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Abstract

For the past few years in the software development industry there has been a growing
interest in strongly typed languages. It manifests itself in emergence of brand–new
technologies in which strong type systems were one of the core founding principles or
in changes introduced to existing languages. The most common examples of modern
languages with powerful type systems are TypeScript as an alternative to JavaScript
in the world of web development, or Rust in domain of systems programming in
place of C and C++. More mature languages also had their type systems revised
for example in C# 8 explicit type nullability annotations were introduced, or even
dynamically typed Python has seen major improvements to its type annotation
system.

This study — an implementation of the OpenGL graphics API wrapper library
for Rust — will attempt to demonstrate how Rust’s type system can be utilized to
improve low–level software safety and maintainability as well as how it affects API
design and codebase structure.

Od kilku lat w branży programistycznej rośnie zainteresowanie językami silnie
typowanymi. Przejawia się to przez powstawanie zupełnie nowych technologii, w
których silne systemy typów są fundamentem budowy języka lub w zmianach wpro-
wadzanych do istniejących języków. Przykładami takich nowoczesnych języków są
TypeScript, jako alternatywa dla JavaScript w świecie stron internetowych lub Rust
w dziedzinie programowania systemowego zamiast C i C++. Starsze technologie roz-
szerzyły swoje systemy typów, na przykład w C# 8 wprowadzono jawne adnotacje o
tym, że typ może przyjmować wartości null. Nawet dynamicznie typowany Python
doczekał się znacznych ulepszeń w swoim systemie adnotacji typów [3].

Niniejsza praca — implementacja biblioteki opakowującej API OpenGL dla
języka Rust — będzie próbą zademonstrowania w jaki sposób jego system typów
może zostać wykorzystany do zwiększenia niezadwodności, łatwości utrzymania oraz
rozwoju oprogramowania i jego niskopoziomowego bezpieczeństwa; a także w jaki
sposób wpływa on na projektowanie API i strukturę kodu.
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Introduction

This study aims to demonstrate how extensive use of advanced type systems can
change the way software is developed. Advancements in type systems allow their
users to express increasingly more complex invariants and contracts for their pro-
grams using logic rules, and enable type checkers to proof that all these invariants
are upheld at compile–time.

This is very desired as type systems not only offer extensive compile–time ver-
ification, but just as importantly logic based rules are substantially less susceptible
to bugs due to programming errors like regular validation code is.

For over a decade now in many languages we have seen a gradual shift toward
both stronger typing, and more of a functional approach to program specification.
with strong and expressive types systems as a foundation of this trend.

We chose to implement wrapper library for OpenGL using Rust — named
gpu-bulwark — due to several important factors.

Rust has: a state of the art type system comparable to Haskell’s, is a natively
compiled language with very good support for C interoperability, its ownership based
model of resource lifetime management provides strong guarantees about when ex-
actly destructor will be called, borrow checker allows to better express how different
pieces of program interact with each other. Rust is also a systems programming
language, and we wanted to showcase that it can be successfully applied to graphics
programming [11]

OpenGL is a very mature, cross–platform, well understood and widely sup-
ported graphics specification. Its also arguably the best API for beginners in hard-
ware accelerated graphics programming to start with. With all that being said its
also quite dated, and its sequential model of execution no longer accurately repre-
sents the realities of graphics hardware.

We realized that Rust’s type system can help to amend certain aspects of
OpenGL which make it sometimes difficult to use. We tried to emphasize important
aspects of the API like: control flow or graphics pipeline and impose a structure for
different APIs by generalizing them, as well as, using strongly typed procedures and
types. so users can focus on graphics programming and not have to worry about
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different OpenGL obscurities and verifying by hand that numerous contracts are
upheld.



Chapter 1

The Rust programming
language
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Introduction

Rust is an open–source, general purpose, multi paradigm, compiled, statically and
strongly typed language maintained by Rust Foundation.

Although general purpose, language lends itself particularly well to systems
programming, where software reliability, scalability and efficiency are paramount.
These qualities can be largely attributed to powerful and expressive type system and
ownership based memory management which guarantees memory safety without a
garbage collector.

1.1 Built–in Data types

1.1.1 Scalars

Scalars are the most basic types in Rust, representing single numeric values. There
are four primary scalar types in Rust:

• Integers: These represent whole numbers and come in signed (i8, i16, i32,
i64, i128, isize) and unsigned (u8, u16, u32, u64, u128, usize) varieties.
The numbers in the names indicate the number of bits used for storage. isize
and usize depend on the architecture of the machine, being 32–bit or 64–bit.

• Floating–Point Numbers: These represent numbers with fractional parts.
Rust provides two floating–point types defined in IEEE754, namely single pre-
cision 32–bit f32 and double precision 64–bit f64.

• Char: The char type represents a single Unicode code point. It can represent
a wide range of characters, including emojis, and is always four bytes in size.

• Boolean: The bool type has two possible values: true and false.

1.1.2 Tuples

Tuples are a compound type that allows you to group together multiple values of
different types into a single entity. The values are ordered, and each element can be

13
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of a different type. Tuples have a fixed size, meaning once they are declared, they
cannot grow or shrink.

l e t person : ( i32 , &st r , bool ) = (25 , ” A l i c e ” , t rue ) ;

You can access the elements of a tuple using dot notation with a zero–based
index:

l e t age = person . 0 ; // 25
l e t name = person . 1 ; // ” Al i c e ”

1.1.3 Array

An array is a collection of elements of the same type stored in a contiguous block of
memory. Arrays in Rust have a fixed size, meaning once they are defined, their size
cannot be changed. Arrays are useful when you need a collection of items that are
all of the same type and the exact number of elements is known at compile–time.

l e t numbers : [ i 32 ; 3 ] = [ 1 , 2 , 3 ] ;

Here, [i32; 3] indicates an array of three 32–bit integers.

1.1.4 Slice

A slice is a reference to a contiguous sequence of elements within an array or another
slice. Unlike arrays, slices are dynamically sized. Slices are used when you want to
reference a portion of an array without needing to own the entire array. Slices have
two forms: borrowed slices (&[T]) and mutable slices (&mut [T]).

l e t numbers : [ i 32 ; 3 ] = [ 1 , 2 , 3 ] ;
l e t s l i c e : &[ i 32 ] = &numbers [ 1 . . ] ;

Here, slice refers to the elements [2, 3] in the numbers array.

1.1.5 str

The str type is a string slice, which represents a view into a string data. It’s
typically seen as a reference, &str, and is used for passing strings around without
needing to own them. str is an immutable sequence of UTF–8 encoded bytes.

l e t g r e e t i n g : &s t r = ”Hel lo , world ! ” ;

A &str is often created from string literals or from string manipulation func-
tions, and it is the most commonly used string type when you don’t need to modify
the string contents.

Both strs and slices are unsized data types
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1.1.6 User defined types

Rust provides 3 ways to construct user defined aggregate types, these are:

• structs

• enums

• unions

We focus on the first two of these.

structs

Struct is a heterogeneous product of other types, they are analogous to struct types
in C, the record types of the ML family, or the struct types of the Lisp family.
They constitute the basic building blocks for any user defined types. The memory
layout of a struct is undefined by default to allow for compiler optimizations like
field reordering, but it can be fixed with the repr attribute. The fields of a struct
may be qualified by visibility modifiers, to allow access to data in a struct outside
a module. A tuple struct type is just like a struct type, except that the fields are
anonymous. A unit–like struct type is like a struct type, except that it has no fields.
The one value constructed by the associated struct expression is the only value that
inhabits such a type. [12]

enums

An enumeration, also referred to as an enum, is a simultaneous definition of a nom-
inal enumerated type as well as a set of constructors, that can be used to create or
pattern–match values of the corresponding enumerated type [12].

One noteworthy aspect is that enums without any constructors cannot be ever
instantiated.

1.2 Implementations

Functionality of a type is not provided inline with definition of its fields, like in most
object oriented languages. Instead it’s associated with a type by so called imple-
mentations. Implementations for a type are contained within a block introduced by
the impl keyword.

There are two types of implementations:

• inherent implementations
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• trait implementations

All items within impl block are called associated items

Functions defined within impl blocks are called associated functions and can be
accessed with qualification <type-name>::<function-name>.

Within an implementation both self and Self keywords can be used. self can
be used in associated function definitions within an impl block as first parameter.
Such functions are called methods and the self parameter denotes the receiver of
method call. self can be additionally qualified with immutable or mutable reference
& or &mut.

Self is a type alias that refers to implementing type.

1.2.1 Inherent implementations

We will shorthand implementation to impl which is common in Rust terminology.

Inherent impls associate contents of an impl block with specified nominal type.
Such blocks can contain definition of a constants or functions.

1.2.2 Trait implementations

Trait implementations are discussed in section dedicated to traits 1.4.

1.3 Generic types

As of version 1.80 Rust provides 3 kinds of generic parameters types can use. These
are: (1) type parameters, (2) constant (const) parameters and (3) lifetime parame-
ters. Type which uses any generic parameters is said to be generic.

