
Uniwersytet Wrocławski

Instytut Informatyki

Algorytmy aproksymacyjne dla
klastrowania i submodularnych problemów

lokalizacji obiektów

Fateme Abbasi

Rozprawa doktorska

Napsiana pod kierunkiem
Prof. dr hab. Jarosława Byrki

Wrocław, 2025

University of Wrocław

Institute of Computer Science

Approximation Algorithms for Clustering
and Submodular Facility Location

Problems

Fateme Abbasi

A dissertation supervised by
Prof. dr hab. Jarosław Byrka

Submitted for a degree of
Doctor of Philosophy

Wrocław, 2025

2:78293

Abstrakt

W niniejszej pracy rozważamy dwa fundamentalne wyzwania w teoretycznej informatyce —grupowanie
i lokalizację obiektów — które były badane przez wiele lat, ale wciąż pozostają nierozwiązane w wielu
aspektach. Dzięki zastosowaniom w takich dziedzinach jak optymalizacja, uczenie maszynowe, eksploracja
danych oraz badania operacyjne, dalsze badania w tych obszarach są niezwykle wartościowe. W klasie
problemów grupowania koncentrujemy się na modelach opartych na centrach (ang. center-based models),
natomiast w obszarze lokalizacji obiektów badamy submodularny problem lokalizacji obiektów, będący
rozszerzoną wersją tradycyjnego problemu lokalizacji obiektów. Ponieważ większość problemów w tych
obszarach jest NP-trudna, skupiamy się na projektowaniu algorytmów aproksymacyjnych dla tych problemów.

Ogólnym celem grupowania jest podział danego zbioru danych na podobne grupy. W przypadku 𝑘-
grupowania dążymy do podziału zbioru danych na 𝑘 odrębnych klastrów przy minimalizacji funkcji celu,
która zazwyczaj stanowi wektor odległości pomiędzy punktami danych a centrami ich odpowiednich klas-
trów. Projektujemy parametryzowane algorytmy aproksymacyjne dla różnych funkcji celu w problemach
𝑘-grupowania. Po pierwsze, rozważamy Socially Fair (𝑘, 𝑧)-Clustering i przedstawiamy nowe wyniki
dotyczące parametryzowanej aproksymowalności tego problemu w przestrzeniach geometrycznych, szczegól-
nie w wysokowymiarowych przestrzeniach Euklidesowych. Następnie rozważamy reżim algorytmiczny pro-
jektowania (1 + 𝜖)-aproksymacyjnego algorytmu dla problemu normowego 𝑘-grupowania, który działa w
czasie 𝑓 (𝑘, 𝜖)poly(𝑛) (często nazywanego efektywnym parametryzowanym schematem aproksymacyjnym,
EPAS). Prezentujemy ujednolicony EPAS, który działa dla różnych funkcji celu i przestrzeni metrycznych,
wprowadzając nową koncepcję zwaną 𝜖-scatter dimension — miarą złożoności przestrzeni metrycznej. Dla
dowolnej funkcji celu w przestrzeni metrycznej 𝑀 uzyskujemy EPAS, pod warunkiem, że funkcja celu jest
monotoniczną normą, a 𝜖-scatter dimension przestrzeni 𝑀 jest ograniczone przez funkcję zależną od 𝜖 .

Następnie rozważamy Submodularny Problem Lokalizacji Obiektów (SFL), w którym mamy dany zbiór
klientów, zbiór obiektów oraz koszt otwarcia każdego obiektu określony przez monotoniczną funkcję sub-
modularną. Celem jest przypisanie każdego klienta do obiektu w taki sposób, aby zminimalizować łączny
koszt przypisania i otwarcia obiektów. Dokonujemy postępu w rozwiązaniu pytania — czy SFL dopuszcza
aproksymację o stałym współczynniku — prezentując algorytm o współczynniku aproksymacji log log 𝑛 dla
SFL. Nasze podejście jest elastyczne i rozszerza się na uogólnienia oraz warianty SFL. Dodatkowo uzyskujemy
ulepszony algorytm aproksymacyjny dla problemu uniwersalnej stochastycznej lokalizacji obiektów.

i

3:15203

Abstract

In this thesis we consider two fundamental challenges in theoretical computer science—clustering and facility
location—which have been studied for many years yet remain unsolved in many aspects. With applications
in areas like optimization, machine learning, data mining, and operations research, further research in these
areas is highly valuable. In the class of clustering problems, we focus on center-based models while in the
area of facility location, we study submodular facility location problem, an extended version of traditional
facility location problem. Given that most of the problems in these areas are NP-hard, we focus on designing
approximation algorithms for the problems.

The general goal of clustering problems is to divide a given dataset into similar groups. In 𝑘-clustering, we
aim to divide a given dataset to 𝑘 distinct clusters while minimizing the objective function, specifically a vector
of distances between the data points and the centers of their corresponding clusters. We design parameterized
approximation algorithms for various 𝑘-clustering objective functions. First, we consider Socially Fair
(𝑘, 𝑧)-Clustering, and provide a new results on parameterized approximability of the problem in geometric
spaces, particularly in high-dimensional discrete Euclidean spaces. Then, we consider the algorithmic regime
of designing a (1+𝜖)-approximation algorithm for a norm 𝑘-clustering problem that runs in time 𝑓 (𝑘, 𝜖)poly(𝑛)
(sometimes called an efficient parameterized approximation scheme or EPAS). We present a unified EPAS
that works over various objective functions and several metric spaces by introducing a novel concept called
bounded 𝜖-scatter dimension —an intrinsic complexity measure of a metric space that relaxes the standard
notion of bounded doubling dimension. For any clustering objective in metric space 𝑀 we obtain an EPAS,
as long as the objective is a monotone norm and the 𝜖-scatter dimension of 𝑀 is upper bounded by a function
of 𝜖 .

Next, we consider Submodular Facility Location (SFL), where we are given a set of clients, a set of facilities,
and an opening cost for each facility defined by a monotone submodular function. The goal is to assign each
client to a facility while minimizing the combined cost of assignment and facility opening. We make progress
toward a longstanding open question—whether SFL admits a constant-factor approximation—by presenting
a log log 𝑛-approximation algorithm for SFL. Our approach is flexible and extends to generalizations and
variants of SFL. Additionally, we obtain an improved approximation algorithm for the related Universal
Stochastic Facility Location problem.

ii

4:18291

Acknowledgments

First and foremost, I would like to express my deepest thanks to my advisor, Jarosław Byrka, for his guidance,
support, and constant encouragement throughout my PhD. His patience, high standards, and dedication have
challenged me to grow as a researcher, writer, and presenter. I truly appreciate the countless hours he spent
reviewing my work and offering thoughtful advice. This dissertation would not have been possible without
his support, and I am incredibly grateful for everything he has taught me.

I sincerely thank my co-authors—Marek Adamczyk, Sandip Banerjee, Miguel Bosch-Calvo, Jarosław
Byrka, Parinya Chalermsook, Ameet Gadekar, Fabrizio Grandoni, Kamyar Khodamoradi, Dániel Marx,
Roohani Sharma, Krzysztof Sornat, Joachim Spoerhase, and Antoine Tinguely. Their collaboration and
insights were instrumental in shaping these works, and I feel incredibly fortunate to have had the opportunity
to work alongside such brilliant researchers. A special thanks to Joachim, Kamyar, Ameet, and Sandip for
creating a pleasant, supportive, and collaborative research environment, as well as for their guidance and
invaluable advice. I am truly grateful for everything I have learned from them.

Beyond my co-authors, I would like to thank Martin Böhm, Marek Chrobak, Nathan Klein, and Jan
Marcinkowski for their insightful discussions on interesting problems— I appreciate the opportunity to learn
from them.

I am endlessly grateful to my family and friends for their support and encouragement. My deepest
appreciation goes to my parents, sisters, and brothers, who have been a constant source of strength, support,
and motivation—for that, I am forever grateful. I also want to thank my dearest friends—Neda, Behzad,
Yasmin, Arash, Zahra, Mohammad, Aida, and Sadia—as well as all my friends in Wrocław for their kindness,
encouragement, and for making me feel at home even when I was far away.

Finally, I want to thank my colleagues at the institute—Marcin Bieńkowski, Łukasz Jeż, Artur Kraska,
and Yongho Shin—as well as all my other colleagues for creating a warm and inspiring work environment.

iii

5:50064

Contents

Abstrakt i

Abstract ii

Acknowledgments iii

1 Introduction 1
1.1 Approximation Algorithms . 2

1.1.1 Types of Schemes for Parameterized Approximation Algorithms 2
1.1.2 Parameterized Complexity . 3

1.2 Problem Setting . 5
1.3 Thesis Outline of Results . 7

1.3.1 Socially Fair/Robust Clustering in Discrete Euclidean space 7
1.3.2 EPAS for General Norm Clustering . 9
1.3.3 Submodular Facility Location . 14

2 Parameterized Approximation for Socially Fair Clustering 18
2.1 Overview of Techniques . 20
2.2 High-Dimensional Discrete Euclidean Space . 23

2.2.1 FPT Approximation Algorithm for Socially Fair (𝑘, 𝑧)-Clustering 23
2.3 Hardness of Discrete 𝑘-Center . 32
2.4 EPAS for Metrics of Sub-Logarithmic Doubling Dimension 35

2.4.1 Coreset for Socially Fair (𝑘, 𝑧)-Clustering . 35
2.4.2 EPAS for Socially Fair (𝑘, 𝑧)-Clustering . 39

2.5 Conclusions and Open Problems . 42

3 EPAS for General Norm Clustering 43
3.1 Efficient Parameterized Approximation Schemes for Norm 𝑘-Clustering . . 43
3.2 Overview of Techniques . 46

iv

6:47861

3.3 Preliminaries . 54
3.4 𝜖-Scatter Dimension . 55
3.5 Framework for Efficient Parameterized Approximation Schemes 58

3.5.1 Algorithm . 59
3.5.2 Analysis . 60

3.6 𝜖-Scatter Dimension Bounds . 67
3.6.1 Bounded Doubling Dimension . 67
3.6.2 Bounded Treewidth Graphs . 67
3.6.3 Bounding 𝜖-Scatter Dimension via Low-Treewidth Embedding 71
3.6.4 High-Dimensional Euclidean Space . 72

3.7 Conclusions and Open Problems . 75

4 An 𝑂 (log log 𝑛)-Approximation for Submodular Facility Location 76
4.1 Related Work . 78

4.1.1 Preliminaries and Notation . 79
4.2 Reducing the Connection Cost . 82
4.3 Approximating SFL on an HST . 83

4.3.1 A Reduction to DLA . 84
4.3.2 An Approximation Algorithm for DLA . 85

4.4 Universal Stochastic Facility Location . 88
4.5 Generalizations of SFL . 89

4.5.1 Reduction of the Number of Facilities . 89
4.5.2 SFL with Multiplicative Opening Costs . 91
4.5.3 SFL with Additive Opening Costs . 92

4.6 Conclusions and Open Problems . 93

Bibliography 94

v

7:16696

Chapter 1

Introduction

This thesis explores Clustering, an algorithmic task that involves grouping similar points to optimize certain
cost functions. The objective function in clustering often focuses on minimizing the distances between
points within the same group. Clustering has received significant attention across various research domains,
including optimization, data mining, machine learning, and computational geometry.

In clustering, typically we are given a set of points, and the goal is to group similar points, where the
definition of similarity is determined by the chosen objective function. For example, in center-based models,
the goal is to find 𝑘 centers so that the points in each group or cluster are close enough to their center based on
distances. Center-based clustering problems, such as 𝑘-Center, 𝑘-Median, and 𝑘-Means, have been studied
for more than half a century, yet they continue to present challenging open questions, keeping this an active
area of research.

This thesis is based on the following papers:

1. Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Kho-
damoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation
For Robust Clustering in Discrete Geometric Spaces. 51st International Colloquium on Automata,
Languages, and Programming (ICALP 2024) [2]

2. Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar
Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized approximation
schemes for clustering with general norm objectives. In 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS 2023) [3]

3. Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof
Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location.
51st International Colloquium on Automata, Languages, and Programming (ICALP 2024) [1]

1

8:93607

CHAPTER 1. INTRODUCTION 2

We present new results in parameterized approximation schemes and approximation algorithms for clus-
tering and Submodular Facility Location problems. Chapter 2, presents results from [2] where we achieve
three distinct results, including an improved constant-factor approximation for a socially fair clustering prob-
lem. Chapter 3 addresses results from [3], where we develop a new framework to achieve EPAS for norm
𝑘-clustering problems. Finally in Chapter 4, we discuss the results from [1] offering improved approximation
algorithm for Submodular Facility Location Problem.

1.1 Approximation Algorithms

Due to the NP-hard nature of clustering problems, approximation algorithms are crucial to find feasible
solutions. These algorithms seek near-optimal solutions within a reasonable computational time, balancing
computational efficiency and accuracy. We consider two main types of approximation algorithm:

• Traditional Approximation Algorithms: These algorithms provide solutions in polynomial time,
ensuring that the objective value 𝑓 (𝑥) of a solution 𝑥 is within a factor 𝛼 of the optimal 𝑓 (𝑜). The 𝛼 is
an approximation factor that determines how close the approximation is to the ideal solution. 0

• Parameterized Approximation Algorithms: Building on the traditional approach, these algorithms
incorporate an additional parameter 𝑘 , offering a more nuanced solution. They aim to achieve solutions
with a complexity that is polynomial in input size and a function of 𝑘 . This parameter typically reflects
a specific characteristic of the input, and the algorithms are effective when 𝑘 is small. They balance
the solution quality of traditional algorithms with the efficiency of fixed-parameter tractable (FPT)
algorithms, offering solutions in 𝑓 (𝑘)𝑛𝑂 (1) time, where 𝑓 (𝑘) is independent of the input size 𝑛.

1.1.1 Types of Schemes for Parameterized Approximation Algorithms

A parameterized approximation algorithm aims to find approximate solutions to NP-hard optimization prob-
lems in polynomial time in the input size and a function of a specific parameter. These algorithms combine
the best aspects of traditional approximation algorithms and fixed-parameter tractability (FPT). To further
capture the effectiveness and efficiency of approximation algorithms, several advanced schemes have been
developed.

• Polynomial-Time Approximation Scheme (PTAS): A PTAS is an algorithm that, for any given 𝜀 > 0,
produces a solution within a factor 1 + 𝜀 of the optimal solution. The running time of a PTAS is
polynomial in the input size for any fixed 𝜀, but may vary significantly with different values of 𝜀. For
instance, an algorithm running in 𝑂 (𝑛1/𝜀) or 𝑂 (𝑛exp(1/𝜀)) is considered a PTAS.

• Efficient Polynomial-Time Approximation Scheme (EPTAS): One issue with PTAS algorithms is
that their runtime exponent can increase dramatically as 𝜀 decreases. An EPTAS addresses this by
ensuring the runtime is 𝑂 (𝑛𝑐) for a constant 𝑐 that is independent of 𝜀, thus maintaining efficiency

9:74463

CHAPTER 1. INTRODUCTION 3

regardless of the 𝜀 value. However, the constant under the big-O notation may still depend on 𝜀.
Essentially, an EPTAS operates in fixed-parameter tractable (FPT) time with 𝜀 as the parameter.

• Parameterized Approximation Scheme (PAS): For any 𝜀 > 0, a (1 + 𝜀)-approximation can be
computed in 𝑓 (𝑘, 𝜀)𝑛𝑔 (𝜀) time for some functions 𝑓 and 𝑔. This approach circumvents the lower
bounds in terms of polynomial-time approximation and fixed-parameter tractability, enabling it to
address problems that are APX-hard and W[1]-hard. A PAS is similar in spirit to a polynomial-time
approximation scheme (PTAS) but additionally exploits a given parameter 𝑘 . Since the degree of the
polynomial in the runtime of a PAS depends on a function 𝑔(𝜀), the value of 𝜀 is assumed to be arbitrary
but constant in order for the PAS to run in FPT time.

• Efficient Parameterized Approximation Scheme (EPAS): Similar to an EPTAS, an EPAS ensures
that the runtime remains efficient with respect to both the input size and the parameter 𝜀. For any
𝜀 > 0, an EPAS computes a (1 + 𝜀)-approximation in 𝑓 (𝑘, 𝜀)𝑛𝑂 (1) time, maintaining efficiency and
practicality even as 𝜀 changes.

These advanced schemes offer a blend of precision and efficiency, making them suitable for tackling
various NP-hard optimization problems where traditional methods fall short.

1.1.2 Parameterized Complexity

Parameterized complexity theory provides a refined analysis of computational problems by incorporating
additional parameters into the problem’s input. Unlike classical complexity theory, where the complexity
is measured by the input size, parameterized complexity introduces a parameter to classify problems based
on their complexity as a function of both the input size and the parameter. This approach allows for a finer
classification of computational problems, particularly NP-hard ones.

Formally, a parameterized problem is a pair (𝐿, 𝜅), where 𝐿 ⊆ Σ∗ is a language over a finite alphabet
Σ, and 𝜅 : Σ∗ → N is a parameterization, a polynomial-time computable function mapping each input to
a non-negative integer. The function 𝜅(𝑥) is referred to as the parameter of the input 𝑥. A parameterized
problem is thus a classical decision problem augmented by a parameter that often captures some structural
aspect of the problem instance.

A classical example is the well-known NP-complete problem Vertex Cover:

Vertex Cover
Instance: A graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘 ∈ N.
Problem: Determine whether 𝐺 has a vertex cover of size at most 𝑘 .

The parameterized version of this problem, called k-Vertex Cover, is defined by setting the parameter
𝜅(𝐺, 𝑘) = 𝑘:

10:86707

CHAPTER 1. INTRODUCTION 4

k-Vertex Cover
Instance: A graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘 ∈ N.
Parameter: 𝑘 .
Problem: Determine whether 𝐺 has a vertex cover of size at most 𝑘 .

Here, the parameter 𝑘 represents the size of the solution. When a problem’s parameter corresponds
to a structural or solution-related feature, such as the size of a solution, it is called a natural parameter. A
fundamental notion in parameterized complexity is fixed-parameter tractability, which characterizes problems
that are efficiently solvable when the parameter is small, even if the problem is NP-hard in the classical sense.

Fixed-Parameter Tractability

A parameterized problem (𝐿, 𝜅) is said to be fixed-parameter tractable (FPT) if there exists an algorithm 𝐴, a
constant 𝑐, and a computable function 𝑓 : N→ N, such that for any instance 𝑥 ∈ Σ∗ with parameter 𝑘 = 𝜅(𝑥),
the algorithm 𝐴 decides whether 𝑥 ∈ 𝐿 in time 𝑓 (𝑘) · |𝑥 |𝑐. The class of all fixed-parameter tractable problems
is denoted by FPT.

Intuitively, a problem is in FPT if its computational complexity grows relatively modestly with respect
to the input size, but may depend arbitrarily on the parameter 𝑘 . This framework is useful for dealing with
NP-hard problems when the parameter is fixed or small.

Once the notion of FPT is established, the next important concept is FPT-reductions, which preserve
fixed-parameter tractability across problem transformations.

Definition 1.1.1 (FPT-reduction). An FPT-reduction from a parameterized problem 𝑄 ⊆ Σ∗ × N to another
parameterized problem 𝑄′ ⊆ Σ∗×N is a computable function 𝑅 : Σ∗×N→ Σ∗×N such that for all instances
(𝑥, 𝑘):

• (𝑥, 𝑘) ∈ 𝑄 ⇐⇒ 𝑅(𝑥, 𝑘) ∈ 𝑄′,

• 𝑅(𝑥, 𝑘) runs in time 𝑓 (𝑘) · |𝑥 |𝑐 for some computable function 𝑓 and constant 𝑐,

• if 𝑅(𝑥, 𝑘) = (𝑥′, 𝑘 ′), then 𝑘 ′ ≤ 𝑔(𝑘) for some computable function 𝑔.

FPT-reductions allow the transfer of fixed-parameter tractability between problems. They are central to
classifying problems into parameterized complexity classes, such as W[1], which is widely believed to be the
parameterized analog of NP.

Class W[1]: A parameterized problem (𝐿, 𝜅) belongs to the class W[1] if there is an FPT-reduction from
(𝐿, 𝜅) to the k-CLIQUE problem. A problem is W[1]-hard if every problem in W[1] can be FPT-reduced to
it.

It is conjectured that problems in W[1], including k-CLIQUE are not fixed-parameter tractable, much like
NP-complete problems are unlikely to be solvable in polynomial time. A deeper exploration of parameterized
complexity, along with the W-hierarchy, can be found in foundational works such as [62], and [52].

11:62242

CHAPTER 1. INTRODUCTION 5

1.2 Problem Setting

In this thesis, we explore various classes of metrics and clustering objective functions. First we discuss the
objective functions considered in this thesis.

• (𝑘, 𝑧)-Clustering: In the context of the 𝑘-clustering problem, we are given a set of 𝑛 data points 𝑃,
a set of potential centers defined as 𝐹, within a metric space defined as 𝑀 = (𝑃∪ 𝐹, 𝛿). Additionally, a
positive integer 𝑘 and an objective function 𝑓 : R𝑃 → R. The task involves selecting a set of 𝑘 "open"
centers denoted as 𝑋 ⊆ 𝐹, which subsequently generates a distance vector 𝜹(𝑃, 𝑋) = (𝛿(𝑝, 𝑋))𝑝∈𝑃 ,
where 𝛿(𝑝, 𝑋) = min𝑥∈𝑋 𝛿(𝑝, 𝑥) represents the distance from point 𝑝 to the closest center in 𝑋 . The
goal is to minimize 𝑓 (𝜹(𝑃, 𝑋)).

Consider the metric space 𝑀 = (𝑃∪𝐹, 𝛿), where 𝑃 and 𝐹 are disjoint sets and 𝛿 represents the distance
function. Let 𝑘 > 0 and 𝑧 > 0 be positive integers. In each of the following clustering objectives, the
goal is to find 𝑘 subsets of centers 𝑋 ⊆ 𝐹 that minimize:

𝑘-Median :
∑︁
𝑝∈𝑃

𝛿(𝑝, 𝑋),

𝑘-Means :
∑︁
𝑝∈𝑃

𝛿(𝑝, 𝑋)2,

𝑘-Center : max
𝑝∈𝑃

𝛿(𝑝, 𝑋),

(𝑘, 𝑧)-Clustering :
∑︁
𝑝∈𝑃

𝛿(𝑝, 𝑋)𝑧 .

• Socially Fair 𝑘-Median: Variants like Socially Fair 𝑘-Median (or Robust 𝑘-Median) extends
clustering objectives to cater to fairness considerations and uncertain data scenarios, respectively,
offering versatile tools to address diverse clustering challenges. In Socially Fair 𝑘-Median, along with
the point set 𝑃, we are given 𝑚 different (not necessarily disjoint) subgroups such that 𝑃 =

⋃
𝑖∈[𝑚] 𝑃𝑖 .

Our goal is to find a set 𝑋 of centers that incurs fair costs to the groups by minimizing the maximum
cost over all the groups. In other words,

min
𝑋⊆𝐹
|𝑋 |=𝑘

max
𝑖∈[𝑚]

∑︁
𝑝∈𝑃𝑖

𝛿(𝑝, 𝑋) .

• Socially Fair (𝑘, 𝑧)-Clustering, which generalizes Socially Fair 𝑘-Median, the objective func-
tion is as follows:

min
𝑋⊆𝐹
|𝑋 |=𝑘

max
𝑖∈[𝑚]

∑︁
𝑝∈𝑃𝑖

𝛿(𝑝, 𝑋)𝑧 .

• Facility Location1: In the Facility Location problem, denoted as FL, we are given a set 𝐶 of 𝑛

1Note that the notation used to define Facility Location problem[1] in Chapter 4 differs from that in other chapters.

12:15048

CHAPTER 1. INTRODUCTION 6

clients and a set 𝐹 of 𝑚 facilities ,with a metric distance 𝑑 : (𝐶 ∪ 𝐹) × (𝐶 ∪ 𝐹) → R≥0. We aim to
minimize the sum of the distances from each client to the corresponding facility plus the total opening
cost of the facility, in other words, the goal is to minimize:

∑︁
𝑐∈𝐶

𝑑 (𝑐, 𝜑(𝐶)) +
∑︁
𝑓 ∈𝐹

𝑓 · 𝑦 𝑓

Here, 𝜑 : 𝐶 → 𝐹 represents the assignment function of each 𝑐 to some facility, and 𝑦 𝑓 ∈ {0, 1} is a
binary decision variable indicating whether facility 𝑓 is open (𝑦 𝑓 = 1) or closed (𝑦 𝑓 = 0).

• Submodular Facility Location extends classical Facility Location problem by incorporating
submodular costs associated with serving sets of clients by individual facilities. In Submodular
Facility Location (SFL) we are given a monotone submodular2 (opening cost) function 𝑔 : 2𝑐 → R≥0

with 𝑔(∅) = 0. Notice that 𝑔(·) is non-negative. The goal is to minimize:∑︁
𝑐∈𝐶

𝑑 (𝑐, 𝜑(𝐶)) +
∑︁
𝑓 ∈𝐹

𝑔(𝜑−1 (𝑓)).

Next, we discuss the metric spaces considered in this Thesis.

• High-dimensional Euclidean spaces: These metrics involve measuring distances in spaces character-
ized by a large number of dimensions, where the distance between any two points is calculated using
the Euclidean distance formula. We consider both continuous and discrete Euclidean spaces.

– Continuous Euclidean Spaces: In this case, for the problems mentioned earlier, we are allowed
to choose centers from the (high-dimensional) continuous Euclidean space, denoted as 𝐹 = R𝑑 .
The set 𝑃 ⊊ R𝑑 is a finite set of points.

– Discrete Euclidean Spaces: Here, both sets 𝑃 and 𝐹 are finite subsets of R𝑑 , i.e., 𝑃, 𝐹 ⊊ R𝑑 .

• Metrics of bounded doubling dimension: The doubling dimension of a metric space (𝑀, 𝛿) is the
smallest integer 𝑑 such that any ball of radius 2𝑟 can be covered by 2𝑑 balls of radius 𝑟 [85, 80].

• Graph Metric: In the case of graph metric, we are given a (weighted) graph 𝐺 = (𝑉, 𝐸) and the metric
𝛿𝐺 on 𝑉 as the shortest path metric, i.e., 𝛿𝐺 (𝑢, 𝑣) is the shortest distance of a path connecting 𝑢 and 𝑣.

• Planar metrics: Planar metrics are defined on graphs that can be embedded in the plane without
any edge crossings. Distances in planar metrics are typically calculated using the shortest path in the
embedded graph.

2We recall that 𝑔 (·) is submodular iff, for every 𝑆, 𝑇 ⊆ 𝐶, 𝑔 (𝑆) + 𝑔 (𝑇) ≥ 𝑔 (𝑆 ∩ 𝑇) + 𝑔 (𝑆 ∪ 𝑇) . The function is also monotone
if 𝑔 (𝑇) ≤ 𝑔 (𝑆) for every 𝑇 ⊆ 𝑆 ⊆ 𝐶. As usual in this framework, we assume to have an oracle access to 𝑔 (·): given 𝑆 ⊆ 𝐶, we can
obtain the value of 𝑔 (𝑆) in polynomial time.

13:81635

CHAPTER 1. INTRODUCTION 7

• Bounded treewidth metrics: These metrics are defined on graphs with bounded treewidth. The
treewidth of a graph 𝐺 is the smallest integer 𝑡 such that there exists a tree decomposition with
maximum size bag 𝑡 + 1. A tree decomposition of a graph 𝐺 = (𝑉, 𝐸) is defined as a tree 𝑇 with node
set𝑉 , where each node, called a bag, is a subset of𝑉 satisfying the following conditions: (i): The union
of all bags equals the vertex set 𝑉 . (ii) For every vertex 𝑢 ∈ 𝑉 , the bags containing 𝑢 form a connected
component in 𝑇 . (iii) For every edge (𝑢, 𝑣) ∈ 𝐸 , there exists a bag 𝑆 in the tree decomposition such that
both 𝑢 and 𝑣 are contained in 𝑆.

1.3 Thesis Outline of Results

1.3.1 Socially Fair/Robust Clustering in Discrete Euclidean space

In Chapter 2, we study Socially Fair (𝑘, 𝑧)-Clustering in a discrete Euclidean setting, extending the classic
𝑘-Median, 𝑘-Means, and 𝑘-Center problems. The objective is to cluster 𝑛 weighted points, each belonging
to one (or more) of 𝑚 groups, and minimize the maximum weighted distance between these points and 𝑘

chosen centers across all groups. This approach is particularly useful in managing uncertainties in input
data, as real datasets often lack precision or completeness. To address such challenges, Anthony et al. [11]
introduced a robustness framework for the k-Median problem under uncertain demand. In this setting, we
are given multiple groups of points, and the goal is to select k centers that perform well across all groups. In
other words, the objective is to minimize the worst-case connection cost over all point groups. They call this
problem Robust 𝑘-Median. A similar objective "fairness" has also been studied, where the goal is to develop
solutions that is fair for all specified groups. This concept of fairness in clustering has been formalized by
Abbasi et al. [4] and Ghadiri et al. [69] under the Socially Fair 𝑘-Median model. In this model, Abbasi et
al. address fairness by weighting clients inversely to group size, while Anthony et al. focus on unweighted
robust clustering. Notably, while these two problems are mathematically equivalent, they arise from entirely
different contexts. By allowing for arbitrary point(client) weights our model captures both of these settings.

In general metric, there exists a polynomial 𝑂
(

log 𝑛
log log 𝑛

)
approximation, that is tight even in the line

metric [103]. Building on this recent work has focused on designing constant-factor parameterized (FPT)
approximation algorithms. Goyal and Jaiswal [73] design a FPT-approximation algorithms with ratio (3𝑧 + 𝜖)
for Robust (𝑘, 𝑧)-Clustering that is tight. Motivated by the the lower bound of (3𝑧 − 𝑜(1)) for general
discrete metric spaces [73], we explore whether the geometric properties of discrete high-dimensional space
can be utilized by FPT approximation algorithms for Robust (𝑘, 𝑧)-Clustering, potentially bypassing the
(3𝑧 − 𝑜(1)) lower bound. In this thesis, we answer the above question by designing an FPT approximation
algorithm with a ratio slightly below the barrier of 3𝑧 . Our algorithm is a refined adaptation of FPT algorithm
by Goyal and Jaiswal[73]. While the core structure remains similar, we introduce a slight modification that
takes advantage of geometric properties in the Euclidean setting. This adjustment allows us to overcome
certain limitations of the original approach, leading to an improved approximation ratio. A key aspect of
Goyal and Jaiswal’s analysis is a basic projection property of metric spaces. We show that, with slight

14:68543

CHAPTER 1. INTRODUCTION 8

additional assumptions, this property can be strengthened in the Euclidean setting. To achieve this, we
expand the search space by introducing midpoint closure—specifically, by adding the closets facility to the
midpoints of pairs of facilities to our space. The analysis requires several new ideas and enables us to achieve
a (3𝑧 − 𝜖)-approximation algorithm in FPT time. More formally, we prove the following theorem.

Theorem 1.3.1 (High-Dimensional Euclidean Space). There exists a universal constant 𝜂0 > 0.0006 such
that for any constant positive integer 𝑧, there is a factor 3𝑧 (1−𝜂0) FPT approximation algorithm for Socially
Fair (𝑘, 𝑧)-Clustering in discrete Euclidean space R𝑑 that runs in time 2O(𝑘 log 𝑘)poly(𝑚, 𝑛, 𝑑).

We want to highlight that our algorithm’s running time is polynomially dependent on 𝑑. The main
takeaway from Theorem 1.3.1 is that we can actually improve the factor of 3𝑧 . This result shows that, in the
context of FPT, geometric spaces are easier to work with for Robust (𝑘, 𝑧)-Clustering than general metric
spaces, that is different from polynomial-time approximation algorithms, where the problem is equally hard
in both general and Euclidean metrics [21].

Next, we focus on providing a complete characterization of the existence of an EPAS in discrete Euclidean
spaces. We like to remark that while an EPAS exists in continuous Euclidean spaces of any dimension and in
discrete Euclidean spaces of dimension 𝑜(log log 𝑛) [3] (we discuss it in Chapter 3), determining the existence
of EPAS in discrete spaces of dimension Ω(log log 𝑛) remains an open challenge. We prove that even the
special case of the 𝑘-Center problem does not admit an EPAS in these settings, by constructing an instance of
the discrete 𝑘-Center problem from an instance of the Multi-Colored Independent Set problem, which
is known to be W[1]-hard.

In the next theorem, we prove that even the special case of 𝑘-Center does not admit an EPAS. This
hardness holds for any ℓ𝑞 metric and even in dimension 𝑂 (𝑘 log 𝑛).

Theorem 1.3.2 (Hardness in Discrete Euclidean Space). For any constant positive integer 𝑞 and any positive
constant 𝜂 > 0, there exists a function 𝑑 (𝑘, 𝑛) = 𝑂 (𝑘 log 𝑛) such that there is no factor-(3/2 − 𝜂)1/𝑞 FPT
approximation algorithm for the discrete 𝑘-Center problem inR𝑑 (𝑘,𝑛) under the ℓ𝑞 metric unless W[1] = FPT.
Moreover, for the ℓ2 metric this hardness holds even for some dimension 𝑂 (log 𝑛), that is, independently of 𝑘 .

This result draws attention to the differences between discrete and continuous settings in high-dimensional
Euclidean spaces, a topic that has garnered significant attention in recent years [46, 42, 43]. As previously
noted, the continuous setting does allow for an EPAS [3], which implies that Socially Fair (𝑘, 𝑧)-Clustering
is more difficult in dicerte setting.

This is different from the results of Cohen-Addad et al. [43], who showed that the continuous versions of
𝑘-Median and 𝑘-Means in geometric spaces are harder to approximate in polynomial time compared to their
discrete versions.

Additionally, we complete the FPT-approximability landscape by designing an EPAS for the problem
in doubling metrics when the dimension is 𝑑 = 𝑜𝑘 (log 𝑛) 3. Notably, the doubling dimension of the 𝑑-
dimensional discrete Euclidean metric is Θ(𝑑), which means we achieve an EPAS for discrete Euclidean

3We use the notation 𝑜𝑘 (·) to hide multiplicative factors depending only on 𝑘.

15:66994

CHAPTER 1. INTRODUCTION 9

spaces of dimension 𝑜𝑘 (log 𝑛).
Our algorithm consists of two main components: instance compression and decomposition of the doubling

metric into smaller balls. While these are standard techniques, applying them directly to Robust (𝑘, 𝑧)-
Clustering faces challenges. A natural approach is to reduce the number of groups and apply (𝑘, 𝑧)-
Clustering coreset [48] to further compress the instance. However, due to the lower bounds on coresets in
Euclidean space, this approach results in a doubly exponential running time in the dimension d, preventing an
efficient polynomial-time approximation scheme (EPAS). Alternative methods, such as reducing the number
of points instead of groups, face difficulties in preserving cost approximations across groups. To address these
issues, we adopt a more flexible and general definition of groups, allowing points to belong to multiple groups
with different weights. This redefinition enables us to compress the instance while approximately preserving
group costs. By integrating this approach with a standard ball decomposition technique for doubling metrics,
we construct a coreset which can be used to design an EPAS for metrics of sub-logarithmic doubling dimension.
The formal statement of the result is as follows:

Theorem 1.3.3 (EPAS for Doubling Metric of Sub-Logarithmic Dimension). There is an algorithm that
computes (1 + 𝜖)-approximate solution, for every 𝜖 > 0, for Socially Fair (𝑘, 𝑧)-Clustering in the metric of

doubling dimension 𝑑 in time 𝑓 (𝑘, 𝑑, 𝜖, 𝑧)poly(𝑚, 𝑛), where 𝑓 (𝑘, 𝑑, 𝜖, 𝑧) =
((

2𝑧
𝜖

)𝑑
𝑘 log 𝑘

)O(𝑘)
.

The table below presents a comprehensive summary of the results for the problem in the discrete high-
dimensional Euclidean setting.

R𝑑 (discrete) General
P Upper 𝑂 (log 𝑛

log log 𝑛) [103]
Lower Ω(log 𝑛

log log 𝑛) [21]
FPT Upper 0.9994 · 3𝑧* (3𝑧 + 𝑜(1))[73]

Lower (
√︁

3/2 − 𝑜(1))* (3𝑧 − 𝑜(1)) [73]

Table 1.1: New results are marked by *.

1.3.2 EPAS for General Norm Clustering

In Chapter 4, we explore 𝑘-clustering with a general norm objective function. In a general metric space,
achieving Efficient Parameterized Approximation Schemes (EPAS)—an algorithm offering a (1 + 𝜖) approxi-
mation and running in time 𝑓 (𝑘, 𝜖)𝑝𝑜𝑙𝑦(𝑛) for every 𝜖 > 0 is unattainable for even basic clustering problems.
Consequently, previous researches have concentrated on developing algorithms for structured metric spaces,
like planar graphs or Euclidean spaces. In the realm of continuous high-dimensional Euclidean spaces,
EPASes represent the most efficient approximation schemes conceivable, as shown in [53, 12]. This has
led to significant attention on EPASes for clustering problems over the last two decades, as shown by studies
[83, 104, 108, 55, 20, 25, 47]. Our approach to Norm 𝑘-Clustering introduces a unified framework that
is remarkably agnostic to the specifics of the underlying metric space. Despite this generality, it effectively

16:64753

CHAPTER 1. INTRODUCTION 10

harnesses the intrinsic structure of various metrics, enabling the resolution of multiple EPASes across diverse
settings. This includes previously unresolved clustering problems such as Ordered 𝑘-Median and (𝑧, 𝑞)-
Fair Clustering. Unlike traditional methods, which often rely on coreset construction or require tailored
designs for each specific metric and objective, our framework is versatile and comprehensive. It encompasses
nearly all center-based clustering objectives while also extending to new generalizations, thereby addressing
numerous long-standing clustering challenges in a seamless and elegant manner. The tables below summarize
the known results, including PTAS, EPAS, and polynomial time algorithms (P), for the objective functions
discussed in this chapter. Entries marked with ∗ denote new EPAS results presented in this work.

