
Two-dimensional pattern matching
with k mismatches

(Wyszukiwanie dwuwymiarowego wzorca z k niezgodnościami)

Adam Górkiewicz

Praca licencjacka

Promotor: dr Paweł Gawrychowski, prof. UWr

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

6 lutego 2024

Abstract

We consider a natural generalization of the classical approximate pattern matching problem
to two-dimensional strings. A two-dimensional string is simply a square array of characters.
Given two such arrays, the pattern of size m×m and the text of size n× n, our goal is to find
all locations in the text where the pattern matches with at most k mismatches. This problem
has been extensively studied for regular one-dimensional strings, and by now, we have a good
understanding of the best possible time complexity as a function of n, m, and k. In particular,
we know that for k = O(

√
m), we can achieve quasi-linear time complexity [Gawrychowski and

Uznański, ICALP 2018]. Surprisingly, no similar statement is known for two-dimensional strings,
as the asymptotically fastest algorithm works in O(kn2) time [Amir and Landau, TCS 1991].
We improve on these bounds from 30 years ago with a non-trivial adaptation of tools used to
tackle the one-dimensional version and design an Õ((m2 + mk5/4)n2/m2) time algorithm. In
other words, our algorithm works in Õ(n2) time for k = O(m4/5). The results described in this
thesis have been obtained in a collaboration between Jonas Ellert, Paweł Gawrychowski, Adam
Górkiewicz, and Tatiana Starikovskaya, and will form the basis of a later joint publication.

Rozważamy naturalne uogólnienie klasycznego problemu przybliżonego wyszukiwania
wzorca w tekście do dwuwymiarowych napisów. Dwuwymiarowy napis to po prostu kwadratowa
tablica znaków. Mając dwie takie tablice – wzorzec o rozmiarze m × m oraz tekst o rozmia-
rze n × n – naszym celem jest znalezienie wszystkich fragmentow tekstu, w których występuje
wzorzec z co najwyżej k niezgodnościami. Problem ten był dotychczas głównie rozważany dla
jednowymiarowych napisów i jego optymalna złożoność czasowa jako funkcja n, m i k została
szeroko zbadana. W szczególności, wiemy, że dla k = O(m), możemy osiągnąć złożoność prawie
liniową [Gawrychowski i Uznański, ICALP 2018]. Co ciekawe, podobne stwierdzenie nie zostało
pokazane dla napisów dwuwymiarowych, a najszybszy znany algorytm działa w czasie O(kn2)

[Amir i Landau, TCS 1991]. Nasze rozwiązanie poprawia tę znaną od 30 lat złożoność, sto-
sując niebanalną adaptację narzędzi używanych do rozwiązania przypadku jednowymiarowego
i działa w czasie Õ((m2 +mk5/4)n2/m2). Innymi słowy, nasz algorytm ma złożoność Õ(n2) dla
k = O(m4/5). Wyniki odpisane w tym licencjacie zostały uzyskane podczas współpracy Jonasa
Ellerta, Pawła Gawrychowskiego, Adam Górkiewicza i Tatiany Starikovskayi , a na ich podstawie
powstanie wspólna publikacja.

Contents

1 Introduction 4

2 Preliminaries 7

3 One-dimensional generalizations 9

4 Main result 11

4.1 Two-dimensional periodicity . 11

4.2 Text decomposition . 14

4.3 Text periphery . 15

4.3.1 Peripheral convolution . 17

4.4 Period acquisition . 20

4.5 Subparquet convolution . 23

4.6 Periodic parquet partitioning . 25

4.7 Active text decomposition . 28

4.7.1 Parallelogram splitting . 33

4.7.2 Parallelogram span bounds . 34

Bibliography 35

3

Chapter 1

Introduction

The fundamental algorithmic problem considered in the context of sequences of characters, called
strings, is pattern matching: finding one string in another. Efficient linear-time algorithms
for this problem are known since the 70s [31]. However, from the point of view of possible
applications, it is desirable to search for approximate occurrences. A clean and yet possibly
useful in practice notion of an approximate occurrence is that of bounded Hamming distance,
where given a parameter k, we want to find all positions in the text where the pattern matches
with at most k mismatches. The natural assumption is that k is not too large, and the running
time should be close to linear when k is small. The first algorithms [23, 33] that achieved such
a goal in the 80s used the technique informally called “kangaroo jumping”: they consider each
position in the text and calculate the number of mismatches by jumping over regions where there
is no mismatch. A single jump can be implemented in constant time with a data structure for
the longest common extensions, such as a suffix tree augmented with a lowest common ancestors
structure, and after having found more than k mismatches we can move to the next position in
the text. Thus, the overall time becomes O(nk). For very large values of k this is not better
than the naive algorithm. However, another approach based on the fast Fourier transform works
in O(n

√
m logm) time [1], suggesting that the O(nk) bound is not optimal for the whole range

of values of k. It was only in 2004 that both bounds were unified to obtain an O(n
√
k log k) time

algorithm [7]. This complexity was later improved to Õ(n+k2n/m) [19], and then further refined
to Õ(n+kn/

√
m) [27], which gives a smooth trade-off between Õ(n

√
k) and Õ(n+k2n/m)1. It

is known that a significantly faster algorithm implies fast boolean matrix multiplication [27], and
the time complexity can be slightly improved to O(n+ kn

√
(logm)/m) [14] (at the expense of

allowing Monte Carlo randomization). In a very recent exciting improvement, it was shown how
to slightly improve these time complexities by leveraging a connection to the 3-SUM problem [15].
Thus, the time complexity of one-dimensional pattern matching with bounded Hamming distance
is fairly well understood. This is also the case from the more combinatorial point of view: we
know that occurrences of the pattern with k mismatches either have a simple and exploitable
structure, or the pattern is close to being periodic [13,16].

1We write Õ to hide factors polylogarithmic in n.

4

CHAPTER 1. INTRODUCTION 5

2D strings. The natural extension of strings to two dimensions is to consider arrays of char-
acters, called 2D strings. To avoid multiplying the parameters, we will assume that they are
square. Such an extension is motivated by the possible application in image processing. Then,
the basic algorithmic problem becomes to find all occurrences of an m×m pattern in an n× n

text. An efficient O(n2 +m2) time algorithm for this problem was obtained already in the late
70s [12], but obtaining such complexity without any assumption on the size of the alphabet was
achieved only in the mid-90s [4,24] (even in logarithmic space [21]). Efficient parallel algorithms
have also been obtained [20, 20], and the time complexity for random inputs, i.e., average time
complexity, has been considered [10,28,38].

Periodicities in 2D strings. The fundamental combinatorial tool used for 1D strings is
periodicity, defined as follows. We say that p is a period of s[1 . . n] when s[i] = s[i + p], for
all i such that the expression is defined. The set of all periods of a given string has a very
simple structure [22]. For 2D strings, the notion of periodicity becomes more involved [3], but
remains to be a powerful tool for exact pattern matching [2, 24]. Some purely combinatorial
properties of two-dimensional periodicities have been studied [25, 34], but generally speaking
repetitions in two-dimensional strings are inherently more complicated than in one-dimensional
strings. For example, compressed pattern matching for two-dimensional strings becomes NP-
complete [11], see [37] for a more extensive discussion. Another example, perhaps less extreme,
are the bounds on two-dimensional runs [6] and distinct squares [17], where we know that
increasing the dimension incurs at least an additional logarithmic factor [17].

2D pattern matching with k mismatches. The next step for 2D pattern matching is
to allow k mismatches. Already in 1987, an Õ(kmn2) time algorithm was obtained for this
problem [32]. This was soon improved to Õ((k + m)n2) time [36], and finally to O(kn2) [5],
which remains to be the asymptotically fastest algorithm. A number of non-trivial results
have been obtained under the assumption that the input is random, i.e. for the average time
complexity [9, 28, 35]. Given that other notions of approximate occurrences, e.g. bounded edit
distance, seem less natural in the two-dimensional setting [8], the natural challenge is to better
understand the complexity of 2D pattern matching with k mismatches. In particular, it would
be interesting to design a quasi-linear time algorithm for polynomial k = O(nϵ) number of
mismatches.

Our result. We design an algorithm that, given an n × n text and m ×m pattern, finds all
occurrences with at most k mismatches of the former in latter in Õ((m2 +mk5/4)n2/m2) time.
This significantly improves on the previously known upper bound of O(kn2) (from over 30 years
ago), and provides a quasi-linear time algorithm for k = O(m4/5).

Overview of the techniques. The starting point for our algorithm is the approach designed
for the one-dimensional version, see e.g. [27] for an optimized version (but the approach is due
to [18]), which proceeds as follows. First, we approximate the Hamming distance for every
position in the text with Karloff’s algorithm [29]. Then, we can eliminate positions for which
the approximated distance is very large. If the number of remaining positions is small enough,

CHAPTER 1. INTRODUCTION 6

we can use kangaroo jumps [23] to verify them one by one. Otherwise, some two remaining
possible occurrences must have a large overlap, and thus induce a small approximate the period
in the pattern, i.e., an integer p such that aligning the pattern with itself at a distance p incurs
few mismatches. Then, (for n = 2m), we can restrict our attention to the middle part of the text
with the same approximate period p. Then, both the pattern and the text compress very well
under the simple RLE compression, if we rearrange their characters by considering the positions
modulo p. In other words, they can be both decomposed into few subsequences of the form
i, i + p, i + 2p, . . . , i + αp consisting of the same character. By appropriately plugging in an
efficient algorithm for approximate pattern matching for RLE-compressed inputs, this allows us
to obtain the desired time complexity.

In the two-dimensional case, there is no difficulty in adapting Karloff’s algorithm or kanga-
roo jumps, which allows us to focus on the case where there are two possible occurrences with
a large overlap. Here, the two-dimensional case significantly departs from the one-dimensional
case in terms of technical complications. In 2D, a period is no longer an integer but a pair of
integers, i.e., a vector. However, to obtain a compressed representation of a 2D string with small
approximate period we actually need two such periods (with some additional properties) and
not just one. We show that two vectors with the required properties exist with some geometric
considerations and applying Dilworth’s theorem. Then, we show that, similarly to the 1D case,
they allow us to decompose the pattern into nicely structured monochromatic pieces. There
are O(k) such pieces, and each of them consists of positions defined by some lattice of points
restricted to a polygon. We call such a set of positions a subparquet. The next step is to simi-
larly decompose the text. In 2D it is less clear what would be its middle part that admits the
same approximate period, however we can build on this idea to partition the relevant part of
the text into monochromatic pieces. Then, we consider each piece of the pattern and each piece
of the text, and convolve them to calculate their contribution to the number of mismatches.
This can be done in Õ(1) per pair of pieces if one of them admits some additional condition
that we call being simple. Thus, we actually need to partition the relevant part of the text
into simple subparquets. A direct approach results in too many pieces, and so we proceed in a
more indirect way by introducing the notion of a peripheral set of positions of the text. These
positions interact with not too many positions in the pattern, and can be convolved differently.
All remaining positions of the text are partitioned into not too many simple subparquets, and
then we convolve every simple subparquet from the text with every subparquet from the pattern.
Finally, we sum up the number of mismatches for each relevant position in the text.

