
An improved algorithm for finding
the shortest synchronizing words

(Ulepszony algorytm znajdujący
najkrótsze słowa synchronizujące)

Adam Zyzik

Praca licencjacka

Promotor: dr Marek Szykuła

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

11 lutego 2022

Abstract

A synchronizing word of a deterministic finite automaton is a word whose action
maps every state to a single one. Finding a short or a shortest synchronizing word is
a central computational problem in the theory of synchronizing automata. It is also
applied in areas such as model-based testing and the theory of codes. Because the
problem of finding a shortest synchronizing word is computationally hard, among
exact algorithms only exponential ones are known. There also exist polynomial
heuristics designed in the hope of finding relatively short reset words in practice. In
this thesis, we redesign and improve the best known exact algorithm. This is ob-
tained with a combination of new algorithmic and technical enhancements. Next, we
develop a general computational package devoted to the problem, where an efficient
and practical implementation of our algorithm is included, together with several well-
known heuristics. The package supports just-in-time compilation, multithreaded and
GPU computing, and configurable computation plans. Our experiments show that
the new algorithm is multiple times faster than the previously fastest one and its
advantage quickly grows with the hardness of the problem instance. Given a mod-
est time limit, we could compute the lengths of the shortest reset words for random
binary automata up to 500 states, significantly beating the previous record.

Słowem synchronizującym deterministyczny automat skończony nazywamy takie
słowo, którego działanie przenosi wszystkie stany do jednego ustalonego. Znajdowa-
nie krótkiego lub najkrótszego słowa synchronizującego jest centralnym problemem
obliczeniowym w teorii automatów synchronizowalnych. Ma także zastosowania w
innych obszarach, takich jak testowanie bazujące na modelach i teoria kodów. Ponie-
waż problem znalezienia najkrótszego słowa synchronizującego jest trudny oblicze-
niowo, spośród algorytmów dokładnych znane są tylko wykładnicze. Istnieją również
wielomianowe heurystki projektowane w nadziei na znajdowanie relatywnie krótkich
słów w praktyce. W tej pracy ulepszamy najlepszy znany dotąd algorytm dokładny.
Wykorzystujemy w tym celu kombinację nowych algorytmicznych i technicznych
usprawnień. Następnie tworzymy ogólny pakiet obliczeniowy poświęcony temu pro-
blemowi, zawierający efektywną i praktyczną implementację naszego algorytmu wraz
kilkoma znanymi algorytmami heurystycznymi. Pakiet wspiera kompilację just-in-
time, obliczenia wielowątkowe i na GPU, oraz konfigurowalne plany obliczeniowe.
Nasze eksperymenty pokazują, że nowy algorytm jest wielokrotnie szybszy od naj-
szybszego dotychczas znanego algorytmu, a jego przewaga rośnie wraz z trudnością
instancji problemu. Zakładając dosyć mały limit czasowy, byliśmy w stanie obliczyć
długości najkrótszych słów synchronizujących dla losowych automatów binarnych
mających do 500 stanów, znacznie pokonując poprzedni rekord.

Contents

1 Introduction 7

1.1 Theoretical developments . 7

1.2 Synchronization in applications . 8

1.3 Algorithms finding reset words . 8

1.3.1 Exact algorithms . 9

1.3.2 Heuristic algorithms . 9

1.4 Contribution . 10

2 The new exact algorithm 11

2.1 Overview . 11

2.2 Bidirectional breadth-first search . 13

2.3 Subset checking . 14

2.4 Step cost estimation . 15

2.5 Depth-first search . 18

2.5.1 Static radix trie . 18

2.5.2 DFS . 19

3 Implementation 21

3.1 Hot spots . 21

3.1.1 The subset data structure . 21

3.1.2 Computing images and preimages of subsets 22

3.1.3 MarkSupersets . 23

3.1.4 Static radix trie . 24

5

6 CONTENTS

3.1.5 Sorting and removal of duplicates 25

3.2 Just-in-time compilation . 26

3.3 Computational plans . 28

3.4 Adding new algorithms . 29

4 Experiments 33

4.1 Setup . 33

4.1.1 Hardware and software . 33

4.1.2 The setup . 33

4.2 Comparison with the previous algorithm 34

4.3 Testing large automata . 34

5 Conclusions 41

Bibliography 43

6 Appendix: User guide 47

6.1 Installation . 47

6.2 Usage . 47

6.3 Example run . 48

6.4 Configuration files . 49

6.4.1 Global parameters . 49

6.4.2 Algorithms . 50

Chapter 1

Introduction

A deterministic finite complete semi-automaton (called simply an automaton) is
a 3-tuple (Q,Σ, δ), where Q is a finite set of states, Σ is an input alphabet, and
δ : Q × Σ → Q is the transition function. The transition function is naturally
extended to a function Q×Σ∗ → Q. By n we denote the number of states in Q and
by k we denote the size of the input alphabet |Σ|.

A word is reset (or synchronizing) if |δ(Q,w)| = 1; in other words, for every
two states p, q ∈ Q we have δ(q, w) = δ(p, q). An automaton that admits a reset
word is called synchronizing. Then, its reset threshold is the length of the shortest
reset words.

The classical synchronization problem is, for a given automaton, to find a reset
word. Preferably, this word should be as short as possible. Therefore, the main
property of a synchronizing automaton is its reset threshold.

Synchronizing automata and the synchronization problem are known for both
their interesting theoretical properties and practical applications.

1.1 Theoretical developments

On the theoretical side, there is a famous long-standing open problem from 1969
[36] called the Černý conjecture (see an old [36] and a recent survey [14]). It claims
that the reset threshold is at most (n− 1)2. If true, the bound would be tight [6].

Until 2017, the best known upper bound on the reset threshold was (n3 −
n)/6−1 ∼ 0.1666 . . . n3+O(n2) (n ≥ 4) [21] by the well-known Frankl-Pin’s bound.
The current best known upper bound is ∼ 0.1654n3 + o(n3) by Shitov [30], which
was obtained by refining the previous improvement ∼ 0.1664n3 +O(n2) by Szykuła
[32]. Apart from that, better bounds were obtained for many special subclasses of
automata and several new results around the topic appear every year. Recently,
a special journal issue was dedicated to the problem [37] for the occasion of the

7

8 CHAPTER 1. INTRODUCTION

50th anniversary of the problem. Synchronizing automata are also applied in other
theoretical areas, e.g., matrix theory [10], theory of codes [5], Markov processes [35].

Reset thresholds were also studied for the average case. Berlinkov has shown
that a random binary automaton is synchronizing with high probability [3]. More-
over, Nicaud has shown that an automaton with high probability has a reset thresh-
old in O(n log3 n) [19]. Based on that, the upper bound O(n3/2+o(1)) on the expected
reset threshold of a random binary automaton has been obtained [2]. These stud-
ies were accompanied by experiments, and the best estimation obtained so far is
2.5
√
n− 5 [15, 16].

1.2 Synchronization in applications

Apart from being a theoretical problem, the synchronization problem can be applied
in practical areas, e.g., testing of reactive systems [24, 27], networks [13], robotics
[1], and codes [11].

In more detail, automata are frequently used to model the behavior of systems,
devices, circuits, etc. The idea of synchronization is natural: we aim to restore con-
trol over a device whose current state is not known. For instance, for digital circuits,
where we need to test the conformance of the system according to its model, each
test is an input word and before we run the next one, we need to restart the device.
In another setting, the observer wants to eventually learn the current state of the
automaton by observing the input; once a reset word appears, the state is revealed.
See a survey [27] explaining synchronizing sequences and their generalization to au-
tomata with output: homing sequences, which are used to determine the (hidden)
current state of an automaton.

Another particular application comes from the theory of codes, where finite
automata act as decoders of a compressed input. Synchronizing words can make a
code resistant to errors, since if an error occurs, after reading such a word decoding
is certainly restored to the correct path. See a book for the role of synchronization
in the theory of codes [5] and recent works [4] explaining synchronization applied to
prefix codes.

1.3 Algorithms finding reset words

The problem of finding a short or a shortest reset word is central for both theory
and practice. Obviously, it is better to have reset words as short as possible.

Unfortunately, determining the reset threshold is computationally hard. The
decision problem is NP-complete [7] and remains hard even for such a restrictive class
as binary Eulerian automata [38]. The functional problems of computing the length

1.3. ALGORITHMS FINDING RESET WORDS 9

and a shortest reset word are respectively FPNP[log]-complete and FPNP-complete
[20]. Moreover, approximating the reset threshold is hard even for approximation
factors in O(n1−ε), for every ε > 0 [8]. This inapproximatibility also holds for
subclasses related to recognizing prefix codes [26]. On the other hand, there exists
a simple general O(n)-approximating algorithm [9].

Therefore, either exponential exact algorithms are used or polynomial heuristics
that hopefully find a relatively short reset word in typical cases.