R𝑑 (low) R𝑑 (high)

PTAS EPAS PTAS EPAS

𝑘-Median O
(
2O

(
(log(1/𝜖)

𝜖)𝑑−1
)
𝑛 log𝑑+6 𝑛

)
[92] O

(
2(𝑘/𝜖)O(1))𝑑𝑛

)
[94] - O

(
2(𝑘/𝜖)O(1))𝑑𝑛

)
[94]

𝑘-Means 𝑛 · 𝑘 · (log 𝑛) (𝑑𝜖 −1)O(𝑑) [44, 32, 65] O
(
2(𝑘/𝜖)O(1))𝑑𝑛

)
[94] APX-hard [12] O

(
2(𝑘/𝜖)O(1))𝑑𝑛

)
[94]

𝑘-Center - [84] - [84]
ℓ-Centrum - 𝑂 𝜖 ,𝑑 (𝑘2)[24] - *
Priority 𝑘-Center - 𝑂 𝜖 ,𝑑 (𝑘2𝑙𝑜𝑔2𝑛)[24] - *
Ordered 𝑘-Median - 𝑂 𝜖 ,𝑑 (𝑘2𝑙𝑜𝑔2𝑛)[24] - *
(𝑧, 𝑞)-Fair Clustering - * - *

Table 1.2: Summary of results for EPAS and PTAS in low- and high-dimensional Euclidean spaces. EPAS for 𝑘-Center on the planar
metric is implied by a bicriteria EPTAS provided in [64] (improving upon a bicriteria PTAS [57]). Some results (e.g., [24]) are derived
from the well-established concept of corsets.

Doubling General

PTAS EPAS P FPT

𝑘-Median [118] �̃� (2(1/𝜖)
O
(
𝑑2

)
𝑛)[36] 2.406 [33] (1 + 2/𝑒 + 𝜖) [39]

𝑘-Means 𝑑O(𝑑) · 𝜖 O((−𝑑/𝜖)) [65] �̃� (2(1/𝜖)
O
(
𝑑2

)
𝑛)[36] 5.912[33] (1 + 8/𝑒 + 𝜖) [39]

𝑘-Center - (𝑘𝑘/𝜖 O(𝑘𝑑)) · 𝑛O(1) [60] 2 [71] [17]
ℓ-Centrum - * - -
Priority 𝑘-Center - * - -
Ordered 𝑘-Median - * - -
(𝑧, 𝑞)-Fair Clustering - * - (3𝑧 + 𝜖)[73]

Table 1.3: Summary of results for running time in doubling metrics and approximation ratio algorithms in general metric.

17:89789

CHAPTER 1. INTRODUCTION 11

Bounded Treewidth Planar Graph

PTAS EPAS PTAS EPAS

𝑘-Median - �̃� (𝑘3

𝜖 2) · 𝑇𝑊 (𝐺)[15] [44] O
(
Γ · 𝑘 (log2 + log 𝑘

𝜖 4 𝑘)
)

[48]

𝑘-Means - O (Γ · 𝑘 (𝑡 + log 𝑘))[48] [44] O
(
Γ · 𝑘 (log2 + log 𝑘

𝜖 4 𝑘)
)

[48]

𝑘-Center - [91] [57] [64]
ℓ-Centrum - * - *
Priority 𝑘-Center - * - *
Ordered 𝑘-Median - * - *
(𝑧, 𝑞)-Fair Clustering - * - *

Table 1.4: Summary of results for EPAS and PTAS in treewidth and planer graph. Some results (e.g., [15, 48]) are derived from the
well-established concept of corsets. The notation Γ refers to Γ = min

(
𝜖 −2 + 𝜖 −𝑧 , 𝑘 𝜖 −2

)
.

Our main results are encapsulated in the following theorem.

Theorem 1.3.4. Let 𝑓 be an efficiently (approximately) computable monotone norm cost function. Then
the 𝑘-clustering problem with cost function 𝑓 admits an EPAS for the following input metrics: (i) metrics
of bounded doubling dimension, (ii) continuous Euclidean spaces of any dimension, (iii) bounded treewidth
metrics, and (iv) planar metrics.

We highlight that our framework also applies to asymmetric norms, though it’s worth noting that asym-
metric norms can complicate the problem. For example, a poly-time O(1)-approximation algorithm exists for
symmetric norms [29] but the asymmetric norm makes it Ω(log 𝑛/log log 𝑛)-hard to approximate even for the
special case of Robust 𝑘-Median on the line metrics [21].

As we mentioned before, by continuous Euclidean space, we refer to the setting where any point of the
space can be chosen as a center. This is in contrast to a discrete Euclidean space. Observe that for a fixed
𝑑, discrete Euclidean problems in R𝑑 have bounded doubling dimension, hence covered by our framework.
Furthermore, we point out that our result does not cover discrete Euclidean spaces of high dimensions, as we
show in Chapter 2, in this setting, 𝑘-Center is W[1]-hard to approximate within a factor of

√︁
3/2 − 𝑜(1).

Our main contributions have two parts: (i) a new concept of metric dimension and (ii) our main technical
result showing EPASes for all the aforementioned clustering problems.

Unifying Metric Spaces via Scatter Dimension

Our key conceptual contribution is a new notion of bounded metric space dimension that relaxes the standard
requirement of bounded doubling dimension so that the metric spaces mentioned in Theorem 1.3.4 all “live”
in a finite dimension. While the doubling dimension is often used to derive efficient algorithms for geometric
problems, it proves to be too restrictive for many structured metric spaces that we consider. The 𝜖-scatter
dimension, on the other hand, enables us to extend parameterized approximation schemes (EPAS) beyond

18:20936

CHAPTER 1. INTRODUCTION 12

traditional metric spaces like Euclidean or planar graphs. By carefully bounding the 𝜖-scatter dimension of
the given metric space, we are able to derive efficient EPAS algorithms that bypass coreset constructions,
which are typically infeasible in high-dimensional spaces. This technique allows us to explore a wide range
of clustering objectives under general norm functions, leading to a more unified and flexible framework for k-
clustering problems in structured metric spaces. Our key technical result shows that two conditions—bounded
𝜖-scatter dimension and monotonicity of the norm—are enough to guarantee an EPAS for clustering problems
across various structured metrics.

Definition 1.3.5 (𝜖-scatter dimension). Given metric 𝑀 = (𝑃, 𝐹, 𝛿), the sequence (𝑥1, 𝑝1), . . . , (𝑥ℓ , 𝑝ℓ) ∈
𝐹 × 𝑃 is said to be an 𝜖-scattering if, whenever (𝑥, 𝑝) appears before (𝑥′, 𝑝′) in the sequence, then 𝛿(𝑥, 𝑝)
and 𝛿(𝑥′, 𝑝′) are larger than 1 + 𝜖 each, while 𝛿(𝑥′, 𝑝) ≤ 1. The 𝜖-scatter dimension of 𝑀 is then defined as
the length of the longest scatter, minus one.

There are two natural interpretations. The first interpretation is as a game between two players: The
center player who tries to claim she can cover all the points with a unit ball and the point player who present
a counterexample. In the first round, the center player picks a center 𝑥1 ∈ 𝐹 and the point player refutes the
claim by presenting a point 𝑝1 ∈ 𝑃 which is at least a factor 1 + 𝜖 away from the (closed) unit ball around 𝑥1,
that is, 𝑝1 ∉ ball(𝑥1, 1 + 𝜖). The game continues this way: In the 𝑖-th round, the center player presents 𝑥𝑖 such
that {𝑝1, . . . , 𝑝𝑖−1} ⊆ ball(𝑥𝑖 , 1), and the point player gives 𝑝𝑖 ∉ ball(𝑥𝑖 , 1 + 𝜖). Both players are interested
in prolonging the game as much as possible. The 𝜖-scatter dimension is the length of the longest possible
game. In the second interpretation, one can view such sequence as a pair of 𝜖-packings that are required to
be sufficiently distanced: It is easy to verify (simply using triangle inequalities) that 𝑃∗ = {𝑝1, 𝑝2, . . . , 𝑝ℓ−1}
and 𝐹∗ = {𝑥2, . . . , 𝑥ℓ } are 𝜖-packings of the unit (closed) balls around 𝑥ℓ and 𝑝1, respectively. This view
immediately implies that 𝜖-scatter dimension is bounded in a bounded doubling metric.

Theorem 1.3.6. For 𝜖 ∈ (0, 1), any metric of doubling dimension 𝑑 has 𝜖-scatter dimension (1/𝜖)O(𝑑) .

We proceed to study the 𝜖-scatter dimension of graph metrics where the set 𝑃 of data points and the set 𝐹
of centers are arbitrary node subsets in a graph of some fixed graph class and the distances between them are
the shortest path distances.

Theorem 1.3.7. For 𝜖 ∈ (0, 1), the 𝜖-scatter dimension is exp
(
(1/𝜖)O(tw)

)
for treewidth-tw graphs.

The proof of Theorem 1.3.7 is based on a combinatorial argument that certifies treewidth lower bounds
using 𝜖-scattering sequences. Building on this, we present a method to reduce bounding 𝜖-scatter dimension
in graph classes to bounded treewidth graphs. This connection, together with the embedding result from [64],
leads to the following.

Theorem 1.3.8. For 𝜖 ∈ (0, 1), the 𝜖-scatter dimension is exp (exp(p𝑜𝑙𝑦(1/𝜖))) for planar graphs.

Unfortunately, the bounded dimensionality does not hold in the high-dimensional (continuous) Euclidean

19:10233

CHAPTER 1. INTRODUCTION 13

metric.4 To handle the high-dimensional continuous Euclidean setting, we present a stronger version of
𝜖-scatter dimension, that we call algorithmic 𝜖-scatter dimension. The setting of the game is the same except
that the center player would optimize to end the game early, while the point player would be interested in
prolonging the game indefinitely. This means, they play against each other. A centering strategy is a function
𝜎 : 2𝑃 → 𝐹 that specifies how the center 𝑥𝑖 = 𝜎({𝑝1, . . . , 𝑝𝑖−1}) would be chosen by the center player,
given the points 𝑝1, . . . , 𝑝𝑖−1 played in the preceding rounds. The (𝜎, 𝜖)-scatter dimension is the maximum
number of rounds when the center player always plays strategy 𝜎, and the algorithmic 𝜖-scatter dimension
is the minimum (𝜎, 𝜖)-scatter dimension over all strategies 𝜎. We remark that our actual definition is more
involved, as it considers a weighted version of the game.

Theorem 1.3.9 (Bounding Algorithmic Scatter Dimension). The continuous Euclidean space (𝑃, 𝐹, 𝛿), that
is, 𝑃 ⊊ R𝑑 finite, and 𝐹 = R𝑑 , has algorithmic 𝜖-scatter dimension O(1/𝜖 4 log 1/𝜖).

EPAS for General Norm Clustering: Bypassing Coresets

Now we are ready to explain our main technical result that would allow us to obtain EPAS for all metrics
having bounded 𝜖-scatter dimension.

A generic tool whose existence immediately implies an EPAS is an 𝜖-coreset —a “compression” of an
input instance (𝑃, 𝐹, 𝛿) into a much smaller instance so that the cost of any solution is preserved within a
factor of (1 ± 𝜖). The existence of an 𝜖-coreset of size depending only on 𝜖 and 𝑘 would immediately imply
an EPAS (but not vice versa): First, use the 𝜖-coreset to compress the instance (𝑃, 𝐹, 𝛿) to (𝑃′, 𝐹′, 𝛿′) where
|𝑃′ | ≤ 𝛾(𝜖, 𝑘). Then enumerate all possible partitionings of 𝑃′ into 𝑘 sets 𝑃′1, . . . , 𝑃

′
𝑘

(there are at most
𝑘𝛾 (𝜖 ,𝑘) such partitions). For each set 𝑖 ∈ [𝑘], compute the optimal center for 𝑃′

𝑖
. We choose the partition that

gives the lowest total cost.
This generic method, unfortunately, faces a serious information-theoretic limitation, that is, even for 𝑘-

Center, 𝜖-coresets of desirable sizes do not exist in high-dimensional Euclidean spaces [24]. Such lower
bounds imply that one cannot hope to prove our (unified) results via the coreset route: While coresets are
known for (𝑘, 𝑧)-Clustering for constant 𝑧 [49]—allowing to handle 𝑘-Means and 𝑘-Median in a uniform
fashion—it is impossible to extend this approach to 𝑘-Center. For more complex clustering objectives, such
EPASes were in fact not known even for low dimension. For example, the coreset of Braverman et al. [24]
for Ordered 𝑘-Median in R𝑑 has size O𝜖 ,𝑑 (𝑘2 log2 𝑛) and therefore does not give an EPAS even in low
dimension.

Badoiu, Har-Peled, and Indyk [13] presented an EPAS for 𝑘-Center in high-dimensional Euclidean spaces
(bypassing coresets in the above sense). Therefore, an obvious open question is whether their techniques can
be extended to give an EPAS for any other clustering objective. Unfortunately, this is not even known for

4To see this, consider the sequence (𝑥1, 𝑝1) . . . , (𝑥𝑑−1, 𝑝𝑑−1) where, for each 𝑖 ∈ [𝑑 − 1], the point 𝑥𝑖 ∈ R𝑑 has 𝑖-th coordinate
1/
√

2 and all other coordinates are zero. Define points 𝑝𝑖 = −𝑥𝑖 for all 𝑖 ∈ [𝑑 − 1]. It is easy to check that this sequence is a
(
√

2 − 1)-scattering. This example implies that the 𝜖 -scatter dimension of continuous Euclidean metrics R𝑑 can be at least 𝑑 − 1
(unbounded in 𝜖). In fact, the 𝜖 -scatter dimension is as high as (1/𝜖)Ω(𝑑) .

20:39856

CHAPTER 1. INTRODUCTION 14

simple objectives such as Priority 𝑘-Center. In fact, even the known EPASes for 𝑘-Means [94] and 𝑘-
Center [13] are conceptually very different; to our knowledge, no approximation schemes handle 𝑘-Means
and 𝑘-Center in a modular way.

Our main technical result is presented in the following theorem. We remark that our techniques do not
rely on any coreset constructions (thus bypassing the coreset lower bounds for 𝑘-Center).

Theorem 1.3.10. Let M be a class of metric spaces that is closed under scaling distances by a positive
constant. There is a randomized algorithm that computes for any Norm 𝑘-Clustering instance I = (𝑀, 𝑓 , 𝑘)
with metric 𝑀 = (𝑃, 𝐹, 𝛿) ∈ M, and any 𝜖 ∈ (0, 1), with high probability a (1 + 𝜖)-approximate solution if
the following two conditions are met.

(i) There is an efficient algorithm evaluating for any distance vector 𝒙 ∈ R𝑃
≥0 the objective 𝑓 (𝒙) in time

𝑇 (𝑓).

(ii) There exists a function 𝜆 : R+ → R+, such that for all 𝜖 > 0, the algorithmic 𝜖-scatter dimension ofM
is at most 𝜆(𝜖).

The running time of the algorithm is exp
(
Õ

(
𝑘𝜆(𝜖/10)

𝜖

))
· poly(|𝑀 |) · 𝑇 (𝑓).

Note that the complexity of computing 𝑓 appears only as a linear factor in the running time. For instance,
for Socially Fair 𝑘-Median, the number 𝑚 of groups affect only the computational cost of 𝑓 , and therefore
the running time is polynomial in 𝑚. We remark that our results extend to the setting of an approximate
evaluation oracle where 𝑓 can be computed to within a factor 1± 𝜖 in time 𝑇 (𝑓)poly(1/𝜖) where 𝑇 (𝑓) depends
only on 𝑓 but not on 𝜖 . For the sake of easier presentation we assume in this conference proceedings version
that we have an exact evaluation oracle for 𝑓 .

Our algorithm is clean, simple, and entirely oblivious to both the objective and the structure of the input
metric.

The dependency on 𝑘 in the exponent of our running time is singly exponential (exp(Õ𝜖 (𝑘))). In terms
of 𝑘 , we therefore match the running time of the fastest known EPAS for the highly restrictive special case
of high-dimensional 𝑘-Means [94]. Moreover, the dependency on 𝜖 in the exponent could be improved by
proving better bounds on the 𝜖-scatter dimension of a metric space of interest, e.g., 𝜆(𝜖) = p𝑜𝑙𝑦(1/𝜖) implies
the EPAS running time exp(Õ(𝑘) · p𝑜𝑙𝑦(1/𝜖)).

1.3.3 Submodular Facility Location

As we mentioned earlier in the classical (Uncapacitated) Facility Location problem (FL), we are given a
set of clients 𝐶 and a set of facilities 𝐹. A feasible solution consists of an assignment where each client is
assigned to a facility. The goal is to minimize the total cost, which is the sum of the distances from each client
to their corresponding facility, plus the total opening cost of the facilities that serve at least one client.

In practical applications, the opening cost of a facility 𝑓 often depends on the set of clients assigned to it.
For instance, serving more clients may increase the facility’s cost, and this relationship could be non-linear.

21:19823

CHAPTER 1. INTRODUCTION 15

A natural way to handle this non-linearity is through submodularity. Specifically, we model the opening
cost with a monotone submodular function 𝑔 𝑓 : 2𝐶 → R+, where 𝑔 𝑓 (∅) = 0. The objective is to minimize
the total cost, which includes both the connection costs and the facility opening costs. For each facility,
the opening cost is determined by a submodular function based on the assigned clients. We refer to this
as the Generalized Submodular Facility Location problem. A special case of the problem occurs when
𝑔 𝑓 (·) = 𝑔(·) for all facilities, meaning that all facilities share the same submodular function, which we refer
to as the Submodular Facility Location problem (SFL).

SFL problem is APX-hard since it includes the classical Facility Location problem (with uniform facility
costs) as a special case [79]. Consequently, the best we can hope for in terms of approximation algorithms
is a constant-factor approximation. However, finding such an approximation algorithm is explicitly posed as
an open problem, as discussed by Svitkina and Tardos [115]. The authors present an 𝑂 (log 𝑛) approximation
for the the Generalized Submodular Facility Location problem, which is tight due to a reduction from the
Set Cover problem by Shmoys, Swamy, and Levi [111]. The reduction from set cover does not apply for SFL
problem i.e to the case where all facilities share the same submodular function 𝑔(·).

Svitkina and Tardos [115] also consider a special case of SFL where 𝑔(·) is induced by subtrees of a
node-weighted tree over the clients. For this specific case, they provide a constant-factor approximation.

SFL problem models real-world situations where the cost of opening a facility is a non-linear, yet
manageable, function that depends on the set of clients served by that facility. This relationship between
clients and facilities can be visualized in terms of client assignments and the associated costs. Additionally,
SFL is closely connected to various stochastic optimization problems that have gained significant attention
in recent years [6, 75, 68, 81, 87]. These problems often involve scenarios where the connection and facility
opening costs must be paid only for a random subset of activated clients, resulting in objective functions
characterized by submodular opening costs. The submodular nature of these costs plays a key role in
managing the complexity and variability of such optimization scenarios. An illustration is provided in Figure
1.1.

We make some progress towards the resolution of the mentioned open problem by presenting an improved
approximation algorithm for SFL.

Theorem 1.3.11. There is a polynomial-time 𝑂 (log log 𝑛)-approximation algorithm for SFL.

Our approach begins by solving a configuration LP relaxation of the problem, which can be done in
polynomial time. The method proceeds in two stages: first, we sample partial assignments based on the
optimal LP solution, covering a subset of clients. For the remaining clients, we reduce the connection cost
using a tree embedding technique, converting the metric into a tree structure. This reduces the problem to the
simpler Descendant-Leaf Assignment problem (DLA) , where an existing algorithm by Bosman and Olver
[22] is adapted to achieve an 𝑂 (log log 𝑁) approximation.

The flexibility of our approach allows it to adapt to extensions of the Submodular Facility Location
(SFL) problem, such as the SFL with Multiplicative Opening Costs (multSFL), where the opening cost of
facility 𝑓 is 𝑔 𝑓 (𝑆 𝑓) = 𝑤 𝑓 · 𝑔(𝑆 𝑓); and the SFL with Additive Opening Costs (addSFL), where 𝑔 𝑓 (𝑆 𝑓) =

22:82514

CHAPTER 1. INTRODUCTION 16

Figure 1.1: Each row represents a client, and each column represents a possible scenario. Green circles show client-to-scenario
connections, indicating potential service assignments. In stochastic settings, only a random subset of clients is activated according to a
probability distribution. The incurred cost consists of two components: (1) connection costs for activated clients and (2) facility opening
costs. Effectively, the expected facility opening cost is a monotone submodular function of the set of clients assigned to the facility
before knowing the actual scenario. The objective is to find a client-to-facility mapping that minimizes the expected total cost across all
possible activation scenarios.

𝑝 𝑓 + 𝑔(𝑆 𝑓) for 𝑆 𝑓 ≠ ∅, 𝑔 𝑓 (∅) = 0, and 𝑝 𝑓 ≥ 0.

Theorem 1.3.12. There is a polynomial-time 𝑂 (log log 𝑛)-approximation algorithm for multSFL.

Theorem 1.3.13. There is a polynomial-time 𝑂 (log log 𝑛)-approximation algorithm for addSFL.

In addition to the standard and extended variants of the Submodular Facility Location problem
discussed above, our techniques can also be adapted to tackle a closely related problem known as the
Universal Stochastic Facility Location (univFL). In this setting, we are given a set of clients 𝐶 and facilities
𝐹 with metric distances 𝑑 (𝑐, 𝑓) as in SFL, along with an opening cost 𝑤 𝑓 for each 𝑓 ∈ 𝐹. Additionally, we
have oracle access to a probability distribution 𝜋 : 2𝐶 → R≥0 specifying the probability 𝜋(𝐴) that a subset of
clients 𝐴 ⊆ 𝐶 is activated. A feasible solution is an universal mapping 𝜑 : 𝐶 → 𝐹, which assigns each client
to a facility.

The cost of 𝜑 with respect to activated clients 𝐴 ⊆ 𝐶 is given by

cost𝐴(𝜑) =
∑︁
𝑐∈𝐴

𝑑 (𝑐, 𝜑(𝑐)) +
∑︁

𝑓 ∈𝐹:𝜑−1 (𝑓)∩𝐴≠∅
𝑤 𝑓 ,

which represents the connection cost for activated clients plus the opening costs for facilities that serve at
least one client in 𝐴. The objective is to minimize the expected cost over all possible subsets 𝐴 ∼ 𝜋, i.e.,
E𝐴∼𝜋 [cost𝐴(𝜑)].

23:56529

CHAPTER 1. INTRODUCTION 17

The universal nature of the solution allows for efficient, distributed decision-making in scenarios where
client requests arrive dynamically over time. Let OPT : 𝐶 → 𝐹 minimize E𝐴∼𝜋 [cost𝐴(OPT)], in other words
OPT is an optimal (universal) mapping. We say that an algorithm for univFL is 𝛼-approximate if it returns
a universal mapping 𝜑 satisfying E𝐴∼𝜋 [cost𝐴(𝜑)] ≤ 𝛼 · E𝐴∼𝜋 [cost𝐴(OPT)]. Interestingly, the objective
function for univFL can be rewritten as:∑︁

𝑐∈𝐶
𝑑 (𝑐, 𝜑(𝑐)) · P𝐴∼𝜋 [𝑐 ∈ 𝐴] +

∑︁
𝑓 ∈𝐹

𝑤 𝑓 · P𝐴∼𝜋 [𝜑−1 (𝑓) ∩ 𝐴 ≠ ∅] .

By interpreting P𝐴∼𝜋 [𝑅 ∩ 𝐴 ≠ ∅] for any subset 𝑅 ⊆ 𝐹 as a monotone submodular function, we observe
that univFL is nearly identical to Submodular Facility Location. This connection enables the adaptation
of our techniques to achieve an improved approximation result for univFL. Notably, we exploit 𝜋min :=
min𝑐∈𝐶 P𝐴∼𝜋 [𝑐 ∈ 𝐴] > 0 to ensure robustness across all possible client activations.

Theorem 1.3.14. There is a polynomial-time 𝑂 (log log 𝑛
𝜋min
)-approximation algorithm for the Universal

Stochastic Facility Location problem.

The table below presents a summary of the results for these problems.

Problems SFL multSFL addSFL univFL
Known Result 𝑂 (log 𝑛) [114] 𝑂 (log 𝑛) [6]
New Result 𝑂 (log log 𝑛) 𝑂 (log log 𝑛) 𝑂 (log log 𝑛) 𝑂 (log log 𝑛

𝜋min
)

Table 1.5: Summery of results for Submodular Facility Location Problem

24:99777

Chapter 2

Parameterized Approximation for
Socially Fair Clustering

In this Chapter, we address the following fairness version of the (𝑘, 𝑧)-Clustering problem called Socially
Fair (𝑘, 𝑧)-Clustering (or equivalently Robust (𝑘, 𝑧)-Clustering):

Socially Fair (𝑘, 𝑧)-Clustering
Input: Instance (𝑃, 𝐹, 𝛿) with 𝛿 being a metric on 𝑃∪𝐹, positive integer 𝑘 , a weight function𝑤 : 𝑃→ R+,
and 𝑚 groups 𝑆1, . . . , 𝑆𝑚 such that 𝑆𝑖 ⊆ 𝑃, 𝑃 = ∪𝑖∈[𝑚]𝑆𝑖 .
Output: A 𝑘-element subset 𝑋 ⊆ 𝐹 that minimizes max𝑖∈[𝑚]

∑
𝑝∈𝑆𝑖 𝑤(𝑝)𝛿(𝑝, 𝑋)𝑧 .

Let 𝑛 = |𝑃 |. We remark that, in addition to generalizing 𝑘-Median and 𝑘-Means, the Socially Fair
(𝑘, 𝑧)-Clustering problem encapsulates 𝑘-Center, when each group contains a distinct singleton.

While 𝑘-Means, 𝑘-Median, and 𝑘-Center admit constant-factor approximations, it is not very surprising
that Socially Fair (𝑘, 𝑧)-Clustering is harder due to its generality: Makarychev and Vakilian [103] design
a polynomial-time O (log𝑚/log log𝑚)-approximation algorithm, which is tight under a plausible complexity
assumption [21]1. As this precludes the existence of efficient constant-factor approximation algorithms, recent
works have focused on designing constant factor parameterized (FPT) approximation algorithms2. Along
these lines, an FPT time (3𝑧 + 𝜖)-approximation algorithm has been proposed and shown to be tight under
the Gap Exponential-Time Hypothesis (Gap-ETH) [74]. When allowing a parameterization on the number
of groups 𝑚 (instead of 𝑘), Ghadiri et al. designed a (5 + 2

√
6 + 𝜖)𝑧-approximation algorithm in 𝑛O(𝑚2)

time [70].
Motivated by the tight lower bounds for general discrete metrics, we focus on geometric spaces. Geometric

1Note that they proved this factor for Robust 𝑘-Median, and the hardness result holds even in the line metric, unless NP ⊆
∩𝛿>0DTIME(2𝑛𝛿) .

2Throughout the chapter, parameterization refers to the natural parameter 𝑘.

18

25:10835

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 19

spaces have a particular importance in real-world applications because data can often be represented via a
(potentially large) collection of numerical attributes, that is, by vectors in a (possibly high-dimensional)
geometric space. For example, in the bag-of-words model a document is represented by a vector where each
coordinate specifies the frequency of a given word in that document. Such representations naturally lead to
very high-dimensional data. A setting of particular interest is the high-dimensional Euclidean space where
the metric is simply the Euclidean metric 𝛿(𝑥, 𝑦) = | |𝑥 − 𝑦 | |2.

The study of clustering problems in high-dimensional Euclidean space is an important line of research
that has received significant attention in the algorithms community. It may seem intuitive to believe that
it should generally (for almost any problem) be possible to algorithmically leverage the geometric structure
to separate high-dimensional Euclidean from general metrics. For clustering, however, this turns out to be
either false or highly non-trivial in many cases. For example, it is a long-standing open question [59] whether
𝑘-Center admits a polynomial time (2 − 𝜖)-approximation algorithm even in R2, improving the tight bound
of 2 in general metrics. Interestingly enough, for the more general Euclidean 𝑘-Supplier problem, Nagarajan
et al. [106] obtain an improvement over the tight bound of 3 in general metrics. The improved bounds for
Euclidean 𝑘-Median and 𝑘-Means by Ahmadian et al. [7], Grandoni et al. [77], and recently by Cohen-
Addad et al. [34] were breakthroughs. Concerning the more general Socially Fair (𝑘, 𝑧)-Clustering, the
tight inapproximability bound of Ω(log𝑚/log log𝑚) in general metric continues to hold even in the line
metric [21].

Similarly, the regime of FPT approximation algorithms for Euclidean clustering problems has received
significant attention. Classic works design Efficient Parameterized Approximation Schemes (EPAS), that is,
(1+ 𝜖)-approximation in 𝑓 (𝑘, 𝜖)poly(𝑛) time, for 𝑘-Center [13] as well as for 𝑘-Median and 𝑘-Means [94].
Recent research focuses on the design of so-called coresets [113, 48] whose existence implies an EPAS if
their size only depends on 𝑘 and the error parameter 𝜖 .

In the real space R𝑑 , it is important to distinguish between the discrete and the continuous settings. In
the discrete setting, both the point set 𝑃 and the candidate center set 𝐹 are finite subsets of R𝑑 while in the
continuous setting, centers can be chosen anywhere in the metric space, that is, 𝐹 = R𝑑 . A separate line
of research has studied the contrast between continuous and discrete versions. For example, while discrete
clustering variants are clearly polynomial-time solvable for constant 𝑘 by trivial enumeration, the continuous
versions of 𝑘-Center and 𝑘-Median are known to be NP-hard even for 𝑘 = 2 [56] in high-dimensional
Euclidean space. Also in terms of polynomial-time approximability, stronger lower bounds were shown by
Cohen-Addad et al. [43] for the continuous versions. Indeed, there have been systematic research efforts in
understanding these geometric clustering problems [46, 42, 43].

26:76533

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 20

2.1 Overview of Techniques

Improved FPT Approximation in High-Dimensional Discrete Euclidean Space.

Our algorithm underlying Theorem 1.3.1 is a slight modification of the factor-(3𝑧 + 𝜖) FPT approximation
algorithm for general metrics by Goyal and Jaiswal [74]. Our main technical contribution lies in the improved
analysis. A key component of the analysis by Goyal and Jaiswal is a simple projection property of metric
spaces (see Lemma 2.1.1 below). We argue that under minor additional assumptions, this property can be
strengthened in Euclidean space. The resulting assigment lemma (see Lemma 2.2.1) is at the heart of our
analysis and its proof relies on several new ideas and technically involved ingredients.

We briefly review the algorithm by Goyal and Jaiswal [74]. Their algorithm consists of two main steps.
First, they compute a (𝜅, 𝜆)-bicriteria solution 𝐵 ⊆ 𝐹, that is, the cost of 𝐵 is bounded by 𝜅OPT and the
cardinality of 𝐵 is bounded by 𝜆𝑘 . Specifically, they obtain guarantees 𝜅 = 1 + 𝜖 and 𝜆 = O

(
log2 𝑛/𝜖2

)
for

sufficiently small 𝜖 > 0. In the second step, they extract a feasible solution from the (infeasible) bi-criteria
solution 𝐵 by enumerating all 𝑘-subsets of 𝐵 and outputting the one of minimum cost.

Their analysis is based on proving the existence of a 𝑘-subset of 𝐵 whose cost is at most (3𝑧−1 (𝜅 + 2))OPT,
which can be bounded by (3𝑧 + 𝜖)OPT assuming 𝑧 being constant. Since the algorithm enumerates all 𝑘-
subsets, this provides an upper bound on the cost of the algorithm. The key component of their existential
argument is the following simple property of metric spaces, which we call projection lemma. It is convenient
to think of 𝑂 as an optimal solution and 𝐵 as a bicriteria solution with |𝐵 | > |𝑂 | but the lemma holds for any
sets 𝐵,𝑂.

Lemma 2.1.1 (Projection Lemma). Let (𝑌, 𝛿) be a metric space, and 𝐵 ⊆ 𝑌 . Then for any set 𝑂 ⊆ 𝑌 , there
exists an assignment 𝜎 : 𝑂 → 𝐵 such that, for all 𝑜 ∈ 𝑂 and 𝑦 ∈ 𝑌 , we have

𝛿(𝑦, 𝜎(𝑜)) ≤ 2𝛿(𝑦, 𝑜) + 𝛿(𝑦, 𝐵) . (2.1)

Intuitively, their lemma allows them to “project” the optimal solution 𝑂 onto a 𝑘-subset 𝜎(𝑂) ⊆ 𝐵 of the
bicriteria solution so that for any client 𝑦 ∈ 𝑌 , the distance 𝛿(𝑦, 𝜎(𝑂)) can be charged to 𝛿(𝑦, 𝑂) and 𝛿(𝑦, 𝐵).
If fact, the number 3 in the approximation factor 3𝑧 + 𝜖 corresponds to the sum (2 + 1) of the coefficients in
front of 𝛿(𝑦, 𝑜) and 𝛿(𝑦, 𝐵).

In this chapter, we study the setting where 𝑌 is a discrete Euclidean metric (𝑃, 𝐹, 𝛿), that is, where 𝑃, 𝐹

are finite subsets of R𝑑 and 𝛿 is the Euclidean distance. A natural attempt to improve the approximation factor
in the Euclidean setting is to reduce the coefficients in front of the terms 𝛿(𝑦, 𝑜) and 𝛿(𝑦, 𝐵) in the projection
lemma. Unfortunately, this straightforward approach fails: The projection lemma is tight even on the line
metric; see Figure 2.1.

It turns out that slightly enlarging the projection space is already sufficient to bypass this obstacle. More

27:85028

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 21

𝑏 𝑜 𝑝 𝑏′

Figure 2.1: This example shows that the projection lemma is tight even for the 1-dimensional Euclidean space. Let𝑜 = 0 be the optimum
facility located at the origin and serving client 𝑝 = 1/2. Let 𝑏′ = 1 be the facility in 𝐵 that serves 𝑝 and let 𝑏 = 𝜎 (𝑜) = −1 be the facility
in 𝐵 nearest to 𝑜. We have OPT = 1/2, which also equals the cost of 𝐵. However 𝛿 (𝑝, 𝜎 (𝑜)) = 3/2 = 2 × 𝛿 (𝑝, 𝑜) + 1 × 𝛿 (𝑝, 𝑏′) .
Combining multiple such examples in orthogonal directions and sharing facility 𝑏 shows that the approximation ratio of the algorithm of
Goyal and Jaiswal [74] approaches 3 in the discrete Euclidean space.

specifically, we project onto the midpoint closure

c𝑙 (𝐵) = 𝐵 ∪
{
𝜋𝐹

(
𝑏 + 𝑏′

2

)
: 𝑏, 𝑏′ ∈ 𝐵

}
, (2.2)

of the bicriteria solution where 𝜋𝐹 (𝑝) represents the closest facility in 𝐹 to point 𝑝. This step exploits that
the metric space is embedded into R𝑑 (so that the midpoints exist).

While on the algorithmic side a slight modification of the original algorithm is sufficient for the improve-
ment, the analysis requires several new ideas and technically involved ingredients. To prove a strengthened
version of the projection lemma (called assignment lemma) we set up a factor-revealing geometric optimization
problem in the plane; see (2.3) in Definition 2.2.2 below. We call the optimum objective 𝛾𝛽 of this problem
displacement ratio. Roughly speaking, this ratio corresponds to the maximum ratio between the left-hand and
the right-hand side of (2.1) in Lemma 2.1.1. However, we project to cl(𝐵) rather than 𝐵 and impose some
additional minor restrictions. By a careful and technically involved analysis of this optimization problem we
can upper bound the displacement ratio in the Euclidean setting by 1 − 𝜖0 for some universal constant 𝜖0 > 0
as long as two obstructions are avoided. The first obstruction occurs in any configuration similar to the one in
Figure 2.1 above where the bi-criteria solution contains two facilities 𝑏, 𝑏′ so that 𝑜 is near to the mid-point
of 𝑏 and 𝑏′. However, in such a configuration facility 𝑜 certifies that 𝑏′′ = 𝜋𝐹 ((𝑏 + 𝑏′)/2) must be close to 𝑜

allowing us to assign 𝑜 to 𝑏′′ contained in the mid-point closure. The second obstruction arises if 𝑝 is 𝛽-near,
that is, within a small distance 𝛽 from 𝑜 (but there is no facility in 𝐵 such as 𝑏′ as in the first obstruction).
For 𝛽 approaching 0, the displacement ratio of 𝛽-near points can approach 1 even if when projecting to the
mid-point closure of 𝐵. To account for 𝛽-near points, we therefore cannot resort to the assignment lemma.
However, the overall contribution of 𝛽-near points to the cost of the projected solution can be shown to be
very small. More details of the algorithm and its analysis are provided in Section 2.2.1.

Hardness of Discrete 𝑘-Center

Our proof constructs an instance of the discrete 𝑘-Center from an instance of Multi-Colored Independent
Set problem, which is known to be𝑊 [1]-hard. In Multi-Colored Independent Set, we are given a 𝑘-partite
graph 𝐺 with a 𝑘-partition of the vertices 𝑉1, . . . , 𝑉𝑘 , and the goal is to determine if there is an independent
set that contains precisely one node from each set 𝑉𝑖 , 𝑖 ∈ [𝑘]. The gadget in our construction is a set of nearly
equidistant binary code words. Such code words with relative Hamming distance roughly 1/2 and logarithmic

28:34787

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 22

length are known to exist (see Ta-Shma [116]). The high level idea is as follows. We associate each vertex
of 𝐺 with a unique code word of suitable length 𝑡. Then, we generate a data point in 𝑃 for each vertex and
edge of 𝐺 by using code word(s) associated with the corresponding vertices. The construction guarantees the
following crucial properties: (i) The Hamming distance between the data points of vertices is roughly 𝑡. (ii)
The Hamming distance between a data point of vertex 𝑣 ∈ 𝑉𝑖 and a data point of an edge 𝑒 is roughly 𝑡 if 𝑒
is incident on 𝑉𝑖 \ {𝑣} and is roughly 3𝑡/2 otherwise. (iii) The Hamming distance between the data points
of edges is at least (close to) 3𝑡/2. Thus, the construction forces us to pick data points of vertices as centers
in our solution and guarantees that the optimum cost of the 𝑘-Center instance is roughly 𝑡 if and only if
there is an independent set in 𝐺. As a result, approximating the cost of the 𝑘-Center instance better than a
(roughly) (3/2)1/𝑞 factor would imply 𝑊 [1] = FPT. That is because the cost of a 𝑘-Center instance is the
maximum ℓ𝑞 distance between a data point and its closest selected center, and hence, approximating this cost
better than the mentioned factor allows us to distinguish between Yes and No cases of an arbitrary instance
of Multi-Colored Independent Set.

Approximation Scheme for Metrics of Sub-Logarithmic Doubling Dimension.

