
Microarchitectural Design
and Implementation of Elements

of an Out-of-Order RISC-V Processor

(Projekt mikroarchitektury i implementacja elementów
procesora RISC-V Out-of-Order)

Krzysztof Obłonczek

Praca inżynierska

Promotor: dr Marek Materzok

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

12 czerwca 2024

Abstract

Modern processors can execute instructions in a different order to what was written
by the programmer or the compiler, but they still maintain the illusion of executing
them in program order. They do this using hardware data structures that construct
a graph of data dependencies between instructions and schedule a particular instruc-
tion for execution as soon as the hardware resources and operands required for it
are available. This technique called “out-of-order” execution has been ubiquitous in
processors ever since the second half of the 90s as it unlocks the potential for great
performance gains.

In this work we explain inner workings of such processor and present the mi-
croarchitecture of the Coreblocks core – an out-of-order RISC-V core that is actively
being developed at the University of Wrocław by a team comprising almost exclu-
sively of students. Parts of the core written by the author (former member of the
development team) are described in more detail, with particular emphasis on the
design decisions made and problems encountered during the implementation.

Współczesne procesory potrafią wykonywać instrukcje w innej kolejności niż
zapisał je programista lub kompilator, ale wciąż zachowują iluzję wykonywania ich
w porządku programu. Robią to przy pomocy sprzętowych struktur danych kon-
struujących graf zależności obliczeń między instrukcjami, zlecając wykonanie danej
instrukcji tak szybko jak tylko dostępne są zasoby sprzętowe i gotowe są operandy po-
trzebne do jej wykonania. Technika ta zwana „out-of-order execution” jest stosowana
w procesorach praktycznie wszechobecnie od połowy lat 90. ponieważ odblokowuje
potencjalnie duże zyski w wydajności.

W tej pracy przybliżamy zasadę działania takiego procesora i przedstawiamy
mikroarchitekturę rdzenia Coreblocks – rdzenia out-of-order RISC-V aktywnie roz-
wijanego na Uniwersytecie Wrocławskim przez zespół złożony prawie wyłącznie ze
studentów. Elementy rdzenia napisane przez autora (byłego członka zespołu dewelo-
perskiego) zostały opisane w większych szczegółach, ze szczególnym uwzględnieniem
podjętych decyzji projektowych i problemów napotkanych podczas implementacji.

In loving memory of Krystyna Tyka and Jan Panné

Contents

1 Introduction 9

2 Out-of-order paradigm 11

2.1 Dataflow . 11

2.2 Register renaming . 12

2.3 Tomasulo’s algorithm . 12

2.4 Tracking instruction order . 15

2.5 Controlling state changes . 15

2.6 Maximizing performance . 18

3 The Coreblocks project 21

3.1 RISC-V . 21

3.2 Amaranth . 22

3.3 Coreblocks . 23

3.4 Transactron . 24

4 Core architecture overview 27

4.1 Shared data structures . 27

4.1.1 Register file . 29

4.1.2 Free physical register IDs FIFO 29

4.1.3 Register alias table . 30

4.1.4 Reorder buffer . 31

4.2 Control and status registers . 31

4.3 Frontend . 32

7

8 CONTENTS

4.3.1 Instruction fetch and decode 32

4.3.2 Scheduler . 34

4.4 Middle-end . 36

4.4.1 Reservation stations and instruction scheduling 36

4.4.2 Execution units . 38

4.4.3 Jump-branch unit . 39

4.4.4 Load-store unit . 39

4.4.5 Result gathering and announcement 41

4.5 Backend . 43

4.5.1 Retirement . 43

4.5.2 Exception handling . 44

5 Implementation 47

5.1 Scheduler . 47

5.2 Assembling and debugging the core 51

5.3 Instruction memory . 54

5.4 Branch support . 54

5.5 Interrupt handling . 56

5.5.1 Introduction . 56

5.5.2 Initial approach . 56

5.5.3 Register leakage . 57

5.5.4 Precommit stage . 58

5.5.5 Implementation bugs . 58

5.5.6 Implementation details . 59

6 Summary and future work 61

Bibliography 63

Chapter 1

Introduction

Traditionally we think of the processor as a black box that takes a stream of instruc-
tions and executes them sequentially. While this has been true in consumer-grade
CPU implementations in the 1970s and 1980s, there is an inherent weakness in this
approach. Consider this example assembly code for an abstract ISA (result is placed
in the first operand of an instruction):

load r1 ← mem[r2]
add r3, r1

mul r4, r5

The add instruction is dependent on the result of a previous load because it
uses r1 register as one of its operands, while later mul instruction isn’t because
it doesn’t depend on either r1 or r3. To understand why this code would pose a
problem to any in-order processor aspiring to be high-performance we need to look
at another major component in any computer system – memory.

Speed of processors and memories have been steadily improving over the past
decades, but their pace hasn’t been the same. CPUs started outperforming memory
ever since the 1980s and this gap has been widening ever since, roughly 50% per
year.

Figure 1.1 details the evolution of CPU and memory speed starting from the
year 1980 as a baseline. In 2010 processors have been three orders of magnitude faster
than memory and this trend is only going to continue. Therefore the issue with our
in-order CPU is as follows: every load instruction needs to send the request for
data to memory, stall (pause) the core and wait potentially hundreds of clock cycles
before the memory responds with data. No useful work is performed during this wait
period, but if we could somehow deduce that a subsequent mul later in the instruction
stream is not dependent on the result of such load (or any instructions that depend
on it) we could execute it out of order and perform useful work during otherwise
wasted cycles. Solving this problem lies at the heart of out-of-order paradigm in

9

10 CHAPTER 1. INTRODUCTION

Figure 1.1: Memory and processor speed improvements [4]

processor design and, once done, enables more optimizations to be applied for even
more performance gains.

In this work the classic approach for implementing out-of-order execution is
outlined and a concrete implementation created at the “Kuźnia rdzeni” project at
University of Wrocław is presented in detail. The project has successfully produced
a working RISC-V core and the development team is working towards implement-
ing the necessary hardware to run Linux and the Mimiker operating system also
developed at University of Wrocław that was recently ported to RISC-V [2]. Parts
of the implementation written by the author of this work are discussed in greater
detail, with focus on the design decisions made and problems that arose during the
implementation, providing insights into the development of such hardware.

Chapter 2

Out-of-order paradigm

2.1 Dataflow

A sequence of instructions that operate purely on data registers can be described
as a directed graph where nodes perform the operations and results flow along the
edges [3]. Example instruction stream and its corresponding dataflow graph are
shown in figure 2.1

div r4, r2

add r1, r2

add r1, r3

mul r1, r4

r1 r2 r4

add div

add

mul

r3

result

Figure 2.1: Assembly code and its corresponding dataflow graph

Conceptually, registers are supplied as inputs from the top, they travel along the
edges and are used as operands to nodes labeled with specific calculation performed
on them. Result is propagated downward to be used as input by further nodes (or
is a final result).

Dynamically building fragments of this graph in hardware would allow us to
infer e.g. that add instructions are independent from the (costly in terms of clock
cycles) div instruction, so they can be executed in parallel to it. We could also infer
that we need to delay the execution of the mul instruction until both of its operands
become available. A mechanism for notifying the component holding the data about
mul that this happened is also necessary so that it can be scheduled for execution.

11

12 CHAPTER 2. OUT-OF-ORDER PARADIGM

2.2 Register renaming

First problem to tackle is: how to disassociate register names from actual values
needed for computing the result, i.e. how to correctly associate that the mul in-
struction needs the value computed by the second add and not the first, even though
both adds specify r1 as their target?

Register renaming solves this problem by assigning a tag to the result of an
instruction. As instruction comes in, an unused tag is assigned to it and tags of
its operand registers are looked up in a Register Alias Table (RAT). Architectural
register IDs are replaced with those tags, old tag in RAT for the result register is
replaced with the newly assigned one and the instruction proceeds further down the
pipeline. This process is illustrated in figure 2.2.

tag#16

����tag#73 tag#42

tag#62

tag#14

tag#50

tag#29

tag#92

tag#04

tag#19

...

r0

r1

r2

r3

r4

r5

r29

r30

r31

Tag assignment

add r1, r3, r5

...

Tag lookup

add tag#42, r3, r5

add tag#42, tag#14, tag#29

...

tag#42

tag#14

tag#29

Figure 2.2: Example of register renaming

2.3 Tomasulo’s algorithm

Before an instruction executes, it’s placed in a Reservation Station that sits just
before an execution unit. Reservation station is hardware block where an instruc-
tion waits for the availability of an execution unit that could execute it and the
availability of its operands. Once the execution unit for a particular instruction is
free and its operands ready, it might be selected for execution on that execution
unit. When the computation is finished, the result and this particular instruction’s
tag are broadcasted on the Common Data Bus.

Initially, an instruction might not have all of its operands ready. Reservation
stations constantly listen for broadcasts on the common data bus and compare the

2.3. TOMASULO’S ALGORITHM 13

tag associated with the result to the tags of all operands of all waiting instructions.
If any of them matches, the tag in the reservation station is replaced with the actual
value of the operand. Once both of the operands have their values the instruction
is ready to execute. This is illustrated in figure 2.3.

One important detail that was glossed over is – what if operand of an instruction
was broadcasted before it entered a reservation station? The window for acquiring
the value was missed so the instruction may never execute. This is usually solved by
including an array of storage locations that are indexed by the tag – instruction that
produced the result writes to a location associated with the tag of that result. Later,
instructions that missed the broadcast of their operands can get the value that was
broadcasted from the associated storage locations, provided they were already filled
in. There are a few more details to take care of that will be presented in chapter 4.

Register renaming, reservation stations and common data bus together with the
process described above form the basis of Tomasulo’s algorithm [26].

Recall the assembly sequence from the introduction chapter:

load r1 ← mem[r2]
add r3, r1

mul r4, r5

With the hardware that was presented it’s now possible to execute this instruc-
tion stream out-of-order:

1. load enters the core, register renaming is performed on it and enters a reser-
vation station. Assuming r2’s value was already computed it starts executing
right away (but it will take it a long time to fetch data from memory).

2. add enters the core, register renaming is performed on it and it enters a reser-
vation station. Because r1’s value hasn’t been computed, it can’t execute
yet.

3. mul enters the core, register renaming is performed on it and it enters a reser-
vation station. Assuming r4’s and r5’s values have been computed, it can
start executing right away.

4. mul finishes execution before load (and add dependent on its result).

5. load finally fetches data from memory and finishes execution. add proceeds
with its execution and finishes as well.

This way we’ve executed mul before load has completed while maintaining
correctness. This however is only one piece of the puzzle – there are some issues
with this approach that we shall outline in the following section.

14 CHAPTER 2. OUT-OF-ORDER PARADIGM

1234 111

- -

tag#291337add

sub

-

instruction
operand #1
value

operand #2
value

ALU

select

1234 111

Common Data Bus

tag#29

tag#42

destination
tag

-

1234 111

- -

11231337add

sub

-

instruction
operand #1
value

operand #2
value

ALU

Common Data Bus

1123, tag#29

tag match

tag#29

tag#42

destination
tag

-

- -- -

- -- -

sub

tag#29

Figure 2.3: Reservation station selecting instruction for execution and updating
entries based on announced tags

2.4. TRACKING INSTRUCTION ORDER 15

2.4 Tracking instruction order

So far we’ve been executing instructions with the assumption that they will always
succeed and produce a result. In practice there are situations where this might
not always be true (called exceptions). For example, an instruction that accesses
memory can fail because the address it accesses is outside of the allowed range. In
that case it is customary for processor implementations to stop execution at this
particular instruction and jump to a function (called exception handler) dedicated
to handling such situations. Once the handler returns, controls is given back to the
program that failed, in hopes that the handler “fixed” the execution environment of
the program and that it can proceed further as normal.