Chapter 2

Preliminaries

For our purposes we will not use the standard definition of a two-dimensional string, where
we associate it with a two-dimensional array of characters, and instead we will define it more
broadly. Although we will occasionally use the array notation, we will do it exclusively for n×m
strings. For any n ∈ Z+ we will denote [n] = {0, . . . , n− 1}. We will use the terms point and
vector interchangeably. Our results hold under the standard word-RAM model of computation
with words of size Ω(log n).

We consider the one-dimensional all-substring Hamming distance problem (HD1D), where
for a given text string T of length n and a string P of length m (m < n), we want to calculate
the Hamming distance between P and every fragment T of length m. Next, we consider the
two-dimensional all-substring Hamming distance problem (HD2D), where for a given 2D string
T of size n × n and a string P of size m × m (m < n), we want to calculate the Hamming
distance between P and every m ×m fragment of T . In the bounded variants of both HD1D
and HD2D we are only required to calculate the distances which are not greater than k, for
some parameter k.

Definition 1 (Two-dimensional string). We define a string S as a partial function Z2 7→ Σ

which maps some arbitrary set of integer points, denoted as dom(S), to characters. For simplicity
we will write u ∈ S to denote that u ∈ dom(S). We say that a string S is partitioned into
strings R1, . . . , Rℓ when the sets dom(R1), . . . ,dom(Rℓ) partition dom(S) and Ri(u) = S(u) for
all u ∈ Ri. We call a string S monochromatic when S(u) = σ for every u ∈ S for some
σ ∈ Σ and we will write C(S) to denote the value σ. We say that a string S is n×m for some
n,m ∈ Z+ when dom(S) = [n]× [m]. Physically we represent a string as a list of point-character
pairs.

Definition 2 (Shifting). For a set of points V ⊆ Z2 and a vector u ∈ Z2, we denote V + u as a
set of points {v + u : v ∈ V }. For a string S and a vector u ∈ Z2 we denote S + u as a string R
such that dom(R) = dom(S) + u and R(v) = S(v− u) for v ∈ dom(R). Intuitively, we shift the
set of points while maintaining their character values.

Definition 3 (Hamming distance). For a pair of strings S,R we define

Ham(S,R) = | {u : u ∈ dom(S) ∩ dom(R), S(u) ̸= R(u)} |,

which corresponds to the number of mismatches between S and R.

7

CHAPTER 2. PRELIMINARIES 8

Under such notation, the HD2D problem is equivalent to calculating the (bounded or
unbounded) values of Ham(P + q, T) for all q ∈ Z2 such that dom(P + q) ⊆ dom(T) (so for
q ∈ [n−m+ 1]2).

Definition 4 (Don’t care symbol). We define the don’t care symbol as a special character
which matches with every character. We will denote it with ?. Unless stated otherwise, we
assume it is not allowed in Σ and in both HD1D and HD2D every character present in T and
P matches only with itself.

Definition 5 (Vector operators). For any vector u ∈ R2 we refer to its coordinates as u.x, u.y.
For any u, v ∈ R2 we denote u · v = u.x · v.x+u.y · v.y and u× v = u.x · v.y−u.y · v.x. Note that
alternatively u · v = |u||v| cosα and u× v = |u||v| sinα, where α is the angle between u and v.

Chapter 3

One-dimensional generalizations

In this section we explore some of the methods used for one-dimensional strings. Specifically, as
our goal is to generalize the solution for HD1D described in [26], we are especially interested in
two-dimensional variants of the techniques that were used to solve the one-dimensional case.

Theorem 1. Consider an algorithm A which solves HD2D (bounded or unbounded), but only
when 2|n and n ≤ 3

2m. If its running time is T (m), then the general case can be solved in
O(T (m)n2/m2).

Proof. Let r = ⌊m/2⌋ and let n′ = r +m− 1 or r +m if r +m− 1 is odd. We see that the set
N = [n′]2 satisfies the conditions for the text domain. For any vector q ∈ [n−m]2 we can find a
vector u such that r|u.x, r|u.y and q−u ∈ [r]2, so we have Ham(P + q, T) = Ham(P + q−u, Tu)
where Tu is the restriction of T − u to N . If T − u is not defined for some v ∈ N , we can pad
Tu(v) with any character. We see that dom(P + q − u) ⊆ N = dom(Tu). There are O(n2/m2)

possible vectors u and we run A for every pair of Tu and P .

Theorem 2. Consider an n × n string T , m × m string P and set of vectors Q such that
dom(P + q) ⊆ dom(T) for every q ∈ Q. There exists an algorithm which calculates dq =

Ham(P + q, T) for every q ∈ Q in total time Õ(n2 +
∑

q∈Q dq).

Proof. For the sake of clarity, we will temporarily switch to the classical array notation for
strings. Let T0, . . . , Tn−m denote an array of two-dimensional strings (arrays) such that
Tk[0 . . n − 1, 0 . .m − 1] = T [0 . . n − 1, k . . k + m − 1]. For every row P [0], . . . , P [m − 1]

of P and every row Tk[0], . . . , Tk[n − 1] of every Tk we assign an integer identifier so that
Id(P [i]) = Id(Tk[j]) ⇔ P [i] = Tk[j] by using the KMR algorithm (described in [30]) in Õ(n2).

We use the approach described in [23]. There exists a data structure (suffix array) which
for a given one-dimensional array S allows us to detect all mismatches between any given two of
its subarrays of equal length. It can be built in Õ(|S|) and the query time is Õ(d+1) where d is
the number of mismatches. We construct the suffix array for the concatenation of the following
arrays:

• the rows P [i] for every i,

9

CHAPTER 3. ONE-DIMENSIONAL GENERALIZATIONS 10

• the rows T [i] for every i,

• the array Id(P [0]) Id(P [1]) . . . Id(P [m− 1]),

• the arrays Id(Tk[0]) Id(Tk[1]) . . . Id(Tk[n− 1]) for every k,

the total length of which is O(n2). Let us consider a problem of detecting mismatches between P
and some T ′ = T [j . . j+m−1, k . . k+m−1]. We can first find all row indices i for which P [i] ̸=
T ′[i] by finding all mismatches between Id(P [0]) . . . Id(P [m−1]) and Id(Tk[j]) . . . Id(Tk[j+m−1]),
which we do with query to the data structure. For every such i we can then find all mismatches
between P [i] and T ′[i] by querying P [i] and T [i+ j][k . . k +m− 1]. If the distance between P
and T ′ is d, the first query takes Õ(d+ 1) operations and all subsequent queries take Õ(d+ 1)

operations in total.

Lemma 1. HD1D with don’t care symbols can be solved in Õ(n|Σ|) by running |Σ| instances of
FFT.

Lemma 2 ([29]). There exists a (1 + ε)-approximate algorithm which solves HD1D with don’t
care symbols in Õ(n).

Theorem 3. HD2D with don’t care symbols can be solved in Õ(n2|Σ|).

Proof. We will again use the array notation. We construct one-dimensional strings T̄ and P̄ by
concatenating subsequent rows T [0], . . . , T [n− 1] of T and rows P [0], . . . , P [m− 1] of P padded
with don’t care symbols:

T̄ = T [0] T [1] . . . T [n− 1],

P̄ = P [0] ?n−m P [1] ?n−m . . . ?n−m P [m− 1].

We run the algorithm from Lemma 1. The distance between T [i . . i+m− 1, j . . j +m− 1] and
P is equal to the distance between T̄ [in+ j . . in+ j + nm− n+m− 1] and P̄ .

Theorem 4. There exists a (1 + ε)-approximate algorithm which solves HD2D with don’t care
symbols in Õ(n2).

Proof. Identical to Theorem 3, but we use the algorithm from Lemma 2 instead of Lemma 1.

The same reduction as in Theorem 3 can be applied for every HD1D solution which allows
don’t care symbols. Unfortunately, the most effective known algorithms for bounded HD1D [18,
26] rely on periodicity and inherently do not allow don’t care symbols, thus, they cannot be easily
generalized.

Observation 1. Every HD2D solution which allows don’t care symbols (e.g. algorithms from
Theorem 3 and Theorem 4) can be extended to also calculate the Hamming distance for occur-
rences of P which are not entirely contained in T . This is done by padding the text with don’t
care symbols and does not change the time complexity.

Chapter 4

Main result

In this section we provide a detailed proof of the following theorem:

Theorem 5. Bounded HD2D can be solved in Õ((m2 +mk5/4)n2/m2) time.

We show an algorithm which works in time Õ(m2+mk5/4), assuming 2|n and m < n ≤ 3
2m.

The solution for the general case follows from Theorem 1.

We start by running the algorithm from Theorem 4 with ε = 1. We construct the set Q as
the set of such vectors q ∈ Z2 for which the estimated value of Ham(P + q, T) is at most 2k. For
every q ∈ [n−m+ 1]2 \Q we say that Ham(P + q, T) equals ∞. The next step is to calculate
the exact value of Ham(P + q, T) for every q ∈ Q.

Let us consider the case when |Q| ≤ 6m+m2/k. We can run the algorithm from Theorem 2
and by the fact that Ham(P+q, T) ≤ 4k for every q ∈ Q, it will perform Õ(m2+mk) operations.
We are left with the case when |Q| > 6m +m2/k, in which we take advantage of the fact that
some strings P + q for q ∈ Q must have a large overlap and small Hamming distance from each
other, and thus P must be periodic.

4.1 Two-dimensional periodicity

In this section we introduce a range of new tools related to two-dimensional periodicity. We then
select some special periods of the pattern and show how to decompose it into some regularly
structured monochromatic strings.

Definition 6 (Periodicity). Consider any vector δ ∈ Z2. We say that a string S has an ℓ-period
δ when

Ham(S + δ, S) ≤ ℓ.

Lemma 3. For every u, v ∈ Q, the vector u− v is an 8k-period of P .

Proof. Ham(P+u−v, P) = Ham(P+u, P+v) ≤ Ham(P+u, T)+Ham(P+v, T) ≤ 4k+4k.

Theorem 9. For a given ℓ ∈ Z+ and a set of points U ⊆ [ℓ + 1]2, such that |U | > 12ℓ, there
exist s, t, s′, t′ ∈ U , such that the following conditions hold for w = t− s and w′ = t′ − s′:

11

CHAPTER 4. MAIN RESULT 12

φ

ψ

Figure 4.1: Occurrences with small approximated Hamming distance. Red points belong to Q.

• 0 < |w||w′| = O(ℓ2/|U |),

• | sinα| ≥ 1
2 where α is the angle between w and w′,

• w,w′,−w,−w′ are all contained in different quadrants, defined as

Q1 = (0,+∞)× [0,+∞),

Q2 = (−∞, 0]× (0,+∞),

Q3 = (−∞, 0)× (−∞, 0],

Q4 = [0,+∞)× (−∞, 0).

Such w,w′ can be found in Õ(|U |) operations.

Proof. See Section 4.4.

We run the algorithm from Theorem 9 on the set Q (where ℓ = n−m ≤ m/2, thus |Q| >
6m+m2/k ≥ 12ℓ). Amongst w,w′,−w,−w′ we select the vector belonging to Q4 and denote it
with φ. Similarly, we select the vector belonging to Q1 and denote it with ψ. By Lemma 3 the

CHAPTER 4. MAIN RESULT 13

φ

ψ

Figure 4.2: All the points in the polygon form a parquet and the red points form a subparquet.

vectors φ and ψ are O(k)-periods of P . We will refer to those vectors throughout the rest of the
description. Note that because |Q| > 6m+m2/k, we have 0 ≤ φ×ψ ≤ |φ||ψ| = O(min {m, k}).
The construction of φ and ψ is illustrated in Figure 4.1.