Our algorithm comprises two main components, both based on standard techniques from the literature:
instance compression and decomposition of the doubling metric into smaller balls. However, it becomes
evident that a natural construction based on these standard techniques for Socially Fair (𝑘, 𝑧)-Clustering
faces serious information-theoretic limitations, as explained below. One natural idea for compressing a
Socially Fair (𝑘, 𝑧)-Clustering instance is to reduce the number of groups, as each group can be further
compressed using a (𝑘, 𝑧)-Clustering coreset (such coresets exist [48]). This reduction yields a significantly
smaller instance. If we could reduce the number of groups to 𝑚′ ≪ 𝑚 while approximately preserving the
cost for every solution, we could obtain an EPAS as follows. First, apply a (𝑘, 𝑧)-Clustering coreset to
every group of the compressed instance to obtain another Socially Fair (𝑘, 𝑧)-Clustering instance with 𝑚′

groups, each containing 𝑔(𝑘, 𝜖) points, where 𝑔 is some function that represents the size of (𝑘, 𝑧)-Clustering
coreset. It is essential to note that this compression is acceptable for obtaining an EPAS since the coreset of
a group approximately preserves the (𝑘, 𝑧)-Clustering cost of the group. Next, enumerate all 𝑘-partitions
of the points within each group to find potential solutions. Finally, return the solution that has the minimum
Socially Fair (𝑘, 𝑧)-Clustering cost. Unfortunately, because Socially Fair (𝑘, 𝑧)-Clustering captures
𝑘-Center (and consequently faces a coreset lower bound of 2Ω(𝑑) in Euclidean space of dimension 𝑑 [24]),
the number of new groups must satisfy 𝑚′ ≥ 2Ω(𝑑) . Consequently, the running time of this algorithm is
𝑘2Ω(𝑑)poly(𝑛, 𝑚), which is doubly exponential in 𝑑. It is worth noting that this algorithm matches the running
time of [3] and does not yield an EPAS for sub-logarithmic dimension.

Furthermore, if we explore an alternative approach and utilize the coreset of 𝑘-Center, it is not im-
mediately clear how to extend the coreset of 𝑘-Center to reduce the number of groups in an instance of
Socially Fair (𝑘, 𝑧)-Clustering. This is because, firstly, we would require a mapping between the old
groups and the new groups, and secondly, this mapping should ideally approximately preserve the Socially

29:10596

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 23

Fair (𝑘, 𝑧)-Clustering cost for every solution.
Another potential method for compressing the instance involves reducing the number of points in set 𝑃,

rather than altering the groups, with the hope of designing an EPAS that can exploit the smaller 𝑃 (without
concern for the number of groups). However, for this approach to succeed, it is essential to establish a bĳection
between the old and new groups. Yet, it remains uncertain whether such a bĳection exists. In typical coreset
constructions, each point in the coreset 𝑃′ of 𝑃 has a weight that is the sum of the weights of the points in its
local neighborhood in 𝑃 which it is supposed to represent in 𝑃′. However, these points in 𝑃 could potentially
belong to different groups, making it challenging to establish the mapping between groups.

The core idea of our approach is to work with an alternative and more general definition of groups that
permits a point to participate in different groups with varying weights. In this revised definition, instead
of viewing groups as subsets of points, we treat each group as a weight function that assigns non-negative
real values to points. This flexibility allows different weights to be assigned to the same point by different
groups, which can, in fact, be of practical interest. Utilizing this new definition, we can devise an approach
for compressing the points such that each point in the compressed instance can have a weight for group
𝑔 that represents the sum of the weights of nearby points in 𝑔 that were filtered out during compression.
Essentially, this enables us to approximately preserve the group costs. With this approach and additional
technical work that leverages the standard ball decomposition technique for doubling metrics, we derive a
coreset for Socially Fair (𝑘, 𝑧)-Clustering that can be employed to construct an EPAS for doubling metrics
with sub-logarithmic dimension.

2.2 High-Dimensional Discrete Euclidean Space

2.2.1 FPT Approximation Algorithm for Socially Fair (𝑘, 𝑧)-Clustering

In this section, we exploit non-trivial properties of the Euclidean metric to prove the following result that
breaches the barrier of 3𝑧-approximation for Socially Fair (𝑘, 𝑧)-Clustering in general metrics.

Theorem 1.3.1 (High-Dimensional Euclidean Space). There exists a universal constant 𝜂0 > 0.0006 such
that for any constant positive integer 𝑧, there is a factor 3𝑧 (1−𝜂0) FPT approximation algorithm for Socially
Fair (𝑘, 𝑧)-Clustering in discrete Euclidean space R𝑑 that runs in time 2O(𝑘 log 𝑘)poly(𝑚, 𝑛, 𝑑).

Recall from Section 2.1 that our approach begins with computing a (𝜅, 𝜆)-bicriteria solution 𝐵 to the
Socially Fair (𝑘, 𝑧)-Clustering instance employing the algorithm proposed by Goyal-Jaiswal [74]. As
we argued, it is sufficient to prove the existence of a 𝑘-subset of 𝐵 whose cost is within a constant factor of
optimal. The result by Goyal and Jaiswal [74] is based on the following simple projection lemma for general
metrics whose proof we state here for the sake of later reference.

Lemma 2.1.1 (Projection Lemma). Let (𝑌, 𝛿) be a metric space, and 𝐵 ⊆ 𝑌 . Then for any set 𝑂 ⊆ 𝑌 , there

30:41065

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 24

exists an assignment 𝜎 : 𝑂 → 𝐵 such that, for all 𝑜 ∈ 𝑂 and 𝑦 ∈ 𝑌 , we have

𝛿(𝑦, 𝜎(𝑜)) ≤ 2𝛿(𝑦, 𝑜) + 𝛿(𝑦, 𝐵) . (2.1)

Proof. For each 𝑜 ∈ 𝑂, define 𝜎(𝑜) as 𝜋𝐵 (𝑜), the point in 𝐵 closest in distance to 𝑜. Notice that for any
𝑜 ∈ 𝑂, 𝑦 ∈ 𝑌 , we have 𝛿(𝑦, 𝜎(𝑜)) ≤ 𝛿(𝑦, 𝑜) + 𝛿(𝑜, 𝜎(𝑜)) by triangle inequality. The lemma follows by
combining this with 𝛿(𝑜, 𝜎(𝑜)) = 𝛿(𝑜, 𝐵) ≤ 𝛿(𝑜, 𝜋𝐵 (𝑦)) ≤ 𝛿(𝑦, 𝑜) + 𝛿(𝑦, 𝐵).

This lemma itself is tight even in 1-dimensional Euclidean space (as we showed in Figure 2.1). In order
to get around this issue, we make use of the property of our geometric space. Given the instance (𝑃, 𝐹, 𝛿)
embedded into the Euclidean space and the bicriteria solution 𝐵, we project to the mid-point closure c𝑙 (𝐵) as
defined in (2.2).

Notice that |c𝑙 (𝐵) | = O
(
|𝐵 |2

)
. Let 𝑂 be the optimal solution. For 𝛽 > 0 we say that client 𝑝 ∈ 𝑃 is

𝛽-far (from 𝑂 w.r.t. 𝐵) if 𝛿(𝑝, 𝑂) ≥ 𝛽 · 𝛿(𝑝, 𝐵), and we say that client 𝑝 is 𝛽-near otherwise. The key of our
analysis is the following strengthening of the projection lemma for Euclidean space, which we call assignment
lemma.

Lemma 2.2.1 (Assignment Lemma). Let 𝛽0 = 0.05 and let 𝐵 ⊆ R𝑑 . Then, for any 𝑂 ⊆ R𝑑 , there
exists an assignment 𝜎 : 𝑂 → c𝑙 (𝐵) such that, for all 𝛽0-far points 𝑝 ∈ R𝑑 , we have 𝛿(𝑝, 𝜎(𝑂)) ≤
(1 − 𝜖0) (2𝛿(𝑝, 𝑂) + 𝛿(𝑝, 𝐵)) where 𝜖0 > 0.002.

To prove Lemma 2.2.1, we start with defining the assignment function 𝜎. Take any facility 𝑜 ∈ 𝑂 and
let 𝑏 = 𝜋𝐵 (𝑜). We assume w.l.o.g. that the instance is rotated so that 𝑝, 𝑏 and 𝑜 lie in the plane spanned
by the first two coordinates. For the sake of easier notation, we identify 𝑝, 𝑏, 𝑜 by points in R2. Further, by
translation and scaling, we assume that 𝑜 coincides with the origin and that 𝑏 = (−1, 0). Let 𝑞 = (0, 1) be
the mirror image of 𝑏. Let 𝛼 be a parameter to be fixed (we later set it to 0.6). We define 𝜎(𝑜) based on
the position of 𝑜 relative to an 𝛼-ball. Specifically, 𝜎(𝑜) = 𝑏 if the 𝛼-ball centered at a point 𝑞 contains no
facility from 𝐵; otherwise, 𝜎(𝑜) is the projection 𝜋cl(𝐵) (𝑜) of 𝑜 onto the mid-point closure of 𝐵.

Our goal is to analyze the displacement of a client 𝑝 under the assignment rule 𝜎. Recall from the proof
of Lemma 2.1.1 that if 𝜎(𝑜) is simply the projection onto 𝐵, then a client 𝑝, when served by facilities 𝑜 and
𝑏′ in sets 𝑂 and 𝐵 respectively, incurs a cost of at most 2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | |. We wish to show that the
assignment cost in our algorithm is strictly smaller than this upper bound (under certain assumptions). We
prove this by bounding the ratio of these two quantities.

Definition 2.2.2 (Displacement Ratio). For a given small constant 𝛽 > 0, let the displacement ratio be defined
as

𝛾𝛽 = max
𝑝∈R𝑑\ball(𝑜,𝛽) ,
𝑏′∈R𝑑\ball(𝑜,1)

{
| |𝑝 − 𝜎(𝑜) | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | |

}
. (2.3)

Let 𝑆 be the plane spanned by 𝑏, 𝑝, and 𝑜. After the appropriate rotations and translations we mentioned
earlier, 𝑆 would coincide with the 𝑥-𝑦 plane. In what follows, we also restrict 𝑏′ to lie in plane 𝑆 as well.

31:52369

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 25

This follows due to Claim 2.2.3 mentioned below. For cleaner analysis, we defer the proof of this claim to
Section 2.2.1.

Claim 2.2.3. The maximum displacement ratio 𝛾𝛽 is achieved by some 𝑏′ that lies in plane 𝑆 containing
points 𝑏, 𝑜, and 𝑝.

To show the lemma, we demonstrate that 𝛾𝛽 can be upper-bounded by 1 − 𝑓 (𝛼, 𝛽) for some 𝑓 (𝛼, 𝛽) > 0,
where 𝑓 (·) is a function dependent on 𝛼, 𝛽 and the geometry of 𝑂 and 𝐵.

Claim 2.2.4. Following the assignment rule 𝜎, we have that 𝛾𝛽 ≤ 1 − 𝑓 (𝛼, 𝛽).

For the sake of notation, we drop the subscript of 𝛾𝛽 everywhere in the proof.

Proof. Given 𝑂 and 𝐵, we consider a facility 𝑜 ∈ 𝑂. Let 𝑏 ∈ 𝐵 the closest facility to 𝑜, and 𝑏′ ∈ 𝐵 the
bicriteria solution that serves client 𝑝. Now consider the 𝛼-ball around 𝑞 and 𝛽-ball around 𝑜, for the ease of
analyse we consider half plane above 𝑥-coordinate the same arguments hold for half plane below 𝑥-coordinate.
We distinguish two cases.

Case 1: ball(𝑞, 𝛼) ∩ 𝐵 ≠ ∅. Suppose that 𝐵 contains a facility 𝑏′′ lying inside the 𝛼-ball around 𝑞.
Given that 𝑏 ∈ 𝐵 is the closest facility to 𝑜, it follows that 𝑏′′ ∈ (ball(𝑞, 𝛼)\ball(𝑜, 1)). In this case
𝜎(𝑜) = 𝜋cl(𝐵) (𝑜). Hence 𝜎(𝑜) is no farther from 𝑜 than the facility 𝜋𝐹 ((𝑏 + 𝑏′′)/2) nearest to the midpoint
of 𝑏 and 𝑏′′. Notice that the optimal center 𝑜 certifies the existence of a point in 𝐹 nearby the mid-
point of 𝑏 and 𝑏′′. The point 𝑜 ∈ 𝐹 shows that 𝜋𝐹 ((𝑏 + 𝑏′′)/2) has distance at most 𝛼 to 𝑜 because
| |𝜋𝐹 ((𝑏 + 𝑏′′)/2) − (𝑏 + 𝑏′′)/2| | ≤ | | (𝑏 + 𝑏′′)/2 − 𝑜 | |. Hence we obtain | |𝜎(𝑜) − 𝑜 | | ≤ 𝛼, therefore
| |𝑝 − 𝜎(𝑜) | | ≤ | |𝑝 − 𝑜 | | + 𝛼 (see Figure 2.2). Recall that the aim is to upper bound the displacement ratio
2.2.2 for client 𝑝, notice that | |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | | ≥ 1, we obtain:

𝛾 =
| |𝜎(𝑜) − 𝑝 | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | | ≤
| |𝑝 − 𝑜 | | + 𝛼
| |𝑝 − 𝑜 | | + 1

≤ 1 − 1 − 𝛼
| |𝑝 − 𝑜 | | + 1

≤ 1 − 1 − 𝛼
2

Case 2: ball(𝑞, 𝛼) ∩ 𝐵 = ∅. in the second case, where the 𝛼-ball does not contain a facility from 𝐵, we
argue that the points 𝑜, 𝜎(𝑜) = 𝑏, and 𝑏′ are far enough from a co-linear position. This allows us to argue
that the triangle inequality in the proof of Lemma 2.1.1 is not tight. Towards this, we divide the space into
four regions that could contain client 𝑝, as indicated in Figure 2.3.

We define 𝑞1 and 𝑞2 as two points of intersection between ball(𝑜, 1) and ball(𝑞, 𝛼). See Figure 2.4 for an
illustration. We assume that 𝑝 lies the half plane above the 𝑥-axis. (The case where 𝑝 lies below the 𝑥-axis is
symmetric.) Now, consider 𝑞3 as the midpoint of 𝑞 and 𝑞1. Furthermore, define the region 𝐻 as the area above

32:54232

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 26

𝑜

𝑏′′

≤ 𝛼
2

𝜋𝐹 (𝑏+𝑏
′′

2)

𝑞

𝛼

𝑏

Figure 2.2: The midpoint of 𝑏 and 𝑏′′ is shown by red dot, | | (𝑏 + 𝑏′′)/2 − 𝑜 | | ≤ 𝛼
2 and thus | |𝜎 (𝑜) − 𝑜 | | ≤ 𝛼.

𝑜

𝛽 𝑞

𝑞1

𝛼𝑏

𝑞3𝑞3

𝑅1

𝑅2 𝑅4

𝑅3

Figure 2.3: The dashed black circle depicts ball(𝑜, 1) , while the dashed gray circles represent ball(𝑜, 1 − 𝜔) and ball(𝑜, 1 + 𝜔) .
Regions 𝑅1, 𝑅2, 𝑅3, and 𝑅4 are outlined with green, yellow, purple, and blue borders respectively.

the lines passing through(𝑞3, 𝑜) and (𝑜, 𝑏). We define region 𝑅1 = 𝐻\ball(𝑜, 𝛽). Next, consider (1 − 𝜔) and
(1+𝜔) balls around 𝑜, 𝐻′ is defined as the area below the line passing through (𝑜, 𝑞3) and above the line passing
through (𝑜, 𝑞), we define 𝑅2 = (ball(𝑜, 1 − 𝜔)\ball(𝑜, 𝛽)) ∩ 𝐻′, 𝑅3 = (ball(𝑜, 1 + 𝜔)\ball(𝑜, 1 − 𝜔)) ∩ 𝐻′,
and 𝑅4 = 𝐻′\ball(𝑜, 1 + 𝜔), the regions are indicated in Figure 2.3.

• 𝑝 ∈ 𝑅1, Let 𝑏′′ be the closest point to 𝑝 not in the interior of ball(𝑜, 1), and let 𝑝′ be the point on the
boundary of ball(𝑜, 𝛽) that is closet to 𝑝. Let 𝑝′′ be the point where the segment (𝑜, 𝑞3) intersects the
boundary of ball(𝑜, 𝛽), that is, 𝑝′′ = (𝛽 cos 𝜃, 𝛽 sin 𝜃) where 𝜃 = ∠𝑞3𝑜𝑞1. Notice that cos 𝜃 = 1 − 𝛼2

4 ,
see figure 2.4a for an illustration. First, we assume 𝑝 is inside ball(𝑜, 1 + 2𝛽) in the region of 𝑅1.

Observation 2.2.5. For any 𝜖1, 𝜖2, 𝑋,𝑌 ≥ 0 :

𝑋 − 𝜖1 + 𝑌
𝑋 + 𝑌 ≤ 𝑋 − 𝜖1 + 𝑌 + 𝜖2

𝑋 + 𝑌 + 𝜖2

33:52059

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 27

𝑜

𝑞1

𝑞2

𝛽

𝑝′′ 𝑞

𝑞3

𝛼

𝑏

𝑝

(a) 𝑝 ∈ 𝑅1

𝑏

𝛽

𝑜

𝑞1

𝑞3
𝑝′′

𝑞 𝛼

𝑝

(b) 𝑝 ∈ 𝑅2

𝑜

𝑞

𝑞1

𝑞3

(c) 𝑝 ∈ 𝑅3

𝑏

𝛽

𝑜
𝑝

𝑞3

𝑞

𝛼

(d) 𝑝 ∈ 𝑅4

Figure 2.4: 𝑜 ∈ 𝑂 is an optimum solution, 𝑏 ∈ 𝐵 is the closest bicriteria solution to 𝑜, 1-ball around 𝑜 is shown as a dashed circle,
𝛼-ball around 𝑞 and 𝛽-ball around 𝑜 are shown in blue, (1 − 𝜔) and (1 + 𝜔) around 𝑜 are shown as blue dashed circles. The regions
are specified by green borders.

Consider assigning 𝑝 via 𝑝′ to 𝑏. We bound the displacement cost as follows:

𝛾𝛽 =
| |𝜎(𝑜) − 𝑝 | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | | ≤
| |𝑏 − 𝑝′ | | + | |𝑝 − 𝑝′ | |

2| |𝑝′ − 𝑜 | | + | |𝑝′ − 𝑏′′ | | + | |𝑝 − 𝑝′ | |

≤ | |𝑏 − 𝑝′′ | | + | |𝑝 − 𝑝′ | |
2𝛽 + 1 − 𝛽 + ||𝑝 − 𝑝′ | |

≤
√︁
(𝛽 cos(𝜃) + 1)2 + (𝛽 sin(𝜃))2 + ||𝑝 − 𝑝′ | |

1 + 𝛽 + ||𝑝 − 𝑝′ | |

=

√︁
𝛽2 + 2𝛽 cos 𝜃 + 1 + ||𝑝 − 𝑝′ | |

1 + 𝛽 + ||𝑝 − 𝑝′ | |

=

√︃
(1 + 𝛽)2 − 𝛽𝛼2

2 + ||𝑝 − 𝑝′ | |
1 + 𝛽 + ||𝑝 − 𝑝′ | |

34:72217

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 28

We assume | |𝑝 − 𝑝′ | | ≤ 1 + 𝛽, and by observation 2.2.5, we obtain:

𝛾𝛽 ≤
(1 + 𝛽) (1 +

√︃
(1 − 𝛽𝛼2

2)
2(1 + 𝛽) ≤ 1

2
+

√︃
12 − 2𝛽𝛼2

4 + 𝛽2𝛼4

16

2
≤ 1

2
+

1 − 𝛽𝛼2

4
2

= 1 − 4 + 𝛽𝛼2

8

Second, let’s assume that the client 𝑝 is distant from 𝑜 and positioned within region 𝑅1 outside
ball(𝑜, 1 + 2𝛽), we can bound 𝛾𝛽 as follows:

𝛾𝛽 ≤
1 + ||𝑜 − 𝑝 | |

2| |𝑜 − 𝑝 | | ≤
1 + 1 + 2𝛽
2(1 + 2𝛽) =

1 + 𝛽
1 + 2𝛽

= 1 − 𝛽

1 + 2𝛽

• 𝑝 ∈ 𝑅2, we obtain the best location for 𝑏′ is when it lies on the point 𝑞1 (see Figure 2.4b for an
illustration), the cost of displacement is as follows:

𝛾 =
| |𝜎(𝑜) − 𝑝 | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | | ≤
| |𝑝 − 𝑜 | | + 1

| |𝑝 − 𝑜 | | + | |𝑝′ − 𝑜 | | + | |𝑝′ − 𝑝 | | + | |𝑝 − 𝑏′ | |

≤ | |𝑝 − 𝑜 | | + 1
| |𝑝 − 𝑜 | | + | |𝑝′′ − 𝑜 | | + | |𝑝′′ − 𝑏′ | | .

To calculate | |𝑝′′ − 𝑏′ | | we can consider rotated 𝑝′′ and 𝑏′ so that 𝑝′′ = (𝛽, 0) and 𝑏′ = (cos 𝜃, sin 𝜃),
then:

𝛾 ≤ ||𝑝 − 𝑜 | | + 1
| |𝑝 − 𝑜 | | + 𝛽 +

√︁
(cos(𝜃) − 𝛽)2 + (sin(𝜃))2

Assume 𝛽 ≤ 𝛼
12 then we have | |𝑝 − 𝑜 | | ≤ 1 − 𝛽, hence:

𝛾 ≤ 2 − 𝛽

1 +
√︃
𝛽2 − 2𝛽(1 − 𝛼2

4) + 1

≤ 2 − 𝛽

1 + (1 − 𝛽)
√︃

1 + 2𝛽 𝛼2

4

= 1 −

√︃
1 + 𝛽 𝛼2

2 (1 − 𝛽) − (1 − 𝛽)

1 + (1 − 𝛽)
√︃

1 + 𝛽 𝛼2

2

• 𝑝 ∈ 𝑅3, we claim the distance from 𝑝 to the closest bicriteria solution 𝑏′ can be bounded as | |𝑝−𝑏′ | | ≥ 𝛼
3 .

Suppose 𝛼 ≤ 6
10 , we define 𝑧 = 1 − ||𝑞3 − 𝑜 | | ≤ 𝛼

12 , consider 𝑝′′′ the closest point to 𝑝 on the line
(𝑞3, 𝑞), hence | |𝑝 − 𝑝′′′ | | ≤ 𝛼

6 , now we have 𝛼
2 ≤ ||𝑝

′′′ − 𝑏′ | | ≤ | |𝑝′′′ − 𝑝 | | + | |𝑝 − 𝑏′ | | , then we obtain

35:11113

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 29

| |𝑝 − 𝑏′ | | ≥ 𝛼
3 .

𝛾 =
| |𝜎(𝑜) − 𝑝 | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | | =
| |𝑝 − 𝑜 | | + 1

| |𝑝 − 𝑜 | | + (1 − 𝛼
12) +

𝛼
3

=
| |𝑝 − 𝑜 | | + 1
| |𝑝 − 𝑜 | | + 1 + 𝛼

4

≤ 2
2 + 𝛼

4

= 1 − 𝛼

8 + 𝛼

• 𝑝 ∈ 𝑅4, assume 𝑝 and 𝑏′ are in the same location, therefore:

𝛾 =
| |𝜎(𝑜) − 𝑝 | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | | ≤ 1 − ||𝑝 − 𝑜 | | − | |𝑏 − 𝑜 | |
2| |𝑝 − 𝑜 | |

Notice that | |𝑝 − 𝑜 | | ≥ 1 + 𝛼
12 , consider two cases either | |𝑝 − 𝑜 | | ≤ 1 + 𝛼 or | |𝑝 − 𝑜 | | > 1 + 𝛼:

– | |𝑝 − 𝑜 | | ≤ 1 + 𝛼

𝛾 ≤ 1 −
1 + 𝛼

12 − 1
2(1 + 𝛼) = 1 − 𝛼

24(1 + 𝛼)

– | |𝑝 − 𝑜 | | > 1 + 𝛼

𝛾 ≤ 1 − ||𝑝 − 𝑜 | | − 1
2| |𝑝 − 𝑜 | | ≤

1
2
+ 1

2(1 + 𝛼)

= 1 − 1 + 𝛼
2(1 + 𝛼)

Therefore, by examining the position of 𝑝 in the regions, we establish that 𝛾𝛽 is upper-bounded by 1− 𝑓 (𝛼, 𝛽).
Consequently, Lemma 2.2.1 is substantiated by showing the existence of an 𝛼0 ≤ 0.6 and a sufficiently small
𝛽0 ≤ 0.05 such that 𝛾𝛽0 ≤ 1 − 𝑓 (𝛼0, 𝛽0) = 1 − 𝜖0 ≤ 0.9978.

In the proof of Theorem 1.3.1, we show that this new assignment property is enough to derive an improved
FPT approximation for Socially Fair (𝑘, 𝑧)-Clustering in Euclidean space. Since the assignment 𝜎 maps
every facility in 𝑂 uniquely to a facility in c𝑙 (𝐵), this implies that 𝜎(𝑂) is a feasible solution of cost at most
(3𝑧 · (1 − 𝜂0))OPT. This certifies the existence of a feasible solution being a subset of c𝑙 (𝐵) with the desired
approximation factor. Hence, we can find such a solution in FPT time by enumeration.

Now we are ready to prove Theorem 1.3.1 (restated for convenience).

Theorem 1.3.1 (High-Dimensional Euclidean Space). There exists a universal constant 𝜂0 > 0.0006 such
that for any constant positive integer 𝑧, there is a factor 3𝑧 (1−𝜂0) FPT approximation algorithm for Socially
Fair (𝑘, 𝑧)-Clustering in discrete Euclidean space R𝑑 that runs in time 2O(𝑘 log 𝑘)poly(𝑚, 𝑛, 𝑑).

Proof. Let 𝐵 ⊆ R𝑑 denote a (1 + 𝜖0, 𝑘 · ln 𝑛2/𝜖2
0) bi-criteria solution by applying the algorithm of [74].

We denote the total cost of the set of 𝛽0-near (𝛽0-far) points by BICn,OPTn,ALGn (BICf,OPTf,ALGf) in a

36:23067

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 30

bi-criteria solution, an optimum solution, and the solution returned by our algorithm, respectively. Note that
from the definition of 𝛽0-near points and the (clustering) cost, we have that OPTn ≤ 𝛽0 · BICn ≤ 𝛽0 · OPT.
Consequently, for the set of 𝛽0-far points, we get OPTf ≥ (1 − 𝛽0) · OPT.

For the set of 𝛽0-near points, the best bound on the cost that our algorithm can achieve is that of
Lemma 2.1.1. Therefore, we get ALGn ≤ (2OPTn + BICn). On the other hand, by Lemma 2.2.1, we do save
some cost on the 𝛽0-far points as we have ALGf ≤

(
(1− 𝜖0) (2OPTf +BICf)

)
. Moreover BICn +BICf = BIC ≤

(1 + 𝜖0)OPT by the choice of the bicriteria solution. Putting these factors together, we obtain

ALGn + ALGf ≤ 3𝑧−1 ·
[
(2OPTn + BICn) + (1 − 𝜖0)𝑧 (2OPTf + BICf)

]
≤ 3𝑧−1 ·

[
2𝛽𝑧0OPT + 2(1 − 𝜖0)𝑧 (1 − 𝛽𝑧0)OPT + BICn + (1 − 𝜖0)𝑧BICf

]
≤ 3𝑧−1 ·

[
2𝛽𝑧0OPT + 2(1 − 𝜖0)𝑧 (1 − 𝛽𝑧0)OPT + BICn + BICf

]
≤ 3𝑧−1 ·

[
2
(
𝛽𝑧0 + (1 − 𝜖0)𝑧 (1 − 𝛽𝑧0)

)
OPT + (1 + 𝜖0)OPT

]
≤ 3𝑧−1 ·

[(
2𝛽𝑧0 + 2(1 − 𝜖0)𝑧 − 2(1 − 𝜖0)𝑧𝛽𝑧0 + 1 + 𝜖0

)
OPT

]
≤ 3𝑧−1 ·

[(
2(1 − 𝜖0)𝑧 + 2𝛽𝑧0𝜖0𝑧 + 1 + 𝜖0

)
OPT

]
(using Bernoulli’s inequality3)

≤ 3𝑧−1 ·
[(

2(1 − 𝜖0)𝑧 + (2𝛽𝑧0𝑧 + 1)𝜖0 + 1
)︸ ︷︷ ︸

3−𝜖1

OPT
]

where in the first inequality, we used the approximate triangle inequality (𝑎 + 𝑏 + 𝑐)𝑧 ≤ 3𝑧−1 · (𝑎𝑧 + 𝑏𝑧 + 𝑐𝑧)
and in the second inequality, we use the fact that OPTn + OPTf = OPT and thus, the maximizer for 2OPTn +
2(1 − 𝜖0)𝑧OPTf occurs at the maximum of OPTn. Next, to bound the above under-braced expression, we
introduce a new parameter 𝜖1, which we prove below in claim 2.2.6 that 𝜖1 ≥ 0.0018. Finally, we have

ALGn + ALGf ≤ 3𝑧−1 · (3 − 𝜖1)OPT

≤ 3𝑧 · (1 − 𝜂0)OPT where 𝜂0 =
𝜖1
3

Claim 2.2.6. For any integer 𝑧, we have that 2(1 − 𝜖0)𝑧 + 𝜖0 (1 + 2𝛽𝑧0𝑧) ≤ 2 − 𝜖1

Proof. Let 2(1 − 𝜖0)𝑧 + 𝜖0 (1 + 2𝛽𝑧0𝑧) ≤ 1.9982. Note that, since from Lemma 2.2.1 we have that 𝛽0 = 0.05
and 𝜖0 > 0.002, we get lower bound for 𝜖1 as follows (the left-hand side is maximized at 𝑧 = 1): 𝜖1 >

2 − 2(1 − 𝜖0) − 𝜖0 (1 + 2𝛽0) > 0.0018.

It remains to analyze the running time of the algorithm. In the initial phase of our algorithm, we invoke
the Goyal-Jaiswal bi-criteria algorithm [74]. Subsequently, we evaluate all possible 𝑘-subsets of cl(B),
whose number is bounded by

((𝜆·𝑘)2
𝑘

)
≤ (𝑒𝜆)2𝑘 . This leads to an overall running time O

(
(𝑒𝜆)2𝑘 · 𝑛𝑘

)
where

37:14329

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 31

𝜆 = O
(
𝑘

𝜖 2
0
· ln2 𝑛

)
, therefore we have O

(
(𝑒 𝑘

𝜖 2
0
· ln2 𝑛)2𝑘 · 𝑛𝑘

)
= (𝑘

𝜖0
)O(𝑘) · 𝑛O(1) . Let 𝜂1 = 3𝑧 · 𝜂0, Then for

𝜂0 > 0.0006 and constant 𝑧, 𝜖1 simplifies to 𝜂1
3𝑧−1 , resulting in an overall complexity of (𝑘/𝜖1)O(𝑘) · 𝑛O(1) ,

which is FPT in terms of 𝑘 .

Proof of Claim 2.2.3

We first define the ratio 𝛾′
𝛽
:

𝛾′𝛽 = max
𝑝∈R𝑑\ball(𝑜,𝛽) ,
𝑏′∈𝑆\ball(𝑜,1)

{
| |𝑝 − 𝜎(𝑜) | |

2| |𝑝 − 𝑜 | | + | |𝑝 − 𝑏′ | |

}
.

Note that for the sake of the optimization problem, 𝑏 and 𝑜 are fixed points and therefore, the plane 𝑆 is a
function of the location of point 𝑝. Hence, we write the plane 𝑆 as 𝑆𝑝 . We prove that 𝛾𝛽 ≤ 𝛾′

𝛽
. Let 𝑏′ and

𝑝 be the points optimizing 𝛾𝛽 . Suppose 𝑏′ is not on 𝑆𝑝 . We start by choosing an orthonormal basis (𝑥, 𝑦, 𝑧)
for the linear space spanning 𝑏, 𝑜, 𝑝 and 𝑏′, and fixing a system of coordinates. Towards this, let 𝑧 = 𝑏 − 𝑜,
𝑥 =

𝑝− �̂�
| | 𝑝− �̂� | | , where 𝑝 is the orthogonal projection of 𝑝 on the line containing 𝑏 and 𝑜. Then fix 𝑦 = 𝑏′−𝑏′

| |𝑏′−𝑏′ | | ,
where 𝑏′ is the orthogonal projection of 𝑏′ on S, the plane containing 𝑏, 𝑜, and 𝑝. Now we fix the origin of
the coordinate system to be in the center of the following disk 4.

Let 𝐷 be the disk the perimeter of which is defined as the circle 𝜕 (ball(𝑜, 1)) ∩ 𝜕 (ball(𝑞, 𝛼)), where 𝜕

indicates the boundary of the closed space. Notice that after this translation of the coordinate system, 𝐷 is
contained in the 𝑥-𝑦 plane and that 𝑞, 𝑝, and 𝑏′ can be represented as 𝑞 = (0, 0, 𝑞𝑧), 𝑝 = (𝑝𝑥 , 0, 𝑝𝑧), and
𝑏′ = (𝑏′𝑥 , 𝑏′𝑦 , 𝑏′𝑧).

For any point 𝑠 = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) let 𝑠 = (𝑠𝑥 , 𝑠𝑦 , 0) denote its projection onto the 𝑥-𝑦 plane. See Figure 2.5
for an illustration of the projections 𝑞, 𝑝, and 𝑏′ of 𝑞, 𝑝, and 𝑏′ on the 𝑥-𝑦 plane, respectively.

𝑞 𝑝

𝑞1

Figure 2.5: An illustration of 𝐷 and the projection points of 𝑝, 𝑞 and 𝑏′.

Proposition 2.2.1. If 𝑏′𝑦 ≠ 0 then there exists 𝑏′′ ∉ interior(ball(𝑜, 1)) so that | |𝑏′′ − 𝑝 | |2 < | |𝑏′ − 𝑝 | |2 and
so that 𝑏′′ ∈ interior(ball(𝑞, 𝛼)) if and only if 𝑏′ ∈ interior(ball(𝑞, 𝛼)).

Proof. Consider 𝑏′′ as a rotation of 𝑏′ with respect to the line (𝑜, 𝑞), i.e., a rotation that preserves disk 𝐷.
We choose to rotate by the angle that will place 𝑏′′ as close to 𝑝 as possible, i.e., 𝑏′′ will be co-linear with
𝑞 and 𝑝 (𝑏′′𝑦 = 𝑞𝑦 = 𝑝𝑦 = 0). Note that the rotation preserves the distances | |𝑏′′ − 𝑜 | | and | |𝑏′′ − 𝑞 | | to

4As a clarification, we temporarily relocate the origin of the coordinate system to the center of the disk and we fixed 𝑞 = (0, 0, 𝑞𝑧) .

38:21893

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 32

be equal to | |𝑏′ − 𝑜 | | and | |𝑏′ − 𝑞 | |. To see that, assume that 𝑏′ is the orthogonal projection of 𝑏′ on the

line containing 𝑜 and 𝑞 We have that | |𝑏′ − 𝑜 | | =
√︃
(| |𝑏′ − �̌� | |)2 + (| |𝑏′ − 𝑜 | |)2. The claim follows since the

orthogonal projection of 𝑏′′ on the line would also land on 𝑏′. The argument for | |𝑏′′ − 𝑞 | | follows in a similar
way. As a consequence, since 𝑏′ is outside ball(𝑜, 1), then 𝑏′′ is also outside ball(𝑜, 1). Also, 𝑏′′ will fall
outside of ball(𝑞, 𝛽) if and only if 𝑏′ is outside ball(𝑞, 𝛽).

We observe that | |𝑏′𝑧− 𝑝𝑧 | |2 is constant w.r.t. rotations. This allows us to reduce our argument to analyzing
the change of squared distances within the 𝑥–𝑦 plane.

| |𝑏′ − 𝑝 | |2 = | |𝑏′𝑥 − 𝑝𝑥 | |2 + ||𝑏′𝑦 − 𝑝𝑦 | |2 + ||𝑏′𝑧 − 𝑝𝑧 | |2

= | |𝑏′ − 𝑝 | |2 + ||𝑏′𝑧 − 𝑝𝑧 | |2

> | |𝑏′′ − 𝑝 | |2 + ||𝑏′𝑧 − 𝑝𝑧 | |2

= | |𝑏′′𝑥 − 𝑝𝑥 | |2 + ||𝑏′′𝑦 − 𝑝𝑦 | |2 + ||𝑏′𝑧 − 𝑝𝑧 | |2

= | |𝑏′′𝑥 − 𝑝𝑥 | |2 + ||𝑏′′𝑦 − 𝑝𝑦 | |2 + ||𝑏′′𝑧 − 𝑝𝑧 | |2

= | |𝑏′′ − 𝑝 | |2.

It remains to observe that | |𝑏′′ − 𝑝 | |2 < | |𝑏′ − 𝑝 | |2 implies | |𝑏′′ − 𝑝 | | < | |𝑏′ − 𝑝 | |.

By Proposition 2.2.1, we obtain that 𝑏′ must be co-linear with 𝑝 and 𝑞, therefore 𝛾𝛽 ≤ 𝛾′
𝛽

and point 𝑏′ may
be assumed to be on the same plane 𝑆 as points 𝑏, 𝑜, and 𝑝. The fact that 𝑏′′ ∉ interior(ball(𝑜, 1)) ensures
𝑏 remains the closest point in 𝐹 to 𝑜 when replacing 𝑏′ with 𝑏′′. The property that 𝑏′′ ∈ interior(ball(𝑞, 𝛼))
if and only if 𝑏′ ∈ interior(ball(𝑞, 𝛼)) ensures that, after replacing 𝑏′ with 𝑏′′, 𝑜 is assigned to the midpoints
of 𝑏′′ and 𝑏 if and only if we it was assigned to the midpoint of 𝑏′ and 𝑏 before the replacement. The two
properties together guarantee that the replacement of 𝑏′ with 𝑏′′ does not change 𝜎(𝑜).

2.3 Hardness of Discrete 𝑘-Center

For this section, we use the following explicit construction of the so-called 𝜂-balanced error-correcting codes
from a recent result of Ta-Shma [116] which we rephrase for our purposes as follows:

Theorem 2.3.1. Let 𝜂 ∈ (0, 1/2) be a positive constant. Then there is an algorithm that computes, for any
given number 𝑠 ∈ N, an 𝑠-element set 𝐵 ⊆ {0, 1}𝑡 of binary vectors of dimension 𝑡 = O(log 𝑠/𝜂2+𝑜 (1)) such
that for any 𝑏 ∈ 𝐵, its Hamming weight | |𝑏 | |1 and for any 𝑏′ ∈ 𝐵 \ {𝑏}, the Hamming distance | |𝑏 − 𝑏′ | |1 both
lie in the interval [(1/2 − 𝜂)𝑡, (1/2 + 𝜂)𝑡]. The running time of the algorithm is O(𝑠𝑡).

