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Abstract

We study a systematic approach to a popular Statistical Arbitrage technique of Pairs
Trading. Instead of relying on 2 highly correlated assets, the latter one is substitute
with the most accurate replication of the first with the use of so called risk-factors.
Such factors can be determined by: Principal Components Analysis (PCA), actual
market exchange traded funds (ETFs) or, as a authorial technique and thus our
contribution to the literature, Long short-term memory networks (LSTMs). Resid-
uals between the main asset and its replication’ returns are analysed on a basis of
their potential mean-reversion properties. Trading signals are later generated for
sufficiently fast mean-reverting portfolios to profit from any technical mispricings.
Besides the introduction of a new deep-learning based method, paper re-defines
methods already presented by authors of 2008’s paper Statistical Arbitrage in the
U.S. Equities Market to match conditions of the polish stock exchange market. For
that reason, instead of SP500 stocks’, components of WIG20 and mWIG40 com-
bined are in scope of trading activities with an addition of polish sector indices.
Overall market factors such as the risk free rate or transaction costs are also ad-
justed from mentioned paper for better reality matching.
After setting up the scope, all details of the strategy are explained: from the theory
behind risk-factors representation, through the modelling of residuals with Ornstein-
Uhlenbeck process till trading signals generation procedure. They are followed by
a separate section concerning specifics of each replicating technique with a general
overview of the method and its application for our purposes. Throughout the entire
thesis various examples are graphically made for better understanding of discussed
topics. The final part of the paper concerns testing of the overall Pairs Trading
strategy and of its presented variations.
To keep the results relevant and tested in different economic conditions, two backtest-
ing periods are distinguished: 2017-2019 and a highly recessive 2020. All strategies
manage to profit during the first interval with the PCA approach achieving around
20% of combined return and even up to 2.63 annualized Sharpe ratio (in 2017). Even
though a lot of assumptions is changed in comparison to Avellaneda and Lee’ 2008
paper, received results and main conclusions are highly comparable. During the
COVID-19 recession, ETFs technique are the only profitable one achieving annual
return of 5%- both the PCA and LSTM methods fail to produce any profits. All
LSTM results can be seen as promising and should be optimized in future works,
especially since it is possibly the first take on such application of recurrent neural
networks.
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Chapter 1

Introduction

No matter if you are an amateur investor or own a hedge fund: the main goal of
trading can be reduced to increasing the initial capital invested (or at least not los-
ing it in comparison to the overall market movement). Then the actual process may
be seen as a sequence of transactions following the motto of “buy low, sell high”.
Obviously, the complicated part resolves around the actual decision-making: what
equity should I purchase? How much of it should I have? Is now a good moment to
get rid of it? Well, it is good if the price is higher than when I bought it but perhaps
it is better to wait even longer. To somehow take those decisions off the shoulders
of pure randomness and help making up ones mind 2 main types of analysis were
established. The first one, which will not be the area of our interest, is the Fun-
damental Analysis- it resolves around using the knowledge on the current economic
status, industry conditions and financial strength of individual companies. The aim
here is to measure the intrinsic (i.e. “fair”) values of stocks and compare those with
the actual prices on the market. Based on whether they are seen as undervalued
or overvalued transactions can be determined. But, as mathematicians and not
economists we are actually going to focus on the second type of financial analysis-
Technical Analysis. It was introduced in the late 1800s by Charles Dow- founder
and first editor of the Wall Street Journal. Dow believed that all necessary info is
discounted into the actual price (and the volume of transactions) so there is no need
to seek for qualitative factors of companies’ conditions. He suggested that stocks’
movements can be decomposed based on what period they reflect: besides the main
trend expressing the events of last years, shorter ones, which are sensitive even up to
days, can be distinguished. Dow stated that such trends exist despite the presence of
so-called “market noise”- unpredictable behaviour independent of the overall drifts.
His theory also introduced what we now understand as market indices- a way of
looking at stocks’ prices through companies’ sectors. If particular stock’s movement
is diverging from the overall sector drift one may expect an incoming change. In
accordance with Dow’s theory, we can describe Technical Analysis as the study of
trends. The aim is to use historical data and statistical methods to separate trends
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8 CHAPTER 1. INTRODUCTION

from the noise and predict recessions before they actually happen. It is clear then
that Charles Dow did not actually introduce any methods of technical analysis- he
prepared the necessary fundamentals to justify appropriateness of such approaches.
We usually associate term arbitrage with the gap between single asset prices on dif-
ferent stock exchange markets. The classical economical theory states that if markets
are efficient there should be no possibility of arbitrage but in reality it is not always
the case. To profit from arbitrage is then to buy such asset for a lower price and
instantly sell it for the higher one. Such behaviour of many traders (arbitrageurs)
leads to practically automatic correction of any mispricings. Therefore, one does
not actually needs to consider two separate markets- it is sufficient enough to seek
arbitrage opportunities on a single market and profit from the corrections. At the
same time, if there is no “anchoring” price to compare with one needs to construct
it in a more theoretical way. Techniques of doing it are referred to as Statistical
Arbitrage. To somehow illustrate it, the simplest approach would be to compare
the current price with a possibly weighted average of historical prices. If the overall
trend is not strong, any significant deviations from such average may be seen as
arbitrage opportunity. In the presence of a trend, the mean can be replaced with a
sloping line representing the drift. These are not so sophisticated methods because
it is usually not the case that trend of the market is a linear one. But since we are
considering trends and historical prices to reflect the future, Statistical Arbitrage is
seen as a great example of Technical Analysis.
The following paper aims to present 3 techniques of Statistical Arbitrage. They
will all focus on constructing portfolios that separate market and sector trends from
movements that are unique to a given stock. With such portfolios arbitrage op-
portunities can be found with the assumption of their mean-reversion properties.
The main difference between discussed techniques is going to be the way the market
components are constructed- we will consider Exchange Traded Funds (ETFs)
representing market indices together with factors made artificially (since the first
ones may not be sufficient enough). Such factors are going to be constructed with
the use of Principal Components Analysis of the returns and, in the final and
most sophisticated strategy, based on Recurrent Neural Networks simulations.
Then, the ultimate goal will be to rate the performance of Statistical Arbitrage in
general and compare different approaches by trading on historical data of the polish
equities market- especially in the context of the general market recession following
the events of the COVID-19 pandemic.
Even though the actual results of considered strategies will pose as the final part of
the paper it is important to set up the economic scope of our considerations. We
are also going to use real examples to illustrate theoretical concepts throughout the
entire paper. Therefore, let us start with an overall insight into the polish equities
market.
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1.1 Polish equities market in the scope of our consider-
ation

Polish equities market is centred around Warsaw Stock Exchange Market (GPW).
Total capitalization, which is the summed value of all outstanding stocks on the
market, resolves around 300 bln EUR- this makes GPW the biggest stock exchange
in central and eastern part of Europe. As of July 2023, Warsaw Stock Exchange
Market consisted of 415 domestic and foreign companies. It is not only dependent on
polish economy but also on global markets- especially American and German (NYSE
and FWB consecutively) with the latter one being the biggest in European Union.
In contradiction to those markets there are not so many indices on GPW. They
are all variations of what will become the main subject of validating our strategies-
WIG.

1.1.1 WIG and its variations

WIG (whose acronym stands for Warszawski Indeks Giełdowy) is the oldest index
on the Warsaw Stock Exchange Market dating back in April 1991. It consists of all
companies on the main market with at least 10% of the shares trading for not less
than 1 mln EUR. Because of that the index serves as an indicator of Poland’s overall
condition. WIG is calculated as the total value of its companies’ stocks relative to
day the index was issued (when it was priced as 1000 points). One can consider its
value as worth of “the entire main market” portfolio and for that reason all cash
payments such as dividends and interest are included and assumed to be reinvested.
That makes WIG the Total Return Index- a more appropriate way of expressing
possible profits coming from investing in index’s participants than a Price Index
which only includes stocks’ raw prices.

Figure 1.1: WIG daily close prices throughout years
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Figure 1.1 shows entire history of the index. We can clearly identify the positive
impacts such as the start of Poland’s European integration in 1994 or an exponential
growth after joining EU, but also the negative ones: 2008 global crisis and COVID-
19 pandemic.
As mentioned above WIG is constructed out of practically all members present on
the polish equities market. Additionally, the influence of a single company cannot
exceed 10% and each sector can participate only up to 30%- to keep such require-
ments (and to include new participants- their number is unlimited) index is updated
quarterly. Even with such restrictions WIG is mainly influenced by the “big sharks”-
top 5-10 biggest capitalization companies on the market. For that reason index finds
it hard to follow movements of sectors that are not so crucial to the domestic econ-
omy status- the perspective is just too broad. There are actually no exchange traded
funds (they will be described in greater detail later- for now one may assume that
these are portfolios of stocks that you can purchase) tracking WIG- this makes it
even more of theoretical indicator rather than an actual portfolio to follow. As a way
of “fixing” mentioned weaknesses WIG’s variations were introduced. They can be
separated into 2 categories: rating indices and sector indices. The first one focuses
on indices gathering WIG’s companies based on a predefined, quarterly adjusted
ranking calculated with current capitalization and yearly turnover total value. Here
are the 3 most popular ones:

• WIG20 ;

• mWIG40 ;

• sWIG80.

WIG20 gathers first 20 places in the ranking, mWIG40 - places from 21 to 60
and sWIG80 consists of biggest 80 companies that did not make it to WIG20 or
mWIG40. In contrast to WIG these are all Price Indices and for that reason they are
accompanied with Total Return equivalents (TR name extension- see Figure 1.2).
Ranking indices are way easier to replicate than WIG because of smaller compo-
nents’ number. Although WIG20 ’s behaviour is very similar to WIG’s- considering
for example sWIG80 can introduce a new perspective of smaller companies’ current
status. In each index, every company has a certain share that reflects its capitaliza-
tion and therefore directly corresponds to position in the ranking. Then, the final
index’s value can be seen as a weighted average of participants’ stock prices. Since
structurally speaking ranking indices have a lot in common, let us just focus on the
most common one- WIG20. Like WIG, WIG20 is also relative to its initial 1000
points value dating back in 1994. It reflects weighed average price of top 20 biggest,
most liquid polish companies.
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Figure 1.2: WIG20 and Total Return WIG20TR daily close prices throughout 2022

Figure 1.2 shows WIG20 ’s historical behaviour together with its Total Return ver-
sion which is being calculated since 2012. Dividends are usually paid mid-year, that
is why WIG20TR diverges from WIG20 in the second half of 2022. Coming back to
the previous plot, it is also noticeable that WIG20 behaves very similarly to WIG-
only the magnitudes are significantly different. WIG20 ’s components are revised
quarterly together with a new ranking version.

Figure 1.3: WIG20 companies by share in index (as of July 2023)

On Figure 1.3 we can see index’s participants distribution. Share of a single company
cannot exceed 15%. Top 5 companies in total have more than 50% share in the index-
they can be seen as the main trend drivers. Quarterly corrections of the participants
usually concern lower places’ companies with very small shares thus some of them
can be skipped while replicating the index. Since the beginning of 2022 the only
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changes were: the inclusions of Alior Bank (ALR), Tauron Polska (TPE), Mercator
Medicalthe (MRC) for mBank (MBK), Pepco (PCO) and CCC (CCC) consecutively.
Below we are going to consider plots analysing WIG20 and its components based
on a full year circle of 2022- for simplicity and based on the reasoning above current
squad of the index will be considered throughout the entire period.

Figure 1.4: WIG20 and its components’ daily returns correlation matrix

Returns understood as close raw price difference quotients with 1 trading day as
dt for both the index and its companies were gathered to calculate a correlation
matrix between them (returns are usually assumed to be Gaussian which means
that their similarities can be explained in such way). It can be seen on Figure
1.4 with color gradings representing magnitudes- components are ordered based on
their correlation to the index itself. It is clear that all correlations are either strongly
positive- assets are making profits in parallel; or almost zero- there is no similarity
between companies’ trends. It is worth noticing that the strongest WIG20 -correlated
participants are banks. All of them are also highly correlated with each other and
non-bank members. The main reason is that all companies are heavily dependent on
financial institutions providing them loans and deposits. Because of these and similar
connections, transition between share in index and the impact of a single company
is not quantitatively ideal (yet still visible). The most uncorrelated company here
is CD Project Red (CDR)- games developer more sensitive to game release dates or
media trends rather than on the domestic economy.
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Close price
Stat Mean Std Relative Std
Ticker

PKN 62.67 5.02 0.08
PKO 28.87 4.27 0.15
PZU 32.77 5.43 0.17
DNP 374.86 44.45 0.12
PEO 80.80 12.89 0.16
KGH 114.58 16.19 0.14
ALE 27.77 4.27 0.15
LPP 9827.32 1644.26 0.17
SPL 277.85 52.22 0.19
CDR 118.34 20.52 0.17
KRU 310.97 49.45 0.16
KTY 533.77 42.65 0.08
PGE 7.18 1.29 0.18
PCO 38.19 3.62 0.09
MBK 295.38 61.10 0.21
OPL 6.56 0.59 0.09
ACP 72.97 5.55 0.08
ALR 35.16 7.64 0.22
CPS 17.69 1.07 0.06
JSW 47.68 7.68 0.16

Table 1.1: WIG20 ’s components daily close prices statistics (based on 2022’s data)

Stocks of index’s members are very hard to compare price-wise because of different
magnitudes. Table 1.1 shows their basic sample statistics from the last year. Relative
standard deviation is defined as

σrel = σ

µ
,

where µ, σ are mean and standard deviation. Its value gives us a better under-
standing of data’s instability. LPP’s stock stands out as far the most expensive
one- number of shares needed for index’s participation at around 6% is thus much
lower than for other companies. Relative standard deviations are mostly low for all
members- because of their sizes and liquidity they are usually stable. To compare
components’ prices movement throughout the last year we are going to consider
daily prices in a relative way i.e. considering changes of 1 PLN worth of every
asset purchased at the beginning of January 2022. Dividends nor any other stock
ownership’s benefits are not going to be taken into account here.
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Figure 1.5: WIG20 and its components’ relative daily close prices

Figure 1.5 consists of 2 plots: the first one aims to present all components together
with the index itself. We can see that WIG20 ’s relative value lays in the middle of
components’ ones. It can be viewed as quite intuitive since the index was suppose
to average all prices. This is also the reason why index’ movement is not as volatile
as for the components. Latter plot focuses only on the top 5 companies of the
index. Although as we already noticed their returns are not necessary as strong
WIG20 -correlated as the share would suggest, relative prices are following very
similar movements to the index. At the same time, each stock has its own unique
“noise” not explainable by WIG20.
WIG20 as a Price Index does not have an Exchange Traded Fund but there exists
one covering WIG20TR- BETA ETF WIG20TR. It tracks the Total Return Index
value by directly replicating its portfolio, reinvesting all received benefits and adding
a small share of derivative instruments for additional stability.
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Figure 1.6: WIG20TR and its tracking index relative daily close prices

Following the same approach as with presenting WIG20 and its components’ prices,
Figure 1.6 aims to show how close BETA ETF WIG20TR is from the actual index.
Other 2 main ratings indices mentioned above follow the same pattern- they do have
ETFs tracking their Total Return versions.
Let us recall that on the polish stock exchange market we can distinguish 2 main
types of indices. We just described rating indices together with their most common
example- WIG20. The second group gathers so called sector indices. As the name
suggests they focus on all companies from given sector. For each industry subindex
shares’ packages of its participants are identical to ones of WIG. Another similarity
with the main index is that sector indices are all Total Return ones. Number of
participating companies is changing with inclusions and exclusions dependent only
on presence in WIG.

sector number of members
name

WIG-BANKI banks 13
WIG-BUDOWN architecture 34
WIG-CHEMIA chemistry 5
WIG-ENERG energy 12
WIG-GORNIC mining 5
WIG-GRY games 20
WIG-INFO informatics 26
WIG-LEKI pharma 8
WIG-MEDIA media 12
WIG-MOTO moto 4
WIG-NRCHOM real estate 22
WIG-ODZIEZ clothes 15
WIG-PALIWA fuels 3
WIG-SPOZYW food 19

Table 1.2: Main polish sector indices with their components’ numbers (as of July
2023)



16 CHAPTER 1. INTRODUCTION

Table 1.2 presents a representative mixture of sector indices for different aspects of
polish economy. As can be seen their members’ number varies from just 3 (WIG-
PALIWA) to 34 (WIG-BUDOWN ). We will not analyse sector indices separately-
instead let us consider them jointly.
Since exact squads of each index are not going to be considered we can look at the
last 3 calendar years of historical data instead of just 1 year like we did with WIG20.
This should give as more insight in subindices’ similarities and unique behaviours.

Figure 1.7: WIG and its subindices’ daily returns correlation matrix

Figure 1.7 presents correlations between subindices’ daily returns. WIG was also
included and sector indices were sorted based on their correlations with it. Corre-
lations around 0.4 − 0.5 suggest a basic, common trend between indices interrupted
by unique sector movements. WIG-BANKI is by far the most correlated one with
WIG. It is not a surprise since financial institutions gathered in this subindex have
one of the biggest capitalizations on polish exchange market (most of them were in-
cluded in WIG20 ). Some intuitive correlations can be spotted such as slightly higher
one between WIG-PALIWA (fuels) and WIG-ENERG (energy) indices. WIG-GRY
(games) and WIG-LEKI (pharma) are by far the most independent ones in compari-
son to the others. The first one, as already mentioned in terms of its leading company
CD Project Red, is not so sensitive to polish domestic economy, while the latter one
was heavily influenced by COVID-19 vaccines production during 2020-2022.
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Figure 1.8: WIG and its subindices’ relative daily close prices

Relative close prices were again calculated, this time for sector indices- results can
be seen on Figure 1.8. All sector indices are less stable than WIG- each of them has
unique deviations which can be interpreted analysing historical events- nevertheless
some major, common trends are visible for the entire spectrum. Considered sector
indices do not have ETFs tracking them. For that reason artificial funds are going
to be used assuming that portfolio replication relies on us.
After setting up all the necessary characteristics of polish equities market, let us
now consider how are we planning to profit from it.





Chapter 2

Theory of Statistical Arbitrage

The following section aims to give an insight into statistical arbitrage strategy of
Pairs Trading. Firstly, we are going to consider the basic concept of the technique
together with our way of tackling it. Then, details of each strategy’s step will be
discussed on a theoretical and practical level.

