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Abstract

Algebraic effects gained a lot of traction in the functional programming community
over the last decade. They provide a similar expressive power to monads, while
maintaining a great composability. Efficient implementation of languages with alge-
braic effects is a subject of ongoing research.

In this thesis we present a virtual machine that implements a semantics for
algebraic effects with instances. We also provide a compiler for the Helium language
to the above-mentioned machine. Our implementation significantly improves Helium
performance providing from 4 to 20 times speedup, but most importantly it provides
a convenient test ground for algebraic effects compilation techniques.

W ciągu ostatniej dekady efekty algebraiczne zdobyły dużą popularność w świe-
cie funkcyjnych języków programowania. Zapewniają one podobną moc wyrazu do
monad, zachowując dobrą komponowalność. Obecnie prowadzone są prace nad ich
efektywną implementacją.

W tej pracy przedstawiamy maszynę wirtualną implementującą semantykę efek-
tów algebraicznych z instancjami oraz kompilator języka programowania Helium do
kodu bajtowego wspomnianej maszyny. Nasza implementacja znacząco poprawia
wydajność tego języka, oferując od 4 do 20 razy szybsze wykonywanie programów,
równocześnie zapewniając praktyczne środowisko do testów technik kompilacji efek-
tów algebraicznych.





Szczególne podziękowania dla dr Filipa Sieczkowskiego
za opiekę nad pracą
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Chapter 1

Introduction

Algebraic Effects have been gaining a lot of popularity in the functional program-
ming community over the recent years. They were initially introduced by Plotkin
and Power [1] as a new formalization of effectful computations, and subsequently
extended with a concept of handlers by Plotkin and Pretnar [2]. Later, Bauer and
Pretnar [3] adopted algebraic effects and handlers as a practical way of program-
ming. Thanks to their great composability, they are often viewed as an easier to
use alternative for monads [4, 5]. Even tough distinct algebraic effects compose very
easily, in their basic form it is not possible to combine multiple instances of the same
effect (for example two different mutable memory cells). One of the first approaches
to tackle this problem was implemented in the Eff language in the form of runtime
created instances [3]. However Eff’s instances were a purely dynamic construct and
were not tracked by the type system. Subsequent approaches used row polymorphic
types and recognized correct instances by their positions in the effect row [6, 7, 8].
These solutions, while well-behaved on the theoretical side, suffered in practicality
requiring usage of a lift operation (also called mask or inject). Recent approach by
Biernacki et al. [9] uses named instances bound by handlers and instance functions.
This solution was incorporated in practice in the Helium programming language.
However, up to this time Helium was interpreted in OCaml and lacked an efficient
implementation. In this thesis we introduce the Helium Virtual Machine (HVM)
and a new backend for the existing Helium infrastructure in a form of a compiler to
HVM.

Virtual machines are a popular choice for high level programming language
implementations. They can serve many different purposes and optimize different
aspects of the language or the implementation process itself. They can be a simpler
to implement alternative to a native code compiler like ZINC machine created for
the Caml language [10]. They can provide an efficient runtime for the browser based
applications like WebAssembly does [11]. Virtual machine may be used to implement
scalable and reliable concurrent runtime environments like BEAM machine for the
Erlang language. Finally, virtual machine’s byte code can be used as a portable

11



12 CHAPTER 1. INTRODUCTION

intermediate representation for programs that are later compiled by a just-in-time
compiler (e.g. JVM, .NET).

The Helium Virtual Machine is a stack-based machine implemented in C++. It
provides support for algebraic effects with named instances. We made an unpopular
design decision to use the automatic reference counting for memory management.
We think that this approach significantly simplifies the implementation (which we
believe is an important advantage for an experimental VM that is focused on al-
gebraic effects not memory management) and yet it provides a quite satisfactory
efficiency. Our compiler produces a highly optimized byte code. We put a lot of ef-
fort to clean up the abundance of a purely administrative code (e.g. type functions,
module system, excessive let-bindings), but most importantly we implement a static
optimization of curried functions that preserves the left to right order of evaluating
arguments.

Our machine significantly improves performance of the Helium language (from 4
to 20 times speedup), but first of all it provides a reliable and convenient test ground
for compilation and optimization techniques for algebraic effects (and instances). We
tried to maintain a balance between high and low level concepts in our machine. It
runs flat, instruction based programs, but consists of many handy abstractions like
automatic memory management, closures and builtin support for algebraic effects
with instances. This enables testing compilation techniques in the realistic setting
without hurdles of dealing with low level details and quirks of real CPU architectures.

1.1 Related work

Aside from Helium, there exists a handful of experimental languages with algebraic
effects. Algebraic effects as a practical programming construct were first featured in
the Eff language [3]. Frank explores an interesting design space by eliminating the
handler construct and instead enhances functional abstraction with an effect han-
dling capability [8]. The Effekt language provides a different, lightweight approach
to effect polymorphism, by treating effects as capabilities [12]. It also features a
compiler to Java Script. Koka features a highly efficient compiler to C which uses
the optimized reference counting for memory management [13, 14, 15, 16].

1.2 Structure of this thesis

In the further parts of this thesis we describe our work on the Helium Virtual
Machine and the compiler:

• In Chapter 2 we give a brief practical introduction to algebraic effects and
instances.
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• In Chapter 3 we present a calculus and a formal semantics on which Helium
is based on.

• In Chapter 4 we present extensive description of the virtual machine featuring
description of the instruction set and the implementation details.

• In Chapter 5 we describe our compiler paying particular attention to optimiza-
tions.

• In Chapter 6 we evaluate performance of our machine based on a number of
benchmarks.

• In Chapter 7 we summarize our work and discuss possible improvements and
future work.

The source code of the Helium Virtual Machine can be found at:
https://bitbucket.org/pl-uwr/helium-virtual-machine/src/main

The HVM compiler is integrated into the official Helium implementation:
https://bitbucket.org/pl-uwr/helium/src/master

https://bitbucket.org/pl-uwr/helium-virtual-machine/src/main
https://bitbucket.org/pl-uwr/helium/src/master




Chapter 2

Algebraic Effects

2.1 Introduction to Algebraic Effects

We provide a short practical introduction to algebraic effects using the Helium lan-
guage. The easiest way to get a grasp of algebraic effects is to view them as gen-
eralized resumable exceptions. Thus, let’s start our introduction with the example
that shows how to express the exception handling.

