
Categorical semantics for model comparison
games for description logics

(Semantyka kategoryczna dla gier porównujących modele
dla logik deskrypcyjnych)

Mateusz Urbańczyk

Praca magisterska

Promotor: dr hab. Emanuel Kieroński

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

1 września 2022

Abstract

A categorical approach to study model comparison games in terms of comonads was
recently initiated by Abramsky et al. In this work, we analyse games that appear
naturally in the context of description logics and supplement them with suitable
game comonads. More precisely, we consider expressive sublogics of ALCSelfIbO,
namely, the logics that extend ALC with any combination of inverses, nominals,
safe boolean roles combinations, and Self operator. Our construction augments and
modifies the so-called modal comonad by Abramsky and Shah. The approach that we
took heavily relies on the use of relative comonads, which we leverage to encapsulate
additional capabilities within the bisimulation games in a compositional manner.

Kategoryczne podejście do badania gier porównujących modele za pomocą ko-
monad zostało niedawno zainicjowane przez Abramsky’iego et al. W tej pracy, ana-
lizujemy gry które pojawiają się naturalnie w kontekście logik deksrypcyjnych i uzu-
pełniamy je o odpowiednie komonady gier. Mówiąc dokładniej, rozważamy ekspre-
sywne podlogiki ALCSelfIbO, mianowicie, logiki które rozszerzają ALC o inwersje,
stałe, bezpieczne kombinacje boolowskie ról oraz operator Self. Nasza konstruk-
cja modyfikuje tak zwaną modalną komonady od Abramsky’iego i Shah’a. Podejście
które przyjęliśmy opiera się w głównej mierze na użyciu relatywnych komonad, które
wykorzystujemy aby wyrazić dodatkowe możliwości w grach bisymulacyjnych w spo-
sób, który się dobrze składa.

Contents

1 Introduction 9

1.1 Our results . 10

1.2 Roadmap . 10

2 Preliminaries 13

2.1 Preliminaries on DLs. 13

2.2 Preliminaries on category theory . 14

3 Bisimulation Games 17

3.1 Games . 17

3.2 Bisimulations . 18

4 Reductions between games and logics 21

4.1 A family of logic reductions . 21

4.1.1 Self operator . 21

4.1.2 Role inverses . 23

4.1.3 Safe boolean roles combinations 24

4.1.4 Nominals . 25

4.2 Combining reductions . 28

5 Game Comonads 29

5.1 A comonad for ALC . 29

5.2 Tree-like structures, paths and embeddings. 33

5.3 A categorical view on games . 34

5

6 CONTENTS

6 Comonads for extensions of ALC 37

6.1 A generalized framework for extensions 37

6.2 Comonadic semantics for extensions 39

7 Conclusions 41

7.1 Future Work . 41

7.1.1 Incorporating other known DL extensions 41

7.1.2 Combinatorial properties . 41

7.1.3 Transcribing known theorems to category theory 42

Acknowledgements

Results stated in this thesis were previously published on DL 2022, 35th
International Workshop on Description Logics and presented during Fed-
erated Logic Conference (FLoC) 2022 at Haifa, Israel.

I would like to thank Bartosz Bednarczyk for proposing me this topic
once on a university corridor and for extensive support throughout the
project. I would also like to thank Maciej Piróg and Emanuel Kieroński,
for introducing me to the deep world of category theory and decidability,
which allowed me to tackle problems approached while writing this thesis.

Chapter 1

Introduction

Following [2], there are two different views on the fundamental features of compu-
tation, that can be summarised as “structure” and “power” as follows:

• Structure: Compositionality and semantics, addressing the question of mas-
tering the complexity of computer systems and taming computational effects.

• Power: Expressiveness and complexity, addressing the question of how we can
harness the power of computation and recognize its limits.

It turned out that there are almost disjoint communities of researchers studying
Structure and Power, with seemingly no common technical language and tools. To
encounter this issue, Samson Abramsky and Anuj Dawar started a project, whose
goal is to provide a category-theoretical toolkit to reason about finite model theory
in order to apply theorems and draw insights from, at first sight, an unrelated field.

Their approach employs comonads on the category of relational structures to
capture denotational semantics of model comparison games such as Ehrenfeucht-
Fraissé, pebbling, and bisimulation games [8], as well as games for Hybrid logics [6]
and Guarded Fragment [5]. The structure allows us to leverage the tool of cate-
gory theory, and apply it to generalise known established theorems, as it was done
in [13] or [7]. In this paper, we continue the exploration of suitable game comonads
by incorporating the comonadic semantics for description logics games, namely, for
expressive description logics between ALC and ALCSelfIbO. 1 It is also worth men-
tioning parallel research that defines categorical semantics for ALC [15, 12], however,
their approach is much different from ours, as we focus solely on games and leave
ALC in the standard set-theoretic semantics.

1It will become clear why we write ALCSelfIbO instead of the more standard form ALCOIbSelf
later.

9

10 CHAPTER 1. INTRODUCTION

1.1 Our results

In what follows, we change the setting established in the previous work [8] from the
category of relational structures to a category of pointed interpretations that are
parametrised by sets of role names, concept names and individual names.

We start by defining comonadic semantics for ALC-bisimulation-games. It is
well-known that ALC is a notational variant of multi-modal logic. Hence, we employ
this observation to take full advantage of existing results on modal logic from [8]
and use them as the base for our further investigations. In order to define comonadic
semantics for DLs LΦ ⊆ ALCSelfIbO, instead of providing it directly for them (and
thus repeating all the machinery and required proofs from [8]), we follow a different
route. We provide a family of game reductions from LΦ to weaker sublogics, ending
up on ALC, which transform interpretations in such a way that a winning strategy
in LΦ-bisimulation-game is equivalent to a winning strategy in ALC-bisimulation-
game for suitably transformed interpretations. From a categorical point of view, we
introduce a comonad for ALC logic and reductions shall be defined by functors,
on which we will build relative comonads to encapsulate the additional capabilities
available in an L-bisimulation-game. By composing the reduction functors together,
we shall obtain comonadic semantics for all of the games for considered logics.

1.2 Roadmap

We start in Chapter 2 by giving a sufficient background for the further results, to
facilitate the accessibility for readers coming both from the area of model theory
and description logics, as well as from the category theory side.

In Chapter 3, we recall the well-established notion of bisimulation games for
L ⊆ ALCSelfIbO logics, which are the key concept for which we shall define the
categorical semantics.

We then proceed to Chapter 4, where we define a family of logic extension reduc-
tions fSelf , fI , fb, andfO acting on interpretations. We declare them with a goal such
that for Φ ⊆ {Self, I, b,O} and fΦ being a composition of reductions of extensions
selected by Φ, the following theorem holds:

(I,d) ∼ALCΦk (J , e) ⇐⇒ (fΦ I, d) ∼ALCk (fΦ J , e)

Having established model-theoretic part of our work, we finally move to the
category theory world, where we shall stay until for the rest of the thesis. Chapter 5
tweaks modal comonad and ports categorical variation of comparison games from [8]
such that it can be applied to our description logic setting. We wrap up the chapter
by giving denotational, comonadic semantics for ALC-bisimulation-games.

1.2. ROADMAP 11

Finally, in Chapter 6, we devise a general framework for establishing comonadic
semantics for games for all expressive sublogics of ALCSelfIbO. We achieve this by
lifting previously defined reductions to well-behaved functors and taking a relative
comonad over them.

We conclude in Chapter 7 by suggesting potential future research directions as
well as giving motivation to the thesis by presenting what was already achieved in
this field by leveraging the developed toolkit.

Chapter 2

Preliminaries

We start with a recap of notions from category theory [10, 17], such as comonads,
as well as from description logics, for which we define their syntax, semantics and
bisimulations [11]. By doing so, we would like to unify the context for readers from
different backgrounds.

2.1 Preliminaries on DLs.

We fix infinite mutually disjoint sets of individual names NI, concept names NC,
and role names NR. We will briefly recap the syntax and semantics of ALCSelfIbO-
concepts and as well as L-concepts for relevant sublogics L of ALCSelfIbO. The
following EBNF grammar defines atomic concepts B, concepts C, atomic roles r ,
simple roles s with o ∈ NI, A ∈ NC, p ∈ NR:

B ::= A | {o}
C ::= B | ¬C | C u C | ∃s.C | ∃s.Self
r ::= p | p−

s ::= r | s ∩ s | s ∪ s | s \ s

The semantics of ALCSelfIbO-concepts is defined via interpretations I =

(∆I , ·I) composed of a non-empty set ∆I called the domain of I and an inter-
pretation function ·I mapping individual names to elements of ∆I , concept names
to subsets of ∆I , and role names to subsets of ∆I ×∆I . This mapping is then ex-
tended to complex concepts and roles (cf. Table 2.1). The rank of a concept is the
maximal nesting depth of ∃-restrictions.