2.1 Pairs trading- what is it?

Recall that we considered arbitrage as an inconsistency of asset’s price between 2
markets. Assuming there exists what we would call a “fair” price of an asset, at least
one of the markets is over- or undervaluing it. Even in absence of such “fair” value,
one can still profit from buying with the lower price and selling with the higher one
on the second market (which overvalues considered asset relatively to the first one).
So, are we going to observe different stock exchanges as our sophisticated strategy?
Well, not really- asset price on different markets is just the simplest example of 2
highly correlated time series that in principle should converge. If instead of same
asset’s second market price, one used price of a different asset that behaves very
similarly to the first one, any major gaps between them would be seen as temporary.
Profiting from corrections of such discrepancies, no matter how the whole market
performs, is where arbitrage meets the idea of Pairs Trading.
Concept of looking for equities that “move together” and trading them whenever
their prices diverge was first introduced by Wall Street quant Nunzio Tartaglia. He
developed multiple statistical trading strategies and pairs trading turned out to be
one of the most successful ones- Morgan Stanley, the company that he worked in
at that time, made a 50 million $ profit by using it in 1987[1]. Even though the
following years were not so profitable for the fund, pairs trading gained popularity
as a counter to mainstream, “intuition” trading. Additionally, due to its market-
neutrality (independence or low correlation with current market trends) together
with other statistical methods pairs trading was one of the best performing strate-
gies during the “Black Monday” market crash in 1987 (one of the biggest crises in
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American’s history). Next 30 years developed Tartaglia’s concept both on theoret-
ical level- inserting a high mathematical theory behind it, and by the introduction
of Deep Learning- on a practical one. Till this day pairs trading remains one of the
most popular technique among quantitative traders.
Pairs trading approach questions efficient-market hypothesis (EMH) that in its
strongest form states that asset’s price always reflects all public and private infor-
mation and therefore profiting from fundamental or technical analysis is impossible.
Formally speaking, for a given moment in time t > 0 the current price of an asset-
St is a conditional expectation of stochastically discounted (with factor Qt+1) fu-
ture price St+1 increased by future dividend Dt+1 with respect to a filtration Ft

representing all available information till t:

St = E[Qt+1(St+1 + Dt+1)|Ft].

EMH was put together by Eugene Fama[2] and have gained mixed reviews since
then. Current discourse consists of more criticism to the theory: articles presenting
repeatable profits from applying methods of fundamental and technical analyses
in different market scenarios can be classified as empirical evidences of hypothesis’s
incorectness. Another perspective questioning EMH is one of behavioural economists
claiming that even if the market is efficient investors aren’t. From behaviourists point
of view traders make mistakes and are exposed to biases such as overconfidence
or overreaction leading to arbitrage opportunities. In his book[3] L. H. Pedersen
gives a thoughtful summary of the discourse: he claims that market is “efficiently
inefficient” meaning that even though mispricings can occur they are quickly closed
and therefore can only be exploited by best traders. This paper does not aim to
disprove Fama’s theory, although will present empirical results that are closer to
Pedersen’s perspective.
As described above, in a classical approach of pairs trading 2 similarly behaving
asset A and B are picked. Then a portfolio P of 1 PLN worth of A and −1 PLN
(shorted) worth of B is constructed. Note that it’s initial cost is 0. Let At and
Bt represent values of 1PLN invested in both assets after t > 0. Let Mt- be the
common part of At and Bt- usually called the market component. In other words:At = Mt + ϵA

t

Bt = Mt + ϵB
t

,

where ϵA
t , ϵB

t are market-independent, unique price components of At and Bt. Then,
we can see our portfolio value Pt as:

Pt = At − Bt = (Mt + ϵA
t ) − (Mt + ϵB

t ) = ϵA
t − ϵB

t .

Such portfolio does not include any market components and is therefore assumed to
be market-neutral. Since the market tends to quickly correct any arbitrage oppor-
tunities, one should also expect that both unique price components are relatively
small and circulate around 0- from a non-economical perspective they can be viewed
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as “noise”. No matter if both assets are increasing or decreasing in value- every dis-
crepancy between At and Bt where the first one is higher can be used by selling
the portfolio with profit, and every reverse situation (Bt > At) should only be tem-
porary and thus not affect P for the long-term. Such pair can also be monitored
without actually owning it until a “good” moment of Bt being significantly larger
than At occurs- then a reversed scenario is not even needed to profit, even a correc-
tion to At ≈ Bt would be enough to sell. For better understanding let us consider
an example concerning highly correlated polish energy providers (top companies
of WIG-ENERG index): Tauron Polska and ENEA SA. Based on the last year
(July 2022 to July 2023) correlation between their stocks’ daily returns was equal
to ρ = 0.7269.

Figure 2.1: Tauron Polska (TPE) and ENEA (ENA) absolute and relative daily
close prices

Figure 2.1 shows 2 plots: the upper one presents adjusted (with additional payments
included) daily close prices of considered stocks while the bottom one aims to show
the development of investing 1 PLN in both stocks at the beginning of the period.
Latter plot visualizes a common trend between 2 companies together with unique
components’ influence making the relative prices circulate around each other. A
qualitative reasoning behind such oscillation may be that these companies are in a
sphere of interest for similar investors- prices drops of one makes them switch to the
other. We will now consider a pair portfolio constructed at the start of the period
with long 1PLN worth of TPE and short 1PLN worth of ENA. Portfolio is not
going to be adjusted throughout the period.
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Figure 2.2: Portfolio of long TPE and short ENA daily close worth

As can be seen on Figure 2.2, portfolio is circulating around 0 depending on which
stock’s relative price is currently higher. Bearish (downward) market trend of stocks’
prices during the last 4−5 months is “cancelled” in the portfolio. Sell of the portfolio
at any moment when its value is higher than 0 is a profit for the investor since the
entering cost of purchasing it was 0. As mentioned before, portfolio can be also
tracked theoretically and purchased later, when its value is negative. Then trader
would hope for a correction of the discrepancy and profit by selling afterwards.
A major drawback of using 2 stocks as a pair is that we are exposed to each one’s
noise. It is then harder to model pairs’ portfolio since those unique parts may f.e.
have different oscillation frequencies. Perfect solution would then be to consider
pure market component Mt instead of the second stock. Then, a modified portfolio
value P ′

t would be:
P ′

t = At − Mt = Mt + ϵA
t − Mt = ϵA

t .

This way there is no need for pairs selection, every company can be described in
terms of its price unique component’s parameters. The only selection needed would
then be picking stocks with best ϵt “circulating” properties (we will explain it in
more details in further sections). But how can you trade on the market? This is the
exact moment where indices can be introduced. From the definition, by gathering
many similar companies, they are supposed to represent current market’s trends.
Unique trends of included stocks are smoothened and the final result gives a reason-
able indicator of Mt for each participant. Although trading with indices directly is
obviously impossible, there are exchange traded funds- dynamically updating stock
portfolios imitating a given index. Such portfolios can be purchased directly on stock
exchange market- it takes work off the investor who does not want to buy each par-
ticipant’s stocks separately and keep their number relevant to index’s shares. Since
polish indices’ spectrum is not so wide (especially when excluding those not backed
by corresponding ETF) own indices can also be developed without limiting oneself
to what market offers. Using statistical and Deep Learning methods for any group
of stocks multiple market components can be considered without actually matching
them to any concrete economic aspect. Influences of each stock in such artificial
factors would then be transferred into specific amounts to purchase in owned port-
folios. Following M. Avellaneda and J.H. Lee’s 2008 paper[4], we are going to use
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real and artificial indices as market components to subtract unique price movements
with oscillation properties. There are 3 questions still left unanswered:

• Does every stock have a market component in its price? What is the theory
behind it?

• Does every stock’s price unique “leftover” circulates? How fast will it come
back to 0?

• When is the best moment to trade with pair portfolio? On what basis and
how to identify the signals?

Fortunately, each of these questions has a separate section dedicated to answer it
comprehensively. Thus, in the following chapters we will consider every aspect of
pairs trading theory gathering and combining various papers’ discourses. Let us
start with the theory of stocks returns’ β models.

2.2 Multi-factor β model of returns

For the basic definition of pairs trading we proposed that At: value of KA
1 PLN

company A’s stocks (worth 1 PLN at the start) after t > 0 can be decomposed to
2 components: market factor Mt representing part of the market “contained” in At

and independent part ϵA,t- unique to chosen company. In other words:

At = Mt + ϵA
t .

Although this way of thinking is generally appropriate and intuitive, used notation
may be seen as a bit oversimplified- it does not incorporate how strong the correlation
between At and the market actually is. We will therefore formalize and generalize
our assumptions. Let us consider stochastic process St, t > 0 modelling close prices
of a given company in time (years). For simplicity we are going to assume that such
process is continuous. Then, for a time interval dt (f.e. 1

252 representing one trading
day) let Rt = St+dt−St

St
represent stock’s returns. Similarly, let us consider SF

t , t > 0-
process of capitalization-weighted market index and its returns Ft, t > 0. Under an
assumption that for any t0 both Rt and Ft come from a normal distribution let

β = Cov(Rt, Ft)
Var(Ft)

, (2.1)

be a time-constant, scaled covariance between processes. Then we can construct:

Rt = αdt + βFt + ϵt, (2.2)

which is a simple regression model (commonly called 2-parameters model) decom-
posing stock’s return into deterministic drift αdt, market (systematic) βFt factor



24 CHAPTER 2. THEORY OF STATISTICAL ARBITRAGE

and a stock-unique, mean 0, uncorrelated (idiosyncratic) process ϵt which is also
normal for given t. Taking the expected values in Equation 2.2 we get:

E[Rt] = αdt + βE[Ft]. (2.3)

Parameter β defined as in Equation 2.1 actually minimizes the squared residuals
sum of fitted model (like in standard OLS). Equation 2.2 was initially fully defined
by E. F. Fama (1973)[5] and heavily based on W. F. Sharpe Capital Asset Pric-
ing model (1964)[6]. Fama considered it in relation to his efficient market theory.
Through empirical tests he proved that on average there are no other measures of
risks affecting stocks’ returns than ones of market and thus confirmed the correct-
ness of proposed model. Sharpe thought of Ft as of a diversified portfolio returns
and therefore studied the theoretical expected return a given stock should have to
be included in the portfolio. Although proposed model is very simple, concepts of
β and α for given stock are still used as basic indicators of its market-dependence
and of how it is performing compared to the market consecutively.

Figure 2.3: PKN Orlen daily returns explained by 2-parameters model with WIG20
serving as the market

Figure 2.3 shows how PKN Orlen daily returns from July 2022 to July 2023 are
explained by WIG20 ’s returns from analogous period. Parameter β = 1.4651 was
calculated based on the same time-window using empirical estimator of covariance,
α = 0.1776 was then derived as a mean of (RP KN

t − βRWIG20
t ) scaled by dt =

1
252 . In this example PKN is giving larger returns relative to the “market” with an
additional, constant overperformence. Interestingly, we are actually going to focus on
the part that was omitted by both Sharpe and Fama because of their (approximate)
market’s efficiency assumption- the idiosyncratic, market-neutral factor. Since our
model is based on returns ϵt is not actually modelling the accumulated worth of such
portfolio. Therefore we will switch to more appropriate naming of ϵt = dIt where
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It represents relative value of the oscillating, idiosyncratic, pair portfolio. It is also
stationary as a process (although its mean does not need to be 0) and normal for any
given t0. Such portfolio consists of a given stock and regression model’s replication.
It can be also seen as an indicator what is the relation between a “fair” price and
an actual one.

Figure 2.4: Idiosyncratic component It of PKN Orlen daily returns throughout
training period

Continuing with the same case, Figure 2.4 presents how the idiosyncratic part of
PKN returns behaves on the training period. Assuming that the residuals serve
as increments of It, we summed them up cumulatively to get It. Cumulative sums
of dIt are clearly circulating around a constant without any significant drift- this
agrees with It’s stationarity assumptions. We can also see it as a value of a simple
pairs portfolio consisting of PKN shares together with shorted index’s Exchange
Traded Fund- α does not need to be cancelled in practice since we aim to profit
from corrections and not the trend itself.
Today’s economy is so complex that even though it is commonly used, decomposition
into a single market factor and the remaining part may not be sufficient enough.
For that reason Arbitrage Pricing theory was introduced[7] as a generalized and thus
improved version of Capital Asset Pricing model we introduced earlier. New model
states that for given asset i its returns Ri

t can be decomposed as follows:

Ri
t = αidt + Σr

j=1βijF j
t + dIi

t , (2.4)

where F 1
t , . . . F r

t are returns of r different systematic factors and βi1, . . . βir represent
asset i sensitivities to a given factor (they are not necessary as in Equation 2.2
because the factors may also be correlated with each other). Such factors might
represent different sector indices correlated with considered asset. It is assumed
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that both Ri
t, Fi, i = 1 . . . r and dIi

t for given t0 are normal and dIt is again an
increments process of fluctuating process It. Model can be viewed as multi-factors
regression equation, therefore βs can be derived by minimizing its mean squared
error.

Figure 2.5: Tauron Polska daily returns explained by multi-factor β model with
WIG20 and WIG-ENERG serving as systematic factors

Following the same methodology as with PKN 2-parameters model example, Figure
2.5 shows multi-factor β model fit for Tauron Polska returns taking WIG20 and
sector index- WIG-ENERG. Coefficients were selected as in a standard OLS model.
It is important to mention that such explanatory variables are not fully practical
since there is no existing ETF of WIG-ENERG.
As mentioned, Arbitrage Pricing theory is a generalization of Fama’s 2-parameters
model. It is then more flexible with its variables and therefore has more explana-
tory power than CAPM. Assumption about one universal factor explaining the entire
market is abandoned and replaced with more reasonable one of multiple economic
risk drivers. Still, similarly to CAPM, Arbitrage Pricing theory assumes that the
market is approximately efficient with the fair asset price being represented on aver-
age and thus explained by the model but it also enables traders to seek for arbitrage
opportunities throughout the analysis of remaining residuals. Theory behind such
analysis is going to be the topic of the following section.
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2.3 Mean-reverting stochastic processes of stocks’ resid-
uals

We are considering a framework where stocks’ prices can be considered “fair” and
therefore not misvalued on average. Still, on daily basis arbitrage opportunities of
over- or underpricing are possible. They happen because of investors’ mistakes and
biases such as overreaction or “herd following” but are quickly corrected- traders, f.e.
arbitrage seeking ones “move” prices back to their “fair” value by changing trading
demand. If underpriced stock is identified, buying volume grows which then leads to
price increase forming almost a self-fulfilling prophecy. If “fair” value is indicated by
a model, cumulative residuals represent potential mispricings and therefore should
be approximated by processes of similar “autocorrection” properties. Additionally,
Arbitrage Pricing theory expects all components to be normal for any given time
moment, especially It and its increments dIt (for Gaussian It latter one comes au-
tomatically from normal distribution properties). Summing up those assumptions
and switching to a more theoretical jargon we seek for Gaussian, unconditionally
stationary, mean-reverting processes that circulate around their means. For clarity,
“unconditional stationarity” means that without conditioning on its initial value
(not assuming it is known) process is stationary. Ornstein–Uhlenbeck process
is going to be our natural candidate fulfilling all the requirements- this approach is
consistent with Avellaneda’s paper[4] and commonly used in field’s literature.
Ornstein-Uhlebeck process was introduced by physicists Leonard Ornstein and George
Eugene Uhlenbeck in 1930s. Let us consider its formal definition.

Definition 2.1. The Ornstein-Uhlenbeck (OU) process is a stochastic, uncondi-
tionally stationary, Gaussian process satisfying the following stochastic differential
equation:

dXt = κ(µ − Xt)dt + σdBt, (2.5)

where Bt, t > 0 is a standard Brownian motion. Constant parameters represent:

• µ ∈ R- long term mean of the process,

• κ ∈ R+- speed of process’s mean-reversion,

• σ ∈ R+- volatility of the process.

Considering deterministic process X ′
t where Brownian motion increment (the only

source of randomness) in the equation is ignored we have:

dX ′
t = κ(µ − X ′

t)dt

dX ′
t

dt
= κ · µ − κX ′

t

Introducing X ′
0 = x′

0 it can be easily solved with the solution being

X ′
t = µ + (x′

0 − µ) exp (−κt).
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As time goes to infinity, X ′
t −→ µ. Process converges to its mean exponentially with

rate κ and magnitude proportional to the difference between its current value and
µ. Similar properties can be transferred to Xt whose solution goes as follows.
Let X0 = x0 and Yt = Xt − µ- a centred version of Xt. Then Equation 2.5 can be
re-written as: dXt = dYt = −κYt + σdBt,

Y0 = y0 = x0 − µ.

To get rid of the drift κYt we will consider process Zt = exp (κt)Yt. Then from a
Leibnitz product rule:

dZt = exp (κt)dYt + κ exp (κt)Yt =
= exp (κt)(−κYt + σdBt + κYt) = exp (κt)σdBt.

Using Ito’s integral notation and substituting Z0 = exp (κt)Y0, Zt becomes:

Zt = Z0 + σ

∫ t

0
exp (κs)dBs.

Coming back to initial Xt process our formula is:

Xt = µ + (x0 − µ) exp (−κt) + σ

∫ t

0
exp (−κ(t − s))dBs. (2.6)

The only part which can be further transformed is the integral. Let us consider the
following lemma.

Lemma 2.2. For a deterministic function f ∈ L2 and 0 ≤ s < t∫ t

s
f(u)dBu ∼ N (0;

∫ t

s
f2(u)du),

where
∫ t

s (·)dBu is Ito’s integral.

Having:∫ t

0
(exp (−κ(t − s)))2ds =

∫ t

0
exp (−2κ(t − s))ds = exp (−2κt)

∫ t

0
exp (2κs)ds =

=exp (−2κt)
2κ

(exp (2κt) − 1) = 1
2κ

(1 − exp (−2κt)),

we can re-write integral as B 1
2κ

(1−exp (−2κt)) and then Equation 2.6 becomes:

Xt = µ + (x0 − µ) exp (−κt) + σB 1
2κ

(1−exp (−2κt)). (2.7)

Now one can easily see that conditioning on X0 = x0 for any t0 > 0 Xt0 follows
normal distribution (which makes it a Gaussian process) with:E[Xt|X0 = x0] = µ + (x0 − µ) exp (−κt),

Var(Xt|X0 = x0) = σ2

2κ (1 − exp (−2κt)).
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Asymptotically, as time goes to infinity, Xt −→ N (µ, σ2

2κ )- parameters of such normal
distribution are also the unconditional mean and variance of Xt- that is why we
assume that OU process is stationary. It is worth noticing that the mean exactly
equals the value derived from the deterministic differential equation provided earlier.
Intuitively, Xt is then like X ′

t with additional “noise” serving as a contrary force to
the convergence. This way process gains its mean-reversion property that makes Xt

circulate around µ + (x0 − µ) exp (−κt) with speed determined by κ.