1.3.1 Type parameters

Type parameters can be used in function or type definition; they represent an ab-
stract type which must be specified (or inferred) during compilation. Type generics
are most commonly used for collections since they can contain arbitrary object and
don’t need to know almost anything about the inner types.

s t r u c t Co l l e c t i on<T> { i nne r : Vec<T> }
fn add<T>(element : T) { todo ! ( ) }

However, one can’t do much with truly arbitrary type, even collections require
ordering for tree structures, hashing for hash based collections and even the simplest
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collections like vectors and queues need to know that types they contain have finite
size, or can be shared across thread boundaries. Most languages either provide these
kinds of behavior inductively by the structure of a type but that’s not what Rust
does. Rust requires that pretty much all capabilities of a type are specified.

Capabilities of a type parameter are expressed using traits which we describe
in section dedicated to traits 1.4.

1.3.2 Constant parameters

Similarity to how types can be generic over type, rust allows types to be generic
by a constant value. These, so called, dependent types provide brand new level
of expressive power, statically sized arrays especially become much more useful.
This makes stack based allocations much more common, improving performance
and reducing heap fragmentation, but for our purposes it allows type system verify
and enforce certain quantities or reason about them in an abstract way.

Constant generics, could for example be used to type–check dimensions of ma-
trix multiplication like so:

s t r u c t Matrix<const N: us i ze , const M: us i ze> {
array : [ [ f 32 ; M] ; N]

}
fn mat mul<const N: us i ze , const M: us i ze , const K: us i ze >(

l h s : Matrix<N, M>, rhs : Matrix<M, K>
) −> Matrix<N, K> { todo ! ( ) }

1.3.3 Lifetime parameters

Lifetime parameters are standout feature of Rust. They represent duration based
on lexical scoping for how long reference remains valid, so being generic over lifetime
means being generic to how long given reference can be held for.

s t r u c t Adapter<’a>(&’a mut St r ing ) ;

fn foo <’a>(used : &’a mut Str ing , ignored : &mut St r ing ) −> Adapter<’a> {
Adapter ( used )

}

As shown in the listing above lifetime parameters need to be used in both types
- so that during type’s instantiation a relation can be established as to what data is
being borrowed. If lifetime annotations in the above listing were removed this code
would fail to compile with error message stating:

help: this function’s return type contains a borrowed value, but the

signature does not say whether it is borrowed from ‘used‘ or ‘ignored‘
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1.3.4 Type Aliases

A type alias defines a new name for an existing type, similarly to C’s typedef.
Type aliases are declared with the keyword type. Type aliases can have generic
parameters which must be used in the aliased type.

type IntVec = Vec<i32 >;
type MyVec<T> = Vec<T>;

1.4 Traits

Traits provide an ability to express shared behavior in abstract way [17]. We are
mostly interested in their use in trait bounds on types and type parameters. Trait
bounds declare contracts that types must fulfil or else the program will be rejected.
We used it to enforce use of valid data formats and proper sequencing of operations.

As mentioned in the previous section, type parameters don’t have any capabil-
ities unless explicitly declared. Trait bounds serve that exact purpose. Types and
generic parameters have their requirements states in such where clause and these
requirements are checked at call site.

What distinguishes Rust’s traits from most other languages is its unique scheme
of implementing functionality for types. Trait for a type is implemented in a very
similar fashion to inherent impls using impl Trait for Type { ... } syntax.

Such impl block must contain definition for all items a trait provides, these
items consist of: (1) functions or methods, (2) associated types and (3) associated
constants.

1.4.1 Associated functions and methods

Associated functions and methods are the basic mean to express common behavior.
In this regard they function like interfaces in most object oriented languages. Both
methods and functions can have default implementations which implementors can
override.

pub t r a i t Foo {
fn func t i on ( ) −> St r ing ;
fn method(& s e l f ) ;
fn d e f au l t imp l ( ) −> St r ing {

St r ing : : from (” h e l l o world ! ” )
}

}
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1.4.2 Associated types

Associated types are type aliases associated with another type. Associated types
cannot be defined in inherent implementations nor can they be given a default
implementation in traits [12].

pub t r a i t Foo {
type Bar ;

}

In associated type definition traits bounds can be defined. Compliance with
these bounds will be checked during trait implementation.

pub t r a i t Foo {
type Bar : Clone ;

}

Since only one trait implementation per concrete type (non–generic type) is
allowed, traits with associated types create a type–level function from implementing
types to associated types. Most importantly from the perspective of this study, in
trait bounds, associated types can be constraint by equality to given specified type.

fn foo<T>(bar : T) where T: Foo<Bar=i32> { }

In the listing above bar must be a value of type T which implemented Foo with
its associated type Bar equal to 32–bit signed int.

1.4.3 Associated Constants

Traits can be implemented generically for all types that satisfy given bounds using
a generic implementation, often referred to as a blanket impl: impl<T> Trait for
T where T: ... { ... }. This will even influence types from external crates.
Blanket impls however come with significant downside — a blanket impl is the only
impl for that trait that may exist. This requirement is overly conservative and stems
from necessity to guarantee impl coherence which we discuss in the next section.

1.5 Implementation Coherence

Rust must be always able to uniquely determine which method corresponds to which
impl block that is, impl blocks must be coherent with each other, they must not
interfere or overlap. That’s the reason why as of 2024 Rust enforces one blanket
impl — it cannot guarantee that two blanket impls of the same trait don’t target
some type twice. This is overly restrictive
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However, if inherent or trait impl’s target a specific generic type with at least one
type parameter differing between the two impls coherence is preserved and program
is not rejected.

1.6 Orphan rules

To guarantee impl coherence between all version of a crate rust imposes, so called,
orphan rules. Implementation of a trait for a type is passes an orphan rule check if
either (1) trait or (2) type is defined in current trait. This is not an exact definition
of these rules, but it will suffice for our purposes. This enables rust package manager
cargo to handle different versions of the same dependency. What it means for us is
that we cannot impl traits from standard library for types from standard library as
such items would be external to any crate.



Chapter 2

OpenGL and GLSL

2.1 Introduction

OpenGL is an specification of an API for hardware accelerated computer graphics
owned and maintained by the Khronos Group Inc.

Since it’s inception and up until 2016 with release of Vulkan it has been the
only widely supported cross platform graphics API.

2.2 History

IRIS GL, a proprietary graphics API, which later became OpenGL was initially
developed by Silicon Graphics (SGI) during 1980’s. SGI open sourced subset of
their API as OpenGL due to mounting market pressure from SGI competitors (Sun
Microsystems, Hewlett–Packard, IBM) who started providing their own APIs for
hardware accelerated 3D graphics based on an existing open standard called PHIGS.
In 1992 OpenGL Architectural Review Board (OpenGL ARB) was established and
it was tasked with development and maintenance of the OpenGL specification. This
task was passed on to Khronos Group in 2006 where it remained ever since [5] [6].

2.3 OpenGL objects

OpenGL exposes an abstraction over GPU’s resources called objects. These roughly
correlate with object oriented design as they aggregate data for appropriate subset
of operations, albeit with certain unique caveats. In all but the latest opengl ver-
sions, to use given object it first must have been bound to a binding point in global
in current OpenGL context. In OpenGl 4.6 the ARB direct state access exten-
sion was made part of core specification which introduces duplicates of all object
manipulating functions to accept as one of parameters the name of object to operate

21
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on.

Objects contain internal state which can be queried using introspection. Objects
are identified by a name which is an unsigned 32 bit integer. There exists common
object model which describes how most types of objects are managed.

Most types of objects can be created with a call to

void Gen*s(sizei n, uint *objects)

which will allocate the object’s name. A subsequent call to

void Bind*(uint name, . . . )

will bind the given object to the context. If the object has never been bound before,
this will also allocate its internal state. Alternatively, one can use

void Create*s(sizei n, uint *objects)

which will allocate both the object’s name and its state, but it will not set any
context bindings. There exists a separate namespace for each object type.

Objects can be deleted with void Delete*s(sizei n, uint *objects), bound
with aforementioned void Bind*(uint name, ...) which usually accepts additional
parameter that specifies binding point. The most notable outliers that do not con-
form to the rules above are program objects and shader objects.

OpenGL specification defines set of publicly available object parameters which
can be queries using introspection with GetInteger* family of functions. One no-
table usage is determining compilation and linking status for shaders and programs.

2.3.1 Buffer object

Buffer objects provide means to allocate data stores in GPU memory. They can
contain data of different format and purpose depending on buffer’s target. Primary
usage for buffers is to provide geometric information which includes vertex attribute
values and indices for indexed rendering.

2.3.2 Vertex Array object

Modern OpenGL is generic over vertex format and only poses limitation on the
number of such attributes, and limits their values to a scalar or a vector type. Each
attribute is assigned a zero–index. Vertex Array object (VAO) assigns each active
attribute information on how and where from to source vertex data, as well as, what
is the data type of provided attribute in glsl.
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This can be viewed as two aspects: (1) memory layout and access frequency,
and (2) data interpretation / conversion [14].

