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Abstract

In the world of programming languages, there exist several different approaches to algebraic

effects and their handlers. This work focuses on one such approach, known as the capability-

passing style. In this style every handler binds what is called an effect capability, which is

a regular first-class value that can be used to invoke the effect associated with the handler.

This technique offers us a lot of flexibility in the shape of this capability by reusing existing

language mechanisms, such as records, polymorphism and more. Our goal is to define

logical relations for a calculus with effect capabilities. Previous work in this area did not

account for the full flexibility afforded by capabilities, instead opting to limit them to a

single syntactic form. To fill this gap, we propose two different relational models that scale

well to a calculus that features multiple shapes of capabilities that are useful in practice.

W świecie języków programowania istnieje kilka różnych podejść do efektów algebraicz-

nych i ich łapaczy (ang. handler). Ta praca skupia się na jednym z nich, zwanym stylem

przekazywania efektodziejów (ang. capability). Cechą charakterystyczną tego stylu jest to,

że każdy łapacz wiąże zwykłą wartość pierwszej kategorii zwaną efektodziejem, którego

używa się do wykonania efektu powiązanego z tym łapaczem. Ta technika oferuje dużą

elastyczność co do kształtu efektodzieja poprzez wykorzystanie istniejących mechanizmów

języka takich jak rekordy, polimorfizm i inne. Naszym celem jest zdefiniowanie relacji

logicznych dla rachunku z efektodziejami. Istniejące wyniki w tej dziedzinie nie wyko-

rzystywały w pełni elastyczności, na którą pozwalają efektodzieje, lecz ograniczały je do

pojedynczej formy syntaktycznej. Aby wypełnić tę lukę, proponujemy dwa różne modele

relacyjne, które dobrze skalują się na rachunek z wieloma różnymi formami efektodziejów,

które są przydatne w praktyce.



Contents

Contents 4

1 Introduction 5

2 Programming with Algebraic Effects 7
2.1 Lexical Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Minimal Calculus 13
3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Logical Relations for Effect Capabilities 17
4.1 Zhang and Myers’ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Existential Semantic Effect Model . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Maximal Semantic Effect Model . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion and Future Work 25

Bibliography 27

4



1 Introduction

Algebraic effects and handlers [Plotkin and Pretnar 2013] have spurred a wealth of research

too broad to recount here in full,
1
and are enjoying great popularity in a practical setting

as well, be that in the many experimental programming languages [Biernacki et al. 2019;
Brachthäuser et al. 2020a; Hillerström and Lindley 2016; Leijen 2014; Lindley et al. 2017],
or well-established ones, such as OCaml [Sivaramakrishnan et al. 2021]. As a result, there
are several different approaches to handlers, each with a different set of advantages and

trade-offs. This thesis will focus on one particular point in this design space, often called

the capability-passing style [Brachthäuser et al. 2020a,b], which itself is a form of lexical

effect handlers [Biernacki et al. 2020; Zhang and Myers 2019]. We will describe how

capability-passing works from the programmer’s point of view in Chapter 2.

The calculus studied in this work is motivated by practical needs, as it was designed to

model a simplified version of the Fram programming language,
2
which is being developed

at the Institute of Computer Science, University of Wrocław. A large part of the goal of

this thesis is to provide a solid theoretical foundation for the effect handlers in Fram by

defining logical relations that can adequately support all desired language features. This

motivation stems from the belief that an elegant relational model leads to better language

design, with clear, intuitive behavior and well-defined static guarantees. In fact, the process

of developing the theory presented in this work influenced the design of handlers in Fram.

Logical relations as a tool have many applications, such as proving properties of a

language like termination or type safety, or characterizing and reasoning about contextual

equivalence. While our logical relations do entail contextual approximation, we are much

more interested in the construction of the relational model itself, since it can be a source of

insight into the language’s semantics in its own right.

Biernacki et al. [2018] introduced a technique for constructing a relational model

for algebraic effects with dynamic (non-lexical) semantics. Later on, that approach was

used by Zhang and Myers [2019] and Biernacki et al. [2020] to develop models for lexical

handlers. Of those two works, the one due to Zhang and Myers featured capability-passing

style. However, their calculus lacked useful features like effects with multiple operations

and polymorphic operations, and their relational model cannot support those and other

additions without modifications. In this work, we propose two different models that can

easily scale to many shapes of handlers without any kind of tedious case analysis.

Despite the theoretical nature of this work, theorems will be stated without presenting

their proofs in the text. This is because both of the proposed relational models are fully

formalized using the Coq proof assistant. Though the upfront effort required for proof

mechanization is significant, automated proof checking not only makes the results more

trustworthy, but also eases the process of later modification of the definitions and allows

1
For a taste of it, see https://github.com/yallop/effects-bibliography.

2
Fram can be found at https://github.com/fram-lang/dbl.
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6 CHAPTER 1. INTRODUCTION

for proof reuse. In the spirit of reuse, the formalization of this work relies on two third

party libraries, Binding [Polesiuk and Sieczkowski 2024] and IxFree [Polesiuk 2017].

The technical material contained in this thesis is the result of the joint work of its

author and the advisor, Piotr Polesiuk. The results included herein will be presented as

part of a talk at the HOPE 2024 workshop [Balik and Polesiuk 2024].



2 Programming with Algebraic Effects

To start off, we will go over small programming examples to illustrate some aspects of

programming with algebraic effects and handlers and to motivate the choices made in the

technical portion of this work. Insofar as it is possible, in this chapter we will use syntax

similar to that of Fram, especially in Section 2.1, which introduces effect capabilities.

The key feature of algebraic effects is the ability to locally define the semantics of

user-defined effects by using the handle ... in ... construct. For a very simple example,

we can consider the reader effect with its single operation ask, which takes a unit argument

and returns a single integer value. When an effectful operation is invoked, the current

context up to and including the handle construct is captured into a resumption, and the body
of the operation’s definition is evaluated. In the program below, ask binds the resumption

to the variable resume, and immediately calls it with the argument 21. As a result, each
call to ask in the handled expression evaluates to 21.

handle ask () / resume => resume 21 in ask () + ask ()

A more interesting example of an effect is a single cell of mutable integer state. At its

most basic, state requires two operations: get, which takes a unit argument and returns the

current value of state, and put, which sets the state to the integer received as its argument

and returns unit. In the following, we implement a particular handler for state with a

hardcoded initial value of 13.

handle
get () / resume => fn s => resume s s
set s’ / resume => fn _ => resume () s’
return x => fn _ => x
finally f => f 13

in
let x = get () in
set 29; x + get ()

Stateful computations are represented using functions that accept the current value of state.

For example, get is implemented as a function that resumes the computation as resume s,
where s is being returned to the operation’s caller, and runs the whole thing with the

unchanged state by passing s again. The operation put ignores the current state, resumes

with the unit value, and runs with the new state received as an argument. The return
clause describes what to do if the computation under handle evaluates to a value. In this

case, we use it to turn the value into a constant function ignoring the current state, because

the type of the computation has to be consistent whether we return or perform an operation.

At last, the finally clause as used here behaves a lot as if it was syntactic sugar, where

handle ℎ finally x => 𝑒𝑓 in 𝑒 stands for let x = (handle ℎ in 𝑒) in 𝑒𝑓 . We use

it to pass the initial value of state to the computation.
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8 CHAPTER 2. PROGRAMMING WITH ALGEBRAIC EFFECTS

Contrary to the examples that we have seen so far, we do not have to write all of

the invocations of an effect syntactically within its handle ... in ... expression. To

illustrate this, we can refactor the first example by moving the expression under the handle
construct into a separate function.

let ask_twice () = ask () + ask () in

handle ask () / resume => resume 21 in ask_twice ()

We may well also use multiple instances of handle for the same effect, even nested within

one another, as in the following example.

handle
ask () / resume => resume 10

in
ask_twice () + (handle ask () / resume => resume 11 in ask_twice ())

Which handler any given call to ask_twice refers to clearly influences the result. Originally,
algebraic effect handlers were dynamic: the dynamically nearest handler of an effect is the

one to use for each use of an effectful operation. This is quite similar to the semantics of

exception handlers in many programming languages. With this semantics, the left-most

call to ask_twice refers to the outer handler, which is the only one in dynamic scope at

this point, and returns 20. The other call uses the innermost handler, returning 22.
One disadvantage of this semantics is that it makes it difficult to intentionally refer to

any handler other than the closest at runtime. Solutions based on coercions [Biernacki et al.
2019] or adaptors [Convent et al. 2020] are unwieldy to use due to forcing the programmer

to count the number of intervening handlers, which hurts readability and maintainability.