Slight problem with this is that some instructions that came in later after the
offending instruction might have already executed. If we jumped to an exception
handler and came back from it later to the offending instruction we might in effect
execute some instructions that come after it twice. The core problem is that we
don’t have strict control over when an instruction performs changes to the core’s
state – once instruction has executed there is no way to revert its changes to the
register alias table. But even if we were able to do that there’s a second problem –
we don’t know which instructions’ changes to revert since we don’t track the order
they came into the processor.

To remedy the second problem we will introduce a Reorder Buffer (ROB) –
a data structure that tracks the order of instructions and state of their execution
(whether they have finished or encountered an exception). ROB is usually imple-
mented as a queue (and it’s useful to think about it that way) that holds instructions
with the ability to modify their metadata (e.g. completion status) without respect-
ing the queue order (figure 2.4). As instructions come into the processor they’re
enqueued in the ROB and as they finish execution or encounter an exception their
state in the ROB is updated accordingly. Once processing them has fully finished
(note that this is not synonymous with finishing execution, as will be shown shortly),
they’re dequeued from the ROB. Knowing their order, once we solve the first prob-
lem in the next section, we will be able to revert precisely those that came after the
excepting instruction.

2.5 Controlling state changes

To solve our problem we’ll introduce a second RAT and a controlled way of altering
state of the core by instructions. The RAT that was originally introduced is usually
called frontend RAT, and the newly introduced one is called retirement RAT. Much
like the frontend RAT, it stores a mapping from architectural register IDs to tags.
This time however it’s not used for register renaming.

16 CHAPTER 2. OUT-OF-ORDER PARADIGM

store ...

-

-

mul ...

add ...

-

load ...

...

-

enqueue pointer

dequeue pointer

✓

-

-

✗→ ✓

✗

-

✓

...

-

✓

-

-

✗

✗

-

✗

...

-

exception?finished?instruction

finished
from

announcement
stage

Figure 2.4: Reorder buffer

In it, a given entry for an architectural register stores a tag (that points to a
storage location associated with it) for the result of the most recently committed
instruction that had this target register. Committed in this context means: ac-
knowledged that it completed and its state change applied to the core. This state
change is in fact (almost) only the tag replacement itself. In the usual case when an
instruction produces a result, this is written into a storage location corresponding
to its assigned tag first, and once the instruction is committed this tag is written
into retirement RAT (figure 2.5)

Crucial feature of committing is that it happens in-order – instructions are
committed in the order they entered the core – by leveraging the ROB to keep track
of their order. More precisely, to commit an instructions two conditions must be
satisfied:

1. all previous instructions have been committed,

2. the instruction has finished execution.

Since no state changes are performed for instructions that haven’t been com-
mitted yet, ROB and retirement RAT together precisely describe the architectural
state (i.e. values of all architectural registers) of the core – meaning we can answer
questions such as:

• What was the last instruction that has executed with respect to the program
order?

• Given the above, what’s the value of register X at this moment of program
execution?

This solves our initial problem – now when it comes time to commit an in-
struction which has encountered an exception (this information is typically stored

2.5. CONTROLLING STATE CHANGES 17

store

-

-

mul

add

-

load

...

-

✓

-

-

✓

✗

-

✓

...

-

✓

-

-

✗

✗

-

✗

...

-

exception?finished?instruction

tag#73

-

-

tag#23

tag#82

-

tag#68

...

-

destination
tag

r15

-

-

r12

r7

-

r3

...

-

destination
register

����tag#51 tag#68

...

Retirement RAT

r0

r1

r2

r3

r4

r29

r30

r31

tag#68 ...

726

...

1296

...

Result storage

tag#0

tag#1

tag#50

tag#51

tag#52

tag#67

tag#68

tag#69

tag#126

tag#127

commit

Figure 2.5: Instruction commit

18 CHAPTER 2. OUT-OF-ORDER PARADIGM

in the ROB and only acted upon at commit stage) we don’t have to worry about
some other instructions that might’ve already altered the core’s state because their
state changes were not committed. Results of instructions following the excepting
instruction can just be discarded and a jump to exception handler can proceed nor-
mally. When it returns the core jumps back to a program in a well-defined state –
one in which only instructions up to the excepting instructions truly executed and
committed their results.

2.6 Maximizing performance

Previous sections have outlined the motivation for out-of-order execution, classic
method of implementing it and correctness problems that arise together with a
method for solving them. All of this hard work would be in vain if we can’t keep
the core busy all the time – what’s the point of being able to execute instructions
out-of-order if there are too little of them in the core at any given time to benefit
from it? This section describes some techniques for dealing with this problem and,
in turn, maximizing the performance.

First solution that comes to mind is introducing caches – having data and
instructions closer to where they’re needed so they can be accessed faster.

But caches can only get us so far, so in addition another approach is scaling
up the processes outlined previously. If we could perform fetch, register renaming,
instruction execution and other steps on N multiple instructions at once, we could
theoretically improve our performance by up to this N multiplicative factor. This
comes with caveat that now complicated logic is needed to check for inter-instruction
dependencies. Processors that use this approach are called superscalar.

There are however still situations when the core could be underutilized. Suppose
that the core encounters a branch instruction. Its direction (whether it will be taken
or not) and target address is unknown until this is calculated when the instruction
executes, thus the core does not know where to fetch instructions from at that point.
The simplest solution is to halt fetching of new instructions when such instruction is
encountered and wait until the branch target address is resolved. This is inefficient
in terms of resource usage – much like in the example in section 1 we are wasting
cycles where otherwise useful work could be performed.

Speculation is a technique in processors for performing work ahead of time
before it’s known to be needed. One example of speculation – speculative execution
– has already been presented: when instructions are executed without knowledge
that some preceding instructions have succeeded – it’s optimistically assumed that
they will succeed (but there are mechanisms to backtrack if that assumption turns
out to be wrong).

2.6. MAXIMIZING PERFORMANCE 19

We can leverage this mechanism by speculating not only on instruction’s suc-
cessful execution, but also on the direction that a branch instruction will take. Based
on the history of previous executions of a particular branch being taken or not we
start executing instructions from a given path before the branch direction is cal-
culated (this is also speculative execution, but this time it’s optimistically assumed
that the branch went in a certain direction). Once that’s done, if the prediction
turned out to be right, we’ve successfully performed useful work during otherwise
wasted cycles. If the prediction was wrong however, we need to backtrack from the
wrong path and restart execution from the correct path. This is handled similarly
to exception handling described in the previous section.

Results of instructions executed after incorrect prediction are thrown out so
in the end we performed work that was useless – we could’ve been better off if we
just waited for the branch to finish without speculating about its result. In practice
with a good branch predictor – a component that tries to accurately predict what
the next outcome of a specific branch will be – the benefits of correct prediction
outweigh the costs of an incorrect one. Modern branch predictors like TAGE-SC-L
[24] achieve around 2.5 mispredictions per 1000 instructions because most branching
patterns in programs (e.g. loops) are quite predictable.

A different example of speculation is prefetching – detecting memory access
patterns in a program dynamically and preemptively fetching memory locations
that will most likely be needed soon. For example accessing an array at consecutive
indices in a loop is a common access pattern in programs that prefetchers exploit by
fetching memory locations corresponding to indices in future iterations of the loop
ahead of time, even before instructions for these memory accesses are scheduled for
execution.

There are many more speculation examples – e.g. value prediction [11], pointer
address prediction [14] and more approaches for maximizing performance in general
but they are out of scope for this work and are better described in literature.

Chapter 3

The Coreblocks project

3.1 RISC-V

Instruction Set Architecture or ISA is a specification that bridges software and hard-
ware – describing what hardware is able to do and how the programmer can interact
with it. In particular the specification describes [12]:

• data types supported by the processor,

• set of opcodes and registers available for the programmer,

• virtual memory support,

• memory model,

• input/output model.

RISC-V ISA [8] is a RISC load-store architecture. One of its notable features
is the conscious design decision to separate non-essential groups of instructions that
perform related tasks into extensions. Base ISA defines a minimal reasonable set of
instructions required for a processor to be usable in practice by programmers, but
the set of available opcodes can be optionally extended. As an example,M extension
could be implemented by the hardware designer to permit use of dedicated hardware
multiplication and division instructions that aren’t present in the base ISA.

RISC-V is an open ISA, meaning it is free of licensing limitations that often
encumber other ISAs such as x86 64 or ARM, where a potential implementer of
an ISA first needs to negotiate a licensing agreement between Intel or Arm Ltd.
that will allow them to implement the ISA legally. In contrast, RISC-V is licensed
under very permissive CC-BY-4.0 license [8, 9] which has allowed it to flourish,
with many open source implementations being available under similarly permissive
licenses together with freely available teaching materials and open-source tools [23].

21

22 CHAPTER 3. THE COREBLOCKS PROJECT

3.2 Amaranth

Amaranth is an open-source toolchain for hardware development that consist of
(mainly) the Amaranth hardware description language and the Amaranth simulator.
Amaranth HDL is a Python-based DSL for describing digital logic, and will be
referred to further as just Amaranth for simplicity. Amaranth simulator allows
to simulate and test the design from within Python as well.

The language itself is embedded in Python and therefore all Amaranth programs
are also valid Python programs. Amaranth however presents the users its own spe-
cial syntactic idioms that use Python classes with a specialized interface that is
aimed at describing hardware. Programming in Amaranth follows a metaprogram-
ming paradigm – the programmer tells the language what Verilog statements (i.e.
hardware) to generate and usually a one-to-one correspondence between Amaranth
and Verilog code can be established. The largest benefit however comes from being
able to leverage all of Python’s programming constructs to build high-level abstrac-
tions that generate hardware – something that is very cumbersome or isn’t possible
at all in some cases in Verilog or SystemVerilog. Examples of such abstractions are
described in section 3.4.

To better illustrate the language itself, consider sample Amaranth code that
showcases its syntax and a corresponding (handwritten) Verilog code presented in
figure 3.1. Notable differences in Amaranth with respect to Verilog are:

• Lack of explicit clock and reset signals – they are managed automatically so
the programmer doesn’t need to pass them between modules and manually
initialize all signals and registers to 0.

• Lack of distinction between “register” and “wire” types – everything is de-
clared as a Signal and depending on whether it’s driven combinationally or
synchronously it is treated either as a wire or a register (not to be mistaken
with Verilog’s reg keyword, which is used to declare both registers and signals
driven combinationally):

– to drive a signal combinationally, an assignment to it is added to a list of
statements in combinational domain m.d.comb,

– to drive a signal sequentially, the same is done with a different domain
m.d.sync.

• Use of context manager syntax – the with keyword. Amaranth leverages
this syntax to implement usual control structures present in programming
languages, e.g. if/else/elseif or switch/case statements that act on values of
Signals (or expressions involving them), meaning appropriate hardware is
generated to perform this logic.

3.3. COREBLOCKS 23

m = Module()

cnt = Signal(8)

enable = Signal()

load = Signal()

load_val = Signal(8)

zero = Signal()

with m.If(load):

m.d.sync += cnt.eq(load_val)

with m.Elif(enable):

m.d.sync += cnt.eq(cnt + 1)

m.d.comb += zero.eq(cnt == 0)

Listing 1: Amaranth code

input wire clk;

input wire rst;

output reg[7:0] cnt;

input wire enable;

input wire load;

input wire[7:0] load_val;

output reg zero;

always @(posedge clk) begin

if (rst)

cnt <= 0;

else if (load)

cnt <= load_val;

else if (enable)

cnt <= cnt + 1;

end

assign zero = cnt == 0;

Listing 2: Verilog code

Figure 3.1: Functionally identical Amaranth and Verilog code

A more comprehensive overview of language features can be found in the lan-
guage’s documentation [22].