1.3.1 Exact algorithms

Exact algorithms can be used for automata that are not too large. They also play
an important role in testing heuristics, providing the baseline for comparison (e.g.,
[25]).

The standard algorithm, e.g., [18, 27, 34], for computing a shortest reset word
is finding a path in the power automaton (whose set of states is 2Q \ ∅) from Q to a
singleton. It requires O(2n) space, which is acceptable only up to very small n ∼ 30.

Alternative approaches include utilizing SAT solvers [31] by suitable reductions.
This was also recently tried for partial deterministic finite automata [29]. In the
reported results, solutions based on SAT solvers reach random binary automata
with about 100 states.

Nevertheless, the fastest known algorithm was based on a bidirectional search of
the power automaton, equipped with several enhancements [15, 16]. This algorithm
was able to deal with binary random automata up to 350 states. Despite several
attempts, no faster solutions were developed and the algorithm was not improved
until now.

1.3.2 Heuristic algorithms

The most classic algorithm is Eppstein’s one [7]. It works in O(n3+n2k) time, where
n is the number of states and k is the size of the alphabet, and finds a reset word of
length at most (n6 − n)/3 (due to the Frankl-Pin’s bound). Several improvements
were proposed, e.g., Cycle, SynchroP, and SynchroPL algorithms [18, 34], which do
not improve guarantees but behave better in experimental settings.

Recent works also involve attempts to speed-up heuristics by adapting to par-
allel and GPU computation [28, 33].

A remarkable heuristic is the beam algorithm based on inverse BFS ([25, CutOff-
IBFS]), which significantly beats other algorithms based on the forward search (yet,
curiously, it does not provide any worst-case guarantees and it may not find any
reset word at all).

10 CHAPTER 1. INTRODUCTION

Alternative approaches involve, e.g., hierarchical classifier [23], genetic algo-
rithms [17], and machine learning approaches [22].

1.4 Contribution

We reinvestigate the best known exact and heuristic algorithms and provide their
effective implementation.

We take the almost 10-years old exact algorithm based on bidirectional search
[15, 16] and significantly improve it. We develop a series of algorithmic enhance-
ments involving better data structures, decision mechanisms, and reduction pro-
cedures. Additionally, the remodeled algorithm is adapted for effective usage of
multithreading and GPU utilization, which was difficult in the original version due
to large shared data structures.

In the implementational part, we provide an open computational package con-
taining the new exact algorithm as well as several polynomial heuristics. We apply
a series of technical optimizations in order to maximize efficiency. The package is
written in C++17, uses just-in-time (JIT) compilation, and can be easily extended
with new algorithms. We apply original solutions as configurable JIT computation
plans.

Altogether, we obtain a significant speed-up and decrease the memory require-
ments. In the experimental chapter, we compute the reset thresholds of binary
random automata up to 500 states.

Chapter 2

The new exact algorithm

2.1 Overview

The algorithm is based on the former best exact algorithm [15, 16]. While the new
version differs in the choice of data structures and subprocedures, at high level it
is similar and uses two main phases – bidirectional breadth-first search and then
inverse depth-first search in the power automaton. We start with a few auxiliary
definitions.

Definition 2.1. Given a subset S ⊆ Q, the image of S under the action of a word
w ∈ Σ∗ is δ(S,w) = {δ(q, w) | q ∈ S}. The preimage of S under the action of w is
δ−1(S,w) = {q ∈ Q | δ(q, w) ∈ S}.

Definition 2.2. The power automaton of A = (Q,Σ, δ) is the automaton P(A) =

(P(Q),Σ, δ′), where δ′(X, a) = δ(X, a) (the image of X under the action of a), for
all X ⊆ Q, a ∈ Σ.

Figure 2.1 shows an example of the power automaton of the Černý automaton
[6] with 4 states.

The input to the algorithm is an automaton A = (Q,Σ, δ) with n states and
k input letters. In the first step, we check if A is synchronizing and get an upper
bound on the reset threshold by using the polynomial-time Eppstein algorithm [7].
We then try to strengthen this bound with various polynomial-time heuristics, as it
may help the main procedure make better decisions. Next, we proceed to the main
part.

The key idea is to simultaneously run a breadth-first search (BFS) starting from
the setQ and computing images, together with an inverse breadth-first search (IBFS)
starting from all of the singletons and computing preimages. While both algorithms
on their own require computation of at most kr or at most nkr sets, respectively,
where r is the reset threshold, combining them lets us compute no more than nkr/2

sets, provided that we can somehow test if the searches have met. To do this, we need

11

12 CHAPTER 2. THE NEW EXACT ALGORITHM

0 1

23

b

a

a

a

a

b

bb

03

01 12

23

02 13 b

b b a

a

a

a

a

b

b

b

a

012 013

123 0230123

a b

b

a

b

aa

a

b
b

Figure 2.1: The power automaton of C4. The shortest reset word is abbbaaaab.

to check if there exists a pair X, Y of sets, belonging respectively to the BFS and
IBFS lists, such that X ⊆ Y . Due to the Orthogonal Vectors Conjecture 1 [12], there
is probably no subquadratic solution to this problem (we can reduce our problem to
OV by transforming the sets in Y to their complements and then represent all the
sets as their characteristic vectors). Nevertheless, we employ a procedure that works
well in practice. This procedure is also used to reduce the number of sets on the lists
during the searches, which effectively lowers the branching factor. Finally, we do
not actually run the two searches until they meet. Instead, we switch to the second
phase with DFS, when either the memory runs out or we calculate that it should be
faster based on the upper bound from the heuristics and collected statistics.

Our improved algorithm uses the same high-level ideas, but we design it so that
it is possible to solve the problem for significantly larger automata. First, we use
different data structures and redesign how a single iteration of BFS / IBFS works.
Apart from making the bidirectional-search phase faster, it allows it to complete
more iterations before switching to the depth-first search, due to the lower memory
consumption, which is crucial in case of large automata. In the DFS phase, we
enhance the previously used radix trie data structure in terms of both efficiency and
memory overhead. We also add some forms of list reductions, which decrease the
branching factor. The decision making part of the algorithm is also improved and
we use five types of steps. The profits of making a decision such as transitioning to
the DFS phase or reducing the lists are now estimated using new and more advanced
equations. Finally, every part of the new algorithm can be parallelized in one way
or the other, which was not possible before.

1The Orthogonal Vectors problem gives two sets A, B of boolean vectors of the same length and
asks if there exists a pair (u ∈ A, v ∈ B) such that u and v are orthogonal, i.e., u · v = 0.

2.2. BIDIRECTIONAL BREADTH-FIRST SEARCH 13

In the next sections we provide a more thorough description of the exact algo-
rithm. For the sake of brevity, we describe a version that only calculates the reset
threshold. The algorithm can be trivially modified to also return the reset word
by storing pointers to predecessors along the sets, although then either time or the
memory footprint is slightly increased.

2.2 Bidirectional breadth-first search

The main part of the algorithm consists of running the two breadth-first searches
in P(A). The BFS starts with a list LBFS containing just the set Q. When the
search starts a new iteration, LBFS is replaced with {δ(S, a) | S ∈ LBFS , a ∈ Σ}.
Conversely, LIBFS is initialized with all the singletons and the list is replaced with
{δ−1(S,w) | S ∈ LIBFS , w ∈ Σ}.

We say that the two searches meet if there exist X ∈ LBFS and Y ∈ LIBFS

for which X ⊆ Y holds. Indeed, then we know that there are words x, y ∈ Σ∗ such
that X = δ(Q, x) and Y = δ−1({q}, y) for some q ∈ Q. Because X ⊆ Y , we get
δ(Q, xy) = {q}, which means that xy is a reset word. The meet condition implies
that the lists can be reduced by removing the elements which are not minimal (and
respectively maximal for IBFS) with respect to inclusion. We can reduce the lists
further by ensuring that no new set is a superset (subset for IBFS) of a set belonging
to some list from any previous iteration. To make this possible, we keep track of
all the visited sets in two additional history lists HBFS , HIBFS . This reduction,
although usually helpful during most of the iterations, at the end may turn out to
be unprofitable, in which case the algorithm will drop the history list(s).

The subprocedure used to check the meet condition and reduce the lists differs
between our algorithm and the original. In [15, 16], the lists were kept as dynamic
radix tries, supporting insertion and subset (or superset) checking operations. Here,
instead, we take a somewhat simpler approach and operate directly on the lists,
stored as random access containers, such as vectors in C++. We call this subpro-
cedure MarkSupersets(A,B) (and a similar one – MarkProperSupersets(A,B)). It
returns which sets from B are a superset of at least one set in A. The subprocedure
is described in detail in the next section.

Algorithm 1 shows the pseudocode of the bidirectional-search phase of the al-
gorithm.

14 CHAPTER 2. THE NEW EXACT ALGORITHM

Algorithm 1 Bidirectional breadth-first search.
Input: A synchronizing automaton A = (Q,Σ, δ) with n = |Q| states and k = |Σ|
input letters. An upper bound R on the reset threshold.

