
Estimating probability distributions
using stratified discrete normalizing flows

(Szacowanie rozkładów prawdopodobieństwa
z użyciem stratyfikowanych dyskretnych modeli przepływu)

Mateusz Basiak

Praca inżynierska

Promotor: dr Rafał Nowak

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

5 lipca 2023

Abstract

In this work, we attempt to estimate various functions of the data, such as mean
or fraction of samples above a certain threshold, using only a small subset of the
data. In order to do that, we generate new samples using the discrete normalizing
flow models. Those deep learning models learn a given probability distribution of
the data by learning its transformation into a well known distribution.
We further decrease variance of our estimators by using stratification. It is a tech-
nique where we divide the space of values that we sample into several areas and we
sample from each independently. That allows us to distribute available budget of
samples better and sample more from areas with higher variance, decreasing overall
variance of the estimators.
We present both the theoretical foundations behind the described mechanisms and
their practical implementation. We test those implemented algorithms on a variety
of datasets, both those containing real-life meteorology data and artificial ones. We
analyze results and attempt to draw conclusions about quality and viability of our
methods.

W tej pracy próbujemy estymować funkcje zbioru danych, takie jak jego średnia
czy liczba próbek powyżej pewnej wartości, mając dostępny tylko pewien niewielki
podzbiór całego zbioru danych. W tym celu generujmy nowe próbki używając dys-
kretnych modeli przepływu. Są to modele oparte na sieciach neuronowych, które
uczą się zadanego rozkładu danych poprzez próby transformacji go w pewien okre-
ślony, znany rozkład.
Redukujemy wariancję naszych estymatorów poprzez wprowadzenie techniki zwanej
stratyfikacją. Polega ona na dzieleniu przestrzeni możliwych wartości na obszary
i niezależnym generowaniu próbek z każdego z nich. Pozwala to skupić generowanie
próbek na obszarach o największej wariancji i w ten sposób zmniejszyć wariancję
estymatorów.
W tej pracy prezentujemy zarówno teoretyczne podstawy przedstawianych algoryt-
mów, jak i ich implementację. Następnie testujemy je na kilku różnorodnych zbiorach
danych, zarówno takich zawierających rzeczywiste dane meteorologiczne, jak i na
sztucznie wygenerowanych. Analizujemy i porównujemy wyniki wykonanych testów
i próbujemy stwierdzić, jak dobrze radzą sobie przedstawiane przez nas techniki.

Contents

1 Introduction 7

2 Discrete normalizing flow models 9

2.1 General idea . 9

2.1.1 Loss function . 10

2.2 NICE . 11

2.2.1 Scaling . 12

2.3 Real NVP . 12

3 Stratification 15

3.1 Allocation of samples to strata . 17

3.2 Cartesian stratification . 18

3.3 Spherical stratification . 19

4 Implementation 21

4.1 Models . 21

4.2 Training . 23

4.3 Statistics . 23

4.4 Stratification . 24

4.4.1 Cartesian stratification . 24

4.4.2 Spherical stratification . 26

4.5 Data preparation . 26

5 Experiments 29

5.1 One-dimensional datasets . 29

5

6 CONTENTS

5.1.1 Humidity dataset . 29

5.1.2 Temperature dataset . 31

5.1.3 Artificial dataset . 32

5.2 Two-dimensional datasets . 34

5.2.1 Temperature-humidity dataset 34

5.2.2 Artificial dataset . 36

6 Conclusions 41

Bibliography 43

Chapter 1

Introduction

Data generation is one of the fundamental tasks in machine learning. In statistics,
we calculate functions based on samples. In machine learning and deep learning, the
models learn using given data. In both cases, accuracy of the results corresponds
directly to the size (and quality) of the available dataset. Unfortunately, for many
real-life problems large datasets do not exist, or are hard to access. That poses
a natural problem of creating a model that can generate artificial samples similar to
some small given dataset.

Over the years, many approaches were developed to combat this task. One of
them is the autoregressive models, where each subsequent output depends not only
on the input and stochastic variables, but also on previous outputs. Such models
include Long Short-Term Memory [6] developed by Hochreiter and Schmidhuber for
text generation, or PixelCNN [13] created by Van den Oord et al. for generating
pictures. Those algorithms are sequential in nature and that makes them hard to
parallelize and limits their computational efficiency.

Another common framework is called Generative Adversarial Networks (GANs)
developed by Goodfellow et al. [4]. In a GAN, there are two separate neural net-
works: a generator that tries to generate a sample similar to those from a given
set D and a discriminator whose task is to determine whether a given sample
is from D, or it was generated by the generator. These networks play a zero-sum
game in which the generator is rewarded for fooling the discriminator and the dis-
criminator is rewarded for guessing correctly. That allows GANs to train in the
unsupervised setting.

Finally, there are the normalizing flow models introduced by Dinh et al. [2].
Here, the model learns a reversible transformation g that maps an arbitrarily com-
plex distribution of the input data into a simple, well known latent distribution such
as Gaussian or logistic distributions. We think of this process as a normalization,
hence the name of the model. Then we sample from the known distribution and
use g−1 to generate desired data points. Flow models can be further divided into

7

8 CHAPTER 1. INTRODUCTION

discrete flow models, where the transformation g is a combination of discrete op-
erations such as addition, multiplication or convolution (NICE [2], Real NVP [3],
GLOW [8]) and continuous flow models (FFJORD [5]).

In this thesis, we attempt to use discrete normalizing flow models NICE and
Real NVP to generate samples. We train them on various one- and two-dimensional
datasets, with both artificial and real-life data. We use those samples to estimate var-
ious statistics better and with more confidence than with the original data. Finally,
we use a method called stratification to further reduce variance of our estimators.

In Chapter 2, we present the main ideas and some mathematical background
behind the NICE and Real NVP models. In Chapter 3, we outline the idea of
stratification and its various variants. We discuss our implementation of those ideas
in Chapter 4 and then the results of our experiments in Chapter 5. Concluding
remarks are presented in Chapter 6.

Chapter 2

Discrete normalizing flow
models

Let us consider a D-dimensional random variable X ∈ RD with distribution pX .
We sample it independently n times and thus obtain a dataset D. We want to
calculate the expected value of some real-valued function f on X, meaning I =

E[f(X)] using only D, without any further knowledge about X. Function f can be
as straightforward as the mean of X, but also a more elaborate one.

One way to do that would be to assume that pX is a known distribution, for
example multidimensional Gaussian, and then estimate its parameters based on D.
We will not make such assumptions and accept that pX can be arbitrarily complex.

It should be clear that the quality of our estimation corresponds directly to the
size of D. Therefore our strategy is to train a deep learning model to generate sam-
ples from pX (or at least the distribution similar to pX , based on the training on D).
Then our model will generate a much larger dataset D′ and we will estimate I using
D ∪ D′. For our generative model, we choose discrete normalizing flow models. We
will test two classical algorithms from that framework: NICE [2] and Real NVP [3].

2.1 General idea

Assumption 2.1 We treat our generative model as a transformation g : RD → RD.
We want it to have two key properties.

1. For every x ∼ pX , transformation y = g(x) satisfies y ∼ pH , where pH is some
known distribution called prior distribution. We use the standard Gaussian
distribution N (0, 1) in every dimension as H.