We shall use expressions of the form ALCΦ or LΦ with Φ ⊆ {O, I,Self, b} to
speak collectively about different expressive sublogics of ALCSelfIbO.

The ALCΦ-concepts are obtained by dropping from the syntax the inversions
of roles (I), safe boolean combination of roles (b) (i.e. role union, intersection and

13

14 CHAPTER 2. PRELIMINARIES

difference), nominals (O) and the self operator (Self), depending on the content of Φ.
We stress here that role union/intersection/difference, the Self operator, role inverse
·− and nominals {·} are just operators and they introduce neither new role names
nor new concept names.

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I×∆I

concept negation ¬C ∆I \ CI

concept intersection C uD CI ∩DI

existential restriction ∃r .C { d | ∃e.(d, e) ∈ rI ∧ e ∈ CI }
nominal op. {o} {oI}
inverse role op. p− {(d, e) | (e,d) ∈ pI}
role boolean op. for ⊕ ∈ {∪,∩, \} s1 ⊕ s2 sI1 ⊕ sI2
Self op. ∃s.Self {d | (d,d) ∈ sI}

Table 2.1: Concepts and roles in ALCSelfIbO.

Any triple V , (σi, σc, σr) from NI ×NC ×NR having finite components will
be called a vocabulary. We say L(V)-concepts for those L-concepts that employ only
symbols from V. For a pointed interpretation (I, d) we say that it satisfies a concept
C (written: (I,d) |= C) if d ∈ CI . A V-pointed-interpretation (I,d) is a partial
interpretation, where all individual names outside V are left undefined while other
symbols outside V are interpreted as ∅.

2.2 Preliminaries on category theory

We assume familiarity with basic concepts such as categories, functors or natural
transformations. For a definition of a category, functor and natural transformation,
see [10, Definition 1.1, 1.2 and 7.6]. Let C and D be categories. We write |C| to
denote morphisms (arrows) of C and f ∈ |C| to indicate that f is a morphism in C.

Let G : C→ C be a functor and ε : C⇒ 1C a natural transformation, with 1C

being the identity functor on C.

Definition 2.2.1. A comonad G is a triple (G, ε, (·)∗), where ε is called the counit
of G that for each object A it gives us an arrow εA : GA → A, while (·)∗, called
the Kleisli coextension of G, is an operator sending each arrow f : GA → B to
f∗ : GA→ GB.

These have to satisfy, for all f : GA→ B and g : GB → C, the equations:

ε∗A = 1GA, εB ◦ f∗ = f, (g ◦ f∗)∗ = g∗ ◦ f∗

2.2. PRELIMINARIES ON CATEGORY THEORY 15

DLk(I, d)

DLk(J , e) (J , e)

f∗
f

εI

DLk(I, d)

DLk(J , e) DLk(K, k)

f∗
(g◦f∗)∗

g∗

Definition 2.2.2. A coKleisli category Kl(G) is a category with objects from C
and arrows from A to B given by the arrows in C of the form GA → B, where
composition g • f is given by g ◦ f∗.

We shall also need the notion of relative comonads [9]:

Definition 2.2.3 (Relative comonad). Given a functor J : C→ D, and a comonad
G on D, we obtain a relative comonad on C, whose coKleisli category is defined as
follows. A morphism from A to B, for objects A, B of C, is a D-arrow GJA→ JB.
The counit at A is εJA, using the counit of G at JA. Given f : GJA → JB, the
Kleisli coextension f∗ : GJA → GJB is the Kleisli coextension of G. Since G is a
comonad, these operations satisfy the equations for a comonad in Kleisli form. We
write this as (G ◦ J)-relative-comonad.

Chapter 3

Bisimulation Games

We now shall recall the characterization of the equality of interpretations under a
certain logic via bisimulation games and bisimulation relation and argue their logical
equivalence.

Definition 3.0.1. We write (I,d) ≡LΦ(V)
k (J , e) iff d and e satisfy the same LΦ(V)-

concepts of rank at most k, where k ∈ N ∪ {ω}.

3.1 Games

Let V be a vocabulary. Following [18], we recap the notion of bisimulation games for
ALC and its extensions.

Definition 3.1.1. Call d ∈ ∆I and e ∈ ∆J to be in V-harmony1 if for all concept
names C ∈ σc we have that d ∈ CI iff e ∈ CJ .

The ALC(V)-bisimulation game is played by two players, Spoiler (he) and Du-
plicator (she), on two pointed interpretations (I,d0) and (J , e0). A configuration of
a game is a quartet of the form (I, s;J , s′), where s and s′ are words from, respec-
tively, ∆I(σr∆

I)∗ and ∆J (σr∆
J)∗. Intuitively, configurations encode not only the

current position of the play but also its full play history. The initial configuration is
simply (I, d0;J , e0). The 0-th round of the game starts in the initial configuration
and we require that d0 and e0 are in V-harmony. If not, then immediately Spoiler
wins. For any configuration (I, sd;J , s′e) (where the sequences s, s′ may be empty)
in the game, the following rules apply:

(a) In each round, Spoiler picks one of the two interpretations, say I. Then he picks
a role name r ∈ σr and takes an element d′ ∈ ∆I such that (♥): (d, d′) ∈ rI .
If there is no such role name r and an element d′, then Duplicator wins.

1For ALC we do not actually use σi and σr, but they will be useful for other logics.

17

18 CHAPTER 3. BISIMULATION GAMES

(b) Duplicator responds in the other interpretation, J , by picking the same role
name r ∈ σr as Spoiler did and an element e′ ∈ ∆I in V-harmony with d′,
witnessing (♣): (e, e′) ∈ rJ . If there is no such role name r or an element e′,
Spoiler wins.

The game continues from the position (I, sdrd′;J , s′ere′). Duplicator has a
winning strategy in the game on (I,d0;J , e0) if she can respond to every move of
Spoiler so that she either wins the game or can survive ω rounds. We define winning
strategies in k-round games analogously.

The above game is adjusted to the case of expressive sublogics LΦ of
ALCSelfIbO as follows.

• If O ∈ Φ, then we extend the definition of V-harmony with a condition “for
all o ∈ σi we have that d = oI iff e = oJ ”.

• If Self ∈ Φ, then we extend the definition of V-harmony with a condition “for
all r ∈ σr we have that (d,d) ∈ rI iff (e, e) ∈ rJ ”.

• If I ∈ Φ, then in Spoiler’s move the condition (♥) additionally allows for
(d′, d) ∈ rI . Then in the corresponding move of Duplicator, the condition (♣)

imposes (e′, e) ∈ rJ .

• If b ∈ Φ, then for the element e′ we additionally extend (♣) to fulfil the equality
{r ∈ σr | (d,d′) ∈ rI} = {r ∈ σr | (e, e′) ∈ rJ }. Moreover, in case of I ∈ Φ

then also {r ∈ σr | (d′,d) ∈ rI} = {r ∈ σr | (e′, e) ∈ rJ } must hold.

Proposition 3.1.2. V-harmony is a transitive relation under all game variations

Proof. Notice that in the definition we have used everywhere logical equivalence,
from which transitivity follows directly. Clearly combining logics together preserves
that.

The following fact for most of the considered logics is either well-known (see [18],
in particular, Prop. 2.1.3 and related chapters) or can be established by tiny modi-
fications of the existing proofs:

Fact 3.1.3. Let L be a description logic satisfying ALC ⊆ L ⊆ ALCSelfIbO. Du-
plicator has a winning strategy in L(V)-bisimulation game played on two pointed
interpretations (I, d) and (J , e) iff (I, d) and (J , e) satisfy the same L(V)-concepts.

