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Abstract

This thesis presents a comprehensive tool for the Unity engine that simplifies the
creation and editing of scenes represented using Signed Distance Fields (SDFs). By
providing an intuitive, interactive user interface, the tool eliminates the need for
manual shader programming, enabling users to design complex geometries visually.

Key features of the tool include:

• An interactive user interface for creating and manipulating SDF scenes, allow-
ing users to design complex geometries visually.

• An extendable API for generating Shaderlab and HLSL files using Abstract
Syntax Trees (ASTs), facilitating structured shader code representation.

• A tree-based system for representing shaders as networks of connected primi-
tive nodes, enabling flexible and modular shader development.

• Editor widgets for controlling SDF scene primitives, enhancing user interac-
tivity and control.

• A library of pre-built primitives and operators, offering ready-to-use compo-
nents for efficient SDF scene construction.

• Example scenes demonstrating the tool’s capabilities and providing a starting
point for users.

In addition to the tool’s implementation, this thesis provides brief comparisons
with existing similar tools, an overview of the technologies leveraged in the tool’s
development, and discusses potential directions for future work.

By streamlining the SDF scene creation process and providing powerful, exten-
sible APIs, this tool aims to lower the barrier to entry for developers and artists,
fostering greater experimentation and innovation in SDF-based rendering within the
Unity engine.
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Niniejsza praca przedstawia kompleksowe narzędzie dla silnika Unity, które
upraszcza tworzenie i edytowanie scen reprezentowanych za pomocą funkcji odle-
głości ze znakiem (SDF). Dzięki intuicyjnemu, interaktywnemu interfejsowi użyt-
kownika, narzędzie eliminuje konieczność ręcznego programowania shaderów, umoż-
liwiając użytkownikom wizualne projektowanie złożonej geometrii.

Kluczowe elementy pracy obejmują:

• Interaktywny interfejs użytkownika do tworzenia i manipulowania scenami
SDF, umożliwiający wizualne projektowanie złożonej geometrii.

• Otwarte API do generowania plików w językach Shaderlab i HLSL za pomocą
Drzew Składni Abstrakcyjnej (AST), ułatwiające strukturalne przedstawienie
kodu shaderów.

• System oparty na drzewach do reprezentowania shaderów jako sieci połączo-
nych prymitywnych węzłów, umożliwiający elastyczne i modularne tworzenie
shaderów.

• Elementy interfejsu do kontrolowania prymitywnych obiektów sceny SDF, za-
pewniające użytkownikom wysoką interaktywność tworzonej sceny.

• Własnoręcznie stworzoną bibliotekę gotowych do użycia prymitywów i opera-
torów, oferującą komponenty do efektywnej konstrukcji scen SDF.

• Przykładowe sceny demonstrujące możliwości narzędzia i stanowiące dobry
punkt wyjścia dla użytkowników.

Oprócz implementacji narzędzia, niniejsza praca zawiera krótkie porównanie z
istniejącymi, podobnymi narzędziami, przegląd technologii wykorzystanych w roz-
woju narzędzia oraz omawia potencjalne kierunki przyszłych prac.

Usprawniając proces tworzenia scen SDF i oferując rozwinięte, rozszerzalne
API, narzędzie to ma na celu obniżenie bariery wejścia dla deweloperów i arty-
stów, wspierając eksperymentowanie i innowacje w renderowaniu opartym na SDF
w ramach silnika Unity.
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Chapter 1

Introduction

1.1 Motivation

Rendering using Signed Distance Fields (SDFs) is a technique known in many fields
related to computer graphics. It is often used by the demoscene community for
achieving complex effects and drawing complicated scenes with high flexibility and
ease that could be otherwise hard or inefficient to achieve with regular mesh or
raytracing based techniques. Signed Distance Fields have been applied in various
industries, including web development (notably in font rendering), the robotics and
computer vision industry (representing the world using SDFs), art, and the game de-
velopment industry (for real-time Global Illumination, Constructive Solid Geometry,
dynamic particle systems, and more).

Even though SDFs provide easy access to complicated effects (e.g., soft shadows,
Boolean operations, infinite repetition, cheap ambient occlusion), they also come
with some trade-offs:

• They often require developers to have specialized, hard-to-find knowledge of
non-trivial graphics programming, raising the barrier to entry for novices.

• Furthermore, without the availability of visual tools, developers are often
forced to partake in a tedious process of adjusting shader parameters by trial
and error. Tools like Shadertoy [1] provide only the most basic tools for cre-
ating shaders, without much support for user or developer interactivity.

• Oftentimes, the optimized SDF routines are obscure, undocumented, copy
pasted code snippets, which leads to even more confusion for beginners.

• There is no single source of truth for the definitions of SDF-based functions,
leading to a common practice of copy-pasting similar undocumented imple-
mentations scattered all over the Internet.

7
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• When creating the SDF scene, adjusting the components manually leads to
shader recompilation, which slows down development even further. Optimiz-
ing this process to use widgets and data passed to shaders would require con-
siderable effort from anyone trying to achieve it.

This work has been motivated by the aforementioned shortcomings and aims
to provide a simpler and more robust way of generating and editing SDF scenes.

1.2 Existing tools

Several software solutions address similar challenges in rendering using Signed Dis-
tance Fields (SDFs), each with its strengths and weaknesses.

Shadergraph, integrated within Unity, is a stable and actively maintained tool
that offers good performance and a live, real-time preview. However, it is limited
to simple evaluation model without treating SDF functions as proper values, it is
semi-open with native bindings to closed-source libraries, and lacks support for user
generated port data or a support for scene-view interactivity and extensibility using
gizmos. Integrating the Shadergraph and the work of this thesis can be a subject of
the future work.

Womp [2] is a cloud-only, proprietary tool known for its intuitive user experience
but suffers from performance issues as scene complexity increases. It requires a
constant online connection, and on poor connections, the delay can make the tool
less interactive. Additionally, Womp is non-extensible, and many basic features
are only available with a subscription, making it less accessible for users needing
advanced functionalities. Models created in Womp can’t be easily used in other
tools such as Shadertoy or in game engines, unless a baked mesh were to be used.
The set of operations available in Womp is limited and fixed, thus composition of
advanced SDF operators may turn out to be difficult.