Figure 2.6: Ornstein-Uhlenbeck process simulations depending on x0 and κ param-
eters

Figure 2.6 shows how Xt circulates around E[Xt|X0 = x0]. On the upper picture we
can see a constant conditional mean version of the process (where µ = x0), whereas
the lower one shows E[Xt|X0 = x0] exponentially decreasing towards µ from higher
x0. In both cases for larger κs there are more oscillation nodes (their frequency is
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higher)- it serves as a graphical explanation why κ is associated with the speed of
mean-reversion. We will seek for stocks for which residuals’ κ ≫ 1 so that trans-
actions profiting from mispricings can be opened and closed multiple times before
the end of trading period. Parameters µ and σ are also important since asymptotic
mean is an anchoring and volatility shows how big deviations should be expected.
Therefore, they both indicate whether our idiosyncratic portfolio’ value will rebound
soon. Let us then consider how to extract such parameters from historical data that
is assumed to represent Ornstein-Uchlenbeck process. Using Brownian motion prop-
erties, for given dt we can re-write Equation 2.5 in the following way:

Xt+dt − Xt = κ · µ · dt − κ · dt · Xt + σ(Bt+dt − Bt)
Xt+dt = κ · µ · dt + (1 − κ · dt)Xt + N (0; σ2dt)

or equivalently:

Xt+dt = ϕ0+ϕ1·Xt+ζt+dt where ϕ0 = κ·µ·dt, ϕ1 = (1−κ·dt) ∈ [0; 1] and ζt+dt ∼ N (0; σ2dt).
(2.8)

This way, OU process can be seen as a continuous extension of lag 1 autoregressive
model (AR1) defined below.

Definition 2.3. Autoregressive model is a time-series model where given state Xk

is dependent only on finite number of previous states and a possible constant drift.
In other words, for p previous states-dependence and :

Xk = ϕ0 + Σp
j=1ϕjXk−j + ζk,

where ϕ0, . . . ϕp are the coefficients and ζk are independent random variables with
mean 0 and constant variance σ2

ζ . The simplest auto regression model (AR(p)) is
one with p = 1:

Xk = ϕ0 + ϕ1Xk−1 + ζk.

Such process is stationary only if |ϕ1| < 1, then Corr(Xk, Xk−j) = ϕj
1. Additionally,

partial correlation including only direct influences between states (conditioning on
the ones in-between) is given by:

PartCorr(Xk, Xk−j) =

ϕ1, j = 1,

0, otherwise.

Because of that, real data (discrete in its nature) can be fitted with OU process using
similar techniques as in time-series analysis. Let us assume that based on W trading
days historical window we have extracted idiosyncratic parts of daily returns for a
given stock: dI1, . . . dIW (simplifying the indexing for the sake of brevity). Keeping
in mind that these are just the increments we calculate:

Ik = Σk
j=1dIj , k = 1, . . . W,
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which can be seen as a discrete version of OU process that we are estimating. If the
β coefficients were based on the same data, due to regression principles the sum of
all coefficients- IW is 0. Then, we need to solve AR(1) equation for Ik, , k = 1, . . . W .
There are many ways of getting ϕ0 and ϕ1, one of them being the use of Yule-Walker
equations. This is a method of moments- it translates empiric correlations within
the sequence to model’s parameters. After estimating AR(1) coefficients, having
Equation 2.8 formulas, dt = 1

252 and V̂ar(ζ) being the sample variance of ζ- errors
of the fitted model, we can derive κ, µ, σ as follows:

κ = − log (ϕ1) · 252,

µ = ϕ0
1 − ϕ1

,

σ =

√√√√V̂ar(ζ) · 2κ

1 − ϕ2
1

.

(2.9)

If Ik and Ik+1 are strongly correlated changes in time-series are relatively slow- it
corresponds directly with mean-reversion speed parameter κ which would be ≈ 0
for ϕ1 close to 1.

Figure 2.7: Autocorrelation and partial autocorrelation plots for idiosyncratic com-
ponent It of PKN Orlen daily returns
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κ µ σ

6.0443 0.2278 0.3459

Table 2.1: OU process parameters’ estimates for PKN Orlen

Figure 2.7 continues with the PLN Orlen example that we introduced earlier. Taking
time-series presented on Figure 2.2 into account, it shows empirical autocorrelations
(ACF) and partial autocorrelations (PACF) for first 10 lags. It can be seen that
their structure follows AR(1) assumptions since ACF shrinks with increasing lags but
does not disappear and PACF practically vanishes after lag 1. Keeping in mind that
Corr(Xk, Xk−1) = ϕ1, this parameter is over 0.9. It is not a surprise because It was
calculated as a cumulative sum and therefore heavily depends on closest predecessor.
Table 2.1 shows κ, µ, σ derived from Equation 2.9 formulas for considered example.
Although we do not have a concrete comparison yet, κ seems relatively high which
is consistent with It mean-reverting quite fast (Figure 2.2). As mentioned before,
all 3 parameters are indicators of portfolio’s relative performance. They, together
with actual It value, should be then used to derive signals for actual transactions.
For example, if value of the idiosyncratic component is high relative to µ and σ one
should open a short trade expecting portfolio’s value to drop generating potential
profit. Next section will be dedicated to presenting signal function and thresholds
activating specific actions.

2.4 Signals generation

We are going to trade on multiple companies’ idiosyncratic components with all
of them being modelled by the Ornstein-Uhlenbeck processes. For a given trading
day, to decide whether a position on a certain company should be opened/closed we
must look at how far It currently is from its long-term mean. Typically, long/short
position will be opened when process lies “far” (relative to its volatility) below/above
average and then closed after it mean-reverses. Depending on stock’s specificity
parameters µ and σ will be different- therefore to have unified thresholds we are
going to normalize It for each stock.
Recall that the asymptotic distribution (when t −→ ∞) of OU process is N (µ, σ2

2κ ).
For a given stock i and its idiosyncratic factor Ii

t let us then consider normalized
process Gi

t:

Gi
t = Ii

t − µi√
σ2

i
2κi

.

It is clear that Gi
t is also a Gaussian process and that as t goes to infinity, Gi

t −→
N (0, 1). Keep in mind that we are not actually interfering with the portfolio as it
is still represented by Ii

t - Gi
t is just a theoretical signal generator. Consider that
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today’s Gi
t value is gi

t, then these are the exact rules to follow:

open long position if gi
t < −gol

open short position if gi
t > +gos

close long position if gi
t > −gcl

close short position if gi
t < +gcs

where gol, gos, gcl, gcs are the cut-offs. Now, even though the thresholds for triggering
trades can be common for all stocks and throughout entire trading period, we still
do not have a quantitative way of picking the most optimal ones. To narrow down
the possibilities, from the 68-95-99.7 rule we can propose that absolute values of
position-opening thresholds should lay within 1 and 2- this way hitting them will
not be so common but still achievable (landing in such interval on a specific side
has around 14% probability). When it comes to magnitudes of position-closing
thresholds they should lay below 1 and not be too close to the first ones (this way
actual profit can be made). Avellaneda and Lee estimated the cut-offs empirically,
based on simulating strategies on an additional training period from 2002 to 2004 in
the ETFs market modelling approach[4]. Based on performance metrics they picked
the following thresholds as optimal:

gol = gos = 1.25; gcl = 0.5; gcs = 0.75 (2.10)

We will follow a very similar approach, optimizing above barriers on an additional
training period but separately for each market generation algorithm.
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Figure 2.8: Relative prices of PKN Orlen returns and their imitating portfolio to-
gether with trading signals based on Avellaneda’s cut-offs

Let us revisit our PKN Orlen stocks’ example one last time. Figure 2.8 shows
relative prices of PKN and their predictions based on WIG20 together with normal-
ized It process named Gt. Dashed lines on the lower plot represent Equation 2.10’s
thresholds- green ones for opening position and red ones for closing. We assume that
at given time trader can hold only one opened position of idiosyncratic portfolio.
Thus, position has to be closed before opening another one (no matter if “long” or
“short”). Dots show exact days where signals for opening (green) and closing (red)
would appear. The longer the y-axis distance between two consecutive points, the
bigger the profit achieved from the 2-steps trade. Our every day goal is thus to up-
date OU process parameters based on actualized historical time window, calculate
current Gt value and decide on a potential trade. It is clear that 2 sub-plots are
corresponding to each other: overpricings of PKN are reflected in high Gt values
indicating optimal moments for shorting the pair portfolio. Same can be said in
a reverse situation where PKN is undervalued in comparison to the model. Keep
in mind that when a signal gets generated, we do not actually know how Gt will
form in the following days. Decision is based only on how the idiosyncratic part was
behaving in the past. In other words, same value of It on 2 separate days may lead
to different Gts because of updated κ, µ, σ parameters.
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There are still some technical assumptions to be considered- they will be fully ex-
plained in Section 5. We now know how to derive residuals from the Arbitrage
Pricing model, analyse their mean-reversion behaviour and transfer it to trading
signals. The only, but crucial part missing is how to tackle explanatory variables for
our regression model. In other words- how to create portfolios which will take every
common trend out of given stock and leave it with pure mispricings component.
As mentioned- 3 approaches will be evaluated- one with already existing indices was
already introduced throughout previous subsections. We will therefore provide some
additional details to this one but keep the focus on other, more sophisticated two.





Chapter 3

Paired portfolios generation
approaches

Based on the Arbitrage Pricing model, for a given stock we want to approximate its
returns using a linear combination of so called systematic factors. Even if systematic
components are strongly correlated, each one of them should have some additional
explainability of our target variable. The match between model and actual returns
should be strong enough that the residuals can be assumed as Gaussian and of
mean 0. Systematic factors have to be tradable: they need to represent returns of
real market’s equities such as exchange traded funds or unique stocks’ portfolios.
Although first option does not require any additional calculations beside getting
appropriate βs, its main drawback is that polish ETFs spectrum is very limited (f.e.
sector indices’ ETFs are not available). On the other hand, creating unique port-
folios suited to imitate given returns is far more flexible but requires determining
daily share of each component in a quantitative manner. Additionally, transaction
costs of re-balancing such portfolios may turn out too big. We are then dealing with
a simplicity- flexibility trade-off.
The following section aims to present both existing and artificial indices approaches.
The focus will be on the latter ones since they require a strong technical back-
ground to begin with. Let us start with first artificial indices’ technique of Principal
Components Analysis.

3.1 Principal Components Analysis (PCA)

For d stocks with daily close prices S1
t , . . . Sd

t and corresponding returns: R1
t , . . . Rd

t

given portfolio returns F 0 can be seen as:

F 0
t = Σd

i=1wiR
i
t,

where weight wi, i = 1, . . . d represents the (money-wise) proportion of asset i in the
portfolio (can be negative). For that reason we can assume Σd

i=1wi = 1. Considering

37
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time interval [t − (n − 1)dt; t], n > d we can think of Ri, i = 1 . . . d and F 0 as of
length-n vectors. Let us consider space F- length-n returns’ vectors of all possible
portfolios made with S1

t , . . . Sd
t . Then matrix R = (R1, . . . Rd)T of size (d, n) spans

F- its every element is a linear combination of R. Coming back to initial portfolio
F 0, in a vector form we can re-write:

F 0 = W T R, W = (w1, . . . wd).

Assuming that n is long enough that no Ri, i = 1, . . . d is a linear combination
of the others, R is an algebraic basis of F . Portfolios can be then represented
by their weight vectors W , where WRi = (0, . . . 1, . . . 0) with 1 on the i-th place.
There are actually many different bases that can be used instead of R: f.e. R1 can
be substituted with F 0 if w1 ̸= 0. This gives us a different perspective: instead
of looking at portfolios through stocks’ linear combinations we can look at stocks
themselves decomposed into different portfolios. In other words:

Ri = Σd
i=1wiF

i,

where F i, i = 1 . . . d are linearly independent. This is fairly similar to the Arbi-
trage Pricing model (Equation 2.4) but here no additional randomness is involved.
Obviously, since Ri, i = 1 . . . d were also linearly independent, weights would be
constructed in a way that all F i components offset each other leaving only Ri itself.
It is then not very helpful to represent stock by itself- to avoid such situation one
may need to decrease the number of involved portfolios. Then, a full match will
not be possible- luckily that was exactly our goal: to only approximate returns by
some portfolios and profit from the residuals. Now, that we are on the edge between
probability and algebra, 2 questions come up: what is the best possible basis to be-
gin with and how to crop it? They are answered with the theory of dimensionality
reduction and one of its most common techniques: Principal Components Analysis
(PCA).

3.1.1 What is PCA?

Consider d-dimensional normal variable X = (X1, . . . Xd) with mean vector E[X] = 0
and covariance matrix E[XXT ] = Σ. We want to find such W = (W1, . . . Wd) of
size (d, d) with Σd

i=1wki = 1, k = 1 . . . d that

X ′ = (X ′
1, . . . X ′

d) = WT X = (W T
1 X, . . . W T

d X) = (Σd
i=1w1iXi, . . . Σd

i=1wdiXi)

has uncorrelated components with maximum possible variances. Since

Var(X ′
i) = Var(wT

i X) = E[(wT
i X)2] − (E[wT

i X])2 =
= E[wT

i (XXT )wi] − (wT
i E[X])2 = wT

i E[XT X]wi − 0 = wT
i Σwi.

and for i ̸= j:

Cov(X ′
i, X ′

j) = Cov(wT
i X, wT

j X) = E[(wT
i X)(wT

j X)T ] − E[wT
i X]E[wT

j X]T =
= E[wT

i XXT wj ] − wT
i E[X]E[X]T wj = wT

i E[XT X]wj − 0 = wT
i Σwj .
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we seek for W which is the solution of the recursive optimization problem:

max wT
1 ΣwT

1

where Σd
i=1w1i = 1,

max wT
2 ΣwT

2

where Σd
i=1w2i = 1 and wT

2 Σw1 = 0,

...
max wT

k ΣwT
k

where Σd
i=1wki = 1 and wT

k Σwj = 0 for j = 1, . . . k − 1,

...
max wT

d ΣwT
d

where Σd
i=1wdi = 1 and wT

d Σwj = 0 for j = 1, . . . d − 1.

(3.1)

Recall that for a square size (d, d) matrix A with rank d (with d linearly independent
columns) we can re-write it in a decomposed form:

A = VΛV−1,

where Λ is a diagonal matrix of λ1, . . . λd ∈ C and V = (v1, . . . vT ) such that
AVi = λivi, i = 1 . . . d. For i ≤ d λi, Vi are called eigenvalues and eigenvectors
consecutively with the latter ones being linearly independent of each other. If A is
symmetric, eigenvalues are real and V can be chosen so that columns are orthogonal
and of length 1. Then V−1 = VT and therefore:

V = VΛVT .

Decomposition of symmetric matrix is usually called spectral decomposition. Let us
consider the following Lemma that will help finding the solution of Equation 3.1:

Lemma 3.1. Let A be a positive definite matrix of size (d, d) with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 and corresponding normalized (of length 1) eigenvectors
f1, f2, . . . fd. Then:

max x ̸=0
xT Ax

xT x
= λ1, achieved for x = f1,

max x ̸=0,x⊥f1,...fk−1

xT Ax

xT x
= λk, achieved for x = fk; k = 2, . . . d

Since covariance matrix Σ is from its definition a positive definite matrix we can
consider its descending eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 and associated nor-
malized eigenvectors F = (f1, f2, . . . fd). Then, from Lemma 3.1 it is easy to notice
that W = F maximizes variances of X ′

i with Var(X ′
i) = λi. Additionally, since

eigenvectors are orthonormal, for i ̸= j:

Cov(X ′
i, X ′

j) = fT
i Σfj = fT

i FΛFT fj = (0, . . . 1
i-th position

, . . . 0)Λ(0, . . . 1
j-th position

, . . . 0)T = 0.
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As seen, W = F satisfies all Equation 3.1’s conditions. Note that total variance of
X is the same as of X ′ since

Σd
i=1Var(Xi) = tr(Σ) = Σd

i=1λi = Σd
i=1Var(X ′

i).

Vectors X ′ = (X ′
1, . . . X ′

d) = (fT
1 X, . . . fT

d X) are commonly named Principal Compo-
nents- if one gathers samples from X, presenting them in terms of such components
decomposes data’s volatility into separate dimensions. Formally, let us consider n

observations from vector X gathered in matrix X (of size (d, n)). Each point is
mapped on a standard Rd basis of identity matrix columns. It turns out that the
theory explained above can be directly transferred to real data- to find axes that
maximize sample variances of points projected on them, one needs to use eigenvec-
tors of sample covariance matrix Σ̂ = 1

n−1XXT . Normalized eigenvectors form a
new, orthonormal basis F with transformed points X′ = FT X. Notice that since F
is orthonormal, the transition is reversible with:

FX′ = FFT X = IX = X. (3.2)

Each sample of X can also be mapped to a particular fi without changing its length
by using orthographic projection matrix P1 = fif

T
i of size (d, d). Note that this is

analogous to Equation 3.2 but with only one F’s column picked.

Figure 3.1: 2-dimensional points transformed to eigenvectors basis and mapped to
singular axes

Figure 3.1 shows PCA of n = 1000 samples taken from 2-dimensional centred normal
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distribution with Σ =
[

1 0.8
0.8 1

]
. Upper left plot presents original data with new

axes:

f1 = (
√

2
2 ,

√
2

2 )T , f2 = (−
√

2
2 ,

√
2

2 )T

scaled by λ1 = 1.8348, λ2 = 0.1997 consecutively. It is clear that eigenvectors follow
the spread of data since they are suppose to maximize sample variance represented
by eigenvalues. On the upper right picture new basis was introduced with linear
transformation X′ = FT X. Lower images come back to the original basis and project
samples on both eigenvectors separately (with the use of orthographic projection
described earlier). From a 1-dimensional perspective these linearly-dependent points
can be seen as realization of principal components (eigencomponents).
The concept of mapping initial points to only part of the eigenvectors is called PCA
dimensionality reduction. Imagine that for given 20-dimensional data over 75% of the
total variance is “stored” in the 5 biggest-variance principal components. It might
be then easier to look at samples transformed to first 5 eigenvectors. One needs to
take first 5 components of F forming F5 and then multiplying its transposition by
X: we will end up with X′

5- a lower dimension sample covering most of the initial
volatility. If we then want to come back to the initial dimension but not retrieving
back lost variance another multiplication by F5 needs to be applied. Note that such
double transformation is basically P5 = F5FT

5 - an orthographic projection of the
original data to a 5-dimensional hyperplane. In this case dimension stays the same
but rank (number of linearly independent rows of X) decreases. As mentioned,
transformed data is easier to interpret in terms of common patterns- we may lose
some useful information in the process but since so much variance is already covered
in 5 dimensions- we mainly reduce the “noise”. To formalize, for given α ∈ [0; 1]
representing the fraction of total variance we are satisfied with r is defined as:

r = min
k≤d

{Σk
i=1λi

Σd
i=1λi

≥ α}.