Definition 7 (Lattice congruency). We define L = {sφ+ tψ : s, t ∈ Z}. We say that two vectors
u, v ∈ Z2 are lattice-congruent and denote u ≡ v when u− v ∈ L.

Lemma 4. There exists a set of points Γ ⊆ Z2 such that |Γ| = O(min {m, k}) and every point
u ∈ Z2 is lattice-congruent to exactly one point γ ∈ Γ.

Proof. Let p = {sφ+ tψ : s ∈ [0, 1), t ∈ [0, 1)}. We construct Γ = p∩Z2. It is commonly known,
that a simple polygon with integer vertices contains O(A) integer points in the interior or on
the boundary, where A denotes its surface area. Observe that the points in Γ are contained in a
parallelogram with vertices (0, 0), φ, φ+ ψ,ψ. Since its surface area is φ× ψ = O(min {m, k}),
we get |Γ| = O(min {m, k}).

Now consider any point u ∈ Z2. There exist some unique values s, t ∈ [0, 1) and s′, t′ ∈ Z,
such that u = (s+ s′)φ+ (t+ t′)ψ. It is easy to see that u ≡ sφ+ tψ and sφ+ tψ ∈ Γ.

Definition 8 (Parquet). We call a set U ⊆ Z2 a parquet when there exist some values
x0, x1, y0, y1, φ0, φ1, ψ0, ψ1 ∈ Z, which we will call its signature, such that

U = [x0, x1]× [y0, y1] ∩
{
u : u ∈ Z2, φ× u ∈ [φ0, φ1], ψ × u ∈ [ψ0, ψ1]

}
.

See Figure 4.2 for an illustration.

a) If additionally x1−x0+1 ≥ |φ.x|+ |ψ.x| and y1−y0+1 ≥ |φ.y|+ |ψ.y|, then U is a spacious
parquet.

CHAPTER 4. MAIN RESULT 14

b) If additionally x0, y0 = −∞ and x1, y1 = +∞, then U is a simple parquet.

Note that every simple parquet is spacious.

Definition 9 (Subparquet). We call a set V ⊆ Z2 a subparquet when there exists a parquet
U and a point γ ∈ Z2 such that

V = {u : u ∈ U, u ≡ γ} .

This is also illustrated in Figure 4.2. A signature of V consists of a signature of U and the vector
γ. We call V a spacious/simple subparquet when there exists U which is (correspondingly) a
spacious/simple parquet. We say that V is lattice-congruent to some v ∈ Z2 (denoted as V ≡ v)
when v ≡ γ. We similarly define the lattice congruency between two subparquets.

Definition 10 (Parquet string). We call a string S a spacious/simple (sub-)parquet string when
dom(S) is a spacious/simple (sub-)parquet.

Theorem 12. A given spacious/simple parquet string R with O(k)-periods φ and ψ can be par-
titioned in time Õ(|dom(R)|+ k) into O(k) monochromatic spacious/simple subparquet strings,
correspondingly.

Proof. See Section 4.6.

Since |φ.x|, |φ.y|, |ψ.x|, |ψ.y| ≤ n − m ≤ m/2, the m × m string P is a spacious parquet
string and satisfies the assumptions of Theorem 12. We partition P into a set of strings V.
We then group the strings based on the single character they contain. Specifically, for every
character σ ∈ Σ present in P , we construct the set Vσ = {V : V ∈ V,C(V) = σ}.

Theorem 11. For a given set of monochromatic simple subparquet strings S we can calculate∑
S∈S

Ham(P + q, S)

for every q ∈ Q in total time Õ(m2 +
∑

S∈S |VC(S)|), assuming that the sets dom(S) for S ∈ S
are some pairwise disjoint subsets of dom(T).

Proof. See Section 4.5.

4.2 Text decomposition

Because the text is not necessarily periodic, we unfortunately cannot use the same approach as
for the pattern. In this section we show how to decompose T using a similar, but more nuanced
method.

Definition 11 (Active text). We define the active text Ta as the restriction of T to⋃
q∈Q

dom(P + q).

In Figure 4.1 the points in the white area form the set dom(Ta).

CHAPTER 4. MAIN RESULT 15

Observation 2. Ham(P + q, T) = Ham(P + q, Ta) for every q ∈ Q.

Definition 12 (Peripherality). For every point u ∈ Z2 we define its border distance as
min

{
|u− v| : v ∈ Z2 \ dom(Ta)

}
. We say that a set of points U ⊆ Z2 is d-peripheral for some

d ≥ 0, if the border distance of every u ∈ U is not greater than d. We say that a string S is
d-peripheral when dom(S) is d-peripheral.

Theorem 13. Given any ℓ ∈ Z+, we can partition the active text in time Õ(m2 + ℓk) into a
set of O(ℓk) monochromatic simple subparquet strings and an O(m/ℓ)-peripheral string.

Proof. See Section 4.7.

Warm-up algorithm. An immediate consequence of Theorem 13 is that we can partition
the active text into O(mk) monochromatic simple subparquet strings. We can construct such
a partitioning by substituting a large enough value ℓ = Θ(m), such that the obtained O(m/ℓ)-
peripheral string is in fact 0-peripheral, and thus empty. If we denote the resulting set of
monochromatic simple parquet strings as S, for every q ∈ Q we have

Ham(P + q, Ta) =
∑
S∈S

Ham(P + q, S).

By Theorem 11, we can calculate
∑

S∈S Ham(P + q, S) for every q ∈ Q in time Õ(m2 +mk2),
since

∑
S∈S |VC(S)| ≤ |S||V| = O(mk · k). This yields us a complete Õ((m2 + mk2)n2/m2)

solution for the HD2D problem, which for k = O(m1/2), works in optimal time Õ(n2).

Main algorithm. To obtain the promised Õ(m2+mk5/4) complexity, we partition the active
text using the algorithm from Theorem 13 with ℓ = mk−3/4. We obtain a set of O(mk1/4)

simple subparquet strings S, and a O(k3/4)-peripheral string F . For every q ∈ Q we then have

Ham(P + q, Ta) = Ham(P + q, F) +
∑
S∈S

Ham(P + q, S).

By Theorem 11, we can calculate
∑

S∈S Ham(P + q, S) for every q ∈ Q in time Õ(m2 +mk5/4),
since similarly we have

∑
S∈S |VC(S)| ≤ |S||V| = O(mk5/4). In Section 4.3 we will introduce

Theorem 6, which states that for a d-peripheral string F , we can calculate Ham(P + q, F) for
every q ∈ Q in total time Õ(m2 + mdk1/2). By substituting d = O(k3/4), we get the total
complexity of Õ(m2 +mk5/4) as promised.

4.3 Text periphery

In this section we explore the properties of peripheral strings. We consider any d > 0 and a
non-empty d-peripheral string S, such that dom(S) ⊆ dom(Ta). We define a partitioning of S
into strings S1, . . . , S4, by splitting it through the middle with a horizontal and vertical line.
Specifically

• S1 is the restriction of S to {n/2, . . . , n− 1} × {n/2, . . . , n− 1} (upper right quarter),

CHAPTER 4. MAIN RESULT 16

S1S2

S3 S4

Figure 4.3: Construction of S1, . . . , S4. The red points represent dom(S).

• S2 is the restriction of S to {0, . . . , n/2− 1} × {n/2, . . . , n− 1} (upper left quarter),

• S3 is the restriction of S to {0, . . . , n/2− 1} × {0, . . . , n/2− 1} (lower left quarter),

• S4 is the restriction of S to {n/2, . . . , n− 1} × {0, . . . , n/2− 1} (lower right quarter).

See Figure 4.3 for an illustration. We will now demonstrate some characteristics of S1, and by
symmetry, generalize them to S.

Lemma 5. Assuming d ≤ m/4, there does not exist u ∈ S1 and v ∈ Ta such that v.x− u.x ≥ d

and v.y − u.y ≥ d.

Proof. Assume the contrary. Since u ∈ S1, the border distance of u is at most d, so there exists
w ∈ Z2 \dom(Ta), such that u.x−d ≤ w.x ≤ u.x+d and u.y−d ≤ w.y ≤ u.y+d. Since v ∈ Ta,
there exists q ∈ Q such that v ∈ [m]2 + q. We have

w.x ≥ u.x− d ≥ n/2−m/4 ≥ n−m > q.x

and
w.x ≤ u.x+ d ≤ v.x ≤ q.x+m− 1.

CHAPTER 4. MAIN RESULT 17

Similarly we can show that q.y ≤ w.y ≤ q.y +m− 1, and thus w ∈ [m]2 + q. Since [m]2 + q ⊆
dom(Ta) and w ̸∈ Ta, we get a contradiction.

We now introduce two major theorems regarding peripheral strings, the first of which is
proven in the next section (4.3.1):

Theorem 7. We can calculate Ham(P + q, S) for every q ∈ Q in total time Õ(m2 +md|Σ|),
where |Σ| is the number of different characters present in both P and S.

Theorem 6. We can calculate Ham(P + q, S) for every q ∈ Q in total time Õ(m2 +mdk1/2).

Proof. Recall the construction of the sets Vσ described in Section 4.1. We define σ ∈ Σ to be
a frequent character if |Vσ| ≥

√
k and if |Vσ| <

√
k, we call it an infrequent character. We

partition S into two strings F and I, based on character frequency, so that F consists of only
the frequent characters and I consists of only the infrequent ones. For every q ∈ Q we then have

Ham(P + q, S) = Ham(P + q, F) + Ham(P + q, I).

Observe that the number of different frequent characters is O(
√
k), and thus, by Theorem 7,

we can calculate Ham(P + q, F) for every q ∈ Q in total time Õ(m2 +mdk1/2), since F is d-
peripheral.

We partition I into | dom(I)| strings, one per every u ∈ I. Specifically, let Iu be the
restriction of I to {u} for every u ∈ I. We have Ham(P + q, I) =

∑
u∈I Ham(P + q, Iu) for

every q ∈ Q. By Definition 9, Iu are simple subparquet strings, and thus, we can by Theorem 11
calculate the results in Õ(m2 +

∑
u∈I |VI(u)|). Since I(u) is an infrequent character for every

u ∈ I, we have |VI(u)| < k1/2 for every u ∈ I. By Observation 4 we have |dom(I)| = O(md),
and thus the total complexity is Õ(m2 +mdk1/2).

4.3.1 Peripheral convolution

This section serves as the proof of the theorem we just used to prove Theorem 6:

Theorem 7. We can calculate Ham(P + q, S) for every q ∈ Q in total time Õ(m2 +md|Σ|),
where |Σ| is the number of different characters present in both P and S.

We base our approach on the simple method of calculating the Hamming distance by running
an instance of FFT for each unique character. We will again utilize partitioning to reduce the
problem to some smaller ones and then solve them naively. We will take advantage of the fact
that the points close to the border can overlap only with a small subset of points from the
pattern when considering the occurrences fully contained in the active text.