Output: Reset threshold r.
1: LBFS , HBFS ← {Q}
2: LIBFS , HIBFS ← {{q} | q ∈ Q}
3: for r from 1 to R− 1 do
4: switch CalculateBestStep() do
5: case BFS
6: if HBFS has grown significantly since last reduction then
7: Delete non-minimal subsets from HBFS (MarkProperSupersets)
8: end if
9: LBFS ← CalculateImages(LBFS)
10: Delete non-minimal subsets from LBFS (MarkProperSupersets)
11: Delete supersets of HBFS from LBFS (MarkSupersets)
12: HBFS ← HBFS ∪ LBFS

13: case BFS (without history)
14: LBFS ← CalculateImages(LBFS)
15: Delete non-minimal subsets from LBFS (MarkProperSupersets)

16: case IBFS
17: ... ▷ Analogous to BFS

18: case IBFS (without history)
19: ... ▷ Analogous to BFS (without history)

20: case DFS
21: DFS (BuildStaticTrie(LBFS , LIBFS , r, R))
22: return R ▷ DFS sets R← the reset threshold
23: if MarkSupersets(LBFS , LIBFS) contains at least one true then
24: return r

25: end if
26: end for
27: return R

2.3 Subset checking

The procedure MarkSupersets takes lists A, B and returns a boolean list S of the
same size as B, where S[i] = true ⇐⇒ ∃j A[j] ⊆ B[i]. The sets are treated like
binary strings (their characteristic vectors) of length n and the procedure simulates
building a radix trie over them on the fly. We require that A is sorted and its
elements are unique. This can be guaranteed relatively cheaply and it gives us the
property that every subtree in the trie built over the elements of A corresponds to
a contiguous segment on the list.

2.4. STEP COST ESTIMATION 15

Algorithm 2 Recursive procedure MarkSupersets

Input: Sorted lists A and B with unique elements. Current depth of recursion d (0
for the initial call).

1: if |A| < MIN then ▷ Brute-force for small |A|
2: Check each pair in A×B and update S.
3: end if
4: A0, A1 ← A split by the d-th bit ▷ A is sorted, so a binary search suffices
5: MarkSupersets(A0, B)
6: B1 ← Unmarked elements from B that have d-th bit set to one ▷ Linear time
scan

7: MarkSupersets(A1, B1)

MarkSupersets is used to reduce the BFS lists and to check the meet condi-
tion. To implement the MarkSubsets procedure needed on the IBFS side, we simply
convert the sets to their complements and call MarkSupersets.

2.4 Step cost estimation

As the algorithm progresses, some steps may become unprofitable. The history lists,
though helpful at the beginning, increase memory usage and cause a slow down if
used in late iterations. Similarly, list reductions via MarkSupersets decrease the
branching factor, but they are not that crucial when the search is approaching the
reset threshold upper bound.

We distinguish five types of steps from which the algorithm always chooses one
for the next iteration – DFS, BFS, IBFS, BFS without the history list (denoted by
BFS) and IBFS without the history list (denoted by IBFS). To assess which option
to choose, we roughly estimate the number of subset checking operations each of
them will require. We reuse some of the equations used in [16]. Using simplifying
assumptions about the uniform distribution of the states in sets and their ExpNvn
equation, we bound the expected number of subset checking operations in a call to
MarkSupersets with lists of sizes As, Bs and their densities:

density(A) =

∑
Q∈A |Q|
n|A|

equal to Ad, Bd, with an equation

ExpMark(As, Bs, Ad, Bd) =

=Bs

(1 +Bd

Bd
+

1

Ad −AdBd

)
A

logw(1+Bd)
s ,

16 CHAPTER 2. THE NEW EXACT ALGORITHM

where

w =
1 +Bd

1 +AdBd −Ad
.

To estimate the sizes of the lists after (and in between) the reductions, we store the
ratio rt of reduced sets in the previous iterations for each type of reduction t. We
use the following equations to calculate the expected costs of single iterations of the
bidirectional-search options.

BFScost = ExpMark(K · (1− r1) · |LBFS |, K · (1− r1) · |LBFS |,
density(LBFS), density(LBFS))

+ExpMark(|HBFS |, K · (1− r1) · (1− r2) · |LBFS |,
density(HBFS), density(LBFS))

+ExpMark(K · (1− r1) · (1− r2) · (1− r3) · |LBFS |, |LIBFS |,
density(LBFS), density(LIBFS)),

where r1, r2, r3 are the reduced sets ratios of respectively the removal of duplicates,
the removal of non-minimal subsets and the reduction by history list.

BFScost = ExpMark(K · (1− r1) · |LBFS |, K · (1− r1) · |LBFS |,
density(LBFS), density(LBFS))

+ExpMark(K · (1− r1) · (1− r2) · |LBFS |, |LIBFS |,
density(LBFS), density(LIBFS)),

where r1, r2 are the reduced sets ratios of respectively the removal of duplicates and
the removal of non-minimal subsets.

IBFScost = ExpMark(K · (1− r1) · |LIBFS |, K · (1− r1) · |LIBFS |,
1− density(LIBFS), 1− density(LIBFS))

+ExpMark(|HIBFS |, K · (1− r1) · (1− r2) · |LIBFS |,
1− density(HIBFS), 1− density(LIBFS))

+ExpMark(|LBFS |, K · (1− r1) · (1− r2) · (1− r3) · |LIBFS |,
density(LBFS), density(LIBFS)),

for r1, r2, r3 same as in BFScost .

IBFScost = ExpMark(K · (1− r1) · |LIBFS |, K · (1− r1) · |LIBFS |,
1− density(LIBFS), 1− density(LIBFS))

+ExpMark(|LBFS |, K · (1− r1) · (1− r2) · |LIBFS |,
density(LBFS), density(LIBFS)),

2.4. STEP COST ESTIMATION 17

for r1, r2 same as in BFScost .

Additionally, if we cannot perform some step because there is not enough mem-
ory, we set its expected cost to ∞. Once we choose BFS, we no longer consider the
BFS step, so in this case we also set its cost to ∞ (this is symmetrical for IBFS and
IBFS).

Then we try to predict the full costs of choosing these steps by estimating the
number of operations under the assumption that the algorithm will transition into
the depth-first search phase one iteration later (or in the current iteration in the
case of the DFS option). First, we calculate the expected branching factor in the
DFS phase

F = K · (1− r1),

where r1 is the ratio of duplicates removed in the IBFS list during the latest reduction
(since the DFS also removes duplicates). We assume that the reset threshold is equal
to the known upper bound and from that, we get the expected number of iterations
that still need to be done, which we denote by I . The predicted full costs of each
option are as follows:

DFSpred = F · F
I − 1

F − 1

·ExpMark(|LBFS |, |LIBFS |,
density(LBFS), density(LIBFS))

BFSpred = BFScost + F · F
(I−1) − 1

F − 1

·ExpMark(K · (1− r1) · (1− r2) · (1− r3) · |LBFS |, |LIBFS |,
density(LBFS), density(LIBFS))

BFSpred = BFScost + F · F
(I−1) − 1

F − 1

·ExpMark(K · (1− r1) · (1− r2) · |LBFS |, |LIBFS |,
density(LBFS), density(LIBFS))

IBFSpred = IBFScost +
F (I−1) − 1

F − 1

·ExpMark(|LBFS |, K · (1− r1) · (1− r2) · (1− r3) · |LIBFS |,
density(LBFS), density(LIBFS))

IBFSpred = IBFScost + F · F
(I−1) − 1

F − 1

·ExpMark(|LBFS |, K · (1− r1) · (1− r2) · |LIBFS |,
density(LBFS), density(LIBFS))

18 CHAPTER 2. THE NEW EXACT ALGORITHM

Finally, the step with the lowest predicted full cost is chosen. As an exception to
that rule, if we do not expect to switch into the DFS phase soon, instead of comparing
the prediction costs of every choice, we consider only the BFS and IBFS costs. In
this case, we greedily choose the one with the lower single-step cost, which makes
the bidirectional-search more balanced and faster in the short term (as otherwise,
BFS is strongly preferred due to the assumption that the rest of the steps will be
DFS).

2.5 Depth-first search

In the second phase, the algorithm switches to an inverse depth-first search, which
allows to stay within the memory limit by adjusting the maximum list size. During
this phase, the steps are taken only on the IBFS side. The fact that the BFS list no
longer changes allows the meet condition check to be optimized.

2.5.1 Static radix trie

The LBFS list is stored in an optimized data structure that supports the ContainsSubset
operation. It is based on a radix trie, in which the characteristic vectors of the sets
are stored. The queries rely on traversing the tree and, in each step, descending to
either both children or just the left (zero) child, depending on the queried set. In
this way, we can omit checking the queried set with many sets stored in the trie,
especially if its cardinality is low. Figure 2.2 shows an example.

10

0 1

0 1 0 1 0 1 0 1

0 1

Figure 2.2: Possible traversal of the radix trie during a call to ContainsSubset(010 ...)