2. Transformation g is invertible, meaning that g−1 can be quickly computed.

9

10 CHAPTER 2. DISCRETE NORMALIZING FLOW MODELS

Reasons for both of those properties arise from the training and generation.
During training, we transform samples from D using model g. We calculate the loss
based on the difference between the resulting distribution and pH and therefore we
need to know how to calculate pH(x), as shown in Section 2.1.1. During generation,
we generate samples from pH and transform them using g−1. That also implies
that, for practical reasons, pH should be a well known distribution, so that there are
known ways of sampling from it.

2.1.1 Loss function

In order to train our models, we need to define a loss function that will be maximized
during training. The only information we have about the distribution of X are the
samples from D. Therefore our loss will maximize the probability in those points.
First, by the change of variables formula,

pX(x) = pH(g(x)) ·
∣∣∣∣det ∂g(x)∂x

∣∣∣∣ . (2.1)

The above formula can be understood in terms of the conservation of mass prin-
ciple. Probability distributions pX , pH can be thought of as mass density functions.
For any A ⊆ RD we want transformation g to keep its mass. That means that the
volume of A times density pX on A should equal the volume of g(A) times its den-
sity pH . Equation (2.1) is derived by dividing by the volume of A and reducing A
into a single point.

Now, by taking logarithms of both sides of (2.1), we obtain the loss:

log(pX(x)) = log pH(g(x)) + log

∣∣∣∣det ∂g(x)∂x

∣∣∣∣ . (2.2)

We note that the loss uses the Jacobian determinant of g. That places an important
restriction on the transformation.

Observation 2.2 The transformation g must have an efficiently computable Jaco-
bian determinant.

The second component of the sample loss is log pH(g(x)). For the Gaussian
distribution, it is equal to:

log pH(g(x)) =

D∑
i=1

(
−1

2
y2i + log(2π)

)
, (2.3)

where yi is the value in the i-th dimension of y = g(x).

2.2. NICE 11

2.2 NICE

Non-linear Independent Component Estimation (NICE) is the model introduced by
Dinh et al. [2]. Their first key observation is that when the Jacobian matrix of g is
triangular, its determinant is just the product of the elements on the diagonal and
therefore it is easy to compute.

The NICE model contains multiple layers called coupling layers. In each of
them, we divide input vector x ∈ RD into two vectors: one x1:d containing the first d
elements of x (1 ≤ d < D) and the other xd+1:D containing the rest of the vector x.
This naturally divides the Jacobian J of the transformation g(x) into four parts, as
illustrated in Figure 2.1a.

(a) NICE Jacobian matrix J . (b) Computational graph of a NICE coupling layer.

Figure 2.1

To make matrix J lower triangular, matrices J1:d,1:d and Jd+1:D,d+1:D need to
be lower triangular. That means that the submatrix J1:d,d+1:D (highlighted red in
Figure 2.1a) can be arbitrary, and the transformation connected with it can be very
complex. Now we can define the NICE coupling layer [2]:

y1:d = x1:d,

yd+1:D = xd+1:D +m(x1:d).
(2.4)

Here the transformation m is a deep neural network. The flow of computations
inside the layer is demonstrated in Figure 2.1b. Matrices J1:d,1:d and Jd+1:D,d+1:D

are identity matrices, so matrix J of this layer is triangular. Its determinant is equal
to 1, therefore satisfying Observation 2.2. Moreover it satisfies property 2 from the
Assumption 2.1, as it is easily reversible:

x1:d = y1:d,

xd+1:D = yd+1:D −m(y1:d).

In the subsequent layer the split is reversed, meaning that the identity is applied
to xd+1:D and x1:d is modified. Therefore the model has the capacity to learn on

12 CHAPTER 2. DISCRETE NORMALIZING FLOW MODELS

every coordinate and can satisfy property 1 from the Assumption 2.1. It is important
to note, that the NICE model is a composition of reversible layers and therefore the
entire model is also reversible.

2.2.1 Scaling

As mentioned above, Jacobian determinant of the coupling layer (2.4) is equal to 1.
It is therefore volume-preserving and the NICE model, which is the composition of
those layers, also preserves volume. To combat this issue, the NICE model introduces
a non volume-preserving transformation [2]. The output vector of NICE is multiplied
by a diagonal scaling matrix T of the form:

T =


et1 0 0 . . . 0

0 et2 0 . . . 0
...
...
...

...
0 0 0 . . . etD

 .

This allows the model to give more weight to certain dimensions. The values
of t1, t2, . . . , tD are also learned, therefore we introduce to (2.2) an additional factor
equal to

∑D
i=1 ti which is the logarithm of the determinant of T .

2.3 Real NVP

Real-valued Non-Volume Preserving (Real NVP) model was presented by Dinh et
al. [3]. It builds on the NICE model by introducing a slightly more complicated
transformation. Here, in each layer, we also divide input vector x into two parts.
We introduce an additional deep neural network s. It also takes in vector x1:d, but
its results are multiplied with xd+1:D, instead of being added to it.

The computations of the coupling layer are demonstrated in Figure 2.2 and are
as follows:

y1:d = x1:d,

yd+1:D = (xd+1:D ⊙ exp(s(x1:d))) +m(x1:d),
(2.5)

where the ⊙ operation is the Hadamard product or the element-wise product [3].

This transformation satisfies Assumption 2.1, as it remains reversible and, when
stacked in layers similar to that in NICE, it has capacity to learn in each of its
dimensions. The Jacobian matrix of the transformation remains triangular, but
submatrix Jd+1:D,d+1:D is no longer an identity matrix. Instead, it is diagonal and
has elements of the vector exp(s(x1:d)) on its diagonal. Therefore the Jacobian
determinant of this transformation is the exponential of the sum of the elements
of vector s(x1:d). We note that the transformation is no longer volume-preserving,
therefore scaling is no longer required in Real NVP.

2.3. REAL NVP 13

Figure 2.2: Computational graph of a Real NVP coupling layer.

Intuitively, Real NVP captures complexity faster than NICE, because it per-
forms a full linear map in every dimension (among the dimensions d+1 to D) with
coefficients given by the deep neural networks.

Chapter 3

Stratification

Now let us go back to the main problem of estimating I = E[f(X)]. Let us assume
(by the results presented in the previous chapter) that we can sample a random
variable Y = f(X) and want to sample it R times to obtain the best possible
estimation of its expected value. We will call R the simulations budget.

Definition 3.1 We call an estimator Ŷ unbiased when E[Ŷ] = E[Y].

Let Ŷ be any unbiased estimator. To give us confidence about its predictions,
such estimator should have a possibly narrow confidence interval. By the central
limit theorem, if the variance of Y is finite, the confidence interval of Ŷ is correlated
to its variance [1, Equation 23.5]:

P
(
I ∈

[
Ŷ − z1−α/2 ·

√
Var(Ŷ), Ŷ + z1−α/2 ·

√
Var(Ŷ)

])
≈ 1− α.

Therefore we want to select an estimator with the smallest possible variance.

Denote the R obtained samples as Y1, Y2, . . . , YR. One possible estimator is the
sample mean Ŷ CMC

m = 1/R ·
∑R

i=1 Yi, also called the Crude Monte Carlo (CMC)
estimator. Its variance is Var(Ŷ CMC

R) = Var(Y)/R. In practice we often do not
know the true variance of Y , therefore we estimate it using sample variance.