The other issue with dynamic handlers is that they are susceptible to accidental effect

capture, where the use of an effect is unintentionally intercepted by a different handler

than the programmer intended. We borrow the classic example of this from Biernacki

et al. [2018]. First, we define a function count, which counts the number of times the

higher-order function f calls its argument g. To do this, we use a counter effect with a

single operation tick : Unit -> Unit and define a handler for it in a similar manner to

the state handler that we saw earlier.

let count f g =
handle

tick () / resume => fn n => resume () (n + 1)
return _ => fn n => n
finally f => f 0

in
f (fn x => tick (); g x)

With the dynamic semantics of handlers, we run into problems if the functions passed

to count do something with tick themselves. For example, we can pass count to itself

as the first argument: count count (fn x => x). Even though the inner count calls the
function it receives as an argument, the inner handler intercepts the invocation of tick
inserted into the argument by the outer count, so the entire expression evaluates to 0.
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2.1 Lexical Handlers

Lexical handlers [Biernacki et al. 2020; Zhang and Myers 2019] provide an alternative to

dynamic handlers which does not suffer from the mentioned problems. The main idea is

that each handle expression binds a new variable, representing an effect instance. In the

simplest form, the programmer needs to explicitly associate the use of an effectful operation

with its handler by using such a variable. To connect an operation with its handler across

function calls, the variable can be abstracted by and passed to functions.

There are a few different approaches to lexical handlers. One choice to be made is

whether the variable bound by the handle construct is first-class [Xie et al. 2022] or second-
class [Biernacki et al. 2020; Zhang and Myers 2019]. The second decision is whether effects

and their operations need to be declared upfront, or if handle binds the variable to a regular
value, such as a function, with no dedicated notion of operations. The latter approach is

known as the capability-passing style [Brachthäuser et al. 2020a,b], while the value defined
by handle is called a capability. In this work, we consider first-class effect instances in the

capability-passing style.

The astute reader might have noted that in case of the reader example at the beginning

of this chapter, we hardly needed handle at all: a simple let-definition would do, as follows.

let ask = fn () => 21 in
ask () + ask ()

In this case, creating multiple instances of ask is as simple as defining multiple functions

with distinct identifiers. These can be easily passed to other functions as well.

let add ask_a ask_b = ask_a () + ask_b () in

let ask_a = fn () => 29 in
let ask_b = fn () => 13 in
add ask_a ask_b

While not all effects can be easily expressed in this way, in capability-passing style, we can

allow handle to look a lot like let.

handle ask_a = effect () / resume => resume 29 in
handle ask_b = effect () / resume => resume 13 in
add ask_a ask_b

The difference is that handle sets up a delimiter for the special control flow of the newly-

created effect, and can use the effect construct to define an effectful function that has

access to the continuation resume. As we will describe later in this chapter, the type

system additionally ensures that the capabilities are never called outside of their respective

handlers. Note that, just like when we used let and regular lambdas, ask_a and ask_b are

both functions, and can be passed as arguments to add.
We are not restricted to immediately using effect in a handle expression, either. To

define a handler for an effect with multiple operations, such as state, we can use a pair or

record of multiple effectful functions as in the following example.
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handle st = State
{ get = effect () / r => fn s => r s s
, set = effect s / r => fn _ => r () s
}
return x => fn _ => x
finally f => f 0

in
st.set 21; st.get () + st.get ()

Note that as before, we can include the return and finally clauses.
Besides value constructors, it may be convenient to allow let-definitions within a

handler definition. For example, suppose we want to extend the state effect with an update
operation, which takes a function that is used to transform the current value o state. One

option is to use effect to define the new field, just like we did for the other two operations.

handle st = State
{ get = effect () / r => fn s => r s s
, set = effect s / r => fn _ => r () s
, update = effect f / r => fn s => r () (f s)
}

in ...

However, we can instead use the fact that update can be easily expressed as a regular

function in terms of get and set. This can be done easily by using let.

handle st =
let get = effect () / r => fn s => r s s in
let set = effect s / r => fn _ => r () s in
let update f = put (f (get ())) in
State { get, set, update }

in ...

Type and Effect System

One of the appeals of algebraic effects is that they pair well with a type and effect system,

which allows us to statically track which computations perform specific effects, and to make

sure each effect gets handled. In our setup, each function type is of the shape 𝜏1 ->[𝜀] 𝜏2,

containing an argument type 𝜏1, result type 𝜏2, and the effect 𝜀 that might occur upon

calling the function.

In order to ensure that each effect is always used under the correct handler, the type of

functions defined using effect is annotated with an effect variable bound by the handle
construct. Just like regular type variables, the type and effect system ensures that effect

variables never escape their scope. This technique has previously been applied to algebraic

effects by Xie et al. [2022], and is very similar to how Haskell’s ST monad utilizes rank-2

types to guarantee safety.
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For clarity, we can explicitly annotate the reader example with the binding occurrence

{effect=E}, naming the bound effect E. Since we gave the effect a programmer-facing

name, we can also annotate the capability ask with its complete type Unit ->[E] Int.

handle {effect=E} (ask : Unit ->[E] Int) =
effect () / resume => resume 21

in
ask () + ask ()

Regardless of the annotations present, the typechecker must reject any program that

attempts to smuggle the effect E out of the scope of handle, for example one that simply

returns the capability uncalled.

handle ask = effect () / resume => resume 21 in ask

First-Class Handlers

In some examples discussed thus far, as well as in practice, the same or similar handler

definitions are used repeatedly in multiple handle x = ℎ in 𝑒 expressions. Each use of

effect is closely connected to a specific handle, so we cannot directly move the definitionℎ

elsewhere for reuse. A possible workaround is to define a higher-order function that takes

an effectful computation as an argument. For example, below we implement such a function

for the state handler from earlier.

let hState (c : {effect=E} -> State E -> _) =
handle st = State
{ get = effect () / r => fn s => r s s
, set = effect s / r => fn _ => r () s
}
return x => fn _ => x
finally f => f 0

in
c st

let x =
hState (fn st =>
st.set 21; st.get () + st.get ())

The computation c has to be polymorphic in the effect variable associated with handle,
and is given the capability to perform the effect as an argument. While this solution works,

it is the source of a fair bit of syntactic overhead for what is a very common pattern.

As it turns out, several programming languages with algebraic effects implement

some form first-class handlers (e.g., Koka [Leijen 2014], Helium [Biernacki et al. 2019], or
OCaml [Sivaramakrishnan et al. 2021]), which make handler reuse more convenient. In our

case, first-class handlers are values created by using the handler ℎ syntax, where the

shape of ℎ follows the same rules as in a handle x = ℎ definition. A first-class handler 𝑣
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can be installed using handle x with 𝑣 . The previous example can be rewritten using

first-class handlers as follows.

let hState = handler State
{ get = effect () / r => fn s => r s s
, set = effect s / r => fn _ => r () s
}
return x => fn _ => x
finally f => f 0

let x =
handle st with hState in
st.set 21; st.get () + st.get ()

In fact, the syntax with the equals sign can be considered syntactic sugar for immediately

installing a handler value: handle x = ℎ
△
= handle x with handler ℎ.

