
On the Online Min-Sum Set Cover Problem

(Wersja online problemu pokrycia zbiorami o minimalnej sumie)

Mateusz Basiak Agnieszka Tatarczuk

Praca magisterska

Promotor: dr hab. Marcin Bieńkowski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

7 czerwca 2023

Abstract

We consider the Online Min-Sum Set Cover (Mssc) problem in different settings.
In Mssc, the algorithm has a list S of elements and for every requested set R ⊆ S

it pays the cost equal to the position of the first element from R in S. Then the
algorithm can permute the list and it pays the cost equal to the Kendall tau distance
between the permutations.
We consider the problem in three models depending on whether the algorithm pays
for permuting its list (Static OPT, Dynamic OPT) or not (Online Learning), and
whether we compare the algorithm to the best permutation (Static OPT, Online
Learning) or to the best algorithm which can also permute its list after every re-
quest (Dynamic OPT).
We present the Deterministic-Lazy-Move-All-To-Front (Dlma) algorithm
which achieves several previously undiscovered bounds. In Static OPT setting,
Dlma achieves O(|R|)-competitive ratio and to our knowledge it is the best result
among both deterministic and randomized polynomial-time algorithms. In Dynamic
OPT setting, Dlma achieves O(|R|2)-competitive ratio. We also prove that the class
of algorithms similar to Dlma cannot achieve a better result.

Rozważamy problem pokrycia zbiorami online o minimalnej sumie w różnych
wariantach. W tym problemie algorytm utrzymuje listę S i dla każdego zapytania
R ⊆ S o jej podzbiór płaci koszt równy pozycji elementu R najbliższego początkowi
listy. Algorytm może następnie dokonać permutacji elementów listy płacąc za to
koszt równy minimalnej liczbie transpozycji potrzebnej do przejścia pomiędzy per-
mutacjami (odległość tau Kendalla).
Rozważamy zadany problem w trzech różnych wariantach, różniących się tym, czy
algorytm płaci za permutowanie listy (model statyczny, model dynamiczny), czy
też nie (online learning) jak również tym, czy porównujemy wyniki osiągane przez
algorytm do najlepszej permutacji (model statyczny, online learning), czy też do al-
gorytmu optymalnie zmieniającego swoją permutację po każdym zapytaniu (model
dynamiczny).
Jako nasz główny wynik prezentujemy deterministyczny algorytm Dlma, który w
leniwy sposób przesuwa wszystkie elementy zapytania na początek listy, co pozwala
uzyskać wiele lepszych niż dotychczas znane współczynników konkurencyjności. W
modelu statycznym nasz algorytm jest O(|R|)-konkurencyjny, co poprawia dotych-
czas znane wyniki dla algorytmów działających w czasie wielomianowym, zarówno
deterministycznych jak i randomizowanych. W modelu dynamicznym nasz algorytm
jest O(|R|2)-konkurencyjny. Definiujemy również klasę algorytmów podobnych do
naszego i udowadniamy, że nie mogą one osiągać lepszych współczynników konku-
rencyjności.

Contents

1 Introduction 7

1.1 Problem description . 7

1.2 Competitive analysis . 8

1.3 Previous results . 9

1.4 Our contributions . 9

1.5 Offline scenario . 10

1.6 List Update problem . 12

2 Online Learning 15

2.1 Experts setting . 16

2.2 Wmr algorithm . 16

2.3 Generalized Mssc . 18

2.4 Lower bound for deterministic algorithms 18

3 Static Opt 21

3.1 Wmr-based algorithms . 21

3.1.1 (1 + δ)–competitive randomized algorithm 22

3.2 Lazy-Rounding . 24

3.2.1 Wmr base . 24

3.2.2 Greedy-Rounding . 25

3.2.3 Lazy-Rounding . 26

4 Dynamic OPT 29

4.1 Algorithm Move-All-Equally . 29

4.1.1 MAE against Static OPT . 29

5

6 CONTENTS

4.1.2 MAE against Dynamic OPT 30

4.2 Exponential Caching . 32

4.3 Lazy-Move-All-to-Front Algorithm 33

5 Our contribution 35

5.1 Definition of Dlma . 35

5.2 Termination . 36

5.3 Competitiveness in the Static OPT model 37

5.3.1 Potential function . 37

5.3.2 Budget invariant . 37

5.3.3 Analysis of operation fetch 38

5.3.4 Amortized cost of Dlma . 39

5.4 Competitiveness in the Dynamic OPT model 41

5.4.1 Mtf-based approximation of Opt 41

5.4.2 Movement of OPT . 41

5.5 Lower Bound . 43

6 Conclusions 47

Bibliography 49

Chapter 1

Introduction

1.1 Problem description

Min-Sum Set Cover (Mssc) is a problem where we maintain a list of items and
serve requests in the form of sets of those items. For each request, we want at least
one of its elements to be close to the front of our list. Mssc was first introduced by
Feige et al. [5] as an offline problem. Their notation comes from a related and well
known Set Cover problem. We define the problem with terminology more consistent
with the one used in online version, as it will be our main area of interest.

Definition 1.1. Min-Sum Set Cover problem, offline version

• Input I: number of elements n, sets (often called requests) R1, R2, . . . , Rm

where Ri ⊆ {1, . . . , n} for all 1 ≤ i ≤ m.

• Output: permutation π of elements. The goal is to minimize the total cost
defined as:

∑m
i=1min{π(a) : a ∈ Ri} where π(x) is the position of element x

in π.

As we can see, the order of requests Ri is not important. That is not the case
in the online version of this problem, introduced by Fotakis et al. [6].

Definition 1.2. Min-Sum Set Cover problem, online version

• Input I: number of elements n, initial permutation π0 requests R1, R2, . . .

where Rt ⊆ {1, . . . , n} for all t.

• Output: after each request Rt, the output is a permutation πt.

• Cost: total cost is the sum of two types of cost. Access cost is defined similarly
to the offline version, as

∑
tmin{πt−1(a) : a ∈ Rt}. Moving cost is defined as∑

t dKT (πt−1, πt) where dKT (πt−1, πt) is the number of inversions between πt−1

and πt also known as the Kendall tau distance.

7

8 CHAPTER 1. INTRODUCTION

We denote posπ(x) as the position of element x in permutation π. By extension,
for any subset X ∈ [n] of elements, by posπ(X) we will denote the smallest position
in π among the elements of X. We will omit the subscript if the permutation used is
clear from the context. We will assume that all sets Rt have r elements for some fixed
r ≤ n. Many competitive bounds will depend on r, especially in Chapters 4 and 5.

A special case of Online Mssc where r = 1 is called List Update and was
studied earlier by Sleator and Tarjan [10]. Their problem definition differs slightly
from Definition 1.2, as in their version algorithms can move only the requested
element and do not incur any cost for that movement. They gave a 2-competitive
algorithm called Move-To-Front (Mtf). Using our definitions, Mtf turns out to be
4-competitive for the Dynamic OPT setting. We present this result in Section 1.6.

1.2 Competitive analysis

We measure the effectiveness of our algorithms using competitive analysis [4]. In
that, we compare a given algorithm Alg to the optimal solution Opt on some given
input I. By Alg(I) we denote total cost of algorithm Alg on input I. It is the
sum of access cost Algacc(I) and moving cost Algmov(I) on that input. We use
Algt(I), Algacct (I) and Algmovt (I), respectively, to denote these costs associated
only with request Rt. For randomized algorithms, by E[Alg(I)] we denote the
expected value of the cost, where the expectation is taken over random choices of
Alg.

Definition 1.3. [2] We say that Alg is c-competitive if there exists ξ such that
for every input instance I it holds that Alg(I) ≤ c ·Opt(I) + ξ. The competitive
ratio of Alg is the infimum of values of c for which Alg is c-competitive.

Within the OnlineMssc problem there are many different settings that restrict
the actions of Opt and the cost of Alg. Those restrictions often allow us to achieve
better competitive ratios by exploiting those limitations. In this work we will discuss
algorithms for three of those settings.

In the Online Learning model, we assume that Opt chooses a fixed permu-
tation π. Therefore, Opt is optimal in the sense that it chooses the permutation
that achieves the lowest access cost among all the permutations. As Opt does not
change its permutation, its moving cost is always 0. Moreover in this model we
ignore the moving cost of Alg, counting its access cost as total cost. That allows
Alg to change its permutation freely after each request.

In the Static OPT model, Opt chooses a fixed permutation, just as in the
previous one. The difference is that here Alg pays its moving cost, which hinders
its ability to move freely. Nevertheless, as we will see in Chapter 3, many algorithms
from Online Learning transfer well to this setting.

In the Dynamic OPT model, Opt can change its permutation after each
request, just as Alg. We call such Opt the dynamic adversary. This setting is

1.3. PREVIOUS RESULTS 9

the most “equal” in the sense that both Opt and Alg are allowed to do the same
operations and pay the same cost for them.

The Dynamic OPT model is the hardest to obtain a low competitive ratio, as
Opt can make moves and therefore improve their cost. Of the other two, the Online
Learning setting is easier to obtain a low competitive ratio, as algorithms do not
pay their movement cost there.

1.3 Previous results

Feige et al. [5] gave a 4-approximation algorithm for Offline Mssc and proved that
the existence of (4 − ε)-approximation for any ε > 0 would imply that P=NP. We
discuss these results in Section 1.5. The lower bound is especially interesting to us,
as all polynomial-time online algorithms inherit that bound.

Online version of Mssc was first studied by Fotakis et al. [6]. They gave
a series of results, first obtaining a Ω(r) lower bound for deterministic algorithms
in all online models. We present that proof together with a classic expert-based
algorithm for the Online Learning model in Chapter 2. Then they proceeded to
algorithms for the Static OPT model, most importantly establishing tight upper
bounds both for exponential-time randomized and exponential-time deterministic
versions. We present them, along their other results, in Chapter 3.

Their paper was followed by Fotakis et al. [7], which builds on expert-based
approach. They were able to simulate expert advice in polynomial time, therefore
establishing current-best upper bounds for polynomial time algorithms in the Online
Learning model (both randomized and deterministic).