Proof. Ta-Shma [116] gives an explicit construction of a 𝑡× ⌈log2 𝑠⌉ binary matrix generating a linear, binary,
error-correcting code of message length ⌈log2 𝑠⌉, block length 𝑡 = O(log 𝑠/𝜂2+𝑜 (1)), and pairwise Hamming

39:11021

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 33

distance between (1/2−𝜂)𝑡 and (1/2+𝜂)𝑡. Since the code is linear, it contains the zero code word. Hence each
code word has Hamming weight in [(1/2−𝜂)𝑡, (1/2+𝜂)𝑡]. The time for constructing the matrix is polynomial
in log 𝑠 and 𝑡. Using the generating matrix, at least 𝑠 many non-zero code words can be enumerated in time
O(𝑠𝑡), which dominates the time for computing the matrix.

We leverage balanced error correcting codes as gadget in our hardness proof for discrete 𝑘-Center. For
any binary vector 𝑏 ∈ {0, 1}𝑡 , we denote by �̄� the binary vector obtained by flipping each coordinate in 𝑏.

Theorem 1.3.2 (Hardness in Discrete Euclidean Space). For any constant positive integer 𝑞 and any positive
constant 𝜂 > 0, there exists a function 𝑑 (𝑘, 𝑛) = 𝑂 (𝑘 log 𝑛) such that there is no factor-(3/2 − 𝜂)1/𝑞 FPT
approximation algorithm for the discrete 𝑘-Center problem inR𝑑 (𝑘,𝑛) under the ℓ𝑞 metric unless W[1] = FPT.
Moreover, for the ℓ2 metric this hardness holds even for some dimension 𝑂 (log 𝑛), that is, independently of 𝑘 .

Proof. We show a reduction from Multi-Colored Independent Set, which is known to be 𝑊 [1]-hard [50].
The input is a 𝑘-partite graph𝐺 = (𝑉, 𝐸) with 𝑘-partition𝑉1, . . . , 𝑉𝑘 . The question is if there is an independent
set that is multi-colored, that is, it has precisely one node from each set 𝑉𝑖 , 𝑖 ∈ [𝑘]. W.l.o.g. we assume that
each 𝑉𝑖 contains at least one node that is adjacent to all nodes 𝑉 \𝑉𝑖 . Adding such nodes, we can additionally
assume that |𝑉𝑖 | = 𝑛/𝑘 for each 𝑖 ∈ [𝑘] where 𝑛 = |𝑉 |.

Fix some constant 𝜂 ∈ (0, 1/2). Using Theorem 2.3.1, we construct a set 𝐵 ⊆ {0, 1}𝑡 of 𝑛 nearly
equidistant code words of dimension 𝑡 = O(log 𝑛/𝜂2+𝑜 (1)). We map each node 𝑢 ∈ 𝑉 uniquely to some
non-zero code word 𝑏(𝑢) ∈ 𝐵. We construct a 𝑘-Center instance in R𝑘 ·𝑡 as follows. We subdivide the
coordinates of each point in R𝑘 ·𝑡 into 𝑘 blocks each containing 𝑡 consecutive coordinates. In our set 𝑃 of
data points, we introduce for each node 𝑣𝑖 ∈ 𝑉𝑖 , 𝑖 ∈ [𝑘], the point 𝑝(𝑣𝑖) ∈ 𝑃 in which the 𝑖th block equals
𝑏(𝑣𝑖) and all other coordinates are zero. For each edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 , 𝑣𝑖 ∈ 𝑉𝑖 , 𝑣 𝑗 ∈ 𝑉 𝑗 for distinct 𝑖, 𝑗 ∈ [𝑘]
we create a point 𝑝(𝑣𝑖 , 𝑣 𝑗) ∈ 𝑃 in which the 𝑖th block equals 𝑏(𝑣𝑖), the 𝑗 th block equals 𝑏(𝑣 𝑗), and all other
coordinates are zero. No further points are added to 𝑃. We set the number of centers to be 𝑘 completing the
construction of the 𝑘-Center instance.

Let 𝑖 ∈ [𝑘] and 𝑣𝑖 , 𝑣
′
𝑖
∈ 𝑉𝑖 be distinct vertices. We have that | |𝑝(𝑣𝑖) − 𝑝(𝑣′

𝑖
) | |𝑞𝑞 ≤ ||𝑏(𝑣𝑖) − 𝑏(𝑣′

𝑖
) | |1 ≤

(1/2 + 𝜂)𝑡 by Theorem 2.3.1. Let 𝑣 𝑗 ∈ 𝑉 𝑗 , 𝑗 ∈ [𝑘] such that (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 . By Theorem 2.3.1, we have that

| |𝑝(𝑣′𝑖) − 𝑝(𝑣𝑖 , 𝑣 𝑗) | |𝑞𝑞 ≤ ||𝑏(𝑣′𝑖) − 𝑏(𝑣𝑖) | |1 + ||𝑏(𝑣 𝑗) | |1
≤ (𝑡 − ||𝑏(𝑣′𝑖) − 𝑏(𝑣𝑖) | |1) + (𝑡 − (1/2 − 𝜂)𝑡)

≤ (𝑡 − (1/2 − 𝜂)𝑡) + (1/2 + 𝜂)𝑡

≤ (1 + 2𝜂)𝑡 .

Hence if there is a multi-colored independent set 𝐼 for 𝐺 then 𝑋 = { 𝑝(𝑢) | 𝑢 ∈ 𝐼 } is a 𝑘-element set such
that 𝛿(𝑝, 𝑋)𝑞 ≤ (1 + 2𝜂)𝑡 for any 𝑝 ∈ 𝑃 under the ℓ𝑞 metric, which gives an upper bound of (1 + 2𝜂)𝑡 on the
𝑘-Center objective in the completeness case.

40:70673

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 34

For analyzing the soundness case, assume that there is no multi-colored independent set for 𝐺. Consider
an arbitrary 𝑘-element set 𝑋 ⊆ 𝑉 . We say that 𝑥 ∈ 𝑋 covers 𝑝 ∈ 𝑃 if 𝛿(𝑝, 𝑥)𝑞 < (3/2 − 3𝜂)𝑡. We claim
that there is some 𝑝 ∈ 𝑃 not covered by any center in 𝑋 . The correctness of this claim implies that any
parameterized approximation algorithm with approximation ratio strictly better than ((3/2−3𝜂)/(1+2𝜂))1/𝑞

implies that 𝑊 [1] = FPT and thus the theorem.
In order to prove this claim, we assume for the sake of contradiction, that all 𝑝 ∈ 𝑃 are covered by some

center in 𝑋 . First, we argue that w.l.o.g. 𝑋 contains no point of the form 𝑝(𝑣𝑖 , 𝑣 𝑗) where (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 . In fact,
for any 𝑔 ∉ {𝑖, 𝑗}, we have that

| |𝑝(𝑣′𝑔) − 𝑝(𝑣𝑖 , 𝑣 𝑗) | |𝑞𝑞 ≥ ||𝑏(𝑣′𝑔) | |1 + ||𝑏(𝑣𝑖) | |1 + ||𝑏(𝑣 𝑗) | |1
≥ (1/2 − 𝜂)𝑡 + 2(𝑡 − (1/2 + 𝜂)𝑡)

= (3/2 − 3𝜂)𝑡 .

(2.4)

Hence 𝑝(𝑣𝑖 , 𝑣 𝑗) can cover 𝑝(𝑣′𝑔) only if 𝑔 = 𝑖 or 𝑔 = 𝑗 . Similarly, 𝑝(𝑣𝑖 , 𝑣 𝑗) can cover 𝑝(𝑣′𝑔, 𝑣′ℎ) only if 𝑖 = 𝑔

and 𝑗 = ℎ. But then these points would be covered by 𝑝(𝑣𝑖) as well and hence we could replace 𝑝(𝑣𝑖 , 𝑣 𝑗)
with 𝑝(𝑣𝑖). We therefore assume that 𝑋 contains only points of the form 𝑝(𝑣𝑖).

We claim that 𝑋 is multi-colored. Otherwise, there would be some 𝑉𝑖 that contains no point from 𝑋 . By
our initial assumption, 𝑉𝑖 contains some point 𝑣𝑖 that is adjacent to all points 𝑉 \ 𝑉𝑖 . Assuming 𝑘 ≥ 3 there
exists at least one 𝑉 𝑗 , 𝑗 ≠ 𝑖 that contains at most one node from 𝑋 . If 𝑉 𝑗 intersects 𝑋 then let 𝑣 𝑗 ∈ 𝑉 𝑗 ∩ 𝑋 ,
and otherwise let 𝑣 𝑗 be an arbitrary node in 𝑉 𝑗 . By our assumption (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 . If 𝑣 𝑗 ∈ 𝑋 then

| |𝑝(𝑣 𝑗 , 𝑣𝑖) − 𝑝(𝑣 𝑗) | |𝑞𝑞 ≥ ||𝑏(𝑣 𝑗) − 𝑏(𝑣 𝑗) | |1 + ||𝑏(𝑣𝑖) | |1
≥ 𝑡 + (𝑡 − (1/2 + 𝜂)𝑡)

= (3/2 − 𝜂)𝑡

(2.5)

as the 𝑗 th block of 𝑝(𝑣 𝑗) equals 𝑏(𝑣 𝑗) and the 𝑖th block of 𝑝(𝑣 𝑗 , 𝑣𝑖) equals 𝑏(𝑣 𝑗). If 𝑣 𝑗 ∉ 𝑋 then for any 𝑣ℎ ∈ 𝑋

we have ℎ ∉ {𝑖, 𝑗}. Thus | |𝑝(𝑣𝑖 , 𝑣 𝑗) − 𝑝(𝑣ℎ) | |𝑞𝑞 ≥ (3/2 − 3𝜂)𝑡, which follows as in (2.4). Hence 𝑝(𝑣𝑖 , 𝑣 𝑗)
would not be covered showing that 𝑋 is multi-colored. Since 𝑋 is multi-colored it can not be an independent
set. Hence there exists some edge (𝑣𝑖 , 𝑣 𝑗) such that 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑋 but then | |𝑝(𝑣𝑖) − 𝑝(𝑣𝑖 , 𝑣 𝑗) | |𝑞𝑞 ≥ (3/2 − 𝜂)𝑡,
| |𝑝(𝑣 𝑗) − 𝑝(𝑣𝑖 , 𝑣 𝑗) | |𝑞𝑞 ≥ (3/2 − 𝜂)𝑡, and | |𝑝(𝑣ℎ) − 𝑝(𝑣𝑖 , 𝑣 𝑗) | |𝑞𝑞 ≥ (3/2 − 3𝜂)𝑡 for any 𝑣ℎ ∈ 𝑋 , ℎ ∉ {𝑖, 𝑗},
which follows as in (2.5) and (2.4), respectively. Hence 𝛿(𝑝(𝑣𝑖 , 𝑣 𝑗), 𝑋) ≥ (3/2 − 3𝜂)𝑡, implies that 𝑝(𝑣𝑖 , 𝑣 𝑗)
is not covered.

We complete the proof by noting that the dimension of the instance can be reduced to𝑂 (log 𝑛) for Euclidean
metrics by using the Johnson-Lindenstrauss transform with sufficiently small (constant) error parameter.

41:35011

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 35

2.4 EPAS for Metrics of Sub-Logarithmic Doubling Dimension

In this section, we show an EPAS for Socially Fair (𝑘, 𝑧)-Clustering in metrics of sub-logarithmic doubling
dimension. This result complements the hardness result of Section 2.2 (Theorem 1.3.2). Towards our goal,
we prove the following result.

Theorem 1.3.3 (EPAS for Doubling Metric of Sub-Logarithmic Dimension). There is an algorithm that
computes (1 + 𝜖)-approximate solution, for every 𝜖 > 0, for Socially Fair (𝑘, 𝑧)-Clustering in the metric of

doubling dimension 𝑑 in time 𝑓 (𝑘, 𝑑, 𝜖, 𝑧)poly(𝑚, 𝑛), where 𝑓 (𝑘, 𝑑, 𝜖, 𝑧) =
((

2𝑧
𝜖

)𝑑
𝑘 log 𝑘

)O(𝑘)
.

Note that the above algorithm runs in FPT time for 𝑑 = 𝑜(log 𝑛). We also remark that the above result
can be extended to the continuous R𝑑 . Throughout this section, we assume that the weight aspect ratio
max𝑝∈𝑃 𝑤 (𝑝)

min𝑝′ ∈𝑃 𝑤 (𝑝′) and the distance aspect ratio max𝑝,𝑝′ ∈𝑃 𝛿 (𝑝,𝑝′)
min𝑝≠𝑝′ ∈𝑃 𝛿 (𝑝,𝑝′) are bounded by poly(𝑛), some polynomial in 𝑛.

For 𝑝 ∈ 𝑃 and any number 𝑟 ≥ 0, denote by ball(𝑝, 𝑟) to be the closed ball centered at 𝑝 of radius 𝑟. We prove
the theorem in two steps: first, in Section 2.4.1 we show an algorithm to obtain a coreset for the problem, and
then, in Section 2.4.2 we show how to use this coreset to get the algorithm of Theorem 1.3.3.

2.4.1 Coreset for Socially Fair (𝑘, 𝑧)-Clustering

The key idea for constructing coresets for Socially Fair (𝑘, 𝑧)-Clustering crucially relies on the following
alternate but equivalent definition of the problem. In this definition, we are given I = (𝐹, 𝑃 ⊂ M,W),
where either 𝐹 =M or 𝐹 ⊆ M, whereM is doubling metric of dimension 𝑑, defined by the metric function
𝛿. A group is a weight vector w ∈ W such that w : 𝑃 → R≥0. Given 𝑋 ⊆ 𝐹, the distance vector 𝜹𝑃 (𝑋)
is defined as 𝜹𝑃 (𝑋) [𝑝] = 𝛿(𝑝, 𝑋)𝑧 , for each 𝑝 ∈ 𝑃. The cost of 𝑋 for a group w ∈ W is defined as
𝑐(w, 𝑋) = w · 𝜹𝑃 (𝑋). For a Socially Fair (𝑘, 𝑧)-Clustering instance I = (𝐹, 𝑃,W), the cost of 𝑋 is
defined as cost(I, 𝑋) = maxw∈W cost(w, 𝑋). The cost of the instance I = (𝐹, 𝑃,W) is

OPT(I) = min
𝑋⊆𝐹, |𝑋 |=𝑘

max
w∈W

cost(w, 𝑋)

Whenever the instance I is clear from context, we will just write OPT. Notice that, in the original Socially
Fair (𝑘, 𝑧)-Clustering, a group is given by 𝑆 ⊆ 𝑃, and this can be captured by weight vector w[𝑝] = 0 for
𝑝 ∉ 𝑆 and 𝑤(𝑝) otherwise. We prove the following coreset exists for Socially Fair (𝑘, 𝑧)-Clustering.

Theorem 2.4.1 (Coreset for Socially Fair (𝑘, 𝑧)-Clustering). Given an instance I = (𝐹, 𝑃,W) of
Socially Fair (𝑘, 𝑧)-Clustering in doubling metric of dimension 𝑑 and 0 < 𝜖 ≤ 1, there is an algorithm that,

in time
(

2𝑧
𝜖

)O(𝑑)
poly(𝑛, 𝑚), computes another instance I′ = (𝐹, 𝑃′,W′) of Socially Fair (𝑘, 𝑧)-Clustering

with 𝑃′ ⊆ 𝑃 : |𝑃′ | =
(

2𝑧
𝜖

)O(𝑑)
𝑘𝑧 log 𝑛 such that for any 𝑋 ⊆ 𝐹 with |𝑋 | = 𝑘 ,

(1 − 𝜖)cost(I, 𝑋) ≤ cost(I′, 𝑋) ≤ (1 + 𝜖)cost(I, 𝑋).

42:88303

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 36

We remark that the above theorem yields a coreset of clients, and not of groups, and hence, the total size
of coreset is comparable to the original instance. However, we will show later that such coreset is sufficient
to get a parameterized approximation scheme with parameters 𝑘 and 𝑑. We would also like to point out
that the exponential dependency on 𝑑 on the point set size of the coreset is inevitable since Socially Fair
(𝑘, 𝑧)-Clustering captures 𝑘-Center, for which such a lower bound is known [24, 16]. To see that our notion
of coreset for Socially Fair (𝑘, 𝑧)-Clustering coincides with the regular notion of coreset for 𝑘-Center,
note that in this setting each group contains a single distinct point.

In the next section, we describe the algorithm of Theorem 2.4.1.

The Algorithm. Our algorithm (See Algorithm 1) is inspired by the grid construction approach of [84] that
yields coresets for 𝑘-Median and 𝑘-Means. Given an instance I = (𝐹, 𝑃,W) of Socially Fair (𝑘, 𝑧)-
Clustering, the first step is to start with an (𝛼, 𝛽)-bicriteria solution 𝐵 = {𝑏𝑖}𝑖∈[𝛽𝑘] that opens at most 𝛽𝑘

facilities with the guarantee that cost(I, 𝐵) ≤ 𝛼 · OPT, for some constants 𝛼, 𝛽 ≥ 1. Let 𝑅 =
𝑧

√︃
cost(I,𝐵)

𝛼𝜏
,

where 𝜏 := maxw∈W | |w| |1. Let Δ =
max𝑝∈𝑃,w∈W w[𝑝]
min𝑝∈𝑃,w∈W w[𝑝] be the weight aspect ratio of I. Then, for each

𝑏𝑖 ∈ 𝐵, consider the balls B 𝑗

𝑖
:= ball(𝑏𝑖 , 2 𝑗𝑅), for 𝑗 ∈ {0, · · · , ⌈2 log(𝛼𝑛Δ)⌉}. Note that, for w ∈ W and

𝑝 ∈ 𝑃 with w[𝑝] > 0, it holds that 𝛿(𝑝, 𝐵) ≤ 𝑅 𝑧
√
𝛼𝑛𝜏, since 𝛿(𝑝, 𝐵) ≤ 𝑧

√︃
cost(I,𝐵)

w[𝑝] ≤ 𝑧

√︃
𝛼𝜏

w[𝑝] 𝑅 ≤ 𝑅
𝑧
√
𝛼𝑛Δ.

Hence, we have that every point 𝑝 ∈ 𝑃 is contained in some ball B 𝑗

𝑖
. For 𝑏𝑖 ∈ 𝐵, let Q 𝑗

𝑖
= B 𝑗

𝑖
− B 𝑗−1

𝑖
,

for 𝑗 = {1, · · · , ⌈2 log(𝛼Δ)⌉}, be the ring between B 𝑗

𝑖
and B 𝑗−1

𝑖
, with Q0

𝑖
= B0

𝑖
. Decompose every ball B 𝑗

𝑖

into smaller balls each of radius 𝜖
40𝛼𝑅2 𝑗 using the fact that the metric is a doubling metric. These balls can

intersect, so we assign every point 𝑝 ∈ 𝑃 to exactly one ball (for example, by associating 𝑝 to the smallest
ball containing 𝑝, breaking ties arbitrarily).
For every ball B 𝑗

𝑖
and every smaller ball 𝑡 of B 𝑗

𝑖
with |𝑡 ∩ Q 𝑗

𝑖
| ≠ ∅, pick an arbitrary point 𝑝′ ∈ 𝑡 ∩ Q 𝑗

𝑖

as the representative of (the points in) 𝑡 ∩ Q 𝑗

𝑖
, and add 𝑝′ to the coreset 𝑃′ with group weight vectors as

follows. Corresponding to every group vector w ∈ W, create a new group vector w′ ∈ W′. Then,w′ [𝑝′] :=∑
𝑝∈𝑡∩𝑄 𝑗

𝑖

w(𝑝). Intuitively, w′ [𝑝′] captures the total weight of points of w in 𝑡 ∩ Q 𝑗

𝑖
. This concludes the

coreset construction.
The high-level idea above is to decompose each ball B 𝑗

𝑖
into smaller balls and pick a distinct point as the

representative of points in the non-empty decomposed ball. Additionally, such representative 𝑝′ participates
in the group w′ with weight which is sum of the weights of points in w that are represented by 𝑝′. However,
we want to decompose the ball B 𝑗

𝑖
into smaller balls in a way that the total number of balls remains the same,

irrespective of the radius of the ball. This is necessary as for higher values of 𝑗 , this number would depend
on 𝑛, if we are not careful. While this does not seem to help much, as the radius of the decomposed balls is
much large for higher values 𝑗 , it actually does the trick: since the points in these balls are far from 𝑏𝑖 , and
hence their connection cost to 𝑏𝑖 is also large. This allows us to represent the radii of larger balls in terms
of the connection cost of its points to 𝐵, thus bounding the error in terms of the cost of 𝐵, which in turn is
bounded by 𝛼OPT, which gives us the desired guarantee.

43:11396

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 37

Algorithm 1: Coreset construction for Socially Fair (𝑘, 𝑧)-Clustering
Data: Instance I = (𝐹, 𝑃,W) of Socially Fair (𝑘, 𝑧)-Clustering, (𝛼, 𝛽)-bicriteria solution 𝐵 for

I
Result: Coreset I′ = (𝐹, 𝑃′,W′) for I

1 Let 𝑃′ ← ∅;
2 Let w′ ← 0 for w′ ∈ W′;
3 Let 𝜏 ← maxw∈W | |w| |1;

4 Let 𝑅 =
𝑧

√︃
cost(I,𝐵)

𝛼𝜏
;

5 For each 𝑏𝑖 ∈ 𝐵 for 𝑗 ∈ {0, 1, · · · , ⌈2 log𝛼𝑛Δ⌉}, let B 𝑗

𝑖
= ball(𝑏𝑖 , 2 𝑗𝑅), and let Q 𝑗

𝑖
= B 𝑗

𝑖
− B 𝑗−1

𝑖

with Q0
𝑖
= B0

𝑖
;

6 Decompose each ball B 𝑗

𝑖
into balls of radius each 𝜖

𝛼3𝑧+2 2 𝑗𝑅 ; // e.g., use Lemma 2.4.4

7 Associate each point 𝑝 ∈ 𝑃 to a smallest ball containing 𝑝 breaking ties arbitrary;
8 foreach 𝑖 ∈ [𝑘] do
9 foreach 𝑗 ∈ {0, 1, · · · , ⌈2 log𝛼𝑛Δ⌉} do

10 foreach smaller ball 𝑡 of B 𝑗

𝑖
do

11 if ∃𝑝 ∈ 𝑡 ∩𝑄 𝑗

𝑖
then

12 𝑃′ ← 𝑃′ ∪ 𝑝 ;
13 foreach 𝒘 ∈ W do
14 Set the corresponding weight vector 𝒘′ [𝑝] = ∑

𝑝′∈𝑡∩Q 𝑗

𝑖

𝒘 [𝑝′];
15 end
16 break;
17 end
18 end
19 end
20 end
21 return I′ := (𝐹, 𝑃′,W′);

Analysis. First, let us bound |𝑃′ |. Note |𝑃′ | = O(|𝐵 | log(𝛼𝑛)
(
𝛼3𝑧
𝜖

)O(𝑑)
), assuming Δ = poly(𝑛, 𝑚). We

will use the following bi-criteria algorithm for Socially Fair (𝑘, 𝑧)-Clustering due [103].

Theorem 2.4.2 ([103]). There exists a polynomial time algorithm for Socially Fair (𝑘, 𝑧)-Clustering that,
for every 𝛾 ∈ (0, 1), outputs at most 𝑘

1−𝛾 centers whose cost is bounded by 𝑒𝑂 (𝑧)

1−𝛾 times the optimal cost.

Invoking Algorithm 1 with the above bi-criteria solution for 𝛾 = 1/2, we get |𝑃′ | =
(

2𝑧
𝜖

)O(𝑑)
𝑘𝑧 log 𝑛, as

desired. Note that the running time of the algorithm is
(

2𝑧
𝜖

)O(𝑑)
poly(𝑛).

We now argue that I′ is indeed a coreset for I. Let OPT(I) be the cost of optimal solution for I. Fix a
feasible solution 𝑋 ⊆ 𝐹, |𝑋 | = 𝑘 and let �̂� ∈ W be a maximizer of the Robust 𝑘-Median cost of I for 𝑋 .
We claim that, for any 𝒘′ ∈ W′, it holds that

cost(𝒘, 𝑋) − 𝜖cost(�̂�, 𝑋) ≤ cost(𝒘′, 𝑋) ≤ (1 + 𝜖)cost(�̂�, 𝑋),

where 𝒘 ∈ W is the corresponding weight vector to 𝒘′. Fix any 𝒘′ ∈ W′ and the corresponding 𝒘 ∈ W.

44:36592

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 38

For 𝑝 ∈ 𝑃, let 𝑟 (𝑝) ∈ 𝑃′ be the representative of 𝑝. Using the inequality5 |𝑎𝑧 − 𝑏𝑧 | ≤ |(𝑎 − 𝑏) (𝑎 + 𝑏)𝑧−1 |,
for 𝑎, 𝑏 ≥ 0, we have that the total error E := |cost(w′, 𝑋) − cost(w, 𝑋) | is bounded by,

E ≤
∑︁
𝑝∈𝑃
| (w[𝑝]𝛿(𝑝, 𝑋)𝑧−w[𝑝]𝛿(𝑟 (𝑝), 𝑋)𝑧) | ≤

∑︁
𝑝∈𝑃

w[𝑝] | (𝛿(𝑝, 𝑋)−𝛿(𝑟 (𝑝), 𝑋)) (𝛿(𝑝, 𝑋)+𝛿(𝑟 (𝑝), 𝑋))𝑧−1 |

Note that | (𝛿(𝑝, 𝑋) − 𝛿(𝑟 (𝑝), 𝑋)) | ≤ |(𝛿(𝑝, 𝑟 (𝑝)) + 𝛿(𝑟 (𝑝), 𝑋) − 𝛿(𝑟 (𝑝), 𝑋)) | ≤ 𝛿(𝑝, 𝑟 (𝑝)). Further,
𝛿(𝑝, 𝑋) + 𝛿(𝑟 (𝑝), 𝑋) ≤ 2𝛿(𝑝, 𝑋) + 𝛿(𝑝, 𝑟 (𝑝)). Hence,

E ≤
∑︁
𝑝∈𝑃

w[𝑝] · 𝛿(𝑝, 𝑟 (𝑝)) (2𝛿(𝑝, 𝑋) + 𝛿(𝑝, 𝑟 (𝑝)))𝑧−1.

To bound E, we divide the points in 𝑃 in three parts, and bound the errors on each part separately. Let
𝑃𝑅 := {𝑝 ∈ 𝑃 | 𝛿(𝑝, 𝐵) ≤ 𝑅 & 𝛿(𝑝, 𝑋) ≤ 𝑅}, 𝑃𝐵 := {𝑝 ∈ 𝑃 | 𝛿(𝑝, 𝐵) > 𝑅 and 𝛿(𝑝, 𝑋) ≤ 𝛿(𝑝, 𝐵)}, and
𝑃𝑋 := {𝑝 ∈ 𝑃 | 𝛿(𝑝, 𝑋) > 𝑅 and 𝛿(𝑝, 𝐵) ≤ 𝛿(𝑝, 𝑋)}.

For 𝑝 ∈ 𝑃𝑅, we have 𝛿(𝑝, 𝑟 (𝑝)) ≤ 𝜖 𝑅

𝛼3𝑧+1 , and 𝛿(𝑝, 𝑋) ≤ 𝑅, and hence we have,

E𝑅 ≤
∑︁
𝑝∈𝑃𝑅

w[𝑝] 𝜖𝑅

𝛼3𝑧+1

(
2𝑅 + 𝜖𝑅

𝛼3𝑧+1

) 𝑧−1

≤ 𝜖𝑅2

𝛼3𝑧+1

(
2 + 𝜖

𝛼3𝑧+1

) 𝑧−1 ∑︁
𝑝∈𝑃𝑅

w[𝑝]

≤ 𝜖OPT
9𝛼𝜏

∑︁
𝑝∈𝑃𝑅

w[𝑝]

<
𝜖

3
OPT since 𝜏 ≥ ||w| |1.

For 𝑝 ∈ 𝑃𝐵, suppose 2 𝑗𝑅 ≥ 𝛿(𝑝, 𝐵) > 2 𝑗−1𝑅, for some 𝑗 ≥ 1. Then, note that 𝛿(𝑝, 𝑟 (𝑝)) ≤ 2 𝜖 2 𝑗𝑅

𝛼3𝑧+2 <

2 2𝜖 𝛿 (𝑝,𝐵)
𝛼3𝑧+2 < 𝜖

𝛼3𝑧 𝛿(𝑝, 𝐵). Hence, we bound E𝐵 using the fact 𝛿(𝑝, 𝑋) ≤ 𝛿(𝑝, 𝐵),

E𝐵 ≤
∑︁
𝑝∈𝑃𝐵

w[𝑝] 𝜖

𝛼3𝑧
𝛿(𝑝, 𝐵)𝑧

(
2 + 𝜖

𝛼3𝑧

) 𝑧−1
≤ 𝜖

3𝛼

∑︁
𝑝∈𝑃𝐵

w[𝑝]𝛿(𝑝, 𝐵)𝑧 ≤ 𝜖

3
OPT(I).

For 𝑝 ∈ 𝑃𝑋, suppose 𝛿(𝑝, 𝐵) > 𝑅, then 2 𝑗𝑅 ≥ 𝛿(𝑝, 𝐵) > 2 𝑗−1𝑅, for some 𝑗 ≥ 1. In this case, we have
𝛿(𝑝, 𝑟 (𝑝)) ≤ 2 𝜖 2 𝑗𝑅

𝛼3𝑧+2 < 2 2𝜖 𝛿 (𝑝,𝐵)
𝛼3𝑧+2 < 𝜖

𝛼3𝑧 𝛿(𝑝, 𝐵) ≤
𝜖

𝛼3𝑧 𝛿(𝑝, 𝑋). Otherwise, 𝛿(𝑝, 𝐵) ≤ 𝑅, in which case
𝛿(𝑝, 𝑟 (𝑝)) ≤ 2 𝜖 𝑅

𝛼3𝑧+2 < 2𝜖
𝛼3𝑧+2 𝛿(𝑝, 𝑋). Hence,

E𝑋 ≤
∑︁
𝑝∈𝑃𝑋

w[𝑝] 𝜖

𝛼3𝑧
𝛿(𝑝, 𝑋)𝑧

(
2 + 𝜖

𝛼3𝑧

) 𝑧−1
≤ 𝜖

3𝛼

∑︁
𝑝∈𝑃𝑋

w[𝑝]𝛿(𝑝, 𝑋)𝑧 ≤ 𝜖

3
cost(w, 𝑋).

5This can be proved using induction on 𝑧.

45:15515

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 39

Now,

cost(𝒘′, 𝑋) ≤ cost(𝒘, 𝑋) + 𝜖OPT(I)

≤ cost(𝒘, 𝑋) + 𝜖cost(�̂�, 𝑋) since OPT(I) ≤ cost(I, 𝑋) = cost(�̂�, 𝑋)

≤ (1 + 𝜖)cost(�̂�, 𝑋) since cost(𝒘, 𝑋) ≤ cost(�̂�, 𝑋).

Similarly, cost(𝒘′, 𝑋) ≥ cost(𝒘, 𝑋) − 𝜖OPT(I) ≥ cost(𝒘, 𝑋) − 𝜖cost(�̂�, 𝑋) since OPT(I) ≤ cost(�̂�, 𝑋).
Now, we finish the proof as follows.

cost(I′, 𝑋) = max
𝒘′∈W

cost(𝒘′, 𝑋) ≤ (1 + 𝜖)cost(�̂�, 𝑋) = (1 + 𝜖)cost(I, 𝑋)

On the other hand,

cost(I′, 𝑋) = max
𝒘′∈W

cost(𝒘′, 𝑋) ≥ max
𝒘∈W

cost(𝒘, 𝑋) − 𝜖cost(�̂�, 𝑋) = (1 − 𝜖)cost(I, 𝑋).

2.4.2 EPAS for Socially Fair (𝑘, 𝑧)-Clustering

In this section, we show how to use the coreset obtained from Theorem 2.4.1 to get a (1 + 𝜖)-approximate
solution to the Socially Fair (𝑘, 𝑧)-Clustering problem and provide an EPAS with respect to 𝑘 and 𝑑,
when |𝑃 | is small. By scaling the distances in the instance of Socially Fair (𝑘, 𝑧)-Clustering, we assume
that the distances are between 1 and Δ′, for some number Δ′. Our algorithm (see Algorithm 2) uses the
leader guessing idea of [40]. In the leader guessing approach, we guess the leader of every partition of a fixed
optimal solution, where the leader of a partition is a closest point (client) in 𝑃 to the corresponding optimal
center. However, each point can participate in multiple groups, resulting in the total number of points being
dependent on the number of groups, |W|. But, we will show next that guessing the leaders from 𝑃 without
considering the groups inW is, in fact, sufficient. Further, to get a (1 + 𝜖)-approximate solution, we use a
standard ball decomposition lemma (e.g., use Lemma 2.4.4).

Theorem 2.4.3. For any 0 < 𝜖 ≤ 1, Algorithm 2, on input I = (𝐹, 𝑃,W), computes 𝑋 ⊆ 𝐹 : |𝑋 | ≤ 𝑘 such
that cost(I, 𝑋) ≤ (1 + 𝜖)OPT(I) in time

(
(𝑧
𝜖
)𝑑 log 𝑛

)O(𝑘) |𝑃 |𝑘poly(𝑛, 𝑚).

Proof. First we bound the runtime of the algorithm. The leader enumeration (first forall loop) requires at most
|𝑃 |𝑘 loops, one for each 𝑘-tuple of 𝑃. Assuming Δ′ = poly(𝑛), the radii enumeration (second forall loop) for

the leaders requires at most
(

log𝑛/𝜖
𝜖

)O(𝑘)
= (log 𝑛/𝜖)O(𝑘) loops using discretized steps of size that is power of

(1 + 𝜖/10𝑧). Finally, there are at most (𝑧
𝜖
)O(𝑑𝑘) many 𝑘-tuples of 𝑇1 × · · · × 𝑇𝑘 since |𝑇𝑖 | = (𝑧𝜖)

O(𝑑) , yielding
the claimed runtime.

For correctness, we will show that, for any group w ∈ W, we have cost(w, 𝑋) ≤ (1 + 𝜖)cost(w, 𝑂),
which implies cost(I, 𝑋) ≤ (1+ 𝜖)cost(I, 𝑂), where 𝑂 = {𝑜1, · · · , 𝑜𝑘} is an optimal solution center. Let Π𝑖

be the set of points in 𝑃 served by 𝑜𝑖 , for 𝑖 ∈ [𝑘]. Let ℓ∗
𝑖
∈ Π𝑖 be a point that is closest to 𝑜𝑖 . Let this distance

be 𝜆∗
𝑖
, i.e., 𝜆∗

𝑖
:= 𝛿(ℓ∗

𝑖
, 𝑜𝑘). We call ℓ∗

𝑖
as the leader of Π𝑖 with radius 𝜆∗

𝑖
. Let 𝜆′

𝑖
be the smallest number equal

46:20964

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 40

to some power of (1 + 𝜖/10𝑧) that is larger than 𝜆∗
𝑖
. Then, note that 𝜆′

𝑖
≥ 𝜆∗

𝑖
≥ 𝜆′

𝑖

(1+𝜖 /10𝑧) . Next, consider the
𝜖

20𝑧 -ball decomposition of ball(ℓ∗
𝑖
, 𝜆′

𝑖
), and let 𝑏∗

𝑖
be a ball containing 𝑜𝑖 and let 𝑡∗

𝑖
be its center. Now, consider

the iteration of the algorithm corresponding to leader-radii enumeration (ℓ∗1 , · · · , ℓ
∗
𝑘
) and (𝜆′1, · · · , 𝜆

′
𝑘
) and,

center enumeration (𝑡∗1, · · · , 𝑡
∗
𝑘
). Then, for any 𝑝 ∈ Π𝑖 , 𝑖 ∈ [𝑘], we have that

𝛿(𝑝, 𝑡∗𝑖) ≤ 𝛿(𝑝, 𝑜𝑖) + 𝛿(𝑜𝑖 , 𝑡∗𝑖) ≤ 𝛿(𝑝, 𝑜𝑖) +
𝜖

10𝑧
𝜆′𝑖 ≤ 𝛿(𝑝, 𝑜𝑖) +

𝜖

10𝑧

(
1 + 𝜖

10𝑧

)
𝜆∗𝑖 ≤

(
1 + 𝜖

5𝑧

)
𝛿(𝑝, 𝑜𝑖).

Hence, for any group w ∈ W, we have w[𝑝]𝛿(𝑝, 𝑡∗
𝑖
)𝑧 ≤ (1 + 𝜖

5𝑧)
𝑧w[𝑝]𝛿(𝑝, 𝑜𝑖)𝑧 ≤ (1 + 𝜖)w[𝑝]𝛿(𝑝, 𝑜𝑖)𝑧 ,

where we used the inequality (1 + 𝜖
5𝑧)

𝑧 ≤ 𝑒𝜖 /5 ≤ 1 + 𝜖
5 + (

𝜖
5)

2 + · · · ≤ 1 + 𝜖 . Hence, cost(w, 𝑋) =∑
𝑝∈𝑃 𝑤 [𝑝]𝛿(𝑝, 𝑋)𝑧 ≤ (1 + 𝜖)cost(w, 𝑂).

We conclude this section by proving the main claim of this section (Theorem 1.3.3) by using the results
of Theorem 2.4.1 and Theorem 2.4.3 as follows.

Proof of Theorem 1.3.3. Given an instance I = (𝐹, 𝑃,W) of Socially Fair (𝑘, 𝑧)-Clustering, and the
accuracy parameter 𝜖 > 0, we invoke Theorem 2.4.1 on I with parameter 𝜖/10 to obtain an coreset (𝑃′,W′)
such that 𝑃′ ⊆ 𝑃 : |𝑃′ | =

(
2𝑧
𝜖

)O(𝑑)
𝑘𝑧 log 𝑛. Let I′ = (𝐹, 𝑃′,W′) be the resulting instance. Then, we

invoke Theorem 2.4.3 on I′ with parameter 𝜖/10 to obtain 𝑋 ⊆ 𝐹 : |𝑋 | ≤ 𝑘 such that cost(I′, 𝑋) ≤
(1 + 𝜖/10)OPT(I′).