Recall that Ham(P + q, S) = Ham(P + q, S1) + · · · + Ham(P + q, S4). We will only show
how to calculate Ham(P + q, S1) for every q ∈ Q, since the other cases are symmetric. Consider
a string P0, defined as the restriction of P to [m− d]2 and a string P1, defined as the restriction
of P to dom(P) \ dom(P0). Since the strings P0 and P1 partition P , we have

Ham(P + q, S1) = Ham(P0 + q, S1) + Ham(P1 + q, S1).

CHAPTER 4. MAIN RESULT 18

Definition 13. (width & height) For a non-empty set U ⊆ Z2 we define its width as
max {u.x− v.x+ 1 : u, v ∈ U} and its height as max {u.y − v.y + 1 : u, v ∈ U}. For a non-
empty string R we define the width and height as the width and height of dom(R).

Theorem 8. Given two non-empty strings P and T of widths wP , wT and heights hP , hT , we
can calculate Ham(P + q, T) for every q ∈ Z2, for which the result is non-zero, in total time
Õ((|Σ|+ 1)(wP + wT)(hP + hT)), where |Σ| denotes the number of different characters present
in both P and T .

Proof. We can prove it by slightly generalizing Theorem 3, although following the same method,
and utilizing Observation 1.

From now we will assume that d ≤ m/4, since for d > m/4 we can, by Theorem 8, calculate
the results in time Õ(m2 +m2|Σ|), which is sufficient.

Lemma 6. dom(P0 + q) ∩ dom(S1) = ∅ for every q ∈ Q.

Proof. Let us assume the contrary. Select any q ∈ Q such that dom(P0 + q)∩ dom(S1) contains
some point u and consider the point v = (u.x + d, u.y + d). Since u ∈ [m − d]2 + q, we have
v ∈ [m]2 + q ⊆ dom(Ta), thus the points u ∈ S1 and v ∈ Ta contradict Lemma 5.

Observation 3. P1 can be partitioned into two strings P2 and P3 such that the width of P2 and
the height of P3 are equal to d.

By Lemma 6, Ham(P0 + q, S1) = 0 for every q ∈ Q and by Observation 3 we have

Ham(P + q, S1) = Ham(P1 + q, S1) = Ham(P2 + q, S1) + Ham(P3 + q, S1)

for some strings P2 and P3 partitioning P1, such that the width of P2 and the height of P3

are equal to d. We calculate Ham(P2 + q, S1) and Ham(P3 + q, S1) for every Q independently
and sum the results. We only show how to calculate Ham(P2 + q, S1), since the other case is
symmetric.

We will now partition S1. Consider an array of strings U0, . . . , U⌈n/d⌉−1, where Ui is the
restriction of S1 to {id, . . . , id+ d− 1} × [n] ∩ dom(S1). For the sake of formality (since the
maximum/minimum of an empty set is undefined), let V0, . . . , Vℓ−1 consist of all non-empty
strings Ui, given in the increasing order of i. Observe that V0, . . . , Vℓ−1 partition S1 and their
width is not greater than d.

For each i ∈ [ℓ] we find hi ∈ Z+, which we define as the minimal number such that
(v.x, u.y + hi) ̸∈ Ta for every u, v ∈ Vi. For better understanding, hi is an upper bound for the
height of Vi.

The construction is illustrated in Figure 4.4. The points in the gray area are outside of
the active text. The remaining ones are in the active text, where the red and green represent
dom(S1), and the green belong to some fixed Vi.

Lemma 7. The sum of all hi is O(m).

CHAPTER 4. MAIN RESULT 19

Vi

hi

d− 1

Figure 4.4: The decomposition of S1.

Proof. Since for ℓ < 2 the proof is trivial, we assume ℓ ≥ 2. For every i ∈ [ℓ] (since hi is minimal)
there exists a pair of points ui, vi ∈ Vi such that (vi.x, ui.y+ hi − 1) ∈ Ta. It can be shown that
for all i ≥ 2 we have

hi ≤ ui−2.y − ui.y + d,

since if that was not the case for some i, then the points ui−2 and (vi.x, ui.y + hi − 1) would
contradict Lemma 5. We can conclude that

ℓ−1∑
i=0

hi ≤ h0+h1+

ℓ−1∑
i=2

(ui−2.y−ui.y+d) = h0+h1+u0.y+u1.y−uℓ−2.y−uℓ−1.y+(ℓ−2)d = O(m).

Observation 4. By the above lemma |dom(S1)| = O(md) and by extension |dom(S)| = O(md).

For every i ∈ [ℓ] we construct the string Li as the restriction of P2 to [m]×[m−hi]∩dom(P2)

and the string Hi as the restriction of P2 to dom(P2) \ dom(Li). The construction is illustrated

CHAPTER 4. MAIN RESULT 20

P0

P3

Hi

Li

hi − 1

d− 1

d− 1

m− d

m− d

m− hi

Figure 4.5: Pattern partitioning.

in Figure 4.5. Since Li and Hi partition P2, we have

Ham(P2 + q, S1) =

ℓ−1∑
i=0

Ham(P2 + q, Vi) =

ℓ−1∑
i=0

Ham(Li + q, Vi) +

ℓ−1∑
i=0

Ham(Hi + q, Vi).

Lemma 8. dom(Li + q) ∩ dom(Vi) = ∅ for every q ∈ Q and i ∈ [ℓ].

Proof. Let us assume the contrary. Select any q ∈ Q and i ∈ [ℓ], such that dom(Li+q)∩dom(Vi)

contains some point u and consider the point v = (u.x, u.y + hi). Since u ∈ [m]× [m− hi] + q,
we have v ∈ [m]2 + q ⊆ dom(Ta), thus v ∈ Ta, which contradicts the definition of hi.

By Lemma 8, for every q ∈ Q we have
∑ℓ−1

i=0 Ham(Li + q, Vi) = 0, thus our result is equal
to

∑ℓ−1
i=0 Ham(Hi + q, Vi). We run the algorithm from Theorem 8 for every pair of Hi and Vi

and, since both Hi and Vi have widths not greater than d and heights not greater than hi, we
obtain the total complexity of Õ(

∑ℓ−1
i=0(|Σ|+ 1)dhi), which, by Lemma 7, is Õ(m2 +md|Σ|).

4.4 Period acquisition

This section serves as the proof of the theorem, which we used to obtain the periods φ and ψ:

Theorem 9. For a given ℓ ∈ Z+ and a set of points U ⊆ [ℓ + 1]2, such that |U | > 12ℓ, there
exist s, t, s′, t′ ∈ U , such that the following conditions hold for w = t− s and w′ = t′ − s′:

CHAPTER 4. MAIN RESULT 21

• 0 < |w||w′| = O(ℓ2/|U |),

• | sinα| ≥ 1
2 where α is the angle between w and w′,

• w,w′,−w,−w′ are all contained in different quadrants, defined as

Q1 = (0,+∞)× [0,+∞),

Q2 = (−∞, 0]× (0,+∞),

Q3 = (−∞, 0)× (−∞, 0],

Q4 = [0,+∞)× (−∞, 0).

Such w,w′ can be found in Õ(|U |) operations.

We start by finding the closest pair of points in U . Specifically, we select any pair of different
points s, t ∈ U , which minimizes |t − s|. Such pair can be obtained in Õ(|U |) operations, for
example with a sweep line method. We construct w = t− s.

We define a partial order ≤w on Z2, where we have u ≤w u for every u ∈ Z2 and v ≤w u

for some pair of different points u, v ∈ Z2, when at least one condition holds for δ = u− v:

a) w and δ belong to the same quadrant,

b) α ∈ (−π/6, π/6), where α is the angle between w and δ.

Consider a vector ρ, where

1◦ if w ∈ Q1, then ρ = (+
√
2/2,+

√
2/2),

2◦ if w ∈ Q2, then ρ = (−
√
2/2,+

√
2/2),

3◦ if w ∈ Q3, then ρ = (−
√
2/2,−

√
2/2),

4◦ if w ∈ Q4, then ρ = (+
√
2/2,−

√
2/2).

Observe that the condition (a) is equivalent to

a’) α ∈ [−π/4, π/4), where α is the angle between ρ and δ.

Let β be the angle between k and w. Similarly, the condition (b) is equivalent to

b’) α ∈ (β − π/6, β + π/6), where α is the angle between ρ and δ.

Let r = [−π/4, π/4) ∪ (β − π/6, β + π/6). We can see that the conditions (a) and (b) are thus
equivalent to a single condition:

A) α ∈ r, where α is the angle between ρ and δ.

CHAPTER 4. MAIN RESULT 22

Observe that r ⊆ (−5π/12, 5π/12). Thus, the vectors δ, which hold (A), belong to a single
half-plane and they satisfy δ · ρ > cos(5π/12)|δ||ρ| > |δ|/4. Also, since r is a continuous range
of angles, for every δ1 and δ2 satisfying the condition, δ1 + δ2 also satisfies it. Thus, we can
prove that for every u1, u2, u3 ∈ Z2, such that u1 ≤w u2 and u2 ≤w u3, we have u1 ≤w u3

(meaning the relation is transitive). If u1 = u2 or u2 = u3, the proof is trivial. If not, observe
that δ1 = u2 − u1 and δ2 = u3 − u1 hold the condition, thus it also holds for u3 − u1 = δ1 + δ2.
It is also easy to prove that ≤w is acyclic.

Under the partial order ≤w, we find the longest chain C and the longest antichain A using
dynamic programming in Õ(|U |) operations.

Lemma 9. (|C| − 1)|w| < 6ℓ.

Proof. Let f = |C| − 1 and let c0, . . . , cf denote the consecutive points in C, such that we have
ci ≤w ci+1 for every i ∈ [f]. Consider the array δ0, . . . , δf−1, where δi = ci+1 − ci for every
i ∈ [f]. By definition of w, we have |δi| ≥ |w|, and since δi · ρ > |δi|/4, we get δi · ρ > |w|/4 for
every i ∈ [f]. We have

f−1∑
i=0

δi = cf − c0,

and thus

f |w|/4 <
f−1∑
i=0

δi · ρ = (cf − c0) · ρ ≤ ℓ
√
2,

which gives us (|C| − 1)|w| < 4ℓ
√
2 < 6ℓ.

Lemma 10. |U | ≤ |C||A|.

Proof. It follows from Dilworth’s theorem.

We know that |C| ≥ 2, since there exists a chain containing s and t. By Lemma 9, we have

|C||w|/2 ≤ (|C| − 1)|w| < 6ℓ,

and thus
|C| ≤ |C||w| < 12ℓ.

By the assumption |U | ≥ 12ℓ and Lemma 10

12ℓ < |U | ≤ |C||A| < 12ℓ|A|,

thus |A| > 1, which means |A| ≥ 2. We select any pair of different vectors s′, t′ ∈ A, which
minimizes |t′ − s′| and construct w′ = t′ − s′. We will now show that |w||w′| = O(ℓ2/|U |).

Lemma 11. (|A| − 1)|w′| ≤ 2ℓ.

Proof. Recall that (−π/4, π/4) ⊆ r. Define a range of angles r′ = [−π/4, 3π/4]. Consider any
u, v ∈ Z2, such that u ̸≤w v and v ̸≤w u. It can be shown that the angle between ρ and δ is in
r′ for some δ ∈ {u− v, v − u}. Thus |(u− v)× ρ| ≥ sin(π/4)|u− v||ρ| = |u− v|

√
2/2.