For the Dynamic OPT model, in their original paper Fotakis et al. [6] described
a deterministic Move-All-Equally algorithm that achieves a O(r3/2 ·

√
n) competitive

ratio. Their result was improved by Bieńkowski and Mucha [2], who gave a O(r2)-
competitive randomized algorithm, which was the first algorithm for that model with
a competitive ratio independent of n. We present all those results in Chapter 4.

All of the above results are summarized in the table below.

1.4 Our contributions

In Chapter 5, we present a deterministic, polynomial algorithm Deterministic-
Lazy-Move-All-To-Front (Dlma). It is based on the algorithm created by
Bieńkowski and Mucha [2]. We simplify their idea, as we do not use the intermediate
problem of Exponential Caching, which treats the list as being split into chunks of
geometrically growing sizes.

We prove that Dlma is O(r)-competitive against Static OPT (Theorem 5.9)
and O(r2)-competitive against Dynamic OPT (Theorem 5.13). This improves on the
previous best, non-constructive O(r4) upper bounds for polynomial deterministic

10 CHAPTER 1. INTRODUCTION

randomized deterministic
LB UB LB UB

Online exp. 1 1 + ε Ω(r) O(r)

Learning poly. 4 [5] 11.713 [7] Ω(r) [6] O(r) [7]

Static
OPT

exp. 1 1 + ε [3] Ω(r) O(r) [6]

poly. 4
O(r2)

Ω(r)
2O(

√
logn·log r) [6]

O(r) (this thesis) O(r) (this thesis)

Dynamic
OPT

exp. 1 O(r2) Ω(r)
O(r4)

O(r2) (this thesis)

poly. 4 O(r2) [2] Ω(r)

O(r3/2 ·
√
n) [6]

O(r4) [2]
O(r2) (this thesis)

Table 1.1: Known results for Online Mssc. Results without references are trivially
implied by others. Our own results are in bold.

algorithms in those settings. The Static OPT result is tight with the corresponding
lower bound. To our knowledge, this competitive ratio is also better than any
known polynomial randomized algorithm for the Static OPT model. We also note,
that although O(r)-competitive polynomial algorithm was previously shown for the
Online Learning setting, our algorithm presents a vastly different, combinatorial
approach and is much faster in terms of asymptotic computational complexity.

1.5 Offline scenario

In this section, we focus on the Offline Mssc problem. Feige et al. [5] presented
a following lower bound for this setting.

Theorem 1.4. [5] For every ε > 0 it is NP-hard to approximate Mssc within the
ratio of (4− ε).

Proof of this theorem is very technical and we will omit it. Instead, we will
focus on the Greedy algorithm that achieves the tight approximation ratio of 4.

Algorithm 1: Greedy

1 S ← {R1, . . . , Rm}, N ← {1, . . . , n}, i← 1

2 while S is not empty do
3 choose x ∈ N that occurs the most times in S
4 π(i)← x

5 remove x from N and all sets containing x from S

6 i← i+ 1

7 fill remaining positions in π with elements from N in any order
8 return π

1.5. OFFLINE SCENARIO 11

Theorem 1.5. [5] The Greedy algorithm approximates Mssc within the ratio no
worse than 4.

Proof. Let us take any input I = (n,R1, R2, . . . , Rm). By Opt we will denote the
optimal solution for that input. Let Xi denote the set of requests first covered in
the i-th step of the loop in the Greedy algorithm. Let Yi =

⋃n
j=iXj be the set of

requests not covered before the i-th step. Note that

Greedy(I) =
n∑

i=1

i|Xi| =
n∑

i=1

n∑
j=i

|Xj | =
n∑

i=1

|Yi|.

Now for every request r ∈ Xi define its price Pr = |Yi|/|Xi|. As Greedy
chooses x that maximizes the size of Xi, it also minimizes Pr. We define the total
price as Price =

∑
r Pr. That yields

Price =
∑
r

Pr =
n∑

i=1

|Xi| ·
|Yi|
|Xi|

= Greedy(I).

Now all we need is to prove the following lemma.

Lemma 1.6. Price ≤ 4 ·Opt(I)

Proof. Let π∗ be the permutation chosen by the algorithm Opt for input I and
let π be the permutation chosen by Greedy for that input. Let Ri1 , Ri2 , . . . , Rim

be the ordering of requests from the most expensive for Opt (the one that has its
first element furthest from the list front) to the cheapest one. Furthermore, let ak
be the index of the first element of Rik in π

∗. Therefore trivially a1 ≥ a2 ≥ . . . ≥ am
and Opt(I) =

∑m
i=1 ai.

Let Rj1 , Rj2 , . . . , Rjm be the requests sorted in the same way, but with regards
to the permutation π of Greedy. Let bk = Pjk be the price of Rjk . We will show
that

bk
2
≤ a⌈k/2⌉ for every k ∈ {1, . . . ,m}. (1.1)

That immediately yields:

Price =
m∑
k=1

bk

=
∑

1≤k≤m
k odd

bk + bk+1

≤
∑

1≤k≤⌈m/2⌉

4 · ak ≤ 4 ·Opt(I)

Now we need to show inequality (1.1). Let i denote the step in which request Rjk

was covered, meaning jk ∈ Xi. Then by definition bk = |Yi|/|Xi|. As after i − 1

steps |Yi| requests were not covered, we also have k ≤ |Yi|.

12 CHAPTER 1. INTRODUCTION

The step number a⌈k/2⌉ is the step of Opt in which the ⌈k/2⌉-th last request is
covered, thus we want to show that at least ⌈k/2⌉ requests are not covered in Opt
after ⌊bk/2⌋ steps. Let us consider only requests from Yi. By line 3 of Greedy,
π(i) is chosen to maximize |Xi| among all elements, as elements chosen previously
do not appear in any request from Yi. Therefore, |Xi| is the maximum number of
sets from Yi one element can cover, so in ⌊bk/2⌋ steps Opt can cover at most⌊

bk
2

⌋
· |Xi| =

⌊
|Yi|
2|Xi|

⌋
· |Xi| ≤

⌊
|Yi|
2

⌋
requests from Yi. Therefore there are at least ⌈|Yi|/2⌉ ≥ ⌈k/2⌉ requests not covered
after ⌊bk/2⌋ steps and hence a⌈k/2⌉ ≥ bk/2.

That concludes the proof of Theorem 1.5.

1.6 List Update problem

Before we move on to the general Online Mssc, we present a simplified version of
the problem called List Update, where each request contains only one element. In
this section, we will refer to each request as rt instead of Rt, indicating that we refer
to the requested element.

The classic algorithm for List Update is called Move-To-Front (Mtf). In
each step, it moves the requested element to the front of the list and it does not
perform any other actions in that step.

Theorem 1.7. Mtf is 4-competitive for the List Update problem against dynamic
adversary.

The following proof is based on the classic proof given by Sleator and Tarjan
[10], but is modified to work in the Dynamic OPT setting (where algorithms have
to pay for their movement as well).

Proof. Let us denote the input as I and its length bym. First, asMtf only moves rt
to the front, its number of swaps is equal to the number of elements before rt,
therefore Mtfmovt (I) =Mtfacct (I)− 1. We will therefore concentrate on the access
cost only.

In our proof, we will use amortized analysis and the potential function Φ. We
define its value after t-th request as

Φt = |{(x, y) : x is before y in Mtf and y is before x in Opt after t steps}|.

In our analysis, we split each step into two parts. In the first part, Mtf moves
rt and pays its cost, while Opt pays the access cost only. In the second part, Mtf
does nothing, while Opt moves its elements and pays for these movements.

1.6. LIST UPDATE PROBLEM 13

Let At denote the set of elements that are closer to the front of the list than rt
before t-th request in permutations of bothMtf andOpt and let Bt denote a similar
set, but with the elements that are closer only in the permutation of Mtf. Then,

Mtfacct (I) = |At|+ |Bt|+ 1, Optacct (I) ≥ |At|+ 1. (1.2)

Now, let us examine change in potential ∆Φt that is caused by moving rt to
the front of the list by Mtf. Only pairs with one of the elements being rt were
affected as the order of other elements did not change. All the elements from Bt
were counted in Φt−1 as they were before rt in Mtf and after it in Opt, and they
are not counted in Φt as rt moved in front of them in Mtf. On the other hand,
elements from At were not in Φt−1, but as rt moved in front of them in Mtf, they
are counted in Φt. As rt swapped places only with elements from At and Bt, no
other pairs were affected, and therefore

∆Φt = |At| − |Bt|. (1.3)

Now we combine (1.2) with (1.3).

Mtfacct (I) + ∆Φt = |At|+ |Bt|+ 1 + |At| − |Bt|
= 2 · |At|+ 1

≤ 2 ·Optacct (I)

Now we examine the part when Opt moves its elements. Let ∆ΦOptt denote change
of potential caused by those moves. Every swap made by Opt creates at most one
new pair to be added to Φ, therefore ∆ΦOptt ≤ Optmovt (I). That yields

Mtfacct (I) + ∆Φt +∆ΦOptt ≤ 2 ·Optacct (I) +Optmovt (I)
≤ 2 ·Optt(I).

When we sum over all requests, we obtain that Mtfacc(I)+Φm−Φ0 ≤ 2 ·Opt(I).
As both algorithms start from the same permutation, Φ0 = 0. Therefore,

Mtf(I) =Mtfacc(I) +Mtfmov(I)
≤ 2 ·Mtfacc(I)
≤ 2 · (Mtfacc(I) + Φm)

≤ 4 ·Opt(I).

Chapter 2

Online Learning

Now we move on to the online version of Mssc. We will start with the Online Learn-
ing model. In that model Opt is static and algorithms do not pay for their moves,
and therefore we are able to obtain the lowest upper bounds on the competitive
ratio. Known results are presented in Table 2.1 below.

Table 2.1: Known results for the Online Learning model

Online Learning
randomized deterministic
LB UB LB UB

exponential 1 1 + ε Ω(r) O(r)

polynomial 4 [5] 11.713 [7] Ω(r) [6] O(r) [7]

Note that all presented results are tight up to a constant factor. Key result in
this section is proving (1 + ε) exponential randomized upper bound by introducing
theWmr algorithm. The randomized polynomial-time algorithm was introduced by
Fotakis et al. [7], but is not discussed in detail here. Lower bound for randomized
polynomial-time algorithms is implied by the offline setting, namely Theorem 1.4.