2.4 Graphics pipeline

The modern OpenGL pipeline is a sequence of both programmable and fixed function
stages that process geometric data to form discrete color values — pixels — that
end up stored in a framebuffer.

2.4.1 Vertex Specification

Before rendering can begin, geometric information needs to be uploaded into GPUs
memory, along with its description as generic vertex attributes.

Generic Vertex is an abstract composition of values (attributes) that is supposed
to represent a vertex of the triangular mesh of an object. Generic stands from the
fact that data associated with vertices has no intrinsic meaning. Semantics of data
are decided by client provided vertex shader.

OpenGL sources data for each vertex attribute from a buffer. Each attribute
is assigned a unique numeric index. Association between attribute with given index
and a buffer, from which that attribute should be sourced, is established by the
Vertex Array Object.

Once all vertex attributes have their data sources assigned and properly con-
figured, vertex specification can be considered finished and one could precede with
further pipeline configuration. In this instance vertices would be interpreted sequen-
tially as appropriate geometric primitives. This forces vertex data to be specified
redundantly for lines and especially raw triangles, since each triangle shares an edge
with each neighboring triangle [19].

To better conserve memory one can use indexed rendering. This requires ad-
ditional buffer filled with indices into main vertex buffer instead of inlined vertex
data. In case of basic triangle rendering (without using compressed representations
like triangle fan or triangle / line strip) will still cause repetition but now, of only
few byte wide indices instead of whole attributes which are substantially larger [19].

2.4.2 Vertex Shader

Vertex shader is the first programmable stage of OpenGL Pipeline and is one of two
required shaders to execute a draw call, the other being the fragment shader.

Most commonly vertex shader performs 3 transformations [22]. From initial
model space, world space, view space to final clip space which we will now discuss
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briefly.

model space — when a 3D model is created in 3D modelling software its
vertex positions are specified in some local coordinate system (commonly center of
an object). These positions would commonly be loaded into GPU memory, in order
to keep only single version of the mesh in memory. Such objects can be easily placed
in the broader scene by providing a so called world transform.

world space— world space position of an object refers to its destined position
in the scene.

view space — its common for 3D rendering applications to provide means of
interacting with the scene. Whether its a 3D computer game, CAD program or
medical data visualization we would like to be able to control how scene is displayed
by moving a virtual camera. This can be expressed as yet another transformation of
the coordinate system — we would like to transform coordinate system to align with
the position of our camera. This transformation is commonly called view transform
or perspective transform in case when perspective computations are applied at the
same time.

clip space — having accounted for model position in a scene and user inter-
activity all that remains is to provide vertex data in form that subsequent fixed
function pipeline stage — the rasterizer — expects. Namely once vertex shader is
finished fixed function processing will clip all geometry then perform perspective
divide to obtain vertices in normalized device coordinates (NDC). Output of vertex
shader is a 4 component vector which corresponds to a 3D position in homogenous
coordinate system used in computer graphics due to its ability to represent non
linear transformations using matrices.

2.4.3 Tessellation

Tesselation stages were added as graphics hardware compute capability grew. With
raw compute throughput outperforming bus throughput, GPUs were equipped with
hardware tesselation unit which can subdivide a larger triangle into batch of smaller
ones. This allows for efficient generation of geometric detail on chip alleviating the
issue of limited PCI throughput. To drive the tesselation stage two new shaders
were introduced:

• Tesselation control shader which configures how hardware tesselator should
subdivide a triangle.

• Tesselation evaluation shader which performs transformations on vertices
generated by the tesselator.



2.4. GRAPHICS PIPELINE 25

2.4.4 Geometry shading

Geometry shader was introduced prior to tesselation stage. It operates on the as-
sembled geometric primitives and may even access primitives’ neighbors. Given
primitive input geometry shaders output one, or more geometric primitives [19].
Output primitives all must be of the same type, which can be different from the
input primitive type. For example given a single point, geometry shader can emit 2
triangles.

2.4.5 Fixed function vertex post–processing

Once all programmable vertex processing has concluded, a series of fixed–function
operations are applied to the vertices of the resulting primitives before rasterization.
These operations include transform feedback, which captures processed vertex data,
primitive queries to gather information about the primitives being processed and
flat shading which applies a uniform attribute value to a whole primitive [19].

Primitives then get clipped against clip volume and client–defined half–spaces.
The clip coordinates undergo perspective division, followed by viewport mapping to
adjust for screen coordinates and depth range scaling.

2.4.6 Rasterization

If neither tesselation stage nor geometry stage was used in vertex processing, prim-
itive assembly takes place (presence of any of the aforementioned stages would have
necessitated an earlier primitive assembly). OpenGL converts geometric primitives
used in currently processed draw call into base primitives which are points, lines and
triangles. Mathematical representation of primitives is used during rasterization to
determine if given fragment falls inside of primitive being rasterized.

Process of rasterization requires determining if given pixel position falls inside
of rendered primitive. This process needs to account for point and line thickness.
Polygon rasterization is obviously the most complex of the three. Prior to the inside–
ness test face culling is performed. This optimization culls a polygon based on the
sign of surface normal computed based on edge ordering as specified in vertex array.
This helps reduce overdraw which can be one of two main bottlenecks in modern
rendering system, the latter being insufficient memory bandwidth.

Once pixel location was deemed inside a primitive a fragment is generated.
A Fragment is a collection of data corresponding to specific pixel location. Most
commonly its perspective corrected barycentric interpolation of vertex data across
the primitive’s surface. Though interpolation can be disabled from within vertex
shader using flat qualifier on output variable declaration, as well as perspective
correction with noperspective qualifier.
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Once fragments are computed early per–fragment tests take place.

• Ownership test— determines if pixel at location (x, y) falls into the portion
of the screen that active OpenGL context owns.

• Scissor test — checks if pixel at location (x, y) is contained within client
provided list of axis aligned rectangles

• Early Fragment tests — stencil test, depth test and occlusion query which
are normally performed after fragment processing can optionally be performed
early. We discuss them in subsection on fragment post processing.

If all tests passed fragment is submitted for programable fragment processing.

2.4.7 Fragment processing

Programable fragment processing is performed by client provided fragment shader.
The most essential task that fragment shader should perform is assign pixel a color.
For that purpose, data interpolated during rasterization is used. Most commonly
fragment shaders perform texture mapping, lighting calculations, parallax mapping
to emulate geometric detail, apply screen space effects like ambient occlusion, use
signed distance functions and implicit surface equations to render otherwise complex
scenes all by itself, or create volumetric effects like clouds or visualize CT scan results
[2] [22].

2.4.8 Fragment post processing

After all fragments are processed fixed function processing takes over for the final
time. Aforementioned ownership, scissor tests take place followed by stencil and
depth test. Last two of these tests, require an additional buffer to be allocated,
called appropriately stencil buffer and depth buffer.

Once enabled, the stencil test works by comparing a reference value against
the value stored in the stencil buffer according to a specified comparison function.
Depending on the result of this comparison, the pixel may be drawn, modified, or
discarded. Functions glStencilFunc and glStencilOp customize when fragment
should pass the test and whether to update current values in stencil buffer.

The depth test is much more commonly used. When fragments are rendered and
depth test is enabled, based on their xy coordinates, their z coordinate is compared
against current value in the depth buffer. Typically, if tested fragment’s depth value
is greater then the one stored in the buffer we can reject it since a fragment we
processed earlier occludes the current fragment. However, we can customize test
outcome based on comparison result using glDepthFunc.
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Occlusion queries count how many fragments passed depth test. This informa-
tion can be read and used to implement amongst others: post processing effects,
occlusion culling or Level Of Detail [2].

Finally alpha blending takes place. This process blends together values of cur-
rent fragment with what’s already stored in the framebuffer. Exactly what operation
is performed can be configured to a limited degree similarly to functions determining
outcome of depth and stencil tests.

2.5 GLSL

GLSL, which stands for OpenGL Shading Language, is a high level shading language
with c like syntax developed by OpenGL Architecture Review Board to power pro-
gramable processing stages in OpenGL pipeline [16]. GLSL code is still relevant as
it can be compiled into SPIR–V and used with Vulkan API.

Shaders

Independent compilation units written in this language are called shaders. A pro-
gram is a set of shaders that are compiled and linked together form a program.

In OpenGL 4.6 and GLSL 4.60 there exist 6 types of shaders: vertex, tessela-
tion control and evaluation, geometry, fragment and compute. All shaders except
compute shader control appropriate parts of OpenGL pipeline as described in sub-
sections above.

Compute shaders operate completely outside of graphics pipeline. They can
access same resources as fragment or vertex shader like textures, buffers, images
and atomic counters but they are not expected to produce data with predetermined
form or semantics. They offer general purpose compute capability on the GPU.
They function similarly to other existing general purpose GPU compute APIs like
CUDA or OpenCL.