3.3 Coreblocks

Coreblocks [17] is an academic project at the University of Wrocław where students
partake in implementing an out-of-order RISC-V core generator, meaning that it can
generate a whole range of CPU cores with different sets of RISC-V extensions and
microarchitectural parameters, e.g. number of functional units or number of reorder
buffer entries. It is one out of only a handful of other such projects [16, 6, 7, 1, 27]
developed at universities.

Project is implemented in Amaranth hardware description language. Its use
lowers the bar of entry for newcomers (as almost everyone already knows Python)
and allows implementing abstractions for greater expressiveness compared to tra-
ditional HDLs like Verilog or SystemVerilog. To that end, a custom abstraction
that allows for interfacing between components of the core called Transactron was
developed, which will be described in more detail in the next section.

24 CHAPTER 3. THE COREBLOCKS PROJECT

Directly citing the project’s readme [18], it lists 3 main design goals:

• Simplicity. Coreblocks is an academic project, accessible to stu-
dents. It should be suitable for teaching essentials of out-of-order
architectures.

• Modularity. We want to be able to easily experiment with the core
by adding, replacing and modifying modules without changing the
source too much. For this goal, we designed a transaction system
inspired by Bluespec.

• Fine-grained testing. Outside of the integration tests for the full
core, modules are tested individually. This is to support an agile
style of development.

At the time of writing Coreblocks supports generating cores with base RV32I

ISA, M (multiplication and division), C (compressed instructions) and B (bit ma-
nipulation) RISC-V instruction set extensions.

Workflow used in the project is as follows:

1. A student that wants to contribute to the project first chooses a task that
they are going to tackle. This doesn’t necessarily mean working on the core
implementation itself, as there’s often work to be done on improving the docu-
mentation, continuous integration (used to run automated tests and generate
documentation), the Transactron framework or software-oriented abstractions.

2. Optionally for larger features a discussion with the rest of the development
team follows at a weekly meeting before implementation phase begins.

3. After initial implementation (that has to include automated tests for new
features) has been completed on a separate git branch, it’s submitted as a
pull request on the project’s GitHub page and is reviewed by members of the
development team, who leave suggestions on what should be improved or ask
questions about the implementation.

4. Implementation is adjusted according to suggestions. At this point more dis-
cussion might happen on weekly meetings until all comments are addressed
and pull request approved by at least 2 reviewers.

5. The branch is merged into the master branch.

3.4 Transactron

Transactron is a library for the Amaranth language that was developed alongside
Coreblocks to help unify the interfaces between different parts of the system and

3.4. TRANSACTRON 25

make hardware blocks cycle-independent of each other. It provides a set of classes
that can generate complex scheduling logic automatically.

Two basic entities in the library are methods and transactions. Transactions
are pieces of hardware that want to perform their computation on every clock cycle.
They are atomic, in that they either execute fully or not at all. Methods are pieces
of hardware that can be called by transactions. Calling a method means activating
a hardware block to perform some computation. Much like methods in traditional
programming languages, methods in Transactron can take arguments, call other
methods, return results and modify internal state of the hardware block that they’re
a part of. Transaction can only execute if all the methods that it wants to call are
available, i.e. they signal that they’re ready and they’re not being used by other
transactions.

Transaction 1 ✓ Method 2 ✓

Method 1 ✓

Method 3 ✓

Figure 3.2: When all methods are ready the transaction can execute

Transaction 1 ✗

Method 1 ✓

Method 2 ✗

Method 3 ✗

Method 4 ✓

Figure 3.3: Methods can also call other methods, but any transitively not ready
method prevents the transaction from executing

Transaction 1 ✓

Transaction 2 ✗

Method 1 ✓

Method 2 ✓

Method 3 ✓

Figure 3.4: When two or more transactions want to call the same method(s) only
one transaction can execute in a given clock cycle

These two building blocks allow creation of complex systems of hardware blocks
that interact with each other without having to worry about structural hazards and
different timing requirements of each component, as the library handles transaction
scheduling and arbitrage. All this greatly reduces the burden on the programmer,
who can now focus on the core problem that needs to be solved instead of the details
of interacting with other components.

More details can be found in the Transactron documentation [20].

Chapter 4

Core architecture overview

This chapter serves to describe the Coreblocks core’s microarchitecture as it was
in January 2024. It was designed collectively by the Coreblocks development team
(that the author was a part of) and evolved over the span of 2.5 years. A simplified
diagram of its pipeline is given in figure 4.1. The lifecycle of an instruction roughly
follows these stages:

1. Fetch

2. Decode

3. Resource allocation

4. Register renaming

5. Scheduling

6. Execution

7. Commit

8. Retirement

Subsequent sections delve into details of each stage.

4.1 Shared data structures

Before discussing the pipeline, a description of data structures shared across multiple
stages of the core needs to be given.

27

28 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

Instruction
memory

Instruction
cache

Fetcher

Decoder

Register
allocation

Register
renaming

Free physical
registers
FIFO

Frontend
RAT

ROB entry
allocation

Reorder
buffer

RS selection

RS insertion

Reservation
station

Reservation
station

Load-store
unit

Execution
unit Execution

unit
Execution
unit

EU group

Result
announcement

Data
memory

Register
file

Retirement

Retirement
RAT

Frontend

Core

Middle-end

Backend

Figure 4.1: Coreblocks core microarchitecture

4.1. SHARED DATA STRUCTURES 29

4.1.1 Register file

Register file in in-order microarchitectures is usually a memory with some read ports
and some write ports with direct mapping between addresses and architectural reg-
isters (or, interchangeably, ISA registers). If one could look at the values contained
in this memory, they would find values that the architectural registers have at a
given point in time.

In out-of-order microarchitectures however the register file only holds the values
of ISA registers, but there’s no direct correspondence between the address and which
architectural register it maps to. Registers in this kind of register file are called
microarchitectural registers (or, interchangeably, physical registers), and there are
many more of them than ISA registers. More precisely, microarchitectural register
is a storage location for the result of an instruction. When an instruction enters the
core, it gets allocated a physical register from a pool of free such registers. Later on
when it finishes its computation, its result is stored in a physical register allocated
to it.

By looking at the register file alone at a given point in time there is no way
to determine what the values of ISA registers are, since the correspondence be-
tween them (what was encoded as the target register in the instruction itself) and
microarchitectural registers (what was allocated by the core to the instruction) is
stored elsewhere – in the Register alias tables described in section 4.1.3.

4.1.2 Free physical register IDs FIFO

To allocate a physical register for the result of an instruction, there needs to be
a way to query the register file for free slots (storage locations that are currently
unused). Instead of implementing this as part of the register file, a separate FIFO is
maintained with IDs of free slots (further referred to as register IDs) in the register
file.

Initially the FIFO is prefilled with register IDs in the range from 1 to a config-
urable size. Register ID 0 is not inserted during this initialization stage because of a
microarchitectural design decision to tie it to the constant 0 and make it read-only,
as described in section 4.1.1.

During normal operation register ID is taken from the FIFO when an instruction
is a result-producing instruction and thus needs a storage location for its result.
Register ID is inserted into the FIFO when the value that the register with that ID
was holding will no longer be needed by the core. How to determine this condition
will be described in section 4.5.1.

30 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

4.1.3 Register alias table

Register alias table (or RAT) is a data structure that establishes correspondence
between ISA registers and physical registers. It’s an array as large as there are
registers (in RISC-V usually 32). At each index the ID of a physical register that
holds the current value of an ISA register of this index is stored. Thus at its core it
is an array of pointers to the register file. Figure 4.2 illustrates this.

...

...

RAT

Register file

x0
x1
x2
x3
x4
x5

x29
x30
x31

x6

Figure 4.2: Register alias table points at registers in the register file

Frontend RAT is central to register renaming which will be covered in section
4.3.2. During normal operation it holds a speculative view of the state of ISA
registers, i.e. some entries point to registers in the register file that hold/will hold
the results of instruction executed speculatively.

Retirement RAT is used at retirement stage and holds an actual view of the
state of ISA registers, i.e. if we were to halt the core at a specific point in time and
ask “what is the current state of all architectural registers?”, this is where we would
look. As we will see in section 5.5 retirement RAT is required for correct handling
of traps, exceptions and interrupts.

4.2. CONTROL AND STATUS REGISTERS 31

4.1.4 Reorder buffer

Reorder buffer (or ROB) is a queue with a few extra operation defined on its contents
that holds information about all instructions currently present in the core and tracks
their completion status.

Each entry in the ROB contains the following fields:

• logical register – index of destination ISA register that was encoded in the
instruction,

• physical register – index of destination microarchitectural register that was
allocated by the core for the result of an instruction,

• done – boolean flag indicating whether the instruction has finished and wrote
its result to the physical register assigned to it,

• exception – boolean flag indicating whether the instruction’s execution has
caused an exception. Type of the exception is stored elsewhere in a global
register.

An entry for the instruction is allocated after it has reached past the physical
register allocation stage in the core, since both logical and physical register indices
are known at this point. The instruction is assigned a ROB ID during this, and this
ROB ID from that point on travels through the pipeline with the instruction up to
the commit stage.

While ROB doesn’t necessarily have to work like a FIFO queue, it’s easier to
implement it that way. Some additional functionality is also required:

• marking the instruction as done based on the supplied ROB ID (note that this
requires random access as opposed to FIFO access),

• retiring the instruction, i.e. deallocating its entry (or popping from the queue),
but only when it’s marked as done.

Reorder buffer is the central entity in the core – instructions are inserted in-
order, can execute (i.e. can be marked as done) out-of-order, and are retired in-
order, thus maintaining the illusion that the program is executed sequentially. Each
of these stages will be described in the following chapters.

4.2 Control and status registers

Control and status registers (CSRs in short) are registers that, in general, control the
core’s overall behavior and provide information about its state. Examples include:

32 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

• performance counters,

• registers for configuring behavior and reading status of interrupts,

• registers for configuring physical memory protection.

For a full list refer to the RISC-V Privileged Specification [9].

CSRs are accessed by a set of read/write/read-modify-write instructions dedi-
cated for them. These are handled by a separate execution unit described in section
4.4.2 that implements correct semantics of these operations.

The base implementation of a CSR is a generic register with two sets of read
and write methods – one for the execution unit, and one for the hardware that uses
them, with the former taking priority. Some writes can be ignored by specifying a
bit mask of read-only bits of that register. Examples of instances of such registers
that are currently used are:

• mcause – machine exception cause – stores the ID of an event that caused an
exception,

• mtvec – machine trap-vector base-address register – stores the address of an
interrupt handler or an interrupt vector table,

• mepc – machine exception program counter – stores the return address from
an exception/interrupt.

This generic implementation can be specialized to provide CSR-specific func-
tionality. An example of this is a counter CSR that increments itself every cycle
that can be used e.g. for benchmarking how many cycles executing a given piece of
code took.

4.3 Frontend

Frontend is part of the core responsible for fetching the instructions, allocating
dynamic resources that the instruction needs (physical register for the result, ROB
entry), renaming registers and scheduling the instruction for execution. We will look
at each of those in detail.