Our trie can be built in time O(|LBFS |N2), and it contains the following en-
hancements that additionally speed up the queries.

Dynamic state ordering

In each node at a depth d, instead of splitting the subtrees by the d-th state as in a
regular radix trie, we split by a state x chosen specifically for the node. The state x
is chosen so that the number of sets stored in the current subtree that also contain x

2.5. DEPTH-FIRST SEARCH 19

is the largest possible. In practice, this makes the queries faster, because in vertices
such that x does not belong to the queried set, a large number of sets is immediately
skipped.

This optimization also implies path compression, as we do not have nodes which
do not split the sets into two non-empty parts. To ensure this, we also exclude the
case that x is contained in all the sets and do not use it as a division state.

Leaf threshold

For a fixed constant parameter MIN , when the number of sets in a subtree is less
or equal to MIN , we store them all in one vertex and do not recurse further. This
does not increase running time and lowers the memory overhead. Technically, we
can already store the sets in a node if its left (zero) subtree contains at most MIN

sets, which avoids creating an additional node.

Mask and size elimination

Every node v stores the intersection of the sets contained in its subtree Uv and the
minimal size of a set in this subtree mv. When we query for subsets of a set X, if
Uv ⊆ X or mv ≤ |X| does not hold, we do not recurse into the subtree of v.

This enhancement was also used in the original algorithm, but without the Leaf
threshold optimization the memory overhead was larger and therefore sometimes
keeping Uv was disadvantageous, especially for large automata.

2.5.2 DFS

During the search, at each depth the current list is split into parts of size at most

available memory

(k + 1)(upper bound − lower bound)

and recursed into one by one, to make sure we do not run out of memory. The el-
ements are sorted in order of descending cardinality, so that the most promising
sets are recursed into in the first place, which in turn can quickly improve the upper
bound, if it was not tight. The lists are reduced by removal of duplicates and calls to
MarkSubsets only once every few iterations, which still lowers the branching factor
significantly.

20 CHAPTER 2. THE NEW EXACT ALGORITHM

Algorithm 3 Recursive procedure DFS .
Input: Static radix trie T built over the elements of LBFS . List L – initially LIBFS .
The current reset word length r (BFS iterations + recursion depth). The reset
threshold upper bound R, which can be changed globally once we find a shorter
reset word.

Output: R will be set to match the reset threshold.
1: Lnext ← CalculatePreimages(L)
2: Sort Lnext in the order of decreasing cardinality
3: if Time for duplicates removal then
4: Remove duplicates from Lnext

5: end if
6: if Time for reduction then
7: Delete subsets of the C largest sets in Lnext (MarkSubsets) ▷ C – parameter
8: end if
9: for s ∈ Lnext do
10: if T contains subset of s then
11: R← r

12: return
13: end if
14: end for
15: if r = R− 1 then
16: return ▷ Failed to find a reset word shorter than R
17: end if
18: for Lpart ∈ Split(Lnext) do ▷ Split into smaller parts if necessary
19: DFS (T, Lpart , r + 1, R)
20: if r = R− 1 then
21: return
22: end if
23: end for

Chapter 3

Implementation

We implemented the exact algorithm described in the previous chapter along with
several known heuristic algorithms. The code is written in C++17 and should work
on most Linux distributions. It is available for download at

https://github.com/marekesz/synchrowords

The thesis is related to Release 1.0.0.

The implementation is intended to be as efficient as possible and in the next
sections, we describe some of the techniques we used in order to achieve this.

3.1 Hot spots

Below we list the bottlenecks of our exact algorithm. We tried to optimize them in
terms of execution time and memory footprint. Note that because we use just-in-
time compilation, parameters such as n and k are known during the compilation of
the following code.

3.1.1 The subset data structure

The most widely used data structure is undoubtedly Subset<S> (Listing 3.1). All of
the implemented algorithms (though for different reasons) store subsets of states of
the automaton. We implement this structure as a bitset using an array of integers.
We further assume that the states of the automaton are numbered from 0 to n− 1

and they index bits in the subset structure.

template <uint S>

struct Subset {

uint64 v[buckets(S)];

... // Member functions

21

https://github.com/marekesz/synchrowords

22 CHAPTER 3. IMPLEMENTATION

};

Listing 3.1: Subset<S> in synchrolib/data structures/subset.hpp.

Inside some of its methods we also use builtin functions available in gcc
compiler. One such case is the use of builtin ctzll inside functions that need
to iterate over the set bits quickly.

3.1.2 Computing images and preimages of subsets

Every pathfinding-based algorithm needs a subprocedure to identify the successors
of a given state in the power automaton. Because the states are stored as bitsets,
we want to iterate over these bits and for each of them, set some bits in the out-
put, according to the transition function of the original automaton. In the case of
computing images under some w ∈ Σ, a straightforward implementation is quite
efficient, as each set bit b in the original bitset will require exactly one operation on
the output bitset – setting the δ(b, w)-th bit. For the preimages it is less efficient, as
each set bit b requires setting |δ−1(b, w)| bits in the output, which means a nested
loop would be needed. For this reason, we choose a different approach for both
image and preimage computation, based on cutting the bitset into small chunks and
merging the precomputed outputs (Listing 3.2). This works well in practice, as there
is no branching and the compiler can unroll all of the loops easily.

template <uint N, uint K>

struct PreprocessedTransition {

constexpr static uint SLIZE_SIZE = 8;

constexpr static uint SUBSETS_BITS = 64;

Subset<N> trans[slices()][(1 << SLICE_SIZE)];

void apply(const Subset<N> &from, Subset<N> &s) const {

for (uint b = 0; b < s.buckets(); b++) s.v[b] = 0;

for (uint i = 0; i < slices(); i++) {

uint b = i * SLICE_SIZE / SUBSETS_BITS;

uint shift = i * SLICE_SIZE % SUBSETS_BITS;

uint set = (from.v[b] >> shift) & ((1 << SLICE_SIZE) - 1);

s |= trans[i][set];

}

}

...

};

Listing 3.2: PreprocessedTransition<N, K> in
synchrolib/data structures/preprocessed transition.hpp.

3.1. HOT SPOTS 23

In most cases, we want to compute images or preimages of a lot of sets. We
can easily parallelize this process by distributing them to different (CPU or GPU)
threads. For the CUDA implementation see:
synchrolib/data structures/cuda/preprocessed transition kernel.cu.

3.1.3 MarkSupersets

TheMarkSupersets(A,B) function (Algorithm 2) is the undisputed bottleneck of the
bidirectional-search phase in our exact algorithm. It is used both to check if we have
already found the reset threshold (meet criterion) and to reduce the sizes of the lists
by removing unnecessary sets. We implement it as a recursive function that takes
ranges of A and B as arguments. It means that the function will have to change the
order of elements in B, in order to place some of them in a contiguous range before
the recursive call. We show a simplified (and slightly modified) implementation of
this function in Listing 3.3.

void contains_subset(uint depth, Iterator A_begin, Iterator A_end,

Iterator B_begin, Iterator B_end) {

if (std::distance(A_begin, A_end) <= MIN) {

if constexpr (!GPU) {

// check each pair from A × B and update answers
} else {

// do the same but as a CUDA kernel
}

return;

}

Iterator A_mid = binsearch_first_one(depth, A_begin, A_end);

contains_subset(depth + 1, A_begin, A_mid, B_begin, B_end);

Iterator B_mid = shift_ones_left(depth, B_begin, B_end);

contains_subset(depth + 1, A_mid, A_end, B_begin, B_mid);

}

Listing 3.3: Simplified SubsetsImplicitTrie::check contains subset impl in
synchrolib/data structures/subsets implicit trie.hpp.

We can easily parallelize this function on the CPU by distributing the list B
to different threads. It is not possible to do the same thing on GPU, because the
recursive nature of the procedure requires a lot of branching. Instead, we increase
the MIN constant and run the brute-force part as a CUDA kernel. This creates a
trade-off between the amount of computation that the (slower) CPU has to do and
the number of pairs that the (faster) GPU has to check. The optimal value of MIN

greatly depends on the hardware. In our experiments, we used MIN = 104.

24 CHAPTER 3. IMPLEMENTATION

3.1.4 Static radix trie

When the algorithm switches to the depth-first search phase, a radix trie is built on
the elements of the BFS list (Listing 3.4).

void build(uint v, Iterator begin, Iterator end) {

if (std::distance(begin, end) <= MIN) {

// store the iterators, as well as AND and minimum size of the sets
nodes[v].store(begin, end);

return;

}

// get the bit with the most (but not all) ones
uint division_bit = get_division_bit(begin, end);

nodes[v].division_bit = division_bit;

Iterator mid = shift_zeros_left(division_bit, begin, end);

if (begin != mid) {

nodes[v].zero = create_node();

// build the subtree
build(nodes[v].zero, begin, mid);

// update subtree AND and minimum set size
nodes[v].update(nodes[nodes[v].zero]);

}

if (mid != end) {

nodes[v].one = create_node();

build(nodes[v].one, mid, end);

nodes[v].update(nodes[nodes[v].one]);

}

}

Listing 3.4: Simplified SubsetsTrie::build impl swap in
synchrolib/data structures/subsets trie.hpp.