Unbound [3], yet to be released, promises to combine web functionality with
addons for integrating with other game engines such as Unity Engine, Unreal Engine,
Blender and Godot Engine, potentially offering high extensibility and an intuitive,
albeit somewhat simplistic, user experience. The scope of this project is however
yet unknown. It is unknown if this tool will generate shaders that can be modified
or only export scenes as static meshes.

uRaymarching [4] is a discontinued, open source SDF shader generator for Unity.
It has more features and supports more rendering pipelines than the work of this
thesis. However, it is intended for use with older versions of Unity and has compat-
ibility issues with modern Unity technologies. uRaymarching uses a custom string
templating language to construct shaders and provides several templates for gen-
erating them. Despite this, it lacks interactivity and the ability to compose scenes

https://womp.com/index
https://www.unbound.io/
https://github.com/hecomi/uRaymarching
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dynamically. Defining SDF scenes with uRaymarching involves manually writing all
the shader code, which means that while it helps bootstrap a raymarching renderer,
it does not offer interactive scene controls. The final shaders depend on a single,
manually written SDF function. Some techniques and examples from this package
have been adapted in the current work, primarily in relation to interacting with the
Unity Engine API.

MudBun [5] is a premium, paid Unity package derived from the older, open-
source Clayxels [6] package, designed for working with SDF and volumetric geometry
in the Unity engine. While MudBun is a mature tool, its cost can be a significant
barrier to entry for novices. It is extensible and provides APIs for defining custom
geometry brushes, though it is unclear if the package allows access to and modifi-
cation of the source code. It provides an intuitive graphical interface for working
with the geometry. MudBun supports four drawing modes (smooth mesh, flat mesh
and two splatting variants) and several meshing algorithms. Without obtaining the
tool it is not entirely transparent how the rendering process works, as the author
mentions the use of meshing algorithms, compute shaders, and the necessity to sam-
ple SDFs multiple times. It appears that the tool itself does not generate flexible
shaders; instead, it likely uses compute shades to generate meshes directly on the
GPU by sampling the SDF or volume data and renders the generated mesh using
regular shading techniques.

In contrast, this work aims to provide a new, experimental, interactive and
highly extensible solution with a more flexible and powerful API for generating
shader code. It is open-source under the MIT license and developed in C# with
a Unity base. Unlike the aforementioned tools, this project offers all of the fol-
lowing features: interactive, offline and non-destructive editing directly in Unity,
simple generation model, flexible data types, easy to use GUI elements, capability
to generate readable, reusable shader code and partial scripting support. Though
still experimental and supporting only a simple shading model which doesn’t utilize
full capabilities of the Built In Render Pipeline in Unity, this solution offers a ro-
bust alternative serving as a base with potential for high customizability and free
availability, addressing many limitations observed in existing tools and lowering the
barrier of entry.

It is worth noting that the development of this tool began prior to the discovery
of the other tools mentioned in this section. However, as the project progressed,
certain design decisions and features were influenced and inspired by the capabilities
and approaches observed in these existing tools. This integration allowed for a more
comprehensive and user-friendly implementation, incorporating some of the best
practices from the field.

https://longbunnylabs.com/mudbun/
https://andrea-intg.itch.io/clayxels




Chapter 2

Raymarching

2.1 Overview

Raymarching is a rendering technique that traces rays through a scene to determine
the distance to the nearest surface and uses this information to compute the geom-
etry and other image effects. This technique was known since at least the 1980s
[7] as a method for rendering implicit surfaces and has since been popularized by
the demoscene real-time graphics communities and prominent individuals like Inigo
Quilez [8] due to its flexibility and efficiency in rendering complex, stunning, artistic
scenes.

Unlike traditional ray tracing, which calculates intersections with explicit geo-
metric objects, raymarching renders geometry using implicit geometry definition by
simulating rays coming out of the virtual camera and using Signed Distance Fields
(SDFs) estimating the distance to the nearest surface, continuing until it is deter-
mined that the ray has hit a surface. This allows for the rendering of highly detailed
and mathematically defined shapes with smooth surfaces, complex lighting, and ef-
fects such as soft shadows and cheap (in terms of GPU memory and computation
budget) ambient occlusion. The term ”raymarching” itself describes a process of in-
teractively performing consecutive ”steps” along the ray until it is determined that
a surface has been hit.

Raymarching provides some advantages over other methods like rasterization
and traditional ray tracing. Rasterization is fast and well-suited for hardware accel-
eration but struggles with representing complex geometries and often requires the
geometry to be defined explicitly a priori. Things like Constructive Solid Geometry
(CSG) can be problematic for traditional raster renderers. Traditional ray tracing,
while capable of producing high-quality images with accurate reflections and refrac-
tions, can be computationally expensive and difficult to implement efficiently for
scenes with intricate details. Raymarching, by leveraging SDFs, allows for the rep-
resentation of complex and procedurally generated surfaces with relatively simple

11
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and efficient mathematical descriptions. Another major advantage of SDFs is their
ability to represent seemingly infinite (up to the numerical limits) detail without the
loss of quality, i.e. something not easily achievable in mainstream raster renderers
without complex approximation techniques such as various kinds of normal, bump
and parallax mapping, hierarchical Level Of Details (LODs) and others.

The main trade-offs of raymarching include the need for specialized knowledge
in mathematical functions and optimizations, as well as skills necessary for optimiz-
ing shaders for extremely detailed scenes due to the iterative nature of distance field
evaluations. Usually Signed Distance Field shaders are additionally static scenes,
or parametrized scenes where the number and definitions of primitives don’t dy-
namically change, simply because it would either involve dynamic branching in the
shader code leading to very poor performance or recompiling shaders at runtime.
In addition, some graphic effects may depend on strict mathematical properties
of SDFs leading to rendering more or less noticeable rendering artifacts when these
properties are violated. Recent technological advancements in rendering and graphic
APIs, for example support for HLSL classes and interfaces, may however soon help
in resolving some of these issues. Despite these challenges, raymarching continues
to gain traction in various fields, including computer graphics, game development,
and interactive art installations, due to its versatility and the high quality of the
visual results it can achieve and the growing compute capabilities of the mainstream
hardware.

Figure 2.1: Render of the ’Rainforest’ shader using SDF raymarching,
author: Inigo Quilez [9]
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Figure 2.2: Render of the ’Snail’ shader using SDF raymarching,
author: Inigo Quilez [9]

2.2 Theory

The theory of SDF raymarching is extensively researched and explained in existing
works [10] [11] and is not within the primary scope of this thesis. However, a brief
description is provided here for clarity.