4.3.1 Instruction fetch and decode

Entity responsible for fetching instruction is the Fetcher. It contains the program
counter and a speculative program counter and issues requests for successive instruc-
tions. All requests go through an intermediary instruction cache. It’s connected to
the outside world – the instruction memory – with a Wishbone bus. The cache is

4.3. FRONTEND 33

optional and can be substituted by a dummy hardware block that just forwards the
requests directly to memory and doesn’t have any actual storage.

Wishbone [21] is an open source computer bus standard that specifies a set of
signals and their behavior (together called an interface) to define a communication
protocol. It’s commonly used in non-commercial projects due to its simplicity. This
is the primary reason why was it chosen for the core in the first place. Hardware
blocks that implement this specification (i.e. have all required external signals that
behave according to the specification) can be connected together, provided that
one side of the connection is a master and the other a slave. In this case the
instruction memory has a Wishbone slave interface, while cache has a Wishbone
master interface.

After the fetcher receives the instruction it forwards it to the decoder, which
unpacks the instruction into a format that is easier to handle later on in the pipeline.
Its fields are:

• exec_fn – groups fields responsible for selecting the opcode:

– op_type – custom operation group code used for routing the instruction
to an execution unit that can handle it,

– funct3 – funct3 field from RISC-V ISA,

– funct7 – funct7 field from RISC-V ISA,

• regs_l – groups logical (architectural) register indices:

– rl_dst – destination ISA register,

– rl_s1 – first source (operand) ISA register,

– rl_s2 – second source (operand) ISA register,

• imm – immediate if the instruction encoding contains one, else constant 0,

• csr – index of the CSR register if the instruction explicitly accesses one,

• pc – program counter associated with this instruction.

Depending on the configuration, the core can be generated with support for
the C (compressed instructions) extension. This substitutes the fetcher with one
that can handle instructions aligned to 2 bytes (as opposed to 4 bytes without the
C extension) and inserts a decompression block that translates instructions from 2-
byte compressed format into standard 4-byte instructions. There’s some additional
functionality embedded into the fetcher related to handling branches but this will
be covered in section 4.4.3.

The pipeline for this stage is presented in figure 4.3

34 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

Instruction
memory

Instruction
cache

Fetcher

Decoder

Decompressor

Wishbone bus

ICache bus

...

Figure 4.3: Instruction fetch and decode stage

4.3.2 Scheduler

Scheduler is a part of the core that is responsible for allocating resources, performing
register renaming and scheduling the instructions for execution. This pipeline starts
off with physical register allocation. Register allocation stage receives a decoded
instruction from the decoder and looks at the destination register. If it’s not x0,
then it pulls a free value from the free physical registers FIFO and appends it to the
list of fields described in section 4.3.1 under the name rp_dst.

Next up is register renaming. This is performed by supplying the frontend RAT
with the following data:

• rl_s1 – first source (operand) ISA register,

• rl_s2 – second source (operand) ISA register,

• rl_dst – destination ISA register,

• rp_dst – physical destination register.

For each source register, the frontend RAT performs a lookup in its memory and
returns the physical registers associated with them. The source ISA register IDs
rl_s1 and rl_s2 are no longer needed further down the pipeline and are instead
replaced by fields rp_s1 and rp_s2 respectively. These contain respective physical

4.3. FRONTEND 35

register IDs received from the frontend RAT. For the destination register, it replaces
the contents in the frontend RAT at index rl_dst with the value of rp_dst. This
effectively tells future instructions that have one of its operands be the same logical
register rl_dst that they should look for its value in the physical register rp_dst.
One observation to note is that the tag described in section 2.2 is the value of rp_dst
itself.

After that a ROB entry allocation is performed. This simply appends rl_dst
and rp_dst at the end of the ROB queue and a rob_id of the allocated entry is
returned and passed down the pipeline.

Further down the pipeline is reservation station selection stage. It performs two
tasks:

• Looks at the op_type of the instruction, execution unit groups available in the
core and what op_types they support and whether or not they have free slots
available. Based on that it decides which reservation station (responsible for
a particular execution unit group) is going to receive it.

• Sends a request to the selected reservation station to allocate a free slot for
this instruction. In response to this request a slot ID is returned.

As a result two more fields are pushed further down the pipeline after this stage:
rs_selected with the selected reservation station’s ID and rs_entry_id with the
allocated slot ID within this reservation station.

Last is reservation station insertion. Apart from routing the instruction into the
reservation station selected in the previous stage, it also performs a lookup of rp_s1
and rp_s2 in the register file. As the values of these registers (i.e. results of previous
instructions) might not have been computed yet, the register file additionally returns
whether or not the value of a register is valid (has been computed and stored in the
register file) at the time of the query. If the value of rp_s1 or rp_s2 isn’t known at
that point in time, they are stored in the reservation station itself as tags – they will
be compared with tags announced on the common data bus (a process described in
more detail in section 4.4.1), otherwise constant 0 is stored.

The reason for splitting reservation station selection and insertion was mostly
motivated by wanting to avoid performing too many computations (look up free
slots in relevant reservation stations, compute the slot to take, route the data there)
in a single clock cycle.

Figure 4.4 illustrates stages described above.

36 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

Register
allocation

Register
renaming

ROB entry
allocation

Frontend
RAT

Free physical
registers FIFO

Reorder buffer

RS selection

RS insertion Register file

...

...

Figure 4.4: Resource allocation and register renaming in the scheduler

4.4 Middle-end

Middle-end is part of the core that can execute instructions out-of-order. It consists
of reservation stations and various execution units. It’s the job of previous stages
to keep these execution units occupied for maximum utilization of computational
resources of the core.

4.4.1 Reservation stations and instruction scheduling

As described in section 2.3, reservation station (or RS) is a data structure where an
instruction waits until all of its operands are ready and the functional unit that is
capable of executing it is ready. In this subsection we will look at it in more detail.

Each entry in a reservation station has the following fields (their meaning is the
same as previously):

4.4. MIDDLE-END 37

• rp_s1 – first source (operand) ISA register,

• rp_s2 – second source (operand) ISA register,

• rp_dst – physical destination register,

• rob_id – ROB entry ID allocated for this, instruction

• exec_fn – operation to ,

• s1_val – value of the first operand (might be initially unknown),

• s2_val – value of the second operand (might be initially unknown),

• imm – immediate if the instruction encoding contains one, else constant 0,

• pc – program counter associated with this instruction.

Reservation station listens on the common data bus for broadcasts of (tag, value)
tuples and on each broadcast compares tag to both rp_s1 and rp_s2. If e.g.
tag == rp_s1, then s1_val is assigned the value of value, and rp_s1 is zeroed
to signify that this operand’s value is known. Same happens for rp_s2 and s2_val.
When both rp_s1 and rp_s2 are zeroed, this condition indicates that the instruc-
tion is ready to be executed (refer to figure 2.3 for a simplified visualization this
process).

20

0

0

0

0

0

0x00004f04...

...

...

rp_s1 rp_s2

56 41 ...

pc

Wakeup-select

Reservation station

ready vector:
1010

select #1

Execution unit

instruction #1

0x00004efc

0x00004f08

0x00004e10

#0

#1

#2

#3

Figure 4.5: Wakeup-select choosing an instruction to be executed in a given clock
cycle

A wakeup-select hardware block is responsible for arbitrating which of the ready
instruction should be selected (“woken up”) to be passed down to the execution unit
in a given cycle. Reservation station exposes an interface that allows wakeup-select
to get a readiness vector. It’s a bit vector where for each entry in a reservation
station, the i-th bit indicates that the i-th entry is ready. The index of the last non-
zero bit is used as the index of the entry that will be scheduled for execution. It’s

38 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

a simple algorithm but is sufficient in the current (non-superscalar) implementation
of the core. The selected index is supplied to the reservation station, which returns
all of the fields listed above (except for rp_s1 and rp_s2 as they’re needed only for
listening on the common data bus for value broadcast) and they are passed down to
the execution unit, at which point the entry at that index is freed and can be reused
(figure 4.5).

4.4.2 Execution units

Each execution unit supports a particular subset of instructions grouped by similar-
ity. Currently the core can be configured to include:

• Standard ALU – supports arithmetic and bitwise operations from the base I
(integer) extension as well as a subset of instructions from the Zba (address
generation) and Zbb (bit manipulation) extensions, with the exception of shift
instructions by a variable amount.

• Shift unit – covers all shift instructions by a variable amount from the base
I extension and Zbb extension if it’s enabled. Since some shift instructions
are required by the I extension this unit always has to be included whenever
standard ALU is included. Separating this functionality into a separate unit
makes the overall implementation more modular.

• Jump-branch unit – covers all jump and branch instructions as well as auipc
from the base I extension, with support for jump/branch targets aligned to 2
bytes if C (compressed instructions) extension is enabled.

• Load-store unit – covers all load and store instructions from the base I exten-
sion. Due to uniqueness of loads and stores in out-of-order cores its operating
principles are also unique and will be discussed in detail in section 4.4.4.

• Multiplication unit – can execute all integer multiplication instructions from
the M (integer multiplication and division) extension. Different multiplicator
implementations are available:

– shift-based – resource-cheap multi-cycle multiplier that implements Rus-
sian Peasants multiplication,

– DSP multi-cycle – uses a single DSP block to generate a multi-cycle re-
cursive implementation,

– DSP single-cycle – uses as many DSP blocks as required to generate a
single-cycle recursive implementation.

• Division unit – supports all integer division instruction from theM extension.

• Exception unit – special execution unit that handles instructions that are
supposed to cause exception.These include instruction that are part of the ISA

4.4. MIDDLE-END 39

like ecall or ebreak, or custom instructions internal to the microarchitecture
and can be artificially inserted into the pipeline, e.g. illegal_instruction.
This handling usually only means reporting a corresponding exception of the
same name to the exception cause register.

• CSR unit – responsible for handling all instructions for reading and modifying
CSRs (control and status registers). All instantiated CSRs scattered across
the core are gathered and handled by this unit. Due to semantics of reads and
writes on some of the CSRs, special care is taken that these are not executed
in a speculative context.

• Privileged instruction unit – responsible for handling opcodes from the Privi-
leged ISA [9]. Currently only handles mret (return from machine-mode inter-
rupt) which is required for interrupt handling.

• Zbc unit – handles opcodes from the Zbc extension (carry-less multiplication
– multiplication in the polynomial ring over GF (2)).

• Zbs unit – handles opcodes from the Zbs extension (single-bit instructions
that set, clear, invert or extract a single bit in a register).

Each execution unit also contains its own dedicated decoder that converts the
(op_type, funct3, funct7) tuple coming from the reservation station into an
internal one-hot bit vector format for a more streamlined implementation of the
unit itself.

4.4.3 Jump-branch unit

Handling branches is somewhat inefficient in the current core implementation, but
it allowed for processing branches without having to worry about implementing
handling branch speculation mispredictions (which is one of the central parts of
an out-of-order core but is also a huge task in itself) at the early stage of project
development. The idea is simple – if we detect that an instruction is a branch at fetch
stage (or any jump instruction for that matter), we stall fetching further instructions
until an information from the jump-branch unit where from to start fetching next
is received. This information arrives at the fetcher soon after the jump or branch
instruction that triggered the stall is executed as at that point a target program
counter is computed. After arrival the fetcher is unstalled and proceeds like normal
until another branch or jump is encountered.

4.4.4 Load-store unit

Load-store unit (or LSU) is perhaps the most complicated functional unit in the
core and will remain so in the future. Current implementation aims to be as simple
as possible while still supporting all instructions required by the I extension.

40 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

Fetcher

Jump-branch
unit

Reservation
station

...

Result
announcement

Decoder

Next PC feedback

...