2.5.1 Variables

The main purpose of shaders is to transform received data to some other form.
The data that the shader expects is defined using global variables with appropriate
qualifiers. During Program linking OpenGL matches outputs from previous stage
with inputs of the next stage. In case of vertex shader in variables should match
with vertex attribute definitions specified in vertex array object. Though in case of
a mismatch if attribute is disabled constant value can be provided, however thats
rarely desired behavior. Similarly, out variables from fragment shader should match
with framebuffer configuration. This process can be quite error prone and can lead
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to undefined behavior which can be difficult to diagnose, and may have different
consequences depending on actual hardware, OS or driver versions [16].

Under no circumstances erroneous pipeline configuration should be allowed.
Program containing such malformed configuration should be rejected by static anal-
ysis, and that was one of most important aspects of this study. To achieve that
we attempted to express both GLSL variable declarations along with full OpenGL
pipeline in Rust’s type system in such a way to force type errors for invalid pipeline
configurations. We determined that keeping track of the following three variable
qualifiers is essential to achieve that.

2.5.2 Variable types

Expressing GLSL variable type in Rust types was the obvious first step. GLSL
defines a set of built–in types along with ability to create aggregate data types with
C–like array and struct definitions.

For this work we focused on builtin types and arrays and omitted structures
due to Rust’s inability to encode layout guarantees, for arbitrary types, in the type
system. Rust’s built–in numeric types and arrays on the other hand, have a well
defined memory layout and create a close set of possible types, which allowed us to
enumerate them express their memory layout in type system using traits.

GLSL’s built–in types are divided into two groups: transparent and opaque.
Transparent types represent numeric data (plain old data) whereas opaque types
represent handles to different resources like texture image samplers.

In case of transparent types there are 5 base numeric types: float, double,
int, uint and bool. Floating point types float and double are accordingly IEEE–
754 single and double precision numbers, integers are two’s compliment 32bit values
and bool has an undefined representation, but it can take only two values true or
false.

All base numeric types can be aggregated into 2, 3 or 4 component vector types.
Each vector type is named TvecN where T depends on inner base type: b for bool,
d for double, i for int, u for uint and for float nothing is prepended to vecN. N
is the number of components vector should contain.

Finally, there are matrix types of form TmatN. Matrices can contain only floats
(matN) or doubles (dmatN). The N depends on matrix dimensions it can be a single
number 2, 3 or 4 for square matrices or can be arbitrarily combined pair of these
numbers of form NxM, i.e. mat2x4, mat4x2 or dmat3x3.

Data types used by GLSL have quite large memory footprint. Thats why
OpenGL provides conversion mechanisms for data stored in buffers. Buffer data
can be low bitwidth integer or float which will be normalized on access or even com-
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pletely new OpenGL defined packed formats like UNSIGNED INT 2 10 10 10 REV —
a 32bit value which will be expanded to 4 floats.

This indirect mapping of OpenGL data to GLSL types is essential to be stati-
cally verified just like shader input / output matching.

2.5.3 Variable storage qualifiers

The origin of data for a variable is encoded by a storage qualifier. We have already
discussed that data within a shader can originate from previous stage / vertex buffers
and that it can be saved as input to subsequent stage or framebuffer. These sources
correspond to in and out qualifiers. Shaders can also declare uniform variables
which are data associated with the program itself. Value of these variables remains
the same across the entire primitive being processed. All uniform variables are
read–only and are initialized externally either at link time or through the API.

For bidirectional communication between shaders and API there exists buffer
qualifier. Variables with such qualification are stored in buffer objects and can be
both written to and read from by shaders and API.

Remaining qualifiers are ignored as they are irrelevant for the scope of this
study.

2.5.4 Variable layout qualifiers

Statically asserting that the data passed though the pipeline is correct was the main
goal of this study. Ability to statically assert that data flow though the pipeline is
configured correctly depends on our ability to match neighboring stage inputs and
outputs. OpenGL specification calls this process shader interface matching.

Historically interface matching would match variables based on their names and
types. Wiliest still valid, in newer OpenGL versions there exist a better way to match
shader stages. One can use location layout qualifier to assign variable an integer
index. This integer will be checked for uniqueness among all other variables that
it shares storage qualifier with; program linking will fail in case of overlap. When
using locations based interface matching each out variable in considered to match
an input variable in the subsequent shader if the two variables are declared with the
same location and component layout qualifiers and match in type and qualification.

Together location, storage and type qualifiers uniquely define a variable for
the purposes of interface matching.
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Existing solutions

There are many qualities of any software library one could consider important. In
this research we focused foremost on providing minimalistic wrapper and staying
as faithful as possible to original specification of the API. By this we mean that
appropriate GL functions take analogous parameters as in original spec and have
their names and semantics preserved. Major benefit of this approach is that we
could simply follow the OpenGL specification when creating type safe facades around
procedures.

Starting from these minimalistic principles we focused on providing maximal
level of type safety. The main goal was to enable rejection of as many ill–formed
programs at compile time as possible.

3.1 Native C / C++ bindings

The simplest way to program with OpenGL is by using platform–provided C bind-
ings, typically contained within an OS–provided dynamic link library (e.g., .dll for
MS Windows or .so for Unix–based systems), along with an appropriate function
pointer loader. The necessity for a function pointer loader arises from the common
practice among OS vendors of officially supporting only very dated versions of the
OpenGL specification (e.g., version 1.1 on Windows). As a result, manual function
pointer loading at runtime becomes essential.

This approach offers two main benefits:

• It abstracts away the intricacies of dynamic library loading across different
platforms.

• It provides a unified mechanism for utilizing optional core standard extensions.

In addition to function pointer loading, an OpenGL context must be initialized
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according to platform–specific protocols. This context serves as the environment in
which OpenGL commands are executed and keeps track of allocated resources.

Though both can be implemented manually by interfacing with raw OS APIs,
typically there are specialized libraries available to handle each of these tasks. For
example, on PC platforms, the OpenGL Extension Wrangler Library (GLEW) [8] is
commonly used for function pointer loading, while the Graphics Library Framework
(GLFW) [9] is often employed for window creation and OpenGL context manage-
ment.

Once these tasks — function pointer loading and context creation — are com-
pleted, OpenGL can be utilized in C or C++ applications, provided that care is
taken to ensure proper C interoperability.

Writing an application in C, however, does not benefit from features such as
automatic resource management and type safety that higher–level languages may
offer. Therefore, developers must manually manage resources such as memory and
OpenGL objects, ensuring proper cleanup to avoid memory leaks and other potential
issues. This can be beneficial as automatic binding and unbinding of OpenGL objects
can result, if not done carefuly, in a very non linear and invisible control flow. In
C++ the situation is a bit better due to RAII mechanism, object orientation and
templates which all may be utilized to improve user experience but the critical
limitation of C++ is its relatively weak type system (partially amended with Cpp20
concepts feature) [4]. C++’s templates are essentially advanced macros, all type
variables are simply substituted, and type analyses in performed on concrete types.
There is no way to express abstraction in a way that type system could reason about
it. To C++’s credit its compile time capabilities are much more expansive than
Rust’s, and could possibly achieve similar results; though with notable downside of
validation having to be hand written and not scaling by default, as opposed to type
based rules.

3.2 Rust with unsafe bindings

Rust toolchain provides a utility for automatically generating Rust Foreign Function
Interface bindings to C called bindgen. In this case all the setup needed for a native
C / C++ bindings application still applies. There exist appropriate counterparts
to GLEW and GLFW. Once context is initialized and function pointers loaded one
can call C functions but Rust will require one to use these functions inside unsafe
context.
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3.3 Rust graphics libraries

Among rust native graphics programming libraries most notable are glium [10],
wgpu [13] and rust-gpu [21].

Whilst both provide varying levels of safety, non of them achieve nearly the
amount of static verification we do. glium is specifically an OpenGL adapter but
it operates on much higher level of abstraction. Shaders are untyped containers for
code, there is a limited number of predefined buffers that are implemented separately,
and drawing operates on very high level of abstraction. Underlying OpenGL is not
very clearly visible, which in our work was a crucial design aspect.

wgpu is a very large project with over 400 contributors. Its is a cross–platform,
safe, pure–rust graphics API, that does not expose any specific hardware program-
ming API but rather creates a unified abstraction over GPU and uses graphics APIs
as a backend. This again is not what we have strived for with gpu-bulwark, we tried
to stay as true to OpenGL spec as possible and accentuate its design characteristics.

rust-gpu is a very interesting crate. Currently in heavy development, it com-
piles rust code to SPIR–V which is a binary, intermediate, assembly–like representa-
tion for graphics shader stages and compute kernels [15]. Perhaps we could integrate
it with gpu-bulwark to contain the entirety of graphics programming entirely inside
rust with perhaps build scripts using external tools, macros or const fns when their
capabilities are expanded.

3.4 Conclusion

Currently no other solution on the market provides the same level of static validation
we’re aiming for, while staying as true to original API design as possible.
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OpenGL wrapper library

In this chapter, we demonstrate how Rust’s type system can be harnessed to create
a safe wrapper library for modern OpenGL, specifically targeting version 4.6. Our
goal is to cover the most essential components, and stay as close to the original
OpenGL specification as possible. In many cases, we implement a minimal subset
of functionality to demonstrate that, once a specific feature is in place, it can be
readily extended to encompass a broader scope of the API.