3.2 Bisimulations

To simplify reasoning about bisimulation games, we employ the well-known notion of
bisimulation, which can be seen as the “encoding” of winning strategies of Duplica-
tor. Let LΦ be an expressive sublogic of ALCSelfIbO and k ∈ N∪{ω}. Following [14]:

3.2. BISIMULATIONS 19

Definition 3.2.1 (Bisimulation relation). LΦ(V)-k-bisimulation between (I, a) and
(J , b) is a set Z ⊆

⋃k
`=0(∆I)k × (∆J)k satisfying the following seven conditions for

all o ∈ σi,C ∈ σc, r ∈ σr, d, d′ ∈ ∆I , s ∈ (∆I)∗ and e, e′ ∈ ∆J , s′ ∈ (∆J)∗:

(a) If Z(sd, s′e) then d ∈ CI iff e ∈ CJ .

(b) If Z(sd, s′e) and (d,d′) ∈ rI then there is e′ ∈ ∆J s.t. (e, e′) ∈ rJ and
Z(sdd′, s′ee′).

(c) If Z(sd, s′e) and (e, e′) ∈ rJ then there is d′ ∈ ∆I s.t. (d,d′) ∈ rI and
Z(sdd′, s′ee′).

(d) If O ∈ Φ, then Z(sd, s′e) implies d = oI iff e = oJ .

(e) If Self ∈ Φ, then Z(sd, s′e) implies (d, d) ∈ rI iff (e, e) ∈ rJ .

(f) If I ∈ Φ, then Z(sd, s′e) and (d′, d) ∈ rI implies that there is e′ ∈ ∆J such
that (e′, e) ∈ rJ and Z(sdd′, s′ee′).

(g) If b ∈ Φ„ then if Z(sd, s′e) and (d, d′) ∈ rI implies that there is e′ ∈ ∆J

satisfying Z(sdd′, s′ee′) and {r ∈ σr | (d, d′) ∈ rI} = {r ∈ σr | (e, e′) ∈ rJ } .
If I ∈ Φ, then also {r ∈ σr | (d′, d) ∈ rI} = {r ∈ σr | (e′, e) ∈ rJ }.

Note that if Z is an ω-bisimulation, then Z becomes a k-bisimulation when re-
stricted to pairs of sequences of length at most k. 2.1.3 from [18]) that: The following
fact for most of the considered logics is either well-known (see [18], in particular,
Prop. 2.1.3 and related chapters) or can be established by tiny modifications of
existing proofs.

Fact 3.2.2. For any k ∈ N ∪ {ω} and a logic LΦ between ALC and ALCSelfIbO,
t.f.a.e.:

• Duplicator has the winning strategy in the k-round LΦ(V)-bisimulation-game
on (I,d;J , e),

• There is an LΦ(V)-k-bisimulation Z between (I, d) and (J , e) such that
Z(d, e),

• (I,d) ≡LΦ(V)
k (J , e).

Chapter 4

Reductions between games and
logics

Herein we establish reductions, based on appropriate model transformations, that
will allow us to transfer the winning strategies of Duplicator from richer logics to
weaker ones, ending up on ALC. All of them, except the case of nominals, will be
trivial. Such transformation will be essential in Chapter 6, where we shall employ
them in the construction of relative comonads.

We will denote the game reductions for logic extensions Φ ⊆ {Self, I, b,O} by
fΦ, which has two components fIΦ and f∗Φ, that define actions on, respectively, the
interpretation and the distinguished element.

4.1 A family of logic reductions

Definition 4.1.1. Let I be an interpretation over vocabulary (σi, σc, σr). A
(σ′i, σ

′
c, σ
′
r)-reduct of an interpretation I is an interpretation I ′ obtained by inter-

preting all the symbols outside of σ′i ∪ σ′c ∪ σ′r as empty sets.

4.1.1 Self operator

We first handle the Self operator. Let σSelfc , σc ∪ {CSelf.r | r ∈ σr}. By the self-
enrichment of a V , (σi, σc, σr)-interpretation I we mean the VSelf , (σi, σ

Self
c , σr)-

interpretation ISelf , where the (σi, σc, σr)-reduct of ISelf is equal to I and the inter-
pretations of CSelf.r concepts are defined as (CSelf.r)ISelf = (∃r .Self)I .

21

22 CHAPTER 4. REDUCTIONS BETWEEN GAMES AND LOGICS

r

s

r

s
CSelf.r

CSelf.s

(I, d) (ISelf ,d)

Let fSelf be the described transformation, mapping (I,d) to (ISelf ,d).

Proposition 4.1.2. Let k ∈ N ∪ {ω} and let L be a DL satisfying ALC ⊆ L ⊆
ALCIbO. Then Duplicator has a winning strategy in a k-round LSelf(V)-bisimulation
game on (I,d;J , e) iff she has a winning strategy in a k-round L(V)-bisimulation
game on (fSelf(I),d; fSelf(J), e).

Proof. By applying Fact 3.2.2 to both sides, it is sufficient to prove the following:

There is a LSelf(V)-k-bisimulation Z between (I, d) and (J , e) such that Z(d, e)

iff there is a L(VSelf)-k-bisimulation ZSelf between (fSelf(I), d) and (fSelf(J), e) such
that ZSelf(d, e)

(=⇒) Let us assume Z is the bisimulation from implication predecessor and take
ZSelf , Z. We now need to prove that ZSelf is a valid bisimulation. Notice that the
only way in which fSelf-reduced interpretations differ are the atomic concepts, so it is
sufficient to prove that case (a) from Definition 3.2.1 holds for new CSelf.r concepts.
Take any a ∈ I, b ∈ J .

ZSelf(a, b) =⇒ Z(a, b) ZSelf = Z
=⇒ (a, a) ∈ rI ⇐⇒ (b, b) ∈ rJ def. Z, (e)

=⇒ a ∈ (∃r .Self)I ⇐⇒ b ∈ (∃r .Self)J def. ∃r .Self
=⇒ a ∈ (CSelf.r)ISelf ⇐⇒ b ∈ (CSelf.r)JSelf def. CSelf.r

(⇐=) Proof for the other side is analogous. Let us again assume ZSelf is the bisimu-
lation from implication predecessor and take Z , ZSelf . We now need to prove that
Z is a valid bisimulation. This time, the only case that needs special attention is (e)

from Definition 3.2.1. Take any a ∈ I, b ∈ J .

4.1. A FAMILY OF LOGIC REDUCTIONS 23

Z(a, b) =⇒ ZSelf(a, b) Z = ZSelf

=⇒ a ∈ (CSelf.r)ISelf ⇐⇒ b ∈ (CSelf.r)JSelf def. Z, (a)

=⇒ a ∈ (∃r .Self)I ⇐⇒ b ∈ (∃r .Self)J def. CSelf.r

=⇒ (a, a) ∈ rI ⇐⇒ (b, b) ∈ rJ def. ∃r .Self

4.1.2 Role inverses

Our next goal is to incorporate inverses of roles. Let σIr , σr ∪ {rinv | r ∈ σr}
By the inverse-enrichment of a V , (σi, σc, σr)-interpretation I we mean the VI ,
(σi, σc, σ

I
r)-interpretation II , where the (σi, σc, ∅)-reducts of I and II are equal, and

the interpretations of role names rinv are defined as (rinv)II = (r−)I .

(I,d)

r1

r2

r3

r4

r5

r6

(II , d)

r1

r2, r
−
2

r6

r3, r
−
3

r4, r
−
5

r5,
r
−
4

r −
6

r
−
1

Let fI be the described transformation, mapping (I, d) to (II ,d). The propo-
sition follows in a similar pattern to Proposition 4.1.2:

Proposition 4.1.3. Let k ∈ N ∪ {ω} and let L be a DL satisfying ALC ⊆ L ⊆
ALCOb. Then Duplicator has a winning strategy in a k-round LI(V)-bisimulation
game on (I, d;J , e) iff she has a winning strategy in a k-round L(VI)-bisimulation
game on (fI(I),d; fI(J), e).

Proof. By applying Fact 3.2.2 to both sides, it is sufficient to prove the following:

There is a LI(V)-k-bisimulation Z between (I, d) and (J , e) such that Z(d, e)

iff there is a L(VI)-k-bisimulation ZI between (fI(I),d) and (fI(J), e) such that
ZI(d, e)

(=⇒) Let us assume Z is the bisimulation from implication predecessor and take
ZI , Z. Notice that the only way in which fI-reduced interpretations differ are the

24 CHAPTER 4. REDUCTIONS BETWEEN GAMES AND LOGICS

added fresh inverse roles, so it is sufficient to prove that cases (b) and (c) from Def-
inition 3.2.1 hold for σIr roles. The case for roles in σr is trivial, as there were no
changes to them made and we have that ZI = Z. Take a, a′ ∈ I, b ∈ J , r− ∈ σIr \σr
and assume that ZI(a, b) and (a′, a) ∈ r−I . Let us consider the case (b), case (c)

will follow analogously. We need to show that there exists b′ ∈ J s.t. (b′, b) ∈ r−J

and ZI(aa′, bb′). By construction, r− has a corresponding role r s.t. (a, a′) ∈ rI .
From Z(a, b) assumption, we can extract b′ s.t. (b, b′) ∈ rJ . By definition of the
construction, this implies that (b′, b) ∈ r−J which closes the proof.