To find the most common bit, get division bit function has to scan the whole
<begin, end) range and for each subset iterate over its set bits. Fortunately, this is
not a big concern for us, because the trie is built only once. Moreover, the number
of states in each of the stored sets is usually small. This is caused by the fact that
the subsets come from the BFS list, which made roughly r

2 iterations and we expect
|δ(Q,w)| to be small for |w| ≥ r

2 . In our parallel implementation, we divide the
range for multiple threads in get division bit.

To check the meet condition during the DFS, we call contains subset(Listing 3.5)
for each of the sets in the list. We can do this on multiple CPU threads.

bool contains_subset(const Node& node, const Subset<N>& set) const {

if (set.size() < node.subtree_min_popcount) return false;

3.1. HOT SPOTS 25

if (!set.is_subset(node.subtree_and)) return false;

if (set.is_subset(node.subsets_range)) return true;

if (node.division_bit == N) return false;

if (!set.is_set(node.division_bit)) {

return node.zero && contains_subset(nodes[node.zero], set);

}

if (node.zero && contains_subset(nodes[node.zero], set)) {

return true;

}

return node.one && contains_subset(nodes[node.one], set);

}

Listing 3.5: Simplified SubsetsTrie::contains subset of impl in
synchrolib/data structures/subsets trie.hpp.

3.1.5 Sorting and removal of duplicates

Sorting and removing duplicate subsets take a significant amount of time in the DFS
phase. To make the algorithm faster, we do these only once every two iterations and
we (optionally) sort using multiple CPU threads 1 (Listing 3.6).

template<class T>

void sort(T* data, int len, int grainsize) {

if (len < grainsize) {

std::sort(data, data + len, std::less<T>());

} else {

auto future = std::async(sort<T>, data, len / 2, grainsize);

sort<T>(data + len / 2, len - len / 2, grainsize);

future.wait();

std::inplace_merge(data, data + len / 2, data + len, std::less<T

>());

}

}

Listing 3.6: parallel sort in synchrolib/utils/vector.hpp.

1Code copied from https://codereview.stackexchange.com/questions/22744/

multi-threaded-sort

https://codereview.stackexchange.com/questions/22744/multi-threaded-sort
https://codereview.stackexchange.com/questions/22744/multi-threaded-sort

26 CHAPTER 3. IMPLEMENTATION

3.2 Just-in-time compilation

To be able to generate a well-optimized, memory-efficient code, it is crucial that the
compiler knows the number of states and the size of the alphabet during its work.
It also helps to have the algorithm’s parameters as constants. Because we do not
want to force the user to manually recompile the program for each size of the input,
we provide a small just-in-time (JIT) compilation library jitlib.hpp.

JitLib works by making a substitution in the code according to the specified
(pattern, substitution) pairs. Then the files are compiled into a dynamic library,
linked to the main program via dlopen(3), and finally the targeted function found
by dlsym(3) is run (Listing 3.7 and Listing 3.8).

template <typename... Ts, typename... Args>

JitLib& run(std::string func_name, Args&&... args) {

Logger() << "Finding function " << func_name;

dlerror(); // clear errors
*(void**)&func_ = dlsym(dl_, func_name.c_str());

auto err = dlerror();

if (err || !func_) {

Logger() << "Could not find function " << func_name << ":\n"

<< err;

throw RunException("function not found");

}

Logger() << "Running function";

reinterpret_cast<void (*)(Ts...)>(func_)(std::forward<Args>(args)

...);

return *this;

}

Listing 3.7: JitLib::run from jitlib/jitlib.hpp.

int a = 1;

int b = 2;

int c;

jitlib

.substitute(sources_paths, dest_path, substitutions_map)

.compile()

.load("libexample.so")

.run<int, int, int&>("add_two_ints", a, b, c)

.run<int>("print_int", c);

Listing 3.8: Example usage of JitLib.

3.2. JUST-IN-TIME COMPILATION 27

In our program, we reuse the previously compiled libraries, so that for one config
(see Appendix: User guide), the number of states, and the size of the alphabet, the
algorithm(s) is compiled only once.

As an example benefit of knowing the number of states at compile time, List-
ing 3.9 and Listing 3.10 show how the gcc compiler unrolls the loop in the |=
operator in our Subset<S> structure for S = 500.

template <uint S>

struct Subset {

uint64 v[buckets(S)];

Subset<S>& operator|=(const Subset<S>& s) {

for (uint b = 0; b < buckets(S); b++) {

v[b] |= s.v[b];

}

return *this;

}

};

Listing 3.9: Subset<S>::operator |= in C++.

movdqu (%rsi), %xmm1

movdqu (%rdi), %xmm0

movdqu 48(%rdi), %xmm4

por %xmm1, %xmm0

movups %xmm0, (%rdi)

movdqu 16(%rdi), %xmm0

movdqu 16(%rsi), %xmm2

por %xmm2, %xmm0

movups %xmm0, 16(%rdi)

movdqu 32(%rdi), %xmm0

movdqu 32(%rsi), %xmm3

por %xmm3, %xmm0

movups %xmm0, 32(%rdi)

movdqu 48(%rsi), %xmm0

por %xmm4, %xmm0

movups %xmm0, 48(%rdi)

Listing 3.10: Subset<500>::operator |= in Assembly (x86-64 gcc 11.2, -O3).

28 CHAPTER 3. IMPLEMENTATION

3.3 Computational plans

In our implementation, we use json computational plans for specifying which algo-
rithms should be run. A computational plan consists of global parameters (such as
the allowed number of threads), a list of algorithms to be run, and, optionally, some
algorithm-specific parameters. Listing 3.11 shows an example computational plan
(the meaning of the specific parameters is described in Appendix: User guide).

{

"upper_bound": "1ULL * AUT_N * AUT_N * AUT_N / 6",

"threads": 1,

"gpu": false,

"algorithms": [

{

"name": "Beam",

"config": {

"presort": "indeg",

"beam_size": "std::log2(AUT_N) * AUT_N * 3"

}

},

{

"name": "Exact",

"config": {

"dfs_min_list_size": "10000",

"bfs_small_list_size": "AUT_N * 16",

"dfs": true,

"dfs_shortcut": true,

"max_memory_mb": "7 * 1024"

}

}

]

}

Listing 3.11: Example computational plan.

The algorithms are run sequentially in the given order and each of them can
modify the overall result. A typical goal of each algorithm is to lower the upper
bound on the reset threshold found by its predecessors. It is not always the case
though, as the algorithms can also share different data between each other. As an
example, the goal of the Reduce algorithm is to lower the number of states of the
automaton before the Exact algorithm (by keeping only the states which are inside
the sink component [15, 16]).

{

"algorithms": [

3.4. ADDING NEW ALGORITHMS 29

{

"name": "Beam",

"config": {...}

},

{

"name": "Reduce",

"config": {

"min_n": "80",

"list_size_threshold": "AUT_N * 16"

}

},

{

"name": "Exact",

"config": {...}

}

]

}

Listing 3.12: A computational plan with the Reduce algorithm

3.4 Adding new algorithms

It is easy to integrate other algorithms with the application and create new compu-
tational plans based on them. To do so, one needs to:

1. Create a new directory in synchrolib/algorithm and add (at least) two header
files – one for the implementation of the algorithm and one for the config definition.
The implementation will be compiled using our just-in-time compilation library (sec-
tion 3.2).

2. Implement the algorithm as a class derived from Algorithm<N, K> (see List-
ing 3.13).

template <uint N, uint K>

class Algorithm {

public:

virtual void run(AlgoData<N, K>& data) = 0;

virtual ~Algorithm() = default;

};

Listing 3.13: Algorithm<N, K> in synchrolib/algorithm/algorithm.hpp.

30 CHAPTER 3. IMPLEMENTATION

The AlgoData<N, K> class contains the input automaton Automaton<N, K>
and the data generated by the algorithms, stored as AlgoResult (Listing 3.14).
The same instance is passed to each run in a computational plan, so if there is a
need for data transfer between the algorithms, it can be achieved by adding new
fields to AlgoResult (preferably of type std::optional<T>).

struct AlgoResult {

bool non_synchro;

uint64 mlsw_lower_bound;

uint64 mlsw_upper_bound;

std::optional<FastVector<uint>> word;

size_t algorithms_run;

std::optional<ReduceData> reduce; // field added for data transfer between
Reduce and Exact algorithms

...

};

template <uint N, uint K>

struct AlgoData {

const Automaton<N, K> aut;

const InverseAutomaton<N, K> invaut;

AlgoResult result;

...