Besides the wrapper library the purpose of this study was to identify common
patterns that arise during type–driven design.

Overview

Library at its root is logically divided into two halves: (1) main OpenGL wrapper
and (2) general–purpose auxiliary modules which contain implementations of various
patterns we have recognized.

4.1 External dependencies

Our library utilizes several publicly available crates from crates.io, we will briefly
discuss their purposes below:

• gl— generates raw OpenGL bindings for Rust using a build script. Addition-
ally, it exposes a single function that loads function pointers using the provided
routine. These bindings use C types and need to be invoked in unsafe context.

• derive move — is a procedural macro crate that expands derive to support
more built–in traits. It significantly reduces code boilerplate.

• concat idents — provides singular procedural macro that allows to concate-
nate identifiers akin to C’s ## operator. We utilize this macro for identifier
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generation for certain OpenGL names that strictly follow a naming convec-
tion. This yet again helps to reduce boilerplate, makes code more succinct
and minimizes risk of typos.

• nalgebra and nalgebra-glm— define algorithms and types for linear algebra
computations. They are not used directly in our library for their functionality
but rather for optional integration with gpu-bulwark.

• thiserror — very popular crate which provides declarative macros for faster
error type generation.

4.2 Identified design patterns

All general purpose design patterns we encountered during development are imple-
mented in auxiliary modules in the package’s root; except for himakr which is our
crate, published in crates.io it is stored in main repository folder. In our exploration
we found that patterns which tend to emerge during programming with types can
be broadly divided into two categories: (1) compensation for language limitations
(2) validation of program structure at compile–time.

4.2.1 Compensation for language limitations

Rust is in continuous development. Some features have been work–in–progress for
many years and are still nowhere near completion. Others have seen minimal–
viable–product releases, and some are merely the subject of wishful thinking and
speculation. Features we found useful in type–based design fall into all three of these
categories. Most of them can be emulated with varying levels of complexity and user
experience degradation. Stemming from often contrived usage of type system and
different language features, resulting error messages are very verbose and difficult
to interpret.

Variadic Generics

Problem It is common practice among programming language developers to sup-
port variadic function arguments — functions which can accept arbitrarily many
arguments. This capability is a major syntactic convenience and serves as a tool for
more complex abstractions.

It is substantially less common to support variadic type parameters in generic
types. Rust does not have such a language feature, and yet one highly desirable
use case for variadic generics was identified: non–homogenous collections. Typical
generic collections can contain one of more values of the same type. Structs and
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tuples can contain arbitrary data but the number, and names of aggregated types
are fixed so the collection cannot grow.

Solution Lists can be defined recursively using pairs and special list termination
symbol [1].

An empty list is simply the termination symbol and a list of length n is a pair
containing an element in one slot and a list of length n - 1 in the other. Rust’s
type system understands recursion and provides a singleton unit type along with
an ordered pair type - a binary tuple. Functionality for such lists would need to be
expressed using traits since our very goal is to abstract over lists of different types
— so no concrete type could possibly suffice. With all that in mind, we present a
scheme for non–homogenous collections of types in Rust.

Starting with the most basic type list, we define a trait which simply states
that given type is a type list (called HLists henceforth [7]), and provides no actual
functionality.

pub t r a i t HList { }

Then we provide implementations for base and recursive cases.

impl HList f o r ( ) { }
impl<Head , Tai l> HList f o r (Head , Ta i l ) where Ta i l : HList { }

We verify that our implementation works with a no–op function that simply
checks if passed value is of type that implements HList.
fn te s t<HL>( : HL) where HL: HList { }

fn main ( ) {
l e t l i s t 1 : ( ) = ( ) ;
l e t l i s t 2 : ( i32 , ( ) ) = (1 , l i s t 1 . c l one ( ) ) ;
l e t l i s t 3 : ( f32 , ( i32 , ( ) ) ) = (42 . 0 , l i s t 2 . c l one ( ) ) ;
l e t l i s t 4 : ( Str ing , ( f32 , ( i32 , ( ) ) ) ) = ( St r ing : : from (”wow”) , l i s t 3 . c l one ( ) ) ;

t e s t ( l i s t 1 ) ;
t e s t ( l i s t 2 ) ;
t e s t ( l i s t 3 ) ;
t e s t ( l i s t 4 ) ;

}

Type annotations are redundant, as types can be inferred, and were purposefully
added to better visualize the mechanism. This sample can be run interactively in
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the rust playground — an online service hosted by rust foundation that provides
a browser interface to the Rust compiler to experiment with the language. To run
this listing follow this [playground permalink].

One can create increasingly complex traits and implement them in a similar
manner, for example below we implement HList length computation.

pub t r a i t HList { fn l en (& s e l f ) −> u s i z e ; }
impl HList f o r ( ) {
fn l en (& s e l f ) −> u s i z e { 0 }

}
impl<H, T> HList f o r (H, T) where T: HList {
fn l en (& s e l f ) −> u s i z e { s e l f . 1 . l en ( ) + 1 }

}

[playground permalink]

By deciding in which slot to place the tuple and in which the current element we
can change the winding order of the HList. Both left and right winding schemes are
equivalent in terms of functionality, but differ in terms of potential user experience.
In our case appending new types to the end of a HList was by far the most common
use case, and as such we almost exclusively use left wound HLists (LHLists) due to
cleaner type signatures being produced that way.

These homogenous collections have been implemented as an independent mod-
ule called hlist which can be found in the root of our crate.

Use case In gpu-bulwark HLists are used every time variable–length user config-
uration is required, most notably to represent shader inputs, outputs, used uniforms
or external resources like textures. Almost always we create a facade marker trait
which joins together predefined pieces of functionality from hlist module and adds
specialized requirements for HList member types in order to prohibit creation of
invalid type list.

4.2.2 Const generics in const expressions

Problem Const generics fall into the category of partially implemented features.
Const generic types depend on a value of limited subset of types, most notably
numeric types, bool and unit. This feature, being in its early stages, has a significant
limitation: const parameters must be literals or expressions using only literals. Const
parameters cannot be used in any type level const expressions, they have to be used
directly. As a result, we cannot perform arbitrary compile–time computations on
these parameters for purposes of verification.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=0c13e950bb10a01dbae1981b0c15aa5f
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=13d2d29f768d207f8fe7fa1bde7acef1


4.2. IDENTIFIED DESIGN PATTERNS 39

Solution However, there is one exception to that limitation: associated constants.
Associated constants can have their values computed using compile–time evaluated
const fns and themselves be used in such computations as parameters. Example
with HList length could be adapted to use consts instead of methods like so.

pub t r a i t HList { const LENGTH: u s i z e ; }
impl HList f o r ( ) {

const LENGTH: u s i z e = 0 ;
}
impl<H, T> HList f o r (H, T) where T: HList {

const LENGTH: u s i z e = T : :LENGTH + 1 ;
}

[playground permalink]

These functions can panic with static error message (no formatting) and may
cause compilation errors based on programable logic. Lack of compile–time format-
ting makes it difficult to provide useful error messages, yet another advantage of
using type–based validation. As a consequence, different limitation was imposed:
associated constants cannot be used as const parameters in types, they can only be
used as values in code.

Use case Due to the lack of negative reasoning, as of yet, in Rust compiler we
cannot express type inequality. As the only viable solution would be tp write a
blanket impl stating that two types are different if they are not the same type; since
such a blanket would apply to user defined types as well.

CT validation that types are all different is required to assert that glsl variable
layout locations do not overlap. In certain scenarios when layout components are
used this overlap may be valid; we ignored it in this work because it can be easily
taken into account in future releases.

We use associated constants, conditionally panicking const function and envi-
ronment variables to allow for compile–time validation that HLists of glsl variables
of arbitrary length do not overlap.

We prepared an another example in the playground where HLists are checked
to contain types with increasing numeric indices assigned to them.

4.2.3 Effect system

Problem First class effect system is a non–existent feature that would be of im-
mense value in the context of an OpenGL wrapper implementation. Ability to type
check function invocation context in OpenGL would be especially useful as we could
encode presence of appropriate object binding using an effect.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=05d326a2dc997f8005fb06711fe6fa3f
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=61baf4a1043d947594ef33d03bb8390b
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Solution We instead were forced to opt for more error prone and verbose approach.
Objects like textures or buffers can produce binder objects which in their constructor
bind, and in their destructors unbind, object from the appropriate binding point.
This lets us control context bindings using lexical scope, but does not in any way
prevent distinct objects with the same target from overriding the global binding. A
minimal example showing of effect emulation can be found on playground.

Use Case As already mentioned above, effect system would greatly improve the
handling of context bindings in terms of statically verifiable correctness, as well as,
user and developer experience. Even though in OpenGL 4.6 with direct state access
we could circumvent this problem altogether, we purposefully chose to keep it and
tried tackling it.