First-class handlers have somewhat complicated types, though they closely mirror

the types of higher-order functions used as a way to abstract handlers. The handler

type handler E. Th @ Ti / Ei => To / Eo contains the bound effect variable E, the
capability type Th, the (input) type Ti and effect Ei of the handled expression, and the

(output) type To and effect Eo of the entire handle x with ... in ... expressions. The
effect variable can appear in Th, Ti, and Ei. As a handler using the variable in either To or Eo
would be unusable due to violating scoping, it is not allowed to appear there in the first place

to catch the mistake earlier. The handled expression is always allowed to perform E, even
if Ei does not explicitly mention it. If we used a handling function instead of a first-class

handler, the analogous type would be ({effect=E} -> Th ->[E, Ei] Ti) ->[Eo] To.



3 The Minimal Calculus

In this chapter we will present a minimal calculus with effect capabilities. Many of the

examples shown in the previous chapter cannot be written without proper extensions. As

these extensions significantly impact the relational model of handlers, we will introduce

them gradually in Chapter 4, along with the descriptions of the proposed models.

3.1 Syntax

The syntax of the calculus is presented in Figure 3.1. Kinds are used to distinguish types (T)
and effects (E). The types of the minimal calculus consist of type variables 𝛼T

, the unit

type 1, effect-annotated arrow types 𝜏 →𝜀 𝜏 , and handler types H𝛼E. 𝜏 @ 𝜏 / 𝜀 ⇒ 𝜏 / 𝜀. As
before, a handler type contains the type of the capability, the handled expression’s type

and effect, and the overall type and effect of the result. It also binds an effect variable that

can be used in the type of the capability, and the type and effect of the handled expression.

Effects are either effect variables 𝛼E
, the pure effect 𝜄, or the join of two effects 𝜀 · 𝜀. The

effects are treated like sets, with pure being empty and join acting as union. We will often

omit the kind annotation of type and effect variables whenever it is unambiguous from

context.

The values of the calculus are variables, the unit value ⟨⟩, lambda abstractions 𝜆𝑥 . 𝑒 ,

and handler values handler ℎ ret 𝑥 ⇒ 𝑒 , which contain a return clause that is assumed

to be the identity if omitted. To make the technical presentation a bit simpler, we did not

include the finally clause from Chapter 2. Another simplification is that handlers are created

using the separate syntactic category of handlers, rather than general expressions. For

Kind ∋ 𝜅 F T | E (kinds)

TVar ∋ 𝛼𝜅, 𝛽𝜅, . . . (type variables)

Type ∋ 𝜏 F 𝛼T | 1 | 𝜏 →𝜀 𝜏 | H𝛼E. 𝜏 @ 𝜏 / 𝜀 ⇒ 𝜏 / 𝜀 | . . . (types)

Effect ∋ 𝜀 F 𝛼E | 𝜄 | 𝜀 · 𝜀 (effects)

Var ∋ 𝑥,𝑦, 𝑓 , 𝑟, . . . (variables)

Expr ∋ 𝑒 F 𝑣 | 𝑒 𝑒 | handle 𝑥 with 𝑣 in 𝑒 | . . . (expressions)

Val ∋ 𝑣 F 𝑥 | ⟨⟩ | 𝜆𝑥. 𝑒 | handler ℎ ret 𝑥 ⇒ 𝑒 | . . . (values)

Handler ∋ ℎ F eff 𝑥/𝑟 . 𝑒 | . . . (handlers)

Figure 3.1: The syntax of the minimal calculus of effect handlers
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now, it only includes effectful functions eff 𝑥/𝑟 . 𝑒 , though we will extend it with multiple

additional constructs in Chapter 4, and discuss their impact on the relational model.

The non-value expressions are the standard function application 𝑒 𝑒 and handling

expressions handle 𝑥 with 𝑣 in 𝑒 . As before, the syntax handle 𝑥 = ℎ ret 𝑥 ⇒ 𝑒𝑟 in 𝑒 is
syntactic sugar for handle 𝑥 with handler ℎ ret 𝑥 ⇒ 𝑒𝑟 in 𝑒 .

3.2 Type System

The typing rules of the calculus are displayed in Figure 3.2. Most of the typing rules for

expressions and values are standard, and make use of two environments, Δ for the type

variables, and Γ for regular term variables. As values are pure, they are related with just

a type, while expressions are associated with a type and an effect. The rule for handling

expressions ensures that the handler is of the handler type H𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜 . In
an environment extended with a new abstract effect 𝛼 and the capability of type 𝜏ℎ , the

handled expression is of type 𝜏𝑖 and effect 𝛼 · 𝜀𝑖 , matching the handler. The entire handle
expression is similarly of the output type 𝜏𝑜 and effect 𝜀𝑜 .

The typing rule for handler values uses an auxiliary relation to type the bare handler

without its return clause. The relation Δ1;𝛼 ;Δ2; Γ ⊢ ℎ : 𝜏ℎ @ 𝜏 / 𝜀 has a type variable

environment Δ1, a distinguished effect variable 𝛼 , corresponding to this handler’s effect,

and a second type variable environment Δ2, containing all type variables bound later than 𝛼 .

We will encounter a non-empty Δ2 once we extend the calculus with universal types. While

we could have merged Δ1 and Δ2, leading to an equivalent type system, their separation is

somewhat more hygienic and more closely matches the construction of one of the relational

models. Like the handler type, the handler typing relation contains the capability type 𝜏ℎ .

Finally, 𝜏 and 𝜀 are the type and effect of the delimiter, which are the type and effect

produced by the return clause and used as the effect and return type of resumptions. As

there is no finally clause, the delimiter type and effect are always, respectively, a subtype

and subeffect of the output type and effect in the handler type.

The rule for eff 𝑥/𝑟 . 𝑒 tells us that effectful functions are of the arrow type, annotated

with the distinguished effect 𝛼 . The body is checked in an environment with the argument 𝑥

and resumption 𝑟 .

The type system features subtyping and subeffecting, so each judgement comes with a

subsumption rule. Subsumption for values and expressions is standard. The subsumption

rule for the handler relation is covariant in the capability type, and invariant in the type and

effect of the delimiter. The invariance results from the fact that, in the rule for effect, the
delimiter type and effect are also used in a negative position in the type of the resumption.

The subeffecting relation 𝜀1 <: 𝜀2 simply encodes the subset-like properties we expect

from the relation. Subtyping is largely standard, besides the rule for handler types. This

rule is covariant in the capability type and output type and effect, and contravariant in the

input type and effect. The effect 𝛼 may also always be added to the input effect.

𝜏ℎ <: 𝜏 ′
ℎ

𝜏 ′𝑖 <: 𝜏𝑖 𝜀′𝑖 <: 𝛼 · 𝜀𝑖 𝜏𝑜 <: 𝜏 ′𝑜 𝜀𝑜 <: 𝜀′𝑜

H𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜 <: H𝛼. 𝜏 ′
ℎ
@ 𝜏 ′𝑖 / 𝜀′𝑖 ⇒ 𝜏 ′𝑜 / 𝜀′𝑜
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Typing expressions. Δ; Γ ⊢ 𝑒 : 𝜏 / 𝜀

Δ; Γ ⊢ 𝑣 : 𝜏

Δ; Γ ⊢ 𝑣 : 𝜏 / 𝜄
Δ; Γ ⊢ 𝑒1 : 𝜏2 →𝜀 𝜏1 / 𝜀 Δ; Γ ⊢ 𝑒2 : 𝜏2 / 𝜀

Δ; Γ ⊢ 𝑒1 𝑒2 : 𝜏1 / 𝜀

Δ; Γ ⊢ 𝑣 : H𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜 Δ, 𝛼 ; Γ, 𝑥 : 𝜏ℎ ⊢ 𝑒 : 𝜏𝑖 / 𝛼 · 𝜀𝑖
Δ; Γ ⊢ handle 𝑥 with 𝑣 in 𝑒 : 𝜏𝑜 / 𝜀𝑜