Definition 3.2 Sample variance Ŝ2
R of a sample Y1, Y2, . . . , YR with mean Y R is

equal to:

Ŝ2
R =

∑R
i=1(Yi − Y R)

2

R− 1
.

This yields the estimated variance of the estimator:

V̂ar(Ŷ CMC
R) =

∑R
i=1(Yi − Ŷ CMC

R)2

R · (R− 1)
.

15

16 CHAPTER 3. STRATIFICATION

While the sample mean is a good estimator when the distribution is smooth,
its variance becomes very large when distribution has peaks and valleys. A natural
idea is to sample from every area of the distribution to get more information about
the local curvature of probability density function and attempt to sample more data
points from regions with the highest variance. We try to achieve those goals through
stratification. The stratification method described in this chapter follows the one
explained by Lorek et al. [9].

Stratified sampling [12] is an estimation method designed to reduce variance of
estimating I = E[Y] compared to the classic Monte Carlo sampling. For a given num-
ber k ≥ 1, we divide the space of values of Y into k disjoint regions A1, A2, . . . , Ak

such that

P

(
Y ∈

k⋃
i=1

Ai

)
= 1.

Every such region Aj defines a stratum Bj = {ω : Y (ω) ∈ Aj}, however we will
also refer to Aj itself as a stratum. For each Aj we also define pj = P (Y ∈ Aj) and
Ij = E[Y |Y ∈ Aj]. We will always assume that all strata have equal probability,
meaning pj = 1/k for all j.

The method works as follows: we divide the simulations budget R among all
the strata into R1, R2, . . . , Rk. Then, for each stratum Aj , let Y j be the variable Y
limited to the stratum Aj . We generate Rj samples from it and estimate Ij via the
sample mean Ŷ j = 1/Rj ·

∑Rj

i=1 Y
j
i . Finally we calculate the stratified estimator:

Ŷ strat.
R = p1Ŷ

1 + p2Ŷ
2 + . . .+ pkŶ

k

=
1

k

k∑
j=1

Ŷ j

=
1

k

k∑
j=1

∑Rj

i=1 Y
j
i

Rj
.

(3.1)

Its variance is equal to:

Var(Ŷ strat.
R) =

k∑
j=1

p2j
Rj
Var(Y j) =

k∑
j=1

Var(Y j)

k2 ·Rj
.

Again, in practice we do not know variance of any Y j , so we use sample variance.

V̂ar(Ŷ strat.
R) =

k∑
j=1

Ŝ2
Rj ;j

k2 ·Rj
(3.2)

where Ŝ2
Rj ;j
is the sample variance of the j-the stratum, calculated using Rj obser-

vations.

In the above description of the stratification method, there are two missing
pieces: the procedure for creating strata and the procedure of dividing R among the
strata. Both of them have many possible solutions leading to many possible versions
of the stratification algorithm.

3.1. ALLOCATION OF SAMPLES TO STRATA 17

3.1 Allocation of samples to strata

We will start by addressing the second issue. One possible solution is to allocate the
number of samples to each stratum proportionally to its pj , meaning Rj = R · pj =
R/k. This is called proportional allocation. We denote the estimator calculated
using this allocation as Ŷ PA

R . Equations (3.1) and (3.2) take the form of:

Ŷ PA
R =

1

k

k∑
j=1

∑Rj

i=1 Y
j
i

Rj

=
1

k

k∑
j=1

k

R
·

Rj∑
i=1

Y j
i

=
1

R

k∑
j=1

Rj∑
i=1

Y j
i

V̂ar(Ŷ PA
R) =

k∑
j=1

Ŝ2
Rj ;j

k2 ·Rj

=
1

k ·R

k∑
j=1

Ŝ2
Rj ;j .

Another possible strategy involves looking into the variance of each stratum.
As illustrated in (3.2), variance of each stratum divided by the number of samples in
that stratum is a component of the variance of the estimator. Therefore we want to
place many samples in strata with high variance to compensate. This seems intuitive,
as when the variance in the stratum is small, we obtain a lot of information about Y
with every observation, meanwhile when the variance is high, the observation in one
part of the stratum is not indicative of the values in the other parts. The following
theorem from Madras [10] formalizes this intuition.

Theorem 3.3 [10, Theorem 3.3] Let us fix strata A1, . . . , Ak and simulations bud-
get R. Let Ŷ strat.

R be a stratified estimator with a general split R = R1+R2+ . . .+Rk

and Ŷ OPT
R be a stratified estimator with a split:

Rj = R · pjσj∑k
i=1 piσi

.

where σ2
j is the variance of Aj. Then we have Var(Ŷ OPT

R) ≤ Var(Ŷ strat.
R).

In our case probabilities cancel out, so the number of simulations is directly
proportional to the variance of the stratum. We note that, to use this method,
we need to know the variance of each stratum ahead of producing any samples.
We do not know them in advance and using sample variance requires generating
some observations first. Therefore we divide our original budget R into two parts:
first Rpilot observations are distributed proportionally and are used to calculate

18 CHAPTER 3. STRATIFICATION

sample means of each stratum. The other R′ = R − Rpilot samples are distributed
according to Theorem 3.3. That yields the final distribution of the budget:

Rj = R′ ·
ŜRpilot/k;j∑k
i=1 ŜRpilot/k;i

.

We call this allocation strategy the optimal allocation and denote the es-
timator calculated with (3.1) with optimal allocation as Ŷ OPT

R . After performing
all observations we can recalculate all sample means. Then we can estimate the
variance as:

V̂ar(Ŷ OPT
R) =

k∑
j=1

Ŝ2
Rj ;j

k2 ·Rj

=

k∑
j=1

1

k2
· Ŝ2

Rj ;j ·
∑k

i=1 ŜRi;i

R · ŜRj ;j

=
1

k2 ·R

 k∑
j=1

ŜRj ;j ·
k∑

i=1

ŜRi;i


=

1

k2 ·R

 k∑
j=1

ŜRj ;j

2

.

3.2 Cartesian stratification

The other missing piece in the stratification algorithm is the method of creating the
strata. Two main methods are the cartesian stratification where we divide the
space in each dimension independently and the spherical stratification where we
divide the space based on the spherical coordinates [9].

We note that, due to the form of our generative model, we only need to sample
from the multivariate normal distribution, as we can pass such generated sample
through g−1 and therefore generate a sample from the desired distribution.

Let (Z1, . . . , ZD) be the standard normal D-dimensional random variable. To
perform cartesian stratification, we want to split each of its dimensions indepen-
dently into m strata, obtaining mD = k strata (see Figure 3.1a).

We now focus on one dimension. Let Z ∼ N (0, 1) be a random variable
with probability distribution FN . For the set of probabilities p1, p2, . . . , pm (in our
case pi = 1/m for every i), we define the strata as intervals A1 = (a0, a1], A2 =

(a1, a2], . . . , Am = (am−1, am) where a0 = −∞, am = +∞ and for every other i,
ai = F−1

N (p1 + . . .+ pi). Such definition guarantees that P(Z ∈ Ai) = pi for every i.
Let U ∼ U [0, 1] be the random variable with an uniform distribution and let Zj be

3.3. SPHERICAL STRATIFICATION 19

the random variable from the j-th stratum of Z. We sample Zj as follows:

Zj = F−1
N

(
j−1∑
i=1

pi + pj · U

)
. (3.3)

(a) (b)

Figure 3.1: Example of stratified two-dimensional space for k = 9 strata. Different
strata are colored in different colors. Cartesian stratification is on the left and
spherical stratification is on the right.