2.1.1 Exceptions

First, we need to declare an effect. To declare the effect we provide a list of all
operations that belong to that effect along with their types. Such effect definition is
called signature. In the listing below we define the effect Exception with one op-
eration throw. The operation takes a String with the error message as an argument
and its return type is polymorphic, to allow us to raise it from any expression.

signature Exception =

| throw : {A : Type}, String => A

To perform the operation we simply call it as if it was an ordinary function.

let safeDiv x y =

if y = 0 then

throw "Division by zero error"

else

x / y

Similarly as we need to wrap exception throwing code with a try ... with block,
we need to surround the effectful code with a handle ... with expression, which
provides semantics for effectful operations. In the example below, if safeDiv uses
the operation throw, we will print the error message. The return clause defines

15



16 CHAPTER 2. ALGEBRAIC EFFECTS

what to do with a result of a handled expression when it is completely evaluated.
In this case we will just print it.

let _ =

let x = readInt () in

let y = readInt () in

handle

safeDiv x y

with

| return r => printInt r

| throw msg => printStr msg

end

2.1.2 Reader

To demonstrate the resumable nature of algebraic effects we will take a look at
the Reader effect. The Reader effect allows us to hide constant dependencies (for
example a configuration) which otherwise had to be passed as arguments. It has
only one operation ask which returns the value of a carried constant.

signature Reader (A : Type) =

| ask : Unit => A

As a simple demonstration of the Reader effect we can use it to carry around the g
(standard gravity) constant while performing physical calculations.

(* computing weight: F = m * g *)

let weight m =

m * ask ()

let _ =

handle

printInt (weight 42)

with

| return x => x

| ask () => resume 10

end

2.1.3 Handlers as values

Handlers are first class values, thus we can avoid repeatedly writing the same han-
dlers, by predefining common handlers or write a function that returns a handler.
We can also omit the return clause if it just trivially returns a result.
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let hReader v = handler

| ask () => resume v

end

let hEarth = hReader 10

let hSun = hReader 274

let _ =

handle

printInt (weight 42)

with hSun

2.1.4 Nondeterminism

What may come as a surprise is the fact that we can resume more than once. In the
example below, for each usage of the flip operation we perform two resumptions
(one that returns True to the caller and one that returns False). Combining this
with a filter function, we can print all sublists of a given list with a few simple
lines of code.

signature Choice (S : Type) =

| flip : Unit => Bool

let _ =

handle

printIntList (filter (fn _ => flip ()) (range 15))

with

| flip () => resume True; resume False

end

2.1.5 State

Expressing state is a bit tricky. However, implementation of the State effect is very
similar to the state monad. Even though the definition of the state effect may be
difficult to understand, a typical programmer does not need to know such details.
As we showed earlier, effects are first class values, thus the definition of a handler
for state can be predefined in the standard library.

signature State (S : Type) =

| put : S => Unit

| get : Unit => S

The handler for the State effect uses closures and their arguments to carry the
memory cell. The first usage of either a get or put operation returns a function as a
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result and exits the handle block. Then, the finally clause is executed and applies
the initial state value to this function. The resumption in its body will evaluate
to another function (which corresponds to the next get or put call or exiting the
handle block through the return clause) and the current state value will be passed
to it.

let hState init = handler

| return x => fn _ => x

| put s => fn _ => resume () s

| get () => fn s => resume s s

| finally f => f init

end

2.1.6 Combining effects

In contrast to monads, algebraic effect compose seamlessly. In the monadic approach
combining two effects would require usage of the monad transformers [17], which
have many drawbacks. First of all, they are hard to comprehend for the beginner
functional programmers. They introduce abundance of lift function (this is a
different lift than previously mentioned one in the context of other approaches to
effect instances) usage and they only allow seamless composition of identical monad
stacks. In the next listing we show how easy it is to combine State and Exception
effects in Helium. All we need to do is to provide handlers for each effect that we
use.

let _ =

let x = readInt () in

handle

handle

put (safeDiv x (get ()))

with

| return () => printInt (get ())

| throw msg => printStr msg

end

with hState 5

2.2 Algebraic Effects with instances

What differentiates Helium from the majority of other languages with algebraic
effects is the fact that we can use multiple instances of the same effect. For example,
using two instances of the State effect we can have two separate, mutable memory
cells. In the example below, the function inc takes an instance i as an argument to
let the compiler know which handler will be handling the effect. As we can see, it is
handled by two different handlers depending on the instance passed during a call.
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let inc `i () =
let n = get `i () in
put `i (n + 1)

let _ =

handle `a in
handle `b in
inc `a ();
inc `b ();
printInt (get `a ());
printInt (get `b ())
with hState 2

with hState 1

It is worth noting that there is still ongoing work on improving and simplifying
programmer experience with instances in Helium. Thus, the syntax presented above
may change in future.





Chapter 3

Language semantics

Giving semantics for the programming language with algebraic effects with named
instances is a non trivial task. The intuitive approach would be to treat handlers as
binders and reduce accordingly. However, this approach leads to reductions under
binders. Furthermore, bound variables can escape their scope and become globally
free. Lets consider the following program: handlea (fun = doa()) with {. . . }. It
reduces in one step to the following term: fun = doa(), in which the variable a
has clearly escaped its context. Moreover, this semantics becomes unsound when
the calculus is extended with universal quantifiers.

To tackle this problem, Helium semantics is based on generative semantics from
Biernacki et al. [9]. Although we do not prove equivalence of programs compiled to
HVM with this semantics, it was a starting point and inspiration for the machine’s
design. It is defined for a minimalistic calculus, which is a stripped down version of
the Helium language.