(⇐=) Proceeds similarly as the proof above.

4.1.3 Safe boolean roles combinations

We focus next on safe boolean combinations of roles. Given a finite σr ⊆ NR,
let σb

r be composed of role names having the form rS , where S is any non-empty
subset of σr. By the b-enrichment of a V , (σi, σc, σr)-interpretation I we mean
the Vb , (σi, σc, σ

b
r)-interpretation Ib, where the (σi, σc, ∅)-reducts of I and Ib are

equal and the interpretation of role names rS ∈ σb
r is defined as {(d, e) | S = {r ∈

σr | (d, e) ∈ rI}}.

(I, d)

r1

r2

r4

r5

r7

r8

r9

(Ib,d)

{r1,
r8,

r9}

{r2}

{r5
, r6
}{r7}

r6

r3 {r3}

{r 4
}

Let fb be the described transformation, mapping (I, d) to (Ib,d). Once more,
the following proposition is straightforward:

Proposition 4.1.4. Let k ∈ N ∪ {ω} and let L be a DL satisfying ALC ⊆ L ⊆
ALCO. Then Duplicator has a winning strategy in a k-round Lb(V)-bisimulation-
game on (I,d;J , e) iff she has a winning strategy in a k-round L(Vb)-bisimulation-
game on (fb(I),d; fb(J), e).

Proof. The key observation here is that safe boolean roles combinations are giving us
the power to define any 2-type as a step in the bisimulation. Henceforth, we convert
the interpretation such that the arrows represent exactly 2-types and therefore a

4.1. A FAMILY OF LOGIC REDUCTIONS 25

move in the game can cover any move that could have been expressed by roles com-
binations. A detailed proof is very similar to Proposition 4.1.2 and Proposition 4.1.3
and thus shall be left as an exercise for the reader.

4.1.4 Nominals

Finally, we proceed with the case of nominals. In this case, we need to be extra
careful, as the comonads introduced in the next section will act as unravelling on
interpretations, and we do not want to create multiple copies of a nominal. Recall
that the Gaifman graph GI = (VI , EI) of an interpretation I is a simple undirected
graph whose nodes are domain elements from ∆I and an edge exists between two
nodes when there is a role that connects them in I.

Let σOc , σc ∪ {Co,r | o ∈ σi, r ∈ σr} and σOr , σr ∪ {ro | o ∈ σi}.
By the nominal-enrichment of a V , (σi, σc, σr)-interpretation I we mean the
VO , (σi, σ

O
c , σ

O
r)-interpretation IO defined in the following steps. We encourage

the reader to consult the example depicted below while going through the steps:

• (A) First, we get rid of unreachable elements from I. More precisely, let J
to be the substructure of I restricted to the set of all elements reachable in
(finitely-many steps) from d in GI . Without the loss of generality, we can
assume that all oI for o ∈ σi are reachable.

• (B) For each pair (d, o) ∈ ∆I × σi such that there is a r -connection from d

to oI , we insert a “trampoline” element labelled by the unique concept name
Co,r and we r -connect it with d.

Trampoline elements are used to bookkeep information about connections be-
tween elements and named elements. Let J be the resulting interpretation.

• (C) We next divide J into components. Let Jo for o ∈ σi ∪{d} (with d being
the root element) be induced subinterpretations of J obtained by removing all
elements {oI | o ∈ σi} from J except the element mentioned in the subscript
(that serve the role of distinguished elements of the components). In each
component Jo, we take only elements reachable from o. Take J ′ to be the
disjoint sum of the components.

• (D) In the last step, we will link components. For all o ∈ σi, take disto to
be the length of the shortest path from d to oI in GI . We will connect d to
oJ
′ by a dummy path of length precisely disto. Thus, we introduce dummy

elements do
1, . . . ,d

o
disto−1 to ∆J

′ and employ the fresh role name ro, whose in-
terpretation will contain precisely the pairs (d, do

1), (do
1,d

o
2), . . . , (do

disto−1, o
J ′).

The resulting interpretation is the desired IO.

26 CHAPTER 4. REDUCTIONS BETWEEN GAMES AND LOGICS

d

r1

Cor,r1

os

s2

Cor,r2

r2

Cos,s2

s2

or

α
Cos,s1

s1

dos
1

ros ros

ror

(B)

(C),(D)

Cor,r1

d os

or

α

r1
s1

r2

s2

Cor,r2

r2

Cos,s2Cos,s1

s1

s2r1

s2

r2

s1

r1

α

or

os
d

Let fO be the described transformation, mapping (I, d) to (IO, d).

Lemma 4.1.5. Let k ∈ N ∪ {ω}. Duplicator has a winning strategy in a k-round
ALCO(V)-bisimulation game on (I,d) and (J , e) iff she has a winning strategy in
a k-round ALC(VO)-bisimulation game on (fO(I), d) and (fO(J), e).

Proof (=⇒). We proceed with the proof by induction on k, the depth parameter.
Interpretation of concept names for distinguished elements is left unchanged by fO,
hence Duplicator has a winning strategy in the 0-round bisimulation game. Suppose
now that the implication holds for games with at most k rounds and let us show it
holds for games with k+1 rounds. Suppose that Duplicator has a winning strategy
in any k+1-round ALCO(V)-bisimulation game. Let (fO(I), sd; fO(J), s′e) be a con-
figuration of the ALC(VO)-bisimulation game following the promised (by inductive
hypothesis) k-round winning strategy of Duplicator. We will show how to proceed
with the next step of the game. W.l.o.g. assume that Spoiler selected fO(I) and
decided to choose an element d′; we need to reply with an element e′ in the second
structure. There are the following cases:

1. Spoiler chooses a dummy element. We reply with the corresponding element,
which can be done without any problems since dummy paths of length at most

4.1. A FAMILY OF LOGIC REDUCTIONS 27

k+1 leading to named elements have equal lengths in both interpretations.
Dummy paths longer than k+1 are clearly equal up to k+1 elements.

2. d′ selected by Spoiler is a trampoline. Notice that we have defined the tram-
polines in such a way that they reflect all possible connections to constants.
Hence, by having k+1 rounds winning strategy in ALCO(V)-bisimulation
game, it implies that the elements reachable within k steps must have had
the same connections to constants, which means that Duplicator can respond
with a trampoline of equal concept names.

3. Spoiler chooses a constant oI . The only way which we could access a constant
was via a dummy path of length at most k, which means that d, e were on
the paths labelled by the ro, thus they lead to the same constants, oI and oJ ,
respectively.

4. Spoiler chooses an “ordinary“ element d′, that is, an element which does not
match any of the above conditions. Then it means that d′ was a copy of an
element in the original interpretation, thus, we can follow the same move that
was made in the original interpretation by ALCO(V)-winning strategy.

(⇐=). We again proceed by induction on k. The base case proceeds analogously to
the previous implication. Suppose now that the implication holds for games with at
most k rounds and let us show it holds for games with k+1 rounds. Suppose that
Duplicator has a winning strategy in any k+1-round ALC(VO)-bisimulation game.
Let (Isd;J s′e) be a configuration of the ALCO(V)-bisimulation game following the
promised (by inductive hypothesis) k-round winning strategy of Duplicator. We will
show how to proceed with the next step of the game. W.l.o.g. assume that Spoiler
selected I and decided to choose an element d′; we need to reply with an element e′

in the second structure. There are the following cases:

1. Spoiler chooses a constant oI via role r . From ALC(VO)-winning strategy, this
means that in the fO(I) there must have been a trampoline which encodes
the possible connections to a constant, thus there was also a trampoline in
fO(J) with the same concept names, which implies that there are the same
connections to constants from d and e, hence, Duplicator can choose a constant
oJ using also r .