Unlike regular raster renderers, SDF raymarching uses implicit surfaces defined
by scalar fields called Signed Distance Fields. For any point p in space, the value of

signed distance = SDF (p)

describes the signed, shortest distance to the surface of the implicit object from
that point. A positive value indicates that the point is outside the geometry, while a
negative value indicates that the point is inside the geometry. This definition implies
that the surface of the implicit object is a set of points where the SDF evaluates
to 0. Using this definition, we can infer that within a sphere of radius |SDF (p)|
centered at point p, there are no points belonging to the surface (simply provable
by contradiction).

Rendering geometry defined using SDFs involves simulating the travel along
rays outgoing from each ”pixel” of the camera until the surface is hit. We start at
the ray origin (usually the camera’s near plane in world space) and iteratively step
forward along the ray. Unlike regular raymarching or raytracing, which perform
fixed steps, we use the properties of SDFs to accelerate the process by taking a step
of size SDF (p). We stop when the ray hits the object, i.e., when SDF (p) = 0. In
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Figure 2.3: Raymarching, from GPU Gems 2: Chapter 8 [11]

practice, due to numerical errors, we stop when we are close enough to the surface,
using a very small distance ϵ, i.e., when |SDF (p)| < ϵ.

Given this SDF definition, traversing along the ray becomes straightforward.
Instead of performing fixed steps, as in regular raymarching or raytracing, we can
safely traverse forward by stepping a distance equal to SDF (p) at each iteration.

2.2.1 Geometry

One of the primary challenges of SDF raymarching is the necessity to define functions
describing the geometry of primitives. This process can be intricate and impracti-
cal compared to traditional 3D modeling and rendering techniques, which rely on
explicit geometry typically represented by triangles. Triangular surfaces are straight-
forward to manipulate and render using rasterization or ray tracing. In contrast,
SDF-based techniques require mathematical descriptions of surfaces, which can pose
difficulties in deriving and optimizing complex shapes.

Alternative methods exist for rendering implicit surfaces from pre-existing data,
such as randomly sampling the mesh and precomputing an SDF into a low-resolution
3D texture meant for sampling during raymarching. While this approach simplifies
the representation of complex geometries, it requires an additional precomputation
step, some memory and performance overhead and finally can sometimes lead to
interpolation artifacts and a loss of detail. However, these techniques, though valu-
able, fall outside the scope of this thesis, which concentrates on real-time generation
and manipulation of SDFs.

Despite the challenges, there are comprehensive online resources available for
common SDF primitives and operations. For example, the hg sdf library [12] and
Quilez’s work [13] provide extensive collections of SDF functions and transforma-
tions for describing various geometric shapes and effects. These resources serve as
invaluable assets for developers aiming to implement SDF-based rendering without
having to derive all functions from scratch.

https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-8-pixel-displacement-mapping-distance-functions
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2.2.2 Examples of SDF primitives

Below are derivations of SDFs for a sphere and a box in pseudo-HLSL code. These
primitives are defined relative to the center of the Cartesian space at (0, 0, 0).

float sdf_sphere(float3 p, float radius) {
return length(p) - radius;

}

// b are 3 half-sizes of the box
float sdf_box(float3 p, float3 b) {

float3 d = abs(p) - b;
return length(max(d, 0)) + min(max(d.x, d.y, d.z), 0);

}

Listing 1: Sphere and box SDF primitives written in HLSL pseudocode.

These, along with other primitives, can be found in the source code of the
program within the primitives.hlsl include file.

2.2.3 SDF operators

One of the key advantages of SDFs is the ability to combine and transform ge-
ometry in nontrivial ways using various operators. These operators facilitate the
creation of complex, artistic scenes by employing simple primitives and transfor-
mations or combinations using operations like union, intersection, difference, and
smooth blending, to name a few. Below are definitions of some commonly used SDF
operators. These operators, which often require expensive, numerically inaccurate
computations or complicated algorithms and compute shaders executed on GPU in
conventional raster renderers, are typically simple and inexpensive to add in SDF
raymarchers.

• Union: Combining two SDFs results in a smaller distance of the two:

union(p) = min(sdf1(p), sdf2(p))

• Intersection: Taking the maximum of the results from two SDFs results in an
intersection of the two:

intersection(p) = max(sdf1(p), sdf2(p))

• Flipping the signed distance field ”inside out” is simply flipping the sign:

flipped(p) = −sdf(p)
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• Subtraction: Subtracting SDF2 from SDF1 can be performed by taking the
maximum of the first SDF and the inverted second SDF:

subtract(p) = max(sdf1(p), −sdf2(p))

• Transformation: To translate and rotate the primitive from the world origin
(0, 0, 0), perform an inverse transformation of the point where the SDF is eval-
uated. Transformation is represented using a single translation and rotation
matrix T :

transformed sdf(p, T ) = sdf(T −1p)

More advanced operations easily achieved with SDFs are smooth combination
operators, such as smooth union, smooth intersection, and smooth difference. They
are commonly performed by smoothly interpolating between the two returned dis-
tances, for example using a cubic polynomial interpolation. However, some inter-
polation methods may produce incorrect SDFs, leading to rendering artifacts or
unnecessary raymarcher steps. More about smooth interpolation of SDFs, their
variants, caveats, and comparisons can be found in [14].

Other operations that can be performed on SDFs include extrusion, onion skin-
ning, elongation, scaling, transformation, bending, twisting, repetition, symmetry,
revolving around an axis, rounding, change of metric, and others. Their implemen-
tations can be found in the source code of the program and in online resources such
as [13] and [12].

Due to the implicit nature of SDFs, there are limitations to the capabilities of
the operators and their methods of operation. For example, a common operation of
scaling in regular raster renderers isn’t as straightforward in raymarching. Scaling
SDFs uniformly stretches and squishes the space itself, so it should be accounted
for during raymarching. Non-uniform scaling is rarely seen in SDF raymarchers due
to frequent occurrences of rendering artifacts. Instead, scaling is often applied to
individual objects separately by directly changing SDF properties.

2.2.4 SDF normals

An essential aspect of rendering SDFs is shading, which often requires determining
surface normals and calculating the influence of lights.

The surface normal of the implicit SDF surface f at point p can be found by
evaluating the gradient of the function at that point:

∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
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Defining a normal for a surface represented with SDF can be achieved in several
ways. One approach involves finding analytic solutions by solving derivative equa-
tions, but these are often very challenging or even impossible to calculate. Another,
more robust method is to approximate the gradient using finite central differences
by sampling the SDF in a very close neighborhood around the point p:

−→n = ∇f(p) ≈


f( x + ϵ, y, z ) − f( x − ϵ, y, z )
f( x, y + ϵ, z ) − f( x, y − ϵ, z )
f( x, y, z + ϵ ) − f( x, y, z − ϵ )


It’s important to note that the result of such a calculation should be normalized

to provide a true, unit-length normal in the shader.