3.3 Spherical stratification

Every point in the D-dimensional space RD can be represented in spherical coor-
dinates as a combination of angles on (D − 1)-dimensional unit hypersphere SD−1

and a radius. The normal distribution is symmetric, so we can stratify each of those
values independently into kang and krad strata, respectively, and therefore obtain
spherical stratification with kang · krad = k strata (see Figure 3.1b).

Let Z = (Z1, . . . , ZD) be the standard normal D-dimensional random variable.
Radius B of Z from the origin can be calculated with B2 = Z2

1 + Z2
2 + . . . + Z2

D.
Therefore B2 has distribution χ2

D (χ
2 with D degrees of freedom). That means that

we can stratify radius similarly to the cartesian stratification, using the formula

(Bj)2 = F−1
χ2
D

(
j−1∑
i=1

pi + pj · U

)
. (3.4)

for the j-th stratum. We observe that the points from normalized Z, meaning
(Z1/||Z||, Z2/||Z||, . . . , ZD/||Z||) are distributed uniformly on SD−1 [11]. Therefore
we sample uniformly from SD−1 and multiply every dimension by Bj to obtain the
variable with the same distribution as Z.

We also want to stratify the angles. That means that we want to divide SD−1

into kang disjoint areas that will be our strata. In general it is not an easy task,

20 CHAPTER 3. STRATIFICATION

however, as mentioned in Chapter 1, we will only operate on one-dimensional and
two-dimensional distributions. In one dimension the hypersphere is reduced to a pair
of points, so the stratification with regards to angle loses a lot of its meaning and
the stratification yields results very similar to the cartesian stratification. Therefore
we do not perform spherical stratification for one-dimensional distributions.

In two dimensions, any point x ∈ S1 can be represented by a pair of coordinates

x1 = sin(ϕ),

x2 = cos(ϕ)
(3.5)

where ϕ ∈ [0, 2π). Both of the coordinates depend on one variable ϕ. Therefore we
can divide [0, 2π) into kang strata with lengths proportional to their probabilities.
Let p1, p2, . . . , pkang be the desired probabilities of the strata and b0 = 0, b1 =

p1, b2 = p1 + p2, . . . , bkang =
∑kang

i=1 pi. We sample from the j-th stratum using the
formula:

ϕj = bj−1 + (bj − bj−1)U. (3.6)

Inserting that to (3.5) and combining with radius stratification yields full spherical
stratification.

Chapter 4

Implementation

In this chapter, we discuss our implementation of the ideas described in Chapter 2
and Chapter 3 and we present key fragments of our code. For our implementation,
we used Python version 3.10 with NumPy and PyTorch libraries.

4.1 Models

First, we introduce the CouplingLayer class that implements a single coupling layer.
It is used both by the NICE and Real NVP models, as the mechanics of their layers
do not differ much. It is initialized with the following signature.

1 class CouplingLayer(nn.Module):

2 def __init__(self, in_dim=2, layer_type=’additive’,

3 parity=False, hidden_layers=5, hidden_dim=40):

Listing 4.1: The initialization method signature of the CouplingLayer class.

The layer type variable signals the type of model that the layer belongs to. It can
be either ’additive’, meaning the NICE model or ’multiplicative’ for the Real NVP
model.

In both of the models, we divide the dimensions of the input vector x into x1:d
and xd+1:D. That poses a problem, when D = 1. In that case we duplicate the input
to create a two-dimensional input vector, therefore we always assume that D = 2.
That yields d = D/2 = 1 as the only possibility. The layers can therefore be divided
into two groups, depending on which input is changed. Information about the layer
group is given in the boolean variable parity. The other variables hidden layers,
hidden dim refer to the dimensions of the neural networks used by the layer. Each
of the networks m, s used in (2.4) and (2.5) has the same dimensions with 5 hidden
layers, each with hidden dimension size 40. It totals 5041 parameters for a NICE
layer and 10082 parameters for a Real NVP layer.

21

22 CHAPTER 4. IMPLEMENTATION

The most important methods implemented in the CouplingLayer class are the
forward and backward methods. They perform the transformation g described in
Chapter 2 and its inverse, respectively. In Listing 4.2, we present the forward
method, that implements transformations (2.4) and (2.5).

1 def forward(self, x):

2 x0 = x[self.mask1]

3 m = self.add_net(x0)

4 if self.layer_type == ’multiplicative’:

5 s = self.mult_net(x0)

6 s = torch.tanh(s)

7 s1 = torch.matmul(s, self.unmask)

8 x = x * torch.exp(s1)

9 y = x + torch.matmul(m, self.unmask)

10 return y, torch.abs(torch.sum(s))

11 elif self.layer_type == ’additive’:

12 y = x + torch.matmul(m, self.unmask)

13 return y

Listing 4.2: The forward method of the CouplingLayer class.

Instead of creating the vector x1:d explicitly, it masks one of the inputs using
self.mask1, changing its value to 0. Then the result of each neural network com-
putation is masked again using self.unmask, which zeroes the input other than
self.mask1.

Next, we implement classes NICEModel and RNVPModel that represent the entire
structure of the models. Each of them contains a very simple forward method that
runs the input through the subsequent layers. In our tests, we use 4 coupling layers
in each model with the masked input alternating between the neighbouring layers.
That yields the total of 20166 parameters for each of the NICE models and 40330

parameters for each of the Real NVP models.

1 def forward(self, x):

2 if self.dim_parity:

3 x = x.tile(2)

4 for layer in self.layers:

5 x = layer(x)

6 y = x * torch.exp(self.scaling)

7 loss = self.loss_fun(y) + torch.sum(self.scaling)

8 return y, loss

Listing 4.3: The forward method from the NICEModel class.

The total numbers of parameters calculated above for each model includes ad-

4.2. TRAINING 23

ditional 2 parameters used for scaling, as described in Section 2.2.1. The Real NVP
model does not theoretically require scaling, but our experiments show that it im-
proves its results, therefore it is implemented for that model as well. The scaling
diagonal matrix T is implemented as a vector self.scaling = (t1, t2).

The models calculate loss using the Gaussian loss described in (2.2) and (2.3).

Both models include an identical sample() method used to produce a single
sample. This procedure samples from the multivariate normal distribution using the
torch.randn() method from PyTorch and then calls the backward method of the
model to obtain the sample from the desired distribution. We note that the models
always transform a two-dimensional vector into the two-dimensional vector. That
is not a problem in the forward method, but when we generate samples using the
backward method, we sometimes expect one-dimensional samples. In those cases
we average over the output to obtain a single-dimensional data point.

1 def sample(self):

2 y = torch.randn(self.in_dim)

3 x = self.backward(y)

4 return x

Listing 4.4: The sample method from the NICEModel class.

