność i od-
porność, wciąż często zawodziły w trudnych, rzeczywistych przypadkach. Z drugiej
strony nowe podejścia oparte na głębokich sieciach neuronowych okazały się bardziej
skuteczne w starciu z praktycznymi trudnościami jak znaczące zmiany oświetlenia
i dynamiczne sceny. Próbują one jednak zwykle rozwiązać problem ogólnego dopa-
sowania zdjęć na syntetycznych zbiorach danych i nie mogą być łatwo zaaplikowane
do zadania śledzenia płaskich powierzchni. W tej pracy przedstawiamy złożony al-
gorytm do śledzenia płaskich powierzchni wraz z implementacją. Jest on oparty na
klasycznych metodach do estymacji homografii, ale korzysta również z nowych osią-
gnięć głębokich sieci neuronowych do relokalizacji w trudnych przypadkach. Nasze
rozwiązanie osiąga zdecydowanie lepszą dokładność niż wcześniejsze metody, jak
również wymaga niedużych zasobów obliczeniowych, mogąc działać w czasie rzeczy-
wistym na przeciętnym komputerze.
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Chapter 1

Introduction

Planar object tracking task comes from classic homography estimation problem,
which is one of the fundamentals of computer vision. The aim is to obtain an ac-
curate mapping from template image to its projection on a video. Despite being
old, it is still an important and active area of research, because of its applications
in augmented reality and robotics. Algorithms developed over time need to be con-
stantly improved to handle more challenges that current applications bring. While
in past the algorithms needed to work only in artificial scenarios, nowadays there are
much more real life applications, for which more robustness is needed. In the same
time, during fast technological development of hardware, we also expect better ac-
curacy in novel approaches. Finally, because there is a constantly increasing number
of applications on IoT and mobile devices, low computational cost is very impor-
tant. Therefore, these three targets should be a common area of focus: robustness,
accuracy and computational cost.

In this thesis, we propose a combined algorithm based on classic homography
estimation approaches but also utilizing novel deep learning techniques for relocal-
ization in hard cases. Our solution significantly outperforms other state-of-the-art
approaches in accuracy on the recent benchmark [13], while being very efficient
in terms of computational cost and running in real-time. Together with the thesis
we provide the source code of our implementation, on which all the tests have been
made.

The thesis consists of the following parts. In Chapter 2 we introduce the theory
needed to understand and properly define the problems of homography estimation
and planar object tracking. In Chapter 3 we go through classic approaches and al-
gorithms from the field. In Chapter 4 we introduce the benchmark on which we
evaluate our solution. In Chapter 5 we present our algorithm with a special at-
tention over the important steps and, in Chapter 6, we show the evaluation results
of our solution in comparison with other algorithms applied on the common bench-
mark. Finally, in Chapter 7 we give a summary of our findings like also possible
future improvements to our approach.
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Chapter 2

Theoretical Background and
Problem Description

To understand the problem of planar objects tracking we need a set of mathemati-
cal tools to properly describe it. First, we need to define the transformation taking
place in a camera when taking a photo. Next we will derive the formal definition
of homography, as a main objective of our approach, with its most important prop-
erties. Finally, having all the necessary tools, we will formally define the problem
of planar object tracking.

2.1 Pinhole Camera Model

To formally describe the transformation taking place when we take a photo of a scene,
we first need to define the model of a camera. The most popular one is so called
a pinhole camera model. It assumes that between the projective plane and the scene
is a small hole, that only one photon from each direction can pass through it. There-
fore each point on the image comes from exactly one ray which starts in single 3D
point in the scene, see Fig. 2.1.

Because each point is transported on exactly one ray, there is no blur and the
image is perfectly well focused. We also assume that each ray has enough amount
of light for each point to be visible. These assumptions are of course not satisfied
in real world cameras. Such small hole would not be enough to pass sufficient amount
of light in reasonable time, that is why, we use lenses. Nevertheless, such assumptions
give us a well defined conditions that we can further utilize for mathematical tools.

9



10CHAPTER 2. THEORETICAL BACKGROUNDAND PROBLEMDESCRIPTION

Figure 2.1: The tree from the scene is perfectly mapped on the image plane
with usage of pinhole camera. Because each point is transported on exactly one
ray, there is no blur and the image is perfectly well focused. We also assume
that each ray has enough amount of light for each point to be visible. Source:
https://commons.wikimedia.org/wiki/File:Pinhole-camera.png (last access:
11.11.2021).

2.2 Projective Geometry

Transformation that we introduced in previous section can be explained mathe-
matically. But first we need to show the space in which it will be well-defined.
For that purpose, a field called projective geometry was invented, which can con-
nect the 3D world and its projections on the images.

Homogeneous Coordinates

We want to get both the 3D world and its projections on images in one space called
projective space. As we said, projected 2D point on the image can be equated
to a ray coming from corresponding 3D point through the center of projection.
Since, from the image point of view, we do not know which particular 3D point
on this ray produced the projection, we can represent it as a set of all possible 3D
points using the following homogeneous coordinates:

(
x

y

)
w

xy
1

 w

wxwy
w

 . (2.1)

As we can see in Equation (2.1), point (x, y)T on the image plane is equivalent
with point (x, y, 1)T and (wx,wy,w)T for every w 6= 0. Such representation uses
an assumption that the center of projection C in 3D world is located in (0, 0, 0)T ,

https://commons.wikimedia.org/wiki/File:Pinhole-camera.png


2.2. PROJECTIVE GEOMETRY 11

and the projective plane p in the coordinate Z = 1, see Fig. 2.2. Then the point
(x, y)T from the image is a (x, y, 1)T point in the 3D world.

Figure 2.2: Projective space with included projective plane. Often for simplicity
we assume that the projective plane is located in coordinate Z = 1 and that the cen-
ter of the projection is in the center of the coordinate system. Axis Z is perpendicular
to the projective plane. Source: [9].

However, it is not always the case that the center of the coordinate system
and the center of projection overlap. We would like to model also applications where
we have several cameras with different positions and orientations taking photos of one
scene from different viewpoints.

2.2.1 Camera Matrices

Camera matrices are the component that can model real camera’s position in the world
and the transformation taking place when taking a photo. It can also express the
physical parameters of the camera such as focal length or the resolution in a math-
ematical way. Camera matrices are essential for the following Projection Equation:

s

uv
1

 = K [R | T ]


X

Y

Z

1

 . (2.2)

Left side of the Equation (2.2) is the (u, v)T image point represented in homo-
geneous coordinates along with a scale s. On the right side we have intrinsic camera
matrix K, extrinsic matrix [R | T ] and 3D point from the scene (X,Y, Z)T which is
being projected. This 3D point is also represented in homogeneous coordinates with
additional fourth coordinate equal 1. We use it to simplify the notation rather than
to give additional interpretation, what can be seen during further camera matrices
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analysis. Equation (2.2) is a full description of the transformation from the 3D world
into 2D projection plane.