3.1 Calculus syntax

Calculus syntax is formulated in the A-normal form [18], which is a typical choice
for calculi with algebraic effects. To simplify the definition, each effect has only one
operation called do, which is also not an uncommon formulation.

3.1.1 Values

Term level values are rather standard. Since Helium is a call-by-value language,
variables are also classified as values. The only surprising thing is that there are
three different abstractions. The existence of the type function may seem odd, since
the calculus is untyped. However, the calculus is just an intermediate representation
for the typed language. Thus, type abstractions (Λ e) are necessary for maintain-
ing correct semantics. The instance functions (λ a. e) are used to allow existence

21
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of effectful procedures, because at their definitions we cannot determine to which
handlers they will be bound (they can also be bound to more than one handler,
since they can be used in multiple places in our program).

v ::=

x variable
| () unit
| fun f x. e function
| Λ e type function
| λ a. e instance function

3.1.2 Expressions

Expressions are also not surprising. Since we have three different abstractions,
we also have three different applications. Each do expression is indexed with the
instance variable. Instance variables are bound either by a handle expression or an
instance function.

e ::=

v value
| letx = e in e let
| v v application
| v ∗ type application
| v a instance application
| doa v effect call
| handlea e with {h; r} handle

3.1.3 Handler

Effect handler binds two values: the operation argument and the resumption.

h ::= x, k. e

3.1.4 Return clause

Unsurprisingly, the return clause binds one variable to a result of a corresponding
handle expression.

r ::= x. e

3.2 Generative semantics

The generative semantics generates runtime instances that replace the binders in-
stead of reducing under them. Runtime instances are implemented as freshly gen-
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erated global labels, which ensures that complete programs always reduce closed
expressions. For example, the program handlea (fun = doa()) with {. . . } now
evaluates in two steps. In the first step to: handlel1 (fun = dol1()) with {. . . }.
Finally, in the second step to: fun = dol1(). It may seem that we still have a
variable escaping its lexical scope, namely l1. However, l1 is not a variable, but
a runtime instance in form of a label. Thus, there are no variables escaping their
scope.

3.2.1 Evaluation contexts

We have three kinds of evaluation contexts: empty, let and handle. Let’s take note
that a handle expression creates a context only when the instance variable was
substituted with a label. As we can observe in the reduction rules below, the handle
expression with an instance variable is a redex that evaluates to the same expression
but with a fresh label.

E ::=

� empty
| E[letx = � in e] let
| E[handlel � with {h; r}] handle

3.2.2 Reification contexts

Reification contexts are used to express matching executed do expressions with the
corresponding handlers and creating resumptions.

R ::=

� empty
| letx = R in e let
| handlel R with {h; r} handle

3.2.3 Reduction rules

In Figure 3.1 we present reduction rules of the generative semantics. First four rules
are standard for most call-by-value languages. Rule (5) describes exiting a handle
expression when its subexpression in reduced to a value. This value is bound to
a variable x and the return clause is executed. Rule (6) represents invoking an
operation with a do expression. We search for the corresponding handler and create
the resumption. Then, we enter the handler code with operation argument and
resumption bound to variables x and k. Rule (7) depicts the generation of a fresh
instance label. The final rule expresses the reduction step over an evaluation context.



24 CHAPTER 3. LANGUAGE SEMANTICS

(fun f x. e) v 7→ e{fun f x. e/f}{v/x}
(1)

(Λ e) ∗ 7→ e
(2)

(λ a. e) l 7→ e{l/a}
(3)

letx = v in e 7→ e{v/x}
(4)

handlel v with {h; returnx. e} 7→ e{v/x}
(5)

R = handlel R
′ with {x, k. e; r} free(l, R′)

R[dol v] 7→ e{v/x}{λ z.R[z] / k}
(6)

fresh(l)

E[handlea e with {h; r}] 7→ E[handlel e{l/a} with {h; r}]
(7)

e1 7→ e2

E[e1] 7→ E[e2]
(8)

Figure 3.1: Generative semantics



Chapter 4

Virtual Machine

Helium Virtual Machine is a stack-based machine. Stack-based machines are a
popular choice for a VM architecture. Most notable example from the industry would
include ZINC [10], JVM, WebAssembly [11] or even Ethereum VM [19]. In fact,
register-based machines also use stack for spilling and storing the return addresses
of the called functions. Thus, we believe that a stack based architecture is a good
choice for our needs.

Helium Virtual Machine shares many similarities with the ZINC machine cre-
ated by Xavier Leroy for the CAML light language [10]. However, our implemen-
tation does not feature Push/Enter (nor Eval/Apply) mechanism, which optimizes
usage of curried multi-argument functions [20]. We exclude those mechanisms, be-
cause they can change the order of effects (since Helium is an experimental language
focused on effects, we want to be very strict about their order). Instead, our ma-
chine features multi-argument closures. This way the compiler can make optimized
versions of the fully applied functions and statically decide when it is safe to use
them.

Below we present the semantics of a slightly simplified version of the Helium
Virtual Machine. The program P is represented as a list of instructions. The
machine uses the accumulator a for passing results and arguments. It also features
environment E and two stacks: the argument stack Sa and the return stack Sr.
Finally, the machine configuration consists of the meta stack MS used for algebraic
effects handling.

Let’s start the presentation of the semantics with the two simplest rules. The
Const instruction writes a constant value to the accumulator. The Push instruction
puts the value of the accumulator at the top of the argument stack.

〈Const v : P, a, E, Sa, Sr, MS 〉eval ⇒ 〈P, v, E, Sa, Sr, MS 〉eval

〈Push : P, a, E, Sa, Sr, MS 〉eval ⇒ 〈P, a, E, a : Sa, Sr, MS 〉eval

25
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We use De Bruijn indices to represent variables. Let expression creates a new
variable with a value from the accumulator. The AccessVar instruction transitions
the machine into the var configuration which preforms the environment lookup.