First we analyze the overall running time. With |𝑃′ | =
(

2𝑧
𝜖

)O(𝑑)
𝑘𝑧 log 𝑛, Theorem 2.4.3 runs in time((

2𝑧
𝜖

)𝑑
𝑘𝑧 log 𝑛

)O(𝑘)
poly(𝑛, 𝑚), leading to

((
2𝑧
𝜖

)𝑑
𝑧𝑘 log 𝑘

)O(𝑘)
poly(𝑛, 𝑚) as the overall running time as

desired. For correctness, consider

cost(I, 𝑋) ≤ (1 + 𝜖/10)cost(I′, 𝑋) by the coreset property

≤ (1 + 𝜖/10)2OPT(I′) by Algorithm 2

≤ (1 + 𝜖/10)3OPT(I) by the coreset property

≤ (1 + 𝜖)OPT(I).

47:48325

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 41

Algorithm 2: (1 + 𝜖)-approximation algorithm for Socially Fair (𝑘, 𝑧)-Clustering
Data: Instance I = (𝐹, 𝑃,W) of Socially Fair (𝑘, 𝑧)-Clustering
Result: (1 + 𝜖)-approximate solution 𝑋 ⊆ 𝐹

1 Let 𝑋 ← ∅;
2 forall 𝑘-tuples (ℓ1, · · · , ℓ𝑘) of 𝑃 do
3 forall 𝑘-tuples (𝜆1, · · · , 𝜆𝑘) radii of (ℓ1, · · · , ℓ𝑘) that are power of (1 + 𝜖/10𝑧) do
4 for 𝑖 ∈ [𝑘] do
5 B𝑖 ← { 𝜖

20𝑧 -ball decomposition of ball(ℓ𝑖 , 𝜆𝑖)};
6 end
7 𝑇𝑖 ← { 𝑓 ∈ 𝐹 | 𝑓 is an arbitrary facility in ball 𝑏 ∈ B𝑖 } a ;
8 forall 𝑘-tuples (𝑡1, · · · , 𝑡𝑘) of 𝑇1 × · · · × 𝑇𝑘 do
9 if cost(I, {𝑡1, · · · , 𝑡𝑘 }) < cost(I, 𝑋) then

10 𝑋 ← {𝑡1, · · · , 𝑡𝑘 }
11 end
12 end
13 end
14 end
15 return 𝑋

aIf 𝐹 = R𝑑 then 𝑇𝑖 ← {𝑥𝑏 ∈ 𝐹 | 𝑥𝑏 is the center of ball 𝑏 ∈ B𝑖 }

Lemma 2.4.4 (Ball decomposition lemma). Consider a metric space (𝑋, 𝛿) with doubling dimension 𝑑. A
subset 𝐴 ⊆ 𝑋 is 𝜖-dense in 𝑋 , if ∀𝑥 ∈ 𝑋 , ∃𝑦 ∈ 𝐴 such that 𝛿(𝑥, 𝑦) ≤ 𝜖 . 𝐴 is 𝜖-separated, if ∀𝑥 ≠ 𝑦 ∈ 𝐴,
𝛿(𝑥, 𝑦) > 𝜖 and 𝐴 is 𝜖-net of 𝑋 if 𝐴 is 𝜖-separated as well as 𝜖-dense. Then we have the following:

1. There exists an 𝜖-dense set 𝐴 ⊆ ball(𝑥, 𝑟) of size (𝑟
𝜖
)𝑂 (𝑑) ∀𝑥 ∈ 𝑋 , 𝑟 > 0, 𝜖 ≤ 𝑟/2.

2. For all 𝜖-separated set 𝐴 ⊆ ball(𝑥, 𝑟), 𝑟 > 0, 𝜖 ≤ 𝑟/2 it holds that |𝐴| ≤ (𝑟
𝜖
)𝑂 (𝑑) .

Proof. 1. Let us denote 𝑘 as the doubling constant of the considered metric space (𝑋, 𝛿) and 𝑚 =

⌈log(𝑟/𝜖)⌉. Then by the definition, we have 𝑘 = 2𝑂 (𝑑) . Note ball(x,r) can be covered with 𝑘 balls
of radius 𝑟/2. Further each of these balls of radius 𝑟/2 can be covered with 𝑘 balls of radius 𝑟/4
resulting the original ball ball(x,r) can be covered with 𝑘𝑚 balls of radius 𝑟

2𝑚 (note 𝑟
2𝑚 ≤ 𝜖). Again

since 𝑘 = 2𝑂 (𝑑) , a simple calculation shows that 𝑘𝑚 = (𝑟
𝜖
)𝑂 (𝑑) . Let 𝐴 be the centers of these balls

then clearly 𝐴 is 𝜖-dense as required.

2. Note that the balls of radius (𝜖2) around the points of 𝐴 are disjoint as the points in the set 𝐴 have
pairwise distance strictly greater than 𝜖 and further their union is included in the ball(𝑥, 𝑟 + 𝜖

2). Hence,
𝐴 is at most the size of any 𝜖/2-dense set within the ball(𝑥, 𝑟 + 𝜖

2). By the previous claim, we finally
prove that there exists an 𝜖/2-dense set in ball(𝑥, 𝑟 + 𝜖

2) of size (2𝑟
𝜖
)𝑂 (𝑑) .

One can even construct the set 𝐴 greedily. Initially 𝐴 = 𝜙. Next we choose an arbitrary point in ball(x,r)
and add it to 𝐴. Let 𝐵 denote the union of the closed balls of radius 𝜖 around the points in 𝐴. As long
as we find a point 𝑝 ∈ ball(𝑥, 𝑟) \ 𝐵, we add this particular point to the set 𝐴. Note, when the algorithm
stops the resulting set 𝐴 becomes an 𝜖-net as both 𝜖-dense as well as 𝜖-separated conditions are being
satisfied.

48:15670

CHAPTER 2. PARAMETERIZED APPROXIMATION FOR SOCIALLY FAIR CLUSTERING 42

2.5 Conclusions and Open Problems

In this chapter we provide a detailed exploration of the parameterized approximability of Socially Fair (𝑘, 𝑧)-
Clustering problem in geometric spaces, with the number 𝑘 of centers as the parameter. Our main results
are as follows: (i) For a universal constant 𝜂0 > 0.0006, we design a 3𝑧 (1 − 𝜂0)-factor FPT approximation
algorithm for Socially Fair (𝑘, 𝑧)-Clustering in discrete high-dimensional Euclidean spaces where the set
of potential centers is finite. This shows that the lower bound of 3𝑧 for general metrics by Goyal, Jaiswal [73]
no longer holds when the metric has geometric structure. (ii) We show that Socially Fair (𝑘, 𝑧)-Clustering
in discrete Euclidean spaces is (

√︁
3/2−𝑜(1))-hard to approximate for FPT algorithms, even if we consider the

special case 𝑘-Center in logarithmic dimensions. This rules out a (1 + 𝜖)-approximation algorithm running
in time 𝑓 (𝑘, 𝜖)poly(𝑚, 𝑛) (also called EPAS), giving a striking contrast with the EPAS for the continuous
setting where centers can be placed anywhere in the space. (iii) we obtain an EPAS for Socially Fair
(𝑘, 𝑧)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic. Our EPAS works also
for metrics of sub-logarithmic doubling dimension.

Our results also suggest directions for future research. One open question is whether we can design an
approximation algorithm that is better than the current bound. Another direction is to investigate whether a
stronger lower bound can be achieve for FPT approximation algorithms.

49:81736

Chapter 3

EPAS for General Norm Clustering

In this chapter we present results for Norm 𝑘-Clustering. Even basic clustering problems such as 𝑘-Median,
𝑘-Center, and 𝑘-Means that have been researched for more than a half century and still they remain elusive
from many perspectives of computation. This chapter is inspired by the following meta-question:

For a given 𝑘-clustering objective and a (structured) metric space, does an EPAS exist?

3.1 Efficient Parameterized Approximation Schemes for Norm 𝑘-Clustering

As an input to the (general) 𝑘-clustering problem, we are given 𝑛 data points 𝑃, candidate centers 𝐹, a
metric space 𝑀 = (𝑃 ∪ 𝐹, 𝛿), a positive integer 𝑘 , and an objective function 𝑓 : R𝑃 → R. When a set
of 𝑘 “open” centers 𝑋 ⊆ 𝐹 is chosen, this solution induces a cost vector 𝜹(𝑃, 𝑋) = (𝛿(𝑝, 𝑋))𝑝∈𝑃 where
𝛿(𝑝, 𝑋) = min𝑥∈𝑋 𝛿(𝑝, 𝑥) represents the distance from point 𝑝 to the closest center in 𝑋 . Our goal is to
minimize 𝑓 (𝜹(𝑃, 𝑋)). We call this problem the 𝑘-clustering problem with cost function 𝑓 . We may think
of the function 𝑓 as “aggregating” the costs incurred by the points. For example, we can formulate basic
𝑘-clustering objectives via the functions 𝑓 (𝒙) = ∑

𝑝∈𝑃 𝑥(𝑝) (𝑘-Median), 𝑓 (𝒙) = ∑
𝑝∈𝑃 𝑥(𝑝)2 (𝑘-Means)

and 𝑓 (𝒙) = max𝑝∈𝑃 𝑥(𝑝) (𝑘-Center).
Most natural and well-studied clustering objectives can be modeled using (a generalization of) the concept

of norm optimization introduced by Chakrabarty and Swamy [29]. More specifically, we are interested in the
setting where the objective 𝑓 is a norm.

Definition 3.1.1 (Norm). A norm is a function 𝑓 : R𝑛 → R≥0, 𝑛 ∈ N that satisfies (i) for all 𝒙 ∈ R𝑛, 𝑓 (𝒙) = 0
if and only if 𝒙 = 0, (ii) ∀𝒙, 𝒚 ∈ R𝑛 : 𝑓 (𝒙 + 𝒚) ≤ 𝑓 (𝒙) + 𝑓 (𝒚), and (iii) ∀𝒙 ∈ R𝑛, 𝜆 ∈ R : 𝑓 (𝜆𝒙) = |𝜆 | 𝑓 (𝒙).

We say that 𝑓 is monotone if 𝑓 (𝒙) ≤ 𝑓 (𝒚) whenever 𝒙 ≤ 𝒚. By Norm 𝑘-Clustering we refer to the 𝑘-
clustering problem whose objective 𝑓 : R𝑃 → R≥0 is a monotone norm. While Chakrabarty and Swamy [29]
further require that 𝑓 be symmetric1, our algorithmic framework applies to all monotone norm cost functions.

1We say that 𝑓 is symmetric if 𝑓 (𝒙) = 𝑓 (𝒙′) whenever 𝒙′ can be obtained by reordering coordinates of 𝒙.

43

50:39059

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 44

Figure 3.1: Selected clustering objectives that can be formulated as monotone norm minimization. The line
illustrates generalization (bottom is a special case of top).

This family includes the following well-known clustering problems (see Figure 3.1 for an overview):

• From 𝑘-Means, 𝑘-Center, and 𝑘-Median to (𝑘, 𝑧)-Clustering: All the basic clustering problems
can be captured by the ℓ𝑧-norm when 𝑧 ∈ {1, 2,∞}. In fact, the (𝑘, 𝑧)-clustering problem [86, 49, 45]
(for constant positive integer 𝑧) uses the objective function 𝑔(𝒙) = ∑

𝑝∈𝑃 |𝑥(𝑝) |𝑧 . (This function itself
is not a norm, but we can instead consider the ℓ𝑧-norm 𝑓 (𝒙) = 𝑔(𝒙)1/𝑧 .)

• Weighted 𝑘-Center (or Priority 𝑘-Center): The weighted version of 𝑘-Center [100, 14, 109]
generalizes the 𝑘-Center so that each data point 𝑝 ∈ 𝑃 is associated with a positive weight (or priority)
𝑤(𝑝), and the objective is to minimize the (weighted) maximum distance to a center.2 This problem can
be modelled by the “weighted max” norm 𝑓 (𝒙) = max𝑝∈𝑃 𝑤(𝑝)𝑥(𝑝). One can analogously define the
weighted versions of 𝑘-Median and 𝑘-Means (see, for example, [41]). We remark that the underlying
weighted norms are not symmetric.

• ℓ-Centrum: This problem (sometimes called 𝑘-Facility ℓ-Centrum) aims to minimize the sum of the
connection costs among the ℓ “most expensive” points (that is, those that are furthest away from the open
centers). The problem generalizes both 𝑘-Center (ℓ = 1) and 𝑘-Median (ℓ = |𝑃 |) problem [117]. (See
the books [107, 96] for more details on ℓ-Centrum and the more general Ordered 𝑘-Median discussed

2For convenience of presentation, the terminologies we use are somewhat different from the literature.

51:29867

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 45

below.) This problem can be modelled by the top-ℓ norm 𝑓 (𝒙) = ∑ℓ
𝑗=1 𝑥

↓ (𝑗) where 𝒙↓ denotes the
reordering of vector 𝒙 so that the entries appear non-increasingly. The top-ℓ norm is symmetric.

• Ordered 𝑘-Median: This problem further generalizes ℓ-Centrum, allowing flexible penalties to
be applied to data points that incur the highest connection costs. More formally, the objective is
the ordered weighted norm 𝑓 (𝒙) = 𝒗⊺𝒙↓ where 𝒗 ∈ R𝑛≥0 is a non-increasing cost vector, that is,
𝑣(1) ≥ 𝑣(2) ≥ . . . ≥ 𝑣(𝑛). ℓ-Centrum corresponds to 𝒗 = (1, . . . , 1, 0, . . . 0) where the first ℓ-entries
of 𝒗 are ones. This problem has already received attention for a few decades [27, 29, 24]. We remark
that the 𝑓 here is a monotone and symmetric norm.

• Socially Fair 𝑘-Median (or Robust 𝑘-Median): In Socially Fair 𝑘-Median, along with the
point set 𝑃, we are given 𝑚 different (not necessarily disjoint) subgroups such that 𝑃 =

⋃
𝑖∈[𝑚] 𝑃𝑖 . Our

goal is to find a set 𝑋 of centers that incurs fair costs to the groups by minimizing the maximum cost
over all the groups. In other words,

min
𝑋⊆𝐹
|𝑋 |=𝑘

max
𝑖∈[𝑚]

∑︁
𝑝∈𝑃𝑖

𝛿(𝑝, 𝑋) .

Due to distinct applications in at least two domains, this variant of clustering has recently been studied
extensively: (i) in algorithmic fairness [5, 73, 103, 70] and (ii) in the robust optimization context,
this problem is known as Robust 𝑘-Median, which intends to capture the applications when we are
uncertain about the actual data scenarios (corresponding to the groups 𝑃𝑖) that may come up [10, 21, 19].
The resulting norm is generally asymmetric.

• (𝑧, 𝑞)-Fair Clustering: Our problem also models a clustering problem called (𝑧, 𝑞)-Fair Cluster-
ing3 introduced by Chlamtáč et al. [31], which generalizes Socially Fair 𝑘-Median.

In particular, one can view the cost function 𝑓 of Socially Fair 𝑘-Median as a “two-level” aggregate
cost: First, cost

∑
𝑝∈𝑃𝑖

𝛿(𝑝, 𝑋) incurred by group 𝑃𝑖 , 𝑖 ∈ [𝑚] can be viewed as weighted ℓ1-norm 𝒘⊺
𝑖
𝒙

where 𝒘𝑖 = 1𝑃𝑖
∈ {0, 1}𝑃 denotes the characteristic vector of 𝑃𝑖 . Second, these group costs are further

aggregated through ℓ∞, that is, 𝑓 (𝒙) = max(𝒘⊺1 𝒙, 𝒘
⊺
2 𝒙, . . . , 𝒘

⊺
𝑚𝒙).

(𝑧, 𝑞)-Fair Clustering allows arbitrary uses of ℓ𝑧 and ℓ𝑞 norms to aggregate the costs in two lev-
els. The cost function is defined as 𝑓 (𝒙) = 𝑔(𝒉(𝒙)) where 𝑔 is any ℓ𝑞-norm function and 𝒉(𝒙) =

(ℎ1 (𝒙), ℎ2 (𝒙), . . . , ℎ𝑚 (𝒙)) where ℎ𝑖 (𝒙) is a weighted ℓ𝑧-norm, that is, ℎ𝑖 (𝒙) =
(∑

𝑝∈𝑃 𝑤𝑖 (𝑝)𝑥(𝑝)𝑧
)1/𝑧

for arbitrary weight vectors 𝒘𝑖 ∈ R𝑃
≥0, 𝑖 ∈ [𝑚]. It is easy to check that 𝑓 (𝒙) = 𝑔(𝒉(𝒙)) is a monotone

norm whenever 𝑔 and {ℎ𝑖} are. The objective is generally an asymmetric norm.

• Beyond the Known Problems: Our (asymmetric) norm formulation allows us to model more complex
clustering objectives that might be useful in some application settings and, to our knowledge, have not

3Chlamtáč et al. [31] call the problem (𝑝, 𝑞)-Fair Clustering. For the sake of consistency with the notation in the rest of the
paper, we changed the naming slightly.

52:50239

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 46

Figure 3.2: The DAG here describes evaluation of function 𝑓 . Node 𝑣 is labeled with the ℓ𝑞 norm, so the
evaluation at node 𝑣 is 𝜂(𝑣) = (𝑤1,𝑣𝑥

𝑞

1 + 𝑤2,𝑣𝑥
𝑞

2 + 𝑤5,𝑣𝑥
𝑞

5)
1/𝑞 .

yet been considered in the algorithms community. One such objective is Priority Ordered 𝑘-Median: We
have the cost function 𝑓 (𝒙) = 𝒗⊺𝒙𝒘

↓ where the weight vector 𝒗 ∈ R𝑛≥0, and priority vector 𝒘 ∈ R𝑃
≥0 are

given as input, and where 𝒙𝒘 = (𝑤(𝑝)𝑥(𝑝))𝑝∈𝑃 . This objective generalizes both Priority 𝑘-Center
and Ordered 𝑘-Median. Another natural objective is the (multi-level) Cascaded Norm Clustering,
which generalizes (𝑧, 𝑞)-Fair Clustering to allow multiple levels of cost aggregation. The cost
function 𝑓 for this problem is described by a directed acyclic graph (DAG) 𝐷 with one sink node and
|𝑃 | source nodes (each source corresponds to a point in 𝑃). Each non-source node 𝑣 is associated with a
norm ℓ𝑞 for some 𝑞, and each edge (𝑢, 𝑣) has weight 𝑤𝑢,𝑣 . Given such a DAG 𝐷, the value of 𝑓 (𝒙) can
be evaluated by computing the evaluations at nodes in𝑉 (𝐷) in (topological) order from sources to sink:
(i) The evaluation at source 𝑝 ∈ 𝑃 is 𝜂(𝑝) = 𝑥(𝑝), (ii) For any non-source node 𝑣 ∈ 𝑉 (𝐷) labelled with
the norm ℓ𝑞 , we evaluate 𝜂(𝑣) =

(∑
𝑢∈𝑁− (𝑣) 𝑤𝑢,𝑣𝜂(𝑢)𝑞

)1/𝑞 , and (iii) the value of 𝑓 (𝒙) is the evaluation
of the sink. See Figure 3.2 for illustration. (𝑧, 𝑞)-Fair Clustering is a special case when 𝐷 has 3
layers with the middle layer using the same norm. Of course, also other basic monotone norms such as
top-ℓ or ordered weighted norms could be composed to more complex norms analogously.

3.2 Overview of Techniques

In this section, we give an informal overview of the technical ideas appearing in the chapter. The main result
will be built step by step: we believe that it is already interesting to understand our main result specialized
to Weighted 𝑘-Center and Weighted 𝑘-Median. Our starting point is the EPAS of Badŏiu et al. [13]
for unweighted 𝑘-Center that works on high-dimensional Euclidean spaces. We redesign and change this
algorithm in order to be able to present it with a clean division into two parts: a simple branching algorithm
and a bound on the abstract concept of (algorithmic) 𝜖-scatter dimension. This way, we obtain a sharp
separation between the branching algorithm, which is specific to the objective and the bound on 𝜖-scatter

53:24691

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 47

dimension, which is specific to the metric. This can be contrasted with techniques based on coresets, which
are inherently specific both to a single objective and to a single metric. The main message of the paper is that,
with the right combination of additional ideas, this framework can be significantly generalized both in terms
of objectives and metric spaces.

This section presents the main algorithmic ideas in three steps.

1. The algorithm for unweighted 𝑘-Center can be generalized to Weighted 𝑘-Center in a not completely
obvious way.

2. Building on the algorithm for Weighted 𝑘-Center, we can solve Weighted 𝑘-Median with a prepro-
cessing and a random selection step.

3. The Weighted 𝑘-Median algorithm can be generalized to arbitrary monotone norms by considering
infinitely many Weighted 𝑘-Median instances defined by the subgradients.

While some of the challenges on the way may appear to have other approaches promising at first glance,
we want to emphasize that it is nontrivial to find the combination of ideas that can be integrated together to
obtain our main result. In particular, for Weighted 𝑘-Median the initial upper bounds have to be defined
carefully in a way that allows, at the same time, an efficient random selection step and generalization to
arbitrary monotone norms.

Weighted 𝑘-Center with Bounded Number of Different Weights Our starting point is a simple branch-
ing algorithm that is inspired by the EPAS of Badŏiu et al. [13] for unweighted 𝑘-Center. Instead of
branching, it will be more convenient for us to present it as a randomized algorithm. Furthermore, we
consider the more general setting of Weighted 𝑘-Center: the objective is to find a set 𝑂 of 𝑘 centers that
minimizes max𝑝 𝑤(𝑝)𝛿(𝑝, 𝑂). Let us first present the algorithm with the simplifying assumption that 𝑤
is a weight function on the points whose range contains only at most 𝜏 different values. The unweighted
problem corresponds to 𝑤(𝑝) = 1 for every 𝑝 ∈ 𝑃 and hence 𝜏 = 1. It will be convenient to assume that we
(approximately) know the value of OPT.

We start with 𝑘 arbitrarily chosen candidates 𝑋 = {𝑥1, . . . , 𝑥𝑘} for the 𝑘 centers. We additionally introduce
𝑘 sets of requests 𝑄1, . . . , 𝑄𝑘 , where each request is of the form (𝑝, 𝑟) with a point 𝑝 ∈ 𝑃 and radius 𝑟 > 0.
For every 𝜅 ∈ [𝑘], we impose the cluster constraint requiring that, for every (𝑝, 𝑟) ∈ 𝑄𝜅 , center 𝑥𝜅 should be at
distance at most 𝑟 from 𝑝. Initially, we set 𝑄𝜅 = ∅ for every 𝜅, which means that these conditions are trivially
satisfied. If we have max𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) ≤ (1 + 𝜖)OPT, then we can stop, as we have a (1 + 𝜖)-approximate
solution at our hands. Otherwise, we have a point 𝑝 with 𝛿(𝑝, 𝑋) > (1 + 𝜖)OPT/𝑤(𝑝), while it is at distance
at most OPT/𝑤(𝑝) from some center of a hypothetical optimum solution 𝑂. Thus the algorithm selects a
𝜅 ∈ [𝑘] uniformly at random, hoping it to be the index of the center that is at distance at most OPT/𝑤(𝑝)
from 𝑝 in the optimum solution 𝑂. Then we introduce the request (𝑝,OPT/𝑤(𝑝)) into the set 𝑄𝜅 and select
𝑥𝜅 to be a center that satisfies the cluster constraint defined by all the requests in the updated 𝑄𝜅 . Observe
that if every random choice was compatible with the hypothetical optimum solution 𝑂, then the algorithm is

54:74458

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 48

always able to find such a center, as the requests in 𝑄𝜅 are always satisfied by the 𝜅-th center of the optimum
solution 𝑂.

We claim that if the 𝜖-scatter dimension of the metric is bounded, then this algorithm stops after a bounded
number of steps, either by finding an approximate solution or by failing to find a center satisfying the cluster
constraints of some 𝑄𝜅 . Let 𝑥 (1)𝜅 , . . . , 𝑥 (ℓ)𝜅 be the different candidates for the 𝜅-th center throughout this
branch. Let (𝑝 (1)𝜅 , 𝑟

(1)
𝜅), . . . , (𝑝 (ℓ)𝜅 , 𝑟

(ℓ)
𝜅) be the requests introduced to 𝑄𝜅 : that is, for 1 ≤ 𝑗 ≤ ℓ, the center

𝑥
(𝑗)
𝜅 was chosen to be at distance at most 𝑟 (𝑖)𝜅 from every 𝑝

(𝑖)
𝜅 for 1 ≤ 𝑖 < 𝑗 , but later was found to be at distance

at least (1 + 𝜖)𝑟 (𝑗)𝜅 from 𝑝
(𝑗)
𝜅 . As there are at most 𝜏 different weights in the input, at least ℓ′ = ℓ/𝜏 of these

requests have the same radius. That is, there is a subsequence (𝑥 (𝑠1)
𝜅 , 𝑝

(𝑠1)
𝜅 , 𝑟

(𝑠1)
𝜅), . . . , (𝑥 (𝑠ℓ′)𝜅 , 𝑝

(𝑠ℓ′)
𝜅 , 𝑟

(𝑠ℓ′)
𝜅)

where every 𝑟
(𝑠 𝑗)
𝜅 for 𝑗 ∈ [ℓ′] is the same value 𝑟 ≥ 0. This means that we have a subsequence (𝑥1, 𝑝1), . . . ,

(𝑥ℓ′ , 𝑝ℓ′) with the property that 𝛿(𝑥𝑖 , 𝑝𝑖) > (1+ 𝜖)𝑟, but 𝛿(𝑥𝑖 , 𝑝 𝑗) ≤ 𝑟 for every 𝑖 < 𝑗 . By scaling down every
distance by a factor of 𝑟 , this is precisely an 𝜖-scattering of length ℓ′. If we consider a class of metrics closed
under scaling where the 𝜖-scatter dimension is 𝜆(𝜖), then this sequence cannot have length longer than 𝜆(𝜖),
implying that ℓ ≤ 𝜏 · 𝜆(𝜖). We can conclude that the algorithm can introduce at most 𝜏 · 𝜆(𝜖) requests into
each 𝑄𝜅 , hence the algorithm cannot perform more than 𝑘 · 𝜏 · 𝜆(𝜖) iterations.

If every step of the algorithm randomly chooses an index 𝜅 ∈ [𝑘] that is consistent with the optimum
solution 𝑂, then the only way it can stop is by finding an approximate solution. Therefore, the algorithm is
successful with probability at least 𝑞 = 𝑘−𝑘 ·𝜏 ·𝜆(𝜖) . The success probability can be boosted to be a constant
arbitrarily close to 1 by the standard technique of repeating the algorithm O(1/𝑞) times, leading to a running
time of 𝑘 𝑘 ·𝜏 ·𝜆(𝜖) · poly(𝑛).

Weighted 𝑘-Center with Arbitrary Weights We show now how the algorithm can be extended to work
in the weighted setting with arbitrary weights. Let us observe first that if there is no bound on the number 𝜏
of different weights, then we cannot bound the number of requests to a given 𝑄𝜅 , even in very simple metric
spaces such as R1. Suppose for example that the requests arriving to 𝑄𝜅 are (𝑝 (𝑖) , (1 + 2𝜖)−𝑖) for 𝑖 = 1, 2, . . .,
where every 𝑝 (𝑖) is at the origin (or maybe within a very small radius of the origin). Then a center 𝑥 (𝑖) at
(1 + 2𝜖)1−𝑖 satisfies the first 𝑖 − 1 requests, but violates the constraint of the 𝑖-th by more than a (1 + 𝜖)-factor.
This sequence can be arbitrarily long, and the existence of such a sequence shows that we cannot bound the
number of requests arriving to 𝑄𝜅 if we don’t have a bound on the number of different weights. Nevertheless,
we show that the number of requests can be bounded if we start the algorithm by carefully seeding the initial
requests. Let us remark that we know other simple modifications that achieve such a bound, but the technique
described below turns out to be the one that can be extended further for Weighted 𝑘-Median and general
norms.

The main idea is to bootstrap our algorithm with a constant-factor approximation. A simple greedy
3-approximation can be obtained following the ideas of Plesník [109]. Let us consider all the balls
ball(𝑝,OPT/𝑤(𝑝)) for every 𝑝 ∈ 𝑃. Let us consider these balls in a nondecreasing order of radius, and
mark each ball that does not intersect any of the balls marked earlier; let ball(𝑝𝜅 ,OPT/𝑤(𝑝𝜅)), 1 ≤ 𝜅 ≤ 𝑘 ′ be
the marked balls. We should have 𝑘 ′ ≤ 𝑘: otherwise, we have more than 𝑘 pairwise disjoint balls and each of

55:68558

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 49

them has to contain a center of the solution, contradicting the assumption that value OPT can be achieved with
𝑘 centers. For 1 ≤ 𝜅 ≤ 𝑘 ′, let 𝑥𝑖 be any center in ball(𝑝𝜅 ,OPT/𝑤(𝑝𝜅)) and let 𝑄𝜅 = {(𝑝𝜅 ,OPT/𝑤(𝑝𝜅)}.
For 𝑘 ′ < 𝜅 ≤ 𝑘 , we choose 𝑥𝑖 arbitrarily and let 𝑄𝜅 = ∅. Let us observe that with this definition of the 𝑄𝜅 ’s,
we have 𝛿(𝑝, 𝑋) ≤ 3OPT/𝑤(𝑝) during every iteration of our algorithm. Indeed, if the ball of 𝑝 was marked,
then 𝑋 always contains a center in ball(𝑝𝜅 ,OPT/𝑤(𝑝𝜅)); if the ball of 𝑝 was unmarked, then it intersects a
marked ball with not larger radius that contains a center of 𝑋 .

The main claim is that the ratio between the radii of two requests appearing in 𝑄𝜅 can be bounded by
O(1/𝜖). Suppose that (𝑝, 𝑟) and (𝑝′, 𝑟 ′) are two requests in 𝑄𝜅 (introduced in any order) and we have
𝑟 ′ < 𝜖𝑟/4. A center of the optimum solution satisfies both request, hence we have 𝛿(𝑝, 𝑝′) ≤ 𝑟 + 𝑟 ′. As
shown above, at every step of the algorithm there is a center in 𝑋 at distance at most 3𝑟 ′ from 𝑝′; let 𝑦 be such
a center at the step when request (𝑝, 𝑟) was introduced. Then we have

𝛿(𝑝, 𝑦) ≤ 𝛿(𝑝, 𝑝′) + 𝛿(𝑝′, 𝑦) ≤ 𝑟 + 𝑟 ′ + 3𝑟 ′ ≤ (1 + 𝜖)𝑟,

contradicting the need for the first request.
We can use the standard assumption that every weight is of the form (1 + 𝜖)𝑖 for some integer 𝑖: by

rounding down every weight to the largest number of this form, we change the objective only by a factor of
1 + 𝜖 . If every weight is of the form (1 + 𝜖)𝑖 , then the O(1/𝜖) bound proved above implies that the requests
introduced into 𝑄𝜅 for some fixed 𝜅 ∈ [𝑘] have O(1/𝜖 · log 1/𝜖) different radii. Therefore, we can bound
the total number of requests (and hence the number of iterations) by O(𝜆(𝜖) · 𝑘/𝜖 · log 1/𝜖). This leads to a
𝑘O(𝜆(𝜖) ·𝑘/𝜖 ·log 1/𝜖) · poly(𝑛) time randomized algorithm with constant success probability.

From Weighted 𝑘-Center to Weighted 𝑘-Median Towards our goal of understanding general norms,
let us consider now the Weighted 𝑘-Median problem, where the objective is to find a set 𝑂 of 𝑘 centers that
minimize

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑂). We will try to solve this problem by interpreting it as a Weighted 𝑘-Center

problem on a weighted point set that we dynamically discover during the course of the algorithm.
We would like to turn the linear constraint

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) ≤ OPT of Weighted 𝑘-Median into a

distance constraint: some point 𝑝 should be at distance at most 𝑟 to the solution. Let 𝑋 be the current
solution and suppose that

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) > (1 + 𝜖)OPT. The intuition is that

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) > (1 +

𝜖)∑𝑝 𝑤(𝑝)𝛿(𝑝, 𝑂) for an optimum solution 𝑂 implies that a nontrivial fraction of the points should satisfy
𝛿(𝑝, 𝑋) > (1+ 𝜖/3)𝛿(𝑝, 𝑂), that is, their distances to the solution has to be improved by more than a factor of
1+𝜖/3. More precisely, an easy averaging argument shows if we select a point 𝑝 with probability proportional
to 𝑤(𝑝)𝛿(𝑝, 𝑋), then 𝑝 satisfies 𝛿(𝑝, 𝑋) > (1 + 𝜖/3)𝛿(𝑝, 𝑂) with probability Ω(𝜖). We call such a point 𝑝
an 𝜖/3-witness, certifying that the current solution has to be improved.

Assuming that the sampled point 𝑝 is indeed a 𝜖/3-witness, we proceed as in the case of Weighted
𝑘-Center. We randomly choose an index 𝜅 and introduce the request (𝑝, 𝛿(𝑝, 𝑋)/(1 + 𝜖/3)) into 𝑄𝜅 , to
update the cluster constraint by requiring that 𝑥𝜅 should be closer to 𝑝 than in the current solution. If there
is a center satisfying all the requests in 𝑄𝜅 , then we update 𝑥𝜅 . These steps are repeated until we arrive to a

56:25919

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 50

solution 𝑃 with
∑

𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) ≤ (1 + 𝜖)OPT.
In each step, with probability Ω(𝜖/𝑘), the algorithm chooses an 𝜖/3-witness 𝑝 and a center 𝜅 that is

consistent with some hypothetical optimum solution 𝑂. However, it is not clear how to bound the running
time of the algorithm. It can happen that the requests arriving to 𝑄𝜅 have smaller and smaller radii. As we
have seen for Weighted 𝑘-Center, in such a scenario we cannot bound the number of steps even in R1 It is
crucial to have some control on the sequence of radii that appear in the requests. Therefore, next we show
how to ensure that the radii in the requests to center 𝜅 stay within a bounded range.

Initial Upper Bounds For each point 𝑝, we compute a weak upper bound 𝑢(𝑝) ≥ 𝛿(𝑝, 𝑂) on the distance to
the optimum solution. Then instead of starting with an arbitrary set of 𝑘 centers, we bootstrap the algorithm
by a solution approximately satisfying all these upper bounds. We argue that this can be done in such a way
that ensures that the radii appearing in the requests to each center 𝜅 stay within a bounded range.

If a point 𝑝∗ has weight 𝑤(𝑝∗), then 𝑢(𝑝∗) = OPT/𝑤(𝑝∗) is an obvious upper bound on the distance of
𝑝∗ to 𝑂: otherwise, we would have

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑂) ≥ 𝑤(𝑝∗)𝛿(𝑝∗, 𝑂) > OPT. This bound was sufficient

for the Weighted 𝑘-Center problem, but the nature of Weighted 𝑘-Median allows us to get much stronger
upper bounds in many cases. For example, if there are 𝑐 points of the same weight 𝑤 roughly at the same
position, then each of them should be at distance at most OPT/(𝑤𝑐) from 𝑂. Indeed, otherwise the total
contribution of these 𝑐 points to the sum would be greater than OPT. More generally, if there is a radius 𝑟
such that total weight of the points at distance at most 𝑟 from 𝑝 is at least OPT/𝑟 , then we claim that 𝑝 is at
most distance 2𝑟 from 𝑂. Indeed, otherwise all these points would be at distance more than 𝑟 from 𝑂, making
their total contribution greater than OPT. Therefore, we can define 𝑢(𝑝) = 2𝑟 , where 𝑟 is the smallest radius
with the property that the total weight of the points at distance at most 𝑟 from 𝑝 is at least OPT/𝑟 . Note that
𝑢(𝑝) can be determined in polynomial time from the weights of the points and their distance matrix.

Similarly to our Weighted 𝑘-Center algorithm, we start with a 3-approximation of the constraints given
by the upper bounds 𝑢(𝑝) for 𝑝 ∈ 𝑃. Let us go through the points in a nondecreasing order of 𝑢(𝑝) and let
us greedily choose a maximal independent set of the balls ball(𝑝, 𝑢(𝑝)). We should find at most 𝑘 such balls.
Let us choose a center in each ball; it is easy to see that every point 𝑝 has a selected center at distance at
most 3𝑢(𝑝) from it. If center 𝑥𝜅 was selected to be a center in ball(𝑝, 𝑢(𝑝)), then we initialize 𝑄𝜅 with the
request (𝑝, 𝑢(𝑝)). This ensures that during every step of the algorithm, it remains true that every point 𝑝 is
at distance at most 3𝑢(𝑝) from the current solution.

We run the algorithm for Weighted 𝑘-Median with this initial solution. Before analyzing the algorithm,
let us make a nontrivial change in the random selection. We have seen that with probability Ω(𝜖/𝑘), we select
a random point 𝑝 and 𝜅 ∈ [𝑘] such that 𝛿(𝑝, 𝑋) ≥ (1+ 𝜖/3)𝛿(𝑝, 𝑂) for some optimal solution 𝑂. A key claim
of the proof is that with probability Ω(𝜖/𝑘), it is also true that 𝑢(𝑝) ≤ 2𝑘𝛿(𝑝, 𝑋)/𝜖 (see Lemma 3.5.10).
Intuitively, the total contribution of the 𝜖/3-witnesses that are too close to some center 𝑥𝜅 ∈ 𝑋 cannot be very
large, because then all of these witnesses would be in a small ball, implying that the upper bound 𝑢(𝑝) should
be smaller. Note that this is the point in the proof where we crucially utilize the exact definition of 𝑢(𝑝).
With this claim at hand, we can modify the algorithm such that we are randomly choosing a point 𝑝 satisfying

57:31101

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 51

𝑢(𝑝) ≤ 2𝑘𝛿(𝑝, 𝑋)/𝜖 , with probability proportional to 𝑤(𝑝)𝛿(𝑝, 𝑋). It remains true that 𝑝 is an 𝜖/3-witness
with probability Ω(𝜖/𝑘).