CHAPTER 4. MAIN RESULT 23

Let f = |A|− 1 and let a0, . . . , af be the points in A ordered such that ai×ρ ≤ ai+1×ρ for
every i ∈ [f]. Consider the array δ0, . . . , δf−1, where δi = ai+1−ai for every i ∈ [f]. By definition
of w′, we have |δi| ≤ |w′| and since |δi × ρ| ≥ |δi|

√
2/2, we get δi × ρ = |δi × ρ| ≥ |w|

√
2/2 for

every i ∈ [f]. We have
f−1∑
i=0

δi = af − a0,

and thus

f |w′|
√
2/2 ≤

f−1∑
i=0

δi × ρ = (cf − c0)× ρ ≤ ℓ
√
2,

which gives us (|A| − 1)|w| ≤ 2ℓ.

By Lemma 11, and since |A| ≥ 2, we have

|A||w′| ≤ 2(|A| − 1)|w′| ≤ 4ℓ.

Recall that |C||w| < 12ℓ and |U | ≤ |C||A|. We can multiply the inequalities and obtain

|U ||w||w′| ≤ |C||A||w||w′| < 48ℓ2,

which finally gives us

|w||w′| < 48ℓ2

|U | = O(ℓ2/|U |).

It can be easily shown that w,w′ hold the remaining conditions by the definition of ≤w.

4.5 Subparquet convolution

Throughout this section we will denote D = {u : u ∈ L, φ× u ≥ 0, ψ × u ≥ 0}, where L is the
set defined in Definition 7. We start by introducing some auxiliary tools, which we later use in
the proof of Theorem 11.

Lemma 12. Given a set of subparquets V and a set of points Q, we can calculate∑
V ∈V

|(D + q) ∩ V |

for every q ∈ Q in total time Õ(n2 + |Q|+ |V|), assuming that every V ∈ V consists of vectors
of length O(n).

Proof. For every u ∈ Z2 let us define score(u) = | {V : V ∈ V, u ∈ V } |. Observe that∑
V ∈V

|(D + q) ∩ V | =
∑

u∈D+q

score(u).

We start by explicitly calculating the scores. We find the maximum length of a vector that some
V ∈ V is defined for, which we denote ℓ. We construct the set U ⊆ Z2 of all vectors of length
at most ℓ. By the assumption, we have ℓ = O(n), and thus |U | = O(l2) = O(n2). We observe
that since all the scores are zero for points outside of U , we can only calculate them for u ∈ U .

CHAPTER 4. MAIN RESULT 24

We find the set Γ introduced in Lemma 4 and for every γ ∈ Γ we construct Uγ = U∩(L+γ).
Consider any u ∈ Uγ for some fixed γ ∈ Γ and any V ∈ V. We observe that if V ̸≡ γ, then
u ̸∈ V and thus V does not contribute to score(u). If V ≡ γ, then we can find a parquet W
such that V = W ∩ (L + γ) and we have u ∈ V ⇔ u ∈ W ∩ (L + γ) ⇔ u ∈ W . Thus, if we
denote Wγ as the set of parquets W obtained for every V ∈ V such that V ≡ γ, then score(u)

for u ∈ Uγ is the number of parquets W ∈ Wγ such that u ∈ W . We calculate score(u) for
every u ∈ Uγ by sweeping Uγ and Wγ in time Õ(|Uγ |+ |Wγ |). We do it independently for every
γ ∈ Γ, performing Õ(|U |+ |V|) = Õ(n2 + |V|) operations in total.

Now consider a query vector q ∈ Q. Let γ ∈ Γ be such that q ≡ γ. We have already shown
that the sum of scores for u ∈ D + q is equal to the sum of scores for u ∈ (D + q) ∩ U . Since
(D + q) ∩ U = (D + q) ∩ Uγ , we see that the result is the sum of scores for such u ∈ Uγ , for
which φ × u ≥ φ × q and ψ × u ≥ ψ × q. If we denote Qγ = Q ∩ (L + γ), we see that we can
calculate the results for all q ∈ Qγ by sweeping Qγ and Uγ in time Õ(|Qγ | + |Uγ |). We do it
independently for every γ ∈ Γ, performing Õ(|Q|+ |U |) = Õ(n2 + |Q|) operations in total.

Lemma 13. For any simple subparquet U we can find w0, . . . , w3 ∈ Z2, such that

|U ∩X| =
3∑

j=0

(−1)j |(D + wj) ∩X|

for every X ⊆ Z2. If U consists of vectors of length O(n), then w0, . . . , w3 are of length O(n).

Proof. Let

φ0 = min {φ× u : u ∈ U} , φ1 = max {φ× u : u ∈ U} ,
ψ0 = min {ψ × u : u ∈ U} , ψ1 = max {ψ × u : u ∈ U} .

Note that these values can be extracted from the signature. Since U is a parquet, there exist
unique points u0, . . . , u3 ∈ U , such that

• φ× u0 = φ0 and ψ × u0 = ψ0,

• φ× u1 = φ1 and ψ × u1 = ψ0,

• φ× u2 = φ1 and ψ × u2 = ψ1,

• φ× u3 = φ0 and ψ × u3 = ψ1.

We construct

w0 = u0, w1 = u1 + ψ, w2 = u2 + φ+ ψ, w3 = u3 + φ.

It can be proven that the condition is satisfied.

Theorem 10. For a given list of signatures of simple subparquets U0, . . . , Uℓ−1, list of signatures
of subparquets V0, . . . , Vℓ−1 and a set of vectors Q we can calculate

ℓ−1∑
i=0

|(Ui + q) ∩ Vi|

for every q ∈ Q in total time Õ(m2+ℓ+ |Q|), assuming that the subparquets only contain vectors
of length O(m).

CHAPTER 4. MAIN RESULT 25

Proof. We apply Lemma 13 to every Ui and find wi,0, . . . , wi,3, so that we have

ℓ−1∑
i=0

|(Ui + q) ∩ Vi| =
ℓ−1∑
i=0

|Ui ∩ (Vi − q)| =
ℓ−1∑
i=0

3∑
j=0

(−1)j |(D + wi,j) ∩ (Vi − q)| =

=

3∑
j=0

(−1)j
ℓ−1∑
i=0

|(D + q) ∩ (Vi − wi,j)|.

By Lemma 12 we can independently calculate the values
∑ℓ−1

i=0 |(D + q) ∩ (Vi − wi,j)| for every
j by running the algorithm for Vj = {Vi − wi,j : i ∈ [ℓ]} and Q.

Theorem 11. For a given set of monochromatic simple subparquet strings S we can calculate∑
S∈S

Ham(P + q, S)

for every q ∈ Q in total time Õ(m2 +
∑

S∈S |VC(S)|), assuming that the sets dom(S) for S ∈ S
are some pairwise disjoint subsets of dom(T).

Proof. Let U =
⋃

S∈S dom(S). Observe that∑
S∈S

Ham(P + q, S) = |(P + q) ∩ U | −
∑
S∈S

∑
V ∈VC(S)

|dom(V + q) ∩ dom(S)|.

We can calculate |(P + q) ∩ U | for every q ∈ Q with a single instance of FFT (see Theorem 3)
or by using prefix sums in time Õ(m2). To calculate the values∑

S∈S

∑
V ∈VC(S)

| dom(V + q) ∩ dom(S)|

we use the algorithm from Theorem 10 (where ℓ =
∑

S∈S |VC(S)|).

4.6 Periodic parquet partitioning

In this section we explore the properties of periodic (sub-)parquet strings (recall Definitions 8, 9,
10). Specifically, we introduce some methods of partitioning them into monochromatic strings,
which we utilize when decomposing both the pattern and the active text.

Definition 14 (Lattice graph). For a set U ⊆ Z2 we define its lattice graph (U,E(U)), where

E(U) =
{
{u, u+ δ} : δ ∈ {φ,ψ} , u ∈ U, u+ δ ∈ U

}
,

so every vector is connected with its translations by φ,ψ,−φ,−ψ, which are contained in U .

Lemma 14. If U is a spacious subparquet, then (U,E(U)) is connected.

Proof. Assume the contrary. Consider any pair of points u, v ∈ U , such that

• u and v belong to different connected components,

CHAPTER 4. MAIN RESULT 26

• if we let s, t ∈ Z be such that v = u+ sφ+ tψ, then |s|+ |t| is minimized.

Let us assume that for such u and v = u+ sφ+ tψ we have s ≥ 0, since in the other case they
can be swapped. We now show that there exists a point w ∈ U , such that {u,w} ∈ E(U) and if
we let s′, t′ ∈ Z be such that v = w + s′φ+ t′ψ, then |s′|+ |t′| < |s|+ |t|, which contradicts the
minimality of |s|+ |t|.

Let x0, x1, y0, y1, φ0, φ1, ψ0, ψ1 ∈ Z be such that

• U = [x0, x1]× [y0, y1] ∩
{
w : w ∈ Z2, φ× w ∈ [φ0, φ1], ψ × w ∈ [ψ0, ψ1], w ≡ u

}
,

• x1 − x0 + 1 ≥ |φ.x|+ |ψ.x| and y1 − y0 + 1 ≥ |φ.y|+ |ψ.y|.

They exist by definition of a spacious subparquet. Recall that φ.x ≥ 0, φ.y ≤ 0, ψ.x ≥ 0,
ψ.y ≥ 0. We have the following cases:

1◦ If s = 0 and t > 0, then w = u+ ψ. Observe that

u.x ≤ w.x ≤ v.x, u.y ≤ w.y ≤ v.y, φ× u ≤ φ× w ≤ φ× v, ψ × w = ψ × u,

and since w ≡ u, we get w ∈ U .

2◦ If s = 0 and t < 0, then w = u− ψ and we can similarly show that w ∈ U , since

v.x ≤ w.x ≤ u.x, v.y ≤ w.y ≤ u.y, φ× v ≤ φ× w ≤ φ× u, ψ × w = ψ × u.

3◦ If s > 0 and t = 0, then w = u+ φ and we get w ∈ U , since

u.x ≤ w.x ≤ v.x, v.y ≤ w.y ≤ u.y, φ× v = φ× u, ψ × v ≤ ψ × w ≤ ψ × u.

4◦ If s > 0 and t > 0, consider the point w′ = u+ φ. We have

u.x ≤ w′.x ≤ v.x, φ× w′ = φ× u, ψ × v ≤ ψ × w′ ≤ ψ × u.

If w′ ∈ U , then w = w′. If w′ ̸∈ U , then since all other requirements are satisfied, we must
have w′.y ̸∈ [y0, y1]. Since w′.y = u.y+φ.y ≤ u.y, we have u.y+φ.y ≤ y0−1, and considering
y1 − y0 + 1 ≥ |φ.y|+ |ψ.y|, we get y1 ≥ u.y + ψ.y. Now let w = u+ ψ. We have

u.x ≤ w.x ≤ v.x, u.y ≤ w.y = u.y + ψ.y ≤ y1, φ× u ≤ φ× w ≤ φ× v, ψ × w = ψ × u,

thus w ∈ U .

5◦ If s > 0 and t < 0, consider w′ = u+ φ. We have

v.y ≤ w′.y ≤ u.y, φ× w′ = φ× u, ψ × v ≤ ψ × w′ ≤ ψ × u.