2. Spoiler jumps out of the constant, i.e. he was in oI and now using role r

selects d′ that is not a constant. Should oI be accessible within k steps, it
means that we can access it in fO(I) using a dummy path of length ≤ k. The
outgoing connections from constants were restored in fO(I), henceforth, from
the constant ofO(I) we also have a r connection to a copy of the element d′.
This implies that according to ALC(VO)-winning strategy, we have a r move

28 CHAPTER 4. REDUCTIONS BETWEEN GAMES AND LOGICS

to an element e′ in fO(I). Since e′ cannot be a constant, it is a direct copy of
an element from J , which gives us a valid response for Duplicator.

3. Spoiler chooses an “ordinary“ element d′, that is, an element which does not
match any of the above conditions. Notice that this means neither d nor d′ can
be a constant. That means that we have a copy of both of the elements d and
d′ along with all the connections between them, which means that Duplicator
can respond following the k+1 step of the ALC(VO)-winning strategy.

4.2 Combining reductions

We wrap up the above reductions, with a goal that the winning strategy of Duplicator
in a LΦ-bisimulation game is equivalent to the winning strategy in a certain ALC-
bisimulation game. Note that the order of applications of reduction matters, e.g.
we should apply first the fI reduction, and only then fb; otherwise we will not get
all possible combinations of roles with inverses. Hence, we first proceed with fSelf

reduction, then with fI , with fb and finally with fO. Let fΦ be a composition of
reductions for extensions Φ ∈ {Self, I, b,O} in the above order.

Theorem 4.2.1. Let k ∈ N∪ {ω} and LΦ satisfy ALC ⊆ LΦ ⊆ ALCSelfIbO. Then
Duplicator has a winning strategy in a k-round LΦ(V)-bisimulation game on (I, d)

and (J , e) iff she has a winning strategy in a k-round L(VΦ)-bisimulation game on
(fΦ(I), d) and (fΦ(J), e).

Proof. The key idea here is grounded on the composition of the reduction functions.
Given Φ, we simply apply consecutively Propositions 4.1.2–4.1.4 and Lemma 4.1.5.

Chapter 5

Game Comonads

Having defined a family of game reductions, we are going to start employing basic
category theory primitives to define denotational semantics for bisimulation games.
In this chapter, we focus on vanilla ALC. Since ALC is a notational variant of the
multi-modal logic, it suffices to translate the work done in [8] to the description logic
setting. Subsequently, we prove that such a definition of a generalised game coincides
with our definition of ALC(V)-bisimulation game defined in Chapter 3. This chapter
may be a bit heavy for readers not familiar enough with category theory.

The setting. In what follows, we shall work in the category of pointed
interpretations R∗(V) over a vocabulary V, where objects (I, d) are V-pointed-
interpretations, and morphisms h : (I, d) → (J , e) are homomorphisms between
interpretations that preserve the distinguished element, i.e. h d = e. With DLΦ

k , we
will denote the corresponding game comonad, where k is the depth parameter and
Φ ⊆ {Self, I, b,O} parametrizes the set of language extensions. We will be a bit
careless and write DLIOk in place of DL{I,O}k , or likewise, DLk to denote DL{}k .

5.1 A comonad for ALC

We start with introducing the comonad for ALC, which will be the base for the
further ones.

Definition 5.1.1 (ALC-comonad). For every k ≥ 0, we define a comonad DLk on
R∗(∅, σc, σr),1 where DLk unravels2 (I, d) from d, up to depth k. More precisely:

• The domain of DLk(I, d) is composed of sequences [a0, r0, a1, r2, . . .] ∈
∆I(σr∆

I)∗, where we additionally require that (ai, ai+1) ∈ rIi and a0 = d.
The singleton sequence [d] serves as the distinguished element of DLk(I, d).

1Notice ∅ in place of σi. This is because ALC-concepts cannot speak about individual names.
2For the notion of unravelling consult e.g. [11, Definition 3.21].

29

30 CHAPTER 5. GAME COMONADS

• The functorial action on morphisms for DLk satisfies:

DLk(h : (I, d)→ (J , e)) : DLk(I, d)→ DLk(J , e)
(DLk h)[a0, α1, a1, ..., αj , aj] = [h a0, α1, h a1, ..., αj , h aj]

• The map εI : DLk(I, d)→ (I, d) sends a sequence to its last element.

• Concept names C ∈ σc are interpreted such that s ∈ CDLk(I,d) iff εIs ∈ CI .

• For role names r ∈ σr, we put (s, t) ∈ rDLk(I,d) iff there is d′ ∈ ∆I so that
t = s[r , d′].

• For a morphism h : DLk(I, d) → (J , e), we define Kleisli coextension
h∗ : DLk(I, d) → DLk(J , e) recursively by h∗[d] = [e] and h∗(s[α, d′]) =

h∗(s)[α, h(s[α, d′])]).

Having defined the structure, we now need to prove that it indeed forms a
comonad in the category-theoretic sense. We shall prove that DLk is a functor, ε
and (·)∗ behave well and that the triple (DLk, ε, (·)∗) fulfils the comonad laws. We
start with a small lemma that shall be used later in the proofs:

Lemma 5.1.2. The following diagram in R∗(∅, σc, σr) category commutes

DLk(I, d) DLk(J , e)

A B

DLkh

εI εJ

h

Proof. Let s = [a0, α1, a1, ..., αj , aj] ∈ DLk(I, d). Then

h(εI s) = h aj def. εI
= εJ [h aj] def. εJ
= εJ [h a0, α1, h a1, ..., αj , h aj] def. εJ
= εJ (DLk h s) def. DLk h

Proposition 5.1.3. DLk is a functor

Proof. We need to prove two properties

(1) DLk maps objects to objects and morphisms to morphisms.

Objects. For an interpretation I, its unravelling DLk(I, d) is also an interpretation
over (σi, σc, σr) which follows from the standard results (see e.g. [11, Definition 3.21]).

5.1. A COMONAD FOR ALC 31

Morphisms. Suppose h : I → J ∈ |R∗(∅, σc, σr)| and s, t ∈ DLk(I, d).

(s, t) ∈ r
DLk(I,d)
α ⇐⇒ (εI s, εIt) ∈ rIα def. rDLk(I,d)

α

=⇒ (h(εI s), h (εIt)) ∈ rJα h is homomorphism
⇐⇒ (εI(DLk h s), εI(DLk h t)) ∈ rJα Lemma 5.1.2

⇐⇒ (DLk h s,DLk h t) ∈ r
DLk(J ,e)
α def. rDLk(J ,e)

α

Concept names follow similarly.

(2) DLk(g ◦ f) = (DLk g) ◦ (DLk f) and DLk idI = idDLkI equations are satisfied.

DLk(g ◦ f)s = [(g ◦ f) a0, α1, (g ◦ f) a1, ..., αj , (g ◦ f) aj] def. DLk(g ◦ f)

= [g(fa0), α1, g(f a1), ..., αj , g(f aj)] def. ◦
= DLk g [fa0, α1, f a1, ..., αj , f aj] def. DLk g
= DLk g (DLkfs) def. DLk f
= (DLk g) ◦ (DLk f)s

DLk idI s = [idI a0, α1, idI a1, ..., αj , idI aj] def. DLk idI
= [a0, α1, a1, ..., αj , aj] = s def. idI
= idDLkI s def. idDLkI

Proposition 5.1.4. εI is a morphism in R∗(∅, σc, σr)

Proof. We need to show that εI is a homomorphism and that it preserves the distin-
guished elements. Suppose (s, t) ∈ r

DLk(I,d)
α . Then (εIs, εIt) ∈ rIα by the definition

of interpretation. A distinguished element is represented by a singleton [d] and since
counit takes the last elements it clearly preserves them. The case for concept names
is similar.

Proposition 5.1.5. ε : DLk −→ 1R∗(∅,σc,σr) is a natural transformation.

Proof. For arbitrary (I, d), (J , e) ∈ R∗(∅, σc, σr), we need to show that

DLk(I, d) (I, d)

DLk(J , e) (J , e)

DLkh

εI

h

εJ

32 CHAPTER 5. GAME COMONADS

From Proposition 5.1.4 we already know that εI and εJ are morphisms. What is
left to show is that the diagram commutes:

(h ◦ εI)[a0, α1, a1, ..., αj , aj] = h aj def. εI
= εJ [h a0, α1, h a1, ..., αj , h aj] def. εJ
= (εJ ◦ DLk h) [a0, α1, a1, ..., αj , aj] def. DLk h

Proposition 5.1.6. The triple (DLk, ε, (·)∗) is a comonad in Kleisli form on
R∗(∅, σc, σr)

Proof. From Proposition 5.1.5 we have that ε is a natural transformation and
from Proposition 5.1.3 that DLk is a functor. We need to show now that the
comonadic laws are satisfied and that Kleisli extension behaves as expected. Pre-
cisely, we need to prove the following properties:

• (A) ε∗I = idDLk(I,d)

• (B) ε ◦ f∗ = f

• (C) (g ◦ f∗)∗ = g∗ ◦ f∗

• (D) if h is a morphism in R∗(∅, σc, σr) then h∗ is a morphism in R∗(∅, σc, σr)

Let s′′ = [a0, α1, a1, ..., αj−2, aj−2], s′ = s′′[αj−1, aj−1], s = s′[αj , aj]. We will prove
the comonad laws extensionally.