〈Let : P, a, E, Sa, Sr, MS 〉eval ⇒ 〈P, a, a : E, Sa, Sr, MS 〉eval

〈EndLet : P, a, v : E, Sa, Sr, MS 〉eval ⇒ 〈P, a, E, Sa, Sr, MS 〉eval

〈AccessVar k : P, a, E, Sa, Sr, MS 〉eval ⇒ 〈k, E, P, E, Sa, Sr, MS 〉var

When a closure is created, a snapshot of the current environment is taken. The
constructed closure is placed in the accumulator.

〈MakeClosure(arity , P ′) : P, a, E, Sa, Sr, MS 〉eval ⇒

〈P, Closure(arity , E, P ′), E, Sa, Sr, MS 〉eval

The recursive closure is just a syntactic marker that informs a Call instruction that
it has to be handled differently than a normal closure.

〈MakeRecursiveClosure(arity , P ′) : P, a, E, Sa, Sr, MS 〉eval ⇒

〈P, RecClosure(arity , E, P ′), E, Sa, Sr, MS 〉eval

To avoid unnecessary copying of values, primitive operations take their second ar-
gument through the accumulator.

〈Prim⊕ : P, v2, E, v1 : Sa, Sr, MS 〉eval ⇒ 〈P, v1J⊕Kv2, E, Sa, Sr, MS 〉eval

The Call instruction adds a return address to the return stack (comprising of the
current environment and the next instructions). The environment and the instruc-
tions from the called closure are loaded. Afterwards, the machine enters the app
configuration to load the arguments from the argument stack.

〈Call : P, Closure(arity , E′, P ′), E, Sa, Sr, MS 〉eval ⇒

〈arity, P ′, E′, Sa, {P,E} : Sr, MS 〉app

〈Call : P, RecClosure(arity , E′, P ′), E, Sa, Sr, MS 〉eval ⇒

〈arity, P ′, RecClosure(arity , E′, P ′) : E′, Sa, {P,E} : Sr, MS 〉app

〈Return : P, a, E, Sa, {P ′, E′} : Sr, MS 〉eval ⇒ 〈P ′, a, E′, Sa, Sr, MS 〉eval

The Handle instruction generates a fresh instance label. This corresponds to the
rule (7) of the semantics from Chapter 3. The new frame is pushed onto the meta
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stack. It contains the instance label, a handler code, an environment and a stack
with the return address added on top. The EndHandle instruction removes the frame
from the meta stack when the evaluation of the handled expression is finished. This
corresponds to the rule (5) from the generative semantics.

〈Handle(P ′, H) : P, a, E, Sa, Sr, MS 〉eval ⇒

〈P ′, a, i : E, Sa, •, (i, E, H, {P,E} : Sr) : MS 〉eval where fresh(i)

〈EndHandle : P, a, E, Sa, •, (i, E′, H, Sr) : MS 〉eval ⇒

〈P, a, E′, Sa, Sr, MS 〉eval

The argument for the Op instruction is passed through the accumulator. The argu-
ment stack is required to be empty, because it is not captured by a resumption. All
values that need to be preserved have to be added to the environment. The machine
enters the inst configuration to find the corresponding handler instance.

〈Op k : P, a, E, •, Sr, MS 〉eval ⇒ 〈k, E, P, a, E, Sr, MS 〉inst

Since from the programmer’s point of view a resumption is indistinguishable from
a function, the Call instruction is also used for invoking resumptions. The only
argument is passed through the argument stack. Afterwards, the machine enters
the resume configuration to unwind the reified meta stack from the resumption.

〈Call : P, Resume(RMS , E′, P ′), E, v : •, Sr, MS 〉eval ⇒

〈RMS , MS , P ′, E′, v, {P,E} : Sr〉resume

The var configuration performs the environment lookup to find the value assigned
to the variable. When the value is found, the machine enters the eval configuration
and continues the evaluation of the program.

〈0, v : E, P, E′, Sa, Sr, MS 〉var ⇒ 〈P, v, E′, Sa, Sr, MS 〉eval

〈k, v : E, P, E′, Sa, Sr, MS 〉var ⇒ 〈k − 1, E, P, E′, Sa, Sr, MS 〉var

The app configuration moves function arguments from the stack to the closure envi-
ronment. To eliminate the need for an extra buffer, the argument order is reversed.

〈0, P, E, Sa, Sr, MS 〉app ⇒ 〈P, (), E, Sa, Sr, MS 〉eval

〈arity, P, E, v : Sa, Sr, MS 〉app ⇒ 〈arity − 1, P, v : E, Sa, Sr, MS 〉app

The inst configuration performs the environment lookup to find the corresponding
instance label. Afterwards, the machine enters the op configuration.

〈0, i : E, P, a, E′, Sr, MS 〉inst ⇒ 〈i, MS , •, a, P, E′, Sr〉op
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〈k, v : E, P, a, E′, Sr, MS 〉inst ⇒ 〈k − 1, E, P, a, E′, Sr, MS 〉inst

The op configuration searches through the meta stack to find the frame with the
matching instance label. When the frame is found the machine begins evaluating
the handler code.

〈i, (i, E′, H, S′r) : MS , RMS , a, P, E, Sr〉op ⇒

〈H, (), a : Resume((i , E ′, H , Sr ) : RMS , E, P ) : E′, •, S′r, MS 〉eval

〈i, (i′, E′, H, S′r) : MS , RMS , a, P, E, Sr〉op ⇒

〈i, MS , (i′, E′, H, Sr) : RMS , a, P, E, S′r〉op where i 6= i′

The resume configuration takes the reified meta stack and unwinds it frame by frame
onto the current meta stack. When we get to the end of the reified meta stack, the
machine enters the eval configuration (with the resumption argument placed in the
accumulator).