This equation can be implemented in various ways, some more performent and
others more accurate. More information about different implementations can be
found in [15].

The following approximation holds true for exact SDFs. For approximate SDFs,
such as the results of smooth blending, it may produce invalid values and rendering
artifacts.

2.2.5 SDF shading

Given the normal definition above, shading an SDF can be performed using uni-
versally known shading techniques such as Lambert, Phong, or BRDF shading.
Required material properties such as albedo, roughness, index of refraction, and
specular can often be provided by using ray direction, hit point, normal, and addi-
tional material data returned by the hit surface.

Applying shadows to shaders is often as simple as casting secondary rays from
the hit point on the surface towards the lights. If the secondary ray hits another
geometry, it indicates that the hit point is in shadow. This technique can be simply
extended to render soft shadows at no additional cost. One of the simplest methods
involves tracking the minimal distance encountered during the traversal. This dis-
tance is then used to calculate the umbra and penumbra shadows. More about this
technique, its caveats, implementation details, and variants can be found in [16].

Ambient Occlusion (AO) is yet another effect that can be easily computed in
SDF raymarching shaders. AO is often used to make shading more realistic by
calculating the influence of nearby geometry on shading, so details like creases or
concave surfaces would look believable.

To approximate the AO of a certain point p of SDF, we can use the Monte
Carlo method of randomly sampling the neighborhood around p and counting how
many samples fall inside the geometry (sdf(p) < 0) and how many are outside
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(sdf(p) > 0). The more points fall inside the surface, the more probable it is that
the geometry around point p is concave. Counting and calculating the occlusion
ratio with appropriate falloff gives an occlusion factor. Details of this technique,
optimizations and improvements can be found in [17].

An important part of shading is applying textures to SDFs. Compared to
regular renderers, texturing implicit surfaces isn’t as easy. In traditional rendering,
UV mapping provides a straightforward way to map 2D textures onto 3D surfaces
defined by mesh geometry. Each vertex of a mesh has corresponding UV coordinates
that directly map to the texture space, allowing for precise control over how the
texture is applied.

However, with SDFs, the surfaces are defined mathematically rather than
through explicit mesh geometry, which complicates the texturing process. The chal-
lenge lies in generating appropriate texture coordinates for points on the implicit
surfaces. There are several techniques for texturing SDF objects.

One approach is to use procedural texturing, where the texture is generated
procedurally based on the spatial coordinates of the points on the surface. This
method does not rely on UV coordinates and can seamlessly cover the entire surface,
avoiding issues such as texture seams or distortions. This technique is often used to
texture organic surfaces like rocks, dirt, stone, foliage, water, snow and other noisy
materials.

Triplanar mapping is another popular technique for texturing SDFs. It blends
textures based on the projection from three orthogonal planes (XY , XZ, and Y Z),
reducing the dependency on UV coordinates and providing a smooth transition
between different projections. More about triplanar and biplanar mapping can be
found in [18].

For more complex shapes, surface parametrization techniques can be employed
to generate UV coordinates. These techniques involve mapping the surface points to
a 2D domain in a way that minimizes distortion, but they are more computationally
intensive and challenging to implement for arbitrary SDFs.
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Figure 2.4: AO and soft shadows visualized, a scene by mhnewman [19]





Chapter 3

Project overview

3.1 Components

The program is designed as an example Unity project and a single, embedded Unity
Editor package. It is open-source and available online on a publicly hosted GitHub
repository [20].

The project includes:

• A sample project with exemplary SDF scenes demonstrating the capabilities
of this tool.

• A collection of versatile C# classes for working with Abstract Syntax Trees
of HLSL and Shaderlab (Unity’s own Shader DSL) languages. The supplied
classes model a subset of grammars and contain only the necessary utilities for
working with the aforementioned languages.

• An original, embedded sub-project implementing a syntax generator using
the Roslyn C# compiler API, used to automatically generate necessary AST
classes based on the aforementioned, properly annotated C# grammar classes.

• A collection of Unity C# component scripts for generating and controlling
shaders, interacting with and composing primitives using operators, and han-
dling assets in the Unity editor.

• A set of documented, ready-to-use HLSL include files defining functions and
utilities for working with SDF scenes. This set of tools can be used with the
provided components or as standalone functions for writing custom shaders
and extending the editor with new components, operators, and effects.
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Figure 3.1: Prefab stage serves as an editing environment for the SDF scene. Game
object hierarchy and attached modifier components define the scene structure. The
scene view displays gizmos of the currently selected object’s modifiers.

3.2 SDF scene generation

SDF shaders are generated by an SdfScene component attached to the root game
object of a prefab. The structure of an SDF scene can only be generated and edited
within the prefab. To create SDF scenes, use the Create > SDF > Scene Asset
context menu option in the Project view.

The generated SDF scene prefab asset will include:

• A material and shader attached as a sub-asset to the prefab, which is regen-
erated when the scene requires regeneration.

• A main game object with an SdfScene component, a root child that serves
as the origin for the SDF scene, and a scene renderer game object with a
single mesh using the generated material. The scene renderer displays the
game object and can be resized independently to encompass the whole scene
without distorting the raymarched space.

3.3 Adding objects to SDF scenes

Adding new objects to scenes can be achieved by selecting options from the SDF
context menu in the hierarchy window when editing a prefab. SDF primitives and
operators are represented using subclasses of the Controller component, which
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handles unidirectional communication with the SdfScene by sending events when
properties change.

Basic primitives should be automatically recognized by the scene if they contain
a subclass of the SdfController. A basic, positioned primitive in the scene will be
detected if it contains the following components:

• A TransformController for transforming the space to position a primitive
relative to the root. The purpose of this component is to react to the changes
of a game object position and emit events used by SdfScene to update shader
properties and position primitives.

• A subclass of SdfPrimitiveController which defines SDF primitives. Some
examples include SdfBoxController, SdfSphereController or variants and
SdfTorusController.

• An SdfController which references an ordered list of SDF operations, in the
simplest case referencing attached aforementioned components in this exact
order. Additional controls in the inspector allow control of several properties of
the SDF, for example if it should be inverted or not. This component provides
a definition of an SDF function a generator can attach to the generated shader.