Figure 4.6: Jump-branch unit feeds a computed next PC to the fetcher

First thing to note is that it doesn’t follow the usual scheme of having a corre-
sponding reservation station. The LSU exposes an interface partly that of a reserva-
tion station to receive instructions from the pipeline, and partly that of an execution
unit to submit the results for announcement on the common data bus. This is a
deliberate choice dictated by the fact that the LSU must know the order of instruc-
tions as they appear in dynamic execution of the program. A reservation station can
schedule instructions to be executed in different order and information about that
order is lost when the instruction is inserted into it. This knowledge is needed for
maintaining a correct order of operations on memory. What constitutes a “correct”
order is specified by the RISC-V memory consistency model. RISC-V uses a model
called RVWMO (or RISC-V Weak Memory Ordering) [10], with an optional Ztso
(total store ordering) extension.

Current LSU implementation executes instructions sequentially, as there can be
only a maximum of 1 instruction present it the LSU at any given time. Instruction’s
lifecycle inside it is illustrated in figure 4.7.

As in a standard reservation station, the instruction first waits for all of its
operands. Once they’re ready, what happens depends on whether the instruction is
a load or a store.

Store needs a special signal from retirement called precommit to be asserted for
an instruction with this particular ROB ID before it can start executing. It controls
when side effects (e.g. modifying memory contents) of instructions happen. For the
correct handling of interrupts they have to be precisely controlled, as side effect can’t
happen for an instruction that is considered to have happened after an interrupt.
This signal is asserted by retirement when an instruction is ready to be retired, i.e.
it is at the dequeue pointer of the ROB queue. Once that has happened, a store
request is sent over Wishbone to data memory and this either causes an exception

4.4. MIDDLE-END 41

– either STORE_ACCESS_MISALIGNED when the address was not correctly aligned or
STORE_ACCESS_FAULT when the bus returned an error for whatever reason (e.g. no
such address exists in the physical address space). Either way a result (successful
store or an exception) is returned.

Loads on the other hand can be executed speculatively provided they don’t
target an MMIO region, so they don’t need to wait for the precommit signal. Rec-
ognizing this condition is the responsibility of a separate physical memory attributes
checker hardware block that allows defining such memory ranges. After a request
for data to memory is sent, it can similarly cause one out of two exceptions –
LOAD_ACCESS_MISALIGNED or LOAD_ACCESS_FAULT – and regardless of this either
read data or exception is returned.

The I base extension mandates that the core must also support the fence
instruction. Because of the implicit serialization of loads and stores nothing has to
be done to implement its proper semantics – it is effectively treated as a no-op.

4.4.5 Result gathering and announcement

After an execution unit has performed its computation the result (along with some
metadata, e.g. ROB ID, physical register index) is placed in its dedicated FIFO
queue. The results from all queues are then serialized and passed to a hardware
block that:

1. marks the instruction in the reorder buffer as being done or having produced
an exception,

2. writes the result to the register file,

3. sends an announcement (tuple (rob id, result)) on the common data bus
to all the reservation stations.

New instructions that need this result can thus find it in the register file, while
slightly older instructions that have already reached reservation stations will receive
the announcement and can discover the value of their operand that way.

This is illustrated in figure 4.8.

42 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

Wait for
operands

Send
memory
request

All
operands
ready

Wait for
precommit

is load?is store?

Wait for
data

Send
memory
request

Data
arrives

Return
result

Exception
triggered

Store
succeeded

Figure 4.7: Load or store instruction’s lifecycle inside the LSU

4.5. BACKEND 43

Announcement

Results FIFO

Register
file

Reorder
buffer

Execution unit Execution unit Execution unit

Reservation
station

Reservation
station

Reservation
station

Figure 4.8: Announcement stage

4.5 Backend

Backend is part of the core responsible for committing (making results of the instruc-
tions architecturally visible) and retiring (freeing dynamically allocated resources)
an instruction.

4.5.1 Retirement

Contrary to its name, the retirement hardware block handles both committing and
retiring an instruction. Committing means applying a state-changing action in ei-
ther:

• the outside world (e.g. writing to memory),

• the retirement RAT, which indirectly holds the architectural state of the core.

Retiring means freeing resources dynamically allocated in:

• register file,

• reorder buffer.

44 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

These two are performed in tandem via the following algorithm:

1. Look at the dequeue pointer in the ROB. If it points to an instruction that
has been marked as done, mark it as retired (invalid) and receive indices of
both physical and logical destination registers.

2. Perform a lookup and replace in the retirement RAT – under the index of
logical register read the index of old physical register and write the index of
new physical register.

3. Mark the old physical register in the register file as free (invalid).

4. Push the old physical register index to the free physical registers FIFO.

This is all performed in a single cycle as illustrated in figure 4.9.

RetirementReorder buffer

Retirement RAT

dstphys, dstlog

old dstphys

Register file
old dstphys

Free physical
register FIFO

dstphys, dstlog

Figure 4.9: Retirement stage

4.5.2 Exception handling

Some processes in the core can fail. Those defined in the ISA include misaligned
memory accesses, memory accesses with insufficient privileges, page faults and pro-
cessing illegal instructions. These situations cause an exception – “exceptional con-
dition” that needs to be manually handled by the programmer. A special exception
handling routine is invoked when this happens, e.g. in case of a page fault perhaps
the page wasn’t loaded into memory and has to be fetched from disk. Once the
handler finishes control is passed back to the previously executing program. Other
situations that cause an exception, but this time on purpose, are execution of break-
point and environment call instructions. These might be used for debugging or to
implement system and hypervisor calls. Current implementation also adds two other
internal exception sources – arrival of asynchronous interrupt and branch mispre-
diction. These are treated as exceptions to facilitate reuse of existing mechanisms
for handling them, thus avoiding additional complexity in hardware.

4.5. BACKEND 45

In the most common case the exception handling mechanism works as follows:

1. An instruction, while being executed, encounters one of the exceptional condi-
tions outlined above (for instructions that trigger exceptions on purpose their
execution is the exceptional condition).

2. exception bit in the ROB for the entry corresponding to that instruction is
asserted and the exception cause is stored in a register dedicated to this pur-
pose. Only one global exception cause is needed (as opposed to one per entry
in the ROB) since only soonest-to-be-retired instruction will trigger exception
handling – all subsequent instructions will be flushed, thus we don’t need to
store information about causes of their exceptions.

3. Once the instruction is about to be retired, the retirement stage looks at
the exception bit in the ROB and since it’s asserted the instruction is not
committed and relevant CSRs (mepc, mcause) are set to appropriate values.

4. A flushing state is entered, where the core is waiting for all instructions to go
through the core and reach retirement stage. The number of instructions still
currently in the core is tracked by a counter incremented when instruction is
pushed from the fetcher to a further stage. The counter is decremented when
an instruction is retired or flushed. Once it reaches 0 we are guaranteed to
have emptied the ROB.

5. During this process physical register ID of the flushed instruction is recy-
cled and Frontend RAT state is rewound. This is accomplished by rewriting
architectural-physical register mappings in the Frontend RAT with old map-
pings from the Retirement RAT (since it holds a state that Frontend RAT
held before all uncommitted instructions were renamed). Since information
about flushed instructions is available, in particular their architectural des-
tination registers, this is done only for corresponding entries in the Frontend
RAT, since only these can possibly differ from their counterparts in the Retire-
ment RAT. As this is performed in parallel with flushing no additional delay
is incurred.

There are a few cases where this process slightly differs.

1. In case of a failed instruction fetch or detecting an illegal instruction during
decoding, a special microarchitectural opcode with information about the ex-
ception cause is injected into the instruction stream. During its handling in
a dedicated execution unit it always triggers an exception (asserts exception
bit in the ROB).

2. In case of mispredicted branches the offending branch triggers a special mi-
croarchitectural exception for branch mispredictions. During retirement it is
committed and CSRs related to exception handling are not modified.

46 CHAPTER 4. CORE ARCHITECTURE OVERVIEW

3. In case of an asynchronous interrupt (that is – when global interrupt bit is
asserted), a special microarchitectural exception is triggered on branch, jump,
CSR-related or interrupt return instructions. This specific set of instructions
types is dictated by the need to know address of an instruction to return to
from an interrupt handler (branches and jumps have it readily available since
they calculate it explicitly) and by the RISC-V specification (as it dictates that
CSR and interrupt instructions must be considered as interrupt entry points).
During retirement the instruction that triggered this interrupt is committed
and CSRs related to exception handling are modified appropriately.

Chapter 5

Implementation

Due to the highly collaborative nature of the project and continuously-changing
codebase, author’s contributions are shown in their original form at the time when
they were contributed instead of their form at the time of writing, unless noted
otherwise. This serves to clearly separate the code originally written by the author
of this work from the code authored by other contributors and make the description
more focused. All sections are going to have links to particular commits that are
discussed in a section.

The initial core microarchitecture was designed and agreed upon collaboratively.
Some parts have been written early in the development stage of the project so they’re
going to differ from the description of the current state of the core given in chapter
4. Major differences are going to be explicitly mentioned. Due to the agile style of
development of the project all changes required mandatory tests and went through
a code review process with at least 2 approvers, unless noted otherwise.

5.1 Scheduler

Commits for this contribution:

• https://github.com/kuznia-rdzeni/coreblocks/commit/71fad2a5f026
ef24aac4f9c5d72148fbff9f3e9f

• https://github.com/kuznia-rdzeni/coreblocks/commit/6b9a3f8f69c9
f7f89fe4d4a56573a085c8397292

This part of the core was first implemented in the very early stages of development
but it retained the same structure as the scheduler described in section 4.3.2. As
part of this change the register file and frontend RAT were also implemented.

47

https://github.com/kuznia-rdzeni/coreblocks/commit/71fad2a5f026ef24aac4f9c5d72148fbff9f3e9f
https://github.com/kuznia-rdzeni/coreblocks/commit/71fad2a5f026ef24aac4f9c5d72148fbff9f3e9f
https://github.com/kuznia-rdzeni/coreblocks/commit/6b9a3f8f69c9f7f89fe4d4a56573a085c8397292
https://github.com/kuznia-rdzeni/coreblocks/commit/6b9a3f8f69c9f7f89fe4d4a56573a085c8397292

48 CHAPTER 5. IMPLEMENTATION

Very early into the development a question was posed how should interfaces
between pipeline stages be structured in terms of what Transactron entities should
they use. Options available at the time were:

• Transaction in one hardware block that calls a method in another hardware
block as in figure 5.1, or vice versa.

• Methods in both hardware blocks connected by another hardware block with
a transaction, as in figure 5.2.

TransactionMethod

Pipeline stage

TransactionMethod

Pipeline stage

Figure 5.1: Transaction in one hardware block calls a method in another hardware
block

Method MethodMethod Method... ...Transaction

Pipeline stage

Figure 5.2: Transaction ties two methods together and exchanges data between
them

Ultimately we agreed to use the second scheme since passing data between two
methods called in the same transaction is trivial, whereas passing data between a
method and a transaction in the same hardware block requires extra programming
work.

It’s useful to think about transactions in that scheme as stages in a pipeline
performing some computation, surrounded by buffers on both input and output
sides. In the implementation these are 2-element FIFOs queues. Note that using
size of 1 would not work as that forces a 1-cycle delay between a write to the FIFO
and a read from it, as both read and write methods can’t be called simultaneously –
either read can be called when the FIFO contains an element, or write can be called
when it is empty.

Transactions connected with FIFOs in a more general view form a consumer-
producer structure (producer transactions write to FIFOs which are then read by
consumer transactions), so they can also be thought of as an analogue of software
threads communicating through queues.