Then, first r eigenvectors of F are taken and transformed into X′
r = FT

r X. In Figure
3.1’s example reducing dimension from 2 to 1 achieved α = λ1

λ1+λ2
= 0.902 ≈ 90% of

total variance. Recall that in Equation 3.2 reverse transformation from X′ to X was
possible. It is not the case with X′

r,r<d but for α = Σr
i=1λi

Σd
i=1λi

we can expect analogous
explainability level of X. In other words, general linear model of initial data can be
expressed as:

X = FrX′
r + U = Σr

i=1fi(X ′
i)T + U,

where U = Σd
i=r+1fi(X ′

i)T and comes from a d-dimensional normal distribution with
mean 0. Notice that tr(ΣU ) = Σd

i=r+1λi and as we already know tr(ΣX) = Σd
i=1λi -

on a total variance level this confirms our assumptions about model’s explainability.
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Figure 3.2: Original data coordinates explained by first principal component

On Figure 3.2 we come back to the previous example and show how much data is lost
during the process of dimensionality reduction. We can see that on both coordinates
first principal component explains data patters significantly well. Note that the sum
of residuals’ sample variances is equal to λ2 described earlier.

3.1.2 Considered approach

Let us now come back to the original problem. Recall that we wanted to construct
an algebraic basis of portfolios to explain singular stocks’ returns in such a way that
decreasing the number of components will reduce as little informations as possible.
Now, we know that for data from multidimensional normal distribution the opti-
mal approach is to use Principal Components Analysis. Throughout the paper, for
example when considering Arbitrage Pricing model we assumed that actual returns
can be in fact seen as samples from Gaussian distribution. It is a common conclu-
sion in literature of the subject (in models previously considered but also famously
in the original Black-Scholes model[8]) since stock prices are assumed to follow a
Geometric Brownian Motion process St. Such stochastic process, for parameters µ

and σ > 0, initial value S0 and given t0 ≥ dt could be written as:

St0 = S0 exp ((µ − 1
2σ2)t0 + σN (0, t)),
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which follows a lognormal distribution. Then,

Rt0 = St0 − St0−dt

St0−dt
= exp ((µ − 1

2σ2)dt + σN (0, dt)) − 1.

From its decomposition into Taylor’s series we know that for small x

exp (x) − 1 ≈ x,

which makes the conclusion reasonable. With such assumption, for a time interval
of length n daily returns’ of d stocks are going to pose as n-dimensional vectors
R1, . . . Rd. Since PCA algorithm worked on centred data, let us consider normalized
returns

Y i = Ri − Ri

σi
, i = 1, . . . d

where Ri = 1
nΣn

j=1Ri
j and σi

2 = 1
n−1Σn

j=1(Ri
j − Ri)2. These can be combined

into matrix Y of size (d, n) with Σ̂ = 1
n−1YYT . Then, normalized eigenvectors

F = (f1, . . . fd) of Σ̂’s together with corresponding eigenvalues λ1 ≥ . . . λd ≥ 0 are
computed and, in an initial approach, arbitrary number r < d of leading compo-
nents is picked for transformation matrix Fr. In the final step, we define principal
components of Y:

F i = Σd
k=1f

(k)
i · Y k, i = 1, . . . r

which will be referred to as returns of eigenportfolios and place them in orthographic
projection to r-dimensional hyperplane formula (with n samples from i ≤ d coordi-
nate considered):

Y i = Σr
j=1f

(i)
j · F j + U i, i = 1, . . . d

where both F j , j = 1, . . . r and U i are vectors of length n. Since we want to trade on
the actual returns and not their normalized versions, let us reformulate the formula
above in the following way:

Y i = Σr
j=1f

(i)
j · F j + U i/ · σi

Y i · σi = σiΣr
j=1f

(i)
j · F j + σiU

i/ + Ri

Y i · σi + Ri = σiΣr
j=1f

(i)
j · F j + σiU

i + Ri

Ri = ci + Σr
j=1σif

(i)
j · F j + (U ′)i

Ri = ci + Σr
j=1σif

(i)
j ·

(
Σd

k=1f
(k)
j · Y k

)
+ (U ′)i

Ri = ci + Σr
j=1σif

(i)
j ·

(
Σd

k=1f
(k)
j · Rk − Rk

σk

)
+ (U ′)i

Ri = (c′)i + Σr
j=1σif

(i)
j ·

Σd
k=1

f
(k)
j

σk
· Rk

+ (U ′)i

Then, for constant (c′)i = αidt, parameter βij = σif
(i)
j , n-dimensional normal vari-

able (U ′)i = dIi and eigenportfolios rewritten as

F i = Σd
k=1

f
(k)
i

σk
· Rk = Σd

k=1Qi
k · Rk, i = 1, . . . r, (3.3)
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we end up with Arbitrage Pricing model from Equation 2.4.
Approach of using PCA technique for extract meaningful information from financial
data was already tackled in many papers. We can f.e. refer the works of Laloux[9]
and Plerou[10]. They analysed d = 500 biggest American companies (capitalization-
wise) gathered in SP500 index. Same index basis was taken in M. Avellaneda and J-
H. Lee’s paper that we mainly reference to throughout this work. Due to the fact that
polish stock exchange is far less developed in comparison to NYSE (there are not even
500 companies participating in GPW) one needs to significantly decrease d in a way
that preserves further eigenportfolios market’s explainability. Smaller companies
do not influence the overall market significantly (and therefore their corresponding
dimensions would have near-zero eigenvectors’ coordinates) so keeping them as parts
of artificial indices is not needed. Additionally, trading with their stocks may distort
further results due to higher prices’ instability. Since Poland’s domestic stock market
has around 6 times less members, to only consider the most liquid and influential
polish companies and have them gathered in indices we decided on combining WIG20
with mWIG40 making d = 60. Additionally, for calculating covariance matrix Σ̂,
n = 252 and PCA parameters n = 252 samples will be used- this should incorporate
similarities between stocks’ returns during the whole year’s circle.

Figure 3.3: Relative eigenportfolio price in comparison to corresponding components
and overall indices

Figure 3.3 shows first PCA decomposition of biggest d = 60 polish companies. Fol-
lowing previously explained methodology relative adjusted daily prices of all mem-
bers are shown (with higher transparency) together with corresponding indices and
most importantly- first eigenportfolio. Eigenvectors used in the process were cal-
culated based on 252-days window before 2022. It is clear that first eigenportfolio
already possesses main “flow” of the market tracking both real indices almost per-
fectly. Highlighting that we did not use capitalization nor total turnover data to
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create F 1 but only actual returns makes the results even more impressive.

Figure 3.4: Coefficients sizes of first three eigenvectors with assigned industries of
corresponding stocks

Figure 3.4 shows magnitudes of the first three eigenvectors’ coefficients. To give a
better insight for readers not so familiar with the polish equities market, companies’
tickers were substituted with sector indices’ names based on affiliations. Due to low
number of indices in Poland some of the companies do not belong to any sector
one and were named as “others”. In the literature of subject first eigenvector shown
on the upper picture is referred to as the “market” one[9]. Its coordinates are all
positive if the initial correlations between companies’ returns were positive- this
follows directly from Perron–Frobenius theorem. It was almost the case for our Σ̂
with a few marginal negative values that, as can be seen, did not influence the signs of
f

(k)
1 , k = 1, . . . 60. It is clear that the impact of banks in the first eigenportfolio is the

highest- this was also true for WIG20 which we analysed earlier. These are one of the
biggest companies on GPW and by carrying loans and deposit influence the entire
economy. Note that actual weights Q1

k, k = 1 . . . 60 of first eigenportfolio members
additionally carry the inverse of returns’ standard deviations. Higher capitalization
companies tend to be more stable (and therefore have lower price volatility) which
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makes their leading eigenportfolio’s share even higher. Switching to second and third
eigenvector we can see that some of the coordinates are negative. It is obvious since
f2 and f3 have to be orthogonal to f1. In their work, Avellaneda and Lee[4] noticed
that stocks of common industries form “groups” with similar coordinate sizes- on
a plot like the one considered they are next to each other. Authors interpreted
it as pairs trading on the level of industries. Bigger common factors are offset
to achieve the lower ones. We can observe this especially with second eigenvector
(middle picture)- banks and some of tech, real estate or games companies are in fact
quotesgrouping together. High impact of banks in the first eigenvector is “offset”
here to achieve independent eigenportfolio capturing lower level trends. For f3 and
corresponding F 3 we are capturing trends in what was already left by the first two
components- such “pairing” behaviour is also visible although it is not trivial what
is offsetting what. With lower components coefficients would become harder and
harder to justify since at some point PCA is looking for trends in pure noise.
As already seen on Figure 3.3 using just the first eigeportfolio to decompose unique
behaviours of stocks is almost equivalent to considering real indices (in a form of
corresponding ETFs). For that reason to fully benefit from PCA technique we need
to take more eigenportfolios into account. Obviously using all of them is not optimal
since that would offset our entire pairs portfolio to 0. Crucial question arises then:
how many is enough? We can start with looking at how much of total variance we
seek to explain.

Figure 3.5: Fraction of total variance explained by eigenportfolios

As already stated total variance of given returns’ data X with empiric covariance
matrix Σ̂ is defined as the sum of all eigenvalues. Each eigenportfolio F i explains
some fraction of the total variance directly proportional to λi. Figure 3.5 shows
these fractions for all d = 60 components we can derive from X. They are presented
separately and cumulatively such that all of them explain 100% of volatility. It
can be seen that first, “market” eigencomponent describes more than 15% of total
variance with the second one already dropping to around 5%. More than half of
the volatility explained is achieved by combining 14 − 15 components together. To
posses explainability higher than 90% one would need to consider more than 40
components. In our strategy we want to explain so much volatility that what the
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“leftovers” can be seen as unique, idiosyncratic movement of each, individual stock.
At the same time too much variance explained may lead to no signals for arbitrage
since 2 assets- main and the offsetting one are going to be too close. Additional and
practical reason for not using too many eigenportfolios is the existence of transaction
costs- higher number of portfolios leads to more transactions and more taxes zeroing
any potential profits.

Figure 3.6: Comparison between observed and model’s relative prices depending on
number of eigencomponents used

For the same time period as above we picked 2 companies from our spectrum: KGHM
Polska Miedź and Polenergia - first is one of the leading companies of WIG20 while
the latter one occupies one of the bottom places of mWIG40. Figure 3.6 presents
relative prices of the actual stocks together with their pairing portfolios. Mentioned
companies were named according to their rankings and in each row different number
of eigenportfolios were put together matching the Arbitrage Pricing model (Equa-
tion 2.4). It can be seen that r = 5 components are enough to decently track KGHM
Polska Miedź which is not the case for Polenergia. On the other hand, r = 45 seems
to add too much “noise” to the TOP10 company although it gives good predictions
for the BOTTOM10 one. A satisfying equilibrium can be observed with r = 15-
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main movement of both prices is imitated with still enough space for possible arbi-
trage opportunities.
It turns out that choosing 15 components was seen as the optimal choice by Avel-
laneda and Lee[4]. They used the argument that for the biggest economies in the
world (members of G8) around 10 − 20 components are most relevant for the Ar-
bitrage Pricing Model of stocks’ returns. Relying on previous authors’ (Laloux
(2000)[9], Plerou (2002)[10]) findings they also pointed out that such number should
explain around 50% of the total variance. As the final argument, 15 components
were also relevant due to similar number of main sectors in country’s economy. We
shall stick to such approach and also consider r = 15 as the optimal choice. One
can note that Poland is certainly not a part of G8 and the number of stocks our
predecessors considered was 6 times larger. At the same time, we are explaining a
similar part of national stock market as they did and Poland is highly influenced by
the EU which has a special place in G8.

Explained

2015 0.571
2016 0.564
2017 0.527
2018 0.561
2019 0.528
2020 0.669
2021 0.557
2022 0.633

Table 3.1: Fraction of total variance explained by 15 out of 60 components through-
out years

Another, more quantitative argument behind using r = 15 in our circumstances is
that as can been seen in Table 3.1, approximately more than 50% of the total variance
was in fact explained by 15 eigenportfolios in last years. All values are based on
one-year window PCA fit- combined WIG20 and mWIG40 ’ members were annually
adjusted based on historical rankings. COVID-19 recession and 2022 economical
crisis resulted in lower volatility of the market- every company was following a
bearish movement. It is reflected in higher explainability of 15 components in the
corresponding years. As a second approach (besides considering constant r = 15)
we will also analyse a reverse approach where the fraction of total variance is set to
55% each recalculation we consider a variable number of eigenportfolios trying to
achieve it. This may slightly increase the transaction costs in < 55% total variance
fraction coming from r = 15’ periods.
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3.2 Long short-term memory (LSTM) networks

The PCA approach demonstrated how to represent the market with so called eigen-
portfolios. Each portfolio consisted of all 60 trading stocks with different amounts
depending on eigenvectors of historical returns’ correlation matrix. If you then not
separate by eigenportfolios, we are basically replicating given company returns by
all companies including the main one- “dummy” 1-1 match is avoided due to the
universality of each F i. Such perspective may be an obvious one, but it shows that
instead of picking compact portfolios and adjusting coefficients on their level, we
can pick weights for all companies in the portfolio directly. This offers us more tai-
lored portfolios with 59 variables (this time the main company replicated needs to
be directly skipped) fitted instead of r ≈ 15 ones. All coefficients should be based
on the current and historical relations between explained and explanatory ones. To
find them and capture those 2 dimensions (time and companies’ characteristics) we
will consider Recurrent Neural Networks.

3.2.1 What is a Neural Network?

Human nerve system consists of special cells called “neurons” which are connected
to each other and transmit electric signals throughout the body. Together with the
brain it is a communication and translation system between our concious/unconscious
mind’s desires and parts capable of fulfilling them. If we, for example, see a good
trading opportunity on the internet, the signal goes from our vision system to the
brain and then a message is send to the hand muscles: move the cursor and click
on that “Buy” button immediately. This is of course a simplification but it offers a
good basis for understanding the purpose of machine learning technique called Ar-
tificial Neural Network- possessed information gets translated to desired outcomes
after multiple transformations.
First artificial neural network was developed before we even considered biological
neurons (which can be dated to the end of 19th century)- Gauss (1795) wanted
to predict planetary movements with numerical inputs multiplied by a vector of
weights and summed up together with additional bias term. To achieve the most
appropriate weights and bias he tried to minimize the mean square error between
predictions and actual movements. This is obviously the origin of standard OLS
regression model. From a neural network perspective, we have d dimensional inputs
that are combined together with linear transformation to achieve a scalar output
in a single neuron with transformation parameters aimed to minimize certain qual-
ity determining function called loss function. Imagining that the outputs may for
example represent probabilities (i.e. be between 0 and 1) one could add an addi-
tional transformation (activation function) to the linear output making it fit the
desired range- with sigmoid function σ(x) = 1

1+exp (−x) . That would probably also



50 CHAPTER 3. PAIRED PORTFOLIOS GENERATION APPROACHES

require the change of loss function from MSE to a more appropriate one like the
cross entropy- then there is no exact formula for weights and bias minimizing it and
numerical optimization methods are required. In the end more and more transfor-
mation layers combined of linear mapping and activations can be added to the initial
input not only shrinking the dimensions’ number to 1 neuron but also increasing it
to several ones.

Figure 3.7: Basic 2 layers neural network schema

Figure 3.7 shows a simple neural networks schema. Inputs are linearly transformed
with appropriate weights and biases to 3 neurons of the first hidden (between inputs
and output) layer where activation functions σ are applied. Then the results go
to the second hidden layer combined of 2 neurons- both the linear transformation
and activation function are again used. The final outcome is a linear regression of
H2 outputs- no additional activation function is applied (although it would also be
allowed). Formally, for inputs X = (x1, . . . x5) ∈ R5 final output of running the
network is:

ŷ = WOσ2 (WH2σ1 (WH1X + bH1) + bH2) + bO,

with WH1 ∈ R3×5, bH1 ∈ R3; WH2 ∈ R2×3, bH2 ∈ R2 and WO ∈ R1×2, bO ∈ R.
For a set of samples X1, . . . XN with known observed results y1, . . . yN loss func-
tion L : RN × RN −→ R describes the accumulated dissimilarity between predic-
tions ŷ1, . . . ŷN and actual outcomes. As mentioned, popular choices of L are mean
squared error or cross entropy but L can be directly adjusted to the task we are
dealing with. Since both inputs and actual results are given, loss can be seen as the
function of all used weights/biases used in the process of predicting. Each of these
parameters (WH1, bH1; WH2, bH2 and WO, bO in presented example) should then be
optimized to make L the smallest possible. As mentioned, for even the simplest neu-
ral network addition of at least one non-linear transformation makes it impossible to
find direct parameters’ formulas that minimize loss. Numerical techniques are used
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to approximate arguments of L’s global (or local if L is not convex) minimum. Due
to its simplicity and effectiveness one of the most popular algorithms is Gradient
Descent.
For a function F : Rd −→ R that is differentiable around point x0 ∈ Rd, it turns
out that starting from x0 F decreases the most if one goes in the direction of nega-
tive gradient ∇F = ( ∂F

∂x1
, . . . ∂F

∂xd
) calculated at x0. This leaves us with an iterative

algorithm of:
xk+1 = xk − α∇F (xk), k > 0

with x0 being the initial guess of optimal x and α ∈ R+ being the learning rate
responsible for shrinking the gradient term (to not “jump over” the local minimum
while iterating) and can depend on step number. For small enough α, F (xk+1) <

F (xk) till the optimal argument xmin is potentially reached with ∇F (xmin) = 0.
Usually, for more convoluted functions achieving the xmin is almost impossible- after
some iteration steps we usually start oscillating around the optimum not being able
to completely zero-down the gradient. It is then important to set a stopping point of
the algorithm based f.e. on number of steps, desired F level or small enough gradient
magnitude. Gradient descent can be compared to going down the mountain in low-
visibility conditions- to arrive at the bottom one should aim against the steepest
way upward and frequently re-measure the direction to avoid starting on a different
hill (do not try it- the steepest way down usually involves a fall).
Within the neural networks’ framework differentiable losses and activation functions
are usually use to make gradient descent algorithm possible. Partial derivatives can
be achieved throughout the chain rule i.e. the formula for calculating the derivative
of 2 differentiable functions’ composition h = f ◦g = f(g(x)). According to the rule:

h′(x) = dh

dx
= df

dg

dg

dx
= f ′(g(x))g′(x).