};

Listing 3.14: AlgoResult and AlgoData<N, K> in
synchrolib/algorithm/algorithm.hpp

The implementation can make use of constants known at compilation time.
Common constants such as AUT N, AUT K, GPU and THREADS, are defined in jitdefines.hpp,
which can be included in just-in-time compiled files. Algorithm-specific constants
can be added by defining substitutions inside the algorithms config class (this is
described in the next step).

3. Create a config definition – a class derived from AlgoConfig (Listing 3.15).

class AlgoConfig {

public:

virtual std::vector<std::pair<std::string, std::string>>

get_substs(const json& config) const = 0;

3.4. ADDING NEW ALGORITHMS 31

};

Listing 3.15: AlgoConfig in synchrolib/algorithm/config.hpp

The get subst function is called with the contents of the algorithm specific
configuration provided by the user. It returns (pattern, substitution) pairs, which
are then used to change the implementation code before its compilation. As an
example, let us consider a Dummy algorithm, which sets the upper bound on the reset
threshold to a value named constant from its json config (Listing 3.16).

class DummyConfig : public AlgoConfig {

public:

std::vector<std::pair<std::string, std::string>> get_substs(

const json& config) const override {

return {

{"$DUMMY_DEF$", def(config)},

{"$DUMMY_UNDEF$", undef()}

};

}

private:

static std::string def(const json& config) {

return make_define("CONSTANT", config.value("constant", 0));

}

static std::string undef() {

return make_undefine("CONSTANT");

}

};

Listing 3.16: Example DummyConfig.

The patterns $DUMMY DEF$ and $DUMMY UNDEF$ in the algorithm implementation
files will be substituted respectively to #define CONSTANT <value from config>
and #undef CONSTANT. Notice the use of the make define and make undefine func-
tions from synchrolib/algorithm/config.hpp. There are more similar config-
related helper functions in this file. Now we are ready to implement the algorithm:
Listing 3.17.

#include <jitdefines.hpp> // included to use AUT N

$DUMMY_DEF$ // substituted to #define CONSTANT <constant>

template <uint N, uint K>

class Dummy : public Algorithm<N, K> {

32 CHAPTER 3. IMPLEMENTATION

public:

void run(AlgoData<N, K>& data) override {

static_assert(CONSTANT > 0, "constant must be positive");

static_assert(CONSTANT < 1ll * AUT_N * AUT_N * AUT_N, "constant

must be lower than N^3");

data.result.mlsw_upper_bound = CONSTANT;

}

};

$DUMMY_UNDEF$ // substituted to #undef CONSTANT
%

Listing 3.17: Example Dummy<N, K> implementation

4. After implementing the algorithm and defining the config, one needs to enable
it in the application. To do that, a few boilerplate lines must be added inside
synchrolib/synchrolib.hpp, which contains instructions on what to do exactly.

Chapter 4

Experiments

4.1 Setup

4.1.1 Hardware and software

The experiments were run on the computational grid in the Institute of Computer
Science, University of Wrocław (funded by National Science Centre, Poland, under
project number 2019/35/B/ST6/04379). The used computers were equipped with
AMD Ryzen Threadripper 3960X 24-Core Processor, 64GB RAM, and two RTX3080
Nvidia GPU cards.

On the software side, we compiled the code using gcc 9.3.0 and nvcc 10.1
(run with gcc 7.5.0). To generate the tests and execute the algorithms we used
python3 and bash scripts.

4.1.2 The setup

We test our implementation for random binary automata. A random automaton
(Q,Σ, δ) with n states and k letters is generated by choosing the state for each tran-
sition δ(q, a), for q ∈ Q, a ∈ Σ, uniformly at random from Q. Most of automata are
synchronizing [3, 19], thus we can easily obtain any desired number of synchronizing
ones for experiments. Concerning the presented results, we did not encounter any
non-synchronizing automaton in any sample.

For the time results, compilation time is not included, as it could slightly distort
the results since compilation happens just once for each n. Additionally, we do
not include the execution times of the polynomial heuristic algorithms, which are
negligible for the hardest cases (also, we believe they can be highly optimized).

33

34 CHAPTER 4. EXPERIMENTS

4.2 Comparison with the previous algorithm

We call the previous algorithm old [16] and use its original implementation. For
our new algorithm, we use the configuration plan exact.json and set the number
of threads, memory for the exact algorithm, and GPU usage as specified. In both
algorithms, we do not use reduction of the automaton, which requires recompilation.

Figure 4.1 shows the comparison of the efficiency of the old algorithm and the
new one in four different configurations that differ by computational resources. This
is shown in terms of reset thresholds, as it is the main parameter of an automaton
that influences the running time. Figure 4.2 shows the same results in a logarithmic
scale. Figure 4.3 shows how the running time increases as the reset threshold grows.
The lower ratio of our algorithm is clearly visible and is also reflected on Figure 4.4,
where we plot the average speedup compared to the old algorithm.

Since for a given number of states n we obtain random automata with a reset
threshold from a relatively large range, averaging running time for an n has a high
variance, unless very large samples are used. Figure 4.5 shows the results in terms
of the number of states. The old algorithm did not manage to solve the 70 instances
in time for n > 370. In fact, for n = 400 it solved only five cases in the given
20 hours (the sixth automaton had reset threshold equal to 57), while our fastest
configuration needed less than 2.5 hours to complete the full 70-case test.

4.3 Testing large automata

For automata larger than 400, we use our strongest configuration plan exact reduce.json,
where we set the maximum memory to 30GiB and use 6 threads together with GPU.
We also modified the beam size to 6n2.

For each n ∈ [410, 420, . . . , 500] we sampled 40 binary random automata. Fig-
ure 4.6 shows the correspondence between the average running time and the reset
threshold. Figure 4.7 shows this correspondence between n instead, which has a
high variation due to small samples. Finally, Figure 4.8 shows the average running
time growth depending on the reset threshold. Together with Figure 4.6, this shows
that the running time growth rate for large automata is stable in terms of the reset
threshold: increasing the reset threshold by 1 requires ∼ 1.5 times more computation
time. The same trend was visible for medium automata in Figure 4.3.

4.3. TESTING LARGE AUTOMATA 35

44 45 46 47 48 49 50 51 52 53 54 55 56
reset threshold

0

50

100

150

200

250

av
er

ag
e

tim
e

(m
in

ut
es

)

old, 7gb
1 thread, 7gb
1 thread + gpu, 7gb
6 threads, 7gb
6 threads + gpu, 7gb

Figure 4.1: The average running time for reset thresholds above 44 that appeared
for sampled 70 random binary automata for each n ∈ [100, 110, . . . , 360, 370].

36 CHAPTER 4. EXPERIMENTS

44 45 46 47 48 49 50 51 52 53 54 55 56
reset threshold

2 6

2 5

2 4

2 3

2 2

2 1

20

21

22

23

24

25

26

27

28

29
av

er
ag

e
tim

e
(m

in
ut

es
)

old, 7gb
1 thread, 7gb
1 thread + gpu, 7gb
6 threads, 7gb
6 threads + gpu, 7gb

Figure 4.2: The average running time for medium reset thresholds in a logarithmic
scale (the same results for larger automata are in Figure 4.6).

44 45 46 47 48 49 50 51 52 53 54 55
reset threshold

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

ra
tio

old, 7gb
1 thread + gpu, 7gb
1 thread, 7gb
6 threads, 7gb
6 threads + gpu, 7gb

Figure 4.3: The ratio between average times for reset thresholds x+ 1 and x.

4.3. TESTING LARGE AUTOMATA 37

44 45 46 47 48 49 50 51 52 53 54 55 56
reset threshold

5

10

15

20

25

30

35

40
av

er
ag

e
sp

ee
du

p
fa

ct
or

1 thread, 7gb
1 thread + gpu, 7gb
6 threads, 7gb
6 threads + gpu, 7gb

Figure 4.4: The average speed-up factor with respect to the old algorithm for medium
reset thresholds.

250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
number of states

0

2

4

6

8

10

12

14

av
er

ag
e

tim
e

(m
in

ut
es

)

old, 7gb
1 thread, 7gb
1 thread + gpu, 7gb
6 threads + gpu, 7gb
6 threads, 7gb

Figure 4.5: The average running times for automata with up to 400 states.

38 CHAPTER 4. EXPERIMENTS

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
reset threshold

2 4

2 3

2 2

2 1

20

21

22

23

24

25

26

27

28

29
av

er
ag

e
tim

e
(m

in
ut

es
)

6 threads + gpu, 30gb

Figure 4.6: The average running times for large reset thresholds in a logarithmic
scale.

410 420 430 440 450 460 470 480 490 500
number of states

5

10

15

20

av
er

ag
e

tim
e

(m
in

ut
es

)

6 threads + gpu, 30gb

Figure 4.7: The average running times for large number of states.

4.3. TESTING LARGE AUTOMATA 39

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
reset threshold

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

ra
tio

6 threads + gpu, 30gb

Figure 4.8: The ratio between average times for reset threshold x+ 1 and x.