5.1. SCHEDULER 49

Figure 5.3 illustrates the scheduler implementation. Small boxes represent
transactions, while larger ones represent data structures. Flow of data is repre-
sented by arrows between transactions and methods, the latter being part of some
data structure.

Figure 5.4 presents an example pipeline stage. get_instr method is called to
read data from the preceding FIFO, another method get_free_reg is conditionally
called to allocate a physical register id (unless destination register is x0) and pro-
cessed data is written to the following FIFO by calling push_instr with argument
to write.

free_reg = Signal(self.gen_params.phys_regs_bits)

data_out = Record(self.output_layout)

with Transaction().body(m):

instr = self.get_instr(m)

with m.If(instr.rl_dst != 0):

reg_id = self.get_free_reg(m)

m.d.comb += free_reg.eq(reg_id)

m.d.comb += data_out.rl_s1.eq(instr.rl_s1)

m.d.comb += data_out.rl_s2.eq(instr.rl_s2)

m.d.comb += data_out.rl_dst.eq(instr.rl_dst)

m.d.comb += data_out.rp_dst.eq(free_reg)

m.d.comb += data_out.opcode.eq(instr.opcode)

self.push_instr(m, data_out)

Figure 5.4: Implementation of the register allocation stage

All scheduler stages are implemented in a very similar manner and work as
described in section 4.3.2, with the exception of the reservation station selection
stage, which doesn’t choose between multiple reservation stations (since there’s only
one at this point in the development) and only reserves a slot for the instruction. As
part of scheduler implementation register file and frontend RAT were implemented.
Other data structures (ROB, reservation station, FIFO) were implemented by other
contributors.

Register file is implemented as an array of configurable amount of individually-
addressable registers that contain their value and a valid bit. The latter is required
for distinguishing whether an instruction that has a particular register as its destina-
tion has already written a value there. There are two read ports and one write port
implemented as Transactron methods, where write and read to the same register in
the same cycle reads the new value. There’s also a free method that sets valid
bit to 0 for use when the physical register is freed. The 0th register is always kept

50 CHAPTER 5. IMPLEMENTATION

Register file

Frontend
RAT

Register
allocation

Register
renaming

ROB entry
allocation

RS entry
allocation

RS insertion

FIFO

write

read

FIFO

write

read

FIFO

write

read

FIFO

write

read

re
na
m
e

Free physical
registers
FIFO

read
ROB

put
read1

read2

Reservation
station

insert

alloc

decoded instruction

to ALU

Figure 5.3: The scheduler pipeline in detail

5.2. ASSEMBLING AND DEBUGGING THE CORE 51

valid with a value of 0 to simplify reads and writes from/to architectural register x0
which is defined in the ISA as always having the value 0 and writes having no effect.

Frontend RAT is implemented as an array of 32 individually-addressable regis-
ters that map architectural registers to physical register ids. It implements only one
method rename that updates the mapping for the supplied destination register and
returns mappings for supplied source register(s) as described in section 2.3.

For testing fuzzing was employed – generating random inputs that are “correct
enough” and don’t break any assumptions that need to hold for a piece of data to get
correctly processed. These are then fed into a simulated component and its outputs
are cross-checked with the expected results calculated in software.

The scheduler pipeline was tested as a whole as opposed to testing individual
stages. Methods of components that weren’t internally used in the scheduler were
controlled by the testbench. For example, free physical registers FIFO had to be
manually prefilled with all register IDs at the beginning of the testbench and replen-
ished with recycled IDs as instructions left the simulated pipeline using its write
method. Reservation station was “mocked” entirely – methods controlled by the
testbench were created and passed to the scheduler that behaved as if they were
part of a reservation station’s implementation. In this case testing didn’t reveal any
bugs since most of them were caught in code review.

5.2 Assembling and debugging the core

Commits for this contribution:

• https://github.com/kuznia-rdzeni/coreblocks/commit/2db2b4bb64
1840689b2b3a0f4e553e9369099f60 – co-authored with Michał Opanowicz
(24%) and Piotr Węgrzyn (12%)

• https://github.com/kuznia-rdzeni/coreblocks/commit/ad87fe91ee41
ebea395ece7d525878d76ffb694f

• https://github.com/Kristopher38/riscv-python-model/commit/b5d073
71fed9666cc3895da675081ef459596f75

After all the required components were implemented and tested, they had to
be connected together to form a functioning processor core. Shape of most inter-
faces was agreed upon beforehand, but some were not finalized until this stage. In
particular, scheduler’s pipeline didn’t contain proper fields for the execution unit
further down to be able to execute instructions. Fields opcode and exec_fn that
had enough information about the instruction were thus added to the pipeline.

https://github.com/kuznia-rdzeni/coreblocks/commit/2db2b4bb641840689b2b3a0f4e553e9369099f60
https://github.com/kuznia-rdzeni/coreblocks/commit/2db2b4bb641840689b2b3a0f4e553e9369099f60
https://github.com/kuznia-rdzeni/coreblocks/commit/ad87fe91ee41ebea395ece7d525878d76ffb694f
https://github.com/kuznia-rdzeni/coreblocks/commit/ad87fe91ee41ebea395ece7d525878d76ffb694f
https://github.com/Kristopher38/riscv-python-model/commit/b5d07371fed9666cc3895da675081ef459596f75
https://github.com/Kristopher38/riscv-python-model/commit/b5d07371fed9666cc3895da675081ef459596f75

52 CHAPTER 5. IMPLEMENTATION

After this prerequisite work was completed, all components were integrated
together. Overview of the core at this point in the development in presented in
figure 5.5

Testing came next. Initial tests were contributed by Michał Opanowicz. These
have revealed an oversight in the implementation regarding handling of immediates
which was promptly fixed by Piotr Węgrzyn.

Initial tests only tested one manually crafted scenario – a few registers were
populated with data and then two adds and one lui instruction were performed. A
more robust testing method was needed.

As with scheduler tests in section 5.1, fuzzing was also employed here. An
open-source RISC-V emulator written purely in Python was used as a reference im-
plementation [29]. Both the emulated core and our core in simulation were initialized
to start from a known state and were fed a random instruction stream consisting only
of arithmetic instructions, since only those were supported by our core at the time.
After all instructions finished execution architectural register state was compared
for any mismatch between the emulated and the simulated core.

This testing method was successful in finding some bugs in the implementation:

• valid bit in the register file wasn’t cleared when a register was freed, making
instructions that reused a previously used physical register read incorrect data
as their operand. This was fixed by calling appropriate method of the register
file in retirement.

• If an instruction had its physical destination register set to 0 (which implies
architectural destination register x0), after instruction finished execution its
result was announced on the common data bus by the result announcement
stage. This was not only redundant since writes to register x0 should be
ignored but also caused spurious value updates in the reservation station tag
with value 0 is often present there since it indicates that the operand’s value
has already been acquired (see section 4.4.1 for more details). With the right
timing this caused some instructions to operate on incorrect data. It was fixed
by conditionally sending the result announcement if the destination register
was not 0.

There were also minor bugs found in the implementation of the emulated core
– some shift operations were not compliant with the RISC-V specification. Those
were promptly fixed and a pull request was submitted upstream.

5.2. ASSEMBLING AND DEBUGGING THE CORE 53

Decoder

Register
allocation

Register
renaming

Free physical
registers
FIFO

Frontend
RAT

ROB entry
allocation

Reorder
buffer

RS selection

RS insertion

Reservation
station

Execution
unit (ALU)

Result
announcement

Register
file

Retirement
Retirement
RAT

manually
injected
instructions

Figure 5.5: Initial core schematic after first integration

54 CHAPTER 5. IMPLEMENTATION

5.3 Instruction memory

Commits for this contribution:

• https://github.com/kuznia-rdzeni/coreblocks/commit/f280080f54b2
4e6d6f4098b526eaec9ff40dc3f7

• https://github.com/kuznia-rdzeni/coreblocks/commit/7d6e6192358b
b06ee7e272458c29b10732007573

So far the core had to be manually injected with instructions, so even though
we’ve had an implementation of the fetch stage, it was unused. At the beginning of
the project it was decided that we’re going to use Wishbone bus for interfacing with
external peripherals. Thus the fetch stage had a Wishbone master interface, but we
lacked an implementation of memory with a compatible Wishbone slave interface.

Initial implementation allowed adjusting data and address width, memory depth,
initial contents, had one read and one write port and performed a standard, non-
burst data transfers. Theoretical maximum performance was one transfer every 2
clock cycles since the Wishbone bus protocol dictates that an acknowledgement sig-
nal for each transfer in this mode is sent by the receiving side and a new Wishbone
transaction is started for every transfer. In reality the implementation of Wishbone
master used by the fetch stage only allowed one transfer every 4 clock cycles.

Fetch unit was then integrated into the core and memory initialized with ran-
domly generated instructions was connected to the core in tests. This revealed a
bug – since fetch assumed a byte-addressable memory while the implementation was
a word-addressable memory, it fetched every fourth instruction. A simple fix was
made to divide the addresses in requests sent by the fetch unit by 4. Since there
was no support for the C extension yet (which would allow requests to instructions
on a 2-byte boundary) this was correct.

5.4 Branch support

Commits for this contribution:

• https://github.com/kuznia-rdzeni/coreblocks/commit/128312add363
ad5fc393bd3ec2bd31010041a082

• https://github.com/kuznia-rdzeni/coreblocks/commit/91e54a597719
66f729cb01c9c42d337aadf25039

At this point the core was essentially a very elaborate calculator – it could not
perform jumps nor alter its program counter in any way. Every program was a linear

https://github.com/kuznia-rdzeni/coreblocks/commit/f280080f54b24e6d6f4098b526eaec9ff40dc3f7
https://github.com/kuznia-rdzeni/coreblocks/commit/f280080f54b24e6d6f4098b526eaec9ff40dc3f7
https://github.com/kuznia-rdzeni/coreblocks/commit/7d6e6192358bb06ee7e272458c29b10732007573
https://github.com/kuznia-rdzeni/coreblocks/commit/7d6e6192358bb06ee7e272458c29b10732007573
https://github.com/kuznia-rdzeni/coreblocks/commit/128312add363ad5fc393bd3ec2bd31010041a082
https://github.com/kuznia-rdzeni/coreblocks/commit/128312add363ad5fc393bd3ec2bd31010041a082
https://github.com/kuznia-rdzeni/coreblocks/commit/91e54a59771966f729cb01c9c42d337aadf25039
https://github.com/kuznia-rdzeni/coreblocks/commit/91e54a59771966f729cb01c9c42d337aadf25039

5.4. BRANCH SUPPORT 55

sequence of arithmetic instructions that operated on data registers only. To achieve
full support of RV32I, handling of branch and other instructions that operate on
the program counter had to be added.

First, a hardware block that is responsible for executing these instructions was
implemented. This process involved closely reading the RISC-V specification [8]
chapter 2.5 that details the semantics of each branch and jump opcodes, as well
as parts of chapter 2.4 which contains the description of auipc instruction, and
translating this specification into code. This functional unit (usually called execution
unit in literature) was somewhat special in a sense that it produced two results –
one was the result to be written into an ordinary data register, and one was the
result to be written into the program counter to perform a jump.

Randomized tests were written to ensure the implementation was correct. Test-
ing however has the following drawback: if identical wrong assumption is made in
both the implementation and tests, they effectively cancel each other out. Much
later on in the core’s development a bug caused by the way instructions were de-
coded has caused instructions with large positive offsets to jump to an incorrect
address due to immediate getting truncated. Further details are available in [28].
This was not caught in testing precisely because of incorrect assumptions in both
places.