〈(i, E′, H, S′r) : •, MS , P, E, v, Sr〉resume ⇒

〈P, v, E, •, S′r, (i, E′, H, Sr) : MS 〉eval

〈(i, E′, H, S′r) : RMS , MS , P, E, v, Sr〉resume ⇒

〈RMS , (i, E′, H, Sr) : MS , P, E, v, S′r〉resume

As we mentioned at the beginning of this chapter this is a slightly simplified
version of the Helium Virtual Machine. The actual byte code is flat and uses in-
struction pointers and jumps instead of nested subprograms (we chose a structured
syntax for this presentation for the sake of readability). Moreover, the real HVM
uses a more complex approach to recursive closures to allow mutual recursion (more
on this in section 4.1.2). The presented semantics is a selection of most important
and interesting instructions. Our machine also features instructions for creation
of tuples and constructors and supports shallow pattern matching. It also has in-
structions that provide optimized versions of certain often emerging code patterns
(more on this in section 4.2). HVM also provides the extern call mechanism to allow
implementation of input and output.

4.1 Implementation details

Helium Virtual Machine is implemented in C++. We chose C++ over C to take
advantage of the higher level of abstraction and to speed up the development time,
while maintaining efficiency comparable to C. C++ is a popular choice for imple-
mentation of virtual machines, for example Google’s V8 engine for Java Script is
implemented in C++.
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4.1.1 Data structures

Since the environment and the return stack are captured in resumptions (environ-
ments are also captured in closures), we implement them as persistent lists. Im-
mutable data structures enable us to share them instead of copying, which makes
such captures inexpensive. Argument stack is not captured in resumptions, thus it
is represented as std::vector, which enables us to efficiently implement the Push
instruction. Meta stack is also represented as std::vector, because it is never
shared.

4.1.2 Memory management

Helium Virtual Machine uses automatic reference counting (ARC) for memory man-
agement. Reference counting is by far not the most popular design choice. The vast
majority of programming languages uses either a garbage collector or manual mem-
ory management. However, there are some exceptions to this rule that use automatic
reference counting and offer a very competitive results. Most notable examples be-
ing the Swift programming language [21] used in the Apple ecosystem and Koka -
an experimental language with algebraic effects [15, 16].

Our main motivation for using ARC was simplifying the implementation and
speeding up the development process. In the last chapter of this thesis we discuss
possible improvements and different solutions for memory management in HVM.

To make the reference counting work properly we need to ensure that there
are no cycles in the memory graph. All values in Helium are immutable (we have
the State effect to provide the mutable memory cell functionality), hence the only
entities that can create a loop are recursive closures (however, we are able to break
these cycles with weak references). Thus, we are able to make the reference counting
mechanism invisible to the programmer (and also to the compiler’s front-end).

Recursive definitions

Let’s consider a very important detail. Helium allows mutually recursive definitions,
like in the simple example below:

let rec even n =

if n = 0 then True

else odd (n - 1)

and odd n =

if n = 0 then False

else even (n - 1)

This means that we not only need to break a cycle in the memory graph, but also
ensure the same lifetimes of the mutually recursive functions. To accomplish this,
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the actual implementation of the machine, instead of the MakeRecursiveClosure
instruction, features the MakeRecursiveBinding and AccessRecursiveBinding in-
structions. The recursive binding is a container in which we put all functions defined
in the mutually recursive definition and which ensures their equal lifetime. Each
function in the recursive binding has a weak reference to the container. Thus, no
cycle in the memory graph is created.

When the AccessRecursiveBinding instruction extracts the closure from the con-
tainer, the weak reference in that closure is changed into a strong one. This way we
ensure that the recursive binding container will be allocated until it or any closure ex-
tracted from it remains in scope. For instance, if the binding presented in the above
figure is stored in the accumulator, by executing the AccessRecursiveBinding 1
instruction we will get:
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When the closure from the recursive binding is called the reference to the binding
is inserted to the function environment (similarly like the reference to the recursive
closure is inserted to the environment in the simplified machine semantics presented
in the previous section).

4.2 Improving machine’s performance

The biggest drawback of building a virtual machine relying on persistent data struc-
tures is an added overhead related to memory allocations. To minimize negative
performance impact of immutable data structures, we introduce a range of special-
ized instructions that allow us to reduce the number of allocations of stack frames
and environment entries.

4.2.1 Tail call optimization

Optimizing tail calls is a standard practice while compiling functional languages.
Helium Virtual Machine features a TailCall instruction, which saves us from the
necessity of allocating a return address on the stack. A pleasant convenience of the
virtual machine approach is how easy it is to perform the tail call optimization. All
we need to do is to rewrite every Call, Return sequence that we encounter into a
TailCall instruction.

4.2.2 Global definitions

Top level functions and definitions have a static lifetime: they remain allocated for
the entire run time of a program. Quick access to top level functions is crucial.
Consider a large library with dozens of functions. Our approach to represent envi-
ronments as lists is aimed at small local contexts, thus working with large libraries
could introduce noticeable overhead. To prevent that from happening, our virtual
machine allows for allocation of global variables. They are allocated in std::vector,
thus providing a constant time access. Global definitions also improve performance
of recursive functions, since, by declaring them as global, we do not need to pass a
recursive binding while performing a call. A support for global definitions is realized
through the two instructions: CreateGlobal and AccessGlobal.

4.2.3 Specialized arithmetic instructions

Our machine features specialized versions of arithmetic instructions for the situa-
tions when one of the arguments is known at compile time (i.e. AddConst, SubConst,
SubFromConst, etc.). Since the remaining argument is passed through the accumu-
lator, such specialized instruction does not require any stack allocations.
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4.2.4 Specialized call instructions

The standard Call instruction uses the accumulator for storing the called function.
This means that all arguments must be passed through the argument stack. How-
ever, in some scenarios a function could be called without passing it through the
accumulator. For example, when we call a function that is stored in the environ-
ment, we could pass the DeBruijn index of that function as an instruction parameter.
Thus, instead of two instructions: AccessVar 2; Call, we could use one specialized
instruction: CallLocal 2.

We also provide a similar specialized instruction for calling functions stored
as global definitions and instruction for calling closures from recursive bindings
stored in the local environment. For instance, the sequence of three instructions:
AccessVar 2; AccessRecursiveBinding 1; Call, can be rewritten into just one
instruction: CallRecursiveBinding 2 1.