Chapter 5

Conclusions

The problem of computing the length of the shortest reset words is hard and the
required time and space resources grow exponentially with the number of states in
the automaton. We have improved the previously best known exact algorithm, which
was unbeatable for several years, despite a few attempts and developed alternative
solutions.

We obtained a substantial improvement by employing a series of algorithmic en-
hancements, which are also combined with technical low-level methods, thus working
well in a practical setting. Decreasing the memory requirements was also crucial for
processing larger automata, since after running out of memory, the algorithm has
to switch to the DFS phase. If entered prematurely, this increases the running time
very quickly, which happens much earlier in the old algorithm.

The experiments confirm that the new algorithm is significantly faster and deals
with larger automata in a reasonable time, in contrast to the old algorithm. It is
also noticeable that the required computation time grows slower in correspondence
with the reset threshold, and this growth is stable and around 1.5 times for random
binary automata.

Our computational package is an open tool that should be useful for researchers
and engineers encountering the problem of synchronization of a DFA. It can be
further generalized to deal with partial DFAs as well as with non-deterministic finite
automata with various definitions of synchronizing words.

Our future work involves doing more experiments and probably further fine-
tuning the algorithm, as well as some of the heuristics as the beam. For instance,
with the new tool, we will be able to establish a better estimation of the expected
reset threshold of a random automaton.

41

Bibliography

[1] D. S. Ananichev and M. V. Volkov. Synchronizing monotonic automata. In
Developments in Language Theory, volume 2710 of LNCS, pages 111–121.
Springer, 2003.

[2] M. Berlinkov and M. Szykuła. Algebraic synchronization criterion and comput-
ing reset words. Information Sciences, 369:718–730, 2016.

[3] M. V. Berlinkov. On the Probability of Being Synchronizable. In Proceedings
of the Second International Conference on Algorithms and Discrete Applied
Mathematics - Volume 9602, volume 9602 of CALDAM, page 73–84. Springer,
2016.

[4] M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła. Synchronizing
Strongly Connected Partial DFAs. In STACS, volume 187 of LIPIcs, pages
12:1–12:16. Schloss Dagstuhl, 2021.

[5] J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2009.

[6] J. Černý. Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964.
In Slovak.

[7] D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on
Computing, 19:500–510, 1990.

[8] P. Gawrychowski and D. Straszak. Strong inapproximability of the shortest
reset word. In Mathematical Foundations of Computer Science, volume 9234 of
LNCS, pages 243–255. Springer, 2015.

[9] M. Gerbush and B. Heeringa. Approximating minimum reset sequences. In
Implementation and Application of Automata, volume 6482 of LNCS, pages
154–162. Springer, 2011.

[10] B. Gerencsér, V. V. Gusev, and R. M. Jungers. Primitive Sets of Nonnegative
Matrices and Synchronizing Automata. SIAM J. Matrix Anal. Appl., 39(1):83–
98, 2018.

43

44 BIBLIOGRAPHY

[11] H. Jürgensen. Synchronization. Information and Computation, 206(9-10):1033–
1044, 2008.

[12] Daniel M. Kane and R. Ryan Williams. The orthogonal vectors conjecture
for branching programs and formulas. CoRR, abs/1709.05294, 2017. URL:
http://arxiv.org/abs/1709.05294, arXiv:1709.05294.

[13] J. Kari. Synchronization and stability of finite automata. Journal of Universal
Computer Science, 8(2):270–277, 2002.

[14] J. Kari and M. V. Volkov. Černý conjecture and the road colouring problem.
In Handbook of automata, volume 1, pages 525–565. European Mathematical
Society Publishing House, 2021.

[15] A. Kisielewicz, J. Kowalski, and M. Szykuła. A Fast Algorithm Finding the
Shortest Reset Words. In COCOON, volume 7936 of LNCS, pages 182–196,
2013.

[16] A. Kisielewicz, J. Kowalski, and M. Szykuła. Computing the shortest reset
words of synchronizing automata. Journal of Combinatorial Optimization,
29(1):88–124, 2015.

[17] J. Kowalski and A. Roman. A new evolutionary algorithm for synchronization.
In Giovanni Squillero and Kevin Sim, editors, Applications of Evolutionary
Computation, pages 620–635. Springer, 2017.

[18] R. Kudłacik, A. Roman, and H. Wagner. Effective synchronizing algorithms.
Expert Systems with Applications, 39(14):11746–11757, 2012.

[19] C. Nicaud. Fast Synchronization of Random Automata. In Klaus Jansen, Claire
Mathieu, José D. P. Rolim, and Chris Umans, editors, APPROX/RANDOM
2016, volume 60 of LIPIcs, pages 43:1–43:12. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016.

[20] J. Olschewski and M. Ummels. The complexity of finding reset words in finite
automata. In Mathematical Foundations of Computer Science 2010, volume
6281 of LNCS, pages 568–579. Springer, 2010.

[21] J.-E. Pin. On two combinatorial problems arising from automata theory. In Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics,
volume 75 of North-Holland Mathematics Studies, pages 535–548, 1983.

[22] I. Podolak, A. Roman, M. Szykuła, and B. Zieliński. A machine learning
approach to synchronization of automata. Expert Systems with Applications,
97:357–371, 2018.

[23] I. T. Podolak, A. Roman, and D. Jędrzejczyk. Application of hierarchical clas-
sifier to minimal synchronizing word problem. In Artificial Intelligence and Soft
Computing, volume 7267 of LNCS, pages 421–429. Springer, 2012.

http://arxiv.org/abs/1709.05294
http://arxiv.org/abs/1709.05294

BIBLIOGRAPHY 45

[24] I. Pomeranz and S.M. Reddy. On achieving complete testability of synchronous
sequential circuits with synchronizing sequences. IEEE Proc. International Test
Conference, pages 1007–1016, 1994.

[25] A. Roman and M. Szykuła. Forward and backward synchronizing algorithms.
Expert Systems with Applications, 42(24):9512–9527, 2015.

[26] A. Ryzhikov and M. Szykuła. Finding Short Synchronizing Words for Pre-
fix Codes. In MFCS 2018, volume 117 of LIPIcs, pages 21:1–21:14. Schloss
Dagstuhl, 2018.

[27] S. Sandberg. Homing and synchronizing sequences. In Model-Based Testing of
Reactive Systems, volume 3472 of LNCS, pages 5–33. Springer, 2005.

[28] N. E. Saraç, O. F. Altun, K. T. Atam, S. Karahoda, K. Kaya, and H. Yenigün.
Boosting expensive synchronizing heuristics. Expert Systems with Applications,
167:114203, 2021.

[29] H. Shabana. Exact synchronization in partial deterministic automata. Journal
of Physics: Conference Series, 1352:012047, 2019.

[30] Y. Shitov. An Improvement to a Recent Upper Bound for Synchronizing Words
of Finite Automata. Journal of Automata, Languages and Combinatorics, 24(2–
4):367–373, 2019.

[31] E. Skvortsov and E. Tipikin. Experimental study of the shortest reset word
of random automata. In Implementation and Application of Automata, volume
6807 of LNCS, pages 290–298. Springer, 2011.

[32] M. Szykuła. Improving the Upper Bound on the Length of the Shortest Reset
Word. In STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018.

[33] M. K. Taş, K. Kaya, and H. Yenigün. Synchronizing billion-scale automata.
Information Sciences, 574:162–175, 2021.

[34] A. N. Trahtman. An efficient algorithm finds noticeable trends and examples
concerning the C̆erný conjecture. In Mathematical Foundations of Computer
Science, volume 4162 of LNCS, pages 789–800. Springer, 2006.

[35] N. F. Travers and J. P. Crutchfield. Exact Synchronization for Finite-State
Sources. Journal of Statistical Physics, 145(5):1181–1201, 2011.

[36] M. Volkov. Synchronizing automata and the Černý conjecture. In Language
and Automata Theory and Applications, volume 5196 of LNCS, pages 11–27.
Springer, 2008.

[37] M. V. Volkov, editor. Special Issue: Essays on the Černý Conjecture, volume
24 (2–4) of Journal of Automata, Languages and Combinatorics, 2019.

46 BIBLIOGRAPHY

[38] V. Vorel. Complexity of a problem concerning reset words for Eulerian binary
automata. Information and Computation, 253:497–509, 2017.

Chapter 6

Appendix: User guide

The following documentation can also be found in the docs/ directory of the package.

6.1 Installation

To run the program you first need to install g++ (with -pthread support) and make.
On Ubuntu 20.04 you can install all of these with:

$ sudo apt install g++ make libtbb-dev

If you want to enable GPU utilization, cuda and nvcc must also be installed. The
following versions were used in testing (higher should be fine):

• g++ 9.3.0

• CUDA 11.4

• nvcc 10.1.243

To compile the program call make. Because the program uses just-in-time compi-
lation, even though the first make succeeds, it might still fail to run in some or all
configurations. The -v/--verbose option might be useful for checking what went
wrong during runtime. Failed runs might cause compilation artefacts to be left in the
build/ folder. Delete them with make clean. To use the program from everywhere
on your system, consider adding an alias synchro=’/path/to/repo/synchro’ to
your .bashrc.