Extrinsic Camera Matrix

Extrinsic matrix allows to move between the coordinate system of the world/scene
and each particular camera. It is therefore the component that enables having the
center of projection in different place than the center of the world coordinate system.
Its notation from Equation (2.2) we can unfold in the following way:

[R | T ] =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 .

The matrix consists of two parts, R and T stacked together. R is a rotation
matrix between two coordinate systems and T is a translation vector between these
systems. We can see that thanks to the addition fourth coordinate of the point
(X,Y, Z)T equal to 1 we can express the translation as a matrix multiplications
instead of addition what simplifies the notation, especially when combining few
of such transformations. In applications of 3D reconstruction or localisation, we
often refer to the extrinsic camera matrix as a camera pose, because it describes the
camera’s position and orientation in world coordinate system.

Going back to the projection equation (2.2), after applying extrinsic matrix
to the point (X,Y, Z)T we get a 3D point in a camera’s coordinate system with
the center of projection in a point (0, 0, 0)T and the projection plane on coordinate
Z = 1. Now we can use the intrinsic camera matrix to transform it into a 2D
projection on an image.

Intrinsic Camera Matrix

In a similar way let us unfold what is inside the intrinsic matrix K in the Equa-
tion (2.2):

K =

fx 0 cx

0 fy cy

0 0 1

 . (2.3)

We can now take a look on each particular element of the matrix K, according to
the Equation (2.3). On the diagonal we have values fx and fy which are responsible
for scaling world coordinates into the pixels. They are directly related to the focal
length of the camera. Often K is simplified with an assumption that fx = fy,
which should be true in ideal pinhole camera, but in real world there might be some
inaccuracies because of some lens deformations. In the third column of the matrix
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we have once more a translation component, namely the cx and cy elements. It is
needed because on images we commonly place the origin in the corner, not in the
center. cx and cy are therefore values equal to half of the image resolution, because
they translate the center of the image into its corner.

Scale

By analysing the left side of the projection equation (2.2) we can see an isolated
scale component. It comes from the fact that we already observed introducing
homogeneous coordinates. For particular point on the image we are not able to tell
how far on the incoming ray the corresponding 3D point is located. When looking
at the object on the image we do not know if it is big and located far away, or small
and really near, everything is defined up to a scale in homogeneous coordinates.
Thus, the s coefficient is a byproduct of the projection and we usually do not have
any use of it.

2.3 Homography

After the introduction we now should understand each component of the projection
equation (2.2) and see how by using it, transform 3D points on the scene into 2D
projections on the image. Now we can proceed to define a homography and explain
how it can be used. For that we will need two cameras, because the homography
is a transformation between two images i.e. it transforms points from one image
into the other as shown in the Figure 2.3.

With a homography we can represent two types of transformations. First, when
we have two projections of the same plane, for example a building wall, billboard
or a part of the floor. Second occurs when the movement of the camera between
the first and the second photo is a pure rotation without translation. Then it is
no longer important if the scene is a plane. Most common example of such case
is when we take a series of photos to combine them into one panorama of a far away
landscape.

We will go back to both this cases after analysing the relation between the ho-
mography and camera matrices.

2.3.1 Homography and Camera Matrices Relation

Let Ka, Kb, [Ra | Ta] and [Rb | Tb] be respectively intrinsic and extrinsic matrices
of cameras a and b, with which we took a photos of a plane P . We are looking for
a homography H, that can transform points from an image from camera b into the
points of the image of camera a. Additionally, let n be the normal vector of a plane
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Figure 2.3: Homography can describe two types of transformations. First (a), be-
tween two projections of the same plane in a 3D world. And the second (b), between
two projections of unconstrained 3D scene, not necessarily a plane, but the transfor-
mation between these two cameras needs to be a pure rotation without translation.
Source: [10].

P and d be the distance from camera b to the plane P . Then we can express
homography H with an equation:

H = s Ka

(
RaR

T
b +

(RaR
T
b Tb − Ta)nT

d

)
K−1

b . (2.4)

First thing that we can note is once again the scale coefficient s. It means,
that the homography is also defined up to a scale i.e. H and sH represent the same
transformation for all s 6= 0. When analysing further the Equation (2.4) we can
notice the intrinsic matrices Ka and K−1

b . They transform the point from image
b into the projective plane in 3D world and then from the projection plane into
the image a. We can think about them as a unit conversion. The factor in the
parentheses is more complicated. But we can see that RaR

T
b is in fact a relative

rotation from camera b to the camera a. It means that (RaR
T
b Tb − Ta) is in fact

a relative translation from a to b. We can simplify the notation by introducing
Rba := RaR

T
b and Tab = (RaR

T
b Tb − Ta). Then we have

H = s Ka

(
Rba +

Tab n
T

d

)
K−1

b . (2.5)

Let us see what happens to the point p being transformed by the homography
H. For simplicity, let assume that p is already in the projective plane and we can
forget about the intrinsic matrices. From Equation (2.5) we can write:
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H̃p =

(
Rba +

Tab n
T

d

)
p

= Rbap +
Tab n

T

d
p

= Rbap +
Tab n

Tp

d

= Rbap +
(nTp)Tab

d
.

The component with Rba is quite intuitive, we transform the point p from the
coordinate system of the camera b to the system of camera a according to the relative
rotation. Translation component is more complicated - instead of just adding the
translation we weight it by the (nTp

d coefficient. d is constant for all points, but nTp
takes most significant value when p is parallel to the normal vector of a plane and
equals 0 when it is perpendicular.

For deriving these formulas we made an assumption that the scene is a plane
with a distance d from a camera. That was the first case of the homography. We can
see that in the second case the translation Tab = 0, so the whole second component
disappears and we have just a normal rotation transformed by the intrinsic cameras
matrices. d also disappears so the assumption about a plane scene is no longer
needed.

2.3.2 Homography Properties

From Equation (2.4) follows the fact, that we can represent homography as a 3× 3

matrix. However, it does not mean that this transformation is linear. It is not
in general, what can be easily seen when taking a look at how it transforms a 2D
point (x, y)T on an image:

H

xy
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


xy

1

 =

h11x+ h12y + h13

h21x+ h22y + h23

h31x+ h32y + h33

 =


h11x+h12y+h13

h31x+h32y+h33
h21x+h22y+h23

h31x+h32y+h33

1

 ,

(2.6)

thus

(
x

y

)
H7−→

(
h11x+h12y+h13

h31x+h32y+h33
h21x+h22y+h23

h31x+h32y+h33

)
.

From Equation (2.6) it follows, that the homography transforms point (x, y)T into
the point (h11x+h12y+h13

h31x+h32y+h33

h21x+h22y+h23

h31x+h32y+h33
)T , what in general is not a linear transforma-

tion.
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We said, that the homography is defined up to the scale, therefore most often
homography matrix is normalized to have 1 in the bottom right corner. The rest 8
parameters of the matrix can be changed freely, therefore it has 8 degrees of free-
dom. Hence, we should be able to determine the homography matrix from 4 pairs
of corresponding 2D points on the two images, because each such pair would give
us two constraints on the matrix. From that we can derive the system of equations
having a unique solution if and only if for both these images none 3 of 4 points would
be collinear, as shown on the Figure 2.4.