Similarly to specialized versions of arithmetic instructions, this allows us to
pass the last argument of a function through the accumulator and saves us a stack
allocation.
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Compilation

The source for our compilation procedure is the intermediate language called core.
It is an extended version of the calculus shown in Chapter 3. The compilation
process uses two intermediate languages. The first one is called untyped and it is
a simplified version of the core language stripped down from the last traces of the
type system. It features multi-argument functions. It also moves away from the A-
normal form. Moving away from the A-normal form may seem counterintuitive, but
inlining expressions into arguments exactly corresponds to direct stack allocations.
Below, we present syntax of the untyped language:

e ::=

x variable
| () unit
| letx = e in e let
| fun [x∗]. e function
| fun [x∗]. e reducible function
| fix f [x∗]. e recursive function
| e [e∗] application
| doa e effect call
| handlea e with {h; r} handle

h ::= x, k. e

r ::= x. e

The second intermediate representation is the abstract version of the virtual
machine code (similar to the byte code shown in Chapter 4). The actual machine
code is completely flat and instead of nested instructions uses instruction pointers
and jumps. We omit the translation from the abstract to the actual machine code,
since it is trivial and not particularly interesting.

In the next two sections we present the compilation process. First, we describe
the translations between the core, untyped and the abstract machine code. In the
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later section, we describe optimizations performed on the untyped language and the
abstract machine code.

5.1 Translation

5.1.1 From core to untyped

The translation process is in fact just a simple embedding of core into the untyped
language. This means that the produced code is highly suboptimal. In order to
produce efficient code we perform extensive optimizations described in detail in a
later section. The translation preserves the A-normal form of the core language,
thus it keeps the effects order unchanged.

JxKv = x

J()Kv = ()

Jletx = e1 in e2Ke = letx = Je1Ke in Je2Ke

Jdoa vKe = doa JvKv

Jhandlea e with {x, k. eh; y. er}Ke = handlea JeKe with {x, k. JehKe; y. JerKe}

The most interesting part of the translation concerns the treatment of functions. In
the untyped language functions take a list of arguments instead of a single argument.
The single arguments of the core functions are translated into singleton lists. The
multi-argument nature of the untyped closures allows for intuitive embedding of the
type abstractions as zero-argument functions (marked as reducible).

Jfun f x. eKv = fix f [x]. JeKe

JΛ eKv = fun [ ]. JeKe

Jλ a. eKv = fun [a]. JeKe

Similarly to functions, applications in the untyped language pass multiple arguments.
This also enables natural embedding of the type applications as zero-argument calls.

Jv1 v2Ke = Jv1Kv [ Jv2Kv ]

Jv ∗Ke = JvKv [ ]

Jv aKe = JvKv [a]
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5.1.2 From untyped to abstract byte code

The translation from untyped to the abstract machine code is rather unsurprising.
We substitute variables with their corresponding DeBruijn indices. The argument
passing during function calls is performed through the argument stack, thus we need
to insert explicit stack pushes.

J()K = Const 0

JxK = AccessVarDeBruijn(x)

Jletx = e1 in e2K = Je1K; Let; Je2K; EndLet

Jfun [x1, x2, . . . , xn]. eK = MakeClosure(n, JeK)

Jfix f [x1, x2, . . . , xn]. eK = MakeRecursiveClosure(n, JeK)

Jef [e1, e2, . . . , en]K = Je1K; Push; Je2K; Push; . . . ; Push; JenK; Push; Jef K

Jdoa eK = JeK; Op a

Jhandlea e with {x, k. eh; y. er}K =

Handle(JeK; EndHandle; Let; JerK; EndLet; Return,

JehK; Return)

5.2 Optimization

5.2.1 Optimization on the untyped language

The code produced by the translation from the core language is highly suboptimal.
It remains in the A-normal form, thus it features abundance of let expressions which
perform very costly allocations of new variables. To address this problem we perform
an extensive range of optimizations described in the following subsections. Aside
from lambda lifting, which is performed once at the end, all of the later discussed
transformations are iterated multiple times.

Inlining

To move away from the A-normal form, we perform extensive inlining. However,
one must be careful with inlining because it can lead to code size explosion or
performance overheads. Thus, we enforce strict rules to define which expressions
can be inlined:

• Any pure expression that is used exactly once.
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• Any (possibly impure) expression that is used exactly once and inlining it will
not change the effect order. For example, the expression let x = e in doa x
can be safely rewritten to doa e.

• Literals.

• Any reducible function, but only at the call site. For example, let’s assume
that f is a single-argument reducible function. Then, f will be inlined in the
expression f [5], but will not be inlined in the expression let g = f in g.

Beta reduction

We beta-reduce every applied reducible function. The combination of inlining and
beta reduction is able to remove most of the type function embeddings and transform
applications of multi-argument functions.

Transformation of the multi-argument function definitions

To allow transformation of applications of multi-argument curried functions, we
rewrite their definitions. For example, consider the following curried function:

let foo = fun [x]. fun [y]. e1

in ...

The above function foo is rewritten into a reducible wrapper over the two argument
function foo':

let foo' = fun [x, y]. e1 in
let foo = fun [x]. fun [y]. foo' [x, y]
in ...

Too see how the above transformation works in practice let’s consider an example of
the function foo application resembling the code obtained straight from translation
of the core language.

let r = foo [4] in

r [5]

Thanks to the transformation, the function foo can now be inlined.

let r = (fun [x]. fun [y]. foo' [x, y]) [4] in
r [5]

Next, the inlined function is beta reduced.
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let r = (fun [y]. foo' [4, y]) in
r [5]

Another iteration of inlining and beta reduction leaves us with the desired expression
foo' [4, 5].

5.2.2 Specialization

Even though the combination of inlining and beta reduction is able to transform
multi-argument functions in most situations, there are some cases that would remain
untouched. For example, consider the following code which uses the foldl function
over a list. The add function will not be inlined, because it is not applied. The
function add would become applied, if the foldl function was inlined and beta-
reduced. However, according to our rules, the foldl will most likely not be inlined,
since it is not reducible and probably used many times in the program.

let add =

fun [x]. fun [y]. x + y
in

foldl [add, 0, list_of_ints]

To prevent such situations from blocking the optimization, we identify such cases
where a multi- argument reducible function is passed as a first argument (this pattern
matches typical higher order functions like fold, map, filter etc.) and we inline
both applied and passed functions at the call site. Next, we beta-reduce the applied
function (but only substituting the first argument).