Let us analyze now the algorithm and bound the number of times a center 𝑥𝜅 is updated. We want to argue
that the radius in the requests remains in a bounded range. Suppose that we update cluster 𝜅 with requests
(𝑝, 𝑟) and (𝑝′, 𝑟 ′) (in either order) such that 𝑟 ′ ≪ 𝜖2𝑟/𝑘 . If the algorithm does not fail, then there is a center
𝑥𝜅 satisfying both requests. By the triangle inequality, this means that the 𝛿(𝑝, 𝑝′) ≤ 𝑟 + 𝑟 ′ < 𝑟 + 𝜖𝑟/6.
Furthermore, by the constraint 𝑢(𝑝′) ≤ 2𝑘𝛿(𝑝′, 𝑋)/𝜖 = 2𝑘 (1+ 𝜖/3)𝑟 ′/𝜖 on our selection of the random point
𝑝′, we have that 𝑢(𝑝′) is much smaller than 𝜖𝑟/18. At every step of the algorithm, the upper bound 𝑢(𝑝′)
is 3-approximately satisfied by the current solution 𝑋 . Thus there should be a center in 𝑋 much closer than
𝜖𝑟/6 to 𝑝′. Together with 𝛿(𝑝, 𝑝′) < 𝑟 + 𝜖𝑟/6, it follows that there is always a center in 𝑋 at distance at most
(1 + 𝜖/3)𝑟 from 𝑝, contradicting the need for the request (𝑝, 𝑟).

Thus the combination of the two facts that (1) the upper bounds are always satisfied approximately and that
(2) the radius in the request is not much smaller than the upper bound implies that the radius in the requests
stays within a bounded range. Then we can argue as in the case of the Weighted 𝑘-Center problem. If every
weight is rounded to a power of (1 + 𝜖), then each cluster is given requests with only a bounded number of
different radii. If many requests arrive, then there is a long subsequence of the requests with the same radius.
This means that the bound on the 𝜖-scatter dimension can be used to bound the length of this subsequence,
and hence the total number of requests to all clusters.

From Weighted 𝑘-Median to General Norms Using Subgradients Next we show how to solve the
clustering problem for an arbitrary monotone norm by interpreting it as collection of Weighted 𝑘-Median
instances that we need to satisfy simultaneously. We will repeatedly solve such Weighted 𝑘-Median instances
that are dynamically discovered during the course of the algorithm.

It will be convenient to use the notion of subgradients. For our purposes, it is sufficient to discuss
subgradients in the context of a monotone norm 𝑓 : R𝑛 → R. We say that 𝒈 is a subgradient of 𝑓 at point 𝒙
if 𝑓 (𝒙) = 𝒈⊺𝒙 and 𝑓 (𝒚) ≥ 𝒈⊺𝒚 for every 𝒚 ∈ R𝑛. It is known that every monotone norm has a nonnegative
subgradient 𝒈 ≥ 0 at every point 𝒙 ≥ 0. Checking whether a vector 𝒈 is a subgradient at 𝒙 and finding a
subgradient at 𝒙 can be formulated as convex optimization problems, hence can be (approximately) solved
using the ellipsoid method if 𝑓 can be efficiently computed [78].

Suppose that we have a current solution 𝑋 and let 𝒙 ∈ R𝑃
≥0 be the vector representing the distances of the

points in 𝑃 to 𝑋 . Suppose that 𝑋 is not (approximately) optimal: 𝑓 (𝒙) > (1 + 𝜖)OPT. Let us compute a
sugradient 𝒈 of 𝑓 at 𝒙; we have 𝒈⊺𝒙 = 𝑓 (𝑥) > (1 + 𝜖)OPT and 𝒈⊺𝒚 ≤ 𝑓 (𝒚) = OPT for the optimum solution
𝒚. That is, 𝒈⊺𝒙 ≤ OPT is a linear constraint satisfied by the optimum solution and violated by the current
solution. Then defining the weights 𝑤(𝑝) based on the coordinates of 𝒈 gives an instance of Weighted
𝑘-Median, with

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) > (1 + 𝜖)OPT for the current solution 𝑋 . Now we can proceed as above

for the Weighted 𝑘-Median problem: we randomly choose a point 𝑝 and cluster 𝜅, introduce a new request
into 𝑄𝜅 , find a new center 𝑥𝜅 , etc., until we arrive to a solution 𝑋 with

∑
𝑝 𝑤(𝑝)𝛿(𝑝, 𝑋) ≤ (1 + 𝜖)OPT. If

this new solution 𝑋 is still nonoptimal for the original norm problem, that is, 𝑓 (𝒙) > (1 + 𝜖)OPT, then we

58:94739

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 52

can again compute a subgradient, find a violated linear constraint (possibly the same as in the previous step).
We repeat this until we find a solution with 𝑓 (𝒙) ≤ (1 + 𝜖)OPT.

Defining the upper bounds and bootstrapping the algorithm with a solution approximately satisfying the
upper bounds were crucial for the analysis of the Weighted 𝑘-Median algorithm. For general norms, we can
again define the upper bounds once we have the weights 𝑤 based on the violated linear constraint 𝒈⊺𝒙 ≤ OPT.
However, these upper bounds would not be useful for the analysis, as they would depend on the violated linear
constraint, hence would change during the algorithm.

Intuitively, we can see the constraint 𝑓 (𝒙) ≤ OPT as an infinite number of Weighted 𝑘-Median instances,
corresponding to the linear constraints 𝒈⊺𝒙 ≤ OPT for every subgradient 𝒈 of 𝑓 . We would like to define
𝑢(𝑝) to be the smallest possible upper bound that can be assigned to 𝑝 among all of these infinitely many
Weighted 𝑘-Median instances. Determining this value seems to be a difficult task, but actually the answer is
very simple. Recall that 𝑢(𝑝) was defined as twice the smallest 𝑟 such that ball(𝑝, 𝑟) contains total weight at
least OPT/𝑟 . Thus to define the upper bound 𝑢(𝑝), we need to know what the maximum weight of the points
in ball(𝑝, 𝑟) can be among the infinitely many instances corresponding to all the subgradients. Let 𝒃 be the
characteristic vector of ball(𝑝, 𝑟) (i.e., every coordinate is 1 or 0, depending on whether a point is in or not
in the ball). Then the question is to determine the maximum of 𝒈⊺𝒃 among all subgradients 𝒈. It is easy to
see that this maximum is exactly 𝑓 (𝒃): if 𝒈 is a subgradient at 𝒃, then 𝒈⊺𝒃 = 𝑓 (𝒃); if 𝒈 is a subgradient at
an arbitrary point 𝒚, then 𝒈⊺𝒃 ≤ 𝑓 (𝒃). Thus we can determine the maximum weight of any ball and define
the upper bounds accordingly. With these definitions, the analysis of the Weighted 𝑘-Median algorithm go
through for general mononote norms. The two main properties of the upper bounds remain valid: (1) the
upper bounds are satisfied by the optimum solution and (2) we can restrict our random choice of 𝑝 to points
where the distance to the solution is not much smaller than 𝑢(𝑝).

In summary, the final algorithm consists of the following steps (see Figure 3.3). First we compute the
upper bounds 𝑢(𝑝) and greedily find a 3-approximate solution satisfying these constraints. Then we repeat the
following steps until we reach a solution 𝑋 for which the distance vector 𝒙 satisfies 𝑓 (𝒙) ≤ (1 + 𝜖)OPT. We
compute a subgradient 𝒈 of 𝑓 at 𝒙 to obtain a violated linear constraint 𝒈⊺𝒙 ≤ OPT. We randomly choose a
point 𝑝 (according to the distribution described above) and require that 𝑝 be at most distance 𝛿(𝑝, 𝑋)/(1+𝜖/3)
from the solution, that is, we obtain a violated distance constraint. Then we randomly choose a cluster 𝜅 ∈ [𝑘]
and require that this distance constraint be satisfied by center 𝑥𝜅 . Thus we put the request (𝑝, 𝛿(𝑝, 𝑋)/(1+𝜖/3)
into 𝑄𝜅 find a new 𝑥𝜅 that satisfy the cluster constraints imposed by the requests in 𝑄𝜅 , if possible. We repeat
these steps until we arrive to a solution 𝑋 with distance vector 𝒙 satisfying 𝑓 (𝒙) ≤ (1 + 𝜖)OPT. Our analysis
shows that each step is consistent with a hypothetical optimum solution𝑂 with probabilityΩ(𝜖/𝑘). Moreover,
if 𝜖-scatter dimension is bounded, then the algorithm has to find a solution or fail after a bounded number of
iterations.

(Algorithmic) 𝜖-Scatter Dimension After the general algorithm capable of handling any monotone norm
objective, our second main contribution is bounding the 𝜖-scatter dimension of various classes of metrics
(Section 3.6). In the interest of space, we do not go into the details of these (mostly combinatorial) proofs,

59:17369

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 53

Computing upper bounds

Current solution

Violated linear
constraint

Violated distance
constraint

Violated cluster
constraint

Ba
ll

In
te

rs
ec

ti
on

al
go

rit
hm

greedy 3-approximation
algorithm

computing
subgradient

random selection
of point 𝑝

random selection
of cluster 𝜅

Figure 3.3: Overall structure of the main algorithm.

but give only a brief overview.

• Bounded Doubling Dimension. As outlined in the introduction, the set of points as well as the set of
centers in an 𝜖-scattering both form an 𝜖-packing of a unit ball implying that any metric of doubling
dimension 𝑑 has 𝜖-scatter dimension (1/𝜖)O(𝑑) . See Theorem 1.3.6.

• Bounded-Treewidth Graph Metrics. The 𝜖-scatter dimension bound for metrics defined by the shortest
path metric of bounded-treewidth graphs is obtained by a delicate combinatorial proof that exploits
both structure of the graph and properties of the 𝜖-scattering. The bound we obtain is tw1/𝜖 O(tw) for
graphs of treewidth tw, that is, double exponential in tw for fixed 𝜖 . It remains is an interesting open
question if this bound can be improved.

• Planar Graph Metrics. As outlined in the introduction, we can employ a known metric embedding
result to reduce the problem of bounding the 𝜖-scatter dimension of planar graphs to bounding the
𝜖-scatter dimension of bounded-treewidth graphs. In particular, the result by Fox-Epstein, Klein, and

60:54518

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 54

Schild [64] provides an (approximate) metric embedding of planar metrics into low-treewidth metrics,
which can be used to obtain a 22poly(1/𝜖) bound on the 𝜖-scatter dimension of planar graph metrics.

• Continuous High-Dimensional Euclidean Space. As mentioned in the introduction, the high-
dimensional Euclidean space does not have bounded 𝜖-scatter dimension. However, in the continuous
Euclidean space, where any point of the space can be a center, we can bound the algorithmic 𝜖-scatter
dimension. Towards this, we replace the center player by an algorithmic “player” applying the algorithm
by Kumar and Yildirim [95] for Weighted 1-Center. To achieve bounded algorithmic 𝜖-scatter di-
mension, this algorithm would require, however, a bounded aspect ratio of the radii in the input requests.
We therefore prove an aspect-ratio condition (which holds even for general metrics) implying that it is
sufficient for the algorithm to handle instances with aspect-ratio O(1/𝜖). We combine this result with
the algorithm by Kumar and Yildirim to prove bounded algorithmic 𝜖-scatter dimension for continuous
high-dimensional Euclidean space, that is, Theorem 1.3.9.

3.3 Preliminaries

Subgradients of Norms We state definitions and summarize basic facts about subgradients of norms that
we will use throughout the paper.

Fact 3.3.1. Any norm is a convex function.

Definition 3.3.2 (Subgradient). A subgradient of a convex function 𝑓 : R𝑛 → R at any point 𝒙 ∈ R𝑛 is any
𝒈 ∈ R𝑛 such that the following holds for every 𝒚 ∈ R𝑛

𝑓 (𝒚) ≥ 𝑓 (𝒙) + 𝒈⊺ (𝒚 − 𝒙);

we denote by 𝜕 𝑓 (𝒙) the set of subgradients of 𝑓 at 𝒙.

The following fact summarizes various useful properties of subgradients specialized to norm functions.
Because we are apply norm objectives exclusively to non-negative distance vectors, we call (slightly abusing
terminology) a restriction of a norm to R𝑛≥0 a norm as well.

Fact 3.3.3 ([29]). Let 𝑓 : R𝑛≥0 → R≥0 be a norm and 𝒙 ∈ R𝑛≥0. If 𝒈 is a subgradient of 𝑓 at 𝒙, then 𝑓 (𝑥) = 𝒈⊺𝒙

and 𝑓 (𝑦) ≥ 𝒈⊺𝒚 for all 𝒚 ∈ R𝑛≥0. Further, if 𝑓 is monotone, there exists a subgradient 𝒈 ∈ 𝜕 𝑓 (𝒙) such that
𝒈 ≥ 0.

The following observation is an immediate consequence of Fact 3.3.3.

Observation 3.3.4. Let 𝜕 𝑓 =
⋃

𝒚∈R𝑛≥0
𝜕 𝑓 (𝒚) be the set of all subgradients of 𝑓 . Then for any 𝒙 ∈ R𝑛≥0, we

have that
𝑓 (𝒙) = max

𝒈∈𝜕 𝑓
𝒈⊺𝒙 .

61:27612

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 55

Definition 3.3.5 (𝜖-Approximate Subgradient). Let 𝑓 : R𝑛≥0 → R≥0 be a norm and let 𝜖 > 0. We define the set
𝜕𝜖 𝑓 (𝒙) of 𝜖-approximate subgradients of 𝑓 at 𝒙 to contain all 𝒈 ∈ R𝑛≥0 such that the following two conditions
hold

(i) 𝑓 (𝒚) ≥ 𝒈⊺𝒚 for each 𝒚 ∈ R𝑛≥0, and

(ii) 𝑓 (𝒙) ≤ (1 + 𝜖)𝒈⊺𝒙 .

It is known that approximate subgradients of convex functions can be computed efficiently via an (ap-
proximate) value oracle for the function through reductions shown by Grötschel, Lovasz and Schrĳver in their
classic book [78]. While the reduction in [78] appears to take at least Ω(𝑛10) calls to the oracle, there exist
faster methods assuming additional properties of the convex function, for example, see [101, 97]. Specifically
for ℓ𝑝 norms, closed formulas describing the sets of subgradients are known and used in practice.

Some Terminology and Notation Let 𝑀 = (𝑃, 𝐹, 𝛿) be a clustering space on 𝑛 = |𝑃 | data points. Let
𝒃 ∈ R𝑃

≥0 be an 𝑛-dimensional vector. We interpret 𝒃 as assigning each point 𝑝 ∈ 𝑃 a non-negative value
denoted 𝑏(𝑝). That is, 𝒃 = (𝑏(𝑝))𝑝∈𝑃 . For example, given a subset 𝑋 ⊆ 𝐹 of centers, we define the distance
vector 𝜹(𝑃, 𝑋) = (𝛿(𝑝, 𝑋))𝑝∈𝑃 . If 𝐵 ⊆ 𝑃 is a subset of points then 1𝐵 ∈ {0, 1}𝑃 denotes the characteristic
vector of 𝐵, that is, it assigns value 1 to any 𝑏 ∈ 𝐵 and 0 to any 𝑝 ∈ 𝑃 \ 𝐵. If 𝑝 ∈ 𝑃 and 𝛼 ≥ 0 then we denote
by 1𝑝,𝛼 the binary vector 1ball(𝑝,𝛼)∩𝑃 .

3.4 𝜖-Scatter Dimension

In this section, we introduce the concept of 𝜖-scatter dimension formally, which plays a central role in our
algorithmic framework. The following definition is a formalization of the “center-point game” presented in
the introduction.

Definition 3.4.1 (𝜖-Scatter Dimension). We are given a classM of finite metric spaces, a space 𝑀 = (𝑃, 𝐹, 𝛿)
inM, and some 𝜖 ∈ (0, 1). An 𝜖-scattering in 𝑀 is a sequence (𝑥1, 𝑝1) . . . , (𝑥ℓ , 𝑝ℓ) of center-point pairs
𝑥𝑖 ∈ 𝐹, 𝑝𝑖 ∈ 𝑃, 𝑖 ∈ [ℓ] such that

𝛿(𝑥𝑖 , 𝑝 𝑗) ≤ 1 for all 1 ≤ 𝑗 < 𝑖 ≤ ℓ (covering)

𝛿(𝑥𝑖 , 𝑝𝑖) > 1 + 𝜖 for all 𝑖 ∈ [ℓ] (𝜖-refutation)

The 𝜖-scatter dimension of 𝑀 is the maximum length of an 𝜖-scattering in it. The 𝜖-scatter dimension ofM
is the supremum of the 𝜖-scatter dimension over all 𝑀 ∈ M.

Note that for any 𝜖-scattering (𝑥1, 𝑝1), . . . , (𝑥ℓ , 𝑝ℓ), any subsequence (𝑥𝑖1 , 𝑝𝑖1), . . . , (𝑥𝑖ℓ′ , 𝑝𝑖ℓ′) where
𝑖1 < · · · < 𝑖ℓ′ and ℓ′, 𝑖 𝑗 ∈ [ℓ], 𝑗 ∈ [ℓ′] is an 𝜖-scattering as well.

As described in Theorem 1.3.10, we show that bounded (algorithmic) 𝜖-scatter dimension is essentially
sufficient to yield an EPAS for Norm 𝑘-Clustering in the respective metric space. In Section 3.6.2 we

62:11567

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 56

show that bounded treewidth and planar graph metrics, and bounded doubling metrics have bounded 𝜖-scatter
dimension. This allows us to obtain EPASes in all these metrics. To handle high-dimensional Euclidean
space, we resort to an algorithmic version of 𝜖-scatter dimension.

Optimizing the Centering Strategy Recall the example from the introduction showing that the 𝜖-scatter
dimension of the high-dimensional (continuous) Euclidean space R𝑑 is be unbounded. We constructed an
𝜖-scattering (𝑥1, 𝑝1), . . . , (𝑥𝑑−1, 𝑝𝑑−1) where 𝑥𝑖 is the 𝑖-th unit vector scaled by 1/√2 and where 𝑝𝑖 = −𝑥𝑖 for
all 𝑖 ∈ [𝑑 − 1]. Note that in this example the unit ball around the origin contains all the points in the sequence.
Hence, the above example would collapse if the center player would improve her strategy. This motivates
us to consider a variant where we replace the center player with an algorithm that computes centers more
prudently. Further, employing algorithms allows us also to handle infinite spaces.

Ball Intersection Problem and Algorithm Towards this, we formalize the algorithmic problem the
center player has to solve. We adopt and generalize a dual interpretation of the center-point game in which the
center player is trying to find a center in the intersection of all unit balls around the points played by the point
player. In fact, we consider the more general setting of non-uniform balls where each point 𝑝 in the scattering
has its own dedicated radius 𝑟 .

LetM be a class of metric spaces (𝑃, 𝐹, 𝛿) with possibly infinite center sets 𝐹. We define the following
search problem.

Ball Intersection
Input: A metric space 𝑀 = (𝑃, 𝐹, 𝛿) ∈ M, a set finite set 𝑄 ⊊ 𝑃 × R+ of distance constraints.
Output: A point 𝑥 ∈ 𝐹 satisfying all distance constraints, that is, 𝛿(𝑥, 𝑝) ≤ 𝑟 for each (𝑝, 𝑟) ∈ 𝑄, if such
a point exists and “fail” otherwise.

For finite metric spaces, the Ball Intersection problem can be solved efficiently by exhaustively search-
ing the center space 𝐹. Unfortunately, we are not aware of exact algorithms for Ball Intersection for
certain infinite metric spaces such as high-dimensional continuous Euclidean space. We therefore work with
approximate algorithms. To define this formally, we say that a center 𝑥 ∈ 𝐹 𝜂-satisfies the distance constraint
(𝑝, 𝑟) ∈ 𝑄 for some error parameter 𝜂 > 0, if 𝛿(𝑥, 𝑝) ≤ (1 + 𝜂)𝑟 . Let CM be a (deterministic) algorithm
whose input is an instance of Ball Intersection and an error parameter 𝜂 > 0. The algorithm is called
an approximate Ball Intersection algorithm (or Ball Intersection algorithm for short) if it satisfies the
following conditions.

(i) The algorithm outputs a center that 𝜂-satisfies all distance constraints or it fails.

(ii) If there exists a center satisfying all points distance constraints exactly, then the algorithm does not fail.

(iii) The running time of CM is poly(|𝑀 |, 1/𝜂).

63:10379

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 57

We remark that there is an approximate Ball Intersection algorithm for high-dimensional Euclidean
space [95], which we employ in Section 3.6.4 to prove bounded algorithmic 𝜖-scatter dimension of this
metric.

Algorithmic 𝜖-Scatter Dimension The definition of algorithmic 𝜖-scatter dimension is based on the notion
of (CM , 𝜖)-scattering, which is a variant of 𝜖-scattering: Centers are chosen via an (approximate) Ball
Intersection algorithm CM rather than by an adversarial center-player. Intuitively, we maintain a dynamic
instance of Ball Intersection that is augmented by adding distance constraints (𝑝, 𝑟) one by one. In the
context of (CM , 𝜖)-scattering, we call the distance constraints (𝑝, 𝑟) requests, which are satisfied by the Ball
Intersection algorithm sequentially.

Definition 3.4.2 (Algorithmic 𝜖-Scatter Dimension). LetM be a class of metric spaces with Ball Intersection
algorithm CM , let 𝑀 = (𝑃, 𝐹, 𝛿) be a metric in M, and let 𝜖 ∈ (0, 1) Moreover, let 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝐹, and
𝑟𝑖 ∈ R+ for each 𝑖 ∈ [ℓ] where ℓ is a positive integer. The sequence (𝑥1, 𝑝1, 𝑟1), . . . , (𝑥ℓ , 𝑝ℓ , 𝑟ℓ) is called an
(CM , 𝜖)-scattering if the following two conditions hold.

(i) We have 𝑥𝑖 = CM (𝑀, {(𝑝1, 𝑟1), . . . , (𝑝𝑖−1, 𝑟𝑖−1)}, 𝜖/2) for each 2 ≤ 𝑖 ≤ ℓ. (There is no requirement
regarding the first center 𝑥1 in the sequence.)

(ii) Moreover, 𝛿(𝑥𝑖 , 𝑝𝑖) > (1 + 𝜖)𝑟𝑖 for each 𝑖 ∈ [ℓ].

We say thatM has algorithmic (𝜖, CM)-scatter dimension 𝜆M (𝜖) if any (CM , 𝜖)-scattering contains at most
𝜆M (𝜖) many triples with the same radius value. The algorithmic 𝜖-scatter dimension ofM is the minimum
algorithmic (𝜖, CM)-scatter dimension over any Ball Intersection algorithm CM forM.

When the familyM is clear from the context we drop the subscriptM from 𝜆M (𝜖) and CM . Note that, in
contrast to the 𝜖-scatter dimension, for algorithmic 𝜖-scatter dimension we demand that the number of triples
per radius value be bounded rather than the total length of the sequence. In fact, this stronger requirement
would not hold for high-dimensional Euclidean spaces whereas the weaker (algorithmic) requirement turns out
to be sufficient for our results. Another noteworthy difference is that a subsequence of an (CM , 𝜖)-scattering
is not necessarily a (CM , 𝜖)-scattering itself because it may not be consistent with the behavior of algorithm
CM .

Relation Between Algorithmic and non-Algorithmic 𝜖-Scatter Dimension The following lemma shows
that the algorithmic 𝜖-scatter dimension indeed generalizes the 𝜖-scatter dimension for finite metric spaces.

Lemma 3.4.3. Any class of finite, explicitly given, metric spaces with 𝜖-scatter dimension 𝜆(𝜖) has also
algorithmic 𝜖-scatter dimension 𝜆(𝜖).

Proof. Let 𝑀 = (𝑃, 𝐹, 𝛿) be a metric space in the given class along with a set 𝑄 of distance constraints. Our
Ball Intersection algorithm exhaustively searches 𝐹 to find a center 𝑥 satisfying all distance constraints

64:80919

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 58

exactly. If no such point exists the algorithm fails. Let C denote this algorithm. Consider any (CM , 𝜖)-
scattering. Notice that any sub-sequence of triples with the same radius value forms an 𝜖-scattering. Hence
the sequence contains at most 𝜆(𝜖) many triples for any radius value.

Aspect-Ratio Lemma for Algorithmic 𝜖-Scatter Dimension The following is a handy consequence of
bounded algorithmic 𝜖-scatter dimension that we use in proving our result. It strengthens the properties of an
(CM , 𝜖)-scattering by bounding the number of triples whose radii lie in an interval of bounded aspect-ratio
(rather than bounding the number of triples with the same radius value).

Lemma 3.4.4. LetM be a class of metric spaces of algorithmic 𝜖-scatter dimension 𝜆(𝜖). Then there exists
a Ball Intersection algorithm CM with the following property. Given 𝜖 ∈ (0, 1), 𝑎 > 0, and 𝜏 ≥ 2, any
(CM , 𝜖)-scattering contains O(𝜆(𝜖/2) (log 𝜏)/𝜖) many triples whose radii lie in the interval [𝑎, 𝜏𝑎].

Proof. It suffices to show the weaker claim that the number of requests in the interval [𝑎, (1 + 𝜖/100)𝑎] is at
most 2𝜆(𝜖/2). This claim implies the lemma because the interval [𝑎, 𝜏𝑎] can be covered with O((log 𝜏)/𝜖)
many intervals of the form [(1 + 𝜖/100) 𝑗 , (1 + 𝜖/100) 𝑗+1], 𝑗 ∈ Z.

Let AM be an Ball Intersection algorithm such that the algorithmic (𝜖,AM)-scatter dimension is
𝜆(𝜖). Let 𝜂 ∈ (0, 1) be the input error parameter. Consider the Ball Intersection algorithm CM that works
as follows. For any of the input requests (𝑝, 𝑟) we round 𝑟 to 𝑟 ′, which is the smallest power of 1 + 𝜂/50 larger
than 𝑟 . We then invokeAM on the rounded requests with error parameter 𝜂/2 and output the center returned
by AM . Clearly, this algorithm is an (1 + 𝜂)-approximate Ball Intersection algorithm (for the original
requests).

Consider any algorithmic (CM , 𝜖)-scattering (𝑥1, 𝑝1, 𝑟1), . . . , (𝑥ℓ , 𝑝ℓ , 𝑟ℓ). Let 𝑟 ′
𝑖
, 𝑖 ∈ [ℓ] be the rounded

radii computed by CM . Let 𝜖 ′ = 𝜖/2. Let 1 ≤ 𝑗 < 𝑖 ≤ ℓ. We have 𝛿(𝑥𝑖 , 𝑝𝑖) > (1 + 𝜖)𝑟𝑖 ≥
(1 + 𝜖)/(1 + 𝜖/100)𝑟 ′

𝑖
≥ (1 + 𝜖 ′)𝑟 ′

𝑖
. Moreover, we have 𝛿(𝑥𝑖 , 𝑝 𝑗) ≤ (1 + 𝜖 ′/2)𝑟 ′𝑖 . Hence, the sequence

(𝑥1, 𝑝1, 𝑟
′
1), . . . , (𝑥ℓ , 𝑝ℓ , 𝑟

′
ℓ
) is an algorithmic (CM , 𝜖 ′)-scattering. The radii in the requests (𝑝𝑖 , 𝑟𝑖), 𝑖 ∈ [ℓ]

that lie in the interval [𝑎, (1+ 𝜖/100)𝑎] are rounded by CM to at most two distinct radius values because CM is
invoked with error parameter 𝜂 = 𝜖/2. Hence the (unrounded) sequence contains at most 2𝜆(𝜖 ′) = 2𝜆(𝜖/2)
many triples with radii in the interval [𝑎, (1 + 𝜖/100)𝑎]. This completes the proof of the claim and therefore
of the lemma.

3.5 Framework for Efficient Parameterized Approximation Schemes

Main Result We are now ready to state our main result. In the remainder of this section, we prove the
following theorem, restated from the introduction. In Section 3.5.1, we describe the EPAS and give some
intuition. In Section 3.5.2, we give a full, technical analysis.

Theorem 1.3.10. Let M be a class of metric spaces that is closed under scaling distances by a positive
constant. There is a randomized algorithm that computes for any Norm 𝑘-Clustering instance I = (𝑀, 𝑓 , 𝑘)

65:73828

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 59

with metric 𝑀 = (𝑃, 𝐹, 𝛿) ∈ M, and any 𝜖 ∈ (0, 1), with high probability a (1 + 𝜖)-approximate solution if
the following two conditions are met.

(i) There is an efficient algorithm evaluating for any distance vector 𝒙 ∈ R𝑃
≥0 the objective 𝑓 (𝒙) in time

𝑇 (𝑓).

(ii) There exists a function 𝜆 : R+ → R+, such that for all 𝜖 > 0, the algorithmic 𝜖-scatter dimension ofM
is at most 𝜆(𝜖).

The running time of the algorithm is exp
(
Õ

(
𝑘𝜆(𝜖/10)

𝜖

))
· poly(|𝑀 |) · 𝑇 (𝑓).

3.5.1 Algorithm

Our algorithm is stated formally in Algorithm 3. We informally summarize the key steps of our algorithm,
which we also outlined partially in the technical overview. We also give some intuition of the analysis.

Using standard enumeration techniques, we assume that we know (a sufficiently exact approximation of)
the optimum objective function value OPT. Our goal is to satisfy the convex constraint 𝑓 (𝒙) ≤ (1 + 𝜖)OPT
imposed on the distance vector 𝒙 ∈ R𝑃

≥0 (which represents the distance vector 𝜹(𝑃, 𝑋) induced by the feasible
solution 𝑋 ⊆ 𝐹). By Observation 3.3.4, this constraint is equivalent to (infinitely many) linear constraints
𝒘⊺𝒙 ≤ (1 + 𝜖)OPT where 𝒘 ∈ 𝜕 𝑓 is any subgradient of 𝑓 .

To illustrate the main idea, we first describe a highly simplified, but failed attempt. We consider in each
iteration of the while-loop (lines 8–15) a candidate solution 𝑋 . If 𝑓 (𝒙) ≤ (1 + 𝜖)OPT, then we are done.
Otherwise, we compute an (𝜖/10-approximate) subgradient 𝒘 of 𝑓 at 𝒙 in line 9. Since 𝒘⊺𝒙 = 𝑓 (𝒙) >
(1 + 𝜖)OPT, this constitutes a violated linear constraint. Consider sampling a point 𝑝 ∈ 𝑃 with probability
proportional to its contribution 𝑤(𝑝)𝛿(𝑝, 𝑋) to the objective 𝑓 (𝒙) = 𝒘⊺𝒙 (line 11). An averaging argument
shows that with probability Ω(𝜖), the sampled point 𝑝 satisfies 𝛿(𝑝, 𝑋) > (1 + 𝜖/3)𝛿(𝑝, 𝑂) for some fixed
hypothetical optimum solution 𝑂. In this event, we identified a violated distance constraint, and call 𝑝 an
𝜖/3-witness for 𝑋 . We assign 𝑝 to a cluster 𝜅 ∈ [𝑘] picked uniformly at random, which equals the correct
cluster of 𝑝 in 𝑂 with probability 1/𝑘. Assuming that both events occur, this allows us to add the request (𝑝, 𝑟)
with radius value 𝑟 = 𝛿(𝑝, 𝑋)/(1+ 𝜖/3) to the cluster constraint 𝑄𝜅 imposed on the cluster with index 𝜅. (See
lines 13 and 14.) Here, we refer to the set 𝑄𝜅 of requests for cluster 𝜅 as cluster constraint of 𝜅.

Fix cluster index 𝜅 ∈ [𝑘]. Let (𝑝 (1)𝜅 , 𝑟
(1)
𝜅), . . . , (𝑝 (ℓ)𝜅 , 𝑟

(ℓ)
𝜅) be the sequence of requests added to the cluster

constraint associated with cluster 𝜅. Let 𝑥 (𝑖)𝜅 , 𝑖 ∈ [ℓ] be the center of cluster 𝜅 just before adding the request
(𝑝 (𝑖)𝜅 , 𝑟

(𝑖)
𝜅) to 𝑄𝜅 . The key observation is that the sequence of triples (𝑥 (1)𝜅 , 𝑝

(1)
𝜅 , 𝑟

(1)
𝜅), . . . , (𝑥 (ℓ)𝜅 , 𝑝

(ℓ)
𝜅 , 𝑟

(ℓ)
𝜅)

forms an algorithmic 𝜖-scattering. We would like to argue that the length of this sequence is bounded because
the algorithmic 𝜖-scatter dimension is bounded. Unfortunately, the scatter dimension bounds only the number
of triples per radius value but not the overall length of the sequence.

To address this issue, we compute in line 1 an initial upper bound 𝑢(𝑝) on the radius of any point 𝑝 ∈ 𝑃.
We (approximately) satisfy these initial distance constraints for all points in a greedy pre-processing step (see

66:85795

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 60

lines 2–7). We maintain the distance constraints during the main phase by adding them as initial requests (see
line 5). The upper bound 𝑢(𝑝) is a rough estimate of the smallest radius 𝑟 that may be imposed on 𝑝 as part
of any request (𝑝, 𝑟). We modify the sampling process in the main phase (see line 11) to sample only from a
subset of points whose distance to 𝑋 is not much smaller than their initial upper bound 𝑢(𝑝). We show via a
careful argument that every request (𝑝, 𝑟) we make is consistent with 𝑂 with probability Ω(𝜖/𝑘). We argue,
moreover, that all radii of requests made for a particular cluster are within a factor O(𝑘/𝜖 2) of each other. The
initial upper bounds are computed by detecting “dense” balls (line 1) in the input instance in the sense that
they would receive high weight by some subgradient of the objective norm and would therefore require that
any near-optimal solution must place a center in the vicinity of that dense ball.

Algorithm 3: Framework for Norm 𝑘-Clustering
Data: Instance I = ((𝑃, 𝐹, 𝛿), 𝑘, 𝑓 : R𝑃

≥0 → R≥0) of Norm 𝑘-Clustering, error parameter
𝜖 ∈ (0, 1), OPT > 0, Ball Intersection algorithm C according to Lemma 3.4.4

Result: Solution 𝑋 of cost at most (1 + 𝜖)OPT if solution of cost at most OPT exists
1 For each 𝑝 ∈ 𝑃, compute 𝑢(𝑝) = min{ 𝛼 > 0 | 𝑓 (1𝑝,𝛼/3) ≥ 3OPT/𝛼 };
2 Sort 𝑃 in non-decreasing order of 𝑢(𝑝);
3 Mark 𝑝𝑖 ∈ 𝑃 if ball(𝑝𝑖 , 𝑢(𝑝𝑖)) is disjoint from ball(𝑝 𝑗 , 𝑢(𝑝 𝑗) for every 𝑗 < 𝑖;
4 Let 𝑝 (1) , . . . , 𝑝 (𝑘′) be the marked points.; // Lemma 3.5.5 shows that 𝑘 ′ ≤ 𝑘

5 Let 𝑄𝜅 = {(𝑝 (𝜅) , 𝑢(𝑝 (𝜅)))} for all 𝜅 ∈ [𝑘 ′];
6 Let 𝑄𝜅 = ∅ for all 𝜅 with 𝑘 ′ < 𝜅 ≤ 𝑘;
7 Let 𝑋 = (𝑥1, . . . , 𝑥𝑘) be any set of centers where 𝑥𝜅 satisfies the requests in 𝑄𝜅 ;
8 while 𝑓 (𝜹(𝑃, 𝑋)) > (1 + 𝜖)OPT do
9 𝒘 ← 𝜖/10-subgradient of 𝑓 at 𝜹(𝑃, 𝑋);

10 𝐴←
{
𝑝 ∈ 𝑃 | 𝛿(𝑝, 𝑋) ≥ 𝜖 𝑢(𝑝)

1000𝑘

}
;

11 Sample an element 𝑝 ∈ 𝐴 where P𝑝 = 𝑎 =
𝑤 (𝑎) 𝛿 (𝑎,𝑋)∑

𝑏∈𝐴 𝑤 (𝑏) 𝛿 (𝑏,𝑋) for any 𝑎 ∈ 𝐴;
12 Pick cluster 𝜅 ∈ [𝑘] for 𝑝 uniformly at random;
13 𝑄𝜅 ← 𝑄𝜅 ∪ {(𝑝, 𝛿(𝑝, 𝑋)/(1 + 𝜖/3))};
14 𝑥𝜅 ← C(𝑄𝜅 , 𝜖/10) if no 𝑥𝑖 was found then fail ;
15 end
16 return 𝑋;

3.5.2 Analysis

Overview The analysis consists of establishing the following three facts. First, if the algorithm terminates
without failure, it computes a (1 + 𝜖)-approximation. Second, the algorithm terminates—with or without
failure—after a number of iterations that depends on 𝑘 and 𝜖 only. Third, the algorithm does not fail with a
probability that depends only on 𝑘 and 𝜖 as well.

The first step of the analysis follows immediately from the stopping criterion (line 8) of the while loop.

Observation 3.5.1 (Correctness). If the algorithm terminates successfully (that is, without failure), then it
outputs a (1 + 𝜖)-approximate solution.

67:78016

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 61

The second step of the analysis is summarized in the following lemma, which we prove in Subsection 3.5.2.

Lemma 3.5.2 (Runtime bound). The algorithm terminates afterO
(
𝑘 (log 𝑘/𝜖)𝜆(𝜖/10)

𝜖

)
iterations—with or without

failure.

With these two insights at hand, we are left with the third step summarized by the following lemma, which
we prove in Subsection 3.5.2.

Lemma 3.5.3 (Probability bound). The algorithm terminates successfully (that is, without failure) with
probability exp

(
−Õ

(
𝑘𝜆(𝜖/10)

𝜖

))
.

We repeat the algorithm exp
(
Õ

(
𝑘𝜆(𝜖/10)

𝜖

))
many times and hence succeed with high probability by

Lemma 3.5.3.
The remainder of this section is dedicated to proving Lemmas 3.5.2 and 3.5.3, thereby completing proof

of the main Theorem 1.3.10.

Bounding the Number of Iterations

In this subsection, we prove Lemma 3.5.2. The proof consists in three steps. First, we argue that the initial
upper distance bounds 𝑢(𝑝) that we compute for each point 𝑝 ∈ 𝑃 are (i) consistent with any optimum
solution (Lemma 3.5.4), and (ii) approximately satisfied throughout the algorithm (Lemma 3.5.5). Second,
we establish that the radii in the requests made for any particular cluster are within a bounded factor (aspect
ratio) of each other (Lemma 3.5.6). The third step consists in proving that, for any particular cluster, the
sequence of requests along with the corresponding centers constitute an algorithmic (CM , 𝜖)-scattering of
bounded aspect ratio. Hence we can use Lemma 3.4.4 to bound the length of the sequence and thus the
number of iterations by a function of 𝑘 and 𝜖 , thereby completing the proof of Lemma 3.5.2.

Initial Upper Bounds We first show that the initial upper bounds we calculate in the algorithm are conser-
vative in the sense that they are also respected by an optimal solution.

Lemma 3.5.4. If 𝑂 is an optimal solution then 𝛿(𝑝, 𝑂) ≤ 𝑢(𝑝) for any 𝑝 ∈ 𝑃, where 𝑢(𝑝) is the initial upper
bound computed in line 1 of Algorithm 3.