Figure 2.4: Two views of the same red quadrilateral. Sample pair of correspond-
ing points is showed in yellow. Source: https://alicevision.readthedocs.io/
en/latest/openMVG/multiview/multiview.html#homographyfigure (last access:
8.09.2021).

Let (p1,p
′
1), (p2,p

′
2), (p3,p

′
3), (p4,p

′
1) be corresponding points pairs. For each

pair (pi,p
′
i) we can derive a system of two equations using the Equation (2.6):

x′i = h11xi+h12yi+h13

h31xi+h32yi+h33
,

y′i = h21xi+h22yi+h23

h31xi+h32yi+h33
.

After simple transformation we get to the system:

−h11xi − h12yi − h13 + h31xix
′
i + h32yix

′
i + h33x

′
i = 0,

−h21xi − h22yi − h23 + h31xiy
′
i + h32yiy

′
i + h33y

′
i = 0.

By combining all these systems into one big system of equations and writing it
in a matrix form we get:

https://alicevision.readthedocs.io/en/latest/openMVG/multiview/multiview.html##homographyfigure
https://alicevision.readthedocs.io/en/latest/openMVG/multiview/multiview.html##homographyfigure
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PH =



−x1 −y1 −1 0 0 0 x1x
′
1 y1x

′
1 x′1

0 0 0 −x1 −y1 −1 x1y
′
1 y1y

′
1 y′1

−x2 −y2 −1 0 0 0 x2x
′
2 y2x

′
2 x′2

0 0 0 −x2 −y2 −1 x2y
′
2 y2y

′
2 y′2

−x3 −y3 −1 0 0 0 x3x
′
3 y3x

′
3 x′3

0 0 0 −x3 −y3 −1 x3y
′
3 y3y

′
3 y′3

−x4 −y4 −1 0 0 0 x4x
′
4 y4x

′
4 x′4

0 0 0 −x4 −y4 −1 x4y
′
4 y4y

′
4 y′4





h11

h12

h13

h21

h22

h23

h31

h32

h33


= 0.

Such system of equations, with additional constraint ||H|| = 1, we can solve
using SVD decomposition. By finding the decomposition P = UΣV T , as a solution
we can take the right singular vector corresponding to singular value equal to 0.
Additional constraint ||H|| = 1 is insignificant, because H is defined up to the scale.

One of the most important property of the homography is the fact that it
is an invertible transformation, we can find the inverse by simply inverting the
matrix H. In practice, also one additional property is important - homography,
despite being nonlinear, maps straight lines to straight lines. However, it does not
necessarily preserve angles and proportions.

Homographies are also defined for higher dimensional spaces, however they do
not have applications related to images.

2.4 Planar Object Tracking

Now we have all necessary definitions and tools to properly describe our main task.
Planar object tracking is a problem that consists of an object that we want to track
and a video on which this object is recorded. In our case we will assume that we
have a template image of the tracked object T, e.g. undistorted picture of a road
sign that we are tracking.

Having the proper template T we can now estimate the homography between T

and current video frame, so that we know how to map the template onto the frame.
In tracking task we need to estimate the homography on each frame in a sequential
manner, we start from the first frame and we can use the information from the past
for the next estimation. In this setting, as a result we have a homography Hi for
each video frame Fi that maps the template on that particular frame.
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Figure 2.5: Sample template image of a planar object that could be tracked alongside
with a frame from a video on which it is recorded. The example is taken from [13].



Chapter 3

Related Work

Most popular algorithms for robust homography estimation and planar object track-
ing are typically representatives of one of two groups: keypoint-based and region-
based methods. We will try to describe the general idea of both of these classes
of methods in this chapter, as also introduce some of particular algorithms in the
next one.

3.1 Keypoint-based Methods

As mentioned in Section 2.3 the easiest way to establish the homography is to have
4 points correspondences and based on that compute the matrix from the direct
formula. Keypoint-based approaches follow the same way, but with a more robust
solution, which adapts to much more than just 4 correspondences.

The general algorithm looks like this:

Algorithm 1 General keypoint-based algorithm

1: Detect the sets of keypoints on both images P1, P2.
2: Find the matching between P1 and P2 getting the set of correspondences C ⊆
P1 × P2.

3: Estimate the homography H based on C.

Figure 3.1 shows keypoint-based homography estimation example. Each step
of Algorithm 1 can be seen there, but we will describe them in more detail.

3.1.1 Detecting the Keypoints

By analyzing the Algorithm 1 we can name the desired properties of detected key-
points as following:

19
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Figure 3.1: Keypoint-based method in practice. On the left there is a reference tem-
plate image, on the right the scene having the transformed template. On both images
detected keypoints were drawn with small green circles. Corresponding pairs were
connected with green lines. Computed transformation was used to draw the white
quadrilateral around estimated position of transformed template image. Source:
https://docs.opencv.org/4.5.2/dc/dc3/tutorial_py_matcher.html (last ac-
cess: 8.08.2021).

1. Covariant to spatial transformations like, rotations, translations, perspective,
shear and mirroring.

2. Invariant to illumination changes.

3. Easily distinguishable.

4. Sparse - the number of keypoints must be much less than the number of pixels.

5. Local - each keypoint occupies only small area.

Items 1◦ and 2◦ are fundamental, i.e. to estimate the homography based on key-
points, it must be possible to detect the same keypoints on two images transformed
in different way, e.g. taken with different distances, light conditions or with different
viewpoints. Item 3◦ should make the matching step a solvable problem. Item 4◦ is
important from computational resources point of view - the smaller number of key-
points necessary to find a proper homography the less computations needed to be
performed. Similarly item 5◦, points matching requires the analysis of the important
keypoint area, so the smaller it is the faster the computations. Also, lower is the
chance for a keypoint to be occluded, what often ends up with a wrong homography.

In practice, keypoints are most often defined as some kind of corners, so points
that are local maximas of variously defined ”cornerness” functions on the image
domain. Different functions have different approaches to satisfy all the requirements

https://docs.opencv.org/4.5.2/dc/dc3/tutorial_py_matcher.html
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to keypoints properties. The most classical ones are Harris [8] and Harris-Laplace
[15] corner detectors.

3.1.2 Descriptors

After detecting the keypoints, according to Algorithm 1, it is important to establish
a way to compare those keypoints to find the matching. Depending on the priors
that we have for matching problem, different approaches can be formulated. If we
know that two images are transformed by only small translation, we can search for
correspondences in the small neighbourhood. In general, however, we do not have
such assumptions and our matching technique needs to handle every possible con-
figuration of correspondences. In such case global matching techniques are applied
and descriptors are the way to do it.