Δ; Γ ⊢ 𝑒 : 𝜏 / 𝜀 𝜏 <: 𝜏 ′ 𝜀 <: 𝜀′

Δ; Γ ⊢ 𝑒 : 𝜏 ′ / 𝜀′

Typing values. Δ; Γ ⊢ 𝑣 : 𝜏

(𝑥 : 𝜏) ∈ Γ

Δ; Γ ⊢ 𝑥 : 𝜏
Δ; Γ ⊢ ⟨⟩ : 1

Δ; Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 / 𝜀
Δ; Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏1 →𝜀 𝜏2

Δ;𝛼 ; ·; Γ ⊢ ℎ : 𝜏ℎ @ 𝜏𝑜 / 𝜀𝑜 Δ, 𝛼 ; Γ, 𝑥 : 𝜏𝑖 ⊢ 𝑒𝑟 : 𝜏𝑜 / 𝜀𝑜
Δ; Γ ⊢ handler ℎ ret 𝑥 ⇒ 𝑒𝑟 : H𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑜 ⇒ 𝜏𝑜 / 𝜀𝑜

Δ; Γ ⊢ 𝑣 : 𝜏 𝜏 <: 𝜏 ′

Δ; Γ ⊢ 𝑣 : 𝜏 ′

Typing handlers. Δ1;𝛼 ;Δ2; Γ ⊢ ℎ : 𝜏 @ 𝜏 / 𝜀

Δ1, 𝛼,Δ2; Γ, 𝑥 : 𝜏1, 𝑟 : 𝜏2 →𝜀 𝜏 ⊢ 𝑒 : 𝜏 / 𝜀
Δ1;𝛼 ;Δ2; Γ ⊢ eff 𝑥/𝑟 . 𝑒 : 𝜏1 →𝛼 𝜏2 @ 𝜏 / 𝜀

Δ1;𝛼 ;Δ2; Γ ⊢ ℎ : 𝜏1 @ 𝜏 / 𝜀 𝜏1 <: 𝜏2

Δ1;𝛼 ;Δ2; Γ ⊢ ℎ : 𝜏2 @ 𝜏 / 𝜀

Figure 3.2: Typing rules of the minimal calculus

3.3 Semantics

The reduction semantics of the calculus are given in Figure 3.3. The call-by-value beta

reduction rule for function application is standard. In order to give semantics to the handle
construct, we add two runtime expressions: the labeled shift0 (shift𝑙0 𝑥 . 𝑒) and reset0
(⟨𝑒 | 𝑥 . 𝑒⟩𝑙 ) delimited control operators [Danvy and Filinski 1989; Ikemori et al. 2023;
Shan 2007], which are commonly used to implement lexical effect handlers [Brachthäuser

et al. 2020a,b]. The two rules for delimited control are fairly standard. For the evaluation

contexts 𝐸, we use the notation 𝐸𝐿 to specify that there is no reset0 with a label 𝑙 ∈ 𝐿

around the hole. A shift𝑙
0
𝑟 . 𝑒 is evaluated by capturing the context up to (and including)

the nearest reset0 with a matching label, and replacing it with the expression 𝑒 . In case the

expression under the reset0 evaluates to a value, the delimiter is removed and the return

expression is evaluated with that value.

A handle 𝑥 = ℎ ret 𝑦 ⇒ 𝑒′ in 𝑒 expression is evaluated by generating a fresh label 𝑙 ,
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Expr ∋ 𝑒 F . . . | shift𝑙
0
𝑥 . 𝑒 | ⟨𝑒 | 𝑥 . 𝑒⟩𝑙 | . . . (expressions)

ECtx ∋ 𝐸 F □ | 𝐸 𝑒 | 𝑣 𝐸 | ⟨𝐸 | 𝑥 . 𝑒⟩𝑙 | . . . (evaluation contexts)

𝐸 [(𝜆𝑥 . 𝑒) 𝑣] −→ 𝐸 [𝑒{𝑣/𝑥}]
𝐸 [handle 𝑥 = ℎ ret 𝑦 ⇒ 𝑒′ in 𝑒] −→ 𝐸 [⟨𝑒{|ℎ |𝑙/𝑥} | 𝑦. 𝑒′⟩𝑙 ] 𝑙—fresh

𝐸 [⟨𝐸 {𝑙 }
𝑟 [shift𝑙

0
𝑟 . 𝑒] | 𝑥 . 𝑒′⟩𝑙 ] −→ 𝐸 [𝑒{𝜆𝑦. ⟨𝐸 {𝑙 }

𝑟 [𝑦] | 𝑥 . 𝑒′⟩𝑙/𝑟 }]
𝐸 [⟨𝑣 | 𝑥 . 𝑒⟩𝑙 ] −→ 𝐸 [𝑒{𝑣/𝑥}]

|eff 𝑥/𝑟 . 𝑒 |𝑙 △
= 𝜆𝑥. shift𝑙

0
𝑟 . 𝑒

Figure 3.3: Runtime constructs and operational semantics of the minimal calculus

setting up a reset0 with this label and the return part of the handler, and transforming

the ℎ part of the handler value into a capability using the auxiliary | · |𝑙 operation. For now,
we only have to define | · |𝑙 for eff 𝑥/𝑟 . 𝑒 , which is translated into a lambda abstraction

that immediately performs shift0.



4 Logical Relations for Effect Capabilities

We will begin with a description of the common components of all the relational models

that we will look at. For the interpretation of algebraic effects, we follow the approach

proposed by Biernacki et al. [2018]. The construction relies on step-indexing [Ahmed 2006;

Appel and McAllester 2001]. As in their work, we keep the step indices implicit by working

in an intuitionistic logic with the later modality, written �, which forces the step index

to advance [Appel et al. 2007; Dreyer et al. 2011]. Let UPred(𝑋 ) denote the step-indexed
unary predicates over 𝑋 . We define the spaces of semantic types and effects as follows.

JTK △
= UPred(Val2)

JEK △
=

{
𝐹 ∈ UPred(Expr2 × P(Label)2 × JTK

��� ⋃
(𝑒1,𝑒2,𝐿1,𝐿2,𝑅) ∈𝐹

𝐿1 ∪ 𝐿2 is finite

}
In the interest of generality, we will consider binary logical relations. The semantic types are

thus the usual relations on pairs of values. The semantic effects relate a pair of expressions

that raise the effect, the sets of labels that these expression may be stuck on, and the

semantic type of the result that is passed to the resumption. Finally, we impose an additional

condition on every semantic effect: the union of all the label sets in the effect is finite. The

technical reason to require this property is that it allows us to generate fresh labels as

needed in some of the proofs.

In Figure 4.1 we present the denotations of types and effects of the minimal calculus.