4.2.4 Subtyping

Problem Subtyping or inheritance is a very common concept in object oriented
programming. In these languages, one can create a type and inherit from it to
produce more specialized version of the original type – a subtype. Subtype extends
functionality of base type and can seamlessly delegate all base type’s method calls
to the base type, and can be used in all places the base type can.

Solution Using generic type and automatic dereferencing via Deref we can em-
ulate the relation of subtyping. The base type has a generic parameter which cor-
responds to any potential subtype, and implements Deref and DerefMut targeting
that subtype.

s t r u c t Base<Child> { base : i32 , c h i l d : Child }

impl<Child> Deref f o r Base<Child> {
type Target = Child ;
fn d e r e f (& s e l f ) −> &Se l f : : Target { &s e l f . c h i l d }

}

impl<Child> DerefMut f o r Base<Child> {
fn dere f mut(&mut s e l f ) −> &mut S e l f : : Target {
&mut s e l f . c h i l d

}
}

s t r u c t Subtype ;
type Inhe r i t ed = Base<Subtype>;
impl I nhe r i t ed { /∗ . . . ∗/ }

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=3724852e646ce5d0ed1faf0c57f3e5c1
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[playground permalink]

Subtype is obtained by defining a type alias for the generic base type with
concrete subtype state specified. Subtype–specific functionality can now be specified
using an impl block on this alias. Such an impl would be coherent since all other
subtypes have different nominal types representing their states and have full access
to both base type’s and subtype’s states.

Use Case We applied this emulation of inheritance to model OpenGL objects.
ObjectBase<T> contains base state and functionality and T provides implementation
for subtype specific allocation, deallocation and context binding in a scheme very
similar to template method pattern.

4.3 Validation of program structure at compile–time

4.3.1 Markers

Problem Enumeration types are a core component of almost all currently used
programming languages. In recent years, many languages have even gained the
ability to store variable–size data in their dynamic enum variants. Such enums
provide simple mechanism for statically typed polymorphism with dynamic variants.
However, sometimes this dynamic–ness of enums is a hurdle causing constant match
or switch statements to pollute the code base, producing clutter and boilerplate.
Sometime one simply wishes to encode static configuration based on a closed set of
possible values.

Solution Markers are traits and types which don’t provide any runtime behavior,
but rather exist for purposes of conveying information and constrains on a type level.
Marker traits provide no useful functionality, but rather serve to impose relations
and logical division on types.

Marker types don’t hold any data and as such don’t exist at runtime (they
occupy zero bytes and are formally called Zero Sized Types — ZST). It is possible
for marker types to have type parameters by using special compiler intrinsic datatype
PhantomData; which binds parameters, but does not hold any value.

Marker traits along with marker types can be used as:

• compile—time enums – by limiting access to a marker using item visibility
qualifiers, we strictly control what types implement given functionality.

• marker trait based relations – we can express relations between types and make
unsound parameter combinations a compile–time error.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=8946828515f1f87f388374b6bbc69bca
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• typing external resources – by using PhantomData we can attach type infor-
mation to otherwise untyped parts of an API.

use std : : marker : : PhantomData ;

/// This pattern o f pub t r a i t in p r i va t e module prov ides the s e a l i n g behaviour .
/// Downstream use r s cannot use t h i s t r a i t but other pub l i c t r a i t s can
/// l i s t i t in i t s super t r a i t s .
mod sea l ed {

/// A marker t r a i t that w i l l be implemented f o r prede f ined s e t o f types
/// from which downstream c l i e n t s should choose p i x e l channel types in PixelFormat s t r u c t .
pub t r a i t Channels { }

}

// Four marker types used by p i x e l format to s t a t i c a l l y d i spatch impl b locks .

pub s t r u c t R;
pub s t r u c t RG;
pub s t r u c t RGB;
pub s t r u c t RGBA;

impl s ea l ed : : Channels f o r R { }
impl s ea l ed : : Channels f o r RG { }
impl s ea l ed : : Channels f o r RGB { }
impl s ea l ed : : Channels f o r RGBA { }

/// Using marker types and t r a i t s we provide typing in format ion to ex t e rna l r e sou r c e such as p i x e l s
pub s t r u c t PixelFormat<C, const COMPONENT SIZE: us i ze >(PhantomData<C>)
where

C: s ea l ed : : Channels
;

// Now we provide f u n c t i o n a l i t y f o r PixelFormats with channe ls from prede f ined
// s e t o f p o s s i b l e c on f i g u r a t i o n s .

impl<const N: us i ze> PixelFormat<R, N> { pub fn r ( ) { p r i n t l n ! ( ”R{}” , N) ; } }
impl<const N: us i ze> PixelFormat<RG, N> { pub fn rg ( ) { p r i n t l n ! ( ”RG{}” , N) ; } }
impl<const N: us i ze> PixelFormat<RGB, N> { pub fn rgb ( ) { p r i n t l n ! ( ”RGB{}” , N) ; } }
impl<const N: us i ze> PixelFormat<RGBA, N> { pub fn rgba ( ) { p r i n t l n ! ( ”RGBA{}” , N) ; } }

fn main ( ) {
PixelFormat ::<R, 4> : : r ( ) ;
PixelFormat ::<RG, 8> : : rg ( ) ;
PixelFormat ::<RGB, 16> : : rgb ( ) ;
PixelFormat ::<RGBA, 32> : : rgba ( ) ;

// Error −− we prevent the very c r e a t i on o f non s en s i c a l type .
// PixelFormat ::< i32 , 32>;

}

[playground permalink]

Use Case We make heavy use of markers to implement entirety of glsl module
which consists almost exclusively of ZSTs for purposes of modelling shader in, out
and uniform variables. Types representing these variables aggregated into hlists
are specified by the user with help of GLSL DSL implemented using lightweight
declarative macros.

Marker traits in miscellaneous ::valid modules define relations between valid
combinations of data types. Buffer in raw OpenGL, due to C’s lack of generics, has
its buffer populated using *void and the documentation enumerates valid types. To
make things worse validity of data types changes depending on what’s the buffer’s
target. It is illegal for index buffer to contain anything other than unsigned integers,
pixel buffers can contain almost everything, whilst vertex buffers, yet again, can
contain only specific combinations of data. By associating a phantom type with a
Buffer and using marker trait based validation relations on uploaded data we solve

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=7d092a3be5593833894fa27b5fa56757
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both of these issues.

This methodology can be extended to form many modes pattern, in which
one uses marker types that implement trait containing generic associated types to
control behavior in more complex fashion than using non–generic associated types
[18].

many modes We use many modes in Variable<S, L, T, Store> to abstract
over kind of storage used for variable’s type member — Phantom or Inline. Phantom
uses PhantomData as its associated type and effectively discards value and Inline
keeps it as is.

4.3.2 Type State

Type state is a very powerful pattern that takes advantage of how rust understands
generic types and allows for tracking runtime capabilities at compile–time. Its name
refers to static verification technique of the same name proposed by Robert E. Strom
and Shaula Yemini [20]. Which allowed to determine the subset of operations permit-
ted on a data object in a particular context, detecting and preventing semantically
undefined execution sequences at compile–time.

This behavior can be elegantly implemented in rust using generics. For the
duration of this subsection it is worth to think about generic types as of type con-
structors which can be partially applied to create another constructor or fully applied
to produce a type.

Recall from the section on coherence 1.5 that Rust determines if impls are non–
overlapping, what it implies is that each associated item can be resolved uniquely.
Additionally impl blocks can be generic and implemented for generic types. These
impls can be generic over a subset of parameters, by providing fixed types for certain
parameters.

s t r u c t Generic<T, H, F>(T, H, F ) ;

impl<F, H> Generic<i32 , F , H> { /∗ . . . ∗/ }
impl<F, H> Generic<u32 , F , H> { /∗ . . . ∗/ }
impl<H> Generic<u32 , ( ) , H> { /∗ . . . ∗/ }

Rust understands that Generic<i32, F, H> and Generic<u32, F, H> must
be different types (note the difference i32 and u32), and as such any implementa-
tions for these two types must be disjoint. This behavior is what empowers type
state pattern. We can intentionally add or use an existing generic parameter (const
parameters can be used as well) to encode certain states and provide functionality
for the main type in that specific state. Along with state specific type capabilities
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state transitions between the states are provided, allowing to encode a compile–time
state machine.