It can be also extended to multiple compositions- coming back to our example for a
single prediction ŷ we can write partial derivative of L in accordance to b

(1)
H1 in the

following way:

∂L

∂b
(1)
H1

= ∂L

∂ŷ

∂ŷ

∂b
(1)
H1

= ∂L

∂ŷ

∂ŷ

∂σ2

∂σ2

∂b
(1)
H1

= ∂L

∂ŷ

∂ŷ

∂σ2

∂σ2
∂σ1

∂σ1

∂b
(1)
H1

.

Same can be showed for all the other biases and weight matrices’ coefficients. Notice
how using the chain rule we are recreating the steps of neural network in the op-
posite order- starting from the final prediction up to the initial activation function.
For that reason, process of using current coefficients’ values to calculate gradients
and then improving them by singular step of gradient descent algorithm is called
backpropagation. Then the training of neural network involves:

1. Setting up initial parameters.

2. Making predictions based on current parameters’ values (propagation)
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3. Calculating accumulated loss for all predictions.

4. Deriving gradients and updating parameters (backpropagation).

5. Repeating step 2.
...

T. Terminating algorithm based on gradient descent stopping condition.

Since we are dealing with multiple samples loss function can be calculated using the
entire training dataset for each gradient descent step. This is the classic version of
the algorithm where the optimized function F stays the same for the entire process.
But our actual interest lies on the so called out-of-sample data that is not involved
in the training- model is suppose to predict the unknown future. Obviously, the
assumption is that upcoming data should be at least similar to samples that we
trained on (and even that may be a stretch) but an exact match is highly unlikely.
How to prepare weights and biases to samples that are not available yet? Method
that can help is a stochastic variant of gradient descent algorithm (SGD). Instead
of calculating L on all training samples each time before backpropagation, a ran-
dom set of n < N samples (a batch) is selected to define loss. Batches can also be
determined before the algorithm, then each time we are picking a random one and
backpropagating based purely on its predictions. One can notice that the optimized
function changes slightly throughout steps- it may result in slower convergence since
parameters suitable for one batch are not exactly as good for another one. We are
trying to minimize according to the common part of each batch- although accumu-
lated loss on the entire data set is going to be larger than in the classic approach,
stochastic gradient descent offers more universality to unknown samples especially
for smaller batches. It does not completely avoid overfitting i.e. trying to reflect
the unique noise of the training data (not relevant in testing) but is certainly less
sensitive to such error. Also, from a practical perspective- it is performing way
faster on large sets due to smaller loss inputs’ number in each iteration. There is
much more to the topic of gradient descent- further analyses on the performance
and additional updates can be found throughout literature[?]. Version that we will
ultimately use is going ton rely on Adam algorithm where SGD is combined with
gradient stabilization and scaling.
But why are neural networks so powerful? How are they outperforming classic sta-
tistical methods such as generalized linear models? It is all about their flexibility.
Due to a large number of free parameters (weights and biases) they are able to
approximate any non-linear relations between inputs and outputs whereas standard
techniques usually require you to select the type of relation before training. Net-
works try to “successively refine” and compress the input’s signal information to fit
the output. Activation functions such as sigmoid or ReLu1 decide whether a cer-

1ReLU: ReLu(x) =

{
x, x > 0
0, elsewhere
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tain neuron’s input is significant or not for future predictions. Flexibility of neural
networks is formally explained by their fundamental theorem from 1989[?]:

Theorem 3.2 (Universal approximation theorem). Let C(X,Rm) denote a set of
continuous functions from X ⊆ Rn to Rm. Let σ ∈ C(R,R) be the activation
function.
Then σ is not a polynomial if and only if for every n, m ∈ N, compact K ⊆ Rn,
f ∈ C(K,Rm) and ϵ > 0 there exists k ∈ N, WH1 ∈ Rk×n, bH1 ∈ Rk, WO ∈ Rm×k

such that:

sup
x∈K

||f(x) − WOσ(WH1x + bH1)|| < ϵ.

According to the theorem every continuous function can be approximated to a pre-
determined level by a one layer neural network with enough neurons as long as acti-
vation function is not a polynomial. Dual version of the theorem where the number
of neurons is predefined and there are unlimited layers to use was also proved for
any f ∈ L1[?]. Both versions of the theorem are not fully practical since they do not
give any insight on the size of required network. Nevertheless, they show the power
behind using NNs.
Neural network that was described on Figure 3.7 is a so called feedforward neural
network. The flow of data is unidirectional- there are no cycles or loops. Also, the
length of inputs needs to be predefined. In opposition to these, we are going to use
recurrent neural networks (RNN) that were designed to re-use transformed inputs
multiple times.

3.2.2 Recurrent neural networks (RRNs) and Long short-term mem-
ory (LSTM)

Classic, feedforward neural networks don’t have a notion for directionality of the
inputs. When we are predicting time series, the input is usually a historical win-
dow of values- it is then intuitive that the latest values are more important to the
prediction than the ones from earlier. Also, feedforward neural networks require a
predetermined input size- with time series more flexibility would be desired. For
example, although 60 days’ samples were used to speed up the training, we would
like to make valid predictions on longer test sets. Recurrent neural networks solve
these problems by treating each coordinate of the input vector as separate entry and
keeping already processed ones to predict the future.
Let us consider a concrete example to better understand how RNNs work. Our task
is to predict next day’s return of company A based on its historical values. Let’s
say that a relevant window of previous returns to consider is X = (x1, . . . xW ) and
the goal is to come up with Ŷ = x̂W +1.
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Figure 3.8: Basic 1 layer unfolded recurrent neural network schema

Figure 3.8 shows a 1 layer recurrent neural network that can be used for the task.
Process starts from linearly transforming the first historical value captured x1 by
WX , bX . Although it is not specified on the schema, to achieve h1- hidden state
value at time 1 activation function σH is used on the input. From h1 prediction x̂2

can already be made using WO, bO and activation function σO- this is an attempt to
already approximate the next value- x2. Since we are only interested in x̂W +1 here,
it can be skipped. Note how h1 possesses transformed information about x1. It is
then adjusted by WH , bH and added to WXx2 + bX before applying σH . Expression
σH(WXx2 + bX + WHh1 + bH) represents h2- hidden layer value at t = 2 capturing
information about both x1 (in h1) and x2. Another prediction can then be made
from h2. The process continues for the next inputs which are always paired with
previous value of the hidden state. In other words, for k > 1:

hk = σH(WXxk + bX + WHhk−1 + bH)
x̂k+1 = σO(WOhk + bO)

The final output ŷW +1 is the one we care about. By handling hidden state values
for previous time steps we make sure that not only the latest input is used for pre-
diction but also a transformed version of all previous ones. The role of σH is then
to extract only the features that may be relevant later. Although, we differentiated
between both activation functions used- they may be of the same type. All 3 weights
and biases are consistent throughout the process. Presented network is unfolded- we
assumed a certain length of input vector. This does not need to be the case and for
that reason RNNs are often presented in a folded way where only the loop is shown
as a recursive step. To train recurrent neural networks a backpropagation through
time is used. Sticking to considered example, let us assume that N historical returns
are used both as inputs and actual y-s (using 1-day forward shift). We can split the
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training data into windows of size W (i.e. Xk = (xk, . . . xk+W , Yk = xk+W +1 for
k < N − W ) creating N − W − 1 samples. For each sample, network is unfolded
and all coefficients flow through it (like on Figure 3.8) providing one or multiple
predictions which are then used to derive the loss function. Gradients for all pa-
rameters are accumulated through backpropagation since each weight matrix and
bias vector shows up multiple times in the unfolded network. Finally, through one
of gradient descent variants, all coefficients are updated. Although it is a common
error in all neural networks, recurrent ones more frequently suffer from the “van-
ishing/exploding gradient” problem. When calculating gradients for the impacts of
initial state values with the chain rule we have to do a lot of multiplications back-
ropagating throughout the entire unfolded network. If the size of factors is smaller
than 1, we may converge to 0 and in the other case- diverge to infinity (at least
from computer’s limited perspective). For that reason, we would like to pass at
least some of the information in an unchanged manner- to do that special recurrent
neural networks called Long short-term memory networks (LSTM) were designed.
Long short-term network, as the name suggests, uses 2 types of information storage:
short- similar to one in classic RNNs, and long where data passes without linear
transformations. The latter one is then not sensitive to the vanishing/exploding
gradient problem thus long-term relations between inputs can be “remembered”.
Typical LSTM unit (one step of the recursion) consists of cell, forget gate, input
gate and an output gate. Cell stores long-term data in an unchanged manner while
all 3 gates are used to regulate the flow of information to and from the cell.

Figure 3.9: One unit of LSTM schema

Figure 3.9 presents an unit of a LSTM. There are 2 main data flows from left to
right- of hidden state ht that ends up being the output and of ct representing the cell.
Given previous hidden state value ht−1 and a new input xt, weights Whf , Wxf and
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bias bf are applied together with sigmoid activation function σS to achieve the forget
gate ft. Notice that ft is between 0 and 1- it regulates what percentage of long-term
information will be kept. For that reason we multiply (using ⊙ i.e. element-wise)
previous cell ct−1 by ft. Both input and previous hidden state value are again used
to derive cell input ĉt- this time instead of sigmoid function hyperbolic tangent σt

2

with values within [−1; 1] is used. Cell input is the new data flow coming to ct as
an update of long-term memory. It does not go there entirely, another regulating
percentage variable in form of it is calculated from linearly transformed ht−1 and
xt with σS additionally applied. Product of it and ĉt is added to ct−1 ⊙ ft creating
new cell: ct. Meanwhile, in the bottom flow ot is calculated as the output gate-
it regulates how much of the updated long-term memory is going to be used in
deriving the output (and for that reason σS is applied as the activation function).
As mentioned, the final output and a new hidden state ht is a element-wise product
of ot and ct. We can re-write the exact formulas behind the process in the following
way:

ft = σS(Whf ht−1 + Wxf xt + bf ) (forget gate)
ĉt = σt(Whcht−1 + Wxcxt + bc) (cell input)
it = σS(Whiht−1 + Wxixt + bi) (input gate)
ct = ct−1 ⊙ ft + it ⊙ ĉt (cell)
ot = σS(Whoht−1 + Wxoxt + bo) (output gate)
ht = ot ⊙ σt(ct) output

Notice that as already mentioned- there are no weights applied in the upper stream.
Information possessed several steps before is therefore not vanishing on a gradient
level. Training not only adjusts the transformation of the new input together with
previous ones stored in ht−1 to minimize the loss function, but also regulates how
relevant are previous inputs to the output and what should be kept for the future.
An intuitive comparison to LSTM is one that we started this whole section with: the
way our mind functions. When making any decision (from not taking an umbrella
for a walk to buying shares of a prospering company) you must assess the current
situation but also recall your previous experience. Not all of the previous knowledge
is relevant- last time you were just going to the store and now you’ll be out for few
hours, or last time you lost a lot of money but COVID-19 recession was the main
driver behind it. Also the current state may not be so informative- you must find
a perfect mix-up between experience and proper current circumstances assessment
to decide. And the next time you will be in the same position, today’s experience
might help.
Similarly to the gradient descent algorithm, feedforward neural networks and the
classic recurrent ones- there is much more to be said about LSTMs. Nevertheless,
to not lose too much focus on the main topic of the thesis, and since we feel like
the main idea behind such networks was captured in the short description above,

2hyperbolic tangent: σt = exp (x)−exp (−x)
exp (x)+exp (−x)
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no further theoretical details are going to be explained- with no particular paper
mentioned we refer curious readers to the growing literature of the subject. Let us
now proceed to how we are actually going to use the “magic” of Long short-term
memory networks to perform statistical arbitrage.

3.2.3 Considered approach

As mentioned at the beginning of this section the aim is to uniquely construct pairs
portfolios at the level of single stocks and not entire indices. In other words, for given
company’s returns we want to adjust weights for all 59 remaining ones (of WIG20
and mWIG40 combined) to explain it. This should allow for higher explainability of
stocks’ unique behaviours since we are not limited to artificial/real market indices
common for all participants. Note that we still remain in scope of the Arbitrage
Pricing Theory- each stock can be seen as a separate market indicator (with much
lower explainability than a typical index). The use of LSTM instead of intuitive
OLS approach is meant to incorporate time-relations between main variable (to-
day’s return of given company) and explanatory ones (other companies’ historical
returns). Training phase should “teach” the network to also rely on some long-term
dependencies and not treat each historical input as equally important. This relativ-
ity of predictions is especially important due to the nature of our trading strategy-
parameters triggering signal for closing are then calculated “remembering” inputs
when the position was opened. It is important to highlight that the use of LSTMs
(or RNNs in general) to derive market portfolios’ coefficients seems not to be covered
in literature of the subject. Our approach is then the first step in such direction
and an initial check whether it has the potential to be developed further. This has
many implications, one of them being that some of the technical assumptions will
be made on a basis of expert judgements (by the “rule of thumb”)- a full review of
different LSTM settings’ sensitivity may pose as a natural consequence for future
works assuming that this paper’s results are going to be promising enough. Let us
now consider the technicalities of considered technique in greater detail.
Two stacked LSTMs are going to be considered instead of one- they can be seen as
2 layers of a neural network. As with typical feedforward NN, the increase of depth
makes the model more flexible allowing for higher-level, more abstract representa-
tions of the inputs. Stacking is understood as using outputs of the first LSTM as
inputs to the second one. Predicting particular stock’s Rt, a single step starts with
59-elements input vector Xt with other stocks returns at time t. First LSTM layer
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(1) works as follows:
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The final output βt will be a vector of the same size as Xt, describing coefficients
to be used on other returns to describe Rt. For the training of weights and biases
cumulative loss is defined in the following way:

L(W; b) = 1
W

(
ΣW

t=1(Rt − XT
t βt)2 + p

1
59Σ59

i=1|βt,i|
)

,

which can be seen as the standard mean squared error of all predictions with ad-
ditional L1 norm penalty. Such penalty with predetermined intensity p to has the
property of zeroing-down the unnecessary coefficients which should decrease the
number of transactions needed (since squared differences of returns are going to be
small, we will set p = 10−5 not to overshadow them in the overall loss). As before,
W represents window size i.e. the number of recursions of the stacked network- it
should indicate for how long time-dependencies should the network be prepared in
the testing phase. Singular training sample X = (X1, . . . XW ) has then the size of
59 × W providing a historical period of explaining stocks’ returns. After the initial
training to tune the network we end up with a tool that can be “fed” with new se-
quential data and provide time-dependent coefficients’ sets to model Rt not knowing
its actual value. One can see this process as “blind”, recursive OLS where instead of
passing the entire training set at once, historical values are given one-per-step and
the predicted β vector is updated without any knowledge of response variables. As
mentioned, OLS would treat each new input as equally important- LSTM aims to
rate Xt’s explainability first and then combine it with important informations from
previous steps.
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We decided to use 64 as both the first and second layer’s hidden sizes. It is a power of
2 which is the usual “rule of thumb” requirement and just above both the input and
output sizes. A choice of 128, at least for one of the layers would also be reasonable
but more computationally requiring, especially since single stacked Long short-term
memory model is trained to provide parameters for just one predetermined stock.
Training of all weights and biases is done with the use of Adam algorithm- an exten-
sion of the stochastic gradient descent. Through backpropagation, instead of using
just calculated gradient it relies on a moving weighted average with the previously
computed one (usually with 1 : 99 proportion between them). This technique called
momentum stabilizes noisy gradient avoiding getting attracted by insufficient local
minimas- its disadvantage is that it oscillates vertically resulting in slower conver-
gence. To shrink them making the search more direct Adam combines momentum
with RMSProp that additionally scales the step size with gradient’s quadratic norm
weighted average (with 1 : 999 proportion between current norm and previous av-
erage). The stochastic part of the algorithm relies on batches- L is averaged over
randomly selected samples before gradients calculation. For every step (epoch) of
the overall training we will use samples X1, . . . XB with B = 16 as not necessary
adjacent W -days periods of the training historical data. Training window W (i.e.
the first dimension of each sample and the number of recursions throughout LSTM
units) is going to be set to 120 days reflecting half-year circle dependencies. We did
not decide to use an entire year for highlighting long-term dependencies due to lim-
ited relevant training data (some of the companies are relatively new on the polish
market or joined the top 60 recently so we cannot use <2015 historical records) and
since trading opportunities come from potential mispricings which should not hold
for longer than half a year anyway. Note that model will still be able to work with
longer periods’ predictions, it may just not hold wider time-relations in its long-term
memory.
Let us now analyse how the stacked LSTM is working on real data- in the first
example ING Bank Polski (bank sector) holding a place in WIG20 was selected
as a potentially easy replicable one due to common movements across most banks.
Network was then trained on 2019-2021 data to give appropriate weightings for the
portfolio in 2022. In the testing phase we allow LSTM to first “speed-up” on the
second half of 2021 before jumping to the actual testing dataset. This way at the
beginning of 2022 we will not have predictions based on one or few historical values
only.