Since we are dealing with type variables, the denotations work with an environment

𝜂 ∈ JΔK △
=
∏

𝛼𝜅 ∈ Δ. J𝜅K (while the type variable scope Δ is implicit). The interpretation of

effects uses the empty set for the pure effect and union of two interpretations for the join

of two effects. The interpretation of the unit and arrow types are fairly standard. Due to its

J𝛼𝜅K𝜂
△
= 𝜂 (𝛼𝜅) J𝜄K𝜂

△
= ∅

J1K𝜂
△
= {(⟨⟩, ⟨⟩)} J𝜀1 · 𝜀2K𝜂

△
= J𝜀1K𝜂 ∪ J𝜀2K𝜂

Arr 𝑅1 𝑅2 𝐹
△
= {(𝑣1, 𝑣2) | ∀(𝑣 ′1, 𝑣 ′2) ∈ 𝑅1. (𝑣1 𝑣 ′1, 𝑣2 𝑣 ′2) ∈ E 𝑅2 𝐹 }

J𝜏1 →𝜀 𝜏2K𝜂
△
= Arr J𝜏1K𝜂 J𝜏2K𝜂 J𝜀K𝜂

JH𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂
△
= {(handler ℎ1 ret 𝑥 ⇒ 𝑒1, handler ℎ2 ret 𝑥 ⇒ 𝑒2) |

((ℎ1, 𝑥 . 𝑒1), (ℎ2, 𝑥 . 𝑒2)) ∈ HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂}

Figure 4.1: Interpretation of types and effects

17
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(𝑒1, 𝑒2) ∈ E 𝑅 𝐹 ⇐⇒ ∀(𝐸1, 𝐸2) ∈ K 𝑅 𝐹 . (𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ Obs

(𝐸1, 𝐸2) ∈ K 𝑅 𝐹 ⇐⇒ (∀(𝑣1, 𝑣2) ∈ 𝑅. (𝐸1 [𝑣1], 𝐸2 [𝑣2]) ∈ Obs) ∧
(∀(𝑒1, 𝑒2) ∈ S 𝑅 𝐹 . (𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ Obs)

(𝐸𝐿1
1
[𝑒1], 𝐸𝐿2

2
[𝑒2]) ∈ S 𝑅 𝐹 ⇐⇒ ∃𝑅′. (𝑒1, 𝑒2, 𝐿1, 𝐿2, 𝑅′) ∈ 𝐹 ∧

∀(𝑣1, 𝑣2) ∈ �𝑅′. (𝐸𝐿1
1
[𝑣1], 𝐸𝐿2

2
[𝑣2]) ∈ �E 𝑅 𝐹

(𝑒1, 𝑒2) ∈ Obs ⇐⇒ 𝑒1 = ⟨⟩ ∧ 𝑒2 −→∗ ⟨⟩ ∨ ∃𝑒′
1
. 𝑒1 −→ 𝑒′

1
∧ (𝑒′

1
, 𝑒2) ∈ �Obs

Figure 4.2: Biorthogonal closure operators

(𝛾1, 𝛾2) ∈ JΓK𝜂 ⇐⇒ ∀(𝑥 : 𝜏) ∈ Γ. (𝛾1(𝑥), 𝛾2(𝑥)) ∈ J𝜏K𝜂
Δ; Γ |= 𝑣1 ­ 𝑣2 : 𝜏 ⇐⇒ ∀𝜂 ∈ JΔK, (𝛾1, 𝛾2) ∈ JΓK𝜂 . (𝛾∗1 𝑣1, 𝛾∗2 𝑣2) ∈ J𝜏K𝜂

Δ; Γ |= 𝑒1 ­ 𝑒2 : 𝜏 / 𝜀 ⇐⇒ ∀𝜂 ∈ JΔK, (𝛾1, 𝛾2) ∈ JΓK𝜂 . (𝛾∗1 𝑒1, 𝛾∗2 𝑒2) ∈ EJ𝜏K𝜂J𝜀K𝜂
Δ1;𝛼 ;Δ2; Γ |= ℎ1 ­ ℎ2 : 𝜏ℎ @ 𝜏 / 𝜀 (defined in the next three sections)

Figure 4.3: Logical interpretations of typing judgements

utility in a few later definitions, we separately define the relation Arr 𝑅1 𝑅2 𝐹 , which works

on semantic types and effects, and use it to interpret arrow types. This relation makes use

of the expression closure E 𝑅2 𝐹 , which we will define in a moment. Part of the difficulty

of creating a satisfactory model for effect capabilities lies in giving an interpretation to the

handler type H𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜 . For now, we merely deconstruct the handler value

syntax and pass on the components to an auxiliary relation HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 .
We will consider several possible definitions of this relation later in this chapter.

The biorthogonal closure operators are defined in Figure 4.2. Following the approach

of Biernacki et al. [2018], we make use of the stuck expression closure S 𝑅 𝐹 . Each

stuck expression is decomposed into an expression directly raising an effect from 𝐹 , and

a context with no reset matching the label of the effect. The contexts, once resumed

by plugging in values from the result semantic type, should be semantically well-typed

expressions. This last condition is guarded by the later operator to ensure the mutually

recursive closure operators are well-defined. However, since the expressions are stuck, at

least one computation step will occur before this property is needed. In the expression

and context closures we observe the property Obs, which relates two programs 𝑒1, 𝑒2 if

termination of the first implies termination of the second, specialized to just the unit type

and stated using step-indexing.

We present logical relations corresponding to each of the typing judgements in Fig-

ure 4.3. These allow us to reason about open terms, and to prove compatibility of the

relational model with the type system. Term variable environments are interpreted as the

standard relations on substitutions, while the relations for values and expressions quantify
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over all semantically well-kinded type variable environments and semantically well-typed

term variable substitutions. We will delay the definition of the logical relation for handlers,

as the design space here requires more discussion. While it is tempting to apply the same

strategy as we did for values and expressions, it is not as straightforward. Its closest coun-

terpart among the closed relations is the handler relation HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 ,
which uses a return clause and looks more like a handler type (with the input and output

types and effects) than the handler judgement (with just the delimiter type and effect). As it

turns out, some subtle choices in defining this relation have a profound effect on its ability

to scale to a variety of handler constructors.

4.1 Zhang and Myers’ Model

Zhang and Myers [2019] defined logical relations for their 𝜆 	 	 calculus, which also features

effect capabilities. However, the only shape of handler that they allow is comparable to the

eff construct, and the construction directly exploits this fact by decomposing the handlers

and relating the subexpressions. If we additionally restrict handler types such that the

abstract effect 𝛼 can only appear by the arrow in the capability’s type
1
, we can use Zhang

and Myers’ approach to create a model of our minimal calculus. Unlike their model, in the

definition of H we need to existentially quantify the semantic type 𝑅𝑑 and effect 𝐹𝑑 of the

delimiter. This is in part due to how subtyping interacts with the handler type’s output

type and effect, but would also enable us to add the finally clause to handlers fairly easily.

In absence of the finally clause, we require that 𝑅𝑑 ⊆ J𝜏𝑜K𝜂 and J𝜀𝑖K𝜂 ⊆ 𝐹𝑑 ⊆ J𝜀𝑜K𝜂 . Here
set inclusion is the semantic counterpart of both the subtyping and subeffecting relations.

Ultimately, the entire computation with handle has to be of type 𝜏𝑜 and effect 𝜀𝑜 . However,

the real delimiter type and effect can be smaller, and are used in the resumption type, where

they appear in a negative position of the definition. Due to the negative occurrences we

cannot use 𝜏𝑜 and 𝜀𝑜 throughout. The rest of the definition ofH is straightforward. First,

it quantifies over all semantically well-typed arguments 𝑣1, 𝑣2 and resumptions 𝑣 ′
1
, 𝑣 ′

2
, and

substitutes them into the body of the effectful function. Similarly, the arguments for the

return clause are substituted into its body.

(eff 𝑥/𝑟 . 𝑒1, 𝑥 . 𝑒′1, eff 𝑥/𝑟 . 𝑒2, 𝑥 . 𝑒′2) ∈ HJ𝛼. 𝜏1 →𝛼 𝜏2 @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 ⇐⇒
∃𝑅𝑑 ⊆ J𝜏𝑜K𝜂, 𝐹𝑑 ⊆ J𝜀𝑜K𝜂 .

J𝜀𝑖K𝜂 ⊆ 𝐹𝑑 ∧
(∀(𝑣1, 𝑣2) ∈ J𝜏1K𝜂 .∀(𝑣 ′1, 𝑣 ′2) ∈ Arr J𝜏2K𝜂 𝑅𝑑 𝐹𝑑 .