In the below listings we show how type state, along with markers could be used
to statically guarantee, that only users who were successfully authenticated can ac-
cess secret information. We start by creating marker types Anonymous and Verified
which represent different states a user session can be in. We constrain the possible
set of state types, and assign each state its own data with AuthenticationStatus.

pub t r a i t Authent i cat ionStatus {
type Ctx : S ized ;

}

pub s t r u c t Ve r i f i e d ;
pub s t r u c t Anonymous ;

/// Empty s t a t e i s a s s o c i a t ed with an anonymous user .
impl Authent i cat ionStatus f o r Anonymous {

type Ctx = ( ) ;
}

/// Representat ion o f a user .
pub s t r u c t User {

pub user name : Str ing ,
/∗ . . . ∗/

}

/// I f user i s logged in , User data can be obtained .
impl Authent i cat ionStatus f o r Ve r i f i e d {

type Ctx = User ;
}

To represent a permanent connection (like a TCP socket) we created the Connection
type. Its a simple wrapper around IPv4 socket address thats used solely as a iden-
tifier, no actual network connections are made. Its purpose it to demonstrate that
type state can accommodate persistent data by moving it between states.

s t r u c t Connection ( Ipv4Addr ) ;

impl Connection {
pub fn new( c l i e n t : Ipv4Addr ) −> S e l f {

p r i n t l n ! ( ” connect ion e s t ab l i s h ed with : { : ?}” , &c l i e n t ) ;
S e l f ( c l i e n t )

}
}
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impl Drop f o r Connection {
fn drop(&mut s e l f ) {

p r i n t l n ! ( ” connect ion c l o s ed with : { : ?}” , &s e l f . 0 ) ;
}

}

Finally we define type state based Session type.

s t r u c t Sess ion<AS> where AS: Authent i cat ionStatus {
t yp e s t a t e : PhantomData<AS>,
connect ion : Connection ,
ctx : AS : : Ctx ,

}

impl Sess ion<Anonymous> {
fn new( ip : Ipv4Addr ) −> S e l f {

S e l f {
t yp e s t a t e : PhantomData ,
connect ion : Connection : : new( ip ) ,
ctx : ( ) ,

}
}

}

impl Sess ion<Ver i f i ed> {
fn s e c r e t (& s e l f ) −> St r ing {

” ’ a s e c r e t ’ ” . i n to ( )
}

}

Session in each state holds a Connection instance, phantom data and ctx to
store current state type and any data associated with it. We then precede to define
semantics of our type state. We allow direct creation of only anonymous sessions,
and for access to secret information for authenticated sessions. Now all that remains
are the state transitions.

#[ de r i v e ( Error , Debug ) ]
enum LoginError {

#[ e r r o r (” i n v a l i d password f o r {user name } : {password }” ) ]
Inval idPassword { user name : Str ing , password : S t r ing } ,

}

fn db check password ( user : &User , password : &s t r ) −> Result <() , LoginError> {
( password == ”password ”)
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. then some ( ( ) )

. ok or ( LoginError : : Inval idPassword {
user name : user . user name . c l one ( ) ,
password : password . i n to ( ) ,

})
}

impl Sess ion<Anonymous> {
/// We prov ide a b i l i t y to l og in only f o r anonymous us e r s .
pub fn l o g i n ( s e l f , use r : User , password : &s t r ) −> Result<Sess ion<Ver i f i ed >, LoginError> {

db check password(&user , password ) .map ( | | Ses s i on {
t yp e s t a t e : PhantomData ,
connect ion : s e l f . connect ion ,
ctx : user ,

})
}

}

We provide some basic mocks of the authentication mechanism and use it
to define the log in method on Session<Anonymous>. It consumes an anony-
mous session, validates given credentials and constructs validated session’s instance
if validation was successful, which is the only way to obtain an instance of the
Session<Verified> type. That’s how type state enforces that only logged in users
can access secret information. This invariant is guaranteed at compile-time. How-
ever, if the actual transition succeeds is determined at runtime. We statically en-
forced a sequence of operations, and prevented function invocation sequence which
is semantically incorrect.

A full sample along with few examples can be accessed via [playground perma-
link].

4.4 OpenGL wrapper

Scope

Our goal with this study was foremost to explore how Rust’s type system can be
utilized to improve static validation of OpenGL programs. We by no means meant
to cover the entirety of OpenGL functionality, only the most essential aspects like
shaders, programs, vertex arrays and buffers and textures. Nevertheless, a great
deal of consideration was taken before every major design decision to ensure that
one could simply duplicate existing solution from a single API variant to all others
and obtain the same level of functionality and protection. Additionally, we tried
staying as true to original OpenGL API as possible. We preserves most of the

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=bb0ff57d61dcdc9f4473cf51bec012a3
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=bb0ff57d61dcdc9f4473cf51bec012a3
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semantics, function names and parameters that made sense. All objects don’t retain
any parameters, they simply forward them to appropriate GL procedure calls.

In the end we arrived at minimal working example of a type–driven OpenGL
4.6 core wrapper that provides ability to create all the aforementioned GL objects,
and program even moderately complex computer graphics applications in a safer
fashion.

4.4.1 GLSL module

Programming in OpenGL consists of GL API and GLSL shaders. This division is
at very core of our library as it’s essential to correctly capture how glsl and opengl
interact.

We settled on a design were shaders and pipeline configuration are the original
source of truth and that’s were gpu-bulwark’s user must start development. De-
scription of graphics pipeline and everything related to glsl is encompassed in the
glsl module. The most important component of that module is the Variable<S,
L, T, Store = md::Phantom> type. It represents an AST–like node for glsl vari-
able at a type level. It contains type parameters for 3 qualifiers we discussed in
chapter 2: Type, Storage and Layout. These qualifiers are most essential from the
perspective of correctness verification. We use the Variable’s type parameters as
follows:

• type qualifier — it is used most notably in matching vertex array’s attribute
definitions and shader matching during program construction.

• storage qualifier — since variables with different storage qualifiers can share the
same locations its imperative to distinguish between storage qualifiers during
location overlap checking.

• layout qualifier — both location and binding values are used along with pre-
vious qualifiers to determine if shader inputs, outputs or uniforms are defined
in a valid way.

Additionally glsl defines compatibility between glsl in types and gl attribute
types.

4.4.2 Shaders

gpu-bulwark provides type state builders for complex objects like shaders or pro-
grams. Type state builder has a state for each type parameter we determined that
object requires. In case of shader it has one state parameter that corresponds to
compilation status. The create method creates a shader in Uncompiled state.
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In this state the only operation one can perform is provide shader source code.
In order to attach a shader to a program, shader needs to be compiled. Compilation
can either succeed and return shader object now in Compiled state or a compilation
error back to the user. Once shader has been compiled successfully one can specify
what uniform variable this shader requires or precede forward by converting shader
to either shader containing a pipeline stage entry point main, or to Lib shader for use
for linking. Main shader require specification of inputs or outputs using appropriate
glsl::Variables.

Such shaders are ready for attachment to program Objects.

4.4.3 Program

In this study we implement non–separable program objects, which means that at
least vertex and fragment shaders need to be specified, as well as, that all stages
have to match during linking.

Builder

Program is built using the most complex type state builder. It contains six type
parameters corresponding to

• target shader of most recently attached shader with entrypoint

• vertex input

• outputs of most recently configured stage

• program uniform definitions

• uniform declarations from most recently configured stage

• declarations of external resources used by the program

Program building is divided into two parts: (1) uniform specification and (2)
pipeline configuration.

Uniform Specification

During uniform specification one can define uniforms that program contains by defin-
ing their type and providing their initial values, along with declarations of external
resources that program uses. Although both are represented by uniforms in GLSL
transparent uniforms differ in their meaning from opaque types which all represent
handles to resources external to the program instead of plain old data like matrices
or vectors.
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Pipeline Configuration

Once uniforms and resource declarations and configures, builder transitions to vertex
shader stage where obligatory main entrypoint for vertex stage needs to be provided.
From here type state will force the user to follow valid configuration paths for the
pipeline as defined in the specification, validating that outputs from most recently
attached entrypoint shader match inputs to the newly provided one using location
layout qualifiers on shader provided inputs and outputs, resulting in compilation
error in case of a mismatch. This traversal always concludes with specification of
the fragment stage entrypoint, after which linking can be performed and actual
Program object obtained.

If program is obtained it means that pipeline is configured correctly, program
is linked and ready for use. Otherwise either compilation or runtime program link
error was generated. In the current version we do not validate that representation
of shader interfaces actually matches shader status, but it can be easily achieved
by either parsing shader source code or querying shaders interfaces using OpenGL
introspection API.

4.4.4 Buffer

Buffer objects heavily leverage phantom types and markers to provide type infor-
mation and content validation, to what otherwise would be a basic integer resource
descriptor.

Buffers are created, as for all objects, with create function. Once buffer is
created its data store can be allocated and populated with data function which
expects one type parameter for usage hint.