Adding modifiers and primitives is achieved by adding a subclass of the
SdfController to the game objects, filling in the required data, and referencing
them in the appropriate components. The order of operations influences how the
operators affect the generated scene. Controllers which implement the IModifier
interface must agree on the input and output data types. Errors should be reported
to the console when requirements are not met or the application of modifiers is
impossible.

3.4 Custom controller editors

Custom editors for controllers provide responsive inspectors for controllers and func-
tions for controlling modifier properties using scene gizmos. Inspector properties are
divided into:

• Structural properties signalling when a shader regeneration is required, for
example when a torus type has been changed from regular to capped, or when
a primitive has been inverted.

• Runtime properties signalling the need to update material uniform values in
real-time.
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The generated material exposes controllable properties in the material inspec-
tor. Raymarching settings such as step count, surface hit epsilon, ambient occlusion
steps, debug rendering modes, and other shader properties can be adjusted there.

Basic inspectors are generated automatically for subclasses of Controller and
they autonomously bind to observable properties in controllers if properties are prop-
erly defined. Detailed requirements are documented in the ControllerEditor.cs
file.

Figure 3.2: Two automatically generated controller inspectors. Orange fields indi-
cate structural properties, blue fields indicate runtime properties.

3.5 SdfScene inspector

The SdfScene inspector depicted in Figure 3.3 includes:

• Rebuild Shader button allows you to manually rebuild the shader in the
prefab editing environment, useful for debugging. This feature is inspired by
the similar capability of the ShaderGraph asset from the Unity Shader Graph
package.

• Open Generated Shader button displays the generated shader code. This
code is built using a similar approach to the Shader Graph.

• Diagnostics section, displaying important information, errors and warnings.

• Control section, referencing asset used by the SdfScene to control material
properties in real time.

• Asset section allows you to reference assets, which will be regenerated by the
script whenever shader code changes. Asset in this section can be left empty.

• Generation section, allowing the user to select used shader preset and gener-
ator settings. Presets should be detected automatically during Unity domain
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reload if they are derived from the ShaderPreset class. Generator settings
are detected and displayed automatically by Unity, and can be initialized by
shader presets.

Interactivity is achieved by exposing specific shader variables as uniforms, with
the SdfScene component updating these uniforms as needed. Shader specific prop-
erties are handled and automatically detected using the com.unity.properties [21]
package.

Figure 3.3: SdfScene component inspector, the root of any SDF scene.

3.6 Instantiating SDF scenes

Instantiating SDF scenes can be done by instantiating the SDF scene prefab. Giz-
mos are provided to show helpful information visually, such as green and red gizmos
indicating normal or inverted primitives, and colored lines indicating combined con-
trollers and their operations.

Multiple scenes can be instantiated at the same time and integrated into regular
Unity scenes with normal mesh geometry thanks to proper handling of the depth
reads and writes. Users can extend default generators and include files to add
support for advanced image effects, alternative rendering pipelines and others.
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3.7 Configuring generated materials

Generated shaders provide various customization options through the adjustment
of material properties. The simplest way to modify these properties is by using the
inspector of the generated material. Additionally, material properties can be con-
trolled via standard Unity APIs, such as updating uniforms or toggling keywords
from C# scripts. The default shader generator included in this tool exposes sev-
eral useful properties for adjusting material settings such as raymarching steps and
distance limits, enabling depth buffer writes and Z-tests, and controlling ambient
occlusion strength to name a few.

3.7.1 Debug modes

To assist with the debugging of raymarching shaders, several debug modes have
been added to the default generated shader. The functions are defined in the
raymarching.hlsl and debug.hlsl include files. Controls for switching modes
are available through the inspector of the generated material.

The debug modes include visualizations for:

• Default Material Mode: Displays the standard material shading.

Figure 3.4: A figure model with material visualized.

• Albedo: Shows the base color of the material.

• Primitive ID: Visualizes the unique identifier for each SDF primitive.
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Figure 3.5: A figure model with primitive ID visualized.

• Skybox Data: Displays the skybox data used in the scene.

• Calculated Normal: Shows the surface normals calculated during raymarch-
ing.

Figure 3.6: A figure model with calculated normal visualized.

• Amount of Raymarching Steps: Visualizes the number of steps taken by
the raymarching algorithm.
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Figure 3.7: Visualization of the step count of the raymarcher. Blue indicates fewer
steps, while red indicates more.

• Depth: Shows the depth information of the rendered scene.

• Occlusion Factor: Displays the ambient occlusion factor, indicating the
shading influence of nearby geometry.

Figure 3.8: A figure model with ambient occlusion visualized.

• World Space Grid: Displays a grid of world space positions for better spatial
understanding.
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Figure 3.9: A complex scene with many primitives and operators, visualized with
albedo debug mode and a world position grid.

3.7.2 Gizmos

To assist in the process of creating scenes interactively, a selection of gizmos and
handles have been implemented in the package. An example gizmo for control-
ling a capped torus is displayed below in Figure 3.10. When an object with an
SdfTorusController is selected, a gizmo for the major radius, minor radius, and
cap angle is shown. Dragging the gizmo with the mouse or modifying the values
in the inspector updates the values in the material in real-time, providing instant
visual feedback.

Figure 3.10: A capped cone gizmo. Dragging handles allow adjusting major radius,
minor radius and the cap (cutout) angle.
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Figure 3.11: SdfCombineController in intersection mode displays yellow lines
pointing to combined children.

Figure 3.12: A capped torus gizmo turns red if the primitive is inverted.

Figure 3.13: A cone scene gizmo. The tip and base radius handles can be dragged
to adjust cone sizes.
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3.8 Examples

This section features a collection of scenes crafted with the assistance of this tool.
All scenes have been created manually and rendered in 2K inside the editor. Addi-
tionally, some scenes have been recreated based on publicly available online resources
such as womp.com [2].

Figure 3.14: HDRI skybox shading applied to a bunny model.

Figure 3.18: A complex scene shaded using primitive ID and basic Lambert shading
model respecting Unity light.
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Figure 3.15: A bunny model created with the help of this tool.

Figure 3.16: An uncanny depiction of a unicorn created in under five minutes.



3.8. EXAMPLES 33

Figure 3.17: Layered onion operator applied to a rounded box and a cut torus

Figure 3.19: Constructive Solid Geometry example: rounded cube with cutout
rounded cross.
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Figure 3.20: Multiple SDF scenes and regular unity mesh geometry (gray box on
the left) rendered in a single Unity scene using one camera.