4.2 Training

We train using the optimizer Adam [7] from PyTorch (with learning rate γ = 0.001,
betas β1 = 0.9, β2 = 0.999, epsilon ϵ = 10−8 and weight decay λ = 0). We divide
the given dataset into the training set containing roughly 90% of samples and the
evaluation set. Training lasts 300 epochs with each epoch being a pass through the
entire training dataset. We backpropagate after every 32 samples. In every pass we
add small Gaussian noise to each sample to avoid overfitting.

4.3 Statistics

We evaluate the performance of our generative models on three statistics. For each
of them, the input is a set of samples X.

1. I1(X) — fraction of samples from X that has values above 60 in every dimen-
sion.

2. I2(X) — the mean of the values of X across all dimensions.

3. I3(X)— sum of x−50 for each x > 50 in all samples inX across all dimensions.

24 CHAPTER 4. IMPLEMENTATION

We round all the results to 6 decimal places and multiply by 1000 the variance of
the estimators of the first and third statistic to obtain clearer results.

4.4 Stratification

The basic generating function is presented in the Listing 4.5. It uses the sample
method implemented in the models.

1 def generate(model, R=10000):

2 model.eval()

3 generated_values = []

4 with torch.no_grad():

5 for _ in range(R):

6 y = model.sample().numpy()

7 generated_values.append(tuple([i for i in y]))

8

9 return generated_values

Listing 4.5: The basic generating function.

4.4.1 Cartesian stratification

We improve the generation by implementing stratification, as explained in Chap-
ter 3. We use k = 9 strata, three in each dimension. In cartesian stratification, each
stratum s is a vector of segments, each being a part of the interval [0, 1] of length 1/3.
To sample from stratum s, we use cartesian one stratum function presented in
Listing 4.6. For each dimension, it samples a probability uniformly from the ap-
propriate segment and uses the probability point function (from the SciPy library)
to transform it into a point from the corresponding segment of N (0, 1), as in (3.3).
With the values in all dimensions, it calls the backwardmethod of the model directly.

1 def cartesian_one_stratum(model, s, R, m):

2 values = []

3 with torch.no_grad():

4 for _ in range(R):

5 x = []

6 for i in range(len(s)):

7 p = random.uniform(s[i]/m, (s[i]+1)/m)

8 x.append(norm.ppf(p))

9 y = model.backward(torch.tensor(x, dtype=torch.float)).numpy()

10 values.append(tuple([i for i in y]))

11 return values

4.4. STRATIFICATION 25

12

13 def generate_cart_pro(model, R=2000, m=3, D=2):

14 model.eval()

15 Rj = R // int(math.pow(m, D))

16 strata = [s for s in product(range(m), repeat=D)]

17 generated_values = [cartesian_one_stratum(model, s, Rj, m) for s

in strata]

18 return generated_values

Listing 4.6: Proportional cartesian stratification.

Function generate cart pro presented in Listing 4.6 implements proportional
cartesian stratification. It creates mD strata as tuples of numbers from 0 to m− 1.
Then, for each stratum s, it calls function cartesian one stratum with budget
Rj = R/9.

Listing 4.7 shows the implementation of the optimal cartesian allocation. We
first allocate budget of Rpilot = R/8 samples equally to every stratum. After gener-
ating those samples in lines 9-13, we use Theorem 3.3 to produce optimal allocation
of the simulations budget in line 17.

1 def generate_cart_opt(model, statistic, R=2000, m=3, D=2):

2 model.eval()

3 R_pilot = R // 8

4 Rj_pilot = R_pilot // int(math.pow(m, D))

5 R -= R_pilot

6 strata = [s for s in product(range(m), repeat=D)]

7 generated_values = []

8

9 strata_std_deviations = []

10 for i in range(len(strata)):

11 values = cartesian_one_stratum(model, strata[i], Rj_pilot, m)

12 _, var = statistic(values)

13 strata_std_deviations.append(math.sqrt(var))

14

15 sum_std_deviations = sum(strata_std_deviations)

16 for i in range(len(strata)):

17 Rj = round(R * strata_std_deviations[i] / sum_std_deviations)

18 generated_values[i] += cartesian_one_stratum(model, strata[i],

Rj, m)

19 return generated_values

Listing 4.7: Optimal cartesian stratification.

26 CHAPTER 4. IMPLEMENTATION

4.4.2 Spherical stratification

In spherical stratification, each stratum s is represented by a pair of intervals, one
[sr0, sr1] for the radius and one [sa0, sa1] for the angle. They are both subsegments
of length 1/3 of the segment [0, 1]. Generation from one stratum s is presented in
Listing 4.8. First, we sample the radius in accordance with (3.4) in line 6. Then
in line 7 we sample the angle as was described in (3.6). Finally, we compute the
coordinates in line 8 using (3.5) and pass them to the backward method of the
model. The functions implementing the proportional and optimal allocation have a
very similar implementation to the ones used in the cartesian stratification.

1 def spherical_one_stratum(model, sr0, sr1, sa0, sa1, R):

2 values = []

3 with torch.no_grad():

4 for i in range(R):

5 # Generating a sample by choosing radius and angle

6 r = math.sqrt(chi2.ppf(random.uniform(sr0, sr1), df=2))

7 phi = random.uniform(sa0, sa1) * 2.0 * math.pi

8 x = [r * math.cos(phi), r * math.sin(phi)]

9 y = model.backward(torch.tensor(x, dtype=torch.float)).numpy()

10 values.append(tuple([i for i in y]))

11

12 return values

Listing 4.8: Generation from one stratum in spherical stratification.

4.5 Data preparation

In our experiments, we use both artificial and real datasets. The real data comes
from the European Climate Assessment & Dataset project, which accumulates the
weather data from many stations across Europe. We concentrate on the data about
temperature and humidity from the Wrocław station. They were recorded once
every day from the beginning of 1951, and the available data ends in May of 2023,
which yields around 26 000 observations. The temperature data is the minimum
temperature recorded during that day with precision of 0.1 degrees Celsius. It is
multiplied by 10, so the value is approximately from the range of −300 to 400. The
humidity data is the average humidity during the preceding 24 hours measured in
percentage.

Some of the data is flagged as unclear or missing, there are also samples outside
the reasonable range of values. After erasing those data points, we obtained the
’temp’ and ’humi’ datasets with around 16 000 data points each. We also combined
that data, to obtain a two-dimensional dataset ’temp humi’.

4.5. DATA PREPARATION 27

We also created two artificial datasets. One of them, called ’art1d’, is one-
dimensional, and the other, called ’art2d’, is two-dimensional. The ’art1d’ dataset
(see Figure 4.1a) was created by dividing the space into regions and then sampling
each region from another distribution. Such variety is supposed to test the capabil-
ities of our models and mechanisms. It is comprised of the following parts:

• 5000 samples from the exponential distribution with λ = 0.3, filtered to contain
only samples from the interval [0, 10],

• 5000 samples from the U [10, 50] distribution,

• 10000 samples from the N (70, 10) distribution,

• 5000 samples from the U [90, 130] distribution,

• 5000 samples from the exponential distribution with λ = −0.3, shifted by 140
and filtered to contain only samples from the interval [130, 140].

That yields a total of 29 157 data points after filtering out all the unwanted
samples.

(a) PDF of ’art1d’ dataset. (b) PDF of ’art2d’ dataset.