We prove the deterministic lower bound of Ω(r) in Theorem 2.5. There ex-
ists a deterministic polynomial-time algorithm that matches this lower bound. It
was presented by Fotakis et al. [7] and it is a derandomization of the randomized
polynomial-time algorithm mentioned above. The deterministic exponential upper
bound is implied by the polynomial-time algorithm.

First, we want to describe a classic algorithm for the Online Learning model.
It is widely used in many fields of computer science and therefore known by many
names, such as the Randomized Weighted Majority algorithm (Wmr, Littlestone &
Warmuth [9]), the Hedge algorithm (Freund & Schapire [8]) or the Multiplicative
Weight Update algorithm (MWU, survey by Arora et al. [1]).

15

16 CHAPTER 2. ONLINE LEARNING

2.1 Experts setting

The idea of the algorithm Wmr is based on a very generic setting where, in every
round t, we choose a solution to a given problem from a given finite set of possible
solutions U . Each solution is represented by an “expert” that tries to convince us to
use it. In the randomized version of the problem, an algorithm produces a probability
vector pt that assigns every expert a probability that we are going to choose their
solution. Then, a penalty vector ℓt of size |U | is presented to the algorithm and its
expected cost for the round is (pt)⊤ · ℓt.

In our case, we want to choose the order of elements of our list. Therefore, each
expert corresponds to a permutation π of length n and in round t the algorithm
assigns it probability ptπ. Then, the request Rt = {y1, . . . , yr} is made. The loss for
each permutation π is defined as ℓtπ = posπ(Rt).

2.2 Wmr algorithm

To be able to calculate the probability vectors,Wmr assigns every expert π a weight
wπ ∈ [0, 1]. It is the measure of how much the algorithm trusts that expert and is
directly proportional to the probability assigned later to that π, which is simply
wπ /

∑n!
j=1wj . Then, after each round, weights are multiplied by βℓt , where β ∈

[0, 1] is a parameter called the learning rate. This follows the basic intuition that the
permutation with the highest penalty should have the highest decrease in probability.
Learning rate allows us to control how fast the algorithm changes its weights. Wmr
is presented in Algorithm 2.

Algorithm 2: Wmr

1 w1
i ← 1 for each i ∈ [n!]

2 for t = 1, . . . , T do
3 pti ← wt

i /
∑n!

j=1w
t
j for each i ∈ [n!]

4 return pt

5 read loss ℓt

6 wt+1
i ← wt

i · βℓti for each i ∈ [n!]

To prove an upper bound on the competitiveness of Wmr, we will use the
following theorem (based on Freund & Schapire [8]).

Theorem 2.1. Let pt, ℓt for t = 1, ..., T be probability and loss vectors of Wmr
described above and β ∈ [0, 1]. Then, for any expert k ∈ [n!]:

T∑
t=1

(pt)⊤ℓt ≤
ln(1/β) ·

∑T
t=1 ℓ

t
k + ln(n!)

1− β
.

Before we prove the theorem, let us look at its implications. The left side of
the inequality in the theorem is, as we established earlier, the cost of Wmr. On

2.2. WMR ALGORITHM 17

the other hand, as the theorem works for any expert k, it also works for the expert
representing the optimal permutation Opt, whose total cost is

∑T
t=1 ℓ

t
Opt.

Therefore, the cost ofWmr is upper-bounded by ln(1/β)
1−β ·Opt plus some additive

cost depending only on n and β. We set β = e−ε for some ε > 0 and obtain:

ln(1/β)

1− β
·Opt = ε

1− e−ε
·Opt

=
(1 + ε)ε

(1 + ε)− (1 + ε)e−ε
·Opt

≤ (1 + ε)ε

(1 + ε)− 1
·Opt (as e−x(1 + x) ≤ 1 for all x)

= (1 + ε) ·Opt.

Corollary 2.2. The Wmr algorithm is (1 + ε)-competitive for any ε > 0.

Now we proceed to prove Theorem 2.1.

Proof of Theorem 2.1. The proof will be based on the potential function Φ. For
any round t we define Φt as Φt =

∑n!
i=1w

t
i . First, we expand the left side of the

inequality in the theorem for any given round t:

(pt)⊤ℓt =
n!∑
i=1

ptiℓ
t
i =

n!∑
i=1

wt
iℓ

t
i∑n!

j=1w
t
j

=
1

Φt

n!∑
i=1

wt
iℓ

t
i.

Now we analyze the change of the potential in round t.

Φt+1 =
n!∑
i=1

wt+1
i =

n!∑
i=1

wt
i · βℓti

≤
n!∑
i=1

wt
i(1− (1− β)ℓti)

=
n!∑
i=1

wt
i − (1− β)

n!∑
i=1

wt
iℓ

t
i

= Φt − (1− β)Φt · (pt)⊤ℓt

≤ Φt · exp(−(1− β)(pt)⊤ℓt)

The first inequality follows from the fact that ar ≤ 1 − (1 − a)r for a ≥ 0 and
r ∈ [0, 1] by the Bernoulli inequality. The second one follows from 1 − x ≤ e−x for
all x. Applying the above to every t from 1 to T , we obtain the inequality

ΦT+1 ≤ Φ1 · exp

(
−(1− β)

T∑
t=1

(pt)⊤ℓt

)
.

Now fix any expert k ∈ [n!]. As wT+1
k = 1 · β

∑T
t=1 ℓ

t
k ,

exp

(
ln(β) ·

T∑
t=1

ℓtk

)
= β

∑T
t=1 ℓ

t
k = wT+1

k ≤ ΦT+1 ≤ Φ1 · exp

(
−(1− β)

T∑
t=1

(pt)⊤ℓt

)
.

18 CHAPTER 2. ONLINE LEARNING

Reorganizing the terms and using Φ1 = n!, we get

exp

(
(1− β)

T∑
t=1

(pt)⊤ℓt

)
≤ exp

(
− ln(β) ·

T∑
t=1

ℓtk

)
· n!.

Taking logarithms from both sides and dividing by 1− β,

T∑
t=1

(pt)⊤ℓt ≤
ln(1/β) ·

∑T
t=1 ℓ

t
k + ln(n!)

1− β
,

which concludes the proof.

Obviously, Wmr algorithm has exponential running time, as it changes n!

weights in every round. One may ask whether we need exponentially many opera-
tions. As was proved by Fotakis et al. [7], limiting ourselves only to polynomial-time
algorithms still allows to get constant upper-bound on competitive ratio.

Theorem 2.3. [7, Theorem 4] There exists a polynomial-time, randomized al-
gorithm for Mssc in Online Learning model that achieves a competitive ratio of
11.713(1 + ε).

2.3 Generalized Mssc

Definition 2.4. Generalized Min-Sum Set Cover (Gmssc) is a problem where
an algorithm maintains a permutation π of n elements. In each round t, it receives
a request of the form (Rt, kt) where Rt ⊆ {1, . . . , n} is a subset of elements of π and
kt ∈ {1, . . . , |Rt|}. Cost ℓtπ of the algorithm is defined as the position of the element
that is kt-th nearest from the beginning of π among elements of Rt.

Analogously to Mssc, in the randomized version of Gmssc, in each round the
algorithm returns a probability vector p on permutation space and its cost is defined
as p⊤ℓ. Mssc is a special case of Gmssc where kt = 1 for every t.

The advantage of algorithms that use experts is that they are independent of
exact characteristic of the problem. For example both Wmr itself and its analysis
do not rely on the way ℓt is calculated. Therefore, it is (1 + ε)-competitive also for
the Gmssc problem.

The algorithm described in Theorem 2.3 also works for Gmssc problem, al-
though it achieves a worse competitive ratio of 28(1 + ε) [7].

2.4 Lower bound for deterministic algorithms

Now we turn our attention to deterministic algorithms. It turns out that allow-
ing randomization is more important than exponential time in this case, as for
deterministic algorithms we can actually prove non-constant lower bound even for
exponential-time algorithms. The following proof is due to Fotakis et al. [6].

2.4. LOWER BOUND FOR DETERMINISTIC ALGORITHMS 19

Theorem 2.5. Any deterministic online algorithm for the Mssc problem has com-
petitive ratio at least (r + 1) · (1− r

n+1).

Proof. Let Alg be any deterministic online algorithm. We can choose a sequence I
of requests R1, R2, . . . , RT so that Rt is the set of the last r elements in the list of
Alg after t− 1 rounds. Thus,

Alg(I) = T · (n− r + 1). (2.1)

Now we proceed to estimate the overall cost of Opt. We will calculate the
average cost of all n! permutations, which is an upper bound on Opt. For every
request Rt, where t ∈ {1, . . . , T}, we will calculate the number of permutations π
that have cost exactly i, for every i ∈ {1, . . . , n− r + 1}.

Permutation π has to have an element of Rt on the i-th position and no elements
of Rt before it. Therefore, other r − 1 elements of Rt must be distributed among
the last n − i positions of π. There are

(
n−i
r−1

)
ways to do it. Once the positions

of elements of Rt are fixed, there are r! possible assignments of those elements to
positions, and (n − r)! assignments of other elements to their positions. They all
incur the same cost i. To sum up, there are exactly(

n− i

r − 1

)
r!(n− r)!

permutations with cost i, which means that

n−r+1∑
i=1

(
n− i

r − 1

)
r!(n− r)! = n!. (2.2)

Now we calculate total cost of Rt over all permutations.

Optt(I) =
n−r+1∑
i=1

i

(
n− i

r − 1

)
r!(n− r)!

=
n−r+1∑
i=1

n−r+1∑
j=i

(
n− j

r − 1

)
r!(n− r)!

=

n−r+1∑
i=1

(
n− i+ 1

r

)
r!(n− r)!

=
(n+ 1)!

r + 1
(by (2.2) for n′ = n+ 1 and r′ = r + 1)

The third equality holds because the inner sum is the number of permutations that
have cost greater or equal to i. Those permutations can be otherwise represented
as all the ways to place r elements of Rt among the last n − i + 1 elements of the
permutation. Total cost of Opt can be upper-bounded by:

Opt(I) ≤ T · 1
n!
· (n+ 1)!

r + 1
= T · n+ 1

r + 1
(2.3)

Combining (2.1) with (2.3) yields:

Alg(I)
Opt(I)

≥ T (n− r + 1) · (r + 1)

T (n+ 1)
= (r + 1) ·

(
1− r

n+ 1

)
.