Figure 3.21: Primitives and operators can be combined, to create complex shader
effects and behaviors.



Chapter 4

Implementation

4.1 Programming environment and tools

The program was created using the JetBrains Rider IDE, version 2024.1.2. The
project was developed and tested in Unity version 2022.3.32f1. An original,
embedded Generators.dll compiled shared library was used for generating AST
helper classes. This library was built from the sources of the original sub-project
SDF/SyntaxGenerators using the msbuild tool included with Rider IDE. Git was
used for version control to efficiently manage and track changes throughout the
development process.

4.2 Architecture and design

The tool is designed as a Unity Package and can be divided into two main compo-
nents: the AST library and the Unity-specific classes and components for working
with SDF scenes.

4.2.1 AST

To support the generation, assembly, formatting, and transformation of shaders, an
AST library inspired by Roslyn’s [22] Syntax API was developed. It is located in
the SyntaxGenerators directory of the package. The design of the AST tools was
influenced by the following decisions:

• The AST should be modeled as an immutable tree, providing means for trans-
forming and rewriting parts of it easily through specialized syntax node vis-
itors, such as syntax rewriters, visitors and walkers. This approach enables
modifying the generated shader in an idiomatic way without crude string
matching, commonly found in other shader generation tools.

35
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• Immutable AST nodes facilitate the creation of declarative and functional code
with fewer state-related problems.

• Formatting of the generated code is achieved using HlslFormatter and
ShaderlabFormatter implementing a tree walker and visitor pattern operating
on the AST.

• Strongly typed AST nodes help in generating valid HLSL and Shaderlab source
code, reducing the likelihood of runtime errors.

• The library focuses on constructing syntax trees, not parsing them, as parsing
is not a primary concern.

• AST trees are constructed bottom-up, but a lazy ancestor chain is created
using Anchors during downward traversal. This ensures AST immutability
while providing the flexibility of accessing parent nodes on demand. An al-
ternative approach using the functional Zipper pattern may be considered for
future work.

• Common AST structures, such as SyntaxList or Literal, are shared be-
tween languages without repetition, but are tagged with different languages
to prevent mixing syntax nodes of different languages at compile time. This
is achieved using generic node types and marker language interfaces.

• Source Generators are used to automatically generate the required syntax vis-
itors and utilities based on minimal syntax node definitions.

• The syntax tree preserves most of the source information, including trivia
(whitespaces, comments, preprocessor directives). The tree tries to support
full fidelity on the best effort basis.

• Unlike Roslyn but similar to TypeScript, syntax nodes do not have trailing
trivia, only leading trivia. This decision helped in mitigating numerous edge
cases encountered when trying to implement syntax rewriters for a model with
both leading and trailing trivia.

• C# records are used to provide better developer experience for immutable
modifications using the with construction. Even though the current design
may have small performance issues due to the usage and allocations of reference
data types, the API is designed to allow easy migration to the more efficient
record structs in more modern versions of C# yet to be supported by the
Unity engine.

• Optimizations should be performed mainly when a bottleneck is detected. As
long as the source code generation doesn’t degrade interactivity, the optimiza-
tion shall be a secondary priority.
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Figure 4.1: Conceptual model of a syntax tree

• Syntax nodes should closely mirror grammar rules of the languages, and should
be structurally similar to nodes present in other HLSL tools such as compilers
and parsers, allowing for easier future integration of such tools.

The structure and architecture patterns of the AST for HLSL and Shaderlab
were inspired by Microsoft’s Roslyn compiler design [22] and HlslTools by Tim Jones
[23]. It is also worth mentioning a new, standalone parser library tailored for HLSL
and Shaderlab [24], although this tool has been made public too recently to have
influenced or been used in this work.

Design of AST nodes

AST nodes are designed as simple, immutable C# record data types. Any mutations
to nodes are achieved using C# record class with syntax. Tree nodes are divided into
syntax nodes (representing abstract parts of the syntax such as function definition
statements or binary expressions), token nodes (representing concrete sets of tokens
recognized by the language), and trivia nodes (representing auxiliary parts of the
concrete syntax tree such as preprocessor directives, whitespaces, and comments).

This design was directly influenced by existing and widely used tools, such as
the C# Roslyn compiler [22], HlslTools by Tim Jones [23], and the TypeScript
compiler. Detailed explanations of this pattern can be found in the cited works.

Syntax nodes are internal tree nodes that do not directly represent the text —
they only hold references to other syntax nodes or token nodes. Token nodes are the
leaves of the tree and describe how tokens are transformed into text. Trivia nodes
are owned solely by token nodes.
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Listing 2 is an example definition of a syntax node representing a function
definition of the HLSL language.

/// function definition with body, for example
/// int foo(float x, row_major float y : VPOS = 7.0f) {
/// return x + y;
/// }
[SyntaxNode] public partial record FunctionDefinition :

Statement<hlsl>↪→

{
public Type returnType { get; init; }
public Identifier id { get; init; }
public ArgumentList<Parameter> paramList { get; init; }

= new();
public Semantic returnSemantic { get; init; }
public Block body { get; init; }

}

Listing 2: Syntax node defining a HLSL function definition.

Language grammars are defined using C# classes inside AST/<language> di-
rectories. The AST/Syntax directory defines base AST classes and common syntax,
token and trivia nodes. A single, lowercase marker interface is generated for each
child directory of AST by the ShaderGenerator.dll source generator. For details
on source C# source generators refer to Roslyn and Unity documentation [25].

For the syntax generator to function correctly, records must be partial and
annotated with either [SyntaxNode] or [TokenNode]. There are two types of trivia:
StructuredTrivia and SimpleTrivia. Simple trivia only define text (for example,
whitespace), while structured trivia hold a node to a syntax, such as a preprocessor
ifdef syntax node.

Generated partial classes define acceptors for syntax visitors and a utility func-
tion to return children nodes in the exact order they are defined in the class. Syntax
node children are defined using public properties returning subclasses of AST nodes
and are init-only.

Some syntax nodes define implicit conversion operators to reduce the verbosity
of the tree-building API. A universal ”Mapper” (a tree rewriter) and ”Formatter”
inheriting from it are defined for the common language, which are subclassed by
HlslFormatter and ShaderlabFormatter, allowing for a unified, centralized for-
matting logic.