Proof. Let 𝛼 = 𝑢(𝑝). For the sake of a contradiction, assume that 𝛿(𝑝, 𝑂) > 𝛼. By triangle inequality, any
point 𝑝′ ∈ ball(𝑝, 𝛼/3) has distance at least 2𝛼/3 to 𝑂. Hence we have 𝜹(𝑃,𝑂) ≥ (2𝛼/3) · 1𝑝,𝛼/3 and thus
𝑓 (𝜹(𝑃,𝑂)) ≥ 𝑓 ((2𝛼/3) · 1𝑝,𝛼/3) = (2𝛼/3) 𝑓 (1𝑝,𝛼/3) ≥ (2𝛼/3) · 3OPT

𝛼
= 2OPT, which is a contradiction.

The following lemma says that throughout the algorithm we approximately satisfy all upper bounds. We
remark that the initialization (lines 2–7) as well as the analysis is a variant of Plesník’s algorithm [109] for
Priority 𝑘-Center when applied to point set 𝑃 with radii 𝑢(𝑝), 𝑝 ∈ 𝑃.

68:75950

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 62

Lemma 3.5.5. The number 𝑘 ′ of points marked in line 3 in Algorithm 3 is at most 𝑘 . Moreover, at any time
during the execution of the while loop (lines 8–15), we have that 𝛿(𝑝, 𝑋) ≤ 4𝑢(𝑝). For any request (𝑝, 𝑟)
added to some cluster constraint, we have 𝑟 ≤ 4𝑢(𝑝).

Proof. By Lemma 3.5.4 each of the balls ball(𝑝 (𝜅) , 𝑢(𝑝 (𝜅))) with marked 𝑝 (𝜅) , 𝜅 ∈ [𝑘 ′] contains at least
one point from some hypothetical optimum solution 𝑂. On the other hand, these balls are pairwise disjoint
by construction. Hence 𝑘 ′ ≤ |𝑂 | ≤ 𝑘 . This also implies that the algorithm can initialize 𝑋 = (𝑥1, . . . , 𝑥𝑘) in
line 7 with centers satisfying all initial cluster constraints. For example, it may pick the 𝑘 ′ centers in 𝐹 closest
to 𝑝 (𝜅) , 𝜅 ∈ [𝑘 ′] and 𝑘 − 𝑘 ′ many additional arbitrary centers.

Because these initial requests are never removed, they are passed to the Ball Intersection algorithm
(with error parameter 𝜖/10; see line 14) whenever we make a change in the respective cluster. Hence, we
have 𝛿(𝑝, 𝑋) ≤ (1 + 𝜖/10)𝑢(𝑝) ≤ 3𝑢(𝑝)/2 for any marked point 𝑝 throughout the execution of the while
loop. For any point 𝑝′ not marked, ball(𝑝′, 𝑢(𝑝′)) intersects ball(𝑝, 𝑢(𝑝)) for some marked 𝑝. Because the
points are processed in line 3 in non-decreasing order of 𝑢(·), we must have 𝑢(𝑝) ≤ 𝑢(𝑝′). As argued before,
ball(𝑝, 3𝑢(𝑝)/2) is guaranteed to contain a center in 𝑋 at any time during the while loop. This center has
distance at most 𝑢(𝑝′) + 2 · 3𝑢(𝑝)/2 ≤ 4𝑢(𝑝′) from 𝑝′ by triangle inequality. For the second claim, notice
that 𝑟 < 𝛿(𝑝, 𝑋) ≤ 4𝑢(𝑝) at the time this request is processed in line 14 for the first time.

Bounding the Aspect-Ratio of Requests The following lemma establishes that the radii of any two requests
made for the same cluster are within a factor O(𝑘/𝜖 2) from each other. The intuition is as follows. We ensure
in the algorithm (see line 10) that we only sample points whose radii are within a factor O(𝑘/𝜖) from 𝑢(𝑝).
Assume that the radii, and thus the initial bounds 𝑢(𝑝), 𝑢(𝑝′), in two request (𝑝, 𝑟), (𝑝′, 𝑟 ′) to the same
cluster were very far from each other, say 𝑟 ′ ≪ 𝑟 and 𝑢(𝑝′) ≪ 𝑢(𝑝). This would then imply that 𝑝 was
already (essentially) within radius 𝑟 from some center before requesting (𝑝, 𝑟) since there must be a center
within radius 4𝑢(𝑝′) ≪ 𝜖𝑟/3 from 𝑝′ by Lemma 3.5.5. This contradicts the assumption that we requested
(𝑝, 𝑟) in the first place.

Lemma 3.5.6. Let (𝑝, 𝑟) and (𝑝′, 𝑟 ′) be requests added (in either order) to the same cluster constraint 𝑄𝜅 ,
𝜅 ∈ [𝑘] in line 13 of Algorithm 3. If 𝑟 ′ ≤ 𝜖2 · 𝑟/(104𝑘) then the algorithm fails in line 14 upon making the
second of the two requests.

Proof. Assume for the sake of a contradiction that the algorithm does not fail but finds a center 𝑥𝜅 with
𝛿(𝑝, 𝑥𝜅) ≤ (1+ 𝜖/10)𝑟 and 𝛿(𝑝′, 𝑥𝜅) ≤ (1+ 𝜖/10)𝑟 ′. Hence 𝛿(𝑝, 𝑝′) ≤ (1+ 𝜖/10) (𝑟 + 𝑟 ′) by triangle inequality.
By Lemma 3.5.5, we have 𝑟 ≤ 4𝑢(𝑝) and 𝑟 ′ ≤ 4𝑢(𝑝′). Because we sample points from the set 𝐴 defined in
line 10, we have 𝑟 ≥ 𝜖𝑢(𝑝)/(200𝑘) and 𝑟 ′ ≥ 𝜖𝑢(𝑝′)/(200𝑘).

Suppose 𝑟 ′ ≤ 𝜖2𝑟/(104𝑘). At the time of adding (𝑝, 𝑟) to 𝑄𝜅 the current candidate solution 𝑋 satisfies

69:24965

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 63

𝛿(𝑝′, 𝑋) ≤ 4𝑢(𝑝′) ≤ 1000𝑘𝑟 ′/𝜖 by Lemma 3.5.5. Hence

𝛿(𝑝, 𝑋) ≤ 𝛿(𝑝, 𝑝′) + 𝛿(𝑝′, 𝑋)

≤ (1 + 𝜖/10) (𝑟 + 𝑟 ′) + 1000𝑘𝑟 ′/𝜖

≤ (1 + 𝜖/4)𝑟 .

However, this is a contradiction because 𝛿(𝑝, 𝑋) = (1 + 𝜖/3)𝑟 when requesting (𝑝, 𝑟) to 𝑄𝜅 as can be seen
from line 14.

Leveraging Bounded Algorithmic 𝜖-Scatter Dimension To complete the proof of Lemma 3.5.2, we fix
some cluster and consider the sequence of triples (𝑥, 𝑝, 𝑟) where (𝑝, 𝑟) is a request made for this cluster and
where 𝑥 is the center of the cluster just before the request was made. We establish that this sequence constitutes
an algorithmic (CM , 𝜖)-scattering and use Lemma 3.5.6 to bound the aspect ratio of the radii in this sequence
by O(𝑘/𝜖 2). We complete the proof via the aspect-ratio lemma 3.4.4.

Proof of Lemma 3.5.2. Fix a cluster index 𝜅 ∈ [𝑘]. Let (𝑝 (1)𝜅 , 𝑟
(1)
𝜅), . . . , (𝑝 (ℓ)𝜅 , 𝑟

(ℓ)
𝜅) be the sequence of

requests in the order in which they are added to 𝑄𝜅 in line 13. For any 𝑖 ∈ [ℓ], let 𝑥 (𝑖)𝜅 be the center of cluster
𝜅 at the time just before requesting (𝑝 (𝑖)𝜅 , 𝑟

(𝑖)
𝜅). Since 𝑟

(𝑖)
𝜅 = 𝛿(𝑝 (𝑖)𝜅 , 𝑋)/(1 + 𝜖/3) ≤ 𝛿(𝑝 (𝑖)𝜅 , 𝑥

(𝑖)
𝜅)/(1 + 𝜖/3)

and since 𝑥
(𝑖)
𝜅 is computed by invoking C on {(𝑝 (1)𝜅 , 𝑟

(1)
𝜅), . . . , (𝑝 (𝑖−1)

𝜅 , 𝑟
(𝑖−1)
𝜅)} and error parameter 𝜖/10, the

sequence (𝑥 (1)𝜅 , 𝑝
(1)
𝜅 , 𝑟

(1)
𝜅), . . . , (𝑥 (1)𝜅 , 𝑝

(ℓ)
𝜅 , 𝑟

(ℓ)
𝜅) is an algorithmic 𝜖/5-scattering.

By Lemma 3.5.6, 𝑟 (𝑖)𝜅 ∈ 𝑅𝜅 =

[
𝑟min,

104𝑘𝑟min
𝜖 2

]
for every 𝑖 ∈ [ℓ] where 𝑟min denotes the smallest radius

in any request for cluster 𝜅. Applying Lemma 3.4.4 to the interval 𝑅𝜅 , the length of the sequence is
O((log 𝑘/𝜖)𝜆(𝜖/10)/𝜖). Since our algorithm adds in each iteration one request to some cluster constraint, the
overall number of iterations is O(𝑘 (log 𝑘/𝜖)𝜆(𝜖/10)/𝜖).

Bounding the Success Probability

The proof of Lemma 3.5.3 consists of two key steps: First, we argue that the algorithm terminates with success
(that is, without failure) if the random choices made by the algorithm are “consistent” (to be defined more
precisely below) with some hypothetical optimum solution. Second, we argue that consistency is maintained
with sufficiently high probability in each iteration. Together with our upper bound on the number of iterations
from Lemma 3.5.2, this completes the proof of the main result, Theorem 1.3.10.

Consistency Informally speaking, we mean by consistency that a fixed hypothetical solution would satisfy
all current cluster constraints.

Definition 3.5.7. Consider a fixed hypothetical optimum solution 𝑂 = (𝑜1, . . . , 𝑜𝑘). We say that the current
state of execution (specified by (𝑋,𝑄1, . . . , 𝑄𝑘)) of Algorithm 3 is consistent with 𝑂 if for any request
(𝑝, 𝑟) ∈ 𝑄𝜅 , 𝜅 ∈ [𝑘], we have that 𝛿(𝑝, 𝑜𝜅) ≤ 𝑟 .

70:49982

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 64

If the current state is consistent with the optimum solution 𝑂, then 𝑂 certifies existence of solution to the
cluster constraints (𝑄1, . . . , 𝑄𝑘) currently imposed. Therefore, the following observation is straightforward.

Observation 3.5.8. If the state of the algorithm is consistent with 𝑂 before executing line 14 in any iteration,
then the algorithm does not fail during this iteration.

Probability of Maintaining Consistency If the state of execution is consistent with 𝑂 at the beginning of
some iteration, then it remains consistent under the following two conditions. First, the point 𝑝 sampled in
this iteration is (randomly) assigned to the correct cluster. Second, the distance of 𝑝 to the current candidate
solution is sufficiently larger than its distance to 𝑂, thereby justifying the request made in line 13. This second
condition motivates the following definition.

Definition 3.5.9. Given a candidate solution 𝑋 with 𝑓 (𝜹(𝑃, 𝑋)) > (1 + 𝜖)OPT, a point 𝑝 ∈ 𝑃 is called an
𝜖-witness if 𝛿(𝑝, 𝑋) > (1 + 𝜖)𝛿(𝑝, 𝑂).

The following lemma implies that the request made in any iteration for the sampled point is justified with
probability Ω(𝜖). It is a key part of our analysis as it links the specific way of (i) computing the initial upper
bounds and (ii) sampling a witness based on these upper bounds. It is ultimately this interplay that allows us
to bound the aspect ratio of the radii in the requests for a particular cluster and therefore the overall number
of requests per cluster in terms of 𝑘 and 𝜖 .

Lemma 3.5.10. Consider a fixed iteration of the while loop of Algorithm 3 and let 𝑋 be the candidate solution
at the beginning of this iteration. The point sampled in line 11 is then an 𝜖/3-witness for 𝑋 with probability
Ω(𝜖). In particular, the set 𝐴 computed in line 10 is not empty.

Proof. For any subset 𝑆 ⊆ 𝑃 of points let 𝐶𝑆 =
∑

𝑝∈𝑆 𝑤(𝑝)𝛿(𝑝, 𝑋) denote the contribution of 𝑆 towards
𝒘⊺𝜹(𝑃, 𝑋) = 𝐶𝑃 .

Let 𝑊 ⊆ 𝑃 be the subset of 𝜖/3-witnesses of 𝑋 . We claim that the contribution 𝐶𝑊 is at least 𝜖𝐶𝑃/10.

71:58397

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 65

Suppose for the sake of a contradiction that their contribution is less. Then, using 0 < 𝜖 < 1,

OPT ≥ 𝒘⊺𝜹(𝑃,𝑂)

≥
∑︁

𝑝∈𝑃\𝑊
𝑤(𝑝)𝛿(𝑝, 𝑂)

≥ 1
1 + 𝜖/3

∑︁
𝑝∈𝑃\𝑊

𝑤(𝑝)𝛿(𝑝, 𝑋)

≥ 1 − 𝜖/10

1 + 𝜖/3
∑︁
𝑝∈𝑃

𝑤(𝑝)𝛿(𝑝, 𝑋)

≥ 𝒘⊺𝜹(𝑃, 𝑋)
1 + 𝜖/2

≥ 𝑓 (𝜹(𝑃, 𝑋))
(1 + 𝜖/2) (1 + 𝜖/10)

≥ 𝑓 (𝜹(𝑃, 𝑋))
1 + 3𝜖/4

which contradicts 𝑓 (𝜹(𝑃, 𝑋)) > (1 + 𝜖)OPT.
Let 𝑊1, . . . ,𝑊𝑘 denote the subsets of the witnesses closest to centers 𝑥1, . . . , 𝑥𝑘 in 𝑋 , respectively.
Let 𝐻 ⊆ [𝑘] be the subset of clusters 𝜅 ∈ [𝑘] such that 𝐶𝑊𝜅

≥ 𝜖𝐶𝑃/(100𝑘). Fix any cluster 𝜅 ∈ 𝐻. Let
{𝑧1, . . . , 𝑧ℓ } be the witnesses in 𝑊𝜅 in non-decreasing order by the distance 𝛿(𝑧𝑖 , 𝑥𝜅), 𝑖 ∈ [ℓ] to their closest
cluster center 𝑥𝜅 . Let 𝑗 ∈ [ℓ] be the minimum index 𝑗 such that the contribution of the set 𝑊−𝜅 = {𝑧1, . . . , 𝑧 𝑗 }
is at least 𝐶𝑊𝜅

/2. This implies that also 𝐶𝑊+𝜅 ≥ 𝐶𝑊𝜅
/2 where 𝑊+𝜅 = {𝑧 𝑗 , . . . , 𝑧ℓ }. Hence 𝐶𝑊−𝜅 and 𝐶𝑊+𝜅 are

both at least 𝜖𝐶𝑃/(200𝑘) because 𝜅 ∈ 𝐻.
We claim that 𝑊+𝜅 ⊆ 𝐴 where 𝐴 is defined as in line 10 in Algorithm 3. Towards this, let 𝑝 ∈

𝑊+𝜅 be arbitrary. We prove that 𝑢(𝑝) ≤ 1000𝑘𝛿(𝑝, 𝑥𝜅)/𝜖 and hence 𝑝 ∈ 𝐴. To see this, notice that
ball(𝑝, 2𝛿(𝑝, 𝑥𝜅)) ⊇ ball(𝑥𝜅 , 𝛿(𝑝, 𝑥𝜅)) ⊇ 𝑊−𝜅 . On the other hand,

𝜖OPT
300𝑘

≤ 𝜖 𝑓 (𝜹(𝑃, 𝑋))
300𝑘

≤ 𝜖𝐶𝑃

200𝑘
≤

∑︁
𝑞∈𝑊−𝜅

𝑤(𝑞)𝛿(𝑞, 𝑥𝜅)

≤ 𝛿(𝑝, 𝑥𝜅)
∑︁

𝑞∈𝑊−𝜅

𝑤(𝑞) .

72:46058

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 66

Setting 𝛼 = 6𝛿(𝑝, 𝑥𝜅), this implies that

𝑓 (1𝑝,𝛼/3) ≥ 𝒘⊺1𝑝,𝛼/3

=
∑︁

𝑞∈ball(𝑝,𝛼/3)
𝑤(𝑞)

≥
∑︁

𝑞∈𝑊−𝜅

𝑤(𝑞)

≥ 𝜖OPT
200𝑘𝛿(𝑝, 𝑥𝜅)

=
𝜖 · 3OPT
100𝑘𝛼

.

(3.1)

Hence 𝑢(𝑝) ≤ 100𝑘𝛼/𝜖 ≤ 1000𝑘𝛿(𝑝, 𝑥𝜅)/𝜖 as claimed. This completes the proof of the claim that
𝑊+𝜅 ⊆ 𝐴 for any 𝜅 ∈ 𝐻.

As shown above,
∑

𝜅∈[𝑘] 𝐶𝑊𝜅
= 𝐶𝑊 ≥ 𝜖𝐶𝑃/10. By definition of 𝐻, we have

∑
𝜅∈[𝑘]\𝐻 𝐶𝑊𝜅

≤ 𝜖𝐶𝑃/100.
Hence

∑
𝜅∈𝐻 𝐶𝑊𝜅

≥ 𝜖𝐶𝑃/20. Also, by the arguments above,

𝐶𝐴∩𝑊 ≥
∑︁
𝜅∈𝐻

𝐶𝑊+𝜅 ≥
∑︁
𝜅∈𝐻

𝐶𝑊𝜅

2
≥ 𝜖𝐶𝑃

40
≥ 𝜖𝐶𝐴

40
.

Since we sample a point 𝑝 from 𝐴 with probability proportional to its contribution 𝐶{𝑝} , we sample a witness
in each iteration with probability at least 𝜖/40.

Notice that 𝐶𝑃 ≥ 𝑓 (𝜹(𝑃, 𝑋))/2 > 0. The left-hand side of Equation 3.1 must therefore be positive. This
implies that 𝐴 is not empty.

Overall Success Probability We are now ready to prove Lemma 3.5.3, thereby completing the proof of
the main theorem 1.3.10. We establish that the state of execution is consistent before entering the while
loop in Algorithm 3. The proof is completed by combining the upper bound on the number of iterations
(Lemma 3.5.2) with the lower bound on the probability of maintaining consistence (Lemma 3.5.10).

Proof of Lemma 3.5.3. Let 𝑝 (1) , . . . , 𝑝 (𝑘′) be the points marked in line 3 of Algorithm 3. By Lemma 3.5.4,
each ball(𝑝 (𝜅) , 𝑢(𝑝 (𝜅))), 𝜅 ∈ [𝑘 ′] contains a point from𝑂. By construction, these balls are moreover pairwise
disjoint. Hence, by relabeling the optimum centers 𝑂 = (𝑜1, . . . , 𝑜𝑘), we can assume that 𝛿(𝑝 (𝜅) , 𝑜𝜅) ≤
𝑢(𝑝 (𝜅)) for each marked point 𝑝 where 𝜅 ∈ [𝑘 ′] is the index of the cluster. Therefore the state of execution
of the algorithm is consistent with 𝑂 just before the first execution of the while loop (lines 8–15). Assume
now that the state is consistent with 𝑂 at the beginning of an iteration of the while loop. By Lemma 3.5.10,
we sample an 𝜖/3-witness 𝑝 in this iteration with probability Ω(𝜖). In this event, the request (𝑝, 𝑟) added has
radius 𝑟 = 𝛿(𝑝, 𝑋)/(1+ 𝜖/3) ≥ 𝛿(𝑝, 𝑂). If additionally the cluster index 𝜅 ∈ [𝑘] picked at random is the same
as the one in 𝑂—which happens with probability Ω(1/𝑘)—then the state remains consistent with 𝑂. In this
event, the recomputation of the center in line 14 does not fail. By Lemma 3.5.2, the algorithm terminates after

73:34552

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 67

at most O
(
𝑘 (log 𝑘/𝜖)𝜆(𝜖/10)

𝜖

)
many iterations. Since in any iteration it does not fail with probability Ω(𝜖/𝑘), it

succeeds overall with probability exp
(
−Õ

(
𝑘𝜆(𝜖/10)

𝜖

))
.

3.6 𝜖-Scatter Dimension Bounds

This section is devoted to bounding the 𝜖-scatter dimension in various classes of metrics, proving Theo-
rems 1.3.6, 1.3.7, and 1.3.8 from the Introduction.

3.6.1 Bounded Doubling Dimension

In this section, we show the upper bound of the 𝜖-scatter dimension of any metric space of doubling dimension
𝑑, proving Theorem 1.3.6.

Scatter Dimension and Packing Given metric (𝑋, 𝛿), an 𝜖-packing of this metric is a subset of points
𝑋 ′ ⊆ 𝑋 such that 𝛿(𝑖, 𝑗) ≥ 𝜖 for all 𝑖, 𝑗 ∈ 𝑋 ′. This is a standard notion in the theory of metric spaces. We
first observe the following connection between our 𝜖-scattering and 𝜖-packing.

Observation 3.6.1. Let (𝑥1, 𝑝1), . . . , (𝑥ℓ , 𝑝ℓ) be an 𝜖-scattering in a metric space (𝑃, 𝐹, 𝛿). Then, the set
𝑋 = {𝑥2, . . . , 𝑥ℓ } fo centers is an 𝜖-packing in metric (𝑃 ∪ 𝐹, 𝛿) and 𝑋 is contained in a unit ball.

Corollary 3.6.2. The size of 𝜖-packing of a unit ball in metric 𝑀 is at most the 𝜖-scatter dimension minus
one.

It is a well-known fact that 𝜖-packing of any metric of doubling dimension 𝑑 has size at most O((1/𝜖)𝑑).
Combining this with Observation 3.6.1 yields Theorem 1.3.6.

Remark We note that the converse of Corollary 3.6.2 is false even in a very simple graph metric such as a
star. In an 𝑛-node star rooted at 𝑟 , a unit ball ball(𝑟, 1) includes the whole graph. There exists an 𝜖-packing
of size (𝑛 − 1) by choosing the non-root nodes. However, any 𝜖-scattering has length at most 2.

3.6.2 Bounded Treewidth Graphs

In this section we show that any graph of treewidth tw has 𝜖-scatter dimension tw(1/𝜖)O(tw) . That is, we prove
Theorem 1.3.7 for the bounded treewidth graph metric. We later show that the bound for planar graphs can
be derived via an embedding result of [65]. For convenience, we abbreviate ball𝛿𝐺 (𝑟, 𝛾) by ball𝐺 (𝑟, 𝛾).

Treewidth and Spiders

Our proof relies on the notion of spiders, whose existence can serve as a “witness” to the fact that the treewidth
of a graph 𝐺 is high. Given an edge-weighted graph 𝐺, 𝑋 ⊆ 𝑉 (𝐺) and 𝛾 ∈ (0, 1), a 𝛾-spider on 𝑋 is a set

74:89873

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 68

Figure 3.4: A spider 𝑆 = ball𝐺 (𝑟, 𝛾) on 𝑋 . Paths connecting 𝑋 to 𝑟 are disjoint, except for nodes in 𝑆.

𝑆 = ball𝐺 (𝑟, 𝛾) for some 𝑟 ∈ 𝑉 (𝐺) such that there are |𝑋 | paths from 𝑆 to 𝑋 that are vertex-disjoint except
for in 𝑆. We say that a set 𝑆 is a spider on 𝑋 if it is a 𝛾-spider for some 𝛾. See Figure 3.4 for illustration.

Observe that if 𝑆 is a 𝛾-spider on X, then for any 𝑋 ′ ⊆ 𝑋 , 𝑆 is also a 𝛾-spider on 𝑋 ′. The following lemma
is key to our result, roughly showing that the existence of a large number of spiders implies that the treewidth
of 𝐺 is large.

Lemma 3.6.3. Let 𝐺 be a graph, 𝑘 be an integer and 𝑋 ⊆ 𝑉 (𝐺) : |𝑋 | > 3𝑘 . If there is a family S of 𝑘 + 1
pairwise disjoint spiders on 𝑋 , then the treewidth of 𝐺 is larger than 𝑘 .

Proof. Assume otherwise that the treewidth is at most 𝑘 . Then, there exists a balanced separator 𝐴 ⊆ 𝑉 (𝐺)
such that |𝐴| = 𝑘 and a partition of 𝐺 − 𝐴 = 𝑉1 ⊎𝑉2 such that 𝐸 (𝑉1, 𝑉2) = ∅, |𝑉1 ∩ 𝑋 |, |𝑉2 ∩ 𝑋 | ≥ |𝑋 |/3 [51]
(Folklore).

We claim that each spider 𝑆 ∈ S must contain a vertex in the separator, i.e., 𝑆 ∩ 𝐴 ≠ ∅. For the sake
of contradiction, say there exists 𝑆 ∈ S such that 𝑆 ⊆ 𝑉𝑖 for some 𝑖 ∈ {1, 2}. Without loss of generality, let
𝑆 ⊆ 𝑉1. Recall that 𝑆 is a spider on 𝑋 . Hence there are |𝑋 | many internally-vertex disjoint paths from 𝑆 to
distinct vertices of 𝑋 . Since |𝑉2 ∩ 𝑋 | ≥ |𝑋 |/3 > 𝑘 , there are at least 𝑘 + 1 internally vertex-disjoint paths
from 𝑆 (⊆ 𝑉1) to 𝑉1 ∩ 𝑋 . Since 𝐴 is a (𝑉1, 𝑉2)-separator, all these vertex-disjoint paths pass through 𝐴. Thus,
|𝐴| is at least the number of these paths (𝑘 + 1), which is a contradiction. We conclude that each spider 𝑆 ∈ S
intersects 𝐴.

Since S is a family of pairwise vertex-disjoint spiders, we conclude that |𝐴| ≥ 𝑘 + 1, a contradiction.

Iteratively Finding Spiders

Our main result in this section is encapsulated in the following theorem.

Theorem 3.6.4. If there is an 𝜖-scattering of length at least (O(𝑘/𝜖)) (4/𝜖)𝑘+1 in 𝐺, then graph 𝐺 contains a
family of 𝑘 + 1 disjoint spiders on vertex set of size greater than 3𝑘 .

75:87333

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 69

Combining the above with Lemma 3.6.3, we can deduce that the length of any 𝜖-scattering is at most
tw(1/𝜖)

O(tw) as desired. We spend the rest of this section proving the theorem. Given 𝜖-scattering 𝜎, we say
that the 𝜖-packing 𝑋 = 𝑋 (𝜎), given by Observation 3.6.1, is a canonical packing of 𝜎.

Lemma 3.6.5. Let 𝜎 be an 𝜖-scattering of length ℓ in 𝐺 ⊆ ball𝐺 (𝑟, 1) and 𝑋 = 𝑋 (𝜎) its canonical 𝜖-packing.
Then, there exist

• a spider 𝑆 = ball𝐺 (𝑟, 𝜖/3) on 𝑋 ′ ⊆ 𝑋 : |𝑋 ′ | ≥ 𝑐0𝜖 · (ℓ/2) 𝜖 /3 for some constant 𝑐0 and

• a graph 𝐺′ such that 𝑆 ∩ 𝑉 (𝐺′) = ∅ and an 𝜖-scattering 𝜎′ that is a subsequence of 𝜎 such that
𝑋 (𝜎′) = 𝑋 ′.

Before proving this lemma, We show how this lemma implies Theorem 3.6.4. Let 𝐺0 = 𝐺 contain a
𝜖-scattering 𝜎0 of length at least ℓ0 = (𝑘

𝑐0 𝜖
) (4/𝜖)𝑘+1 and 𝑋0 = 𝑋 (𝜎0). The lemma allows us to find a spider

𝑆1 on 𝑋1 of size 𝑐0𝜖 · ℓ𝜖 /30 ≥ (𝑘
𝑐0 𝜖
) (4/𝜖)𝑘 = ℓ1 for sufficiently small 𝜖 . Moreover, we have the graph 𝐺1

that is disjoint with 𝑆1 and 𝜖-scattering that is a subsequence 𝜎1 of length ℓ1. Since (𝐺1, 𝑋1, 𝜎1) satisfies
the preconditions of Lemma 3.6.5, we can apply it to obtain (𝐺2, 𝑋2, 𝜎2) and so on. More formally, starting
from (𝐺𝑖 , 𝜎𝑖 , 𝑋𝑖), we apply Lemma 3.6.5 to obtain (𝐺𝑖+1, 𝜎𝑖+1, 𝑋𝑖+1). We maintain the following invariant:
The length of the sequence 𝜎𝑖 satisfies ℓ𝑖 = |𝑋𝑖 | ≥ (𝑘

𝑐0 𝜖
) (4/𝜖)𝑘+1−𝑖 . This allows us to find disjoint spiders

𝑆1, 𝑆2, . . . , 𝑆𝑘+1 on 𝑋𝑘+1 : |𝑋𝑘+1 | > 3𝑘 as desired.

Proof of Lemma 3.6.5

Let 𝐺 be contained in the unit ball ball(𝑟, 1). The proof has two steps. In the first step, we find a spider 𝑆
on a subset 𝑋 ′′ ⊆ 𝑋 of relatively large size. In the second step, we show the graph 𝐺′ obtained by removing
𝑆 from 𝐺 still contains a large subsequence 𝜎′ of 𝜎 whose canonical packing is a subset 𝑋 ′ of 𝑋 ′′ that has
desired cardinality.

First step: Let 𝑇 be a shortest path tree from 𝑟 to 𝑋 (recall that |𝑋 | = ℓ), so vertices in 𝑋 appear at the
leafs of this tree. We construct an “auxiliary” tree 𝑇 on subset 𝑉 ⊆ 𝑉 (𝑇) from 𝑇 inductively as follows. Let
𝐵𝑟 = ball𝑇 (𝑟, 𝜖/3). Remove 𝐵𝑟 from 𝑇 to obtain subtrees 𝑇1, . . . , 𝑇𝑞 with roots 𝑟1, . . . , 𝑟𝑞 . For each 𝑖 ∈ [𝑞],
let 𝑋𝑖 ⊆ 𝑋 be the descendants of 𝑟𝑖 in 𝑇𝑖 that are in 𝑋 . Since vertices in 𝑋 are at the leaf, we have that 𝑋𝑖 ≠ ∅.
We inductively perform this process on the instances (𝑇1, 𝑋𝑞), . . . , (𝑇𝑞 , 𝑋𝑞) to obtain the auxiliary subtrees 𝑇𝑖
for (𝑇𝑖 , 𝑋𝑖). Now create 𝑇 by connecting 𝑟 to 𝑟1, . . . , 𝑟𝑞 in (making them direct children of 𝑟). See Figure 3.5.

For each 𝑣 ∈ 𝑉 (𝑇), denote by 𝑇𝑣 the subtree of 𝑇 rooted at 𝑣 and 𝐵𝑣 the ball ball𝑇𝑣 (𝑣, 𝜖/3) constructed
by the recursive procedure. Observe that

⋃
𝑣∈𝑉 (𝑇) 𝐵𝑣 ⊇ 𝑋 and that the depth of 𝑇 is at most (3/𝜖) (since

𝛿(𝑟, 𝑥) ≤ 1 for all 𝑥 ∈ 𝑋 and each recursion reduces the root-to-leaf distance by 𝜖/3.)

Claim 3.6.6. There must be a vertex 𝑟 ′ ∈ 𝑉 (𝑇) such that 𝑟 ′ has at least 𝐷 = (ℓ/2) 𝜖 /3 children in 𝑇 .

Proof. Assume that the number of children is less than 𝐷 for every vertex in 𝑇 . Then the total number of
vertices in 𝑇 is less than 2𝐷3/𝜖 . For each such vertex 𝑣 ∈ 𝑉 (𝑇), we have |𝐵𝑣∩𝑋 | ≤ 1 (since 𝑋 is an 𝜖-packing

76:50353

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 70

Figure 3.5: A recursive construction of tree 𝑇 .

while the diameter of 𝐵𝑣 is at most 2𝜖/3). Therefore, ℓ = |𝑋 | ≤ ⋃
𝑣 |𝐵𝑣 ∩ 𝑋 | ≤ 2𝐷3/𝜖 . This would imply

that 𝐷 ≥ (ℓ/2) 𝜖 /3.

Let 𝑣 be the node in 𝑉 closest to the root in 𝑇 such that there are at least 𝐷 children (breaking ties
arbitrarily). This means that (in the process of creating 𝑇) removing 𝐵𝑣 = ball𝑇𝑣 (𝑣, 𝜖/3) gives us at least 𝐷
subtrees 𝑇1, . . . , 𝑇𝐷 where each such tree contains (arbitrarily chosen) 𝑥𝑖 ∈ 𝑋𝑖 as a descendant in 𝑇 . Notice
that 𝑆 is a spider on 𝑋 ′′ = {𝑥1, 𝑥2, . . . , 𝑥𝐷}.

Second step: Let 𝜎′′ be the subsequence of 𝜎 whose canonical 𝜖-packing is 𝑋 ′′, that is, 𝑋 (𝜎′′) = 𝑋 ′′.
Recall that |𝑋 ′′ | ≥ (ℓ/2) 𝜖 /3. Denote the spider 𝑆 by 𝑆 = ball𝐺 (𝑠, 𝜖/3). In this second step, we show that
𝐺′ = 𝐺 \ 𝑆 still contains a long 𝜖-scattering 𝜎′ which is a subsequence of 𝜎′′ such that 𝑋 ′ = 𝑋 (𝜎′) ⊆ 𝑋 ′′

has the desirable length.
By construction, we have that 𝑋 ′′ ⊆ ball𝐺 (𝑠, 1). We partition vertices in 𝑋 ′′ into at most 3/𝜖 subsets

based on the distances to 𝑠 as follows: For 𝑖 = 1, . . . , 3/𝜖 , let 𝑋 ′′
𝑖
= {𝑥 ∈ 𝑋 ′′ : 𝛿𝐺 (𝑠, 𝑥) ∈ (𝑖𝜖/3, (𝑖 + 1)𝜖/3]}.

Define 𝑋 ′ to be the set 𝑋 ′′
𝑖

that has maximum cardinality, so |𝑋 ′ | ≥ 𝜖
3 · (ℓ/2)

𝜖 /3. Note that for all 𝑢, 𝑢′ ∈ 𝑋 ′,
we have |𝛿(𝑠, 𝑢) − 𝛿(𝑠, 𝑢′) | < 𝜖/3. The following claim asserts that each point in 𝑆 is roughly of the same
distance from every point in 𝑋 ′ (see Figure 3.6 for illustration).

Claim 3.6.7. Let 𝑣 ∈ 𝑆 and 𝑢, 𝑢′ ∈ 𝑋 ′. Then |𝛿(𝑣, 𝑢) − 𝛿(𝑣, 𝑢′) | < 𝜖 .

Proof. Assume w.l.o.g. that 𝛿(𝑣, 𝑢) ≤ 𝛿(𝑣, 𝑢′). By the triangle inequality, 𝛿(𝑣, 𝑢′) ≤ 𝛿(𝑣, 𝑠) + 𝛿(𝑠, 𝑢′) ≤
𝛿(𝑣, 𝑠) + 𝛿(𝑠, 𝑢) + 𝜖/3 ≤ 𝛿(𝑠, 𝑢) + 2𝜖/3. Applying triangle inequality again, we get 𝛿(𝑠, 𝑢) ≤ 𝛿(𝑠, 𝑣) + 𝛿(𝑣, 𝑢),
and hence the desired bound.

The following claim will finish the proof.

Claim 3.6.8. Let 𝜎′ be the subsequence of 𝜎′′ whose canonical packing is 𝑋 ′. Then 𝜎′ is a valid 𝜖-scattering
in 𝐺′ = 𝐺 \ 𝑆.

77:53789

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 71

Figure 3.6: The partition of 𝑋 ′′ into {𝑋 ′′
𝑖
} based on their distance from the spider 𝑆. Rectangular points are

the points in 𝑋 ′′.

Proof. We abbreviate 𝛿𝐺′ simply by 𝛿′. Let (𝑥, 𝑝) and (𝑥′, 𝑝′) be two pairs in 𝜎′ such that (𝑥, 𝑝) appears
before (𝑥′, 𝑝′). Since 𝜎 is scattering, we have that 𝛿(𝑥′, 𝑝) ≤ 1 while 𝛿(𝑥, 𝑝), 𝛿(𝑥′, 𝑝′), 𝛿(𝑥, 𝑝′) > (1 + 𝜖).

Notice that the refutation properties hold for these pairs after removing 𝑆, i.e., 𝛿′ (𝑥, 𝑝), 𝛿′ (𝑥′, 𝑝′),
𝛿′ (𝑥, 𝑝′) > (1 + 𝜖) (the distances cannot decrease after removing vertices from a graph). It suffices then
to show that 𝛿′ (𝑝, 𝑥′) ≤ 1. To this end, we argue that any shortest path from 𝑝 to 𝑥′ in 𝐺 cannot intersect
with the ball 𝑆. Assume otherwise that there exists a shortest path 𝑄 from 𝑝 to 𝑥′ in 𝐺 that intersects
with 𝑆 at some vertex 𝑣 ∈ 𝑆 ∩ 𝑄. Notice that 𝛿(𝑝, 𝑥′) = 𝛿(𝑝, 𝑣) + 𝛿(𝑣, 𝑥′). We will reach a contradic-
tion by showing that 𝛿(𝑝, 𝑥) ≤ (1 + 𝜖). Since 𝛿(𝑝, 𝑥) ≤ 𝛿(𝑝, 𝑣) + 𝛿(𝑣, 𝑥), by Claim 3.6.8, this is at most
𝛿(𝑝, 𝑣) + 𝛿(𝑣, 𝑥′) + 𝜖 = 𝛿(𝑝, 𝑥′) + 𝜖 , which would imply that 𝛿(𝑝, 𝑥) ≤ (1 + 𝜖), contradicting to the refutation
property.

3.6.3 Bounding 𝜖-Scatter Dimension via Low-Treewidth Embedding

In this section, we show a (simple) connection between bounding 𝜖-scatter dimension and an active research
area on embedding with additive distortion [64, 61, 37]. This connection allows us to upper bound the 𝜖-scatter
dimension of planar graphs.