(A) We start by showing that Kleisli extension of counit yields an identity.

ε∗Is = (ε∗Is
′)[αj , εIs] def. (−)∗

= (ε∗Is
′′)[αj−1, εIs

′, αj , εIs] def. (−)∗

= [εI [a0], α1, εI [a0, α1, a1], ..., αj−1, εIs
′, αj , εIs] apply inductively

= [a0, α1, a1, ..., αj−1, aj−1, αj , aj] = s def. εI
= idDLk(I,d)s

(B) Let (I, d), (J , e) ∈ R∗(∅, σc, σr) and f : DLk(I, d)→ (J , e). Then the following
diagram commutes:

DLk(I, d)

DLk(J , e) (J , e)

f∗
f

εJ

(εJ ◦ f∗)s = εJ (f∗s)

= εJ (f∗(s′)[αj , f s)]) def. (−)∗

= f s def. εJ

5.2. TREE-LIKE STRUCTURES, PATHS AND EMBEDDINGS. 33

(C) Let (I, d), (J , e), (K, k) ∈ R∗(∅, σc, σr) and f : DLk(I, d) → (J , e), g :

DLk(J , e)→ (K, k). Then the following diagram commutes:

DLk(I, d)

DLk(J , e) DLk(K, k)

f∗
(g◦f∗)∗

g∗

(g ◦ f∗)∗s = (g ◦ f∗)∗(s′)[αj , (g ◦ f∗) s)] def. (−)∗

= (g ◦ f∗)∗(s′′)[αj−1, (g ◦ f∗) s′, αj , (g ◦ f∗) s] def. (−)∗

= [(g ◦ f∗)[a0], α1, (g ◦ f∗)[a0, α1, a1], ..., αj−1, (g ◦ f∗) s′, αj , (g ◦ f∗) s] ind.
= [g(f∗[a0]), α1, g(f∗[a0, α1, a1]), ..., αj−1, g(f∗ s′), αj , g(f∗ s)]

= (1)

since f∗[a0] v f∗[a0, α1, a1] v ... v f∗s′ v f∗s, we get that

(1) = g∗(f∗ s)

= (g∗ ◦ f∗) s

(D) Suppose that h is a morphism in R∗(∅, σc, σr).

(s, t) ∈ r
DLk(I,d)
α =⇒ (h s, h t) ∈ rIα h is homo.

=⇒ (εI(h
∗ s), εI(h

∗ t)) ∈ rJα by (B)

=⇒ (h∗ s, h∗ t) ∈ r
DLk(J ,e)
α def. rDLk(J ,e)

α

Having the ALC-comonad defined, as the next step we introduce sufficient cat-
egorical background required to define bisimulation games in an abstract-enough
way.

5.2 Tree-like structures, paths and embeddings.

A covering relation ≺ for a partial order ≤ is a relation satisfying x ≺ y , x ≤
y ∧ x 6= y ∧ (∀z.x ≤ z ≤ y =⇒ z = x ∨ z = y). This is employed to define tree-like
structures below, which will intuitively serve as the description of bisimulation game
strategies.

Definition 5.2.1. An ordered interpretation (I, d,≤) is a pointed interpretation
(I,d) equipped with a partial order on ∆I such that ↑(d) , {d′ ∈ ∆I | d ≤ d′} is a
tree order that satisfies the following condition (D) for x, y ∈ ↑ (d), we have x ≺ y

34 CHAPTER 5. GAME COMONADS

iff (x, y) ∈ rI for some r ∈ σr. Morphisms between ordered interpretations preserve
the covering relation. We put RD∗k(V) to be the category of ordered interpretation
as objects with k bounding the height of the underlying tree.

We next define different kinds of embeddings, essential to characterize plays.

Definition 5.2.2. A morphism in RD∗k(V) is an embedding if it is an injective strong
homomorphism. We write e : I � J to mean that e is an embedding. Now, we
define a subcategory Paths of R∗(V) whose objects have linear tree orders, so they
comprise a single branch. We say that e : P � I is a path embedding if P is a
path. A morphism f : I → J ∈ |RD∗k(V)| is a pathwise embedding if for any path
embedding e : P � I, f ◦ e is a path embedding.

Let v be the lexicographical order on sequences from ∆I . From the construction
of RD∗k(V), we can extract a free functor, for which construction is justified by the
following lemma:

Lemma 5.2.3. There exists a canonical functor Fk I = (DLk(I, d),v).

Proof. The proof is heavy and relies on several categorical notions that are not
crucial for the paper hence we do not introduce them here; consult [10, Chapters 9
& 10.3] instead. The goal is to describe the desired functor in a way such that it yields
the canonical, terminal resolution of a comonad DLk. First, from [8, Theorem 9.5] we
know that for any k > 0, the Eilenberg-Moore category EM(DLk) is isomorphic to
RD∗k(V). Having that, we can observe that there is a forgetful functor Uk : RD∗k(V)→
R∗(V) mapping (I, d,≤) to (I, d) which forgets the partial order. Thus, we can
employ the result that follows from [8, Theorem 9.6] to infer that the functor Uk
has a right adjoint Fk. The relationship between introduced categories is depicted
on the diagram below, where the arrow from Paths to R∗(V) is the evident inclusion
functor.

EM(DLk) ∼= RD∗k(V) R∗(V) Paths

Uk

Fk

The comonad arising from F a U adjunction is precisely DLk.

5.3 A categorical view on games

Given a sufficient background, we can move on to the main result, namely, the
characterisation of ≡ALCk in the language of category theory. We start with defining
what it means for a morphism in f : I → J ∈ |RD∗k(V)| to be open. This holds if,

5.3. A CATEGORICAL VIEW ON GAMES 35

whenever we have a commutative square as on the LHS then there is an embedding
Q� I such that the diagram on the RHS commutes.

P Q

I J
f

P Q

I J
f

Finally, we can define back-and-forth equivalence (I, d)↔DL
k (J , e) between ob-

jects inR∗(V), intuitively corresponding to conditions (b) and (c) from the definition
of a bisimulation. This holds if there is an object R in RD∗k(V) and a span of open
pathwise embeddings such that:

R

Fk(I, d) Fk(J , e)

We shall now define a back-and-forth game GΦ
k (I, d;J , e) played between the

interpretations (I, d) and (J , e). Positions of the game are pairs (s, t) ∈ DLΦ
k (I, d)×

DLΦ
k (J , e). We define a relation W (I, d;J , e) ⊆ DLΦ

k (I, d) × DLΦ
k (J , e) as follows.

A pair (s, t) is in W (I, d;J , e) iff for some path P , path embeddings e1 : P � I
and e2 : P � J , and p ∈ P , s = e1 p and t = e2 p. The intention is that
W (I, d;J , e) picks out the winning positions for Duplicator. At the start of each
round of the game, the position is specified by (s, t) ∈ DLΦ

k (I, d)× DLΦ
k (J , e). The

initial position is ([d], [e]). The round proceeds as follows. Spoiler either chooses
s′ � s, and Duplicator must respond with t′ � t, producing the new position (s′, t′);
or Spoiler chooses t′′ � t, and Duplicator must respond with s′′ � s, producing
the new position (s′′, t′′). Duplicator wins the round if she can respond, and the
new position is in W (I, d;J , e). We follow the same notation convention as for DLΦ

k

with respect to extensions Φ of the game GΦ
k . The following theorem follows from [8,

Theorem 10.1].

Theorem 5.3.1. Duplicator has a winning strategy in Gk(I, d;J , e) game if and
only if (I, d)↔DL

k (J , e).

The above theorem with the aforementioned definitions were just slight varia-
tions of theorems and notions presented in [8]. We have accommodated them to the
description logic setting and now we will glue them together with our definition of
the bisimulation game from Chapter 3.