Figure 4.1

The ’art2d’ dataset (see Figure 4.1b) was created by first sampling 20 000
samples of the form (80 − ex(0.04), 20 + ex(0.06)) where ex(x) is the exponential
distribution with the parameter x. Then we added noise sampled from N (0, 30)

in each dimension. Finally, for each point (x, y) in the dataset, we added (110 −
x, 110− y), to create a second peak and we restricted the data to points within the
[0, 110]× [0, 110] rectangle. That procedure yielded the dataset of 37 091 samples.

Chapter 5

Experiments

From each of our datasets, we randomly choose N = 1000 samples that are used
as data available to train the models. Then, in each of our experiments, we sample
R = 10000 observations from the model and compare the results from the original
data, training dataset and generated sample on each of the three statistics from
Section 4.3. We set seed of all the random generators to 0 to allow the reproducibility
of our results. For the purposes of plotting, all data is rounded to the nearest integer.
All the stratification for the plots is done using I2. We present the results in tables,
where for each estimator we calculate its error relative to the true value of the
statistic (calculated based on the input data) and its variance.

5.1 One-dimensional datasets

We start our experiments with the one-dimensional datasets. As was mentioned
in Section 3.3, we do not perform spherical stratification. We compare five results
for each model and each dataset: the original dataset (called input data), small
training set of size N , sample generated with Crude MC method using code from
Listing 4.5, sample generated using proportional cartesian stratification and sample
generated using optimal cartesian stratification. For each of the five mentioned
results, we plot its probability distribution function (PDF) as well as its cumulative
distribution function (CDF). We additionally plot the difference between the CDFs
of the input data and the sample.

5.1.1 Humidity dataset

We start with the humidity dataset, as it resembles the Gaussian distribution the
most. It should therefore be the easiest one to learn for our models, as they use
the Gaussian distribution as their latent distribution. We use the NICE model. In
Figure 5.1 and Table 5.2 we present the results of our experiments.

29

30 CHAPTER 5. EXPERIMENTS

Figure 5.1: Plots of all generated data for the humidity dataset.

True value
Training Crude Cartesian prop. Cartesian opt.
data Monte Carlo stratified MC stratified MC

I1

Value 0.924280 0.931000 0.959100 0.957796 0.958033
Relative error 0.007271 0.037673 0.036261 0.036519
Variance 0.064303 0.003923 0.002620 0.000290

I2

Value 77.899479 77.682000 79.033870 79.033325 79.056349
Relative error 0.002792 0.014562 0.014555 0.014851
Variance 0.119665 0.011406 0.000421 0.000287

I3

Value 27.952408 27.722000 29.053992 29.050022 29.073621
Relative error 0.008243 0.039409 0.039267 0.040112
Variance 117.141858 11.273537 0.373547 0.268542

Table 5.2: Results of experiments using the NICE model for the humidity dataset.
All columns except ’True value’ represent estimators based on the given samples.

We observe that all the PDFs and CDFs, except the last one, are very similar
to the original data. The model, even without stratification, learns to reproduce
the data distribution. With optimal stratification, the strata at the endpoints have
the highest variance, therefore they get the most samples in the allocation and the
shape of the plot differs from the others in those spots. Nevertheless, this strategy

5.1. ONE-DIMENSIONAL DATASETS 31

obtains very similar relative error to the other strategies on all statistics. All of the
samples have relative errors from five to seven times worse than the training data
the models were trained on. On the other hand, they obtain much lower variance
than the training data – from ten times with the CMC estimator to about 500 times
lower on I2 by the cartesian optimally stratified estimator. With the relative error
always remaining below 0.05, such difference in variance is a big improvement.

5.1.2 Temperature dataset

The results of our experiments for the temperature dataset are presented in Fig-
ure 5.3, Table 5.5 and Table 5.4. Plots for the NICE model are skipped, as they are
very similar to those presented for the Real NVP model in Figure 5.3. Like for the
humidity dataset, our model clearly learned the data distribution. The distribution
still holds strong similarity to the normal distribution, therefore optimal stratifica-
tion encounters the same problem as the one discussed in the previous section.

Figure 5.3: Plots of all generated data for the temperature dataset with the
Real NVP model.

32 CHAPTER 5. EXPERIMENTS

In Table 5.4 we can see that the NICE model obtains results similar to the
humility dataset. The relative error is from 3 to 11 times worse than the one for the
training data, but the variance drops significantly, even more so for the stratified
data. Table 5.5 shows that Real NVP achieves a better performance. For I1, it
has at most approximately 3 times higher relative error than the training data and
for I3 it has much lower relative error, when using stratification, while keeping the
variance low. There are almost no differences in relative error between both types
of stratification, but optimal stratification has a lower variance, as was expected.

True value
Training Crude Cartesian prop. Cartesian opt.
data Monte Carlo stratified MC stratified MC

I1

Value 0.620694 0.616000 0.631300 0.639164 0.635476
Relative error 0.007563 0.017087 0.029757 0.023815
Variance 0.236781 0.023278 0.002072 0.000250

I2

Value 89.978439 88.890000 93.719100 94.064706 93.744610
Relative error 0.012097 0.041573 0.045414 0.041856
Variance 6.423964 1.107149 0.026863 0.021021

I3

Value 57.416724 56.258000 70.108000 70.290429 70.263246
Relative error 0.020181 0.221038 0.224215 0.223742
Variance 3273.020456 491.924986 8.143537 5.259442

Table 5.4: Results of experiments using the NICE model for the temperature dataset.
All columns except ’True value’ represent estimators based on the given samples.

True value
Training Crude Cartesian prop. Cartesian opt.
data Monte Carlo stratified MC stratified MC

I1

Value 0.620694 0.616000 0.605800 0.612061 0.610149
Relative error 0.007563 0.023996 0.013908 0.016990
Variance 0.236781 0.023883 0.002780 0.000309

I2

Value 89.978439 88.890000 83.162900 84.403040 84.066246
Relative error 0.012097 0.075746 0.061964 0.065707
Variance 6.423964 0.828868 0.031176 0.021208

I3

Value 57.416724 56.258000 56.134400 57.147815 57.085846
Relative error 0.020181 0.022334 0.004683 0.005763
Variance 3273.020456 383.063240 12.867153 6.161702

Table 5.5: Results of experiments using the Real NVP model for the temperature
dataset. All columns except ’True value’ represent estimators based on the given
samples.

5.1.3 Artificial dataset

Results for the artificially generated dataset are presented in Figure 5.6, Table 5.8
and Table 5.7. The Real NVP model managed to capture some properties of the
distribution, such as the spike on the left and a smaller peak in the middle, but
the generated distributions resemble the original way less than with the previous
distributions. That makes sense, as this distribution is composed of many very
different parts, which makes it difficult to learn.

Table 5.7 shows that the NICE model obtains the relative error from 0.03 to
0.09 on all statistics. Once again stratification, while improving variance, does not

5.1. ONE-DIMENSIONAL DATASETS 33

Figure 5.6: Plots of all generated data for art1d dataset with the Real NVP model.