Next, the unit into had to be integrated into the core. Some minor modifications
had to be carried out in various parts of the code:

1. Program counter field was added to the frontend’s pipeline to facilitate calcu-
lating jump addresses in the functional unit.

2. Detecting jump and branch opcodes was introduced in the fetcher. If such
opcode is detected fetching is stalled. This is performed before instruction
decoding (this simplifies the whole process) by looking at specific bits in the
instruction that unequivocally distinguishes them from other instructions.

3. Fetching is resumed when a signal from the functional unit with value of the
PC where fetching should continue is sent from the functional unit.

Refer to figure 4.6 for a block diagram.

Last bit of the work was writing integration tests. To make this more stream-
lined, core tests were extended with the ability to compile and load RISC-V assembly
sources. This was achieved by compiling them with RISC-V GNU assembler as and
extracting the compiled machine code from the resulting file with objcopy and ini-
tializing instruction memory with it. The core was then simulated for a set number
of cycles and architectural register state was compared with an expected state. A
program to compute Fibonacci numbers was written in RISC-V assembly to test
that branches and jumps do indeed work after integration. More comprehensive
tests were introduced later by other contributors.

56 CHAPTER 5. IMPLEMENTATION

5.5 Interrupt handling

Commits for this contribution:

• https://github.com/Kristopher38/coreblocks/commit/d8854c3271e4b6
fe02b187e3746e388aed09d290

• https://github.com/Kristopher38/coreblocks/commit/ff22067db2e972
8bdda4d72ac2cbb5da7a7c4288

5.5.1 Introduction

A CPU that doesn’t expose any means to affect its control flow from the outside
(short of manipulating instructions in instruction memory itself) isn’t very conve-
nient to program for. Thus such mechanism in commonly implemented in CPUs
and is usually known under the umbrella term interrupts. Microcontrollers com-
monly use interrupts for reacting to external and internal stimuli, such as button
push or timer overflow. Operating systems rely on timer interrupts being available
to implement preemptive multitasking.

Depending on the ISA interrupts might mean software or hardware interrupts,
with different terminology for distinguishing types of interrupts. For the purposes
of this section, the term “interrupt” will refer to hardware interrupts specifically –
that is interrupts triggered by a change in one of the processor lines, internal or
external (as opposed to being triggered by the execution of program).

One of the long-term goals of the project is to run Linux and Mimiker [19]
operating systems on the Coreblocks CPU. A strong prerequisite for this is support-
ing interrupts. This contribution introduces necessary changes to divert the flow
of execution to an interrupt handler and return back from it, while keeping all in-
ternal data structures in a consistent state. Ultimately it wasn’t fully merged into
master because an objectively better solution was discovered and implemented but
it went through the full review cycle, spawned many crucial discussions about the
approach to handling not only interrupts but exceptions (i.e. software interrupts)
as well and tests implemented as part of this change were reused as tests for a later
implementation.

5.5.2 Initial approach

There are multiple ways microarchitecture designer can implement interrupts in an
out-of-order engine, each with their own benefits and drawbacks. This subsection
contains a brief overview of approaches taken by other out-of-order cores where doc-
umentation on it could be found and details the approach used in this contribution.

https://github.com/Kristopher38/coreblocks/commit/d8854c3271e4b6fe02b187e3746e388aed09d290
https://github.com/Kristopher38/coreblocks/commit/d8854c3271e4b6fe02b187e3746e388aed09d290
https://github.com/Kristopher38/coreblocks/commit/ff22067db2e9728bdda4d72ac2cbb5da7a7c4288
https://github.com/Kristopher38/coreblocks/commit/ff22067db2e9728bdda4d72ac2cbb5da7a7c4288

5.5. INTERRUPT HANDLING 57

• RiscyOO and BOOM – a special instruction representing an interrupt is
inserted into the ROB in the frontend, which will be processed at commit
stage when ROB dequeue pointer reaches it [15, 5].

• Intel P6 – global interrupt signal is reported to the retirement stage and
handled appropriately there, together with other events such as exceptions or
mispredicted branches [25].

• Coreblocks (latest version) – interrupt is marked as an exception at jump
or branch instructions and will be processed at the commit stage when ROB
dequeue pointer reaches it.

In all cases subsequent entries in the ROB are flushed and Frontend RAT is
restored to a non-speculative state as if instructions after the interrupt didn’t go
through renaming (how this is done is up to a particular implementation). This
ensures that the core is in a well-defined state once it enters the interrupt handler –
i.e. no uncommitted instructions that are said to have happened after the interrupt
have affected the architectural state.

Initial proposal for interrupt handling used a different approach – every ROB
entry would contain an interrupt bit that would be set by an interrupt handling
unit and acted upon at retirement stage. This idea seemed reasonable at first be-
cause we thought that would help us unify interrupt and exception handling in the
future (as exceptions would use a similar mechanism – setting a flag in the ROB
on excepting instruction), but it was quickly abandoned since it didn’t provide any
benefits over having a single global interrupt flag.

After a global interrupt flag was raised, all ROB entries would be flushed, regis-
ters allocated for the corresponding instructions freed and Fronted RAT restored to
the state of the Retirement RAT. Pending data in everything that keeps a tempo-
rary state – fetcher, functional units, reservation stations, FIFOs connecting various
components would also be flushed.

It quickly turned out that this approach is insufficient in itself, for several
reasons that we shall now examine.

5.5.3 Register leakage

One of the issues spotted even before the implementation began was possibility of
“leaking” physical register IDs during a core flush. There are a few cycles of delay
between a register ID being taken out of free physical registers FIFO and being
stored in the ROB (as seen in figure 4.4), and as that value travels through the
pipeline it’s only present in FIFOs between the stages. There was thus a risk that a
core flush would cause that register ID to be lost, unable to be used until a full core
reset. This was remedied by combining ROB entry allocation with physical register

58 CHAPTER 5. IMPLEMENTATION

allocation such that it happened atomically. This meant that a particular register
ID was always either in the free physical registers FIFO or ROB.

5.5.4 Precommit stage

Instructions can be generally classified as either:

• Side-effect free – they only affect integer or floating point registers, e.g. add.

• Side-effectful – they perform some action on the state outside of the core, e.g.
memory store, or they read/write CSR registers (as those can control the core’s
behavior in a significant way, e.g. turning support for compressed instruction
on and off).

Up until this point all instructions started executing as soon as they entered their
dedicated functional unit. Introduction of interrupts has created the possibility of
speculative execution – since there could be a delay between raising and servicing
an interrupt, all instructions that chronologically came after it was raised could’ve
already executed and are now only awaiting to be committed and retired, but in
reality they will be flushed. This is fine for side-effect free instructions as their
impact on the overall state of the system is tightly controlled and localized – such
flushing is able to reverse their changes to the core’s state. On the other hand side-
effectful instructions perform some work that changes the state of the system in such
a way that the effects of it can’t usually be undone.

This problem was recognized early in the implementation phase and sparked a
discussion among the development team. Clearly there was a need to have a way to
delay performing the side effects of an instruction (if it does any). Proposed solution
was to implement a precommit method in each functional unit that would be called
every cycle once an instruction is about to be retired (i.e. dequeue pointer in the
ROB has reached it) until it’s not marked as done. Such method would signal to
the functional unit that the instruction tagged with a specific physical register ID
can now perform its side effects as at that point we know with certainty that the
instruction is not on a speculative execution path. This was implemented by Marek
Materzok [13].

5.5.5 Implementation bugs

It’s expected from the CPU architecture to provide a way to return from an interrupt
back to the interrupted instruction stream. This return address is usually stored
either on a general-purpose or a specialized stack, or in a dedicated register. On
RISC-V it’s the latter – it’s a CSR named mepc. Under the implemented mechanism,
natural place to get the interrupt return address from is address of the instruction

5.5. INTERRUPT HANDLING 59

that was about to be retired (while also discarding it and all subsequent instructions,
to be re-executed after servicing the interrupt) – thus a PC field was added to all
ROB entries to store it. More importantly, with the introduction of a precommit
method described previously side effects were not performed for the soonest-to-be-
retired instruction, address of which was meant to be stored into mepc. But even
with this mechanism two bugs were discovered.

At first setting the PC by jump/branch unit wasn’t considered as side-effectful.
This has caused a particularly interesting bug that could occur while the interrupt
was being prepared to get serviced. One of the steps in this process is setting the
PC to the address of the ISR. With the right timing a jump instruction from the
interrupted instruction stream could’ve already set the PC to a target address and
overwrite the address pointing to the ISR. This was fixed by setting PC only when
precommit was called for a particular instruction.

Since precommit might’ve already been called at least once for a soonest-to-be-
retired instruction when an interrupt arrived, address of that instruction couldn’t
be used as a valid value for mepc since it might’ve already started performing its
side effects. Thus tracking whether this has happened or not was implemented, and
if that was the case the core waited until retirement of the next instruction. This
introduced a subtle problem that could lead to an interrupt never being serviced.
Starting the process of handling an interrupt was only possible when two conditions
were satisfied: ROB was not empty and, due to slightly incorrect implementation,
the core has retired an instruction in the previous cycle – the latter was to ensure that
precommit hasn’t been called for a subsequent instruction and that it hasn’t started
performing side effects yet. This meant however that there needed to be at least two
allocated entries (instructions) in the ROB for interrupt handling to proceed. While
this is usually the case, there is at least one case where this would never happen – in
an infinite loop consisting only of one jump instruction that jumps to itself. Because
a jump stalls the fetch stage, it’s the only instruction (with a corresponding ROB
entry) in the core at the point of its retirement. Once the target address of a jump
is resolved fetching is resumed but in this case the next instruction is also a jump
that will also be the only instruction in the core until its retirement. Thus begins a
cycle where there’s no chance to ever have two instructions (with two corresponding
entries in the ROB) simultaneously in the core and so the interrupt is never handled.

5.5.6 Implementation details

The central part of interrupt handling is the interrupt coordinator. This hardware
block receives an interrupt via an external interrupt method and contains a state
machine to orchestrate the interrupt handling process that executes the following
steps:

60 CHAPTER 5. IMPLEMENTATION

1. Wait for the interrupt method to get called. This is assumed to be done by
a yet-to-be-implemented interrupt controller.

2. Wait for ROB to be nonempty (to always have a source of PC value to come
back to from an ISR) and signal retirement to stall once an instruction that
hasn’t had precommit method called on it is about to be retired and wait for
an acknowledge signal from retirement.

3. Save interrupt return address of soonest-to-be-retired instruction into mepc
CSR, clear all state in the pipeline (functional units, pipeline FIFOs, reserva-
tion stations) and restore Frontend RAT from Retirement RAT. This is done
by copying all values at once from R-RAT to F-RAT, but could very-well be
done sequentially at the cost of larger interrupt processing time. This is also
where the fetcher is stalled – it needs to be done precisely after retirement is
stalled in the previous step to avoid a jump or a branch instruction resuming
the fetcher after it was stalled.

4. Flush entries from ROB, making sure physical register IDs that those entries
contained are inserted back into free physical registers FIFO.

5. Jump to the ISR (resuming the fetcher in the process), address of which is
contained in the mtvec CSR and resume retirement.

6. Wait for interrupt return instruction mret (return from machine mode inter-
rupt). Handling this kind of instruction is delegated to a specialized functional
unit that calls an iret method in the interrupt coordinator that triggers tran-
sition to the next step.

7. Jump back to the interrupted instruction stream by redirecting the PC to
value stored previously in mepc.

The implementation disallowed nested interrupts (that are allowed by RISC-V
specification), but this was meant to be a temporary measure to simplify testing
until a proper mechanism involving an mstatus (machine status register) CSR was
devised.