Theorem 5.3.2. Given interpretations (I, d) and (J , e), the Gk(I, d;J , e) game for
the DLk comonad is equivalent to the k-round ALC(V)-bisimulation game between
(I, d) and (J , e).

Proof. First, note that configurations and the moves are structurally the same in

36 CHAPTER 5. GAME COMONADS

both games. Hence, by induction over k it suffices to show that the winning condi-
tions coincide.

Base. Let k = 0 and suppose ([d], [e]) ∈W (I, d;J , e). That holds iff there are path
embeddings e1 : P � I, e2 : P � J and p ∈ P such that e1 p = [d] and e2 p = [e].
By strong homomorphism property, d is in V-harmony with p, which in turn is in
V-harmony with d, which by transitivity of V-harmony concludes this case.

Step. Assume that the proposition holds for all i ≤ k. We need to show that the
winning conditions coincide for games of length k + 1. Suppose s = s′[αs, d

′], t =

t′[αt, e
′] and (s, t) ∈ W (I, d;J , e). That holds iff there are path embeddings e1 :

P � I, e2 : P � J and p ∈ P such that e1 p = s and e2 p = t. By definition of
W (I, d;J , e) relation, we get that (s′, t′) ∈W (I, d;J , e) and hence, by the induction
hypothesis, s, t are a valid winning configuration in ALC game. It remains to show
that [αs, d

′] and [αt, e
′] are valid moves leading to winning positions. From e1 p = s

and e2 p = t we immediately get that αs = αt and since e1, e2 are embeddings we
have that d′ is in V-harmony with p which in turn is in V-harmony with e′, hence
by transitivity of V-harmony, we are done.

By applying Theorem 5.3.1, Theorem 5.3.2 and Fact 3.2.2, we derive our first
result on comonadic semantics for description logic games, namely:

Theorem 5.3.3. (I, d) ≡ALCk (J , e) ⇐⇒ (I, d)↔DL
k (J , e).

Chapter 6

Comonads for extensions of ALC

We have defined description logic comonad in the previous chapter and in Chapter 4
we have constructed a family of game reductions that eliminate the logic extensions.
By leveraging cautious categorical operations, we now combine these two and arrive
at having game comonads for all considered extensions of ALC.

6.1 A generalized framework for extensions

The approach that we undertook relies on an observation that we had based on
how I-morphisms were incorporated in [8]. In our case, relative comonads serve as
a tool to start within the base category where our objects live and then enrich the
interpretations encoding the additional capabilities available in bisimulation games
for richer logics. We do this via the already-presented reductions from Chapter 4,
followed by the notion of unravelling using DLk defined in Chapter 5, all established
in a generalised framework using relative comonads.

Definition 6.1.1. A vocabulary-map δ is a triple (δi, δc, δr) : NI × NC × NR →
NI ×NC ×NR that maps the vocabulary (σi, σc, σr) 7−→ (δi(σi), δc(σc), δr(σr)).

Definition 6.1.2 (Reduction functor). Let δ be a vocabulary map and f a game
reduction. A (f, δ)-reduction-functor is a functor J : R∗(V) → R∗(δ V) acting
(I, d) 7−→ (fI I, f∗ d).

While Definition 6.1.2 is stated in a general setting, we only consider the re-
ductions from Chapter 4. Clearly, the functors map objects to objects. When it
comes to morphisms, however, we need to handle a certain delicacy. To make rea-
soning simpler, let us focus for a moment on ALCSelf . Notice that interpretations
that are ALC-homomorphic are not necessarily ALCSelf-homomorphic, as that would
mean that self operator is expressible in bare ALC, which we know is not the case.
Consecutively, that means that homomorphic interpretations are not necessarily ho-
momorphic after applying fSelf reduction.

37

38 CHAPTER 6. COMONADS FOR EXTENSIONS OF ALC

To tackle this issue, we shall submerse ourselves into a particular wide subcat-
egory, a subcategory containing all the objects of the category of interest.

Definition 6.1.3. Given Φ ⊆ {Self, I, b,O}, a Φ-subcategory of R∗(V) is a sub-
category of R∗(V) with all objects from R∗(V) and morphisms limited to ALCΦ-
homomorphisms.

Proof. We need to show that the Φ-subcategory of R∗(V) indeed forms a category.
First, it is easy to see that we still have identity morphisms on objects. Second,
ALCΦ-homomorphisms are closed under composition which concludes the proof.

From now on, when considering a set of extensions Φ, we shall work in a Φ-
subcategory. In this setting, the action on morphisms for reduction functors is an
identity, as the very same homomorphism will work as per Theorem 4.2.1. To restrain
the reader from drowning in overly verbose notation, the underlying Φ-subcategory
will be taken implicitly from the context. To sum up, we obtain a family of (fθ, δθ)-
reduction-functors, where θ ∈ {Self, I, b,O} are considered logic extensions.

Definition 6.1.4. Let δ, δ′ be a vocabulary-maps. We say that a functor F :

R∗(V)→ R∗(δ V) is invariant over vocabulary-maps iff for any δ′ it can be lifted to
Fδ′ : R∗(δ′ V) → R∗(δ (δ′ V)). We shall omit the subscript should the coercion be
unambiguous.

Lemma 6.1.5. Invariance over vocabulary maps behaves well under composition,
i.e., the composition of functors invariant over vocabulary maps yields a functor
invariant over vocabulary maps.

Proof. Let F : R∗(V) −→ R∗(δ V), G : R∗(δ V) −→ R∗(δ′ V) be functors invariant
over vocabulary maps. We want to show that (G◦F) : R∗(V) −→ R∗(δ′V) is invariant
over vocabulary maps. Let us take any vocabulary map δ′′. By assumption, we can
lift F, G to Fδ′′ : R∗(δ′′V) −→ R∗((δ◦δ′′)V), Gδ′′ : R∗((δ◦δ′′)V) −→ R∗((δ′ ◦δ′′)V).
Then such composition is of the form (Gδ′′ ◦Fδ′′) : R∗(δ′′ V) −→ R∗((δ′ ◦ δ′′)V) and
thus (G ◦ F) is invariant over vocabulary maps.

R∗(V)

R∗(δ V) R∗(δ′ V)

F
G◦F

G

R∗(δ′′ V)

R∗((δ ◦ δ′′) V) R∗((δ′ ◦ δ′′) V)

Fδ′′
(G◦F)δ′′

Gδ′′

What we want to capture by this is that such a functor acting onR∗(V) category
is natural in V, i.e. does not depend on the contents of the concepts or roles. It is
easy to see the following facts:

6.2. COMONADIC SEMANTICS FOR EXTENSIONS 39

Observation 6.1.6. DLk is invariant over vocabulary-maps.

Observation 6.1.7. (fθ, δθ)-reduction-functors are invariant over vocabulary-maps.

To obtain richer semantics, we shall leverage the functor composition, following
the same order as defined for the game reductions in Chapter 4:

R∗(V) R∗(VSelf) R∗(VSelfI)

R∗(VSelfIbO) R∗(VSelfIb)

JSelf JI

Jb

DLk
JO

Lemma 6.1.8. Reduction-functors are closed under composition.

Proof. Let J : R∗(V) −→ R∗(δV) and G : R∗(V) −→ R∗(δ′V) be reduction-functors.
We want to show that G◦J is also a reduction-functor. Using Observation 6.1.7, we
can lift G to G : R∗(δ V) −→ R∗(δ′ (δ V)). Let f, g be the game reductions for J , G,
respectively. Then the action on objects for G ◦ J is defined as follows:

G ◦ J : R∗(V) −→ R∗(δ′ (δ V))

(G ◦ J) (I, d) 7−→ ((gI ◦ fI) I, (g∗ ◦ f∗) d).

R∗(V)

R∗(δ V) R∗(δ′ (δ V))

J
G ◦ J

Gδ

From Lemma 6.1.5, we get that the obtained composition is still invariant over
vocabulary maps.

6.2 Comonadic semantics for extensions

Having defined appropriate notions and tools, we now present the way to obtain
game semantics for an arbitrary sublogic ALC ⊆ LΦ ⊆ ALCSelfIbO by the use of
relative comonads.