60 CHAPTER 3. PAIRED PORTFOLIOS GENERATION APPROACHES

Figure 3.10: Performance of the LSTM model for replicating ING Bank Śląski re-
turns

Figure 3.10 consists of 2 plots: left one presents the development of βt vector for
replicating ING Bank Śląski returns throughout 2022. Companies participating in
portfolio were ordered by their average weight. As can be seen, the weightings vary
from −0.5 to 0.5 “vertically” (between components) with small “horizontal” (time-
wise) adjustments. It is not surprising that the most influential companies in the
portfolio (BHW, PEO, ALR and BNP) are also banks. Right plot, similarly to
previous ones in PCA approach presents the actual relative prices versus ones of the
LSTM model. Additionally, standard OLS regression model with constant β derived
on the 2019-2021 set was also included. Although both prediction lines are quite
similar, LSTM seems to replicate actual relative price in a slightly more adjusted
manner.
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Figure 3.11: Performance of the LSTM model for replicating Celon Pharma returns

Using the exact same methodology, plots were also generated (Figure 3.11) for Celon
Pharma- a pharmacological company from mWIG40 whose behaviour should be
harder to track by most of remaining components. As can be seen, weights are far
more spread between all components than with ING. For that reason it is harder to
see clear, intuitive connections between most influencing companies and the main
one- perhaps except Mabion SA (MAB) occupying the third spot since it is also a
pharmaceutical concern. Weights are also more unstable throughout the year with
some of them varying between 0. The predictions themselves are again better than
the ones made by standard OLS. It is important to remember that trained (tuned
through gradient descent variant) LSTM is just a tool for calculating βt coefficients-
the testing phase i.e. providing output vectors for 2022 can be seen as additional
“blind” training. The actual replicated returns are not used but adjustments to β

vector are constantly made based on explanatory variables’ previously input values.
This may be beneficial for the neural network, especially if potential long-term de-
pendencies are captured by adjusted weights and biases.
Cases where predictions of LSTM are worse than ones of standard regression can
also be found- if no relevant long-term relations are identified network’s replicating
portfolio is just a more unstable copy of the OLS’s one. Nevertheless, as already
mentioned, desired potential of LSTM does not fully lie in replication capabilities-
we want to incorporate relativeness of proposed weightings such that ones indicat-
ing that position should be closed are also based on the opening date’s values. This
may lead to better identification of actual mispricings between two porftolios and
of their potential corrections. Potential proofs of that are going to be determined
by backtesting in relation to different approaches- last one being the use of existing
indices’ linear combinations instead of artificially adjusted portfolios is going to be
further explained in the following section.
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3.3 Exchange traded funds of market indices

The use of existing indices as systematic components was already discussed in pre-
vious examples (see Figures 2.3, 2.5 and 2.8). The approach was to use WIG20 ’s
returns as the one and only explanatory variable. Although the results were promis-
ing, sections concerning artificial indices (especially with the use of PCA) showed us
that an all-market factor may not be enough to explain smaller companies stocks’
behaviours. Natural approach would be to use sector indices that are more spe-
cific than the overall market ones. Such approach was in fact used by Avellaneda
and Lee[4]- they considered 15 exchange traded funds dedicated to various sectors
of SP500 stocks and plugged them into the Arbitrage Pricing model. As already
noted, polish equities market does not have any sector ETFs3. For that reason a
direct transition of our predecessors’ approach is not possible. Two substitute so-
lutions will be considered. In a “sparse” approach, we are going to explain stocks’
returns by existing ETFs of 3 ranking indices. As a “dense” alternative artificial
ones imitating replication of sector indices’ portfolios are going to be used. While
the second approach (which can be compared to using larger r in the PCA technique
shown on Figure 3.6) should give more appropriate residuals than the first, more
general one- it is not fully realistic due to ommitment of tracking errors. Staying
in the “number of eigenportfolios” analogy, we expect the “sparse” technique to
perform better with leading companies of considered ranking indices.

3.3.1 Existing ETFs approach

In accordance with previous assumptions we will trade on 60 components of WIG20
and mWIG40. For that reason, in the “sparse” approach, the following existing
ETFs will pose as model’s basis:

• BETA ETF WIG20TR,

• BETA ETF mWIG40TR,

• BETA ETF sWIG80TR.

One can note that the third one is not fully relevant to our stocks’ portfolio- never-
theless we decided to add it since it may be more suitable to lower-place companies
of mWIG40 than the actual corresponding fund. All 3 funds aim to track daily in-
crements of indices’ portfolios including all additional payments such as dividends-
for WIG20 it was already shown on Figure 1.6.

3This one is not exactly true because there is a sector index with exchange traded fund tracking
it- WIGTECH which is calculated since 2019 and cover polish tech companies. Due to its short
existence in comparison to our backtesting period (2017-2022) we decided not co consider it.
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Figure 3.12: Relative daily close prices of BETA ETF WIG20TR,BETA ETF
mWIG40TR and BETA ETF sWIG80TR

Considering ETFs daily returns FW20TR, FmW40TR, FsW80TR and following the Ar-
bitrage Pricing theory (Equation 2.4), for a given stock i we can write:

Ri
t = αidt + βi,W20TRF W20TR

t + βi,mW40TRF mW40TR
t + βi,sW80TRF sW80TR

t + dIi
t .

One, significant issue with the regression model which was not the case in the PCA
approach is that explanatory variables are strongly correlated (as can be seen on
Figure 3.12 where one year’s relative prices were considered). For that reason, it may
not be fully sufficient to keep all 3 factors in the portfolio cause they provide similar
informations. We are fully aware of the issue but since the number of components
is already very low, no actions are going to be taken to reduce it. The idea is to use
unique behaviours of all funds as an additional insight, no matter how small it is.
Furthermore, from a practical perspective owning multiple exchange traded funds
does not require that much transaction costs since we do not need to trade with their
components. All β-coefficients expressing how much of funds should be purchased
are going to be derived using a standard regression approach of minimizing the mean
squared errors.



64 CHAPTER 3. PAIRED PORTFOLIOS GENERATION APPROACHES

Figure 3.13: Comparison between observed and model’s relative prices in existing
ETFs’ approach

In analogy to Figure 3.6, we consider the same 2 companies from top and bottom
of our scope. Consecutively, 1, 2 nd 3 components in form of exchange traded funds
were used to describe stocks’ returns (as shown in equation above). Figure 3.13
shows how observed relative prices from 2022 compare to the predicted ones. By
just looking at the plots we can see that both lines are diverging and coming back
together with overall trends remaining similar. For KGH Polska Miedź - a TOP10
company, there was practically no gain from adding 2 additional components be-
sides WIG20 ’s ETF. With Polenergia again posing as the bottom-place one a small
improvement (especially in the first half of 2022) can be seen with second and third
factors added.
There is one additional problem that was omitted throughout this subsection. Ex-
change traded funds considered above were introduced after 2018 while our back-
testing is supposed to start in 2017. For that reason we will “extend” their existence
period based on corresponding Total Return indices. This simplification assumes
that already existing funds got introduced earlier and therefore should not have
any significant distorting impacts on final conclusions of strategies’ usefulness in the
future.
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3.3.2 Artificial ETFs approach

As a counter to the existing ETFs’ approach let us consider using artificial funds
of sector indices. As we all know it is impossible to directly trade on indices- they
only pose as benchmarks for analysis and theoretical underlyings of derivative in-
struments. At the same time, for a given day replicating the exact squad of an
index so that the total cost is equal to 1PLN , then holding it for up to a quarter
and finally closing the trade should give very similar profit (including dividends etc.)
as theoretical return coming from the index (assuming it is a Total Return one) on
the same time-interval. Obviously, the latter one is more intricate since there exist
frequent adjustments of index’s portfolio such as changing distribution of shares or
introduction of new participants- this results in what is called a tracking error be-
tween an static replicating portfolio and actual index. If the aim is to profit from
market’s trends then such error could make it impossible. Nevertheless, strategy of
pairs trading benefits from under- and overpricings of stocks in comparison to the
market. Gain is then not dependent on the actual trends thus assuming that we are
able to replicate the index perfectly should not lead to any additional benefits for
the approach itself.
Recall that we have considered 14 sector indices. For each calendar year companies
in scope of our interest can be mapped to these sectors- it was already presented on
Figure 3.4 for 2022. Not all 60 participants belonged to one of the indices and some
of them cover a great majority of the index they are in (for example PKN Orlen
in WIG-PALIWA). For that reason we will use all 14 artificial ETFs for each com-
pany returns’ model- this should compensate for missing sectors and provide some
additional informations from correlated sectors in case of index-determining stocks.
Ranking ETFs were skipped in this approach to further differentiate 2 considered
approaches- having 14 components should already be sufficient enough. Analogous
to previous example, Arbitrage Pricing models were trained using 2021’s data using
14 sector indices as explanatory variables and then tested on 2022. This time we are
also interested in β-coefficients’ sizes to validate how much information is provided
by each factor.
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Figure 3.14: Performence of artificial ETFs’ approach for sector indices’ participating
companies

On Figure 3.14 we can see models’ performance for 3 companies assigned to specific
sectors. Sectors were picked to have as wide overview as possible- architecture, media
and real estate indices are represented by Budimex, Wirtualna Polska and Dom
Development. In all cases, movement of relative prices is well-represented by the
predictions although a non-converging overperformance of the actual values is seen
for Budimex in comparison to the model. Note that in the OU process responsible
for fitting the mean-reversion behaviour we also consider such situations due to the
presence of non-zero mean µ- we would then profit from any significant deviations
from the usual spread between the 2 assets. In regression models coefficients’ sizes
indicate how strong is the impact of particular explanatory variables. It is then not
surprising that they are the biggest ones are of the same exact indices we picked
companies from.

Figure 3.15: Performence of artificial ETFs’ approach for companies not participat-
ing in any sector index
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Companies that do not belong to any sector index were also considered in the same
manner- during 2021 they accounted for around 30% of all 60 companies considered.
We again picked representatives from uncorrelated industries- results for Dino Polska
(stores’ owner), Cyfrowy Polsat (cable provider) and PKP (railway operator) are
shown in each column consecutively. Predictions are not as good as in the analysis
above but since there was no direct match between stocks’ and artificial ETFs they
can be seen as sufficient. Explanatory power is far more spread between all indices,
some negative impacts are also introduced. We leave detailed analysis on the β-
s magnitudes in relation to companies’ characteristics to eager readers- from our
perspective more trades are going to be necessary to replicate presented models
which will introduce more transaction costs than with sector-attached companies.





Chapter 4

Backtesting

The ultimate goal of the following paper is to validate whether statistical arbitrage
strategy of pairs trading can be successfully merged with the Arbitrage Pricing The-
ory using different approaches for portfolio replication. Many of the assumptions,
such as the way we transit from residuals of replicated portfolios to actual, trans-
action determining signals, directly follow an influential paper of Avellaneda and
Lee[4]. Our contribution to the discipline is then an addition of a new, deep learn-
ing oriented approach and adjustment of real-life conditions to a smaller, far less
fluid market of Poland. For the backtesting, a mix-up between mentioned authors’
testing rules and our adjustments is also going to be suggested. We will start with
setting up the scope of backtesting and some market, quantitative assumptions that
needs to be set and later proceed to picked day-to-day trading method description.
Next subsection is going to cover individual set-ups for 3 considered approaches that
were not fully determined earlier. We will then proceed with choosing metrics for
validation and finally present the results divided into “standard” and “recessive”
market conditions’ ones.
Let us begin with setting up necessary background for trading activities.

4.1 Principles

4.1.1 Scope of backtesting and market assumptions

For backtesting purposes it is important to determine what historical data is going to
be used period- and recentness-wise. As we already saw (f.e. on Figure 2.4) residuals
based on daily candles usually fluctuate within months or even quarters. For that
reason trading period should be measured in years rather than in days or months.
Avellaneda and Lee[4] performed day-to-day trading simulation for 11 or 6 years
depending on the approach (between 1997/2002 and 2007 stopping before 2008’s
global crisis). We decided to pick a shorter period of 3 trading years between 2017
and 2019 due to the fact that squad of SP500 considered by mentioned authors is far
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more stable participants-wise than top 60 WIG’s companies. Using 10 years would
require annual re-builds of the entire portfolio adding additional costs not connected
to the strategy itself. Within the 3-years interval 60 companies that were in WIG20
or mWIG40 with its reserves list during the period will be used. Starting year of
2017 was selected to keep the backtesting results relevant and to separate COVID-19
pandemic economic effects out of the scope (similarly to how 2008 was avoided in
referenced paper). Such bearish period (2020) is going to be used separately as an
additional check whether strategy can profit even in case of strong recessive trend
of the market.
To incorporate dividends and additional payments in transaction profits, we will
buy and short-sell stocks for adjusted close prices with no limitation on shorting.
Transaction cost of c = 0.1% per buy/sell is going to be added. Even though the
GPW (polish stock market) taxation tables suggest higher percentages of around
0.29%, pages with lower fees are available among traders. It is important to note
that Avellaneda and Lee’ set the only transaction costs to 0.05% which is 2 times
smaller than our assumption. This will be an important factor in validating our
results against theirs. Last but not least, so-called risk-free rate reflecting time-
value of money needs to be determined. The usual approach is to consider rates of
zero-coupon government bonds with appropriate duration as their risk is practically
negligible. For < 5 years of constant trading, 52-weeks bond’ yield to maturity is
the most appropriate one- based on historical data from GPW rf = 1.5% in the
main period of 2017-2019 and rf = 0.1% in 2020 are going to be used as constant
rates. For simplicity rf is going to apply for both owned and owed money time-
development.

4.1.2 Trading rules

Let us recall that the strategy for each trading-day and given company goes as
follows:

1. Construct APT model based on eigenportfolios, all remaining companies’ stocks
combined or existing indices on a theoretical basis (i.e. determine all necessary
weights with one of 3 approaches).

2. Calculate residuals of the model on last W days.

3. Determine Orstein-Uhlenbeck process’s parameters from the residuals.

4. Calculate value of Gt (normalized idiosyncratic component) for current day.

5. Based on thresholds decide on the type of potential transaction.

6a. If you hold a position and Gt’s value indicates closing it- do so.

6b. If you do not hold a position and Gt’s value indicates opening it- do so based
on weights determined in point 1.
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6c. Else: do nothing.

First point is mainly dependent on the approach we took and for that reason was
already explained in individual sections- any remaining technicalities are going to be
specified later. Other parts of presented algorithm are universal except for the actual
values of signals’ thresholds which are going to be optimized on 2014-2016 interval
(using the same validation metrics and risk-free rate as for the main backtesting) for
each technique separately. We decided to unify window used for residuals’ calculation
(not to mistake with individually set windows used to train both PCA and LSTM
models) to W = 120- for that reason stocks mean-reverting within 60 days (with
κ > 4) should be considered.

Constant PCA Variable PCA LSTM Real ETFs Artificial ETFs

κ τ (days) κ τ (days) κ τ (days) κ τ (days) κ τ (days)

ARCHT 17.05 14.78 21.61 11.66 21.07 11.96 24.13 10.44 17.84 14.12
BANKS 22.56 11.17 21.72 11.60 21.01 11.99 26.77 9.41 26.26 9.60
CHEM 15.80 15.95 14.93 16.88 20.69 12.18 19.30 13.05 21.43 11.76

CLOTHES 13.44 18.76 12.49 20.17 17.56 14.35 19.28 13.07 27.05 9.31
ENERGY 18.43 13.67 17.20 14.65 18.87 13.36 14.92 16.89 16.09 15.66

FOOD 15.47 16.29 14.44 17.45 20.05 12.57 16.76 15.04 22.83 11.04
FUELS 24.79 10.16 25.19 10.00 19.12 13.18 20.00 12.6 20.32 12.40
GAMES 22.25 11.32 23.73 10.62 27.05 9.32 23.91 10.54 27.87 9.04

INFRMTCS 22.40 11.25 21.72 11.60 21.45 11.75 23.81 10.58 21.39 11.78
MEDIA 21.04 11.98 23.54 10.71 17.28 14.58 19.20 13.13 20.58 12.24
MINING 22.33 11.29 25.49 9.89 21.55 11.69 19.41 12.99 21.08 11.95
MOTO 20.22 12.47 22.39 11.26 21.85 11.54 22.30 11.3 18.87 13.36

PHARMA 16.82 14.99 15.05 16.75 20.37 12.37 20.73 12.16 20.16 12.50
REAL EST 20.85 12.09 21.69 11.62 23.55 10.7 29.60 8.51 31.38 8.03

other 22.78 11.06 20.86 12.08 22.95 10.98 25.17 10.01 23.69 10.64

Table 4.1: Average mean-reversion speeds and their reverses across 2019 and indus-
tries based on moving 120-days windows

Table 4.1 presents averaged mean-reversion speeds κ calculated for each day of 2019
and for each participating company together with τ - their inverse scaled with 1

dt =
252 representing how many days, on average, are needed for technical arbitrage
opportunity to be corrected. Ornstein-Uhlenbeck’s parameters were calculated based
on rolling W = 120 days window. As can be seen, energy and food industries’
portfolios are mean-reverting the slowest with games and real estate sectors’ ones
being the fastest. This is obviously strictly correlated to individual behaviour of
stocks within sectors throughout 2019- nevertheless average κs larger than 4 are a
promising sign for all approaches. As a “sanity check” it is worth noticing that even
though considered approaches have different residuals- their final OU parameters
are comparable.
All 60 traded stocks are going to be used for replication purposes together with
real or artificial ETFs. Trading on every stock’s residuals portfolio is going to be
completely independent from other ones thus final results can be seen as sum of 60
“traders”’ incomes with each one focusing on one company only. Since 2 out of 3
main approaches use stocks as both explanatory and explained variables, transfer of
already possessed assets between “traders” would decrease some transaction costs
connected to buying shares to open position and simultaneously short-selling some
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to close another one (for different main company). For simplicity and to keep track
of every opened position (to successfully close it when appropriate signal comes)
we will not implement such common trading account. Even though some weights of
individual replicating portfolios (f.e. β coefficients in PCA approach or all weightings
in the LSTM one) are calculated daily to produce new set of OU process’ coefficients
and thus generate signals, amounts defined by initial weightings for already opened
position are not going to be adjusted throughout time. Using a specific example
that can be translated to all techniques: if signal for open long appears in the real
ETFs approach for a given day and stock i we are going to buy 1 unit of stock
i and short-sell relevant βi,W20TR, βi,mW40TR and βi,W20TR amounts of appropriate
funds. Then, till a new signal comes for the same stock indicating a optimal moment
to close long position, created portfolio is going to remain untouched. This is not
ideal theoretically since closing signal is generated on a basis of potentially different
weightings than ones we actually own but, from a more practical perspective this
skips multiple cost-generating transactions. To further justify- within a maximum of
few months we do not expect significant changes in generated weightings since they
are based on a long enough historical periods. Although it was already mentioned
in signals generation’ section, let us also recall that only one position can be opened
at a given time moment for concrete main company. Therefore all “traders”’ states
can always be described with −1, 1 and 0 indicating long position opened, short
position opened and no position (empty portfolio) consecutively. Near the end of
the 3 years trading period (W

2 = 60 days before) we will stop any potential openings
to optimally close most of owned positions before the final day. Any position still
opened at t = 3 (years) is going to be sold-out to completely empty the overall
portfolio.
There are many takes to how much capital shall be used for trading purposes.
Invested money can be dependent on already-made profits or adjusted to signals
magnitudes. We have decided to stick with amounts proportional to current equity
state. Additionally a 2 : 1 leverage ratio is assumed. Leverage is about magnifying
potential profits by borrowing money for the investments, 2 to 1 means that for each
1 PLN own 2 PLNs can be spend on both types of transactions (long/short)- it is
a fairly common and not significantly risky assumption on broker accounts. Each
transaction i.e. opening position for given stock i at t0 and closing it at t1 > t0

generates a profit of:

P i
[t0,t1] = Λt[(−1)(transaction=short) · (Ri

[t0,t1] − QM
t RM

[t0,t1])−

− (−1)(transaction=short) exp (rf (t1 − t0)) · (1 − QM
t )−

− c ·
(
exp (rf (t1 − t0))|1 + QM

t | + |(1 + Ri
[t0,t1]) + QM

t (1 + RM
[t0,t1])|

)
],

where Ri
[t0,t1], RM

[t0,t1] are returns from the main stock and its replicating portfolio
consecutively, QM

t is a total PLN amount that was invested in all participants of the
replicating portfolio (taken directly from the Arbitrage Pricing model of returns), Λt

is the scaling factor and rf , c are as already defined. Note that if the transaction is a
short one, we sell scaled 1 PLN of the main entity and buy the replicating portfolio-
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for that reason (−1)(transaction=short) was added. The last part of the formula is
the transaction fee- it indicates that cost has to be accounted for both opening
and closing the transaction. For initial amount of money E0 let us define summed,
accumulated equity Et as:

Et = E0 exp (rf t) + Σ60
i=1Σt0,t1≤tP

i
[t0,t1] exp (rf (t − t1)). (4.1)

It sumps up profits that happened till t for all N = 60 companies. Then, with
the assumption of 2 : 1 average leverage level, previously used Λt can be formally
written as:

Λt = 2
60Pt.