(𝑒1{𝑣1/𝑥, 𝑣 ′1/𝑟 }, 𝑒2{𝑣2/𝑥, 𝑣 ′2/𝑟 }) ∈ E 𝑅𝑑 𝐹𝑑 ) ∧
(∀(𝑣1, 𝑣2) ∈ J𝜏𝑖K𝜂 . (𝑒′1{𝑣1/𝑥}, 𝑒′2{𝑣2/𝑥}) ∈ E 𝑅𝑑 𝐹𝑑 )

We can also see what benefit we get from restricting where the effect 𝛼 can appear. Had

it been allowed to occur in any of 𝜏1, 𝜏2, 𝜏𝑖 , 𝜀𝑖 , 𝜏𝑜 or 𝜀𝑜 , we would be forced to extend the

environment 𝜂 with some interpretation for this variable.

1
The abstract effect continues to be implicitly added to the input effect in the typing rule for handle.
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For the semantic judgement for open handlers, we take a very similar approach, albeit

this time we do not have to deal with the return clause. As long as we stick to the restrictions

on the use of 𝛼 , we are safe to consider type variables from just Δ1,Δ2 for the environment 𝜂.

Δ1;𝛼 ;Δ2; Γ |= eff 𝑥/𝑟 . 𝑒1 ­ eff 𝑥/𝑟 . 𝑒2 : 𝜏1 →𝛼 𝜏2 @ 𝜏 / 𝜀 ⇐⇒
∀𝜂 ∈ JΔ1,Δ2K.∀(𝛾1, 𝛾2) ∈ JΓK𝜂 .

∀(𝑣1, 𝑣2) ∈ J𝜏1K𝜂 .∀(𝑣 ′1, 𝑣 ′2) ∈ J𝜏2 →𝜀 𝜏K𝜂 .
((𝛾∗

1
𝑒1){𝑣1/𝑥, 𝑣 ′1/𝑟 }, (𝛾∗2 𝑒2){𝑣2/𝑥, 𝑣 ′2/𝑟 }) ∈ EJ𝜏K𝜂J𝜀K𝜂

With all the definitions in place, we can prove the fundamental property of the logical

relation, and conclude type safety of the type system of the minimal calculus with some

extra restrictions.

Theorem 1 (Fundamental Property) If Δ; Γ ⊢ 𝑒 : 𝜏 / 𝜀 then Δ; Γ |= 𝑒 ­ 𝑒 : 𝜏 / 𝜀.

Theorem 2 (Type Safety) For each expression 𝑒 such that ·; · ⊢ 𝑒 : 1 / 𝜄 if 𝑒 −→∗ 𝑒′ then
the expression 𝑒′ is a value or can do another reduction step 𝑒′ −→ 𝑒′′ to some expression 𝑒′′.

Finally, for the restricted calculus, we can prove that the logical relation is sound with

respect to contextual approximation Δ; Γ ⊢ 𝑒1 ­ctx 𝑒2 : 𝜏 / 𝜀 defined in the standard way

(see [Ahmed 2006] or the Coq formalization).

Theorem 3 (Soundness w.r.t. Contextual Approximation) If Δ; Γ |= 𝑒1 ­ 𝑒2 : 𝜏 / 𝜀

then Δ; Γ ⊢ 𝑒1 ­ctx 𝑒2 : 𝜏 / 𝜀.

4.2 Existential Semantic Effect Model

Our goal for the logical relations is to accommodate the addition of many different shapes

of handlers, such as pairs for multiple operations, lambda abstractions for additional pa-

rameters, type abstractions for polymorphic operations, and so on. However, instead of

modifying the interpretation of handlers each time a new construct is added, we would

prefer a model that is inherently robust to such changes in the calculus. Therefore, an inten-

sional definition that deconstructs the handler is not suitable. We are seeking an extensional

definition, which describes how the handler is used, and not how it is constructed.

In this and the following section, we will propose two different approaches to defining

the handler interpretation (ℎ1, 𝑥 . 𝑒′1, ℎ2, 𝑥 . 𝑒′2) ∈ HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 and the

semantic judgement Δ1;𝛼 ;Δ2; Γ |= ℎ1 ­ ℎ2 : 𝜏ℎ @ 𝜏 / 𝜀, both of which will rely on relating

the capabilities |ℎ1 |𝑙1 and |ℎ2 |𝑙2 , for any pair of labels 𝑙1, 𝑙2. To do that, we will need to

interpret the type 𝜏ℎ , which most likely contains 𝛼 . This means that the restrictions used

in the previous section no longer let us avoid producing a semantic effect for the handlers.

The possible effect-raising expressions and resumption argument types for the handlers’

semantic effect depend on the handlers’ shape. For eff 𝑥/𝑟 . 𝑒 , for which the capability

is 𝜆𝑥. shift𝑙
0
𝑟 . 𝑒 , the expressions will look like shift𝑙

0
𝑟 . 𝑒{𝑣/𝑥}, where 𝑣 has the semantic

type of the function’s argument. Indeed, this kind definition would have allowed us to lift
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the various restrictions in the presented model of the minimal calculus. However, now

that we are about to enrich the calculus, that kind of model will not scale to the desired

extensions.

As a first step towards modeling the full-fledged programming language from Chapter 2,

we want to support effects with multiple operations through pairs of handlers. We need to

extend the calculus with standard value pairs ⟨𝑣1, 𝑣2⟩, projections, and product types 𝜏1 ×𝜏2.

The typing rule for the handler pair ⟨ℎ1, ℎ2⟩ is given below.

Δ1;𝛼 ;Δ2; Γ ⊢ ℎ1 : 𝜏1 @ 𝜏 / 𝜀 Δ1;𝛼 ;Δ2; Γ ⊢ ℎ2 : 𝜏2 @ 𝜏 / 𝜀
Δ1;𝛼 ;Δ2; Γ ⊢ ⟨ℎ1, ℎ2⟩ : 𝜏1 × 𝜏2 @ 𝜏 / 𝜀

Unsurprisingly, the capability for a handler pair is defined as a value pair of the capabilities

of the components: |⟨ℎ1, ℎ2⟩|𝑙
△
= ⟨|ℎ1 |𝑙 , |ℎ2 |𝑙 ⟩.

Now we turn our attention back to finding an appropriate semantic effect for a given

pair of handlers. The effect-raising expressions for a handler like ⟨eff 𝑥/𝑟 . 𝑒1, eff 𝑥/𝑟 . 𝑒2⟩
can can come from the shift0 from either of the two effectful functions, and still more

complicated shapes of handlers are now possible. In the spirit of making our definitions

more extensional, instead of using a specific semantic effect, we can specify the behavior

that we require of the effect. For this purpose, below we define a relation 𝐹 ∈ F 𝑙1 𝑙2 𝑅𝑑 𝐹𝑑 ,

which tells us that 𝐹 is a suitable semantic effect for handlers with the given pair of

labels 𝑙1, 𝑙2 and delimiter type 𝑅𝑑 and effect 𝐹𝑑 .

𝐹 ∈ F 𝑙1 𝑙2 𝑅𝑑 𝐹𝑑 ⇐⇒
(For every pair of stuck expressions 𝐸𝐿1

1
[𝑒1], 𝐸𝐿2

2
[𝑒2] built from 𝐹 ...)

∀(𝑒1, 𝑒2, 𝐿1, 𝐿2, 𝑅) ∈ 𝐹 .∀𝐸𝐿1
1
, 𝐸

𝐿2
2
.

(...and return clauses 𝑒′
1
, 𝑒′

2
for resets...)

∀𝑒′
1
, 𝑒′

2
.