If w′ ∈ U , then w = w′. Otherwise we can (similarly to 4◦) show that w = u − ψ ∈ U , by
the fact that x1 − x0 + 1 ≥ |φ.x|+ |ψ.x|.

CHAPTER 4. MAIN RESULT 27

Figure 4.6: The partitioning of a simple subparquet string into monochromatic simple subpar-
quet strings. Different colors represent different characters assigned to a point.

Lemma 15. A spacious subparquet string S is monochromatic if and only if

Ham(S + φ, S) + Ham(S + ψ) = 0.

Proof. If S is monochromatic, then clearly Ham(S + φ, S) + Ham(S + ψ, S) = 0. Assume the
contrary for the other implication. Let u, v ∈ S be such that S(u) ̸= S(v). Since dom(S) is
a spacious subparquet, the graph (dom(S),E(dom(S)) is connected (by Lemma 14) and there
must exist a path between u and v. On that path there must exist a pair of neighbors w,w′,
such that S(w) ̸= S(w′) and w′ = w+ δ for some δ ∈ {φ,ψ}. If δ = φ, then Ham(S +φ, S) ≥ 1

and if δ = ψ, then Ham(S + ψ, S) ≥ 1 and we get a contradiction.

Lemma 16. A spacious subparquet string S can be partitioned in time Õ(| dom(S)| + 1) into
both the following sets of strings (we have two options):

a) a set of O(Ham(S +φ, S) + 1) strings U , such that Ham(U +φ,U) = 0 for each U ∈ U and

b) a set of O(Ham(S + ψ, S) + 1) strings V, such that Ham(V + ψ, V) = 0 for each V ∈ V.

All the obtained strings are spacious and if S is simple, they are simple.

Proof. Let us consider option (a). We construct the set

A = {ψ × u : u ∈ S, u+ φ ∈ S, S(u) ̸= S(u+ φ)} ∪ {−∞,+∞}

and then sort its elements increasingly, creating an array a0, . . . , aℓ. Note that ℓ ≤ Ham(S +

φ, S) + 2. We then construct the strings S0, . . . , Sℓ−1, where Si is the restriction of S to

CHAPTER 4. MAIN RESULT 28

{u : u ∈ S, ψ × u ∈ [ai, ai+1)} for every i ∈ [ℓ]. Observe that S0, . . . , Sℓ−1 partition S and that
Ham(Si + φ, Si) = 0 for every i ∈ [ℓ]. Also, is S is spacious, then they are spacious and if S is
simple, then they are simple.

In the case of option (b), we similarly construct

A = {φ× u : u ∈ S, u+ ψ ∈ S, S(u) ̸= S(u+ ψ)} ∪ {−∞,+∞}

and then sort it increasingly, creating a0, . . . , aℓ, where ℓ ≤ Ham(S+ψ, S)+2. We then construct
the strings S0, . . . , Sℓ−1, where Si is the restriction of S to {u : u ∈ S, φ× u ∈ (ai, ai+1]}.

Theorem 12. A given spacious/simple parquet string R with O(k)-periods φ and ψ can be par-
titioned in time Õ(|dom(R)|+ k) into O(k) monochromatic spacious/simple subparquet strings,
correspondingly.

Proof. We partition R into a set of subparquet strings S, such that |S| = O(min {m, k}).
Specifically, for each γ ∈ Γ (see Lemma 4), we construct a restriction of R to dom(R)∩ (L+ γ).
Observe that if R is spacious, then all S ∈ S are spacious and if R is simple, then all S ∈ S are
simple. We now partition each S ∈ S independently by using Lemma 16 (a) and construct a set
of subparquet strings S ′, such that S ′ partitions R and Ham(S′ + φ, S′) = 0 for every S′ ∈ S ′.
Note that

|S′| =
∑
S∈S

O(Ham(S + φ, S) + 1) = O(Ham(R+ φ,R) + |S|) = O(k),

since R has an O(k)-period φ. We now partition each S′ ∈ S ′ by using Lemma 16 (b) and
construct a set of subparquet strings S ′′, such that S ′′ partitions R and Ham(S′′ + ψ, S′′) = 0

for every S′′ ∈ S ′′. Again we have

|S′′| =
∑
S′∈S′

O(Ham(S′ + ψ, S′) + 1) = O(Ham(R+ ψ,R) + |S ′|) = O(k),

since R has an O(k)-period ψ. The process is illustrated in Figure 4.6. The red lines represent
the partitioning done in the first phase, when constructing S ′, and blue in the second, when
constructing S ′′. By Lemma 15, the strings S′′ ∈ S ′′ are monochromatic. The total number of
operations is O(|dom(R)|+ k).

4.7 Active text decomposition

This section serves as the proof of the following major theorem:

Theorem 13. Given any ℓ ∈ Z+, we can partition the active text in time Õ(m2 + ℓk) into a
set of O(ℓk) monochromatic simple subparquet strings and an O(m/ℓ)-peripheral string.

We will use a more geometrical approach and construct some lines and parallelograms. For
the sake of simplicity, we will consider an empty set to be a valid parallelogram. Also, we assume
that a parallelogram contains the points laying on its border and its vertices.

CHAPTER 4. MAIN RESULT 29

Definition 15. For a set of points U ⊆ R2 we will denote

X(U) = {u.x : u ∈ U} , Y(U) = {u.y : u ∈ U} .

Observation 5. For any given ℓ ∈ Z+ and v ∈ Z2 we can find an array of parallel lines
f0, f1, . . . , fℓ, where fi =

{
u : u ∈ R2, v × u = ci

}
for some ci ∈ R \Q, such that

• c0 < v × u < cℓ for every u ∈ [n]2, or namely, the set [n]2 is between f0 and fℓ,

• 0 < ci+1 − ci = O(n|v|/ℓ) for every i ∈ [ℓ], or namely, the distance between every two
consecutive lines is O(n/ℓ).

We use Observation 5 with v = φ to construct the lines h0, . . . , hℓ and with v = ψ to
construct the lines s0, . . . , sℓ. For every i, j ∈ [ℓ+1] we construct a point wi,j as an intersection
of hi and sj (since φ and ψ are not colinear, hi and sj are not parallel). For every i, j ∈ [ℓ] we
construct a parallelogram pi,j defined as the area between si and si+1 intersected with the area
between hj and hj+1. Specifically,

pi,j =
{
u : u ∈ R2, φ× u ∈ [φ× wi,j , φ× wi+1,j+1], ψ × u ∈ [ψ × wi,j , ψ × wi+1,j+1]

}
.

For better reference, the vertices of pi,j are wi,j , wi+1,j , wi+1,j+1, wi,j+1. Observe that every
u ∈ [n]2 is contained strictly in the interior of exactly one parallelogram pi,j .

Lemma 17. For every i ∈ [ℓ− 1] and j ∈ [ℓ] we have

minX(pi,j) < minX(pi+1,j), minY(pi,j) ≤ minY(pi+1,j),

maxX(pi,j) < maxX(pi+1,j), maxY(pi,j) ≤ maxY(pi+1,j)

and for every i ∈ [ℓ] and j ∈ [ℓ− 1] we have

minX(pi,j) ≥ minX(pi,j+1), minY(pi,j) < minY(pi,j+1),

maxX(pi,j) ≥ maxX(pi,j+1), maxY(pi,j) < maxY(pi,j+1).

Proof. It follows from the fact that we selected φ ∈ [0,+∞)×(−∞, 0) and ψ ∈ (0,+∞)×[0,+∞).
For example, to prove the first inequality, we can consider a point u ∈ pi+1,j , such that u.x =

minX(pi+1,j) and then construct a point v ∈ pi,j , such that v = u− tψ for some t > 0, and thus
minX(pi,j) ≤ v.x < u.x = minX(pi+1,j). The other inequalities can be proven analogously.

Lemma 25. For every i, j ∈ [ℓ] and every u, v ∈ X(pi,j)×Y(pi,j), we have |u− v| = O(n/ℓ).

Proof. See Section 4.7.2.

Consider the case when maxX(pi,j)−minX(pi,j) ≥ m/4 for some i, j ∈ [ℓ]. By Lemma 25,
we would have m/4 ≤ maxX(pi,j) − minX(pi,j) = O(n/ℓ), and thus ℓ = O(1). In that case
we can return a trivial partitioning where F = Ta and the set of monochromatic strings is
empty, since Ta is O(m)-peripheral. We can use the same argument if we have maxY(pi,j) −
minY(pi,j) ≥ m/4 for some i, j ∈ [ℓ]. Thus, from now on we will assume that maxXi,j −
minXi,j < m/4 and maxYi,j −minYi,j < m/4 for every i, j ∈ [ℓ].

Let z = n−1
2 . We split the plane with two lines x = z and y = z into four quarters:

CHAPTER 4. MAIN RESULT 30

1) K1 = (z,+∞)× (z,+∞),

2) K2 = (−∞, z)× (z,+∞),

3) K3 = (−∞, z)× (−∞, z),

4) K4 = (z,+∞)× (−∞, z).

Let us denote by I the set of all parallelograms pi,j , such that they intersect with the line x = z

or with the line y = z (or both). Observe that every parallelogram pi,j ̸∈ I must be fully
contained in one of the quarters, meaning pi,j ⊆ Kd for some d ∈ {1, . . . , 4}.

Lemma 18. |I| = O(ℓ).

Proof. Consider the line x = z, denoted f . It intersects with every line h0, . . . , hℓ at most once
(and does not overlap with any of them). Similarly, it intersects with every line s0, . . . , sℓ at
most once. Denote the set of such intersections as U . For every parallelogram p ∈ I, there must
exist u ∈ U , such that u ∈ p. For every u ∈ U , there are at most four parallelograms p ∈ I, such
that u ∈ p, thus the number of parallelograms intersecting with f is at most 4|U | = O(ℓ). We
can identically bound the number of parallelograms intersecting with the line y = z, and thus
get |I| = O(ℓ).

Now consider any j ∈ [ℓ]. By Lemma 17, we can find s, t ∈ [ℓ + 1], such that the array
p0,j , . . . , pℓ−1,j is split into three groups:

a) p0,j , . . . , ps−1,j , which includes only parallelograms fully contained in K3,

b) ps,j , . . . , pt−1,j , which does not include any parallelogram fully contained in K1 or K3,

c) pt,j , . . . , pℓ−1,j , which includes only parallelograms fully contained in K1.

We now ”merge together” the parallelograms from group (a) and from group (c). Specifically,
we construct

g3j =
s−1⋃
i=0

pi,j , g1j =
ℓ−1⋃
i=t

pi,j .

We do it for every j ∈ [ℓ]. Observe that the sets g10, . . . , g1ℓ−1 are are parallelograms (possibly
empty) and that they cover the same area as all the fully contained in K1 parallelograms pi,j .
The same is true for g30, . . . , g3ℓ−1 and the parallelograms in K3.

Now for every i ∈ [ℓ] we similarly find s, t ∈ [ℓ + 1], such that the array pi,0, . . . , pi,ℓ−1 is
split into three groups:

a) pi,0, . . . , pi,s−1, which includes only parallelograms fully contained in K4,

b) pi,s, . . . , pi,t−1, which does not include any parallelogram fully contained in K2 or K4,

c) pi,t, . . . , pi,ℓ−1, which includes only parallelograms fully contained in K2,

CHAPTER 4. MAIN RESULT 31

Figure 4.7: The parallelograms from C (blue) and C′ (green).

and then construct

g4i =
s−1⋃
j=0

pi,j , g2i =
ℓ−1⋃
j=t

pi,j .