20 CHAPTER 2. ONLINE LEARNING

As the Online Learning model places the most restrictions on Opt and Alg
does not pay for its moves, this lower bound applies also to Static OPT and Dynamic
OPT models. Therefore, all deterministic algorithms in this thesis will have Ω(r)
competitive ratio.

Chapter 3

Static Opt

In this section, we present known results for the OnlineMssc problem against Static
OPT both in randomized and deterministic setting in exponential time (Theo-
rem 3.1 and Theorem 3.9). The polynomial-time Algorithm Mae ([6]) (which is
2O(

√
logn·log r)-competitive in this setting) will be presented in the next chapter. All

of described results are based on work of Fotakis et al. [6] and Blum & Burch [3].

In this model, online algorithms compete against a static optimal algorithm.
More formally, for input I = R1, R2 . . . there is a set of offline algorithms, each of
whom sets its permutation before the first request and does not change it later. The
best such algorithm (the one with the lowest serving cost) is called static optimal
algorithm — here referred as Opt(I).

As in previous tables our results are in bold. The randomized polynomial
upper-bound is implied by the deterministic polynomial algorithm. We will prove
polynomial-time upper-bounds in Section 5.3.

randomized deterministic
LB UB LB UB

Static
OPT

exp. 1 1 + ε [3] Ω(r) O(r) [6]

poly. 4 [5]
O(r2) [2]

Ω(r)[6]
2O(

√
logn·log r) [6]
O(r4) [2]

O(r) (implied by
deterministic setting)

O(r) (this thesis)

Table 3.1: Known results for Online Mssc in the Static OPT setting.

3.1 Wmr-based algorithms

TheWmr algorithm has been presented in Section 2.2. Recall that the loss generated
by the k-th request equals the position of the first element of the requested set in
our permutation

ℓπ = posπ (Rk) .

21

22 CHAPTER 3. STATIC OPT

Having those definitions, we can proceed to presenting an exponential randomized
(1 + δ)-competitive algorithm for any constant δ > 0.

3.1.1 (1 + δ)–competitive randomized algorithm

Presented solution comes with combining Wmr with the results from the work of
Blum & Burch [3]. It is also described in [6].

The difference between the Online Learning and Static OPT models is the
movement cost paid by the algorithm. Results shown in [3] allow us to bound it.

Theorem 3.1. There exists an (1 + δ)-competitive algorithm for the Online Mssc
problem in the Static Opt setting based on Wmr algorithm.

First, we show a bound on the access cost.
Recall that wt

π is the value of wπ just before t-th request. For the requested set Rt

and probabilities pt maintained by Wmr, the expected access cost is:

E[Wmracct] =
∑
π∈[n!]

ptπ · posπ(Rt).

Recall that by Theorem 2.1, we have

E[Wmracc(I)] ≤ ln(1/β) ·Opt(I) + ln(n!)

1− β
. (3.1)

Assuming that any change between permutations costs 1 (we will justify this
assumption in Lemma 3.4), we can bound the movement cost of Wmr as well.
We start with analyzing the total variation distance d between two consecutive
distributions pt and pt+1 of Wmr, defined as:

d(pt, pt+1) =
∑

i:pti>pt+1
i

pti − pt+1
i .

Lemma 3.2. Let pt denote a distribution vector over all permutations used by Wmr,
and ℓt a vector of losses over all permutations. Then,

d(pt, pt+1) ≤ ln

(
1

β

)
pt · ℓt.

Proof. Let W t =
∑

π∈[n!]w
t
π. Then,

3.1. WMR-BASED ALGORITHMS 23

d(pt, pt+1) =
∑

i:pti>pt+1
i

pti − pt+1
i

=
∑

i:pti>pt+1
i

(
wt
i

W t
−

wt+1
i

W t+1

)

≤
∑

i:pti>pt+1
i

(
wt
i

W t
−

wt+1
i

W t

)

≤
∑
i∈[n!]

(
wt
i

W t
−

wt+1
i

W t

)

=
∑
i∈[n!]

wt
i

W t
·
(
1− βℓti

)
≤
∑
i∈[n!]

pti

(
ℓti ln

1

β

)

= ln

(
1

β

)
pt · ℓt

The last inequality follows by 1− ex ≤ −x.

Having (3.1) and Lemma 3.2 we can prove the following lemma:

Lemma 3.3. Expected movement cost of Wmr is at most

ln

(
1

β

)
·E[Wmracc].

Proof. In considered Mssc problem, we first serve a request, and only then we
can change the state. This implies that our algorithm pays pt · ℓt. Our expected
movement cost equals total variation distance from Lemma 3.2. Thus,

E[Wmrmovt] = d(pt, pt+1) ≤ ln

(
1

β

)
· ptℓt = ln

(
1

β

)
·E[Wmracct].

Combining (3.1) and Lemma 3.3 we can write:

E[Wmr(I)] ≤ (1 + ln(1/β)) · (ln(1/β)Opt(I) + ln(n!))

1− β
,

therefore Wmr is f(β)-competitive, where

f(β) =
(1 + ln(1/β)) · (ln(1/β))

1− β
.

Using ln(x) ≥ 1− 1
x , we obtain

f(β) ≤
1
β ·

1−β
β

1− β
=

1

β2
,

24 CHAPTER 3. STATIC OPT

which is arbitrarily close to 1 for β tending to 1.

The last thing before proving Theorem 3.1 is to check what happens when we are
not in a uniform space, but costs of the state changes are bounded by a constant D
(in our problem D ≤ n2).

Lemma 3.4. If the distance between states in our problem is bounded by a constant
D, then Wmr is (1 + δ)-competitive for any δ > 0.

Proof. Let W̃mr be an instance ofWmr algorithm which receives a loss vector scaled
by 1/D (ℓ̃ = ℓ

D). The W̃mr algorithm will produce probability distribution p̃.
By Theorem 2.1,

E[W̃mr
acc

(I)] ≤ ln(1/β) ·Opt(I) +D ln(n!)

D · (1− β)
. (3.2)

Combining Lemma 3.3 and the fact that a change of permutation costs at most D
(instead of 1) we obtain

E[W̃mr
mov

] ≤ D · ln
(
1

β

)
·E[W̃mr

acc
]

≤ ln

(
1

β

)
· ln(1/β) ·Opt(I) +D ln(n!)

1− β

As the algorithm (despite using ℓ̃ intentionally for calculating pt) has to pay ℓ for
access,

E[W̃mr(I)] ≤ (1 + ln(1/β)) · (ln(1/β)Opt(I) +D ln(n!))

1− β
, (3.3)

which concludes that Wmr is f(β)-competitive even in our nonuniform space.

This also concludes proof of Theorem 3.1.

3.2 Lazy-Rounding

The Lazy-Rounding algorithm proposed by Fotakis et al. [6] is (5r+2)-competitive,
and it is the best known deterministic non-polynomial algorithm in the Static
OPT setting. The algorithm is also based on Wmr.

3.2.1 Wmr base

This time the algorithm will use derandomized Wmr with a specific β = e−1/n3

parameter. Thus, by Theorem 2.1, using ln(x) ≥ 1− 1
x , for n ≥ 2:

E[Wmracc(I)] ≤ 5

4
Opt(I) + 2n4 lnn. (3.4)

By Lemma 3.3, we obtain the following observation.

3.2. LAZY-ROUNDING 25

Observation 3.5. Fix any steps t1 < t2. If d(pt1 , pt2) ≥ 1
n and β = e

−1

n3 then

t2−1∑
t=t1

E[Wmracct] ≥ n2.

The facts above will be used in the analysis of Lazy-Rounding.

3.2.2 Greedy-Rounding

Lazy-Rounding algorithm uses rounding schema called Greedy Rounding (Algo-
rithm 3). It transforms the probability distribution µ over permutations (µ pro-
duced by Wmr algorithm) and returns a permutation. However, Greedy Rounding
may produce unbounded moving cost.

Algorithm 3: Greedy Rounding [6]

1 R← [n]

2 for i = 1, . . . , ⌈nr ⌉ do
3 Si ← argmin{S⊆R:|S|=r}Eπ∼µ[posπ(S)]
4 Place the elements of Si from positions (i− 1) · r + 1 to i · r of ρ.
5 R← R \ Si

6 return ρ

Now we show that the access cost of Greedy Rounding is at most O(r) times
E[Wmracc]. To prove it, the following lemma will be useful.

Lemma 3.6. Let µ be a probability distribution over permutations and 1 ≤ k ≤ ⌈nr ⌉.
Let S1, . . . Sk be disjoint subsets of [n] of cardinality r. If Eπ∼µ[posπ(S1)] ≤ · · · ≤
Eπ∼µ[posπ(Sk)] then for every j ∈ {1, 2, . . . k}:

Eπ∼µ[posπ(Sj)] ≥
j + 1

2
.

Proof. We have

Eπ∼µ[posπ(Sj)]

≥ 1

j
·

j∑
l=1

Eπ∼µ[posπ(Sl)] (by Eπ∼µ[posπ(S1)] ≤ · · · ≤ Eπ∼µ[posπ(Sk)])

=
1

j

j∑
l=1

∑
π

Pr
µ
[π] · posπ(Sl)

=
1

j

∑
π

Pr
µ
[π] ·

j∑
l=1

posπ(Sl) (posπ(Sl) take j different positive values)

≥ 1

j

∑
π

Pr
µ
[π] · j(j + 1)

2

=
j + 1

2
.

26 CHAPTER 3. STATIC OPT

Theorem 3.7. Let µ be a distribution over permutations of Wmr at time t and let
ρ be the output of Algorithm 3 on µ. Then for any requested set R,

posρ(R) ≤ 2r ·Eπ∼µ[posπ(R)].

Proof. Let S1, S2 . . . S⌈n
r
⌉ be the sets from Algorithm 3. Let e ∈ Sk be the element

used by ρ to serve R. There are two cases:

1. If R = Sk, then by Lemma 3.6, Eπ∼µ[posπ(S)] ≥ k+1
2 .

2. If R ̸= Sk, then (
⋃k−1

ℓ=1 Sℓ) ∩R = ∅. Hence,

Eπ∼µ[posπ(R)] ≥ Eπ∼µ[posπ(Sk)] ≥
k + 1

2

Since posρ(R) ≤ k · r, we finally get

posρ(R)

Eπ∼µ[posπ(R)]
≤ 2 · kr

k + 1
≤ 2 · r.