(...if contexts 𝐸𝐿1
1
, 𝐸

𝐿2
2

under resets for 𝑙1 and 𝑙2 are related...)(
∀(𝑣1, 𝑣2) ∈ �𝑅. (⟨𝐸𝐿1

1
[𝑣1] | 𝑥 . 𝑒′1⟩𝑙1, ⟨𝐸

𝐿2
2
[𝑣2] | 𝑥 . 𝑒′2⟩𝑙2) ∈ �E 𝑅𝑑 𝐹𝑑

)
⇒

(...then so are the stuck expressions with the same resets.)(
⟨𝐸𝐿1

1
[𝑒1] | 𝑥 . 𝑒′1⟩𝑙1, ⟨𝐸

𝐿2
2
[𝑒2] | 𝑥 . 𝑒′2⟩𝑙2

)
∈ E 𝑅𝑑 𝐹𝑑

Though there is quite a lot going on in this definition, the main idea is that effect-raising

expressions from 𝐹 can be handled by resets on the labels 𝑙1, 𝑙2, and the larger delimited

expressions built in this way are related using the correct delimiter type and effect. Though

this property does not mention the handlers, capabilities, or the capability type, it turns

out that it is all we need to know about the effect in the interpretation of the handler type.

The following is the revised definition, which universally quantifies over all labels 𝑙1, 𝑙2,

and provides the semantic effect 𝐹 with an existential quantifier. This effect is used thorough

to extend the environment 𝜂 with an interpretation for 𝛼 . As previously hinted, this time
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we relate the capabilities created from the handlers for the labels 𝑙1, 𝑙2.

(ℎ1, 𝑥 . 𝑒′1, ℎ2, 𝑥 . 𝑒′2) ∈ HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 ⇐⇒
∃𝑅𝑑 ⊆ J𝜏𝑜K𝜂, 𝐹𝑑 ⊆ J𝜀𝑜K𝜂 .∀𝑙1, 𝑙2. ∃𝐹 ∈ F 𝑙1 𝑙2 𝑅𝑑 𝐹𝑑 .

J𝜀𝑖K𝜂 [𝛼 ↦→𝐹 ] ⊆ 𝐹 ∪ 𝐹𝑑 ∧
(|ℎ1 |𝑙1, |ℎ2 |𝑙2) ∈ J𝜏ℎK𝜂 [𝛼 ↦→𝐹 ] ∧
∀(𝑣1, 𝑣2) ∈ J𝜏𝑖K𝜂 [𝛼 ↦→𝐹 ] . (𝑒′1{𝑣1/𝑥}, 𝑒′2{𝑣2/𝑥}) ∈ E 𝑅𝑑 𝐹𝑑

The semantic handler judgement also needs to be revised. However, this is not as

mechanical a task as onemight have hoped. To better understandwhere various pieces come

from, we will now introduce one more handler construct to the calculus: type abstraction.

The following typing rule is very similar to how one would define normal type abstraction,

but it makes use of the second type variable environment Δ2 to store the new type variable.

Δ1;𝛼 ;Δ2, 𝛽
𝜅
; Γ ⊢ ℎ : 𝜏ℎ @ 𝜏 / 𝜀

Δ1;𝛼 ;Δ2; Γ ⊢ Λℎ : ∀𝛽𝜅 . 𝜏ℎ @ 𝜏 / 𝜀

While the importance of the separation of the two type variable environments is not

apparent from the syntactic typing judgement, it plays nicely with the semantic counterpart.

The type and effect of the delimiter can make use of variables from Δ1, but never 𝛼 or Δ2.

On the other hand, we want to permit 𝛼 and Δ2 to be used by Γ. We can motivate this

with yet another handler constructor, the let definition let 𝑥 = ℎ1 in ℎ2, with its capability

given as |let 𝑥 = ℎ1 in ℎ2 |𝑙
△
= |ℎ2 |𝑙 {|ℎ1 |𝑙/𝑥}.

Δ1;𝛼 ;Δ2; Γ ⊢ ℎ1 : 𝜏1 @ 𝜏 / 𝜀 Δ1;𝛼 ;Δ2; Γ, 𝑥 : 𝜏1 ⊢ ℎ2 : 𝜏2 @ 𝜏 / 𝜀
Δ1;𝛼 ;Δ2; Γ ⊢ let 𝑥 = ℎ1 in ℎ2 : 𝜏2 @ 𝜏 / 𝜀

In the typing rule, the type 𝜏1, added to the term variable environment in the second

premise, should be allowed to contain 𝛼 , since it is the type of the capability for ℎ1.

As our first—and unfortunately insufficient, but only just—attempt, we can try to define

the semantic handler judgement as follows.

Δ1;𝛼 ;Δ2; Γ |= ℎ1 ­ ℎ2 : 𝜏ℎ @ 𝜏 / 𝜀 ⇐⇒
∀𝜂1 ∈ JΔ1K.
∀𝑙1, 𝑙2. ∃𝐹 ∈ F 𝑙1 𝑙2 J𝜏K𝜂1 J𝜀K𝜂1 .
∀𝜂2 ∈ JΔ2K.∀(𝛾1, 𝛾2) ∈ JΓK𝜂1 [𝛼 ↦→𝐹 ]𝜂2 .

( |𝛾∗
1
ℎ1 |𝑙1, |𝛾∗2 ℎ2 |𝑙2) ∈ J𝜏ℎK𝜂1 [𝛼 ↦→𝐹 ]𝜂2

First, we quantify over all environments 𝜂1 for Δ1. Then come the arbitrary labels 𝑙1, 𝑙2,

and the existentially quantified semantic effect 𝐹 , which does not depend on the variables

in Δ2. Where did the existential quantifier come from? While the universally quantified

environments are something that is received by the handler from its surroundings, the

semantic effect is created by this particular handler, since it is the handler that determines
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the capability and, ultimately, the effect-raising expressions. After the semantic effect 𝐹 ,

we quantify over the rest of the type variable environment, 𝜂2 ∈ JΔ2K, and the value

substitutions 𝛾1, 𝛾2, which have access to the full type environment 𝜂1 [𝛼 ↦→ 𝐹 ]𝜂2. At last,
capabilities are related in the same type variable environment. The alternation of universal

and existential quantifiers is unusual, but appears necessary for the fundamental property

proof to work. For example, it naturally fits into the proof that the typing rule for type

abstraction in handlers holds for the semantic judgement as well. Intuitively, the effect

associated with the handler should already exist before the polymorphic effect operation

receives its type argument, which is reflected in this definition.

One last modification is needed before the model can support all desired features, such

as pairs. The problem with the previous definition is that if we need to use a supereffect 𝐹 ′

of 𝐹 , such as we might create by the union of two different semantic effects extracted from

the two premises for the handler pair, the assumption about (𝛾1, 𝛾2) ∈ JΓK𝜂1 [𝛼 ↦→𝐹 ]𝜂2 cannot,
in general, be proven, and the conclusion about the capabilities is useless in any case. Merely

knowing that 𝐹 ′ ⊇ 𝐹 is not helpful, because 𝛼 can appear in both positive and negative

positions in Γ and 𝜏ℎ . The key insight to solve this issue is that the effect 𝐹 describes only

one small part of a potentially more complex handler. Thus, what we really need is for the

definition to account for all supereffects of 𝐹 to allow handlers to be composed.

Δ1;𝛼 ;Δ2; Γ |= ℎ1 ­ ℎ2 : 𝜏ℎ @ 𝜏 / 𝜀 ⇐⇒
∀𝜂1 ∈ JΔ1K.
∀𝑙1, 𝑙2. ∃𝐹 ∈ F 𝑙1 𝑙2 J𝜏K𝜂1 J𝜀K𝜂1 .

∀𝐹 ′ ⊇ 𝐹 .

∀𝜂2 ∈ JΔ2K.∀(𝛾1, 𝛾2) ∈ JΓK
𝜂1 [𝛼 ↦→ 𝐹 ′ ]𝜂2 .

( |𝛾∗
1
ℎ1 |𝑙1, |𝛾∗2 ℎ2 |𝑙2) ∈ J𝜏ℎK𝜂1 [𝛼 ↦→ 𝐹 ′ ]𝜂2

It may seem unintuitive that we never had to worry about supereffects in the definition

of the HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 relation. The reason for that is that after we turn a

handler into a handler value, we can no longer compose it with other handlers to make a

single more complex handler.