A selection of utility extension functions is defined in Navigation and
Extensions for working with AST. An Anchor class, an overly simplified version of
a functional Zipper, is defined to act as a stateful wrapper for syntax nodes, created
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by rewriters and walkers during the descent.

The majority of the code uses C# pattern matching to write AST transforma-
tion rules.

new FunctionDefinition() {
returnType = (Predefined)Constants.ScalarKind.@float,
id = (Identifier)"sdfFunction",
paramList = new Parameter {

type = SdfData.pData.typeSyntax,
id = SdfData.pParamName

},
body = new Block { /*...*/ },

}

Listing 3: Example of creating a syntax node representing a HLSL function definition
using the AST API.

4.2.2 Generation

Shader generation is performed mainly by the following types of components:

• Modifiers inheriting from Controller and implementing IModifier interface,
acting as modular, composable blocks and exposing C# API for controlling
and updating material properties in runtime.

• SdfScene, which keeping track of the scene’s state, listens to events emitted
by Controllers, and updates the materials or shaders when needed.

• RaymarchingShaderGenerator derived from Processor which serves a dispos-
able, stateful generator composing the final shader source code by evaluating
modifiers and processing required SdfScene data.

• ShaderPreset, which plays a role of a configurable generator factory, enabling
users to easily hook into the generation pipeline by providing their own gen-
erators and configuring them.

SdfScene

The SdfScene has been modeled using prefabs. This design choice was dictated by
the need to keep shaders unique per SDF scene, as each one generates different shader
code, and shaders are compiled during project build time. Using prefabs allows for
modular and reusable architecture while maintaining the uniqueness required for
each shader. Additional benefit of using prefabs is exposing ”a controllable skeleton”
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of the scene whenever it’s instantiated. This is conceptually similar to exposing and
using rigged meshes when animating models.

The SdfScene acts as a scene root and collects important data, taking care
of assigning unique identifiers to each component, tracking properties, and sending
uniform updates to the controlled material when needed. It serves as the central
hub for managing and orchestrating the various elements that make up the SDF
scene, ensuring consistency and proper functionality.

Controller and Modifier

Controllers are components inheriting from the base class Controller and imple-
menting a Modifier interface. The Modifier interface is used to recognize the input
and output types, and they are modeled to be like modular bricks, which can be
stacked and evaluated serially by the processor. This modular approach allows for
flexible and dynamic composition of SDF operations.

Modifiers define a single Apply method, which defines the behavior of the mod-
ifier. This method accepts a single input object and returns a single output object.
There are no restrictions on the data type aside from It is up to the modifier to
correctly interpret and handle this data. Unlike Unity’s ShaderGraph, which can
handle only a fixed set of types (HLSL primitive types only), this tool can bundle
structures and even functions as data. This means that functions and operations are
treated as first-class citizens in this model, providing greater flexibility and power
in shader creation.

Modifiers are designed to be mostly stateless, which significantly simplifies the
logic. By minimizing statefulness, the code becomes significantly simpler, resulting
in fewer bugs and making maintenance easier. This stateless nature allows for more
predictable behavior and simpler debugging. Due to the limitations of the Unity
engine it wasn’t possible to implement true stateless architecture, nevertheless it
was used on a best-effort basis.

During processing, modifiers can emit additional requirements which must be
handled by the processor. Some examples include the definition of a function that
has to be included in the shader to make the evaluation work or an inclusion of a
specific HLSL file. This allows for complex dependencies and functionalities to be
managed seamlessly.

Modifiers can be combined into stacks, which themselves are modifiers. Modi-
fiers in a stack must agree on input and output types. This model is more powerful
than the a simple evaluation model used by Shader Graph, because it allows using
modifiers as values. This stacking capability allows for complex operations to be
built up from simpler ones, enhancing modularity and reusability.

Modifiers can depend on and reference other modifiers to apply advanced mod-
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ifications. For example, an Elongate modifier can take a modifier that transforms
VectorData into ScalarData and, assuming it’s the SDF function, applies elonga-
tion. This dependency system allows for intricate shader effects to be created.

The decision for that architecture was dictated by the definition of some SDF
operators. For example, a mathematically exact elongation operator is defined as a
circumfix operation that transforms the space before evaluating an SDF and modifies
the returned distance value:

// elongation is a circumfix operation on a primitive.
float elongate_exact(float3 p, float3 size) {

float3 q = abs(p) - size;
return SDF(max(q, 0.0)) + min(max(q.x, q.y, q.z), 0.0);

}

Listing 4: An implementation of exact elongation operator in HLSL pseudocode.

Without the capability to treat SDFs as first class citizens, this operation would
have to be defined as two nodes in a Shader Graph evaluation model: the first one
evaluated before and the second one evaluated after an SDF.

Event driven architecture of Controllers

Controllers define two important events used for communicating with the SdfScene:
PropertyChanged and StructureChanged. The first event indicates that a non-
structural shader change occurred to a property, meaning that the updated value
should be sent to the shader. The second event informs that an underlying shader
definition of the operator changed, requiring regeneration and recompilation. These
events ensure that the shader remains up-to-date with the current state of the scene.

Controllers implement the standard INotifyPropertyChanged interface to emit
property change events. This interface is commonly used in .NET for data binding,
making it a familiar and robust choice for notifying the system of property changes.

The com.unity.properties [21] package is used to collect and update proper-
ties generically during runtime. Compatible properties must be annotated with
[CreateProperty] and either [ShaderProperty] or [ShaderStructural], and
the controller must be a partial class annotated with [GeneratePropertyBag] for
compile-time generation of class property visitors. This allows for efficient access
and visitation of properties by SdfScene, streamlining the property management
process.

Controllers send required events when they detect changes. These changes can
include modifications to children or parents, renaming, or changing the order or data
of components. Due to the multitude of events that Unity can handle, it is possible
that some events have not been handled, but regular use of the tool has not shown
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any major errors. This robust event-handling system prevents tight component
coupling and ensures that the SDF scene remains responsive and up-to-date.

To make default Controller inspectors properly bind UI to controller data, prop-
erties and their backing fields must be named the same, with the backing field start-
ing with a lowercase letter and the property with a capital letter. This naming
convention allows for the automatic generation of inspector classes. If the need
arises, a custom inspector can be created, but for the most part, a default gener-
ated Controller inspector should suffice. This convention simplifies the code and
reduces the likelihood of naming conflicts or errors. Several C# attributes have
been implemented to improve the process of automatic inspector generation.