Finding functions eligible for reduction

In the core language constructors and operation calls are wrapped in lambda func-
tions to allow their partial application. We scan for such wrappers and mark them
as reducible.

Let hoisting

We hoist the nested let expressions. This simplifies expressions bound to variables
which allows for a greater degree of inlining.

let x =

let y = e1 in e2

in e3
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The above expression is translated into the code below. In the rewritten code the
expression bound to the variable x is simpler, thus it has a greater chance of being
classified as eligible for inlining.

let y = e1 in

let x = e2 in

e3

Eta reduction

We perform the eta reduction on functions and on let-expressions. For example, the
code below will be simplified to just f.

let y =

fun [x]. f x

in y

Removal of unused pure expressions

We remove unused pure expressions bound by lets. We do not treat non termination
as en effect. Hence, it is possible that, on a rare occasion, a pure looping expression
will be deleted. However, the non terminating expression without any effects is most
certainly a programmer error, thus we believe that it can be treated as an undefined
behaviour and removed.

Lambda lifting

At the end of the optimization chain on the untyped language we perform the lambda
lifting. We lift functions that do not have any free variables in their bodies. After
translation to the abstract byte code, lifted expressions are represented as global
definitions.

Correctness of transformations

To ensure correctness of the optimization process, we need to make sure that we do
not change the execution order of effectful expressions. Code before transformations
is in the A-normal form and keeps the same effect order as a corresponding core
program. The inlined expressions are either pure or inlining them keeps the same
effect order. However, one could worry that an unfortunate beta reduction could
change the order of effects. But, thanks to our inlining rules it is impossible to
inline an impure expression as an argument in the function application. Thus, beta
reduction only substitutes parameters with pure expressions or variables.
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5.2.3 Optimization on the abstract byte code

Optimizations on byte code are much simpler in their nature and based on the
recognition of syntactic patterns.

Tail call optimization

Optimizing tail calls is trivial. All we need to do is to rewrite every Call, Return
sequence we encounter to a TailCall instruction. However, this pattern is often
obscured by EndLet instructions. To mitigate this problem we remove every EndLet
placed directly before Return. The removal of EndLet instructions does not disrupt
the correctness of a program because the Return instruction disposes of the whole
current environment. Moreover, even if there is no tail call to be optimized, the
EndLet removal is very useful optimization on its own.

Optimizing accumulator usage

We optimize usage of the accumulator by removing unnecessary reads and pure
overwrites with the same value. For instance, let’s take a look at the following
listing.

Const 5;

Const 5;

Let;

AccessVar 0;

Push;

...

The second Const instruction writes the value 5 to the accumulator, but the accu-
mulator already stores the value 5. The Let instruction does not change the content
of the accumulator, hence the AccessVar 0 instruction is redundant. Thus, the
above code is transformed into the program below.

Const 5;

Let;

Push;

...

Removal of unused let expressions

Similarly to the optimization on the untyped language, we prune unused let expres-
sions. However, we do not remove the bound expression itself, but only the let
binding. Thus, we do not need to take the purity into account.
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Benchmarks

To present capability and efficacy of our virtual machine, we conducted a number of
benchmarks. We divide our tests into two groups. In first one we measure efficiency
of basic operations like arithmetic, function calls, recursion and data structure cre-
ation. In the second group we test the performance of algebraic effects. We present
our benchmark sets in the figures at the end of this chapter. Presented test cases
are written in Helium, for other languages we tried to implement them as close as
possible to these programs. However, we were forced to make some subtle changes
due to technical reasons. For example, for some Python programs we use loops to
simulate tail call optimization (which is not present in CPython) and for some Effekt
programs we use loops to avoid stack overflow. Whenever possible we use library
functions to measure the most realistic performance of the language. We perform
all of our tests on linux (Ubuntu 20) notebook with Intel i5-8265U CPU and 8GB
of RAM.

6.1 Basic performance benchmarks

We compare interpreted Helium, Helium Virtual Machine (the same program as
in the interpreted case, but compiled with our compiler), Python (3.8.10), Haskell
(GHC 8.6.5, compiled with the -O2 flag), Frank (interpreted), Effekt (compiled to
JavaScript) and Koka (compiled to C with the -O3 flag). In Figures from 6.1 to 6.5
we present programs that we use as basic performance benchmarks.

In the table below we present the results of our benchmarks. As we can see our
virtual machine performance sits right in the middle between the interpreted and
compiled languages, being around 10 to 20 times faster than interpreted Helium and
Frank and around 10 to 20 times slower than Haskell and Koka. We can observe
that HVM performs quite comparably to Python (CPython is also implemented as
a byte code interpreter), which we believe is a very satisfactory result for such an
experimental implementation. Moreover, HVM is notably faster than Effekt.
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Language \ Benchmark EvenOdd Fib Foldr Foldl Tree

Helium 4, 419 s 7, 982 s 8, 463 s 5, 759 s 5, 654 s
HVM 0, 187 s 0, 695 s 0, 824 s 0, 498 s 1, 022 s

Python 0, 179 s 1 0, 555 s 0, 103 s 2 0, 103 s 2 4, 416 s
Haskell 0, 009 s 0, 030 s 0, 110 s 0, 042 s 0, 091 s
Frank 15, 364 s 7, 526 s 24, 127 s 25, 047 s 9, 920 s
Effekt 2, 074 s 1, 237 s 2, 473 s 3 2, 473 s 1 1, 618 s
Koka 0, 013 s 0, 037 s 0, 082 s 0, 057 s 0, 046 s

6.2 Effects performance benchmarks

To measure the performance of algebraic effects we run three benchmarks: reader,
state and combination of reader and state. We compare interpreted Helium, Helium
Virtual Machine, Frank, Effekt, Koka and Haskell with Monads and Extensible Ef-
fects library. In Figures from 6.6 to 6.8 we present the set of the effects benchmarks.
Koka and Effekt do not allow capture of resumptions in closures. However, they fea-
ture mutable local variables. Thus, for these languages, we implement the handler
for the state effect using a local mutable variable.