3.2.3 Lazy-Rounding

Lazy-Rounding (given as Algorithm 4) serves the request first, and then sometimes
it changes its permutation. It simulates variables fromWmr and changes permuta-
tion only when d(πAlg, πWmr) ≥ 1

n . The time between two consecutive permutation
changes is called a phase. During a phase the moving cost of the algorithm is 0.

Algorithm 4: Lazy-Rounding [6]

1 start-phase← 1

2 for π ∈ [n!] do
3 w1

π ← 1

4 p1 ←distribution from Wmr algorithm (p1π = w1
π∑

π∈[n!] w
1
π
)

5 for t = 1, 2, 3 . . . do
6 if d(pt, pstart-phase) ≤ 1

n then
7 πt ← πt−1

8 else
9 πt ← Greedy Rounding(pt)
10 start-phase← t

11 Serve St using πt
12 for π ∈ [n!] do

13 wt+1
π ← wt

π · e
−πt(St)

n3

14 pt+1 ←distribution from Wmr algorithm (pt+1
π = wt

π∑
π∈[n!] w

t
π
)

The analysis of Lazy-Rounding cost starts with the following:

3.2. LAZY-ROUNDING 27

Lemma 3.8. Let p, p′ be two probability distributions over permutations.
If d(p, p′) ≤ 1

n , then for any R:

Eπ∼p′ [posπ(R)] ≤ 2 ·Eπ∼p[posπ(R)].

Proof.

Eπ∼p′ [posπ(R)]−Eπ∼p[posπ(R)] =
∑
π

p′(π) · posπ(R)−
∑
π

p(π) · posπ(R)

≤ n ·
∑

π:p′(π)>p(π)

(
p′(π)− p(π)

)
= n · d(p, p′)
≤ 1

Thus,
Eπ∼p′ [posπ(R)] ≤ 2 ·Eπ∼p[posπ(R)].

Now we can prove the following theorem:

Theorem 3.9. Lazy-Rounding algorithm is (5r + 2)-competitive in the Static OPT
model.

Proof. First, we bound the moving cost. By t1, t2 we denote the initial steps of
two consecutive phases. We know that d(pt1 , pt2) > 1

n (by the definition of algo-
rithm). From Observation 3.5 we get that between steps t1 and t2 it holds that
E[Wmracc] ≥ n2. Thus, by (3.4),

Lr(I)mov ≤ n2 ≤ E[Wmracc(I)] ≤ 5

4
Opt(I) + 2n4 lnn.

Now we can bound the access cost of a single phase [t1, t2):

Lracc(I) =
t2−1∑
t=t1

πt1(St)

≤
t2−1∑
t=t1

2r ·Eπt1∼pt1 (St) (by Theorem 3.7)

≤
t2−1∑
t=t1

2 · 2r ·Eπt∼pt(St) (by Lemma 3.8)

= 4r ·E[Wmracc(I)]

= 4r ·
(
5

4
Opt(I) + 2n4 ln(n)

)
(by (3.4))

= 5r ·Opt(I) + 8r · n4 ln(n)

Hence, the total cost of Lazy-Rounding is

Lr(I) = Lracc(I) + Lrmov(I) ≤
(
5r +

5

4

)
·Opt(I) + (8r + 2) · n4 lnn,

which concludes the proof.

Chapter 4

Dynamic OPT

This chapter contains known results for the Dynamic OPT setting. This time, for
every set of requests {Rt}, both Opt and Alg after serving a request can change
their permutation paying the Kendall tau distance between the old and the new
permutation.

Table 4.1 presents known results in this setting. All lower-bounds are implied
by previous settings. The randomized polynomial-time algorithm was proposed by
Bieńkowski and Mucha [2]. The O(r4) result was existential only. Deterministic
algorithm constitutes our contribution.

Table 4.1: Dynamic Opt known results

Dynamic OPT
randomized deterministic
LB UB LB UB

exponential 1 O(r2) [2] Ω(r) [6] O(r2) (this thesis)

polynomial 4 [5] O(r2) [2] Ω(r) [6]
O(r3/2 ·

√
n) [6]

O(r4) [2]
O(r2) (this thesis)

4.1 Algorithm Move-All-Equally

As a first example of a competitive algorithm we present Move-All-Equally. Mae (Al-
gorithm 5) is a deterministic polynomial-time algorithm proposed by Fotakis et
al. [6]. As an input, it takes a request sequence and the initial permutation. After
every request, the algorithm serves it and changes the permutation.

4.1.1 MAE against Static OPT

MAE is Ω(r2)-competitive and 2O(
√
logn·log r)-competitive against Static OPT.

29

30 CHAPTER 4. DYNAMIC OPT

Algorithm 5: Move-All-Equally [6]

1 for t = 1, 2, 3 . . . do
2 kt ← min{i|πt−1(i) ∈ Rt}
3 Decrease the index of all elements of Rt by kt − 1

Lemma 4.1. Mae is Ω(r2)-competitive in Static OPT setting.

Proof. In order to get cost r2 times greater that optimal, an adversary always asks
about the last r elements of a MAE permutation. For simplicity we will assume
that n

r is an integer. After
n
r requests the permutation of MAE is the same as

at the beginning. Thus, Opt can use n
r elements to serve all the requests and its

permutation will have them at the beginning. The Opt cost for every n
r requests is:

Opt(I) =

n
r∑

i=1

i =
(n
r
+ 1
) n

2r
≤ n

r
· n
r
,

while

Mae(I) =

n
r∑

i=1

n− r + 1 +

n∑
j=n−r+1

(n− r + 1)


≥ n

r
(r + 1)(n− r + 1).

Thus,

Mae(I)
Opt(I)

=
n
r (r + 1)(n− r + 1)

n
r ·

n
r

=
(r + 1)(n− r + 1)

n
r

= Ω(r2).

4.1.2 MAE against Dynamic OPT

It is shown in [6] that MAE is O
(
r3/2
√
n
)
-competitive against Dynamic OPT and

for r ≥ 3 it is Ω (r
√
n)-competitive. In this section, we only prove the first result.

First, we define algorithm MtfOPT . After request Rt, MtfOPT moves into
the first position element et — the one which Opt uses to serve Rt. We will use
MtfOPT instead of Opt in comparison. It is justified by the following lemma:

Lemma 4.2 ([6]). For any m and any requested sequence I = {Si}mi=1,

MtfOPT (I) ≤ 2 ·Opt(I).

Proof. In this proof we will use potential function Ψ equal the Kendall tau distance
between MtfOPT permutation (πMtfOPT) and Opt permutation (πOpt):

Ψt = dKT (π
t
MtfOPT

, πt
Opt).

4.1. ALGORITHM MOVE-ALL-EQUALLY 31

Let et be the element that Opt uses to serve St, Lt be the set of elements that are
before et in πt−1

MtfOPT
and in πt−1

Opt, Qt be the set of elements that are before et in
πt
MtfOPT

and after et in πt
Opt. We can bound MtfOPT cost and ∆Ψ:

MtfOPT (St) + Ψt −Ψt−1

= Lt +Qt + 1 + dKT (π
t
MtfOPT

, πt
Opt)− dKT (π

t−1
MtfOPT

, πt−1
Opt)

= Lt +Qt + 1 + dKT (π
t
MtfOPT

, πt
Opt)− dKT (π

t−1
MtfOPT

, πt
Opt)

+ dKT (π
t−1
MtfOPT

, πt
Opt)− dKT (π

t−1
MtfOPT

, πt−1
Opt)

≤ Lt +Qt + 1 + (Lt −Qt) + dKT (π
t−1
MtfOPT

, πt
Opt)

− dKT (π
t−1
MtfOPT

, πt−1
Opt)

≤ 2 · (Lt + 1) + dKT (π
t
Opt, π

t−1
Opt)

≤ 2 ·Opt(I)

The first inequality follows by

Lt −Qt ≥ dKT (π(t)MtfOPT
, π(t)Opt)− dKT (π(t−1)MtfOPT

, π(t−1)Opt).

The second one follows by the triangle inequality for Kendall tau distance. Moreover,
Opt pays at least Lt+1 for access et. Thus, summing over all t ∈ {1 . . .m} concludes
the proof.

Using the definition of MtfOPT , we can write the potential function defined
for time t:

Φ(t) =

n∑
j=1

αt
j · πt(j),

where:

• αt
j = 1 if element j is in first c =

√
n/r positions of MtfOPT , otherwise αt

j = 0

• πt is the permutation of Mae after request Rt.

Now we can prove the following theorem.

Theorem 4.3 ([6]). Move-All-Equally is O
(
r3/2
√
n
)
-competitive against Dynamic

OPT.

Proof. First, let us bound the access cost of MAE and potential changes. By kt we
denote the position of the first element from request St in πMae. Let us observe
that:

πt(j)− πt−1(j) ≤ r

Claim 4.4 ([6]).
n∑

j=1

(αt
j − αt−1

j) ≤ MtfOPT (t)

c
.

32 CHAPTER 4. DYNAMIC OPT

The inequality above follows by the fact that for any j ̸= et, αt
j ≤ αt−1

j and
αt
et − αt−1

et = 1 only if MtfOPT pays at least c for moving et. Thus,

Maeacc +Φ(t)− Φ(t− 1) = kt +Φ(t)− Φ(t− 1)

= kt +
n∑

j=1

αt
j · post(j)−

n∑
j=1

αt−1
j · post−1(j)

= kt − αt
etkt +

∑
j ̸=et

αt
j · (post(j)− post−1(j))

+
n∑

j=1

(αt
j − αt−1

j) · post−1(j)

≤ r · c+ MtfOPT (t)

c
· n (as αt

et = 1).