Let JΦ , i
θ∈Φ Jθ be a family of functors indexed by Φ where Jθ are (fθ, δθ)-

reduction-functors and the operator iiterates over the extensions and composes

40 CHAPTER 6. COMONADS FOR EXTENSIONS OF ALC

the functors together in (Self, I, b,O) order. It follows from Lemma 6.1.8 that for a
fixed Φ, the functor JΦ : R∗(V) −→ R∗(VΦ) is also a reduction-functor.

Proposition 6.2.1 (ALCΦ-comonad). The game comonad DLΦ
k is a (DLk ◦ JΦ)-

relative-comonad.

Proof. We know that JΦ : R∗(V) −→ R∗(VΦ) is a functor. From Proposition 5.1.6,
we know that DLΦ

k : R∗(V) −→ R∗(V) is a comonad on R∗(V). Applying Obser-
vation 6.1.6, we get DLΦ

k (−)Φ : R∗(VΦ) −→ R∗(VΦ) which is a comonad on the
codomain of JΦ. Hence, by definition, DLΦ

k is a relative comonad.

With that, we arrive at the concluding lemma which shall guide us to the final
result.

Lemma 6.2.2. Let k ∈ N∪ {ω} and let Φ ⊆ {Self, I, b,O}. Given pointed interpre-
tations (I, d) and (J , e), the GΦ

k (I, d;J , e) game for the DLΦ
k relative comonad is

equivalent to the k-round ALCΦ(V)-bisimulation game played on (I, d) and (J , e).

Proof. By Theorem 4.2.1, it suffices to show that GΦ
k (I, d;J , e) is equivalent to

ALC(VΦ)-bisimulation game between (fIΦ I, f∗Φ d) and (fIΦ J , f∗Φ e). Recall that the
positions in the GΦ

k (I, d;J , e) are pairs (s, t) ∈ DLΦ
k (I, d) × DLΦ

k (J , e). By unfold-
ing the definition of DLΦ

k , we get that it corresponds to a product of unravelings
(fΦ I, d) × (fΦ J , e). Hence, s and t are sequences of the form [a0, α1, a1, ..., αj , aj],
where αi ∈ σΦ

r and ai ∈ ∆I ∨ai ∈ ∆J for 1 ≤ i ≤ j. An attentive reader can already
notice that it is the same as positions in the ALC(V)-bisimulation game by definition
in Chapter 3. What remains to be shown is that the winning conditions coincide.
Note that after applying Theorem 4.2.1 we are playing the ALC-bisimulation game,
and thus the same inductive reasoning applies as in Theorem 5.3.2 which concludes
the proof.

For the readers that are still alive and managed to get to this point, we have fi-
nally arrived at the heart of our result. This is summarised by the following theorem,
which is an immediate corollary from Fact 3.2.2, Lemma 6.2.2 and Theorem 5.3.1.

Theorem 6.2.3. For any k ∈ N∪{ω} and a logic LΦ between ALC and ALCSelfIbO,
t.f.a.e.:

• Duplicator has the winning strategy in the k-round LΦ(V)-bisimulation-game
on (I, d;J , e),

• There is an LΦ(V)-k-bisimulation Z between I and J such that Z(d, e),

• (I, d) ≡LΦ(V)
k (J , e),

• (I, d)↔DLΦ

k (J , e).

Chapter 7

Conclusions

This paper provides yet another view on bisimulation games used in the description
logic setting, via the lenses of comonadic semantics, as well as another nail for the
comonads hammer developed in recent years.

We have tweaked modal comonad [8] to match description logic’s setting of
interpretations, and devised a composable and extensible way of tackling logic ex-
tensions via reduction functors and relative monads [9]. We now shall discuss the
potential directions of what can be done next.

7.1 Future Work

7.1.1 Incorporating other known DL extensions

There wo more ALC extensions that caught our attention, namely, counting capa-
bilities and universal role. Following the way graded modalities were handled in [8],
we believe that ALCQ, an extension with counting capabilities, can be encoded by
taking isomorphism in the Kleisli category of DLΦ

k comonad in place of ↔DL
k back-

and-forth relation. Concerning universal role, it appears to be expressible by defining
a reduction fU that adds a fresh role rU that forms a clique. However, neither of the
ideas has been carefully verified and thus that is yet to be explored.

7.1.2 Combinatorial properties

Another research direction is to investigate combinatorial properties naturally aris-
ing from the coalgebras of the resulting comonad, such as tree width for the pebbling
comonad [3] or tree depth for the modal comonad [8]. A topic closely related that
generalizes over parameters is the examination of DLΦ

k functor’s Kan extension that
should yield discrete density comonad [4].

41

42 CHAPTER 7. CONCLUSIONS

7.1.3 Transcribing known theorems to category theory

This lies at the core of the meaning and purpose of defining comonadic semantics
for model comparison games. S. Abramsky et. al has given a generalization of the
framework by Arboreal categories and covers [7], and we have observed a variety of
results arising from a categorical framework such as new Lovász-Type Theorems [13]
or axiomatic account of Feferman-Vaught-Mostowski theorems [16]. A systematic
overview of the current state of the art in applying tools from category theory in
finite model theory and descriptive complexity is given in [1]. Hence, the most natural
direction for the next research project would be to explore how the description logic
comonad could help to generalize or simplify known theorems.

Bibliografia

[1] Samson Abramsky. Structure and Power: an emerging landscape. 2022.

[2] Samson Abramsky. “Whither semantics?” W: Theor. Comput. Sci. 2020 ().

[3] Samson Abramsky, Anuj Dawar i Pengming Wang. “The pebbling comonad
in Finite Model Theory”. W: LICS 2017 (2017).

[4] Samson Abramsky, Tomás Jakl i Thomas Paine. “Discrete density comonads
and graph parameters”. W: (2022).

[5] Samson Abramsky i Dan Marsden. “Comonadic semantics for guarded frag-
ments”. W: LICS 2021 (2021).

[6] Samson Abramsky i Dan Marsden. “Comonadic semantics for hybrid logic and
bounded fragments”. W: arXiV 2021 (2021).

[7] Samson Abramsky i Luca Reggio. “Arboreal Categories and Resources”. W:
ICALP 2021 (). Red. Nikhil Bansal, Emanuela Merelli i James Worrell. doi:
10.48550/ARXIV.2205.05387. url: https://arxiv.org/abs/2205.05387.

[8] Samson Abramsky i Nihil Shah. “Relating structure and power: Comonadic
semantics for computational resources”. W: J. Log. Comput. 2021 (2021).

[9] Thorsten Altenkirch, James Chapman i Tarmo Uustalu. “Monads need not be
endofunctors”. W: Log. Methods Comput. Sci. 2015 11.1 (2015).

[10] Steve Awodey. Category Theory. Ebsco Publishing, 2006.

[11] Franz Baader i in. An Introduction to Description Logic. 2017.

[12] Ludovic Brieulle, Chan Le Duc i Pascal Vaillant. “Reasoning in the Description
Logic ALC under Category Semantics”. W: arXiv 2022 (2022).

[13] Anuj Dawar, Tomás Jakl i Luca Reggio. “Lovász-Type Theorems and Game
Comonads”. W: LICS 2021 ().

[14] Ali Rezaei Divroodi i Linh Anh Nguyen. “On bisimulations for description
logics”. W: Inf. Sci. 2015 (2015).

[15] Chan Le Duc. “Category-theoretical Semantics of the Description Logic ALC”.
W: arXiv 2021 (2021).

[16] Tomáš Jakl, Dan Marsden i Nihil Shah. A game comonadic account of Cour-
celle and Feferman-Vaught-Mostowski theorems. 2022.

43

https://doi.org/10.48550/ARXIV.2205.05387
https://arxiv.org/abs/2205.05387

44 BIBLIOGRAFIA

[17] Saunders MacLane. Categories for the Working Mathematician. 1971.

[18] Robert Piro. “Model-theoretic characterisations of description logics”. Prac.
dokt. University of Liverpool, UK, 2012.

	Introduction
	Our results
	Roadmap

	Preliminaries
	Preliminaries on DLs.
	Preliminaries on category theory

	Bisimulation Games
	Games
	Bisimulations

	Reductions between games and logics
	A family of logic reductions
	Self operator
	Role inverses
	Safe boolean roles combinations
	Nominals

	Combining reductions

	Game Comonads
	A comonad for ALC
	Tree-like structures, paths and embeddings.
	A categorical view on games

	Comonads for extensions of ALC
	A generalized framework for extensions
	Comonadic semantics for extensions

	Conclusions
	Future Work
	Incorporating other known DL extensions
	Combinatorial properties
	Transcribing known theorems to category theory