One drawback of this approach is the necessity to implement clear method
(for clearing the internal state) in all relevant parts of the core – FIFOs, reservation
stations, functional units, etc. These necessarily conflict with other methods (that
read or manipulate the internal state) as clear has to take priority so it’s marked as
such (e.g. when both write and clearmethods need to be called in some component
in the same clock cycle, Transactron’s scheduler will always select clear to be called
in that clock cycle). This in turn complicates the generated Transactron scheduling
logic. Moreover, due to a centralized approach to clearing (interrupt coordinator
calling clear in all parts of the core) this turns the circuit into a graph with lots of
components connected to a single node (the interrupt coordinator). Both make the
Transactron scheduling logic have worse timing parameters in the synthesized core.

Chapter 6

Summary and future work

Implementing an out-of-order core is an example of practice being harder than the
theory, as many traps lurk in the shadows for an aspiring microarchitectural de-
signer. Examples given in this work include striking bugs such as accidentally over-
writing operands of instructions, not freeing dynamically allocated resources (which
ultimately leads to the core halting) or more subtle ones, like accidentally “leak-
ing” allocated resources or spontaneously jumping to an incorrect place in memory
in rare circumstances when servicing an interrupt. Mandatory test writing was
thus paramount to the success of the project, as these gave the development team
confidence in their implementation and very quickly highlighted bugs during the
development.

The core is also a great example of learning through implementation. The the
development team learned many nontrivial details and properties of such system and
where potential bugs could be, much more than could be hoped for by just reading
the literature available on the topic.

Ultimate goal of the project is to run Linux and Mimiker operating systems
on the Coreblocks core. There is much to be done for it to be possible – currently
the core lacks an interrupt controller, support for atomics (A extension), virtual
memory and privilege levels – all required for running any modern OS.

Another avenue is improving the core’s performance. Obvious point for im-
provement is not stalling on branches but instead using a branch predictor and
executing instruction speculatively. The load-store unit can also be improved to
support multiple loads/stores at once and reorder them. Another larger task in this
category is making the core superscalar by fetching and retiring multiple instruc-
tions at once. Data structures would also need to be updated to handle multiple
operations on them at the same time.

Finally, while not a priority, floating point extensions are yet to be implemented.
These are respectively the F extension for 32-bit floats and D extension for 64-bit
floats.

61

62 CHAPTER 6. SUMMARY AND FUTURE WORK

In this work we’ve shown how an out-of-order core works and described the
implementation of and author’s contributions to Coreblocks – an out-of-order RISC-
V being developed at the University of Wrocław. We hope that this work will be a
good introduction to the Coreblocks project and serve future students in their efforts
to further their knowledge in modern processor design.

Bibliography

[1] Marton Bognar, Job Noorman, and Frank Piessens. Proteus: An extensible
RISC-V core for hardware extensions. In RISC-V Summit Europe ’23, June
2023.

[2] Michał Błaszczyk. Port of Mimiker operating system for RISC-V architecture.
Bachelor’s thesis, University of Wrocław, Faculty of Mathematics and Com-
puter Science, Institute of Computer Science, February 2022. Available at:
https://ii.uni.wroc.pl/media/uploads/2022/11/18/baszczyk-micha-p

raca.pdf Accessed: 2024-06-11.

[3] Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic
data-flow processor. Technical report, Massachusetts Institute of Technology,
1974.

[4] Danijela Efnusheva, Ana Cholakoska, and Aristotel Tentov. A survey of differ-
ent approaches for overcoming the processor-memory bottleneck. International
Journal of Computer Science & Information Technology (IJCSIT), 9(2), April
2017.

[5] MIT CSAIL’s Computation Structures Group. RiscyOO design document. http
s://github.com/sizhuo-zhang/RiscyOO_design_doc. Accessed: 2024-06-11.

[6] MIT CSAIL’s Computation Structures Group. RiscyOO: RISC-V out-of-order
processors. https://github.com/csail-csg/riscy-OOO. Accessed: 2024-06-
11.

[7] Institute of Computing Technology, Chinese Academy of Sciences and Peng
Cheng Laboratory. XiangShan - open-source high-performance RISC-V pro-
cessor project. https://github.com/OpenXiangShan/XiangShan. Accessed:
2024-06-11.

[8] RISC-V International. The RISC-V Instruction Set Manual volume I (Unprivi-
leged Architecture). https://github.com/riscv/riscv-isa-manual/releas
es/download/20240411/unpriv-isa-asciidoc.pdf. Accessed: 2024-06-11.

63

https://ii.uni.wroc.pl/media/uploads/2022/11/18/baszczyk-micha-praca.pdf
https://ii.uni.wroc.pl/media/uploads/2022/11/18/baszczyk-micha-praca.pdf
https://github.com/sizhuo-zhang/RiscyOO_design_doc
https://github.com/sizhuo-zhang/RiscyOO_design_doc
https://github.com/csail-csg/riscy-OOO
https://github.com/OpenXiangShan/XiangShan
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf

64 BIBLIOGRAPHY

[9] RISC-V International. The RISC-V Instruction Set Manual volume II (Privi-
leged Architecture). https://github.com/riscv/riscv-isa-manual/releas
es/download/20240411/priv-isa-asciidoc.pdf. Accessed: 2024-06-11.

[10] RISC-V International. RVWMO memory consistency model. https://five-e
mbeddev.com/riscv-isa-manual/latest/rvwmo.html. Accessed: 2024-06-11.

[11] M.H. Lipasti and J.P. Shen. Exceeding the dataflow limit via value prediction.
In Proceedings of the 29th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO 29, pages 226–237, 1996.

[12] Arm Ltd. Arm glossary - Instruction Set Architecture (ISA). https://www.ar
m.com/glossary/isa. Accessed: 2024-06-11.

[13] Marek Materzok. Pull request #370 - implementation of precommit method.
https://github.com/kuznia-rdzeni/coreblocks/pull/370. Accessed:
2024-06-11.

[14] O. Mutlu, Hyesoon Kim, and Y.N. Patt. Address-value delta (AVD) prediction:
increasing the effectiveness of runahead execution by exploiting regular memory
allocation patterns. In 38th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’05), pages 12 pp.–244, 2005.

[15] The Regents of the University of California. Berkeley Out-of-Order Machine
documentation. https://docs.boom-core.org/en/latest/. Accessed: 2024-
06-11.

[16] The Regents of the University of California. RISC-V BOOM - the Berkeley
Out-of-Order RISC-V processor. https://boom-core.org. Accessed: 2024-
06-11.

[17] University of Wrocław. Coreblocks GitHub repository. https://github.com
/kuznia-rdzeni/coreblocks/. Accessed: 2024-06-11.

[18] University of Wrocław. Coreblocks project README. https://github.com
/kuznia-rdzeni/coreblocks/blob/6db5cf098633462f109b8b5fb5406f69c0

de908b/README.md. Accessed: 2024-06-11.

[19] University of Wrocław. The Mimiker project. https://mimiker.ii.uni.wro
c.pl. Accessed: 2024-06-11.

[20] University of Wrocław. Transactron library documentation. https://kuznia
-rdzeni.github.io/coreblocks/transactions.html. Accessed: 2024-06-11.

[21] OpenCores Organization. Wishbone B4 WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores. Available at: https://cd
n.opencores.org/downloads/wbspec_b4.pdf Accessed: 2024-06-11.

https://github.com/riscv/riscv-isa-manual/releases/download/20240411/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/priv-isa-asciidoc.pdf
https://five-embeddev.com/riscv-isa-manual/latest/rvwmo.html
https://five-embeddev.com/riscv-isa-manual/latest/rvwmo.html
https://www.arm.com/glossary/isa
https://www.arm.com/glossary/isa
https://github.com/kuznia-rdzeni/coreblocks/pull/370
https://docs.boom-core.org/en/latest/
https://boom-core.org
https://github.com/kuznia-rdzeni/coreblocks/
https://github.com/kuznia-rdzeni/coreblocks/
https://github.com/kuznia-rdzeni/coreblocks/blob/6db5cf098633462f109b8b5fb5406f69c0de908b/README.md
https://github.com/kuznia-rdzeni/coreblocks/blob/6db5cf098633462f109b8b5fb5406f69c0de908b/README.md
https://github.com/kuznia-rdzeni/coreblocks/blob/6db5cf098633462f109b8b5fb5406f69c0de908b/README.md
https://mimiker.ii.uni.wroc.pl
https://mimiker.ii.uni.wroc.pl
https://kuznia-rdzeni.github.io/coreblocks/transactions.html
https://kuznia-rdzeni.github.io/coreblocks/transactions.html
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf

BIBLIOGRAPHY 65

[22] Amaranth project contributors. Amaranth language documentation. https:
//amaranth-lang.org/docs/amaranth/latest/. Accessed: 2024-06-11.

[23] Surya Raj. Awesome RISC-V resources. https://github.com/suryakantam
angaraj/AwesomeRISC-VResources. Accessed: 2024-06-11.

[24] André Seznec. TAGE-SC-L branch predictors. In Proceedings of the 4th Cham-
pionship on Branch Prediction, June 2014. Available at: https://jilp.org/c
bp2014/paper/AndreSeznec.pdf Accessed: 2024-06-11.

[25] John Paul Shen and Mikko Herman Lipasti. Modern Processor Design. Wave-
land Press, 2005.

[26] Robert Marco Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of Research and Development, 11(1), January 1967.

[27] Gabriele Tripi. ApogeoRV RISC-V - high-performance and highly customizable
CPU core. https://github.com/GabbedT/ApogeoRV. Accessed: 2024-06-11.

[28] Jakub Urbańczyk. Pull request #361 - fix for immediate truncation bug in
jump-branch functional unit. https://github.com/kuznia-rdzeni/corebl
ocks/pull/361. Accessed: 2024-06-11.

[29] Stefan Wallentowitz. RISC-V python software model. https://github.com/w
allento/riscv-python-model. Accessed: 2024-06-11.

https://amaranth-lang.org/docs/amaranth/latest/
https://amaranth-lang.org/docs/amaranth/latest/
https://github.com/suryakantamangaraj/AwesomeRISC-VResources
https://github.com/suryakantamangaraj/AwesomeRISC-VResources
https://jilp.org/cbp2014/paper/AndreSeznec.pdf
https://jilp.org/cbp2014/paper/AndreSeznec.pdf
https://github.com/GabbedT/ApogeoRV
https://github.com/kuznia-rdzeni/coreblocks/pull/361
https://github.com/kuznia-rdzeni/coreblocks/pull/361
https://github.com/wallento/riscv-python-model
https://github.com/wallento/riscv-python-model

	Introduction
	Out-of-order paradigm
	Dataflow
	Register renaming
	Tomasulo's algorithm
	Tracking instruction order
	Controlling state changes
	Maximizing performance

	The Coreblocks project
	RISC-V
	Amaranth
	Coreblocks
	Transactron

	Core architecture overview
	Shared data structures
	Register file
	Free physical register IDs FIFO
	Register alias table
	Reorder buffer

	Control and status registers
	Frontend
	Instruction fetch and decode
	Scheduler

	Middle-end
	Reservation stations and instruction scheduling
	Execution units
	Jump-branch unit
	Load-store unit
	Result gathering and announcement

	Backend
	Retirement
	Exception handling

	Implementation
	Scheduler
	Assembling and debugging the core
	Instruction memory
	Branch support
	Interrupt handling
	Introduction
	Initial approach
	Register leakage
	Precommit stage
	Implementation bugs
	Implementation details

	Summary and future work
	Bibliography