Now we can bound the cost of Mae:

Maet(I) =Maeacct (I) +Maemovt (I)
= kt + rkt

≤ (r + 1)
(
rc+MtfOPT t(I) ·

n

c
+Φ(t− 1)− Φ(t)

)
≤ (r + 1)

(√
nr(1 +MtfOPT t(I)) + Φ(t− 1)− Φ(t)

)
Summing over t ∈ {1 . . .m}, we get:

Mae(I) ≤ (r + 1)
(√

nr(1 +MtfOPT (I)) + Φ(0)− Φ(m)
)

As Φ(0) ≤ Φ(m),

Mae(I) = O
(
r3/2
√
n
)
·MtfOPT (I) = O

(
r3/2
√
n
)
·Opt(I).

4.2 Exponential Caching

The Exponential Caching problem was defined by Bieńkowski and Mucha [2]. It is
similar toMssc, although this time instead of list of elements there is a list of chunks
S0, S1, . . . Sm. Inside chunk Si there are 2i elements (size(Si) = 2i). Requests are
defined as in Mssc — at time t there comes request Rt. Algorithm has to serve
request Rt paying access cost depending on the smallest chunk containing an element
from Rt, and then can reorganize the elements paying move cost. Costs are defined
below:

• access cost for Rt is min{Si|x∈Rt∩Si ̸=∅} size(Si),

• cost of moving element x from Si to Sj equals max{size(Si), size(Sj)}.

Moreover we will use p(x) to denote the index of chunk containing element x.
There is a reduction between EC and Mssc — algorithm for EC can be used

4.3. LAZY-MOVE-ALL-TO-FRONT ALGORITHM 33

Routine 6: fetchRand(z), where z is any element [2]

1 if pos(z) > 0 then
2 ℓ← pos(z)
3 for i = ℓ− 1, . . . , 2, 1 do
4 ai ← random element of Si

5 move z from Sℓ to S0

6 for i = ℓ− 1, . . . , 2, 1 do
7 move ai from Si to Si+1

8 b(z)← 0

Algorithm 7: Lazy-Move-All-To-Front
Input: Set R = {x, y0, y1, . . . , yq−2}, where q ≤ r and p(x) ≤ p(yi) for
i ∈ [q − 2],

1 pay access cost 2p(x)

2 execute fetchRand(x)
3 for i = 0, 1, . . . , q − 2 do
4 b(yi)← b(yi) + 2p(x)

5 while exists z such that b(z) ≥ 2p(z) do
6 execute fetch(z)

to solve Mssc with a loss of a constant factor [2]. The core of the reduction is
the observation that any list from Mssc can be trivially transformed into chunks
(first element into chunk S0, the following two into chunk S1 and so on). In the EC
problem, algorithm does not care about the order of the elements inside a chunk,
but it pays more for changing the chunk of element.

4.3 Lazy-Move-All-to-Front Algorithm

The O
(
r2
)
-competitive randomized algorithm called Lazy-Move-All-to-Front (Al-

gorithm 7) proposed by Bieńkowski and Mucha [2] solves the Exponential Caching
problem. The idea behind the algorithm is to accumulate budgets b(·) for requested
elements and move them towards front only when their budgets reach a specific
value — for element z this value equals 2p(z).

Our algorithm is based on Lazy-Move-All-to-Front — we derandomized it and
modified it to solve Mssc directly without an intermediate Exponential Caching
problem. Thus, we omit here all the proofs which are similar in our version presented
in the next chapter.

Chapter 5

Our contribution

In this chapter, we introduce the polynomial algorithm called Deterministic-
Lazy-Move-All-To-Front (Dlma). We prove that it is O(r)-competitive against
the static adversary and O(r2)-competitive against the dynamic adversary. Both of
those bounds are the best known for polynomial, deterministic algorithms in their
respective models. The result for the Static OPT is asymptotically optimal and
it also implies a randomized O(r)-competitive solution, which is better than any
previously known randomized algorithm.

Without loss of generality, we assume that the number of elements n is 2h − 1,
where h ≥ 1 is an integer. To see this, observe that it is always possible to add
dummy elements that are never in any requested set so that n is of this form; these
elements are kept by Opt at its list end, and thus they do not increase its cost.
After such modification, the number of elements remains asymptotically the same.

5.1 Definition of Dlma

Our algorithm Deterministic-Lazy-Move-All-To-Front is inspired by the one
presented by Bieńkowski and Mucha [2] sketched in the previous chapter. We skip
the reduction to Exponential Caching problem, therefore our algorithm does not
divide its list into chunks of exponential size. That creates a problem, as in Expo-
nential Caching, when we move an element z to the front, only a fraction of other
elements are moved back. Therefore even if the budgets of some of the moving ele-
ments could increase significantly, there was a small probability that these elements
would be in fact chosen to move. In our case, all elements before z are moved back
one spot. Therefore we introduce new components to the potential to amortize the
cost of moving these elements back.

As mentioned above, we do not use chunks in the definition of our algorithm.
However, we define the set of virtual chunks and use them in our proof. In the
following description, we skip t subscripts in the notations and for element x we use
pos(x) = 2p(x) + q(x) as the current value of the position of element x, and Si as
the current elements on positions from {2i, 2i, . . . , 2i+1 − 1}, that is contents of an

35

36 CHAPTER 5. OUR CONTRIBUTION

Routine 8: fetch(z), where z is any element

1 if pos(z) > 0 then
2 ℓ← pos(z)
3 for i = ℓ− 1, . . . , 2, 1 do
4 swap(πi, πi+1)

5 b(z)← 0

Algorithm 9: Deterministic-Lazy-Move-All-To-Front
Input: Set R = {x, y0, y2, . . . , yq−2}, where q ≤ r and pos(x) ≤ pos(yi)
for i ∈ [q − 2], current permutation π of elements

1 pay access cost = pos(x)
2 execute fetch(x)
3 for i = 0, 1, . . . , q − 2 do
4 b(yi)← b(yi) +

1
r · pos(x)

5 while exists z such that b(z) ≥ pos(z) do
6 execute fetch(z)

appropriate virtual chunk. Our algorithm maintains budget b(z) for any element
z ∈ U . Initially, all budgets are set to zero.

At certain times, Dlma wants to move an element z to the front. Therefore it
needs to push all elements in front of z back one spot. It does so using a procedure
fetch(z) defined in Routine 8. This procedure goes through elements of π from
the position of z to the front and swaps z with them one by one. It also resets the
budget of z to zero.

In order to serve a request R = {x, y0, y1, . . . , yr−2} (where for all yi, pos(x) <
pos(yi)), Dlma executes routine fetch(x). After that, the element x is at the front
of the list. It would be natural to move all the other requested elements towards
the front of the list, however Dlma does so in lazy manner — similarly to the Lma
algorithm. Instead of moving yi ∈ R, Dlma increases its budget and moves it to the
front once its budget reaches certain threshold. The details are given in Algorithm 9.

5.2 Termination

First, we show that Algorithm 9 terminates after every request. If an element z
satisfies b(z) ≤ pos(z), we will call its budget controlled, otherwise we will call it
uncontrolled.

Observation 5.1. Executing fetch(z) makes the budget of z controlled and it does
not cause budgets of other elements to become uncontrolled.

Proof. At the beginning of routine fetch(z) element z is moved to the front and
the first pos(z)− 1 elements have their positions increased without budget change,

5.3. COMPETITIVENESS IN THE STATIC OPT MODEL 37

therefore their budgets can only become controlled. The budget of element z is set
to 0 and also becomes controlled.

By the observation above, the number of elements with uncontrolled budgets
decreases with each iteration of the while loop in Line 5 of Algorithm 9. Thus,
processing a set Rt by algorithm Dlma terminates.

5.3 Competitiveness in the Static OPT model

5.3.1 Potential function

Analyzing the competitive ratio of Dlma, we compare the cost of our algorithm
to the one of Opt — optimal offline solution. As mentioned above, we use pos to
denote the current position in permutation of Dlma and, respectively, by pos∗ we
denote the position in current permutation of Opt.

In our analysis, we use five parameters: α = 13, γ = 27r, β = 27r + 54,
κ = ⌈log β⌉, ξ = 2. Our analysis does not depend on the specific values of these
parameters, but we require that they satisfy the following relations.

Fact 5.2. Parameters α, β, γ, κ and ξ satisfy the following relations: α ≥ 13,
γ ≥ r · (14 + α), β ≥ 14 + α + (1 + 1/r) · γ, ξ ≥ 2. Furthermore, κ is an integer
satisfying 2κ ≥ β.

In competitive analysis, we use amortized cost. To do so we define potential for
any element z ∈ U as

Φz =


α · b(z) if p(z) ≤ p∗(z) + κ− 1,

α · b(z) + ξ · β · q(z) if p(z) = p∗(z) + κ,

β · pos(z)− γ · b(z) + ξ · β · q(z) if p(z) ≥ p∗(z) + κ+ 1.

We also define the total potential as Φ =
∑

z∈U Φz.

We use ∆ notation to denote the cost changes referring to currently analyzed
action of algorithmsDlma, Opt and potential, e.g., ∆Dlma, ∆Opt, ∆Φ. We show
that, for every step, it holds that ∆Dlma +∆Φ ≤ O(r) ·∆Opt. The competitive
ratio of O(r) will then follow by summing this relation over all steps of the input.

5.3.2 Budget invariant

First, we upper-bound the budgets.

Observation 5.3. At any time, for any element z ∈ U , it holds that b(z) ≤ (1 +

1/r) · pos(z).

Proof. Note that, by Observation 5.1 and the while loop in Lines 5–6 of Algorithm 9,
between requests all the budgets are controlled (b(z) ≤ pos(z) for any element z).

38 CHAPTER 5. OUR CONTRIBUTION

Within a step, the budget of an element may be increased in Line 4 by at most
1/r · pos(x). The only elements which can have their budgets increased are yi from
request R. Thus for yi its new budget is bounded by pos(yi) + 1/r · pos(x), which
is at most (1 + 1/r) · pos(yi) as pos(x) ≤ pos(yi).

By Fact 5.2, it is true that β ≥ (1+1/r)·γ. Combining that with Observation 5.3
and the potential definition yields the following claim.

Corollary 5.4. At any time, Φz ≥ 0 for any element z.

5.3.3 Analysis of operation fetch

To analyze the amortized cost associated with a single operation fetch, we start
with calculating the changes in the potential due to a movement of elements that
move one position further from the start of the list.