Factor of 2
60 is determined by the fact that maximum of 60 companies’ positions

can be opened at given moment and we since are allowed to trade with twice as
much money as we own. Parameter E0 is going to be set at 100 PLN making initial
individual trades scaled by Λdt ≈ 3.33 PLN. As already mentioned, we are going to
trade on adjusted closing prices- this will take into account any dividends coming
from owning stocks automatically. As can be seen all trading assumptions are fairly
simple and basic- it is because while validating the results we aim to put an emphasis
on the mathematical theory behind the strategy. The following thesis is therefore
more of a check whether our take on statistical arbitrage has the necessary potential
to generate any repetitive and scalable profits.

4.2 Individual set-ups

Some of the choices that we had to make in the process of constructing the entire
framework are native to individual characteristics of taken approaches- especially in
case of PCA and LSTM. Additionally, optimal signal thresholds are also assumed
to be uniquely selected for each approach. Let us then go through all techniques
and fill in the blank spots. Like when explaining the paired portfolio generation
approaches, we will start with the Principal Components Analysis technique.

4.2.1 Principal Components Analysis (PCA)

Recall that in the PCA approach we will use a constant r = 15 number of eigen-
portfolios to explain stocks or, as a separate sub-technique: variable r such that at
least 55% of the total variance is explained. In both approaches eingenvectors will
be recalculated once every 252 days making a total of 3 changes in our main trad-
ing interval of 2017-2019. The reasoning behind not doing it more frequently is as
we already saw in PCA dedicated section, eigenportfolios are capable of producing
weights appropriate also for next year’s data not participating in training phase.
To justify further, squad of real indices is usually fairly stable with only slight ad-
justments within a given year. When the time for recalculation comes correlation
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matrix and thus eigenvectors are going to be derived on a basis of 252 preceding
days. For example, in the entire 2017 we will use eigenportfolios with weightings
from 2016 training data and switch to 2017-trained ones at the beginning of 2018-
in a variable components approach, these are the only opportunities to change r.
During additional analysis of 2020, the only difference between two PCA methods
will be the initially selected r. Note that even though eigenportfolios’ weights stay
the same within days- β parameters corresponding to F k, k = 1, . . . r are daily re-
calculated for signals’ generation purposes.
A basic search for optimal thresholds gol, gos, gcl and gcs was performed on 2015-
2016 data assuming same trading technique and market parameters as in the main
backtesting. For simplicity and symmetry opening and closing signals are assumed
to be the same pair-wise with gol, gos ∈ [1.1; 2.1] and gcl, gcs ∈ [−2.0; −1.0]. To
validate the best combination we will consider with the final accumulated profit i.e.
ET − E0. All runs are identical except for the thresholds so there seems to be no
need for more sophisticated metric.

Figure 4.1: Final accumulated profit on the optimization interval for PCA ap-
proaches depending on signal cut-offs values

Figure 4.1 presents heatmaps of the final Et−E0 with given combinations of opening
and closing thresholds for both versions of the PCA approach. As can be seen only
some of the runs ended up profiting with the best ones having the opening signal
gol = gos ∈ [1.1; 1.3] and closing one gcl = gcs ∈ [−0.8; −0.3]. The latter one
suggests that the best way to close potential arbitrage opportunities is waiting till
Gt not only hits 0 but also starts destabilizing in the other direction. Note that
both sub-approaches gave practically identical results- we may conclude that r ≈ 15
was selected twice to match 55% desired total variance explained ratio. Let us now
consider a narrower search grid to find the optimal thresholds.
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Figure 4.2: Final accumulated profit on the optimization interval depending on
signal cut-offs values- second search

As before, Figure 4.2 presents final accumulated profits for both sub-strategies- this
time within a narrower range of thresholds. It is clear that for both sub-approaches
gol = gos = 1.10 and gcl = gcs = −0.50 give the best results oscilating around 10
and for that reason they will be used for backtesting.

4.2.2 Long short-term memory (LSTM) networks

In the LSTM approach we need to first tune network’s weights and biases so that it
can correctly use historical inputs to predict appropriate set of β coefficients. This
part is going to occur once a year based on 3-years historical window. In other
words, LSTM tuned on 2014-2016 will be run W = 120 days before the start of the
next year to start giving valid predictions when 2017 comes and later stopped as
2018 arrives. Then a new tuning, this time relying on 2015-2017 data is going to
be performed and a new network will be run in a similar manner. Note that we are
not stopping the trading, only the LSTM gets interrupted after a year and 120 days
of running. As in the PCA approach we will then have 3 full trainings throughout
the main testing period. During each tuning, samples of length 120 are going to
be used to make the network focus mainly on this long windows in the derivation
of weightings vectors. For 2020 analysis, network is going to be trained only once
based on 2017-2019 data.
Like before we constructed 2 grid-searches for optimal thresholds- with a wider
and narrowed range of possible pairs. Since the stacked LSTM network had to
be first tuned on years 2012-2014 for 2015’s run it was necessary to adjust the
scope of considered stocks such that they all existed back in 2012. For that reason
optimization is performed on slightly different set of companies than in the PCA
sub-approaches.
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Figure 4.3: Final accumulated profit on the optimization interval for LSTM approach
depending on signal cut-offs values

Since there is only one LSTM technique we decided to put both grid-searches on one
plot (Figure 4.3). First observation is that the final values of ET − E0 have similar
magnitude to PCA results. Thresholds gol = gos = 1.10 and gcl = gcs = −0.15
are our final choice of thresholds- they are also fairly comparable to chosen PCA
cut-offs.

4.2.3 Exchange traded funds of market indices

in the ETFs’ approaches, we already have all components of the Arbitrage Pricing
model therefore no training besides calculating the β coefficients is necessary. Like
with other techniques, these coefficients are going to be derived daily based on a
moving W = 120 days window.
Continuing with previous methodologies 2015-2016 data is used to identify poten-
tially optimal signals’ thresholds for ETFs sub-approaches. In case of artificial ETFs’
technique we had to resign from 3 out of 14 sector indices: WIG-MOTO (moto),
WIG-ODZIEŻ (clothes) and WIG-LEKI (pharma) since they did not exist back in
the optimization period. For the other sub-approach all 3 ranking indices are used
in form of their Total Return equivalents imitating actual funds.
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Figure 4.4: Final accumulated profit on the optimization interval for existing ETFs
approach depending on signal cut-offs values

Note that the final results are way smaller than in previous approaches- most of
thresholds’ pairs were not profitable. The optimal pair for real funds’ technique is
gol = gos = 2.10 and gcl = gcs = 0.75 with around 1 PLN profit achieved in the
second round of grid-search (Figure 4.4).

Figure 4.5: Final accumulated profit on the optimization interval for artificial (sec-
tor) ETFs approach depending on signal cut-offs values

With the second sub-approach, magnitude of results is even smaller (Figure 4.5).
Second grid-search suggests gol = gos = 1.95 and gcl = gcs = 0.40 as the potentially
optimal choices for backtesting purposes.
Exchange traded funds’ approaches optimal thresholds are more similar to ones of
Avellaneda and Lee. Both opening and closing singnals of given type lay within one
side of 0.



78 CHAPTER 4. BACKTESTING

4.3 Validation metrics

The main goal of backtesting is to validate whether considered strategy is working
i.e. providing repetitive profits throughout trading years. Since we are dealing with
3 main approaches for replicating portfolios: PCA, LSTM and the use of actual
market indices- it is also important to compare their outcomes between each other.
For both of these tasks we require a quantitative measure of performance. One
was already presented in a form of accumulated equity Et (Equation 4.1). Its final
level ET shows whether the initial capital of 100 was increased by daily trades of
60 components based on generated signals. Since in the main backtesting period
3 years are considered, it is also important to see how relevant are our earnings-
if each year we generate similar profits strategy can be seen as more applicable in
the future. For that reason annual returns should be considered instead of an entire
trading period one. Another desire is to outperform the overall market growth which
can be represented by the risk-free rate rf . If we are not able to beat it there may
be no point in taking the risk. Finally, equity level should not fluctuate much by
add-ups of new transaction closings. If a positive annualized return comes from
a lot of accumulated losses and one massive profit we may not want to count on
such a rare event the future. To incorporate all of those demands, a very basic yet
commonly used metric called Sharpe ratio of annualized returns between t and t + 1
can be used. For trading year starting at t = j its formula goes as follows:

Sy = 252Rj − rf√
252σj

, (4.2)

where Rj is an average of daily returns throughout year j and σj describes the
estimate of daily returns’ standard deviation. Factors of 252 are then used for annu-
alizing purposes. We seek to maximize Sharpe ratio- risk-free rate is subtracted to
see the potential outperformence of proposed strategy and any potential instabilities
make the metric smaller. Note how Et and its sub-components P i

[t0,t1]; t0, t1 < t only
describe the jumps connected to positions’ closings. Assuming that we only trade
with one company as the main one, nothing changes in Et value when a position
is opened and until it is closed. Possibility exists that even though we set an av-
erage leverage level, scaled weightings indicate opening with almost all of currently
owned capital. Even though in the end we may end up making a small profit from
closing the position using such a large amount to trade was a major risk-driver. To
give a different perspective on the trades incorporating all changes of owned cash
an additional performance metric Ct will be introduced. It aims to track every-day
state of an additional account where the initial E0 = 100 and all already made
profits (or losses) are stored and used for following trades. Each pair of open/close
will lead to a rectangular “spike” on Ct’s plot where ultimate profit can be seen as
difference in the initial and final level (before and after the “spike”). We will show
all 3 metrics (via table in case of Sharpe ratio and plots for the other two) for the
overall portfolio of 60 stocks representing the entire market. Additionally, results
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are going to be separated according to participants’ sectors seeking for any over-
or under-performing ones. Note that since the list of companies used is relatively
small, we may see practically no movement for the less represented ones.

4.4 Results of backtesting

Throughout the entire paper with watchman’s precision we collected different pieces
of Pairs Trading puzzle and placed them in correct places. Now, to complete the
picture one final piece is needed. The coup de grâce, the icing on a cake, the bull’s
eye- results.

4.4.1 Main historical period of 2017-2019

Principal Components Analysis (PCA) approach

Since this analysis is the first one out of three we will provide additional insight
results’ validation methodology. First, annual Sharpe ratios defined as above (Equa-
tion 4.2) are going to be shown for sub-portfolios gathering stocks’ of specific sectors
and for the entire portfolio consisting 60 components. Since two sub-approaches
were introduced (with constant and variable number of eigenportfolios)- two results’
tables are going to be merged together.
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2017 2018 2019

r = 15 ARCHITECTURE 1.39 0.49 0.75
BANKS 0.33 0.36 -1.00
CHEMISTRY 1.70 0.54 -0.67
CLOTHES 1.46 1.77 -0.27
ENERGY -0.47 2.22 -0.02
FOOD -1.78 0.59 0.15
FUELS 1.79 1.10 0.36
GAMES -0.27 0.75 1.11
INFORMATICS 1.16 0.96 0.15
MEDIA 0.30 -0.27 -0.10
MINING 0.43 2.18 -0.51
MOTO -0.66 0.13 -0.96
PHARMA 1.70 -1.02 -1.31
REAL EST 1.66 -0.49 -0.32
other 2.80 -0.51 -0.68
PORTFOLIO 2.63 1.01 -1.16

Variable r ARCHITECTURE 1.51 0.08 0.47
BANKS -0.12 0.81 -1.15
CHEMISTRY 1.56 0.76 0.02
CLOTHES 1.67 1.88 -0.86
ENERGY -0.57 1.96 0.22
FOOD 0.08 0.43 -0.37
FUELS 1.65 0.99 0.51
GAMES -0.20 -0.91 1.97
INFORMATICS 1.09 -0.67 -0.10
MEDIA 0.08 1.20 -1.10
MINING 0.61 2.34 -0.39
MOTO -1.11 0.12 -0.54
PHARMA 1.49 -1.46 -1.53
REAL EST 1.71 -1.27 0.10
other 2.66 -0.34 0.01
PORTFOLIO 2.51 0.44 -0.91

Table 4.2: Sharpe ratios for PCA approaches based on 2017-2019 trading interval

Analysing Table 4.2 let us start with ratios of the entire portfolios throughout years.
In both sub-approaches 2017 had the highest metric values around 2.5. Performance
dropped in the next years with 2019 underperforming in relation to the risk free rate.
Positive ratios are slightly higher in the entire portfolio of constant r approach but
so is the magnitude of negative one (during 2019). To give a comparison, on their
entire portfolio Avellaneda and Lee[4] achieved annual Sharpe ratios between −0.7
and 3.4 with r = 15 and between −0.4 and 2.6 with variable r- although there are
some differences in taken assumptions and the overall trading scope, our results can
be seen as fairly comparable. Interestingly, mentioned authors also achieved the
lowest, negative ratios in the last trading year (in their case it was 2007). In our
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case it may have been determined by some potentially forced early closings made to
clear off the portfolio. With sector sub-portfolios, companies that were not assigned
to any specific industry are the best performing group (in both sub-approaches). It
is also interesting that games’ companies were practically the only well-managing
group in 2019 but failed beat the market in previous years. On the other hand,
fuels companies formed the most stable performing group. For both r types, mean
Sharpe ratios of sector sub-portfolios oscillated around 0.35.
In the second validation step we will take a closer look on development of equity
Et and cash Ct throughout trading period. Again, overall portfolio is going to be
analysed first.

Figure 4.6: Equity and cash levels throughout the 2017-2019 trading interval for
PCA approaches

The left plot of Figure 4.6 presents equity Et that accumulates all achieved profits
from positions’ closings. Therefore, separate costs of opening and closing transac-
tions are not included. Right plot fills this gap gathering all money flows in and out
of the portfolio as its time cash status Ct. Analysing Et we can see that constant r

technique outperformed the latter one throughout 2018 and 2019 where r was set to
18 and 17 consecutively. In 2017, r = 16 explained around 55% of total variance- for
that reason Et values were very similar. Final value of Et gives practically identical
profit of around 20 PLN. Switching back to the right plot, we can see all the fluc-
tuations caused by spending or gaining money from either buying or short selling
stocks. Since the final cash value CT is equal to ET an information about volatility
was added to the sub-plot. These are also very similar and around 21- since we did
not see any other techniques it is hard to raise any quantitative conclusions based
on these numbers. Intuitively, since Et was increasing, fluctuations got wider due
to bigger Λt scaling.
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Figure 4.7: Equity and cash relative levels throughout the 2017-2019 trading interval
for PCA approaches- sectors’ separation

Analogous time-series were presented on Figure 4.7- this time separating overall
portfolio into stocks’ coming from different sectors. Notice that since the numbers
of components from given industry are different- sub-portfolios start from different
initial capitals. To make them comparable we thus divided all values of both Et

and Ct by starting ones. It is then somehow similar to the way we compared stocks’
closing prices via relative worth of 1 PLN investment. Upper plots focus on the
relative equity level with the lower ones presenting cash movement. Due to inclu-
sion of 15 different sub-portfolios there is a lot happening on each picture and thus
not everything can be easily interpreted. One of the reasons we decided to include
these plots is to again highlight nature and differences between two performance
indicators. If profits are positive, Et constantly increases while Ct oscillates being
sensitive to every money flow. Even with so many lines it is clear that for both PCA
approaches fuels sub-portfolio profited the most in relation to its initial capital with
media one having the biggest relative decrease- fluctuations of these groups were
also the highest (as lower plots suggest).
Already at this point, without comparing PCA to other techniques of deriving com-
ponents’ weightings, we can be satisfied with its performance. Most importantly,
Sharpe ratios of the overall portfolio for both sub-approaches were positive in the
first 2 years of the strategy with significantly high ones observed in 2017. Stocks
within particular sectors also gave S > 0 with only few exceptions. It is not trivial
to differentiate which PCA sub-technique is the superior one- 55% was selected in
a way that the actual number of eigenportfolios picked is usually very similar and
thus so are the results.
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Long short-term memory networks approach

Similarly to the PCA approaches we will validate trading with the use of stacked
LSTM network aimed to produce appropriate replicating portfolios’ weightings. This
part is especially important since using recurrent neural networks to perform pairs
trading does not seem to be yet covered in the literature of the subject. Any promis-
ing results achieved here may potentially lead to development of a new branch in
Statistical Arbitrage spectrum. Let us now consider 3 metrics to validate outcomes
of LSTM based 2017-2019 trading.

2017 2018 2019

ARCHITECTURE 0.63 1.81 0.32
BANKS 1.50 1.53 0.40
CHEMISTRY -1.40 -0.03 1.41
CLOTHES -1.52 1.52 -0.48
ENERGY 0.99 0.90 0.72
FOOD 2.09 -0.58 -1.58
FUELS -1.72 0.79 0.02
GAMES -0.58 -1.17 -1.15
INFORMATICS 0.98 -0.40 -1.34
MEDIA -0.34 -0.93 -1.90
MINING -1.87 0.82 -0.16
MOTO 0.22 0.31 -1.34
PHARMA 0.10 1.17 -1.26
REAL EST 0.30 2.05 -1.80
other 0.22 -0.41 -1.35
PORTFOLIO 0.60 2.09 -1.53

Table 4.3: Sharpe ratios for LSTM approach based on 2017-2019 trading interval

Table 4.3 gives us an overview of annualized Sharpe ratios across sectors and for the
overall portfolio. Similarly to the PCA approaches, LSTM is underperforming in
2019 for most of the groups. Highest ratios were achieved in 2018 with 2017 giving
more than half of positive ratios. Some of the sector sub-portfolios are outperforming
the overall one.

Figure 4.8: Equity and cash levels throughout the 2017-2019 trading interval for
LSTM approach
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Figure 4.8 shows further similarities between PCA and LSTM results- both equity
and cash levels move similarly to ones seen for both Principal Components Analysis
techniques. There is a bullish run of Et throughout the first 2 years and a slight drop
in 2019 (already confirmed by negative Sharpe ratios). The final return is around
10% which is worse than with both PCA approaches.