As the name suggests, descriptor is an object able to describe the keypoint.
In most cases it is a vector of values, that should in most unique way, but also
invariant to spatial and illumination transformations, characterize particular points
and its neighbourhood. Having that, it is possible to for each keypoint from one
image, find the closest one in the descriptors space on the second image, and in this
way establish the matching.

Many descriptors, such as SIFT [14] or ORB [20] are designed for particular
keypoints detectors, with which they work best, because of common assumptions
of possible transformations and number of computations constraints, therefore key-
points detector and descriptor are sometimes jointly known by same name.

3.1.3 Estimating the Homography

On this stage of the Algorithm 1, we have detected keypoints on both images paired
into correspondences. We know from Section 2.3 that homography can be computed
from system of equations using 4 correspondences. Such system could be easily
extended to more points and final homography would minimize the mean squared
error on correspondences distance. In practice, such approach would not be robust
enough. Previous steps of Algorithm 1 were heuristic approaches to really hard
problems, so we have no guaranties that the set of correspondences is free from
errors. Such mismatch would totally destroy our solution based on minimizing the
mean squared error, therefore more robust approach must be proposed.

RANSAC

Random Sample Consensus [6], is a simple and general algorithm able to fit a model
to data even in the presence of many outliers. It can be applied to many possible
problems, but here we describe its version in homography estimation.
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Algorithm 2 RANSAC

1: Ci ← ∅
2: while Some STOP condition do
3: From set of correspondences C sample 4 pairs S
4: Compute homography Hs based on S

5: Cs ← subset of C consistent with Hs

6: if |Cs| > |Ci| then
7: Ci ← Cs

8: end if
9: end while
10: Estimate and return homography H based on Ci

Algorithm 2 contains few steps requiring some clarification. First of all, it has
undefined stop condition. There are a lot of possibilities there, the basic one with
given number of repetitions. Most popular one is, based on number of correspon-
dences and estimated noise factor, number of steps necessary to find good subset of
points with given probability. In each such iteration we sample 4 correspondences,
to compute the homography. Sampling techniques can also be modified, to give par-
ticular points higher probability, because of additional information. Then we find
all correspondences (p, p′) for which the distance between Hp and p′ does not exceed
a fixed threshold value. All such correspondences are considered inliers. After fin-
ishing the loop we should have the set of correspondences without outliers for which
we can compute the final homography minimizing the mean squared error.

In practice, usage of this or a similar robust estimator is crucial to achieve good
results, because in real life examples the ratio of outliers can be huge.

3.2 Region-based Methods

In keypoint-based methods we use only the information contained in few hundreds
points out of thousands or even millions of pixels. Also, apart from the number of in-
liers, we have no other way of checking if the homography is good. In region-based
approaches, also called direct methods, these issues are being addressed. Instead
of separate steps of detecting the keypoints, matching and estimating the homogra-
phy, we formulate an optimization problem directly on the given images and solve
it using iterative minimization methods. Such algorithms can be especially effective
in planar object tracking applications, because we can use the assumption, that ho-
mography computed for previous video frame is close to the next one, so only small
number of optimization iterations is needed.
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3.2.1 Optimization Problem

Let xc be parameters of homography we are looking for, e parameters of identity
homography, and s(x) be an image warped with a homography with parameters x.
Them, the error function f we can write as follows:

f(x) =
1

2
‖s(x ◦ xc)− s(e)‖2 =

1

2

q∑
k=1

(sk(x ◦ xc)− sk(e)) .

x is a current estimation of the inverse of xc homography. The sum from k = 1 to q
runs through all pixels of the image. The aim is to find the argument that minimizes
the value of a function f :

arg min(f(x)) = xc
−1.

For this task we can use the general minimization strategies, which rely on it-
erative minimum approximation, by taking a step ∆x in each iteration. The way
in which we choose the direction and length of this step is the main difference be-
tween all the approaches. Different strategies we can depict by appropriately chosen
matrix S in the following formula:

∆x = −S−1g.

We distinguish methods of first and second order. First, because they use only in-
formation of the first derivatives of the error function, S can take a form S = αI.
Second-order methods use also the second derivatives, then S becomes a Hessian.
In practice, because of high dimensionality of the problem, computing the exact
values of second derivatives might be inefficient, therefore often some kind of ap-
proximations are used instead.

Because we minimize the mean squared error, we can use the Gauss-Newton
method, that approximates the Hessian with a usage of a Jacobian, containing only
first derivatives:

S = JTJ.

Often employed is its modification called Levenberg-Marquandt method:

S = JTJ + λ diag(JTJ).

There exist also a minimization strategies designed directly for planar object
tracking, for example ESM [4], GO-ESM [5], IC [1] and SCV [18], which try to further
utilize special properties of this problem and model it so that a lot of computations
are shared between iterations.
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Beside the minimization algorithm, also the error function can be modified.
Often additional component based on image gradient is used, to reduce the impact
of illumination differences. Having other assumptions about the problem, they also
can be easily taken into account, by for example constraining the areas on which we
search for the minimum.



Chapter 4

Benchmark Introduction

To efficiently and reliably compare many algorithms in the same task, it is very
useful to have a common benchmark. By trying different approaches in the same
conditions, we can draw true conclusions. For planar object tracking, there exist
a few benchmarks, but we will focus on the one that has the properties that we are
looking for. Planar Object Tracking in the Wild: A Benchmark [13], as the name
suggests, focuses on real life examples. It provides the data with the most often and
significant for this task challenging factors, both isolated and combined. The paper
itself also contains the results of the most important and classic algorithms, to which
new approaches can be compared.

4.1 Dataset

The dataset consists of 210 videos of 30 different planar objects, 501 frames each,
taken in the natural environment: on the streets, parks and inside buildings. Each ob-
ject is recorded on 7 videos, one from each of the following challenging factor cate-
gories:

1. scale change (SC),

2. rotation (RT),

3. perspective distortion (PD),

4. motion blur (MB),

5. occlusion (OC),

6. out-of-view (OV),

7. unconstrained (UC).

The UC factor consists of all factors combined together.

25
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4.2 Annotations

Additionally each video is provided with annotations of ground truth object position,
i.e. positions of four corners on the frame and relative homographies between first
and subsequent frames. For each video first frame is annotated as an initialization
input for evaluated algorithms, and later every second frame as a ground truth for
results comparison. For all videos frames with motion blur that is too strong for
accurate annotation or such where recorded object is visible in less than 50%, are
additionally labeled, to not be taken into account for the evaluation.

4.3 Metrics

To establish reliable quantitative comparison between the algorithms authors pro-
posed two metrics for the evaluation:

Alignment error based on the four reference points (four corners of the ob-
ject), and is defined as a square root of the mean square distances between the
estimated positions of the points and their ground truth

eAL =

(
1

4

4∑
i=1

‖xi − x∗i ‖
2
2

)1/2

,

where xi is the position of a reference point and x∗i is its ground truth position.