True value
Training Crude Cartesian prop. Cartesian opt.
data Monte Carlo stratified MC stratified MC

I1

Value 0.610591 0.610000 0.557600 0.56557 0.566069
Relative error 0.000968 0.086786 0.072118 0.072916
Variance 0.238138 0.024671 0.000992 0.000106

I2

Value 69.959186 70.018000 67.114000 67.236324 67.375657
Relative error 0.000841 0.040669 0.038921 0.036929
Variance 2.077960 0.289943 0.004370 0.003524

I3

Value 31.094488 31.176000 32.814700 32.835283 32.923586
Relative error 0.002621 0.055322 0.055984 0.058824
Variance 1046.167191 133.030799 2.365059 1.499874

Table 5.7: Results of experiments using the NICE model for the art1d dataset. All
columns except ’True value’ represent estimators based on the given samples.

change the relative error by much. We note that the relative error is always at least
25 times higher than the relative error of the training data.

The Real NVP model, while performing similarly on I1 and I3, outperforms
NICE model on I2. Version with the optimal stratification has relative error around
8 times smaller than its NICE counterpart and is only around six times worse than

34 CHAPTER 5. EXPERIMENTS

True value
Training Crude Cartesian prop. Cartesian opt.
data Monte Carlo stratified MC stratified MC

I1

Value 0.610591 0.610000 0.557300 0.561256 0.560944
Relative error 0.000968 0.087278 0.080799 0.081310
Variance 0.238138 0.024674 0.000541 0.000057

I2

Value 69.959186 70.018000 68.827900 69.498650 69.632489
Relative error 0.000841 0.016171 0.006583 0.004670
Variance 2.077960 0.257366 0.004180 0.003973

I3

Value 31.094488 31.176000 32.089500 32.695070 32.788185
Relative error 0.002621 0.032000 0.051475 0.054469
Variance 1046.167191 128.529862 2.745783 1.647354

Table 5.8: Results of experiments using the Real NVP model for the art1d dataset.
All columns except ’True value’ represent estimators based on the given samples.

the training data, while having a 500 times smaller variance. We also note that the
proportionally and optimally stratified data has 2.5 and 3.5 times smaller relative
error than the Crude MC version, respectively. That trend is reversed on I3, where
both stratified strategies achieve worse results than the version without stratification.

5.2 Two-dimensional datasets

Now we move on to the two-dimensional datasets. For each dataset, apart from the
five results we had previously, we now add two sets from the spherical stratification:
proportional and optimal. We also add the fourth column of the plot, where we track
the distribution of samples on the two-dimensional plane in order to understand how
the particular strata are transformed by our model.

5.2.1 Temperature-humidity dataset

The results of the NICE model for the temperature-humidity dataset are presented in
Figure 5.9 and Table 5.10. The results of the Real NVP are presented in Figure 5.12
and Table 5.11. Both of the models preserve the general shape of the original data
distribution. NICE transformation seems to twist the space more, as the layout of
the strata is much more twisted and different from the one in Figure 3.1 than the
layout of strata in the Real NVP transformation. The type of the stratification does
not have such a big effect on the plot as it did in one dimension with the temperature
and humidity distributions.

The NICE model performs similarly on all statistics, regardless of the type of
stratification or lack thereof. It achieves from 0.03 to 0.12 relative error, which is
several orders of magnitude higher than the training data in case of the first two
statistics. It performs best on I3, where its relative error is about ten times bigger
compared to the training data. Its variance is smaller, but compared to the one
dimensional datasets the difference is smaller, the Crude MC estimator has about ten
times lower variance than the training data. We note that the spherical stratification

5.2. TWO-DIMENSIONAL DATASETS 35

Figure 5.9: Plots of all generated data for temp humi dataset with the NICE model.

36 CHAPTER 5. EXPERIMENTS

I1

Value Relative error Variance
True value 0.549382
Training data 0.549000 0.000695 0.247847

Crude Monte Carlo 0.529500 0.036190 0.024915
Cartesian prop. stratified MC 0.521952 0.049928 0.012869
Cartesian opt. stratified MC 0.522565 0.048814 0.009009
Spherical prop. stratified MC 0.528653 0.037732 0.017107
Spherical opt. stratified MC 0.522512 0.048910 0.014688

I2

Value Relative error Variance
True value 167.509073
Training data 167.400000 0.000651 5.681443

Crude Monte Carlo 158.781500 0.052102 0.552096
Cartesian prop. stratified MC 158.719572 0.052472 0.121722
Cartesian opt. stratified MC 158.035588 0.056555 0.116612
Spherical prop. stratified MC 158.412241 0.054307 0.285203
Spherical opt. stratified MC 157.080749 0.062255 0.250576

I3

Value Relative error Variance
True value 72.318767
Training data 71.457000 0.011916 4387.171322

Crude Monte Carlo 64.582600 0.106973 389.793717
Cartesian prop. stratified MC 64.466247 0.108582 101.007273
Cartesian opt. stratified MC 63.837264 0.117279 77.794681
Spherical prop. stratified MC 64.555056 0.107354 185.059751
Spherical opt. stratified MC 64.125270 0.113297 173.615493

Table 5.10: Results of experiments using the NICE model for the temp humi dataset.
All columns except ’True value’ represent estimators based on the given samples.

has a higher variance than the cartesian stratification across all statistics. On I3,
where this difference is the biggest, it is about 1.5 times higher.

The Real NVP model performs comparably to the NICE model in the first
two statistics. It performs approximately 3 times better on I3, therefore it is just
around 3 times worse than the training data, when using proportional spherical
stratification. It is also worth noting, that the stratified estimators all have notably
lower relative error than the Crude MC estimator on I2 and I3. Relative variance
of the stratified estimators vary here from statistic to statistic, but the difference is
the highest on I3, where the situation is similar to the NICE model.

5.2.2 Artificial dataset

The experiments on the two-dimensional artificial dataset presented the biggest dif-
ferences between the two tested flow models. Their results are presented: for the
NICE model in Table 5.13 and for Real NVP in Table 5.14 and Figure 5.15. We
can see that, especially on I2 and I3, NICE did not manage to learn the probability

5.2. TWO-DIMENSIONAL DATASETS 37

Figure 5.12: Plots of all generated data for temp humi dataset with the Real NVP
model.

38 CHAPTER 5. EXPERIMENTS

I1

Value Relative error Variance
True value 0.549382
Training data 0.549000 0.000695 0.247847

Crude Monte Carlo 0.560900 0.020965 0.024632
Cartesian prop. stratified MC 0.568557 0.034903 0.008872
Cartesian opt. stratified MC 0.575400 0.047359 0.006752
Spherical prop. stratified MC 0.573357 0.043640 0.009200
Spherical opt. stratified MC 0.573224 0.043397 0.005685

I2

Value Relative error Variance
True value 167.509073
Training data 167.400000 0.000651 5.681443

Crude Monte Carlo 160.976900 0.038996 0.558231
Cartesian prop. stratified MC 163.443244 0.024272 0.149696
Cartesian opt. stratified MC 162.911032 0.27450 0.131394
Spherical prop. stratified MC 163.629263 0.023162 0.177309
Spherical opt. stratified MC 162.576337 0.029448 0.145820

I3

Value Relative error Variance
True value 72.318767
Training data 71.457000 0.011916 4387.171322

Crude Monte Carlo 67.152000 0.071444 393.546964
Cartesian prop. stratified MC 69.415042 0.040152 98.756838
Cartesian opt. stratified MC 68.848940 0.047980 78.330523
Spherical prop. stratified MC 69.471147 0.039376 161.809280
Spherical opt. stratified MC 68.976329 0.046218 117.609624

Table 5.11: Results of experiments using the Real NVP model for the temp humi
dataset. All columns except ’True value’ represent estimators based on the given
samples.

distribution. Its estimators vary greatly from the data and its variance is very big.