We denote

G =
{
g10, . . . , g

1
ℓ−1

}
∪
{
g20, . . . , g

2
ℓ−1

}
∪
{
g30, . . . , g

3
ℓ−1

}
∪
{
g40, . . . , g

4
ℓ−1

}
.

Again observe that for every u ∈ [n]2 there exists exactly one parallelogram p ∈ G ∪I, such that
u ∈ p, and since the sides of p do not contain integer points, u lays strictly inside p.

Definition 16 (Coverability). We say that a set U ⊆ Z2 is coverable if U ⊆ dom(P + q) for
some q ∈ Q.

Lemma 19. For every p ∈ I, the set p ∩ Z2 is either coverable or O(n/ℓ)-peripheral.

Proof. Consider any p ∈ I. Since the other cases are rotationally symmetric, assume that it inter-
sects with some point s ∈ R2, such that s.x = z and s.y ≥ z. Let v = (⌊maxX(p),maxY(p)⌋).
We have v.x ≥ ⌊z⌋ = n/2 − 1 and v.y ≥ ⌊z⌋ = n/2 − 1. If v ̸∈ Ta, we can see that by
Lemma 25, |u − v| = O(n/ℓ) for every u ∈ p ∩ Z2, thus p is O(n/ℓ)-peripheral. If v ∈ Ta,

CHAPTER 4. MAIN RESULT 32

there exists q ∈ Q, such that v ∈ [m]2 + q. Consider any u ∈ p ∩ Z2. By the assumption that
maxX(p)−minX(p) < m/4 and maxY(p)−minY(p) < m/4 we get

u.x ≥ n/2−m/4 ≥ n−m ≥ q.x,

u.y ≥ n/2−m/4 ≥ n−m ≥ q.y,

and since u.x ≤ v.x ≤ q.x + m − 1 and u.y ≤ v.y ≤ q.y + m − 1, we get u ∈ [m]2 + q, thus
U ⊆ [m]2 + q.

Lemma 20. The restriction of T to a coverable set has O(k)-periods φ and ψ.

Proof. Let R denote the restriction. For q ∈ Q, such that dom(R) ⊆ dom(P + q) we have

Ham(R+ φ,R) ≤ Ham(R+ φ, P + q + φ) + Ham(P + q + φ, P + q) + Ham(P + q,R) ≤
≤ Ham(T, P + q) + Ham(P + φ, P) + Ham(P + q, T) = O(k)

and identically Ham(R+ ψ,R) = O(k).

Lemma 21. For every g ∈ G we can construct two parallelograms c and b, such that

• c ∩ Z2 is coverable,

• b ∩ Z2 is O(n/ℓ)-peripheral,

• g ∩ Z2 is partitioned into b ∩ Z2 and c ∩ Z2.

Proof. See the next section (4.7.1).

We split every non-empty parallelogram g ∈ G (by Lemma 21) into parallelograms c and b.
We construct the set C consisting of all the obtained parallelograms c and a set B consisting of
all the obtained parallelograms b.

We similarly divide the parallelograms in I (by Lemma 19) and construct the sets C′ ={
p : p ∈ I, p ∩ Z2 is coverable

}
and B′ = I \ C′.

Now construct U =
{
c ∩ Z2 : c ∈ C ∪ C′} and V =

⋃
b∈B∪B′ b ∩ dom(Ta). Observe that

all sets U ∈ U are coverable simple parquets, the set V is O(n/ℓ)-peripheral, and dom(Ta) is
partitioned into sets U ∪ {V }.

The decomposition is illustrated in Figure 4.7. The points in the gray area are outside of
the active text. The parallelograms from C and C′ are colored blue and green, respectively. The
points outside of them (in the white area) form the peripheral set V .

For each U ∈ U we construct the restriction of T to U . By Lemma 20, it has O(k)-
periods φ and ψ, thus, by Theorem 12, it can be partitioned into O(k) monochromatic simple
subparquet strings. Since |C′| ≤ |I| = O(ℓ) (by Lemma 18) and |C| ≤ |G| = O(ℓ), we have
|U| = |C|+ |C′| = O(ℓ), thus the total number of constructed strings is O(ℓk).

Finally, we construct the restriction of T to V , which is a O(n/ℓ)-peripheral string.

CHAPTER 4. MAIN RESULT 33

4.7.1 Parallelogram splitting

This section serves as the proof of Lemma 21, introduced at the end of the previous section
(4.7). Since for an empty parallelogram the proof is trivial, consider a non-empty set g1j for
some j ∈ [ℓ]. We will explore some properties of the part of the text contained in K1 specifically,
which can be generalized to other quarters by symmetry.

Lemma 22. Every set U ⊆ K1 ∩ Z2, such that (maxX(U),maxY(U)) ∈ Ta is coverable.

Proof. Let v = (maxX(U),maxY(U)). By assumption, there exists q ∈ Q, such that v ∈
[m]2+q. For every u ∈ U we have q.x ≤ n−m ≤ n/2 ≤ u.x ≤ v.x < q.x+m and q.y ≤ n−m ≤
n/2 ≤ u.y ≤ v.y < q.y +m, thus u ∈ [m]2 + q.

Observation 6. By Lemma 22, there does not exist a pair of points u ∈ Z2 ∩K1 \dom(Ta) and
v ∈ Ta, such that u.x ≤ v.x and u.y ≤ v.y.

Recall that there exists t ∈ [ℓ+ 1], such that g1j =
⋃ℓ−1

i=t pi,j . We find

f = min
{
i : i ∈ {t, . . . , ℓ− 1} , (⌊maxX(pi,j)⌋ , ⌊maxY(pi,j)⌋) ∈ Z2 \ dom(Ta)

}
.

If the minimum does not exist, we consider f = ℓ. We then construct the parallelograms

c =

f−1⋃
i=0

pi,j , b =

ℓ−1⋃
i=f

pi,j .

We now show that the set c∩Z2 is coverable. If c∩Z2 is empty, then it is coverable, so let
us assume it is not. In that case f > 0. It is clear that c ∩ Z2 ⊆ K1. By Lemma 17, we have

maxX(c) = maxX(pf−1,j),

maxX(c) = maxY(pf−1,j),

and thus

maxX(c ∩ Z2) ≤ ⌊maxX(c)⌋ = ⌊maxX(pf−1,j)⌋ ,
maxY(c ∩ Z2) ≤ ⌊maxY(c)⌋ = ⌊maxY(pf−1,j)⌋ .

We see that (maxX(c ∩ Z2),maxY(c ∩ Z2)) ∈ Ta, since it would otherwise contradict
Observation 6, considering that (⌊maxX(pf−1,j)⌋ , ⌊maxY(pf−1,j)⌋) ∈ Ta. We see that c ∩ Z2

satisfies the conditions of Lemma 22, thus c ∩ Z2 is coverable.

We now show that the set b∩Z2 is O(n/ℓ)-peripheral. If it is empty, then the proof is trivial,
so let us assume it is not. In that case f < ℓ. Denote v = (⌊maxX(pf,j)⌋ , ⌊maxY(pf,j)⌋).
By definition, v ∈ Z2 \ dom(Ta). Consider any point u ∈ b ∩ Z2. There exists exactly one
i ∈ {f, . . . , ℓ− 1}, such that u lays strictly inside pi,j . Let w = (⌊maxX(pi,j)⌋ , ⌊maxY(pi,j)⌋).
By Lemma 17, we have w.x ≥ v.x and w.y ≥ v.y, and by considering Observation 6, we get
w ∈ Z2 \ dom(Ta). Finally, by Lemma 25, we get |u− w| = O(n/ℓ).

The constructions for g2i , g
3
j , g

4
i are rotationally symmetric.

CHAPTER 4. MAIN RESULT 34

4.7.2 Parallelogram span bounds

In this section we will establish a distance bound for points laying inside or in the proximity of
the constructed parallelograms. Consider any fixed pi,j for some i, j ∈ [ℓ]. We first show some
auxiliary (weaker) lemmas, which we then use to prove Lemma 25.

Lemma 23. For every u, v ∈ pi,j, we have |u− v| = O(n/ℓ).

Proof. Consider any u, v ∈ pi,j and denote w = u− v. By definition of pi,j , we have

|φ× w| = |φ× (u− v)| = |φ× u− φ× v| = O(n|φ|/ℓ)

and similarly |ψ × w| = O(n|ψ|/ℓ). Since φ and ψ are not colinear, there exist s, t ∈ R, such
that w = sφ + tψ. Recall that by Theorem 9 we have |φ × ψ| ≥ 1

2 |φ||ψ| (since | sinα| ≥ 1/2),
thus

1

2
|t||φ||ψ| ≤ |t||φ× ψ| = |φ× (sφ+ tψ)| = |φ× w| = O(n|φ|/ℓ),

which gives us |tφ| = O(n/ℓ). We can similarly prove that |sψ| = O(n/ℓ) and finally

|w| = |sφ+ tψ| ≤ |sφ|+ |tψ| = O(n/ℓ).

Lemma 24. For every point u ∈ X(pi,j) × Y(pi,j) there exists a point v ∈ pi,j, such that
|u− v| = O(n/ℓ).

Proof. There exists a point w ∈ pi,j , such that u.x = w.x, and a point v ∈ pi,j , such that
u.y = v.y. By Lemma 23, we have

|u− v| = |u.x− v.x| = |w.x− v.x| ≤ |w − v| = O(n/ℓ).

Lemma 25. For every i, j ∈ [ℓ] and every u, v ∈ X(pi,j)×Y(pi,j), we have |u− v| = O(n/ℓ).

Proof. Consider any u, v ∈ pi,j . By Lemma 24, there exist u′, v′ ∈ pi,j such that |u−u′| = O(n/ℓ)

and |v − v′| = O(n/ℓ). By Lemma 23, we have

|u− v| ≤ |u− u′|+ |u′ − v′|+ |v′ − v| = O(n/ℓ).

Bibliography

[1] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,
1987. doi:10.1137/0216067.

[2] Amihood Amir and Gary Benson. Two-dimensional periodicity and its applications. In
Greg N. Frederickson, editor, Proceedings of the Third Annual ACM/SIGACT-SIAM Sym-
posium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA, pages 440–
452. ACM/SIAM, 1992. URL: http://dl.acm.org/citation.cfm?id=139404.139489.

[3] Amihood Amir and Gary Benson. Two-dimensional periodicity in rectangular arrays. SIAM
J. Comput., 27(1):90–106, 1998. doi:10.1137/S0097539795298321.

[4] Amihood Amir, Gary Benson, and Martin Farach. An alphabet independent approach to
two-dimensional pattern matching. SIAM J. Comput., 23(2):313–323, 1994. doi:10.1137/
S0097539792226321.

[5] Amihood Amir and Gad M. Landau. Fast parallel and serial multidimensional approximate
array matching. Theor. Comput. Sci., 81(1):97–115, 1991. doi:10.1016/0304-3975(91)
90318-V.