Lemma 5.5. Whenever Dlma executes operation fetch(z), for any element x,
initially satisfying pos(x) < pos(z):

∆Φx ≤


0 if p(x) ≤ p∗(x) + κ− 1,

ξ · β if p(x) = p∗(x) + κ and p′(x) = p∗(x) + κ,

2p(x) · (2β − ξβ) + ξβ if p(x) = p∗(x) + κ and p′(x) = p∗(x) + κ+ 1,

(ξ + 1) · β if p(x) ≥ p∗(x) + κ+ 1,

where pos(x) = 2p(x) + q(x) is the position of x before the move and pos(x) + 1 =

2p
′(x) + q′(x) is the position of x after the move.
For ξ = 2 the third case is equal to ξβ.

Proof. Let us examine the cases one by one.

• In the first case, if p′(x) ≤ p∗(x) + κ − 1, then Φx = α · b(x) both before and
after the move. As the budget does not change, neither does the potential.
The only time when that is not the case is when p′(x) = p∗(x) + κ, but then
pos(x) = 2p(x)+1 − 1, and therefore pos(x) + 1 = 2p(x)+1, q′(x) = 0, so the
potential does not change.

• In the second case, the budget of x is unchanged, so ∆Φx = ξβ(q′(x)−q(x)) =

ξβ.

• In the third case, as element x changed chunks after the move, it means that
pos(x) = 2p(x)+1 − 1. Therefore q′(x) = 0 and q(x) = 2p(x) − 1, so:

∆Φx = β · 2p(x)+1 − γ · b(x) + ξβ · 0− α · b(x)− ξβ(2p(x) − 1)

≤ β · 2p(x)+1 − ξβ(2p(x) − 1)

= 2p(x)(2β − ξβ) + ξβ.

5.3. COMPETITIVENESS IN THE STATIC OPT MODEL 39

• In the last case, we have:

∆Φx = β · (pos(x) + 1− pos(x))− γ(b(x)− b(x)) + ξβ(q′(x)− q(x))

≤ β + ξβ.

Lemma 5.6. Whenever Dlma executes operation fetch(z), it holds that ∆Dlma+
∆Φ ≤ 13 · pos(z)− g, where g is the value of Φz right before this operation.

Proof. First, we estimate ∆Dlma due to fetch(z). The procedure fetch moves z
to the beginning of the permutation and the elements from before pos(z) towards
the end of the list. Thus, the associated cost is

∆Dlma = pos(z). (5.1)

It remains to analyze the potential change for all pos(z) moved elements. The
operation fetch(z) resets the budget of z to 0. By definition, the potential Φz after
the movement is α · b(z), so it is also equal to 0. Thus, by the lemma assumption
on the starting value of Φz,

∆Φz = −g. (5.2)

Finally, by Lemma 5.5, ∆Φx ≤ (ξ+1) ·β. The same lemma states that ∆Φx ≥ 0

only if
p(x) ≥ p∗(x) + κ. (5.3)

We can observe that in chunk Si there can be at most 2 · 2i−κ elements that sat-
isfy (5.3). Therefore the total number of such elements is at most

∑p(z)
i=0 2 · 2i−κ ≤

4 · 2p(z)−κ. Combining that with (5.1) and (5.2) yields:

∆Dlma+∆Φ = ∆Dlma+
∑

x:pos(x)<pos(z)

∆Φx +∆Φz

≤ pos(z) + 4 · 2p(z)−κ · (ξ + 1)β − g

≤ pos(z) + 12 · 2p(z)−κ · β − g

≤ pos(z) + 12 · 2p(z) − g (by Fact 5.2)

≤ 13 · pos(z)− g.

5.3.4 Amortized cost of Dlma

Now we may split the cost of single Dlma step into parts incurred by Lines 1–4 and
Lines 5–6 and bound them separately.

Lemma 5.7. Whenever Dlma executes Lines 5–6 of Algorithm 9, it holds that
∆Dlma+∆Φ ≤ 0.

Proof. Let z be the element moved in Line 6. We want to use Lemma 5.6, and
therefore we need to lower bound the value Φz of the potential right before operation
fetch(z) is executed in Line 6. As the element z is moving, Line 5 guarantees that

40 CHAPTER 5. OUR CONTRIBUTION

b(z) ≥ pos(z). Furthermore, b(z) ≤ (1 + 1/r) · pos(z) by Observation 5.3. By the
potential definition,

Φz ≥ min{α · b(z) + ξ · β · q(z) , β · pos(z)− γ · b(z) + ξ · β · q(z)}
≥ min{α · b(z) , β · pos(z)− γ · b(z)}
≥ min

{
α , β −

(
1 + 1

r

)
· γ
}
· pos(z)

≥ 13 · pos(z) (by Fact 5.2).

By Lemma 5.6, ∆Dlma+∆Φ ≤ 13 · pos(z)− Φz ≤ 0.

Lemma 5.8. Fix any step and consider its first part, where Dlma pays for its access
and movement costs, whereas Opt pays for its access cost. Then, ∆Dlma+∆Φ ≤
(14 + α) · 2κ ·∆Opt = O(r) ·∆Opt.

Proof. Let R = {x, y0, . . . , yq−2} be the requested set, where q ≤ r and pos(x) <

pos(yi) for any i ∈ [q − 1]. Let Φx,Φy0 , . . . ,Φyq−2 be the potentials of elements
from R just before the request.

It suffices to analyze the amortized cost of Dlma in Lines 1–4, as the cost in
the subsequent lines is at most 0 by Lemma 5.7. The access cost paid by Dlma
is pos(x) and by Lemma 5.6, the amortized cost of fetch(x) is 13 · pos(x) − Φx.
Therefore,

∆Dlma+∆Φ ≤ 14 · pos(x)− Φx +
∑

i∈[q−1]∆Φyi . (5.4)

As b(yi) grows by 1/r · pos(x) for any i ∈ [q − 1], and those elements do not move,

∆Φyi ≤ α · 1r · pos(x) for any i ∈ [q − 1]. (5.5)

Finally, by Corollary 5.4,
Φx ≥ 0. (5.6)

Let w ∈ R be the element with the smallest index in the solution of Opt. That
is, ∆Opt = pos∗(w).

Assume first that p(x) ≤ p∗(w)+κ. By (5.4), (5.5), and (5.6), ∆Dlma+∆Φ ≤
≤ (14 + (q − 1) · α/r) · pos(x) ≤ (14 + α) · 2κ ·∆Opt, and thus the lemma follows.

Therefore, in the remaining part of the proof, we assume that p(x) > p∗(w)+κ

and we show that, in such case, ∆Dlma+∆Φ ≤ 0. We consider two cases.

• If w = x, we may use a stronger lower bound on Φx, i.e., Φx ≥ β · pos(x) −
γ · b(x) ≥ (β − (1 + 1/r)γ) · pos(x) (cf. Observation 5.3). Together with (5.4)
and (5.5), this yields

∆Dlma+∆Φ ≤ (14 + (q − 1) · α/r − β + (1 + 1/r)γ) · pos(x)
≤ (14 + α− β + (1 + 1/r)γ) · pos(x).

• If w = yj for some j ∈ [q − 1], then as p(yj) ≥ p(x) > p∗(yj) + κ, we may use
a stronger upper bound on ∆Φyj , namely ∆Φyj ≤ −γ · 1/r · pos(x). Together
with (5.4), (5.5) (for i ̸= j) and (5.6), this yields

∆Dlma+∆Φ ≤ (14 + (q − 2) · α/r − γ/r) · pos(x).

5.4. COMPETITIVENESS IN THE DYNAMIC OPT MODEL 41

In either case, Fact 5.2 together with q ≤ r ensures that ∆Dlma+∆Φ ≤ 0.

Theorem 5.9. Dlma is O(r)-competitive in the Static OPT model.

Proof. Fix any input I and consider any step t. Let Φt denote the potential right
after step t, and Φ0 be the initial potential. By Lemma 5.8,

Dlmat(I) + Φt − Φt−1 = O(r) ·Optt(I). (5.7)

By summing (5.7) over all m steps of the input, we obtain that Dlma(I) +
Φm − Φ0 ≤ O(r) · Opt(I). As the initial potentials of all elements are 0 and the
final potentials are non-negative by Corollary 5.4, Dlma(I) ≤ O(r) ·Opt(I).

Theorem 5.10. There exist a polynomial, deterministic O(r)-competitive algorithm
for the Mssc problem in the Static OPT setting.

5.4 Competitiveness in the Dynamic OPT model

Now we move on to compare Dlma against dynamic adversary. First, we establish
an an offline approximation of Opt that will be easier to analyze.

5.4.1 Mtf-based approximation of Opt

We say that an algorithm is move-to-front based (Mtf-based) if, in response to Rt,
it chooses exactly one of the elements from Rt, brings it to the front of the list and
does not perform any further actions.

Lemma 5.11. For any input I for the Mssc problem there exists an (offline) Mtf-
based solution Mtfb such that Mtfb(I) ≤ 4 ·Opt(I)

Proof. Based on the actions ofOpt on I = (π0, R1, . . . , Rm), we may create an input
J = (π0, R

′
1, . . . , R

′
m) where R′

i is a singleton set containing exactly the element
from Ri that Opt has nearest to the list front.

Clearly, Opt(J) = Opt(I). Furthermore, J is an instance of the List Update
problem, for which we have shown in Section 1.6 that moving the requested element
to the list front is a 4-approximation. Thus, Mtfb(J) ≤ 4 ·Opt(J). Finally, we
observe that reordering actions of Mtfb(J) can be also applied to input I. While
the movement cost remains then the same, the access cost can be only smaller, i.e.,
Mtfb(I) ≤Mtfb(J). The lemma follows by combining the shown inequalities.

5.4.2 Movement of OPT

In our analysis we will divide each step into two parts. In the first part, Opt pays
only its access cost and Dlma makes its moves and pays both its access cost and
movement cost. As Opt does not move in this part, its cost is the same as the cost

42 CHAPTER 5. OUR CONTRIBUTION

of an entire step in Static OPT setting and was calculated in Lemma 5.8. In the
second part of the step, Dlma does nothing while Opt makes its moves and pays
its movement cost. We want to upper bound the change of potential incurred by
those moves with the movement cost of Opt.