With the definitions described in this chapter, along with various more standard value

interpretations for types like the product, sum, and universal and existential quantifiers, we

can prove Theorem 1, Theorem 2 and Theorem 3 for a calculus with handler constructors

such as lambda abstractions, recursive functions, type abstractions, pairs, the left and right

injection of the sum type, existential packing, and let. The details pertaining to all these

constructs can be found in the accompanying Coq formalization.

4.3 Maximal Semantic Effect Model

In the previous section, we avoided defining any specific semantic effect in the handler

interpretations by hiding it with existential quantification and a simple property to ensure

the effect is good. Since the property relied only on the labels and the type and effect of
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the delimiter, and not the handlers, it seems like there might be a concrete one-size-fits-all

effect that works for every handler that expects a particular delimiter, and it is indeed

the case. First of all, we can observe that all expressions that directly raise an effect are

of the form shift𝑙
0
𝑟 . 𝑒 , no matter how complex the capability. We define the maximal

effect 𝐹
𝑙1,𝑙2
max

𝑅𝑑 𝐹𝑑 as the effect containing all pairs of expressions of this shape such that

𝑒1{𝑣1/𝑟 } and 𝑒2{𝑣2/𝑟 } are related for related resumptions 𝑣1 and 𝑣2, given a particular

resumption argument type.

(shift𝑙1
0
𝑟 . 𝑒1, shift

𝑙2
0
𝑟 . 𝑒2, {𝑙1}, {𝑙2}, 𝑅) ∈ 𝐹 𝑙1,𝑙2

max
𝑅𝑑 𝐹𝑑 ⇐⇒

∀(𝑣1, 𝑣2) ∈ Arr 𝑅 𝑅𝑑 𝐹𝑑 . (𝑒1{𝑣1/𝑟 }, 𝑒2{𝑣2/𝑟 }) ∈ E 𝑅𝑑 𝐹𝑑

As it happens, we can replace the existential quantification in the handler type interpretation

by directly using the maximal effect. The definition can remain almost identical.

(ℎ1, 𝑥 . 𝑒′1, ℎ2, 𝑥 . 𝑒′2) ∈ HJ𝛼. 𝜏ℎ @ 𝜏𝑖 / 𝜀𝑖 ⇒ 𝜏𝑜 / 𝜀𝑜K𝜂 ⇐⇒
∃𝑅𝑑 ⊆ J𝜏𝑜K𝜂, 𝐹𝑑 ⊆ J𝜀𝑜K𝜂 .∀𝑙1, 𝑙2.

J𝜀𝑖K𝜂 [𝛼 ↦→𝐹𝑚 ] ⊆ 𝐹𝑚 ∪ 𝐹𝑑 ∧
(|ℎ1 |𝑙1, |ℎ2 |𝑙2) ∈ J𝜏ℎK𝜂 [𝛼 ↦→𝐹𝑚 ] ∧
∀(𝑣1, 𝑣2) ∈ J𝜏𝑖K𝜂 [𝛼 ↦→𝐹𝑚 ] . (𝑒′1{𝑣1/𝑥}, 𝑒′2{𝑣2/𝑥}) ∈ E 𝑅𝑑 𝐹𝑑

where 𝐹𝑚 = 𝐹 𝑙1,𝑙2
max

𝑅𝑑 𝐹𝑑

The semantic handler judgement can similarly be modified to use the maximal effect.

In this case, we can make two observation. Firstly, all the trouble we went to in order to

deal with supereffects is no longer necessary. The handlers that we compose all have the

same delimiter type and effect, so the semantic effect is always the same. Secondly, the

separation of Δ1 and Δ2 is a lot less significant once there is no quantifier alternation, and

could be removed altogether. Nonetheless we keep it here for the sake of hygiene, as 𝜏

and 𝜀 cannot use Δ2. The following is the complete definition.

Δ1;𝛼 ;Δ2; Γ |= ℎ1 ­ ℎ2 : 𝜏ℎ @ 𝜏 / 𝜀 ⇐⇒
∀𝑙1, 𝑙2.
∀𝜂1 ∈ JΔ1K.∀𝜂2 ∈ JΔ2K.∀(𝛾1, 𝛾2) ∈ JΓK𝜂1 [𝛼 ↦→𝐹𝑚 ]𝜂2 .

( |𝛾∗
1
ℎ1 |𝑙1, |𝛾∗2 ℎ2 |𝑙2) ∈ J𝜏ℎK𝜂1 [𝛼 ↦→𝐹𝑚 ]𝜂2

where 𝐹𝑚 = 𝐹 𝑙1,𝑙2
max

J𝜏K𝜂 J𝜀K𝜂

As with the existential effect model, we can use the maximal effect model to prove

Theorem 1, Theorem 2 and Theorem 3 for the calculus with all the considered extensions.



5 Conclusion and Future Work

We proposed not one, but two constructions of logical relations that can scale to a variety

of handler definitions that are useful in the practice of programming. The existential

model, introduced in Section 4.2, gave us insight into a sufficient condition on the handler’s

semantic effect and the difference between type variables bound before and after the

distinguished effect variable of a handler. It also elegantly hides information about the

semantic effect by the use of the existential quantifier. On the other hand, the model

from Section 4.3 based on the maximal semantic effect shows us that a concrete semantic

effect can be given for all handlers by a coarse approximation from above. This avoids the

subtleties of the existential model and allows for some simplifications in the construction.

The inclusion of all well-typed shift0 expressions in the maximal semantic effect also hints

at a connection to some interpretation for the shift0 and reset0 operators. In fact, the

Coq formalization includes such an interpretation, though its description is out of this

work’s scope. Ultimately, both variants can be used to prove the fundamental property

of the logical relations, type safety of the enriched calculus, and entailment of contextual

approximation by the logical relations.

The natural question that arises is how the two models relate to each other. At the

time for writing, we cannot offer definitive answers on this topic. On the one hand, one

would hope to find that the maximal effect model is contained in the existential model

by instantiating the existential quantifier with the maximal effect, which satisfies the

required property F . However, the open handler relation in the existential model contains

quantification over all supereffects, while the one for the maximal effect does not. Although

we named this effectmaximal to emphasize the intuition behind it, there are clearly semantic

effects that are not subeffects of the maximal effect, for example due to relating expressions

that are not shift0. Those effects are possible even if we restricted the supereffects to those

satisfying the property F . The situation is no easier for the inclusion of the existential

model in the maximal effect model. The effect that was picked in the existential model may

also not be a subeffect of the maximal effect. However, even if we could use subeffecting to

try to prove the inclusion, we would apparently also have to restrict where the distinguished

effect variable appears in the type of the capability and input type of the handler.

If themodels are indeed different, it would be interesting to see examples of equivalences

that can be proven in only one of themodels. A possible candidate for a pair that is contained

in the existential model, but not the maximal effect model, are two handlers of the reader

effect, one implemented as eff 𝑥/𝑟 . 𝑟 42, and the other as a pure function with a handler

form that we did not discuss, val 𝜆𝑥. 42. The handler constructor val 𝑣 simply uses 𝑣 as

the capability. These two handlers can be shown equivalent using the existential model, but

we have not been able to produce a similar proof of the same equivalence in the maximal

effect model. The difficulty once again lies in the fact that the maximal effect only contains

shift0 expressions, but in this case one of the implementations is pure.

25
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In the face of these problems, we believe it would be worthwhile to consider a third

model, which is a slight variation on the maximal effect model. We could change the

maximal effect to be the largest semantic effect that is still in F . A potential future

direction is to see how all three models relate to each other.

Despite the unanswered questions about the relationship between the two models

proposed in the present work, both of them seem interesting due to the distinct observations

required for each construction.
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