6.2 Usage

Call synchro --help to see the following message.

47

48 CHAPTER 6. APPENDIX: USER GUIDE

synchro [OPTION...]

-f, --file arg Path to the input file

-c, --config arg Path to the config file

-o, --output arg Path to the output file

-v, --verbose Verbose output

-q, --quiet Quiet output (only warnings and errors)

-h, --help Print usage

The input file must contain automata in the following format:

N K

A0,0 A0,1 . . . A0,K−1 A1,0 A1,1 . . .

where Ai,j is the result of the transition function on i-th state and j-th letter. The
states and letters indices are zero-based. The file can contain many inputs.

6.3 Example run

synchro --config configs/readme_config.json

--file data/readme_input.txt -o save.txt

Output:

[22:54:39.650] [INFO] Read 4 automata

[22:54:39.651] [INFO] Recompiling for N = 1, K = 4

[22:54:44.261] [INFO] Minimum synchronizing word length: [0, 0]

[22:54:44.261] [INFO] Recompiling for N = 4, K = 3

[22:54:49.629] [WARNING@brute] Automaton is non-synchronizing

[22:54:49.629] [INFO] NON SYNCHRO

[22:54:49.629] [INFO] Loading precompiled library

[22:54:49.629] [INFO@brute] mlsw: 3

[22:54:49.629] [INFO] Minimum synchronizing word length: [3, 3]

[22:54:49.629] [INFO] Recompiling for N = 100, K = 3

[22:54:55.326] [INFO@brute] N > 20, exiting...

[22:54:55.326] [INFO@eppstein] Upper bound: 25

[22:54:55.326] [INFO@beam] Upper bound: 19

[22:54:55.337] [INFO@reduce] Reduced to N = 90 in 8 bfs steps

[22:54:55.339] [INFO] Recompiling for N = 90, K = 3

[22:55:00.987] [INFO@exact] mlsw: 18

[22:55:00.987] [INFO] Minimum synchronizing word length: [18, 18]

[22:55:00.987] [INFO] Saving synchronizing word of length 25

6.4. CONFIGURATION FILES 49

The output file contains information about synchronizing words in the following
format:

[lower_bound, upper_bound] {w_0, w_1, ..., w_k}

In our example, the save.txt file should look like this

[0, 0]

NON SYNCHRO

[3, 3]

[18, 18] {0 0 1 0 1 0 1 0 2 2 1 0 1 2 2 0 0 2 2 0 0 2 0 1 2}

The default behavior of every algorithm is to exit if it cannot find a shorter synchro-
nizing word than the predecessors. That is why in the first three cases, the Eppstein
algorithm (which has the find word parameter set to true) did not even run and
the word was not saved. In the last case, the saved word has a length greater than
18, because Beam and Exact do not support the find word parameter.

6.4 Configuration files

Json configuration files specify computational plans. A plan describes a sequence of
algorithms with their parameters that are run sequentially. Parameters are either
boolean, integer or string. Integer and boolean parameters can appear in json as
a value of their respective type (e.g. "find word": true) or as a string containing
a valid C++ expression (e.g. "find word": "AUT N < 1000 * 1000"). The C++
expressions can use <cmath> functions and predefined AUT N, AUT K values, which
respectively denote the number of states and the size of the alphabet of the given
automaton. The only two exceptions to these rules are the threads and gpu global
parameters, whose values can not be C++ expressions.

6.4.1 Global parameters

• upper bound (integer) (default "1ULL * AUT N * AUT N * AUT N / 6") – Spec-
ifies the initial upper bound on reset threshold. Algorithms terminate if they
do not find a reset word of length within this bound. Otherwise, the upper
bound can be decreased by the algorithms.

• threads (integer) (default 1) – Specifies the number of threads for parallel
computation.

• gpu (boolean) (default false) – Enables gpu. Requies CUDA library and nvcc
(see installation guide)

docs/install.md

50 CHAPTER 6. APPENDIX: USER GUIDE

• algorithms (list) – Specifies the list of algorithms that the plan consists of.
Algorithms will be run in the given order.

6.4.2 Algorithms

Each algorithm in the algorithms list is a dictionary with keys:

• name – One of the available algorithms (see the listbelow).

• config – Dictionary (possibly empty) containing algorithm parameters.

By default algorithms only improve upper and lower bounds on the shortest reset
threshold. Some of them also support the find word parameter, which makes them
output the synchronizing word.

Brute

This is an exact algorithm for small automata. It runs BFS in the power automaton,
using a bit array for visited sets. Thus, it requires O(2ˆN) memory.

• max n (integer) (default 20) – Specifies the maximum supported number of
states. If the given automaton has more states, the algorithm does nothing.
Must be less or equal to 32.

Eppstein

The classic Eppstein algorithm works by running at most (n-1) iterations of a subpro-
cedure, which chooses an arbitrary pair of not yet synchronized states and appends
a word that synchronizes them to the result. The known upper bound on the length
of the resulting reset word is cubic in the number of states.

• transition tables (boolean) (default false) – Enables the precomputation
of shortcuts in the pairs tree. Must be set to false if find word is set to true.

• find word (boolean) (default false) – Returns a reset word. If false, the
algorithm only returns the length and sets the upper bound.

Beam

Implementation of the beam search algorithm. It runs inverse BFS in the power
automaton. The initial list consists of all of the singletons. In each iteration, only
beam size best sets are kept (valued by their size).

6.4. CONFIGURATION FILES 51

• beam size (integer) (default "std::log2(AUT N)")

• max iter (integer) (default -1) – Limits the number of iterations (-1 for un-
limited, i.e., the upper bound on reset threshold). Though very unlikely for
random automata, beam search might run into a loop, especially for small
beam size. In this case, the algorithm would run for upper bound number of
iterations, which might be large if no previous algorithm decreased this bound.

• presort (string) (default "none") – One of ["none", "indeg"]. If "indeg" is
specified, the algorithm permutes the indices of the automaton so that they
are ordered from lowest to highest in-degree. Useful if the implementation uses
tries.

Exact

Finds the reset threshold (the length of the shortest reset words) or computes a lower
bound. The algorithm works by first running two BFS algorithms (one starting from
the singletons, and one starting from the set of all the states) and checking in each
iteration if they met. If the answer is not found in a certain amount of steps or
the memory runs out, it optionally switches to a DFS algorithm. A good upper
bound on the shortest reset threshold will decrease the running time greatly if the
dfs shortcut parameter is set to true.

• dfs (boolean) (default true) – Enables the DFS phase. If set to false, after
the first phase fails to find the reset threshold, a lower bound is returned.

• dfs shortcut (boolean) (default true) – Enables switching to the DFS phase
when the algorithm calculates that it is better. If set to false, DFS is only
entered after the memory runs out.

• max memory mb (integer) (default 2048) – Maximum amount of used memory
in megabytes. If gpu is set to true, this limit also applies to the GPU memory.

• dfs min list size (integer) (default 10000) – The minimum size of the list
at each depth during the DFS phase.

• strict memory limit (boolean) (default false) – Stops the algorithm if there’s
not enough memory in the DFS phase. If set to false, only warnings are
printed.

• bfs small list size (integer) (default "AUT N * 16") – Until both BFS and
I-BFS lists reach this size, the algorithm always picks the smaller side to
expand and not consider DFS shortcut.

52 CHAPTER 6. APPENDIX: USER GUIDE

Reduce

Reduces the number of states of the automaton before entering the Exact algorithm
(which is the only algorithm that can be run after Reduce succeeds). Works by
running a small number of BFS iterations and then trying to delete all of the states
that will never be reached again (outside the sink component).

• min n (integer) (default 80) – Specifies the minimum supported number of
states. If the given automaton has fewer states, the reduction is skipped.

• list size threshold (integer) (default "AUT N * 16") – The algorithm tries
to reduce the number of states after at least list size threshold sets are on
the BFS list.

	Introduction
	Theoretical developments
	Synchronization in applications
	Algorithms finding reset words
	Exact algorithms
	Heuristic algorithms

	Contribution

	The new exact algorithm
	Overview
	Bidirectional breadth-first search
	Subset checking
	Step cost estimation
	Depth-first search
	Static radix trie
	DFS

	Implementation
	Hot spots
	The subset data structure
	Computing images and preimages of subsets
	MarkSupersets
	Static radix trie
	Sorting and removal of duplicates

	Just-in-time compilation
	Computational plans
	Adding new algorithms

	Experiments
	Setup
	Hardware and software
	The setup

	Comparison with the previous algorithm
	Testing large automata

	Conclusions
	Bibliography
	Appendix: User guide
	Installation
	Usage
	Example run
	Configuration files
	Global parameters
	Algorithms