Lemma 5.12. Fix any step and consider its second part, where Dlma does nothing,
whereas Opt moves elements and pays for their movement. Then ∆Dlma+∆Φ =

O(r2) ·∆Opt

Proof. As we proved in Lemma 5.11, instead on focusing on Opt, we can focus on
its Mtf-based approximation that always moves elements directly to the front of
the list. We focus on a single element z moved by Opt. Assume that Opt changes
its position from pos(z) to 0.

The definition of Φx is divided into three cases, depending on the relation be-
tween p(x) and p∗(x) + κ. If that relation remains untouched by the movement, then
Φx remains constant. Therefore let us consider cases when that relation changes.

Apart from element z, all elements affected by movement of z move one spot
further from the front of the list, which means that their p∗(x) can only increase by
one. That yields three possible changes in value of Φx. We will consider them one
by one.

• From p(x) = p∗(x) + κ to p(x) < p∗(x) + κ.

∆Φx = α · b(x)− α · b(x)− ξβ · pos(x) ≤ 0

• From p(x) > p∗(x) + κ to p(x) = p∗(x) + κ.

∆Φx = α · b(x) + ξβ · pos(x)− β · pos(x) + γ · b(x)− ξβ · pos(x)
= (α+ γ) · b(x)− β · pos(x)
≤ (α+ γ − β) · pos(x) ≤ 0

• From p(x) > p∗(x) + κ to p(x) < p∗(x) + κ.

∆Φx = α · b(x)− β · pos(x) + γ · b(x)− ξβ · pos(x)
≤ (α+ γ) · b(x)− β · pos(x) ≤ 0

All the above inequalities are implied by Fact 5.2 and the fact that pos(x) ≤ b(x)

during the move of Opt. Therefore, for all elements possibly except of z the change
in potential is non-positive. We now focus only on z.

Let us consider element z that is transported by Opt to the front of its list. As
p∗(z) can only decrease, for the potential to change, the condition p(z) ≤ p∗(z) + κ

had to be satisfied prior to the move. Therefore, pos(z) ≤ 2 · 2κ · pos∗(z), which
yields:

∆Φz ≤ |α · b(z)− β · pos(z) + γ · b(z)− ξβ · q(z)|
≤ (2α+ β + 2γ + ξβ) · pos(z)
≤ (2α+ β + 2γ + ξβ) · 2 · 2κ · pos∗(z)
= O(r2) ·∆Opt.

5.5. LOWER BOUND 43

The last equality follows as the cost of Opt associated with moving z is the
number of swaps needed to put it in the front, namely pos∗(z). The lemma follows
as ∆Dlma = 0 in the second part of a step.

Theorem 5.13. Dlma is O(r2)-competitive against dynamic adversary.

Proof of the above theorem is the same as proof of Theorem 5.9, but instead
of only Lemma 5.8 we sum over both Lemmas 5.8 and 5.12, therefore obtaining a
competitive ratio of O(r2) instead of O(r).

Theorem 5.14. There exist a polynomial, deterministic O(r2)-competitive algo-
rithm for the Mssc problem in Dynamic OPT setting.

5.5 Lower Bound

One of the major changes in algorithm Dlma (Algorithm 9) compared to Lma
(Algorithm 7 of [2]) is that in line 4 we increase budgets of elements not by the
position of x, pos(x), but just by 1/r·pos(x). One can wonder whether changing 1/r
to yet another value can improve the competitive ratio again. We will prove that
answer to this question is negative.

Definition 5.15. We call an algorithm Dlma-like if it works the same as Algo-
rithm 9, with line 4 changed to b(yi)← b(yi) + 1/c · pos(x) for some integer c > 0.

Lemma 5.16. Every Dlma-like algorithm achieves competitive ratio Ω(r2) in the
Dynamic OPT setting.

Proof. Let Alg be any Dlma-like online algorithm with a given value of c. Let T =

c+ 1, and we set the number of elements n as

n = r · (T + r − 1). (5.8)

This value is chosen so that n is divisible by r and satisfies

n ≥ rc+ r2. (5.9)

Both of those properties will be useful in the proof later.

An adversary creates a request sequence by always requesting the last r elements
of the current permutation of Alg. We observe that during each of the first T − 1

requests, only the element on position n− r + 1 moves. Budgets of all elements on
positions from n−r+2 to n increase, but remain too small to incur their movement.
After the T -th request, all their budgets become uncontrolled, as

T · 1
c
· (n− r + 1) =

(
1 +

1

c

)
· (n− r + 1)

≥ n+
n

c
− r − r

c

≥ n+ r +
r2

c
− r − r

c
(by (5.9))

≥ n (as r ≥ 1).

44 CHAPTER 5. OUR CONTRIBUTION

Therefore all these r−1 elements move. After T requests, the budgets of all elements
are zero, and all the elements that occurred in any requests occupy the first T +r−1

spots on the list of Alg.

By the above reasoning, we can divide elements of the list into r disjoint sets
X1, X2, . . . , Xr, each of size T + r − 1. Each set corresponds to the T consecutive
requests, after which elements of that set occupy the front of the list of Alg. We
will call such sequence of T requests a phase.

As the Algorithm 9 does not specify the order in which it fetches the elements
when multiple of them have uncontrolled budgets at the same time, we assume that
it keeps their relative order. Therefore the i-th phase moves the last r − 1 elements
of Xi in front of the other ones and does not permute elements of Xi in any other
way. That leads to the following observation.

Observation 5.17. Let x1, x2, . . . , xT+r−1 be the elements from Xi before the start
of Alg. Then for any phase j there exists an index k ∈ {1, ..., T + r− 1} such that
the elements of Xi are ordered as follows in the list of Alg after the j-th phase:
xk+1, xk+2, . . . , xT+r−1, x1, x2, . . . , xk.

By Observation 5.17, if we take every (r − 1)-th element of Xi, for each phase
in which the requests contain elements from Xi there is one element among the ones
we chose that is in all of the requests. Therefore Opt can care only about those
⌊(T + r − 1)/(r − 1)⌋ elements of Xi.

After r phases, elements from X1 are again at the end of the list. Therefore by
the above reasoning the optimal algorithm can choose ⌊(T +r−1)/(r−1)⌋ elements
from each Xi and bring these elements to the front of its list at the beginning of the
sequence, keeping the rest of the elements in any order. This operation is performed
only once, at the beginning, and therefore its cost is negligible with long enough
sequences of requests. Then in any phase Opt can bring to the front of the list the
element that occurs in all of the requests in that phase. It incurs a movement cost
of at most r · ⌊(T + r − 1)/(r − 1)⌋ ≤ 2T + r, and then the access cost of all the
requests of the phase is T . Therefore the total cost of m phases for Opt is at most
m · (3T + r).

Algorithm Alg pays access cost n − r + 1 for every request and additionally
moves r−1 of its last elements to the front at the end of the phase. Therefore its total
cost for a single phase is equal to T ·(n−r+1)+

∑n
i=n−r+2 i ≥ T (n−r+1)+r(n−r+1).

Summing it up, for the input I containing of m phases:

Alg(I)
Opt(I)

≥ m · (T + r) · (n− r + 1)

m · (3T + r)

≥ min

{
(T + r) · (n− r + 1)

4T
,
(T + r) · (n− r + 1)

4r

}

First element in the above minimum is equal at least Ω(n) which, by (5.9) is

5.5. LOWER BOUND 45

Ω(r2). For the second element:

(T + r) · (n− r + 1)

4r
≥ (T + r) · n

8r
(by (5.9))

≥ (T + r) · (T + r − 1)

8
(by (5.8))

= Ω(r2),

which shows that the competitive ratio of Alg is at least Ω(r2).

Chapter 6

Conclusions

This paper presents new results for two settings of Mssc. Our competitive ratio
does not depend on the list size and is, as far as we know, the best proven so far.

Although our work presents known results for many settings of Online Mssc,
there are still many open problems. The majority of lower bounds from Table 1.3
are implied by easier settings or even the offline version. Even though in the Online
Learning setting and the deterministic setting of Static OPT the gap between lower
and upper bounds is relatively small, there is still room for improvement.

In the Dynamic OPT setting there are still significant gaps between lower and
upper bounds. The best known randomized algorithm is not much better than
its deterministic version, and known inefficient exponential algorithms also do not
produce better competitive ratios despite mentioned gap.

Our study of algorithms based on bringing some of the requested elements to
the front suggest that any improvement of Dynamic OPT upper bound requires a
fresh point of view — manipulating chunks, budgets and thresholds for movement
do not seem to be useful.

47

Bibliography

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing Systems,
8(1):121–164, 2012.

[2] Marcin Bieńkowski and Marcin Mucha. An improved algorithm for online
reranking. CoRR, abs/2209.04870, 2022.

[3] Avrim Blum and Carl Burch. On-line learning and the metrical task system
problem. Machine Learning, 39(1):35–58, 2000.

[4] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 1998.

[5] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set
cover. Algorithmica, 40(4):219–234, 2004.

[6] Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis,
and Manolis Vardas. The online min-sum set cover problem. In 47th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), pages
51:1–51:16, 2020.

[7] Dimitris Fotakis, Thanasis Lianeas, Georgios Piliouras, and Stratis Skoulakis.
Efficient online learning of optimal rankings: Dimensionality reduction via gra-
dient descent. In 33rd Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 7816–7827, 2020.

[8] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

[9] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Information and Computation, 108(2):212–261, 1994.

[10] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2):202–208, 1985.

49

	Introduction
	Problem description
	Competitive analysis
	Previous results
	Our contributions
	Offline scenario
	List Update problem

	Online Learning
	Experts setting
	Wmr algorithm
	Generalized Mssc
	Lower bound for deterministic algorithms

	Static Opt
	Wmr-based algorithms
	(1+d)–competitive randomized algorithm

	Lazy-Rounding
	Wmr base
	Greedy-Rounding
	Lazy-Rounding

	Dynamic OPT
	Algorithm Move-All-Equally
	MAE against Static OPT
	MAE against Dynamic OPT

	Exponential Caching
	Lazy-Move-All-to-Front Algorithm

	Our contribution
	Definition of Dlma
	Termination
	Competitiveness in the Static OPT model
	Potential function
	Budget invariant
	Analysis of operation fetch
	Amortized cost of Dlma

	Competitiveness in the Dynamic OPT model
	Mtf-based approximation of Opt
	Movement of OPT

	Lower Bound

	Conclusions
	Bibliography