In the table below we present the results of the second group of benchmarks.
Similarly to the first set we can see that Helium Virtual Machine performance sits
in the middle between the interpreted languages and Haskell. However, the gap to
Koka (especially in the State benchmark) is a bit bigger. It is worth noting, that
part of the Koka performance is a result of implementation of the state handler using
a mutable variable. Moreover, Koka features a special syntax to mark tail recursive
handlers and implement them as functions (we use it in our benchmarks because
otherwise program exceeds the call stack limit). Similarly to the first group, HVM
is from 2 to 3 times faster than the Effekt language.

Language \ Benchmark Reader State ReaderState

Helium 3, 584 s 5, 587 s 7, 177 s
HVM 0, 401 s 0, 940 s 1, 352 s

Haskell + Monads4 0, 035 s 0, 177 s 0, 212 s
Haskell + EE5 0, 228 s 0, 190 s 0, 275 s

Frank 11, 060 s 12, 749 s 20, 783 s
Effekt1 1, 738 s 2, 890 s 3, 684 s
Koka 0, 026 s 0, 035 s 0, 075 s

1Using a loop, because of the lack of support for tail call optimization.
2Using reduce.
3Using a loop, because of the call stack limit.
4Using Control.Monad.Reader and Control.Monad.State.
5Using Control.Eff.Reader.Lazy and Control.Eff.State.Lazy.
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let rec even n =

if n = 0 then True

else odd (n - 1)

and odd n =

if n = 0 then False

else even (n - 1)

let _ = even 4222223

Figure 6.1: EvenOdd - Mutual re-
cursion of two simple functions.

let rec fib n =

if n < 2 then

n

else

fib (n - 1) +

fib (n - 2)

let _ = printInt (fib 32)

Figure 6.2: Fib - calculating fibonacci
numbers with the recursive definition.

let _ =

printInt

(foldr (+) 0

(range 1000000))

Figure 6.3: Foldr - Sum of the list
elements using foldr.

let _ =

printInt

(foldl (+) 0

(range 1000000))

Figure 6.4: Foldl - Sum of the list
elements using foldl.

data rec Tree =

| Leaf

| Node of Tree, Tree

let rec mkTree n =

if n = 0 then Leaf

else

Node (mkTree (n - 1)) (mkTree (n - 1))

let rec count t =

match t with

| Leaf => 0

| Node l r => 1 + count l + count r

end

let _ = printInt (count (mkTree 20))

Figure 6.5: Tree - Creation and traversal of the full and complete binary tree.
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let rec benchmark `a n acc =
if n = 0 then acc

else

benchmark (n - 1)

(acc + ask())

let _ =

handle

printInt

(benchmark 1000000 42)

with

| ask () => resume 1

end

Figure 6.6: Reader - reader effect
benchmark.

let rec benchmark `a n =
if n = 0 then get ()

else

(let _ =

put (get () + 1) in

benchmark (n - 1))

let _ =

printInt (

handle

benchmark 1000000

with hState 42)

Figure 6.7: State - state effect bench-
mark.

let rec benchmark `a `b n =
if n = 0 then get `a ()
else

(let _ = put `a (get `a () + ask `b ()) in
benchmark `a `b (n - 1))

let _ =

printInt (

handle `r in
handle `s in
benchmark `s `r 1000000
with hState 42

with

| ask () => resume 2

end)

Figure 6.8: ReaderState - benchmark of combining the reader and state effects.
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Discussion and future work

We believe that the virtual machine and the compiler are a valuable contribution into
the Helium project. HVM significantly improves the performance of the language.
We achieve efficiency similar to Python which we think is a very satisfactory result for
an experimental VM with such a simple memory management model. Our compiler
produces highly optimized output comparable in performance to a hand written byte
code. We believe that it could be a good starting point for native code compiler
and that lessons learned through the work on our implementation could prove very
useful for the further development of the Helium language.

We think that further work on this project could produce another valuable
contributions to the Helium language. Thus, in the next sections we present our
ideas for improvements and future work.

7.1 Register machine

We decided to use a stack-based machine to simplify the compilation process by
avoiding the register coloring. However, a register-based machine could be a great
middle point on a path towards the native code compiler. Nevertheless, register-
based architectures use stack for spilling and storing the return addresses, thus we
think that our machine could be a good starting point for such development.

7.2 More advanced memory management

We chose the automatic reference counting for memory management to simplify and
speed up the implementation process. Hence, it could be worth investigating more
complex solutions to that problem.
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7.2.1 Garbage collector

Garbage collectors are a standard approach to memory management in functional
and object oriented programming languages. We could either implement our own
GC or try to incorporate an existing collector for C/C++ like Google’s Oilpan used
in V8 [22].

7.2.2 Optimized reference counting

Koka uses the optimized reference counting algorithm called Perceus [15, 16]. It
features a sophisticated reuse analysis and allows in-place updates at runtime, which
enables implementing in-place algorithms in a purely functional way. Moreover, it
offers a very competitive performance. We believe that including a similar technique
in Helium Virtual Machine could prove very beneficial and possibly more efficient
than a traditional garbage collector.

7.3 Loading extern calls from Dynamic-link libraries

One of the most important factors deciding about the success of a programming
language are libraries and frameworks. Loading extern calls from DLLs would allow
to easily create bindings for popular libraries. Algebraic effects still mostly remain a
research subject (especially new concepts like instances), thus design patterns, best
practices and guidelines for them are yet to be formulated. Providing a tooling for
easy library creation, could help to test algebraic effects in many practical scenarios.

7.4 Optimizations of algebraic effects

At the moment we do not perform any algebraic effects specific optimizations. We
think that this is an area with a lot potential for experiments and improvements.
For example, we could detect the tail resumptive handlers with the instance binding
known at the compile time and replace them with the ordinary functions.
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