Homography discrepancy measures the difference between the ground truth
homography T ∗ and the predicted one T , and it is defined as

S(T ∗, T ) =
1

4

4∑
i=1

∥∥ci − (T ∗T−1)(ci)
∥∥

2
,

where {ci}i=1..4 = {(−1,−1)T , (1,−1)T , (−1, 1)T , (1, 1)T } are the corners of a square.

4.4 Selected Algorithms

In a similar manner as we did in the Chapter 3, the authors of [13] divided the
algorithms selected for their comparison into two groups: keypoint-based and region-
based.

4.4.1 Keypoint-based Algorithms

All the keypoint-based algorithms follow the same framework that we introduced in
the Section 3.1, but with different approaches for keypoints detection and match-
ing. SIFT [14] and SURF [3] are well known keypoints descriptors for many years
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considered as a state-of-the-art. FERNS [16] and SOL [7] additionally use the fact
that the template is known beforehand and are trying to learn the descriptor and
matching offline.

4.4.2 Region-based Algorithms

Selected region-based algorithms are the same that we already mentioned in Sec-
tion 3.2. ESM [4] proposes special optimization algorithm designed for planar ob-
jects tracking. GO-ESM [5] and SCV [18] are its extensions by modifying the error
function - GO-ESM incorporates the information from the image gradients, SCV
uses sum of conditional variance to ensure invariance to non-linear illumination
changes. IC [1] approach modifies classic Lucas-Kanade image alignment algorithm
by switching the role of the template and the image, what brings a constant Hessian
and accelerates the optimization process.

Additionally, three generic object tracking algorithms were included in the
benchmark: GPF [11], IVT [19] and L1APG [2]. However, as they are not de-
signed for planar object tracking and homography estimation, their results in this
problem are rather weak.





Chapter 5

Algorithm

Both classes of homography estimation algorithms have their strong and weak sides.
Keypoint-based approaches rely heavily on the assumption that mostly the same
keypoints are being detected on all the frames of the video. Detectors and descrip-
tors try to ensure the number of invariances, but in really challenging conditions
they can fail. Region-based methods can be really time efficient in tracking task,
by skipping the computational heavy steps of keypoints detection and descriptors
evaluation, but are really sensitive to occlusions and rely on the starting point of the
optimization. When tracking is lost on one frame, then it has really small chances
to get back on track.

Our method tries to combine the strong sides of both of these classes and avoid
the weak ones. The general approach is presented in Algorithm 3.

We will now walk through all the steps of the algorithm to get the general idea
and later focus on the technical details.

As a first step of the algorithm, we detect the keypoints on the provided tem-
plate T. We do it only once for the whole video. Next, in the same way as in
benchmark [13], we assume the initialization on the first frame with a proper ho-
mography. Then, for all subsequent frames we perform the actual tracking. First we
are searching for an initial homography estimate. Therefore we use the homography
estimated for previous iteration, to project all detected keypoints from T on the
previous frame. Then, with optical flow technique, we estimate the motion of these
keypoints between previous and current frame. After that we try to refine position
of each keypoint, based on image patches cross correlation. If these steps fail, we use
additional relocalization technique based on generic Siamese Neural Network tracker
[12], that performs more global but quite imprecise search. For successful search, we
again try to refine the positions of the projected keypoints to acquire more accurate
homography. If any of the two refinement steps is successful, then we estimate new
homography based on such refined keypoints positions. If not, we keep the previous
homography and start next iteration.

29
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Algorithm 3 Our Algorithm

1: K← keypoints detected on template T
2: H ← initialization on first frame
3: for frame F in all subsequent frames do
4: Project all the keypoints from K on previous frame using H from previous

iteration
5: Using F and previous frame estimate the movement of the projected key-

points
6: Refine positions of all projected keypoints
7: if Tracking is lost then
8: Try to relocalize
9: if Relocalization successful then
10: Refine positions of all keypoints from K
11: Estimate homography H
12: else
13: Keep previous H
14: end if
15: else
16: Estimate homography H
17: end if
18: end for

Such approach gives us a lot of advantages. First, because we detect keypoints
only on the template, the algorithm saves time and can run in over real-time on
the ordinary laptop. By incorporating knowledge from previous frame it is possible
to do only local search for keypoints refinement instead of costly matching step.
But, to avoid the drawback most region-based methods suffer from, we introduce
a relocalization technique, that is able to re-initialize the tracking even after being
lost for few frames.

Now we will go through technical details of the most complicated steps of the
algorithm.

5.1 Keypoints

For our approach we needed to choose a keypoints detector that would perform well
with our tracking technique. For this reason, we follow [21], called after its authors,
Shi-Tomasi detector.

As we mentioned in Section 3.1.1, best keypoints are often defined as corners
and are found by looking for a maxima of a specially designed ”cornerness” function.
Such approach is used also in [21]. Informally, corner is a point on the image, which
neighbourhood, when looking on it through a small window, changes significantly
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when we shift this window in any possible direction. We will now try to formalize it.
Let I(x, y) be the image value in the point (x, y). Let W be a set of pixels that form
a window around analyzed point. Let (∆x,∆y) be considering shift. E(∆x,∆y) is
a value of the difference, that happens inside the window after the shift:

E(∆x,∆y) =
∑

xk,yk∈W
(I(xk, yk)− I(xk + ∆x, yk + ∆y))2 . (5.1)

We can approximate I(xk + ∆x, yk + ∆y) using a Taylor’s expansion in (xk, yk).
Let Ix, Iy be the partial derivatives of the function I. Then:

I(xk + ∆x, yk + ∆y) ≈ I(xk, yk) + Ix(xk, yk)∆x+ Iy(xk, yk)∆y. (5.2)

By using (5.2) inside (5.1) we get:

E(∆x,∆y) ≈
∑

xk,yk∈W
(Ix(xk, yk)∆x+ Iy(xk, yk)∆y)2 ,

what in a matrix form can be viewed as:

E(∆x,∆y) ≈
(

∆x ∆y
)
M

(
∆x

∆y

)
,

where M is a second moments matrix:

M =
∑

xk,yk∈W

(
I2
x IxIy

IxIy I2
y

)
=

( ∑
xk,yk∈W I2

x

∑
xk,yk∈W IxIy∑

xk,yk∈W IxIy
∑

xk,yk∈W I2
y

)
.

We can see that E is entirely defined by the matrix M , therefore we would like
to have some simple condition on M that would ensure the desired property on E

- that for every shift the difference in E is significant. Authors of [21] proposed
a condition on the eigenvalues of M . The difference in every direction is big if
both the eigenvalues of M exceed the given threshold. Therefore their ”cornerness”
function is defined as follows:

R = min(λ1, λ2),

where λ1 and λ2 are the eigenvalues of M . The point is chosen to be a keypoint
if it is a local maximum of R that exceeds the threshold.