Figure 4.9: Equity and cash relative levels throughout the 2017-2019 trading interval
for LSTM approach- sectors’ separation

Dividing replicated stocks into sector portfolios and scaling their cash levels by the
initial capital we can observe (lower plot of Figure 4.9) one large transactions’ pair
in the gaming industry and a lot of smaller ones with maximum of 4 PLN spend on
opening long or closing short. Performing the same separation and scaling for equity
level Et it is visible (upper plot of Figure 4.9) that such relatively large movement
of games’ sector cash level ended up in a loss- same can be said about further clos-
ings in this sub-portfolio. More than half of the other sectors had > 0 returns with
pharmaceutical and energy ones being the best.
There are certainly some similarities between PCA and LSTM replication method-
ologies (especially when comparing them to ETFs approach). Even though the latter
one gives more flexibility for modelling individual companies’ returns, they both rely
on the entire trading portfolio as a set of explanatory variables. These similarities
resulted in fairly similar results achieved by both methods. Both methods produced
profits in the first two years and experienced a bearish movement during 2019.

Exchange Traded Funds of market indices approach

Although we analysed PCA sub-techniques together, both ETFs’ methods are going
to be validated separately (with short comparison at the end). It is because they
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are not different by just one parameter (as it was with PCA) but by an entire
explanatory variables’ set. Let us then start with approach concerning a limited set
of existing ETFs.
Existing ETFs sub-approach
As before, first and possibly the most important metric that will be analysed is
Sharpe ratio S.

2017 2018 2019

ARCHITECTURE -inf -0.98 -0.98
BANKS -1.89 0.31 0.40
CHEMISTRY 1.12 -1.17 1.34
CLOTHES -inf 0.98 -0.98
ENERGY -1.38 0.32 0.98
FOOD 1.41 0.23 -inf
FUELS -1.39 -inf 0.98
GAMES 0.99 -0.85 -0.98
INFORMATICS -0.71 -0.84 -1.09
MEDIA 0.14 0.93 -0.30
MINING 0.94 0.98 1.05
MOTO 1.28 0.02 1.29
PHARMA -0.15 -1.05 -0.98
REAL EST 0.69 1.22 1.64
other -0.27 -0.82 0.88
PORTFOLIO -0.25 -0.46 1.43

Table 4.4: Sharpe ratios for existing ETFs’ approach based on 2017-2019 trading
interval

Table 4.4 presents annualized Sharpe ratios for the overall portfolio and sub-portfolios
of common industry stocks’. Since we already know the PCA and LSTM results,
it can be noticed that all 60 components are performing worse during the first 2
years but overcome previous techniques during 2019. Looking at sectors, we can see
that S are mostly small with a mean of 0.06. In some cases there were no positions
opened throughout an entire year resulting in Sharpe ratio set to -inf.

Figure 4.10: Equity and cash levels throughout the 2017-2019 trading interval for
existing ETFs approach
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As can be seen on the left plot of Figure 4.10 strategy managed to make a profit
of around 5 PLN. It is a decrease in relation to previous methods- we could have
expected it judging by the performance during grid searches and since explainability
of eigenportfolios and LSTM regression model is superior to just 3 funds. Neverthe-
less, smaller profits are partially compensated with lower volatility of cash used for
all trading activities.

Figure 4.11: Equity and cash relative levels throughout the 2017-2019 trading inter-
val for existing ETFs approach- sectors’ separation

Figure 4.11’s perspective highlights our previous assumptions about practically no
movement for some of the sectors. Even the ones that changed their equity of cash
value (again calculated in a relative manner) more than once do not have more than
a few trades in total.
Notice that if we only use 3 components, residuals are consistently larger- overall
market funds are unable to model smaller trends in companies’ movements. Since
the residuals are less volatile, it is not that likely for their cumulative sums to deviate.
This ultimately results in less signals and thus less trades. At the same time, more
stability leads to better decisions concerning transactions making the profits more
consistent throughout the entire trading period.
Artificial ETFs sub-approach
Intuitively, artificial ETFs should perform better due to higher explainability of the
systematic factors. At the same time more transactions has to be made resulting in
additional taxation.
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2017 2018 2019

ARCHITECTURE 1.01 0.28 -1.61
BANKS 0.77 0.37 1.29
CHEMISTRY -1.04 -0.87 -1.18
CLOTHES 0.38 -1.01 -0.55
ENERGY 1.48 1.46 -0.12
FOOD 0.19 1.12 -0.62
FUELS -0.99 -0.98 -0.98
GAMES -1.04 -1.08 1.16
INFORMATICS 0.85 1.57 -1.23
MEDIA -1.43 -0.87 0.85
MINING 1.42 0.58 -1.47
MOTO -0.83 -0.98 0.54
PHARMA 1.45 0.98 -0.98
REAL EST -0.30 -1.17 1.64
other 1.59 -2.36 -1.28
PORTFOLIO 1.28 -1.63 -0.84

Table 4.5: Sharpe ratios for artificial ETFs’ approach based on 2017-2019 trading
interval

Sharpe ratios presented in Table 4.5 show larger magnitudes of Ss than with ex-
isting funds’ approach. This is not necessary good due to more negative ratios for
particular sectors. Overall portfolio is only profiting in 2017, then it suffers from
significant underperformences relative to the market (represented by rf ).

Figure 4.12: Equity and cash levels throughout the 2017-2019 trading interval for
artificial ETFs approach

As a confirmation of our overall portfolio Sharpe ratio’s conclusions, Figure 4.12
presents how equity Et significantly raised in the first year just to drop in the
following ones. Such instability is also seen with wider fluctuations of owned cash.
Although indicators’ paths are noticeably different, the ultimate result (profit) of
considered approach is practically identical to one of existing ETFs’ technique.
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Figure 4.13: Equity and cash relative levels throughout the 2017-2019 trading inter-
val for artificial ETFs approach- sectors’ separation

Final figure (4.13) again presents the relative equity and cash values for stocks’
sectors. Notice how the ultimate profit of overall portfolio is mainly determined by
a positive jump in architecture’s sector and later two negative ones of media and
chemistry stocks.
Both techniques give similar profits with the latter one (with more explanatory
variables) being far more unstable. Their performance is rather worse than ones of
more sophisticated methods. This was also the general outcome in Avellaneda and
Lee’s paper (with PCA as the counter-technique).

4.4.2 COVID-19 pandemic recession in 2020

Partially imitating Avellaneda and Lee analysis of liquidity crisis in summer of 2007,
we are going to take a closer look at our strategy performance in 2020 COVID-19
recession. All previous assumptions will be held (including optimal thresholds from
2016-2017 grid searches) except arisk free rate rf that is going toi be set at 0.5%.
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Principal Components Analysis approach

2020

r=15 ARCHITECTURE -0.98
BANKS -1.83
CHEMISTRY 0.19
CLOTHES 1.03
ENERGY -0.86
FOOD -1.02
FUELS -0.98
GAMES -1.02
INFORMATICS -1.18
MEDIA 1.20
MINING 0.89
MOTO 1.33
PHARMA 1.30
REAL EST 0.56
other -0.28
PORTFOLIO -1.39

variable r ARCHITECTURE -0.82
BANKS -1.62
CHEMISTRY -0.12
CLOTHES 1.12
ENERGY -0.88
FOOD -0.99
FUELS -0.98
GAMES 1.40
INFORMATICS -0.97
MEDIA 1.08
MINING 0.73
MOTO -0.98
PHARMA -1.11
REAL EST 1.19
other 0.97
PORTFOLIO 0.59

Table 4.6: Sharpe ratios for PCA approaches based on 2020 recession trading interval

Since, based on 2019 data r = 18 was picked in the second sub-approach both
methods perform differently. Higher number of components used actually increased
overall portfolio’s S (Table 4.6). Still, a more general observation for both methods
is that the ratios are mostly smaller than during 2017-2018 and thus more similar to
ones from 2019. Next plots should give us more insight on the overall and individual
performances.



90 CHAPTER 4. BACKTESTING

Figure 4.14: Equity and cash levels throughout the 2020 recession trading interval
for PCA approaches

Figure 4.15: Equity and cash relative levels throughout the 2020 recession trading
interval for PCA approaches- sectors’ separation

For the sake of brevity let us consider equity and cash movement for both the overall
portfolio and sub-portfolios together. Starting with the upper Figure (4.14) the most
important conclusion is that both strategies not only failed to bring any ultimate
profits but also resulted huge losses. Significant drop of Et begins in the middle
of the year- it seems like the moving window used to provide β started to be more
influences by prices’ falls during spring 2020 which ultimately resulted in corrupted
signals and thus incorrect decisions. Notice how variable r’ approach still manage
to give a positive Sharpe ratio since mean used in the formula is not as sensitive
to enormous but rather singular negative returns. This is exactly the reason why
wider perspective needs to be presented. Switching to lower Figure (4.15) shows
that the majority of large amounts’ opening were done in the second half of 2020-
more than half of them resulted in significant losses. This is in line with our previous
conclusions about signals’ being corrupted by growing influence of not typical prices’
dives in the first half of the year.
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Long short-term memory networks approach

2020

ARCHITECTURE 0.51
BANKS 1.27
CHEMISTRY -0.86
CLOTHES 0.11
ENERGY -2.11
FOOD 0.79
FUELS 1.50
GAMES -1.25
INFORMATICS 0.96
MEDIA 0.73
MINING 1.13
MOTO 1.10
PHARMA 0.78
REAL EST -0.44
other -1.26
PORTFOLIO -0.34

Table 4.7: Sharpe ratios for LSTM approach based on 2020 recession trading interval

Although the overall portfolio ended up in a negative Sharpe ratio (Table 4.7),
more than half of sectors’ sub-portfolios manage to overperform the risk-free rate
of 0.5%. Nevertheless, the usual set of time-series plots needs to be included for
further conclusions.

Figure 4.16: Equity and cash levels throughout the 2020 recession trading interval
for LSTM approach
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Figure 4.17: Equity and cash relative levels throughout the 2020 recession trading
interval for LSTM approach- sectors’ separation

Like in the PCA approaches, LSTM turns out not to be profitable in 2020 even
though the final results are far better than dimensionality reduction techniques (Fig-
ure 4.16). This time the strategy was actually profiting in the first half of the year.
Notice how there is less cash fluctuations than during 2017-2019- since the market
is behaving similarly, same types of transactions (close/long) are being performed
during common time-intervals. Looking at the lower Figure (4.17) it can be seen
that practically only the games’ sector manage to make relevant, positive returns
relative to its initial capital.
Although the results were not so low as with approaches above, trading in 2020
using LSTM did not manage to make any reliable profits. Major drops when the
pandemic in Poland started were potentially highlighted by the long-term memory
of running recurrent network resulting in a lot of losses in the last months of the
year Since transitions between LSTM’s βs are smoother than with dimensionality
reduction methods (due to an increasing increasing number of inputs which are then
slowly and partially forgotten rather than a strict moving window), such disruptions
were not destructive to equity level.

Exchange Traded Funds of market indices approach

Last but not least, let us see whether actual indices can perform better in recession
scenarios after being the worst ones in standard market conditions.
Existing ETFs sub-approach
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2020

ARCHITECTURE -inf
BANKS -2.56
CHEMISTRY -inf
CLOTHES 0.90
ENERGY 1.33
FOOD 0.98
FUELS 0.98
GAMES 1.09
INFORMATICS 1.52
MEDIA 0.98
MINING 0.82
MOTO -inf
PHARMA 1.18
REAL EST -1.87
other -0.30
PORTFOLIO 0.56

Table 4.8: Sharpe ratios for existing ETFs’ approach based on 2020 recession trading
interval

Trading with existing funds during 2020 resulted in a positive Sharpe ratio of the
overall portfolio (Table 4.8). Two out of 15 sectors (including other) did not make
any transactions resulting in no S. Other groups were mostly outperforming the
risk free-rate rf with an average ratio of 0.45.

Figure 4.18: Equity and cash levels throughout the 2020 recession trading interval
for existing ETFs’ approach
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Figure 4.19: Equity and cash relative levels throughout the 2020 recession trading
interval for existing ETFs’ approach- sectors’ separation

As both Figures (4.18 and 4.19) show, technique of using just three explanatory
variables to replicate individual stocks is the first profitable approach in 2020’s con-
ditions. Besides a fluctuation at the start, Et is increasing fairly stable resulting in
ET = 103.44 (and thus a return of 3%). Also the cash level Ct can be seen as not
volatile. Within sectors, profit were mainly made in the first half of 2020 advantag-
ing from major recession movements.
Artificial ETFs sub-approach
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2020

ARCHITECTURE 0.98
BANKS 0.73
CHEMISTRY -0.98
CLOTHES 0.76
ENERGY 1.08
FOOD -inf
FUELS 1.64
GAMES 0.11
INFORMATICS 1.00
MEDIA 0.81
MINING 0.98
MOTO 0.67
PHARMA -1.51
REAL EST -0.85
other -0.44
PORTFOLIO 0.68

Table 4.9: Sharpe ratios for artificial ETFs’ approach based on 2020 recession trading
interval

All ratios of the artificial ETFs made of sector indices are fairly similar to ones
achieved by just 3 explanatory variables (Table 4.9). Again, daily returns of the
overall portfolio manage to outrun government bonds’ yield of 0.5%.

Figure 4.20: Equity and cash levels throughout the 2020 recession trading interval
for artificial ETFs’ approach
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Figure 4.21: Equity and cash relative levels throughout the 2020 recession trading
interval for artificial ETFs’ approach- sectors’ separation

The use of more explanatory variables increased Et of ETFs-related method- final
profit of around 5 PLN was made within a year giving a 5% return (Figure 4.20).
In opposition to existing ETFs’ sub-technique, this time bigger trades are made not
only in the first half of the year but throughout entire 2020. As can be seen only
the pharmaceutical stocks’ ended up with negative annual return.
Since considered ETFs related approaches use market indices instead of individual
stocks they are less sensitive to historical fluctuations. Their results are practically as
good as in standard economic conditions which cannot be said for other techniques.
Distinguishing between sub-techniques, the latter one with more factors seem to give
slightly better.



Chapter 5

Conclusions

We presented a systematic approach to Pairs Trading- a popular Statistical Arbi-
trage technique. In the usual approach pair of similarly behaving assets is selected
and trades are performed on an offset portfolio of the two- we decided to substitute
the second equity with a linear combination of risk (systematic) actors replicating
the first (main) one. The aim then was to analyse residuals of main asset and
its corresponding systematic components’ approximation. Based on their potential
mean-reversion properties, trading signals were determined trying to profit from
potential technical mispricings. The selection of risk factors was done using three
techniques: creating them with Principal Components Analysis (PCA) from eigen-
vectors of returns’ empirical correlation matrix, using real market indices, and as a
new method that was not covered in the literature of the subject yet: considering
Long short-term memory networks (LSTMs).
There are two main contributions made within the paper: re-defining and testing
already discussed techniques of PCA and market indices[4] on a far less developed
equities market of Poland; and, as already mentioned, the introduction of new deep
learning based approach of deriving the risk factors. Applying techniques of Statis-
tical Arbitrage presented by Avellaneda and Lee[4] to polish stock exchange required
switching from around 500 stocks’ portfolios to just 60 most influential companies
gathered by two main indices: WIG20 and mWIG40. Since the spectrum of ex-
change traded funds of market indices is also way narrower than in the US, some
simplifications had to be made for the ETFs approach. Two sub-techniques were
discussed: one using only existing funds to replicate and other relying on artificial
ones created as direct copies of sector indices. Additional market factors such as
transaction costs or risk free rate were also adjusted from 2008 paper[4] for better
reality matching. Second contribution i.e. LSTM approach of replicating stocks’
returns was constructed to check whether more flexibility can be gained by not lim-
iting oneself to common market factors and instead creating unique portfolios on
a basis of singular stocks. Network was trained to provide the most appropriate
weightings of all companies’ shares to approximate returns of the main one. Since
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it is possibly the first documented use of LSTMs in this, exact context- some steps
such as the search for the most optimal hyperparameters were skipped to focus on
initial potential of the approach. Any positive results coming from using the tech-
nique should be seen as a encouragement for the start of a new branch and further
development of the strategy.
On the performance side, two trading intervals were considered for the backtesting
of all 3 approaches: 2017-2019 representing standard market conditions and highly
recessive 2020. During the first, 3 years period all three techniques manage to profit
with PCA and LSTM approaches achieving up to 2.63 and 2.09 annualized Sharpe
ratios during the first two years consecutively. Both ETF sub-methods performed
worse ending up with around 5% of a 3-years return (comparing it to > 10% achieved
by previously mentioned approaches). Understandably, the use of just three real ex-
change traded funds provided the most stable results throughout the main trading
period. Although a lot of assumptions were changed compared to ones made by
authors we refer to[4], both PCA and ETF approaches’ Sharpe ratios can be seen as
sufficiently comparable- worse performance of the latter method was also proven in
their case. In the additional, 2020 trading PCA and LSTM strategies failed to make
any profits with the first method ending up with significant losses. On the other
hand, funds’ sub-methods managed to made comparable returns (of around 5%) to
ones from 2017-2019 thus outperforming other techniques. One of the reason for
such switch may be that both PCA and LSTM techniques rely on all stocks directly
and thus are far more sensitive to prices’ rapid, recessive movements.
Focusing on the performance of new LSTM approach we can say that it did not
manage to outperform PCA technique during 2017-2019 period but provided posi-
tive and comparable results. Both methods failed during 2020 recession period but
recurrent neural network remained more stable. It is important to recall that the
approach was purely constructed by the author of this paper and thus not opti-
mized to its full potential. Note that in opposition to PCA, LSTM takes time into
account in promising a new set of replication weightings and does not rely on re-
turns’ normality when determining potential dependencies. It is thus more flexible
and can also be optimized on a basis of different, more sophisticated loss functions
(we used regularized MSE). For all of the reasons above, we access LSTM approach
as a promising alternative for the future of Statistical Arbitrage and highlight the
need for a more detailed analysis of method’s capabilities especially since concept of
treating more recent historical data as more important but at the same time gath-
ering some crucial informations from earlier periods is very intuitive for all trading
activities.
There is also much more to the theory of systematic Pairs Trading approach: our
predecessors successfully added volume as an additional factor making trading re-
quirements more realistic; different processes such as mean-reverting jump-diffusion
model can also substitute used Ornstein-Uhlenbeck one. But most importantly, al-
ready at this level of expertise we can see that the transition between theory and
practical results is working admirable in various market conditions.
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