[6] Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional
maximal repetitions. Theor. Comput. Sci., 812:49–61, 2020. URL: https://doi.org/10.
1016/j.tcs.2019.07.006, doi:10.1016/J.TCS.2019.07.006.

[7] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching
with k mismatches. J. Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)
00097-X.

[8] Ricardo A. Baeza-Yates. Similarity in two-dimensional strings. In Wen-Lian Hsu and
Ming-Yang Kao, editors, Computing and Combinatorics, 4th Annual International Con-
ference, COCOON ’98, Taipei, Taiwan, R.o.C., August 12-14, 1998, Proceedings, vol-
ume 1449 of Lecture Notes in Computer Science, pages 319–328. Springer, 1998. doi:
10.1007/3-540-68535-9_36.

[9] Ricardo A. Baeza-Yates and Gonzalo Navarro. Fast two-dimensional approximate pattern
matching. In Claudio L. Lucchesi and Arnaldo V. Moura, editors, LATIN ’98: Theoreti-
cal Informatics, Third Latin American Symposium, Campinas, Brazil, April, 20-24, 1998,
Proceedings, volume 1380 of Lecture Notes in Computer Science, pages 341–351. Springer,
1998. URL: https://doi.org/10.1007/BFb0054334, doi:10.1007/BFB0054334.

35

https://doi.org/10.1137/0216067
http://dl.acm.org/citation.cfm?id=139404.139489
https://doi.org/10.1137/S0097539795298321
https://doi.org/10.1137/S0097539792226321
https://doi.org/10.1137/S0097539792226321
https://doi.org/10.1016/0304-3975(91)90318-V
https://doi.org/10.1016/0304-3975(91)90318-V
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/J.TCS.2019.07.006
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1007/3-540-68535-9_36
https://doi.org/10.1007/3-540-68535-9_36
https://doi.org/10.1007/BFb0054334
https://doi.org/10.1007/BFB0054334

BIBLIOGRAPHY 36

[10] Ricardo A. Baeza-Yates and Mireille Régnier. Fast two-dimensional pattern matching. Inf.
Process. Lett., 45(1):51–57, 1993. doi:10.1016/0020-0190(93)90250-D.

[11] Piotr Berman, Marek Karpinski, Lawrence L. Larmore, Wojciech Plandowski, and Wojciech
Rytter. On the complexity of pattern matching for highly compressed two-dimensional texts.
J. Comput. Syst. Sci., 65(2):332–350, 2002. URL: https://doi.org/10.1006/jcss.2002.
1852, doi:10.1006/JCSS.2002.1852.

[12] Richard S. Bird. Two dimensional pattern matching. Inf. Process. Lett., 6(5):168–170, 1977.
doi:10.1016/0020-0190(77)90017-5.

[13] Karl Bringmann, Philip Wellnitz, and Marvin Künnemann. Few matches or almost peri-
odicity: Faster pattern matching with mismatches in compressed texts. In Timothy M.
Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1126–1145.
SIAM, 2019. doi:10.1137/1.9781611975482.69.

[14] Timothy M. Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat.
Approximating text-to-pattern Hamming distances. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 643–656. ACM, 2020. doi:10.1145/3357713.3384266.

[15] Timothy M. Chan, Ce Jin, Virginia Vassilevska Williams, and Yinzhan Xu. Faster algo-
rithms for text-to-pattern Hamming distances. In FOCS, pages 2188–2203. IEEE, 2023.

[16] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approx-
imate pattern matching: A unified approach. In Sandy Irani, editor, 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, pages 978–989. IEEE, 2020. doi:10.1109/FOCS46700.2020.00095.

[17] Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter, Tomasz Walen, and
Wiktor Zuba. The number of repetitions in 2d-strings. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms,
ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs,
pages 32:1–32:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https:
//doi.org/10.4230/LIPIcs.ESA.2020.32, doi:10.4230/LIPICS.ESA.2020.32.

[18] Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
The k-mismatch problem revisited. CoRR, abs/1508.00731, 2015. URL: http://arxiv.
org/abs/1508.00731, arXiv:1508.00731, doi:10.48550/arxiv.1508.00731.

[19] Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
The k -mismatch problem revisited. In Robert Krauthgamer, editor, Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 2039–2052. SIAM, 2016. URL: https:
//doi.org/10.1137/1.9781611974331.ch142, doi:10.1137/1.9781611974331.CH142.

https://doi.org/10.1016/0020-0190(93)90250-D
https://doi.org/10.1006/jcss.2002.1852
https://doi.org/10.1006/jcss.2002.1852
https://doi.org/10.1006/JCSS.2002.1852
https://doi.org/10.1016/0020-0190(77)90017-5
https://doi.org/10.1137/1.9781611975482.69
https://doi.org/10.1145/3357713.3384266
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.4230/LIPIcs.ESA.2020.32
https://doi.org/10.4230/LIPIcs.ESA.2020.32
https://doi.org/10.4230/LIPICS.ESA.2020.32
http://arxiv.org/abs/1508.00731
http://arxiv.org/abs/1508.00731
http://arxiv.org/abs/1508.00731
https://doi.org/10.48550/arxiv.1508.00731
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611974331.CH142

BIBLIOGRAPHY 37

[20] Maxime Crochemore, Leszek Gasieniec, Ramesh Hariharan, S. Muthukrishnan, and Wo-
jciech Rytter. A constant time optimal parallel algorithm for two-dimensional pattern
matching. SIAM J. Comput., 27(3):668–681, 1998. doi:10.1137/S0097539795280068.

[21] Maxime Crochemore, Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. Two-
dimensional pattern matching in linear time and small space. In Ernst W. Mayr and Claude
Puech, editors, STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer
Science, Munich, Germany, March 2-4, 1995, Proceedings, volume 900 of Lecture Notes in
Computer Science, pages 181–192. Springer, 1995. doi:10.1007/3-540-59042-0_72.

[22] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Pro-
ceedings of the American Mathematical Society, 16(1):109–114, 1965. doi:10.1090/
s0002-9939-1965-0174934-9.

[23] Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. SIGACT
News, 17(4):52–54, 1986. doi:10.1145/8307.8309.

[24] Zvi Galil and Kunsoo Park. Alphabet-independent two-dimensional witness computation.
SIAM J. Comput., 25(5):907–935, 1996. doi:10.1137/S0097539792241941.

[25] Guilhem Gamard, Gwénaël Richomme, Jeffrey O. Shallit, and Taylor J. Smith. Periodicity
in rectangular arrays. Inf. Process. Lett., 118:58–63, 2017. URL: https://doi.org/10.
1016/j.ipl.2016.09.011, doi:10.1016/J.IPL.2016.09.011.

[26] Pawel Gawrychowski and Przemyslaw Uznanski. Optimal trade-offs for pattern matching
with k mismatches. CoRR, abs/1704.01311, 2017. URL: http://arxiv.org/abs/1704.
01311, arXiv:1704.01311, doi:10.48550/arxiv.1704.01311.

[27] Pawel Gawrychowski and Przemyslaw Uznanski. Towards unified approximate pattern
matching for Hamming and L_1 distance. In Ioannis Chatzigiannakis, Christos Kak-
lamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 62:1–62:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.62, doi:
10.4230/LIPICS.ICALP.2018.62.

[28] Juha Kärkkäinen and Esko Ukkonen. Two- and higher-dimensional pattern matching
in optimal expected time. SIAM J. Comput., 29(2):571–589, 1999. doi:10.1137/
S0097539794275872.

[29] Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf. Process.
Lett., 48(2):53–60, 1993. doi:10.1016/0020-0190(93)90177-B.

[30] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. Rapid identification
of repeated patterns in strings, trees and arrays. In Patrick C. Fischer, H. Paul Zeiger,
Jeffrey D. Ullman, and Arnold L. Rosenberg, editors, Proceedings of the 4th Annual ACM
Symposium on Theory of Computing, May 1-3, 1972, Denver, Colorado, USA, pages 125–
136. ACM, 1972. doi:10.1145/800152.804905.

https://doi.org/10.1137/S0097539795280068
https://doi.org/10.1007/3-540-59042-0_72
https://doi.org/10.1090/s0002-9939-1965-0174934-9
https://doi.org/10.1090/s0002-9939-1965-0174934-9
https://doi.org/10.1145/8307.8309
https://doi.org/10.1137/S0097539792241941
https://doi.org/10.1016/j.ipl.2016.09.011
https://doi.org/10.1016/j.ipl.2016.09.011
https://doi.org/10.1016/J.IPL.2016.09.011
http://arxiv.org/abs/1704.01311
http://arxiv.org/abs/1704.01311
http://arxiv.org/abs/1704.01311
https://doi.org/10.48550/arxiv.1704.01311
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPICS.ICALP.2018.62
https://doi.org/10.4230/LIPICS.ICALP.2018.62
https://doi.org/10.1137/S0097539794275872
https://doi.org/10.1137/S0097539794275872
https://doi.org/10.1016/0020-0190(93)90177-B
https://doi.org/10.1145/800152.804905

BIBLIOGRAPHY 38

[31] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

[32] Kamala Krithivasan and R. Sitalakshmi. Efficient two-dimensional pattern matching in the
presence of errors. Inf. Sci., 43(3):169–184, 1987. doi:10.1016/0020-0255(87)90037-5.

[33] Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theor.
Comput. Sci., 43:239–249, 1986. doi:10.1016/0304-3975(86)90178-7.

[34] Filippo Mignosi, Antonio Restivo, and Pedro V. Silva. On Fine and Wilf’s theorem
for bidimensional words. Theor. Comput. Sci., 292(1):245–262, 2003. doi:10.1016/
S0304-3975(01)00226-2.

[35] Kunsoo Park. Analysis of two-dimensional approximate pattern matching algorithms.
Theor. Comput. Sci., 201(1-2):263–273, 1998. doi:10.1016/S0304-3975(97)00277-6.

[36] Sanjay Ranka and Todd Heywood. Two-dimensional pattern matching with k mismatches.
Pattern Recognit., 24(1):31–40, 1991. doi:10.1016/0031-3203(91)90114-K.

[37] Wojciech Rytter. Compressed and fully compressed pattern matching in one and two di-
mensions. Proc. IEEE, 88(11):1769–1778, 2000. doi:10.1109/5.892712.

[38] Jorma Tarhio. A sublinear algorithm for two-dimensional string matching. Pattern Recognit.
Lett., 17(8):833–838, 1996. doi:10.1016/0167-8655(96)00055-4.

https://doi.org/10.1137/0206024
https://doi.org/10.1016/0020-0255(87)90037-5
https://doi.org/10.1016/0304-3975(86)90178-7
https://doi.org/10.1016/S0304-3975(01)00226-2
https://doi.org/10.1016/S0304-3975(01)00226-2
https://doi.org/10.1016/S0304-3975(97)00277-6
https://doi.org/10.1016/0031-3203(91)90114-K
https://doi.org/10.1109/5.892712
https://doi.org/10.1016/0167-8655(96)00055-4

	Introduction
	Preliminaries
	One-dimensional generalizations
	Main result
	Two-dimensional periodicity
	Text decomposition
	Text periphery
	Peripheral convolution

	Period acquisition
	Subparquet convolution
	Periodic parquet partitioning
	Active text decomposition
	Parallelogram splitting
	Parallelogram span bounds

	Bibliography