5.2 Optical Flow

To utilize the information from previous frame, we could use the previous homog-
raphy as an initial guess of the current solution. However, in faster movements it
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would not be enough. For that reason, we additionally estimate the movement of
the projected template’s keypoints between previous frame and current. For that
task we use an optical flow technique.

Optical flow is a motion of the objects through the frames of a video. We can
think of it as vector field, that for each pixel of the frame, gives us the movement
that this pixel takes up to the next frame. To estimate it, we need two assumptions:

• pixel intensity does not change between frames,

• movement in local neighbourhood is constant.

As these assumptions might not be true for the whole video, they should rather hold
between two consecutive frames. Let x and y be image pixel coordinates and t be
the time. Let I(x, y, t) be the image intensity value. Let ∆x,∆y,∆t be the analyzed
movement in space and time. Thanks to the first assumption we can write:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t). (5.3)

By assuming the movement to be small, we can use the Taylor’s expansion to get:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y

∂I

∂t
∆t. (5.4)

By combining (5.3) and (5.4) and dividing by ∆t we get:

∂I

∂x
Vx +

∂I

∂y
Vy = −∂I

∂t
, (5.5)

where Vx = ∆x
∆t and Vy = ∆y

∆t are two unknowns being the searched optical flow
values.

From one equation we cannot estimate two unknowns, therefore we need to use
the second assumption, about the constant flow in local neighbourhood. Let q1, . . . , qn

be the local neighbourhood of the pixel (x, y)T . From that we can get the following
system of equations: 

∂I
∂x(q1)Vx + ∂I

∂y (q1)Vy = −∂I
∂t (q1),

∂I
∂x(q2)Vx + ∂I

∂y (q2)Vy = −∂I
∂t (q2),

...
∂I
∂x(qn)Vx + ∂I

∂y (qn)Vy = −∂I
∂t (qn).

We can write it in a matrix Av = b form as:
∂I
∂x(q1) ∂I

∂y (q1)
∂I
∂x(q2) ∂I

∂y (q2)
...

∂I
∂x(qn) ∂I

∂y (qn)


(
Vx

Vy

)
=


−∂I

∂t (q1)

−∂I
∂t (q2)

...
−∂I

∂t (qn)

 .
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The least squares solution can be obtained by:

(
Vx

Vy

)
=

 ∑
i

(
∂I
∂x(qi)

)2 ∑
i
∂I
∂x(qi)

∂I
∂y (qi)∑

i
∂I
∂x(qi)

∂I
∂y (qi)

∑
i

(
∂I
∂y (qi)

)2

−1(
−
∑

i
∂I
∂x(qi)

∂I
∂t (qi)

−
∑

i
∂I
∂y (qi)

∂I
∂t (qi)

)
. (5.6)

It is important to see that the matrix being inverted in Equation (5.6), is
the same second moments matrix, that we had in Shi-Tomasi keypoints detector,
Equation (5.1). It is therefore well visible, that the solution to the optical flow
equation (5.5) is well determined for points chosen to be the keypoints of the Shi-
Tomasi detector.

5.3 Refinement Procedure

Optical flow can give us a coarse estimate of where the template’s keypoints are
located on the frame, but to get really accurate result, we need additional refinement
step. The idea is shown in the Algorithm 4. To obtain keypoint’s true position on

Algorithm 4 Refinement Procedure

1: Estimate coarse homography Hc from keypoints position after optical flow track-
ing

2: Warp the template T according to the coarse homography Hc

3: for all keypoints do
4: Obtain a window patch WT around the keypoint on the warped template
5: Obtain a window patch WF around the keypoint projected on the frame

according to Hc

6: Obtain the optimal shift of WT inside WF so that patches have best overlap-
ping

7: end for

the frame we try to match the small patch around this keypoint on the warped
template with some patch in the neighbourhood of the keypoint projected on the
frame. We assume, that our first homography estimate is close enough, so that it
is sufficient to consider only translation of the template patch, without additional
rotations and perspective transformations. It makes the solution space much smaller.

As a matching evaluation function, we used normalized cross-correlation, be-
cause it brings invariance to illumination changes, which might be crucial, because
template is unchanged for the whole video and the light conditions on the scene may
vary. We measure the similarity of the template’s and frame’s patches for the shift



34 CHAPTER 5. ALGORITHM

(∆x,∆y) according to the following formula:

R(∆x,∆y) =

∑
x,y

WT (x, y) ·WF (x+ ∆x, y + ∆y)√∑
x,y

WT (x, y)2 ·
∑
x,y

WF (x+ ∆x, y + ∆y)2

. (5.7)

By considering only pure translation shifts and having a formula from Equation (5.7),
we can very efficiently find the optimal shift by checking matching results for all
possible shifts and taking the one giving the maximal value.

Such approach can give us the keypoint’s position with accuracy of one pixel.
However, sometimes it is not enough, especially in augmented reality applications
without sub-pixel accuracy, the resulting homography might be trembling what
makes it unreliable for a human eye. Therefore, to overcome this issue, we ap-
ply one last step of finding the sub-pixel maximum of patches matching. To achieve
that, we fit a two-dimensional quadratic function in the 3× 3 neighbourhood of the
found shift, and obtain its maximum from the following formula:

(∆xopt,∆yopt) = −H−1(∆xmax,∆ymax) · ∇R(∆xmax,∆ymax),

where (∆xmax,∆ymax) is the shift giving the maximal value obtained through patches
matching, and ∇R and H are R function gradient and Hessian.

Refinement procedure gives us not only better positions of the points, but also a
hint about which points might be localized incorrectly. If the value of the normalized
cross-correlation for particular point does not exceed given threshold, the point is
treated as an outlier, so it does not participate in the next homography estimation
step.

5.4 Relocalization Procedure

Our approach to homography estimation relies heavily on the homography found for
previous frame. While this helps us to find the accurate solution really fast, it be-
comes a serious drawback, when the tracking gets lost and our previous homography
is far from the next one. To overcome this, we propose an additional relocalization
procedure, that can give us a hint of current homography when being lost.

5.4.1 Lost State

However, the first thing we need is the ability to recognize, that we are in a lost
state. For that case, the procedure is quite simple, we combine to conditions:

1. geometrically reliable homography
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2. high overlapping score

The first condition checks if obtained homography makes geometrical sense, i.e. if
it does not change the order of template’s corners and if the perspective coefficients
are not unlikely big. In such cases it is most probable that the keypoints’ posi-
tions were wrongly estimated and the whole homography is incorrect. The second
condition uses the same measure that we used for refinement, namely normalized
cross-correlation (NCC) (5.7). We project the frame on the template with the in-
verse of obtained homography, and check the value of NCC measure. If it is low, it
is likely that the homography is wrongly estimated.

When we know, we are in a lost state, we need to use the actual relocalization,
to give us an idea where the searched planar object is. For that task we use a Siamese
tracker.