4.4.5 Memory Mapping

Buffers have an interesting feature that they can be mapped into memory and used
with Direct Memory Access. We provide this functionality using auxiliary Mapped
types which borrow a buffer and are smart pointers that provide Deref and DerefMut
to slices, allowing for idiomatic store access. A noteworthy implementation detail
is that Mapped smart pointers, leverage the borrow checker to safeguard against an
error condition during rendering where draw call was issues using vertex array that
sources vertex data from memory mapped buffer. Smart pointers hold references to
buffers borrowed in turn from VAO, and since draw arrays method also requires
mutable reference to VAO borrow checker will reject a program if any buffer used
as vertex source is mapped during drawing.
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4.4.6 Vertex Array

Vertex Array can be created with create. It exposes a single method vertex attrib pointer
which takes ownership of a Buffer bound to BUFFER ARRAY and an in variable to as-
sociate given buffer with as an Attribute. Attributes encompass buffer, vertex
format and attribute index. This is a complete set of information needed to match
vertex shader input variables. and stores it in VAOs internal HList of Attributes.
Buffer object must contain data which is deemed Compatible with program’s input
at a matching location. Compatibility is determined based on implementation of our
internal unsafe trait ffi::FFI which states that for any non glsl type, bytes of type
implementing it, can be safely reinterpreted as array of given type and size. We im-
plemented this traits for arrays, scalars and even integrated it with nalgebra crates,
as well as for phantom types from the glsl module. During buffer content matching
we check, that type which it contains, has the same ffi layout as corresponding glsl
variable expects, using equality bound on types as discussed in 1.4.2. This allows us
to provide data for mat2 using [f32; 4], [[f32; 2]; 2] or nalgebra::Matrix2.

Draw Calls

There are three variants of regular draw arrays. First is designed for programs
with no inputs, outputs, uniforms and resources — ones which essentially have the
entire scene encoded in shader sources code. Second expects vertex array object
which it binds and draws as many triangles as VAO specifies. Types of attributes
are checked for compatibility against program inputs defined using glsl variables.
Finally the third version, the most general, expects VAO and handles to texture
bindings which are matched against external resources program uses.

4.4.7 Textures

Textures have the broadest API of all the OpenGL objects. Textures consist of
three components: (1) sampling parameters, (2) texture parameters and (3) texture
images, but only the storage benefits from strong typing due somewhat complex
allocation and wide range of rules regarding valid parameter combinations which all
can be easily expressed and checked at compile–time.

Textures support mipmaps in order better antialias textures during sampling.
Mipmaps are a sequence of images generated from original image by halving its
dimensions until they all reach 1px. For a well defined behavior all mipmap levels
must be allocated in the correct way, this requirement is called texture’s mipmap
completeness.
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Storage

When texture is created its storage kind (immutable, mutable, buffer) and textures
dimensionality (1D, 2D or 3D) are defined by the function name.

Textures can have 3 types of their storage

• mutable texture owned — allocated using TexImage* family of functions. This
was historically the earliest form of texture storage, and thus suffers the most
from issues related to backwards compatibility. This kind of storage can be
later reallocated, hence mutability. Mipmaps need to be manually allocated
and uploaded which is quite error prone, since if texture is not mipmap com-
plete using it causes undefined behavior. Pixel data for mutable storage can
be specified directly using TexImage* data parameter or a Buffer bound to
PIXEL UNPACK BUFFER. Data may also be modified using TexSubImage* func-
tions.

• immutable texture owned — allocated using TexStorage* family of functions.
This is the most recently added kind of texture backing storage. Once texture
with this storage is allocated it cannot be reallocated. Major benefit of using
immutable textures is that mipmaps are allocated automatically. Storage im-
mutability allows to create views into the texture providing an opportunity for
better memory conservation, and substantially simplifies work for the driver.
Pixel data for these kinds of storage must be supplied using TexSubImage*
functions.

• buffer backed texture — memory and content of texture come from buffer
bound to BUFFER TEXTURE, and similarly such a texture must be also bound
to BUFFER TEXTURE.

In our work we focussed on immutable storage textures due to their automatic
mipmap allocation which frees us from implements compile–time mipmap complete-
ness validation.

Image Format

Image formats (texture’s internal format) are implemented in texture::imagemod-
ule. They describe memory layout pixels in GPU’s memory and their interpreta-
tion. We focused on implementing sized formats as they specify precisely component
count and size and such precision lends itself well to type level validation. They are
represented by a Format<Components, ComponentType, Interpretation>. Be-
sides component count and type, image formats have one additional parameter:
Interpretation, it symbolizes how shader should interpret these values: either
integers or floats.
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Pixels

Once texture is allocated it needs to be initialized with pixels, by means of a pixel
transfer operation. The simplest way to transfer pixel data is by using TexSubImage*
functions. Ranges along each texture dimension have to be specified where pixels
will be substituted, along with pixel’s type and format. These to parameters are
expressed using traits and implemented for Rust’s arrays of appropriate size and
content. Format parameter has dual meaning it describes: (1) what texture chan-
nels to target with current pixel transfer (which indirectly determines number of
components in provided data) with formats like RED, GREEN, BLUE, BGRA or BGR, and
how pixels are to be interpreted during texture sampling — as integers or floats —
which needs to match texture’s image format Interpretation parameter.

Pixel transfer operations are implemented in such a way that type inference
treats internal format’s types as valid ones and will validate pixels that user is trying
to transfer against that and report a compilation error if pixels are not compatible.

4.5 Examples

Examples demonstrating usage of gpu-bulwark are provided in examples direc-
tory, located in the root of the project. There are four samples which increase in
complexity as follows:

• hello triangle— the simplest example that shows the most basic rendering
scenario where program is hard coded to produce a white triangle on the screen

• hello vertices — this sample demonstrates basic vertex attribute configu-
ration using a vertex buffers, vertex array and program input and VAO at-
tribute matching. Two vertex attributes are used: one for vertex positions and
another for vertex color. This sample is interactive, user can use A, S and D
keys to modify color values stored in buffers which is implemented using buffer
memory mapping and using buffers via normal rust slices.

• hello textures — example of how to use textures. By pressing A, S, D user
can change the displayed bitmap.

• hello uniforms— sample that shows how more complex programs which use
uniforms may be constructed. Program implements an interactive 3D camera
which can be controlled with mouse and keyboard to navigate in 3D space
and view the scene: a single rainbow triangle which can be shrunk using space
bar. This interactivity is produced by using two uniform variables: (1) view–
perspective matrix and (2) a float uniform that scales the triangle. Sample
can be closed with the escape key.
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Conclusions

5.1 Identified benefits of type–driven design for systems
programming

Type–driven design forces greater attention during the initial phase of software cre-
ation. The logical principles underlying the type system allow for a very precise
description of the program’s structure, algorithm invariants, as well as the interac-
tions between different components.

Enforcing greater attention during system architecture design brings significant
benefits in later stages of development. Type annotations also serve as a very good
source of self–documentation.

The biggest benefit of extensive use of the type system is the static verification
of the correctness of the analyzed programs. Rust’s type system allows for the
expression of a vast number of contracts.

5.2 Identified downsides of type–driven design for sys-
tems programming

This approach to programming requires expert knowledge of the language and an
understanding of advanced concepts in logic and type theory, which significantly
limits the accessibility of this method of software development due to the potential
lack of specialists.

A large portion of the patterns and techniques presented in this publication
requires writing a lot of code that does not necessarily carry much meaning —
produces boilerplate. Error messages generated for highly recursive types are often
unreadable and convey very little useful information. Specifically, in the case of
Rust, the lack of certain features significantly complicates programming and forces

53
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the addition of even more unreadable code, bending the language’s functionalities
beyond the creators’ intent.

Even for a small project like our library, compilation times become noticeably
longer, making code iteration more difficult.

Reverting form an erroneous design decision causes cascading errors and requires
changes in many places of the codebase. Due to this it is difficult to maintain
backwards compatibility.

5.3 What works

We managed to create a minimal wrapper for OpenGL that allows for the realization
of a vast majority of even quite complex applications.

The library protects against misuse the most commonly used and critical func-
tionalities of OpenGL, such as data flow through the pipeline, memory allocations,
and resource management. A large part of the specification would not benefit
from extensive type coverage because it operates on non–programmable parts of
the pipeline where we have data form guarantees, and there is no chance to invoke
undefined behavior. These parts, when improperly configured, will only produce
incorrect computation results rather than critical errors.

5.4 What could be improved

The minimalism of our wrapper lies in covering disjoint interfaces in the smallest
possible way, which can be mechanically generalized to other, often simply more
general, cases without encountering any problems.

Not all objects provided by OpenGL were implemented because they are quite
niche and solve highly specialized problems. They are not necessary for construct-
ing all applications. Such functionalities include immutable buffers, mutable and
buffer–backed textures, asynchronous pixel transfer operations, constructing a con-
text within our package, instanced rendering, supporting arbitrary types through
macros and traits as vertex attributes.

From a user experience perspective, many aspects could be improved. With
substantial effort, we could wrap all important type parameters in a wrapper type,
with all validation traits implemented for it, ensuring that every program type–
checks, and moving validation to be run–time checked. Which mode of validation if
used could be controlled using an environment variable and a type alias.

However, this approach would reimplement verification functionality to occur
at runtime. From the user’s perspective, this change would be partially transparent.
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Since, during compile–time validation, these types would be appear, potentially
causing even more confusion. At the same time, it would provide much better
runtime diagnostics. Perhaps switching between these modes of validation could
enhance user experience by improving error messages.

With future Rust releases some missing, incomplete or limited features could
be improved allowing us to convey the same ideas more simply, and with better
compiler support.
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