Handling errors

Unmet modifier requirements are reported as errors to the console. For example,
when a combine controller does not have any children, an error is logged. This
error reporting helps identify and resolve issues quickly, improving the development
process.

Some errors are displayed in the inspector of the SdfScene in the ”Diagnos-
tics” foldout. This provides a convenient and accessible way for developers to view
and address issues directly within the Unity Editor, enhancing the debugging and
development experience.

4.2.3 Generators

Generators implement the Processor interface to consume the data collected by the
SdfScene, provide an evaluation context for modifiers, and create the final shader
code. Generators are instantiated on demand by classes derived from ShaderPreset
and are disposed of after generation. Presets define methods and data necessary for
instantiating generators. Unity detects and registers shader presets automatically
after a domain reload. Users can implement their own presets and generators to tar-
get alternative rendering paths, such as forward or deferred rendering, and rendering
pipelines, such as Unity’s URP (Universal Render Pipeline) or HDRP (High Defi-
nition Render Pipeline). This modularity and extensibility make it straightforward
to adapt the tool to a wide range of rendering requirements.

4.2.4 Problems

During the implementation, numerous problems were encountered and resolved.
Some noteworthy issues are listed below:
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String based generation

The initial approach to generating shaders involved solutions similar to uRaymarch-
ing and Shadergraph—simple string concatenation or a simple string templating
language. This method proved difficult for several reasons:

• The need to develop, integrate, and learn an additional templating language.

• String concatenation is challenging when dealing with multiple dependencies,
as HLSL SDF functions must be treated as first-class citizens during genera-
tion. The data dependencies are often bidirectional, and string concatenation
is not powerful enough without a lot of messy code.

• The code is either littered with formatting directives or the generated shader
source is unreadable.

The AST library was created due to the lack of existing, standalone HLSL and
Shaderlab tools for parsing, syntax, and semantic models at the time of developing
this project.

Roslyn’s red-green tree model

An attempt was made to implement an AST model similar to Roslyn’s red-green
trees [26]. However, the complexity of implementation and the redundancy of main-
taining internal and public syntax for representing immutable bottom-up and lazy
top-down syntax trees proved too difficult to manage. Instead, lazy references to
parents were used during downward tree traversal to reduce the amount of mainte-
nance code and make the traversal explicit.

Ray generation

The implementation of the raymarching shader required a careful design to ac-
commodate both perspective and orthographic projections. While numerous online
sources provide guidance on raymarching, their explanations often do not trans-
late universally to orthographic projection. The goal was to create a raymarching
solution that works seamlessly for both projection types.

Several approaches were tested for generating rays from the camera. The first
approach used projection and view matrices and their inverses between the vertex
and fragment shader, but this method required calculating expensive matrix inverses
and sometimes produced invalid results.

Another approach interpolated direction vectors between orthographic and per-
spective rays based on the active projection type. Although this method worked



44 CHAPTER 4. IMPLEMENTATION

well in the fragment shader, it produced artifacts around triangle seams when imple-
mented in the vertex shader to leverage automatic GPU interpolation for calculating
fragment ray directions.

The final solution was an improvement to the previous technique. It involved
disabling perspective correction on the generated ray direction in the vertex shader
using the HLSL noperspective directive and performing ray direction normaliza-
tion only in the fragment shader after the GPU performed rasterization. The final
version of this technique is present in the vertexShader and fragmentShader func-
tions inside the debugBaseShading.hlsl and raymarching.hlsl include files found
in the package.

Lack of documentation and problems with the Unity engine

The lack of proper Unity documentation and internal engine bugs significantly hin-
dered the work on implementation of several features. Some examples include:

• Poorly documented asset pipeline with difficult to work with APIs: The current
design of modelling the scenes as Prefabs could have been implemented with
custom asset types, importers and a standalone editor window, similar to
Shader Graph. However, the scope of the project was so vast that it would
have been unrealistic for a single developer to complete within a reasonable
timeframe.

• Lack of detailed documentation for rendering APIs, reliance on implicit shad-
ing knowledge and a collection of seemingly disjoint but stateful shader files:
Unity doesn’t fully explain what its core shading functions do and how to
hook into the rendering pipeline in the shader. Some things, like integrating
with the standard unity shading model and material pipeline in vertex and
fragment shaders, were either very hard to understand, integrate or they were
skipped altogether.

• Support for controlling the shader compilation pipeline: Due to the lack of ex-
plicit API for manually compiling shaders, the recompilation process depends
solely on internal unity event events. The stateful design of Unity engine can
sometimes lead to weird problems when the state in memory is not synchro-
nized with the state in the editor. One such example is occasional problems
with refreshing of the prefab editing stage when a prefab updates and stale
references to non-existing assets in the inspector windows.

• Scene picking: Unity doesn’t explain how to integrate custom scene picking for
manually rendered objects. This forced the design of the tool where objects
can be picked only at their center by their icon gizmo in the scene. Several
approaches were tested for true pixel-based scene picking, but there has been
no success in implementing it.
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• Editor problems on a Linux platform: Editor often encountered fatal crashes
due to internal bugs when developing under Linux. The lack of support for
integration with rendering debuggers (for example RenderDoc) proved to be
a major difficulty in the initial stages of the development process.

• Occassionally, several internal Unity bugs may trigger false error message re-
ports, which do not affect the tool’s behavior.





Chapter 5

Summary and conclusions

This thesis presented a comprehensive tool designed for the Unity engine, simplifying
the creation and editing of scenes using Signed Distance Fields (SDFs). By providing
an intuitive and interactive user interface, the tool eliminates the need for manual
shader programming, allowing users to design complex geometries visually. This
work has aimed to lower the barrier to entry for developers and artists, fostering
greater experimentation and innovation in SDF-based rendering within the Unity
engine.

5.1 Future work

There is a vast space for improvement and exploration regarding the tool. Future
work could include improving the performance of the tool and reducing the memory
footprint, implementing rendering optimizations such as constant buffers and batch-
ing, integrating with existing Hlsl and Shaderlab parser libraries to facilitate fully
featured AST support, supporting more rendering pipelines and paths, integrat-
ing with Shadergraph and VFX graph, exporting scenes as meshes, better lighting
support, support for GLSL language, improving the scene editor tools and error re-
porting, optimizing asset generation process, implementing alternative techniques,
primitives and operators, integrating VR rendering or even decoupling the tool from
Unity and releasing it as a standalone web app. Due to difficulty, engine bugs and
an already broad scope of this thesis, proposed topics should instead become the
subject of the future work.
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