5.4.2 Siamese Neural Networks Trackers

Siamese Neural Networks Trackers are a class o methods for solving a single object
tracking problem. It is a more general task, than planar object tracking. The aim
is for each frame of the video, to provide a bounding box in which tracked object is
located. The result for planar object tracking is therefore much less accurate, but in
exchange for that, the tracker should be much more robust to occlusions and motion
blur - the two factors because of which the main tracking can most often fail.

The idea behind Siamese trackers is that they are pairs of twin convolutional
neural networks, sharing parameters, able to compare their inputs looking for sim-
ilarities, as shown on Figure 5.1. The first network takes the image of the target
being tracked and produces a map of features of it, while the second analyzes the
video frame and also produces the map of features. Two maps are later compared
to find the area with biggest similarity. This region is the resulting bounding box
of the tracker.

For our algorithm, we used a pretrained SiamRPN++ model [12] available in
OpenCV GitHub repository1. The SiamRPN++ model follows the general idea of
Siamese trackers mentioned before, with two upgrades. First is the usage of Region
Proposal Network modules [17]. Instead of getting the bounding box from the raw
cross-correlation of two feature maps, there are additional modules that analyze
the feature maps and ”propose regions” by assigning a probability of containing
an object in a set of predefined bounding boxes. These modules are also capable of
small adjustments of the corners of these predefined bounding boxes. The final result
may be therefore much more accurate. The second modification is an introduction
of very deep network as a shared model for twin networks. Earlier approaches

1OpenCV GitHub repo available at link: https://github.com/opencv/opencv (last access:
15.05.2021).

https://github.com/opencv/opencv
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Figure 5.1: Siamese tracker consists of two twin convolutional neural networks shar-
ing the parameters. The first network produces a map of features of the target, while
the second analyzes the video frame and also produces the map of features. Two
maps are later compared to find the area with biggest similarity. This region is the re-
sulting bounding box of the tracker. Source: https://medium.com/@reachraktim/
object-tracking-with-siamese-networks-and-detectron2-572e04dac547

(last access: 11.11.2021).

used only a shallow networks, because of the restriction of translation invariance
for a tracker to work. Authors of [12] propose a spatial aware sampling strategy
for network training, and achieve strong enough invariance. Using deeper network
for features extraction allows the whole model to achieve much better results than
previous approaches.

When our algorithm finds itself in a lost state, the relocalization with SiamRPN++
tracker is performed. Resulting bounding box is used to compute the initial homog-
raphy, that maps the template image to the bounding box. Based on this homogra-
phy, refinement procedure is used to establish better positions of the keypoints and
better resulting homography.

5.5 Time Performance

To measure the time performance of our algorithm we should split it into two parts:
tracking and relocalization procedures. Our tests were performed on a Dell XPS 15
7590 laptop, with an Intel i7-9750H CPU and Nvidia GeForce GTX 1050 Ti Max-Q
4GB GPU devices.

When it comes to tracking, our algorithms shows very good time performance,
able to run with 35-50 FPS on 1280 × 720 resolution videos on CPU only, depending
on the template image size. With relocalization switched on and neural network
run on the GPU, the algorithm still was able to run in real-time, achieving on

https://medium.com/@reachraktim/object-tracking-with-siamese-networks-and-detectron2-572e04dac547
https://medium.com/@reachraktim/object-tracking-with-siamese-networks-and-detectron2-572e04dac547
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average 30-40 FPS. However, with the lack of a GPU, one frame processing time
with relocalization increases from 20-30 ms to over 100 ms, achieving less than
10 FPS, what might be to low for some applications. In such scenarios it is still
possible to run the algorithm in real-time, if the need for relocalization is not too
frequent. When the tracking is lost, the relocalization procedure can be run in the
background and incoming frames saved in a queue. After successful relocalization,
tracking procedure is fast enough to catch up by processing all the frames from the
queue. In such setup, for all the frames in the queue except last, the result is not
returned on time, so the whole application would need to be in the ”lost” state for
that time.





Chapter 6

Results

We evaluated our algorithm’s performance on all the videos from the Planar Object
Tracking benchmark introduced in Chapter 4, following the same rules as for other
algorithms in [13].

To establish reliable quantitative comparison with other methods we used the
same alignment error and homography discrepancy metrics. Additionally we
draw precision and success plots which correspond to the ratio of frames tracked
with, respectively alignment and homography errors, smaller than the threshold
t. As a representative precision and success scores tp = 5 and ts = 10 are taken
respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Comparison of our and all trackers from [13] using precision plots. The
precision at the threshold tp = 5 is used as a representative score. It can be seen
that our approach outperforms all other trackers by a significant margin in most of
the cases, especially in scale change and perspective distortion. Only in occlusion
and motion blur our algorithm takes third position, however the difference to the
two best is not significant.

As can be seen on Figures 6.1 and 6.2 and what is also summarized in Tables 6.1
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Algorithm SC RT PD MB OC OV UC All

SIFT 0.4956 0.8792 0.4940 0.3344 0.8648 0.6942 0.5760 0.6187

SURF 0.3960 0.6669 0.4272 0.3721 0.8287 0.6632 0.4370 0.5396

FERNS 0.5720 0.6960 0.4777 0.3995 0.7157 0.6100 0.4771 0.5635

SOL 0.4255 0.3064 0.4444 0.2181 0.6943 0.5291 0.2878 0.4134

ESM 0.3724 0.3216 0.3538 0.0392 0.1442 0.0949 0.0994 0.2060

GO-ESM 0.2167 0.2129 0.1329 0.0300 0.2688 0.0916 0.0530 0.1440

SCV 0.4191 0.4278 0.3952 0.0383 0.1136 0.0956 0.1048 0.2309

IC 0.2446 0.1615 0.2041 0.0351 0.0807 0.0653 0.0529 0.1219

GPF 0.6235 0.3622 0.2469 0.0352 0.2319 0.3585 0.1499 0.2883

IVT 0.0619 0.0121 0.0019 0.0012 0.0052 0.0042 0.0034 0.0130

L1APG 0.0576 0.0112 0.0085 0.0148 0.0342 0.0295 0.0151 0.0244

Our 0.9546 0.9283 0.7628 0.3399 0.7515 0.7236 0.6099 0.7263

Table 6.1: Precision scores of all the algorithms achieved on videos with particular
challenging factor taken with precision threshold tp = 5. In most of the cases our
method outperforms the others by a significant margin.