On the other hand, Real NVP obtained much better results. On I1 and I3,
the model managed to beat the training set in all strategies. On I1, the optimal
cartesian stratified estimator achieves the lowest relative error, which is also about 50
times lower than the training data error. It also performs very well on I3, where
it is just slightly worse than the optimal spherical stratified estimator, but still
about 19 times smaller than the training data error. Those two optimal allocation
strategies also have the lowest variance, about 75 times lower than the training set
and approximately 7.5 times lower than the Crude MC estimator.

Those observations are confirmed by Figure 5.15. Plots generated by the Real
NVP model look similar to the original dataset. The plot of the difference between
the distributions is almost flat in all of the rows.

5.2. TWO-DIMENSIONAL DATASETS 39

I1

Value Relative error Variance
True value 0.136125
Training data 0.146000 0.072544 0.124809

Crude Monte Carlo 0.424400 2.117723 0.024431
I2

Value Relative error Variance
True value 111.969184
Training data 112.548000 0.005169 0.906180

Crude Monte Carlo -151.749700 2.355281 683.660982
I3

Value Relative error Variance
True value 12.671942
Training data 13.640000 0.076394 528.528929

Crude Monte Carlo 878.518800 68.327874 188370.316316

Table 5.13: Results of experiments using the NICE model for the art2d dataset. All
columns except ’True value’ represent estimators based on the given samples.

I1

Value Relative error Variance
True value 0.136125
Training data 0.146000 0.072544 0.124809

Crude Monte Carlo 0.139000 0.021120 0.011969
Cartesian prop. stratified MC 0.136914 0.005795 0.005786
Cartesian opt. stratified MC 0.136083 0.000308 0.002143
Spherical prop. stratified MC 0.137114 0.007263 0.004567
Spherical opt. stratified MC 0.135751 0.002750 0.000998

I2

Value Relative error Variance
True value 111.969184
Training data 112.548000 0.005169 0.906180

Crude Monte Carlo 110.229900 0.015534 0.097233
Cartesian prop. stratified MC 110.507451 0.013055 0.019111
Cartesian opt. stratified MC 110.407590 0.013947 0.018577
Spherical prop. stratified MC 110.655165 0.011736 0.037203
Spherical opt. stratified MC 110.328969 0.014649 0.029047

I3

Value Relative error Variance
True value 12.671942
Training data 13.640000 0.076394 528.528929

Crude Monte Carlo 12.674900 0.000233 53.330074
Cartesian prop. stratified MC 12.561556 0.008711 15.691618
Cartesian opt. stratified MC 12.613713 0.004595 7.585851
Spherical prop. stratified MC 12.800580 0.010151 13.139814
Spherical opt. stratified MC 12.614430 0.004539 7.312766

Table 5.14: Results of experiments using the Real NVP model for the art2d dataset.
All columns except ’True value’ represent estimators based on the given samples.

40 CHAPTER 5. EXPERIMENTS

Figure 5.15: Plots of all generated data for art2d dataset with the Real NVP model.

Chapter 6

Conclusions

We tested discrete flow models NICE and Real NVP with five very different datasets.
Apart from the humidity dataset, for which we did not use Real NVP, on all the other
data the best result of NICE was outperformed by the best result of Real NVP. The
biggest difference was in the artificial, two-dimensional dataset, where NICE failed
to learn any significant properties of the data, meanwhile Real NVP performed
better than the data it was learning from. Those results show that, at least for
those datasets, Real NVP is more powerful than NICE. Adding multiplication to
the coupling layer in (2.5) seems to enhance the learning capabilities of the model
or at least make it learn much faster.

The stratification also proved to be effective, not only in reducing the variance
by several orders of magnitude, but also in improving the quality of estimation.
Stratified estimators almost always outperformed the Crude Monte Carlo estimator.
Optimal estimators do not seem to have an advantage in the estimation quality
over the proportional estimators, but they are worth using as they have significantly
smaller variance. Their disadvantage is that they tend to produce plots that do
not resemble the original data, even though they behave similarly according to the
calculated statistics. That was the case with the temperature and humidity datasets,
as the optimal cartesian stratification tends to allocate high budget to the endpoints
of the distribution, as it grows rapidly at those intervals.

In the two-dimensional distributions, the cartesian stratification performed usu-
ally slightly better than the spherical stratification. The cartesian stratification is
additionally much easier to implement in many dimensions, whereas the spherical
stratification gets complicated with three or more dimensions.

One way to improve the results produced here is to find a better way of allocat-
ing the probabilities to strata, which were distributed equally in all our experiments.
That can solve some small problems, like the shape of the plot for optimal allocation,
but it could possibly also improve the overall quality of the generated samples.

41

Bibliography

[1] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and
Ludolf Erwin Meester. A Modern Introduction to Probability and Statistics.
Springer Texts in Statistics. Springer London, 2005.

[2] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear inde-
pendent components estimation. In 3rd International Conference on Learning
Representations, ICLR, 2015.

[3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real NVP. In 5th International Conference on Learning Representations,
ICLR, 2017.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems, NeurIPS, pages 2672–
2680, 2014.

[5] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and
David Duvenaud. FFJORD: free-form continuous dynamics for scalable re-
versible generative models. In 7th International Conference on Learning Rep-
resentations, ICLR, 2019.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In 3rd International Conference on Learning Representations, ICLR,
2015.

[8] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invert-
ible 1x1 convolutions. In Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems, NeurIPS,
pages 10236–10245, 2018.

43

44 BIBLIOGRAPHY

[9] Paweł Lorek, Rafał Nowak, Rafał Topolnicki, Tomasz Trzciński, and Maciej
Zięba. Reducing estimation uncertainty using normalizing flows and stratifica-
tion. Unpublished material.

[10] Neal Noah Madras. Lectures on Monte Carlo Methods. Fields Institute for Re-
search in Mathematical Sciences Toronto: Fields Institute monographs. Amer-
ican Mathematical Society, 2002.

[11] George Marsaglia. Choosing a Point from the Surface of a Sphere. The Annals
of Mathematical Statistics, 43(2):645 – 646, 1972.

[12] Per Pettersson and Sebastian Krumscheid. Adaptive stratified sampling for
non-smooth problems. CoRR, abs/2107.01355, 2021.

[13] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel re-
current neural networks. In Proceedings of the 33nd International Conference
on Machine Learning, ICML, volume 48 of JMLR Workshop and Conference
Proceedings, pages 1747–1756, 2016.

	Introduction
	Discrete normalizing flow models
	General idea
	Loss function

	NICE
	Scaling

	Real NVP

	Stratification
	Allocation of samples to strata
	Cartesian stratification
	Spherical stratification

	Implementation
	Models
	Training
	Statistics
	Stratification
	Cartesian stratification
	Spherical stratification

	Data preparation

	Experiments
	One-dimensional datasets
	Humidity dataset
	Temperature dataset
	Artificial dataset

	Two-dimensional datasets
	Temperature-humidity dataset
	Artificial dataset

	Conclusions
	Bibliography