Algorithm SC RT PD MB OC OV UC All

SIFT 0.2013 0.2138 0.2445 0.0802 0.2777 0.2422 0.1535 0.2017

SURF 0.1610 0.1466 0.1943 0.0945 0.2412 0.2293 0.1172 0.1686

FERNS 0.1963 0.1846 0.2378 0.1254 0.2380 0.2312 0.1501 0.1946

SOL 0.1376 0.0765 0.1920 0.0447 0.2089 0.1968 0.0972 0.1358

ESM 0.1572 0.1171 0.2125 0.0170 0.0799 0.0511 0.0467 0.0984

GO-ESM 0.0094 0.0348 0.0548 0.0066 0.0734 0.0356 0.0125 0.0323

SCV 0.1676 0.1491 0.2227 0.0154 0.0700 0.0495 0.0465 0.1042

IC 0.1267 0.0647 0.1303 0.0147 0.0499 0.0379 0.0267 0.0651

GPF 0.0926 0.0738 0.0965 0.0130 0.0488 0.1246 0.0349 0.0693

IVT 0.0105 0.0185 0.0081 0.0019 0.0052 0.0036 0.0042 0.0075

L1APG 0.0255 0.0029 0.0108 0.0043 0.0085 0.0136 0.0042 0.0100

Our 0.2530 0.2267 0.3471 0.1104 0.2665 0.2762 0.1880 0.2385

Table 6.2: Success scores of all the algorithms achieved on videos with particular
challenging factor taken with homography discrepancy threshold ts = 10. In most
of the cases our method outperforms the others by a significant margin.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Comparison of our and all trackers from [13] using success (homography
discrepancy error) plots. The error at the threshold ts = 10 is used as a represen-
tative score. Similarly as with precision measure, it can be seen that our approach
outperforms all other trackers by a significant margin in most of the cases, especially
in scale change and perspective distortion. Here, for motion blur and occlusion fac-
tors, our algorithm takes second position, being slightly worse than the best one.

and 6.2, our approach significantly outperforms other trackers on the average of all
sequences but also in most of the separate cases, especially in scale change and per-
spective distortion. In these cases our algorithm heavily relies on good estimates
from previous frame and initially tracked points. In such conditions our keypoints
matching technique is highly robust to even extreme scale and perspective distor-
tions. Few examples of our method’s results can be seen on the Figures 6.3, 6.4 and
6.5.

When it comes to motion blur it appears that Ferns [16] and SURF [3] achieve
better precision than our approach. It can be explained by the fact that our al-
gorithm relies on optical flow computed between subsequent frames and such flow

(a) First frame (b) Frame with rotation and motion blur

Figure 6.3: Comparison of first frame of video V01 7 from [13] with a frame with
a significant rotation and motion blur present. Estimated object position is marked
with red quadrilateral.
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(a) First frame (b) Frame with perspective distortion

Figure 6.4: Comparison of first frame of video V04 3 from [13] with a frame with
present projective distortion and some reflecting artifacts. Estimated object position
is marked with red quadrilateral.

(a) First frame (b) Frame with scale change

Figure 6.5: Comparison of first frame of video V21 1 from [13] with a frame with
present remarkable scale change. Estimated object position is marked with red
quadrilateral.
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might be much inaccurate in the presence of significant blur. It could be overcom-
pensated by the keypoints patches matching step if we additionally estimated the
blur kernel of the motion and applied it to patches to try to match their burred
versions.

Second challenging factor with which our algorithm is not the best one is the
occlusion. Similarly to motion blur, the optical flow estimation is one of the weak
points here, because it may be easily misled by moving object in front of the tracked
surface. Additionally, our procedure, responsible for noticing the lost state, can
faultily decide that the tracking is lost because of smaller NCC score in the presence
of occluding object despite the correctly estimated homography.

Our algorithm performed relatively better in success ranking than in precision
ranking. Homography discrepancy with threshold ts = 10 is a very tight measure,
as pointed out by the authors of [13] and shown on the Figure 6.6. It means, that
in not very hard conditions, when precise homography is possible to estimate, our
solution is more accurate than other approaches and, thanks to that, makes up
the difference from inaccurate estimations in the presence of significant blur and
occlusion. This is a very important factor, when choosing the algorithm to apply in
practice, when visual reliability is highly required.

(a) 8.05 (b) 85.75 (c) 315.75

Figure 6.6: Examples of discrepancy scores (shown under subfigures) in different
cases. It can be seen, that almost unnoticeable difference in example (a) has the
error equal to 8.05. For slight, but noticeable difference in example (b) the error
takes the value of 85.75, which is high above the threshold ts = 10.

As authors showed in [13], and what can be seen on Figure 6.1, keypoints based
approaches achieved vastly better results than region based trackers. The best on
the average from this group, GPF [11], obtained precision score equal to 0.2883

for tp = 5, what puts it far behind the top trackers. One of the most significant
reasons of this weakness is the fact, that region based trackers relies on transforma-
tion estimated on preceding frame and are unable to perform more global search.
That results in large difficulties in recovery after lost tracking. In comparison, our
approach, which also makes the usage of preceding transformation estimates, is re-
sistant to such behavior because of a robust relocalization technique and thus, can
save much time without performing the global transformation search.

What makes our algorithm the best candidate to be used in practice is its
performance in the unconstrained scenarios and the average result on all sequences.
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One can expect it to behave most robustly in the common environment of the real
life applications. As stated in Section 5.5, our algorithm can be run in real-time on
mid-range hardware, in opposite to the top alternatives like SIFT.



Chapter 7

Conclusions and Further Work

In this thesis we introduce the planar object tracking problem, as well as a theoretical
background for this task. We also discuss existing state-of-the-art field solutions
with a benchmark on which it is possible to evaluate them. Finally, we propose our
approach together with a comparison to previously described algorithms.

Our solution draws from both keypoint-based and region-based methods, com-
bining their strong sides. On the discussed benchmark, which tries to provide sce-
narios from real life cases, our approach outperforms other state-of-the-art methods,
showing best robustness and accuracy. What is more, it is also very efficient, be-
ing able to run in real-time, what is not always the case with the other algorithms.
Presented results prove that our solution is the best candidate to be used in practice.

Besides the algorithm, we also propose a relocalization technique, that, when
applied to region-based approaches, can fill the gap between them and keypoint-
based methods, which is very significant as stated by the authors of [13]. Further
analysis of how much this procedure can improve the results is however beyond the
scope of this work.

Despite being the best among the compared approaches, our algorithm still
can be improved, as shown by the results presented in Chapter 6. The hardest
challenging factor for our, but also all the other algorithms, is motion blur. However,
non of the presented solution, tries to address this problem directly. One could
imagine an additional mechanism able to estimate the blur kernel and utilizing it by
deblurring the video frame or blurring the template image, so that it is more similar
to this on the scene. Such approach could even further strengthen the results of
our semi-region-based method in comparison to the keypoint-based ones, because
on blurred images it is be much harder to detect any keypoints, while our approach
would just compare patches of similarly blurred areas.

Proposed relocalization procedure can be also improved. First of all, instead
of generic object neural network tracker one could use an architecture specialized
for planar objects and trained on such examples. Secondly, convolutional neural
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networks are not covariant to the rotations by definition. In practice one usually
tries to achieve some kind of invariance by data augmentation. In our case however,
it would be possible to provide to the network appropriately rotated video frame,
so that the template recorded on the scene would have similar orientation to the
reference template image. Such approach could increase the number of successful
relocalizations.
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