In particular, we say that (weighted) graph class G admits a 𝑡-low treewidth-diameter embedding for
function 𝑡 : N→ N if there exists a deterministic algorithm that takes 𝐺 and produces a weighted graph 𝐻 of
treewidth at most 𝑡 (𝜂) and an embedding 𝜙 : 𝑉 (𝐺) → 𝑉 (𝐻) such that:

𝛿𝐺 (𝑢, 𝑣) ≤ 𝛿𝐻 (𝜙(𝑢), 𝜙(𝑣)) ≤ 𝛿𝐺 (𝑢, 𝑣) + 𝜂𝐷

78:76673

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 72

where 𝐷 is the diameter of 𝐺.

Theorem 3.6.9. Let 𝜆tw (𝜖) denote the the 𝜖-scatter dimension of graphs of treewidth tw (from the previous
section, this bound is at most doubly exponential in tw). If graph class G admits a 𝑡-low treewidth-diameter
embedding, then every metric in G has 𝜖-scatter dimension at most 𝜆𝑡 (𝜖 /10) (𝜖/3).

Proof. Let (𝑥1, 𝑝1), (𝑥2, 𝑝2), . . . , (𝑥ℓ , 𝑝ℓ) be 𝜖-scattering in 𝐺. Let 𝜂 = 𝜖/10. Consider an embedding 𝜙 of
𝐺 into 𝐻 such that the treewidth of 𝐻 is at most 𝑡 (𝜂) = 𝑡 (𝜖/10). Notice that

• For 1 ≤ 𝑖 < 𝑗 ≤ ℓ : 𝛿𝐻 (𝜙(𝑥 𝑗), 𝜙(𝑝𝑖)) ≤ 1 + 2𝜂 = 1 + 𝜖/5

• For 1 ≤ 𝑖 ≤ ℓ : 𝛿𝐻 (𝜙(𝑥𝑖), 𝜙(𝑝𝑖)) > 1 + 𝜖

Consider (weighted) graph 𝐻′ obtained by scaling the weights of 𝐻 down by a factor of (1 + 𝜖/5). We have
that 𝛿𝐻′ (𝜙(𝑥 𝑗), 𝜙(𝑝𝑖)) ≤ 1 while 𝛿𝐻′ (𝜙(𝑥𝑖), 𝜙(𝑝𝑖)) > 1+𝜖

1+𝜖 /5 ≥ 1 + 𝜖/3 for sufficiently small 𝜖 > 0. This
implies that the embedded sequence is (𝜖/3)-scattering in 𝐻. Therefore, from Theorem 1.3.7, the length ℓ is
upper bounded by 𝜆𝑡 (𝜖 /10) (𝜖/3).

Now we can use the following theorem.

Theorem 3.6.10 (Theorem 1.3 of [64]). There is a polynomial-time algorithm that, given an edge-weighted
planar graph and given a number 𝜂 > 0, outputs an embedding of the graph into a planar graph of treewidth
poly(1/𝜂) with additive error 𝜂 · 𝐷 where 𝐷 is the diameter of the input graph.

This implies, in our language, that planar graphs have low treewidth-diameter embedding.

Corollary 3.6.11. Planar graphs have 𝜖-scatter dimension at most exp (exp(poly(1/𝜖))).

3.6.4 High-Dimensional Euclidean Space

Recall, from the introduction and Sections 3.4, that the 𝜖-scatter dimension of high-dimensional (continuous)
Euclidean space is unbounded. In this section, we show that, in contrast, the algorithmic 𝜖-scatter dimension
of this metric is bounded.

Theorem 1.3.9 (Bounding Algorithmic Scatter Dimension). The continuous Euclidean space (𝑃, 𝐹, 𝛿), that
is, 𝑃 ⊊ R𝑑 finite, and 𝐹 = R𝑑 , has algorithmic 𝜖-scatter dimension O(1/𝜖 4 log 1/𝜖).

We outline the proof of Theorem 1.3.9. In order to upper bound the algorithmic 𝜖-scatter dimension for the
continuous Euclidean space, it suffices to show that there exists an algorithm C such that the (C, 𝜖)-scattering
dimension in the Euclidean space is bounded. We use an algorithm by Kumar and Yildirim [95] as Ball In-
tersection algorithm for the high-dimensional Euclidean space. They study the Ball Intersection problem
in the language of Weighted Euclidean 1-Center. They provide a Ball Intersection algorithm based
on a convex optimization formulation which efficiently (and approximately) solves the Ball Intersection
problem in continuous Euclidean setting for weights with bounded aspect ratio. Let CKY denote this algorithm.

79:71246

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 73

The following lemma is adapted from Kumar and Yildirim’s work into our terminology (see Lemma 4.2 of
[95]).

Lemma 3.6.12. Given an instance (𝑃, 𝐹, 𝛿) of Ball Intersection in high-dimensional Euclidean space,
associated radii 𝑟 (𝑝) to each 𝑝 ∈ 𝑃, and 𝜖 ∈ (0, 1), the length of any (CKY, 𝜖)-scattering is at most O (𝜏/𝜖 2)
where 𝜏 ≥ 1 is the squared ratio of the largest radius in the requests to the smallest.

Note that for a constant 𝜏, Lemma 3.6.12 already gives the theorem. To complete the argument for Theo-
rem 1.3.9 in the general setting, we show that by increasing the length of the 𝜖-scattering by a multiplicative
factor of O (log 1/𝜖), we can assume that 𝜏 is O (1/𝜖 2).

Aspect-Ratio Condition The following lemma provides a sufficient condition for bounded algorithmic
𝜖-scatter dimension that facilitates the design of a Ball Intersection algorithm for bounding the algorithmic
𝜖-scatter dimension. In particular, this condition is key to bound the algorithmic 𝜖-scatter dimension of
high-dimensional continuous Euclidean spaces. It can be seen as a strenghtened converse of the aspect-ratio
lemma 3.5.6 and holds for arbitrary classes of metric spaces.

Lemma 3.6.13 (Aspect-Ratio Condition). LetM be a class of metric spaces with Ball Intersection algorithm
CM and let 𝜖 ∈ (0, 1). If any (CM , 𝜖)-scattering (𝑥1, 𝑝1, 𝑟1), . . . , (𝑥ℓ , 𝑝ℓ , 𝑟ℓ) with 𝑟𝑖 ∈ [𝜖/12, 1], 𝑖 ∈ [ℓ]
contains at most 𝜆(𝜖) triples with the same radius, then the algorithmic 𝜖-scatter dimension ofM bounded
by O (𝜆(𝜖) log 1/𝜖).

To prove Lemma 3.6.13 , we assume that we are given a Ball Intersection algorithm CM as stated. We
claim that the following Ball Intersection algorithm, which invokes CM as a sub-routine, yields algorithmic
𝜖-scatter dimension O(𝜆(𝜖) log 1/𝜖) according to the condition of Definition 3.4.2.

Algorithm 4: Ball Intersection algorithm realizing lemma 3.6.13.
Data: Metric space 𝑀 = (𝑃, 𝐹, 𝛿) ∈ M, requests 𝑄 = (𝑝1, 𝑟1), . . . (𝑝ℓ , 𝑟ℓ) with 𝑝𝑖 ∈ 𝑃 and 𝑟𝑖 ∈ R+

for 𝑖 ∈ [ℓ], error parameter 𝜂 > 0, Ball Intersection algorithm CM as in Lemma 3.6.13
Result: center 𝑥 ∈ 𝐹 such that 𝛿(𝑝𝑖 , 𝑥) ≤ (1 + 𝜂)𝑟𝑖 for all 𝑖 ∈ [ℓ] or “fail”

1 𝜌 ← min{ 2− 𝑗 | 𝑗 ∈ N0 and min𝑖∈[ℓ] 𝑟𝑖 ≤ 2− 𝑗 };
2 𝑄′ ← { (𝑝𝑖 , 𝑟𝑖) | 𝑖 ∈ [ℓ], 𝜂/3 · 𝑟𝑖 ≤ 𝜌 };
3 𝑥 ← CM (𝑀,𝑄′, 𝜂);
4 foreach 𝑖 ∈ [ℓ] do
5 if 𝛿(𝑝𝑖 , 𝑥) > (1 + 𝜂)𝑟𝑖 then “fail” ;
6 end
7 return 𝑥;

The following definition formulates a condition for two requests (𝑝, 𝑟), (𝑝′, 𝑟 ′) ∈ 𝑄 under which it suffices
to satisfy (𝑝, 𝑟) in order satisfy (𝑝′, 𝑟 ′) as well.

Definition 3.6.14. Let 𝜂 ∈ (0, 1) and (𝑝, 𝑟), (𝑝′, 𝑟 ′) ∈ 𝑄. We say that 𝑝 𝜂-implies 𝑝′ if ball(𝑝, (1 + 𝜂)𝑟) ⊆
ball(𝑝′, (1 + 𝜂)𝑟 ′).

80:10213

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 74

Lemma 3.6.15. Let (𝑝, 𝑟), (𝑝′, 𝑟 ′) ∈ 𝑄 be two requests such that 𝑟 ≤ 𝜂/3 · 𝑟 ′ for some 𝜂 ∈ (0, 1). If there is
some center in 𝐹 satisfying both requests then 𝑝 𝜂-implies 𝑝.

Proof. Let 𝑜 be the center satisfying both requests and let 𝑥 ∈ ball(𝑝, (1 + 𝜂)𝑟 (𝑝)). By triangle inequality

𝛿(𝑝′, 𝑥) ≤ 𝛿(𝑝′, 𝑜) + 𝛿(𝑜, 𝑝) + 𝛿(𝑝, 𝑥)

≤ 𝑟 ′ + 𝑟 + (1 + 𝜂)𝑟

≤ (1 + 𝜂)𝑟 ′

Lemma 3.6.16. Algorithm 4 is a Ball Intersection algorithm.

Proof. Assume there is some 𝑜 ∈ 𝐹 such that 𝛿(𝑝𝑖 , 𝑜) ≤ 𝑟𝑖 for all 𝑖 ∈ [ℓ]. We want to show that our algorithm
does not fail and outputs a center 𝑥 such that 𝛿(𝑝𝑖 , 𝑥) ≤ (1 + 𝜂)𝑟𝑖 for any 𝑖 ∈ [ℓ].

Let 𝑄′, 𝜌, 𝑥 be defined as in Algorithm 4. Consider any (𝑝𝑖 , 𝑟𝑖) ∈ 𝑄. We distinguish two cases. First
assume that (𝑝𝑖 , 𝑟𝑖) ∈ 𝑄′. Assuming that CM is a correct Ball Intersection algorithm, we have that
𝛿(𝑝𝑖 , 𝑥) ≤ (1 + 𝜂)𝑟𝑖 . On the other hand, if (𝑝𝑖 , 𝑟𝑖) ∈ 𝑄 \ 𝑄′, then there is some (𝑝 𝑗 , 𝑟 𝑗) ∈ 𝑄′ such that
𝑟 𝑗 ≤ 𝜌 < 𝜂/3 · 𝑟𝑖 . Hence 𝑝 𝑗 𝜂-implies 𝑝𝑖 by Lemma 3.6.15. As argued above, 𝑥 ∈ ball(𝑝 𝑗 , (1 + 𝜂)𝑟 𝑗) and
hence 𝑥 ∈ ball(𝑝𝑖 , (1 + 𝜂)𝑟𝑖) by Definition 3.6.14.

We conclude the proof of Lemma 3.6.13 by proving the following lemma.

Lemma 3.6.17. Let C denote Algorithm 4. Any (C, 𝜖)-scattering has then O(𝜆(𝜖) log 1/𝜖) triples with the
same radius.

Proof. Let 𝑄′, 𝜌, 𝑥 be defined as in Algorithm 4. Consider an arbitrary (C, 𝜖)-scattering (𝑥1, 𝑝1, 𝑟1),
. . . , (𝑥ℓ , 𝑝ℓ , 𝑟ℓ) and let 𝑄 denote the sequence of its requests, (𝑝1, 𝑟1), . . . , (𝑝ℓ , , 𝑟ℓ). Notice that, hypo-
thetically, if we were to run the algorithm on all prefixes of 𝑄 by increasing length, the value of 𝜌 would be
monotonically decreasing over the sequence. We sub-divide the sequence into phases, which are maximal
(contiguous) sub-sequences in which the value 𝜌 does not change. Fix some phase. Notice that the set 𝑄′

would be inclusion-wise increasing during this phase because 𝜌 remains unchanged. If (𝑝𝑖 , 𝑟𝑖) is an arbitrary
request added to 𝑄′ at some point during the phase, then 𝜌/2 ≤ 𝑟𝑖 ≤ 3𝜌/𝜂. Re-scaling distances by factor
𝜂/(3𝜌) and using 𝜂 = 𝜖/2 shows that all requested radii during this phase lie in the range [𝜖/12, 1]. Hence, by
the assumption on sub-routine CM made in Lemma 3.6.13, the scattering has at most 𝜆(𝜖) many triples per
radius value 𝑟𝑖 during this phase.

We complete the proof by noting that there are at most log2 (12/𝜖) many phases for any fixed radius value
𝑟𝑖 , during which request with this radius are added to 𝑄′.

Lemmas 3.6.12 and 3.6.13 together with the observation that 𝜏 = (12/𝜖)2 give the proof of Theorem 1.3.9.

81:95703

CHAPTER 3. EPAS FOR GENERAL NORM CLUSTERING 75

3.7 Conclusions and Open Problems

In this chapter we provide a clean and simple EPAS that settles more than ten clustering problems (across
multiple well-studied objectives as well as metric spaces) and unifies previous known EPASes. Our algorithmic
framework is applicable to a wide range of well-studied objective functions in a uniform way, and unlike
traditional approaches, our method does not rely on the commonly used coreset technique. A key idea behind
our analysis is a new concept we introduce: the bounded 𝜖-scatter dimension. Our main technical result shows
that our algorithm can achieve an EPAS for any clustering objective, as long as two key conditions are met:
(i)The objective function is defined by a monotone norm. (ii)The 𝜖-scatter dimension of the metric space 𝑀

is bounded by a function of 𝜖 .
There are open problems in two directions. First, can we characterize the class of metric spaces with

bounded scatter dimension? For example, recently, Bourneuf and Pilipczuk [23] extended our results-which
is a framework using the concept of 𝜖-scatter dimension to provide Efficient Parameterized Approximation
Schemes (EPASes) for Norm k-Clustering problems– to metrics induced by graphs from any fixed proper
minor-closed graph class.

The second direction concerns extensions of our framework. Some clustering objectives are still missing
from our framework. For instance, clustering with outliers [93, 18, 54] (in which case the cost function 𝑓

is instead an anti-norm)? Even more conceptually, our current algorithm is oblivious to the structure of the
input metric, but our theorem can only talk about whether an EPAS can be obtained. Is it possible for such a
framework to give approximation factors in all spectrums (e.g., (3 + 𝑜(1))-approximation for 𝑘-Center if a
general, unstructured metric space is given as input)?

Another direction is to use our framework—specifically, the concept of 𝜖-scatter dimension—to design
dimension-free parameterized approximation algorithms. For example, Gadekar and Inamdar [67] recently
extended the idea of 𝜖-scatter dimension to Hybrid 𝑘-Clustering and developed a randomized bicriteria EPAS
for metrics with bounded algorithmic 𝜖-scatter dimension. They showed that Hybrid 𝑘-Clustering admits
a randomized bicriteria EPAS parameterized by 𝑘 and 𝜖 in various metric spaces, including continuous
Euclidean spaces of any dimension, metrics of bounded doubling dimension, bounded treewidth metrics, and
metrics induced by graphs from any fixed proper minor-closed graph class[67].

82:89185

Chapter 4

An 𝑂 (log log 𝑛)-Approximation for
Submodular Facility Location

In this chapter we present an improved approximation algorithm for SFL, and make some progress towards
the open problem of achieving constant approximation for SFL.

Submodular Facility Location
Input: Instance (𝐶, 𝐹, 𝑑) with 𝑑 being a metric on (𝐶 ∪ 𝐹) × (𝐶 ∪ 𝐹) → R≥0, a submodular opening
cost fuction function 𝑔 : 2𝑐 → R≥0.
Output: An assignment where each client is assigned to a facility, that minimizes

∑
𝑐∈𝐶 𝑑 (𝑐, 𝜑(𝐶)) +∑

𝑓 ∈𝐹 𝑔(𝜑−1 (𝑓))..

Theorem 1.3.11. There is a polynomial-time 𝑂 (log log 𝑛)-approximation algorithm for SFL.

Our approach is surprisingly simple (modulo exploiting some non-trivial results in the literature). By
standard reductions (see Section 4.1.1) we can assume that 𝑁 = 𝑛 +𝑚 is polynomial in 𝑛, hence it is sufficient
to provide an 𝑂 (log log 𝑁) approximation. Our starting point is a natural (configuration) LP relaxation for
the problem:

min
∑︁
𝑓 ∈𝐹

∑︁
𝑅⊆𝐶

𝑔(𝑅) · 𝑥 𝑓

𝑅
+
∑︁
𝑐∈𝐶

∑︁
𝑓 ∈𝐹

∑︁
𝑅∋𝑐

𝑑 (𝑐, 𝑓) · 𝑥 𝑓

𝑅
(Conf-LP)

s.t.
∑︁
𝑓 ∈𝐹

∑︁
𝑅∋𝑐

𝑥
𝑓

𝑅
= 1 ∀𝑐 ∈ 𝐶;∑︁

𝑅⊆𝐶
𝑥
𝑓

𝑅
= 1 ∀ 𝑓 ∈ 𝐹;

𝑥
𝑓

𝑅
≥ 0 ∀𝑅 ⊆ 𝐶, ∀ 𝑓 ∈ 𝐹.

In an integral solution, we interpret 𝑥 𝑓

𝑅
= 1 as assigning exactly the set of clients 𝑅 to the facility 𝑓 . Notice

76

83:50768

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 77

that we impose
∑

𝑅⊆𝐶 𝑥
𝑓

𝑅
= 1. This is w.l.o.g. since 𝑔(∅) = 0 (intuitively, 𝑥 𝑓

∅ = 1 means that no client is
assigned to 𝑓). We can solve the above LP in polynomial time.

Lemma 4.0.1. In poly(𝑁) time one can find an optimal solution to (Conf-LP) with poly(𝑁) non-zero entries.

Proof. Considering the dual of (Conf-LP):

max
{ ∑︁
𝑐∈𝐶

𝛼𝑐 +
∑︁
𝑓 ∈𝐹

𝛽 𝑓 :
∑︁
𝑐∈𝑅

𝛼𝑐 + 𝛽 𝑓 ≤ 𝑔(𝑅) +
∑︁
𝑐∈𝑅

𝑑 (𝑐, 𝑓), ∀𝑅 ⊆ 𝐶, ∀ 𝑓 ∈ 𝐹
}
. (Conf-DLP)

Notice that for fixed 𝛼 and 𝛽, the functions 𝑔 𝑓 (𝑅) B 𝑔(𝑅) +∑𝑐∈𝑅 𝑑 (𝑐, 𝑓) −∑𝑐∈𝑅 𝛼𝑐 − 𝛽 𝑓 are submodular.
Thus, a call of a separation oracle on (Conf-DLP) is equivalent to a minimization of all functions 𝑔 𝑓 (·),
which can be done using polynomially many oracle calls of 𝑔(·) [88]. Therefore, an optimal primal solution
with poly(𝑁) many non-zero variables for (Conf-LP) can be found in polynomial time [110, Corollary
14.1g(v)].

Given an optimal solution ¤𝑥 = (¤𝑥 𝑓

𝑅
) 𝑓 ∈𝐹,𝑅⊆𝐶 to (Conf-LP) of cost cost(¤𝑥) as in Lemma 4.0.1, we proceed

with two main stages. In the first stage (discussed in Section 4.2) we simply sample partial assignments of
clients to facilities with the distribution induced by ¤𝑥 for ln ln 𝑁 many times. This cost at most ln ln 𝑁 times
the optimal LP cost in expectation, and leads to a partial solution that covers a random subset 𝐶1 ⊆ 𝐶 of
clients.

In the second stage (discussed in Section 4.3) we take care of the remaining uncovered clients𝐶2 = 𝐶 \𝐶1.
Let us consider the restriction ¥𝑥 of ¤𝑥 to 𝐶2. The opening cost of ¥𝑥 might be as large as the opening cost of ¤𝑥.
However, in expectation, the connection cost of ¥𝑥 is only a 1/ln 𝑁 fraction of the connection cost of ¤𝑥 (as we
will show).

At this point, using the probabilistic tree embedding algorithm in [58], we embed the original metric 𝑑 into
a (rooted) tree metric 𝑑𝑇 over a hierarchically well-separated tree (HST) 𝑇 (see Section 4.1.1 for the details).
The opening cost of ¥𝑥 w.r.t. to the new tree instance does not change, while its connection cost grows by a factor
at most 𝑂 (log 𝑁) in expectation. Altogether we obtain a feasible fractional solution ¥𝑥 over the tree instance
whose expected cost is at most 𝑂 (cost(¤𝑥)). Hence it is sufficient to develop an 𝑂 (log log 𝑁)-approximate
LP-rounding algorithm for the considered tree instance.

The next step is at the heart of our approach. Using the properties of HSTs and losing a constant factor in
the approximation, we can further reduce our SFL tree instance to the following Descendant-Leaf Assignment
problem (DLA): the facilities are leaves of 𝑇 and the clients are arbitrary nodes of 𝑇 . Each client 𝑐 must
be served by a facility contained in the subtree 𝑇𝑐 rooted at 𝑐. The opening cost of each facility is given by
𝑔(·), and there are no connection costs at all. Bosman and Olver [22] describe a reduction of Submodular
Joint Replenishment and Inventory Routing problems to the Nice Subadditive Cover Over Time problem. We
critically observed that DLA has some similarities with the latter problem (though this connection might not
be obvious at first sight, see the discussion in Section 4.1). In particular, we were able to adapt their approach
to achieve the desired 𝑂 (log log 𝑁) approximation for our DLA problem.

84:90257

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 78

We remark that we do not know how to get an 𝑂 (1) approximation for SFL on trees (even on HSTs).
Though such approximation would not imply an 𝑂 (1) approximation for SFL with our approach (due to the
first stage), finding it seems to be a natural intermediate problem to address.

The first stage of our construction might be helpful in other related problems, in particular to reduce the
input problem to one on HSTs while introducing an additive 𝑂 (log log 𝑛) term in the approximation ratio.

As we discussed earlier, our basic approach is rather flexible, and it can be applied to generalizations
such as, Multiplicative Opening Costs (multSFL), Additive Opening Costs (addSFL) and variant of SFL,
Universal Stochastic Facility Location (univFL).

4.1 Related Work

As mentioned earlier, Bosman and Olver [22] consider the Nice Subadditive Cover Over Time problem:
roughly speaking, here we are given a set 𝑉 of items and a time interval {1, . . . , 𝐿}. Each item 𝑣 ∈ 𝑉 is
associated with a time window 𝐹𝑣 = {𝑠, . . . , 𝑡}, 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝐿. The time windows altogether have a special
left-aligned structure whose definition we skip here. A feasible solution consists of a subset 𝑆𝑡 ⊆ 𝑉 for each
𝑡 ∈ {1, . . . , 𝐿}, such that, for each 𝑣 ∈ 𝑉 , one has 𝑣 ∈ 𝑆𝑟 for some 𝑟 ∈ 𝐹𝑣 . The goal is to minimize

∑𝐿
𝑡=1 𝑔(𝑆𝑡),

where 𝑔(·) is a monotone submodular set function with 𝑔(∅) = 0. For this problem they give a 𝑂 (log log 𝐿)
approximation, using a clever rounding algorithm for a convex optimization problem involving the Lovász
extension of 𝑔(·). Intuitively, in our DLA problem (defined in Section 4.3.1) the time interval is replaced by
the leaves (associated with some facility) of the tree 𝑇 , and the time window of 𝑐 ∈ �̃� by the set �̃�𝑐. Our time
windows naturally induce a laminar family, which is a special case of the left-aligned structure mentioned
before. The parameter log 𝐿 in their construction is replaced by the depth 𝐷 of 𝑇 in our case.

In the (Metric Uncapacitated) Facility Location problem (FL) we are given a set of clients and a set of
facilities in a metric space 𝑑, where each facility has an opening cost 𝑜 𝑓 . One has to select a subset of facilities
𝐹′ ⊆ 𝐹 and assign each client 𝑐 to the closest facility 𝐹′ (𝑐) in 𝐹′ so as to minimize

∑
𝑐∈𝐶 𝑑 (𝑐, 𝐹′ (𝑐)) +∑

𝑓 ∈𝐹′ 𝑜 𝑓 . FL is a special case of both addSFL and multSFL (and of SFL in the case of uniform opening
costs). FL is among the best-studied problems in the literature from the point of view of approximation
algorithms (see, e.g., [30, 102, 112]). It is known to be APX-hard [79] and the current best-known 1.488-
approximation algorithm [98] is a randomized combination of the greedy JMS algorithm [89] with an
LP-rounding algorithm from [26]. Lagrangian-multiplier preserving algorithms for FL are at the heart of
several approximation algorithms for fundamental clustering problems, including 𝑘-Median [8, 28, 35, 38,
72, 89, 90, 99] and 𝑘-Means [8, 35, 76].

Various variants of FL were studied in the literature and for most of them (at least with metric connection
costs) a constant approximation was eventually discovered. A notable example is the Capacitated Facility
Location problem in which the number of clients that can be served from a facility is restricted by a location-
specific bound. A local-search-based constant approximation for the latter problem is given in [119] (see also
[9] for a more recent LP-based result). SFL is one of the most natural generalizations of (metric) FL where a

85:95920

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 79

constant approximation is still not known.
Grandoni, Gupta, Leonardi, Miettinen, Sankowski, and Singh [75], among other universal stochastic

problems, studied univFL in the independent activation case. However, they compare the cost of their
solution with E𝐴∼𝜋 [cost𝐴(OPT(𝐴))], where OPT(𝐴) is the optimal facility location solution restricted to
clients 𝐴 (while we compare with E𝐴∼𝜋 [cost𝐴(OPT)]). For this setting they obtain a𝑂 (log 𝑛) approximation,
which also holds for non-metric connection costs.

Gupta, Pál, Ravi, and Sinha [81] consider a 2-stage stochastic version of FL. Here in a first stage, one buys
some facilities, then a subset of active clients is sampled from a given distribution. Finally, one can buy some
more facilities, however at an opening cost which is increased by a multiplicative inflation factor 𝜎. For this
setting they present a constant approximation.

Universal stochastic problems have a natural online stochastic counterpart. For example, in the Online
Stochastic Facility Location problem clients are sampled one by one, and when client 𝑐 is sampled one has
to connect 𝑐 to an already open facility or open a new facility 𝑓 and connect 𝑐 to 𝑓 . Garg, Gupta, Leonardi
and Sankowski [68] consider this problem in the independent activation case, i.e. when the next client to
be served is sampled from a probability distribution 𝜋 : 𝐶 → R≥0. For this setting, they present an 𝑂 (1)
approximation. Meyerson [105] studied a variant of the problem where an adversary chooses the set of input
clients, and then a random permutation of them is presented in input (random order model).

We believe that it is plausible that SFL admits a constant approximation. In particular, one might consider
greedy algorithms. Gupta [82] considered a natural set-cover type greedy algorithm for SFL. The same
algorithm gives a 1.861-approximation when applied to the classical Facility Location problem [89]. Gupta
[82, Section 2.3] showed that this algorithm produces an Ω(log 𝑛) approximate solutions for SFL. Hence our
algorithm is provably better than that one.

4.1.1 Preliminaries and Notation

We use log for the logarithm with base 2 and ln for the natural logarithm. Define 𝑋 = 𝐶 ∪ 𝐹, and
𝑁 = |𝑋 | = |𝐶 ∪ 𝐹 |. Given a metric 𝑑 over 𝑋 , we let 𝑑min be the smallest non-zero distance and 𝑑max be the
largest distance (that we assume to be positive w.l.o.g). We use 𝑔(𝑐) as a shortcut for 𝑔({𝑐}).

We sometimes express a feasible solution to SFL in the form 𝑆 = (𝑆 𝑓) 𝑓 ∈𝐹 , where 𝑆 𝑓 ⊆ 𝐶 specifies the
clients 𝜑−1 (𝑓) assigned to 𝑓 . Notice that for each 𝑐 ∈ 𝐶 there is precisely one 𝑓 ∈ 𝐹 with 𝑐 ∈ 𝑆 𝑓 . We define
a partial assignment as 𝑆 = (𝑆 𝑓) 𝑓 ∈𝐹 , where 𝑆 𝑓 ⊆ 𝐶. We say that 𝑆 covers the clients 𝐶′ = ∪ 𝑓 ∈𝐹𝑆 𝑓 ⊆ 𝐶.
Notice that, for technical reasons, in a partial assignment we allow 𝑆 𝑓 ∩ 𝑆 𝑓 ′ ≠ ∅ for two distinct 𝑓 , 𝑓 ′ ∈ 𝐹

(i.e. we allow to simultaneously assign a client to more than one facility). The cost of a (partial) assignment
𝑆 of the above type is defined as cost(𝑆) B conn(𝑆) + open(𝑆), where conn(𝑆) B ∑

𝑓 ∈𝐹
∑

𝑐∈𝑆 𝑓 𝑑 (𝑐, 𝑓)
is the connection cost of 𝑆 and open(𝑆) B ∑

𝑓 ∈𝐹 𝑔(𝑆 𝑓) is the opening cost of 𝑆. Given a (possibly
infeasible) fractional solution 𝑥 for (Conf-LP), we analogously define cost(𝑥) = conn(𝑥) + open(𝑥), where
conn(𝑥) = ∑

𝑐∈𝐶
∑

𝑓 ∈𝐹
∑

𝑅∋𝑐 𝑑 (𝑐, 𝑓) · 𝑥
𝑓

𝑅
, and open(𝑥) = ∑

𝑓 ∈𝐹
∑

𝑅⊆𝐶 𝑔(𝑅) · 𝑥 𝑓

𝑅
.

It is convenient to define the merge 𝑆 = 𝑆1 + 𝑆2 of two partial assignments 𝑆1 and 𝑆2 naturally as follows:

86:81797

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 80

(1) for each facility 𝑓 ∈ 𝐹, we initially set 𝑆 𝑓 B 𝑆
𝑓

1 ∪ 𝑆
𝑓

2 ; (2) while there exist two distinct facilities 𝑓 and
𝑓 ′ with 𝑆 𝑓 ∩ 𝑆 𝑓 ′ ≠ ∅, replace 𝑆 𝑓 ′ with 𝑆 𝑓 ′ \ 𝑆 𝑓 (intuitively this second step guarantees that each client is
assigned to no more than one facility). We observe that merging two partial assignments cannot increase the
total cost.

Lemma 4.1.1. For any two partial assignments 𝑆1 and 𝑆2, cost(𝑆1 + 𝑆2) ≤ cost(𝑆1) + cost(𝑆2).

Proof. Let 𝑆 = 𝑆1 + 𝑆2, and 𝑆′ be the intermediate value of 𝑆 obtained by executing only step (1) of the
merge operation. One has conn(𝑆′) = conn(𝑆1) + conn(𝑆2). Furthermore, by the submodularity (hence
subadditivity) of 𝑔(·), open(𝑆′) ≤ open(𝑆1) + open(𝑆2). Clearly conn(𝑆) ≤ conn(𝑆′), and the monotonicity
of 𝑔(·) implies that open(𝑆) ≤ open(𝑆′). The claim follows.

We will exploit the following fairly standard reductions, thanks to which in the following it will be sufficient
to obtain an 𝑂 (log log 𝑁) approximation for SFL. In order to distinguish between distinct instances 𝐽 of the
problem, we use cost𝐽 (𝜑) to denote the cost of 𝜑 w.r.t. 𝐽 and define similarly open𝐽 (𝜑) etc.

Lemma 4.1.2. There is a 3-approximate reduction from SFL to the special case where 𝑚 = 𝑛.

Proof. Let 𝐼 = (𝐶, 𝐹, 𝑑, 𝑔(·)) be the considered instance of SFL. Consider the complete weighted graph on
nodes 𝐶 ∪ 𝐹, with weights induced by 𝑑. For each client 𝑐, let 𝑓 (𝑐) be the facility closest to 𝑐. We create
a dummy facility 𝑓 ′ (𝑐) and add a dummy edge {𝑐, 𝑓 ′ (𝑐)} of weight 𝑑 (𝑐, 𝑓 (𝑐)). Let 𝐹′ be the set of newly
created facilities. Observe that |𝐹′ | = 𝑛. Finally we remove 𝐹 and consider the metric 𝑑′ over 𝐶 ∪ 𝐹′ induced
by the distances over the resulting graph. Let 𝐼 ′ = (𝐶, 𝐹′, 𝑑′, 𝑔(·)) be the obtained instance of SFL. Given a
solution 𝜑′ for 𝐼 ′, we obtain a solution 𝜑 for 𝐼 by simply assigning to 𝑓 (𝑐) each client 𝑐′ assigned to 𝑓 ′ (𝑐) in
𝜑′.

Let us analyze the approximation factor introduced by this reduction. We first observe that cost𝐼 (𝜑) ≤
cost𝐼 ′ (𝜑′). Indeed, open𝐼 (𝜑) = open𝐼 ′ (𝜑′). Furthermore, for each each client 𝑐′ assigned to 𝑓 ′ (𝑐) by
𝜑′, the associated connection cost w.r.t. 𝐼 is 𝑑 (𝑐′, 𝑓 (𝑐)) ≤ 𝑑 (𝑐′, 𝑐) + 𝑑 (𝑐, 𝑓 (𝑐)) = 𝑑′ (𝑐′, 𝑓 ′ (𝑐)). Hence
conn𝐼 (𝜑) ≤ conn𝐼 ′ (𝜑′).

Next consider an optimal solution OPT for 𝐼. For each facility 𝑓 with OPT−1 (𝑓) ≠ ∅, let 𝑐 ∈ OPT−1 (𝑓)
be the client closest to 𝑓 . We define a solution OPT′ for 𝐼 ′ by assigning all the clients in OPT−1 (𝑓) to 𝑓 ′ (𝑐).
Again, open𝐼 (𝜑) = open𝐼 ′ (𝜑′). For each client 𝑐′ assigned to 𝑓 in OPT, its connection cost in 𝐼 ′ is

𝑑′ (𝑐′, 𝑓 ′ (𝑐)) = 𝑑 (𝑐, 𝑐′) + 𝑑 (𝑐, 𝑓 (𝑐)) ≤ 𝑑 (𝑐′, 𝑓) + 𝑑 (𝑐, 𝑓) + 𝑑 (𝑐, 𝑓 (𝑐)) ≤ 𝑑 (𝑐′, 𝑓) + 2𝑑 (𝑐, 𝑓) ≤ 3𝑑 (𝑐′, 𝑓).

Hence conn𝐼 ′ (OPT′) ≤ 3 conn𝐼 (OPT). The claim follows.

Lemma 4.1.3. For any constant 𝜀 > 0, There is a (1 + 4𝜀)-approximate reduction from SFL to the special
case where the metric 𝑑 satisfies 𝑑min = 2 and 𝑑max ≤ 2𝑛𝑁

𝜀
.

Proof. Let us guess the value 𝐿 = max𝑐∈𝐶 𝑑 (𝑐,OPT(𝑐)) for some optimal solution OPT. W.l.o.g. assume
𝐿 > 0, otherwise the problem is trivial. Consider the complete weighted graph on nodes 𝐶 ∪ 𝐹 with weights

87:87946

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 81

induced by 𝑑. Remove the edges of weight larger than 𝐿. We next compute a feasible solution in each
connected component of the resulting graph separately. Notice that this part of the reduction is approximation
preserving since no client can be assigned to a facility in a different connected component in OPT.

Let𝐶′ and 𝐹′ be the clients and facilities, resp., in one such connected component𝐺′, 𝑋 ′ = 𝐶′∪𝐹′, and 𝑑′

be the metric induced by the distances in 𝐺′. Consider the corresponding SFL instance 𝐼 ′ = (𝐶′, 𝐹′, 𝑑′, 𝑔(·)).
Notice that in each such instance 𝐼 ′ one has 𝑑′max ≤ 𝑁𝐿. We next change the location of elements of 𝑋 ′ as
follows. We consider the ball 𝐵(𝑥) B {𝑦 ∈ 𝑋 ′ : 𝑑′ (𝑥, 𝑦) ≤ 𝜀

2𝑛 𝐿} of radius 𝜀
2𝑛 𝐿 around each 𝑥 ∈ 𝑋 ′. Let

I be a maximal (independent) set of such balls so that, if 𝐵(𝑥), 𝐵(𝑦) ∈ I for 𝑥 ≠ 𝑦, then 𝐵(𝑥) ∩ 𝐵(𝑦) = ∅.
For each 𝑦 with 𝐵(𝑦) ∉ I, we consider any 𝐵(𝑥) ∈ I with 𝐵(𝑥) ∩ 𝐵(𝑦) ≠ ∅ (which must exist since I is
maximal) and colocate 𝑦 with 𝑥. Let 𝐼 ′′ = (𝐶′, 𝐹′, 𝑑′′, 𝑔(·)) be the resulting instance of SFL. Observe that
𝑑′′max ≤ 𝑁𝐿 and 𝑑′′min ≥

𝜀
𝑛
𝐿.

Let 𝐼 be the union of all the instances 𝐼 ′′, and 𝑑 be the associated distances (where inter-component
distances can be considered to be +∞). Given a solution 𝜑 for 𝐼 (obtained by the union of all the solutions
obtained for each instance 𝐼 ′′), we return exactly the same solution 𝜑 for 𝐼.

Let us analyze the approximation factor. Notice that open𝐼 (𝜑) = open𝐼 (𝜑). Furthermore, for each client 𝑐,
𝑑 (𝑐, 𝜑(𝑐)) ≤ 𝑑 (𝑐, 𝜑(𝑐))+ 2𝜀

𝑛
𝐿, where in the latter term we consider the fact that each client and facility is moved

at most at distance 𝜀
𝑛
𝐿 from the original location. Hence conn𝐼 (𝜑) ≤ conn𝐼 (𝜑) + 2𝜀𝐿. Given an optimum

solution OPT for 𝐼, by a symmetric argument one has cost𝐼 (OPT) ≤ cost𝐼 (OPT)+2𝜀𝐿 ≤ (1+2𝜀)cost𝐼 (OPT),
where we used the fact that cost𝐼 (OPT) ≥ 𝐿. Altogether an 𝛼 ≥ 1 approximation algorithm for each instance
𝐼 ′′ implies an 𝛼(1 + 2𝜀) + 2𝜀 ≤ 𝛼(1 + 4𝜀) approximation for 𝐼.

Finally, we scale the distance 𝑑′′ and 𝑔(·) by the same factor 2𝑛
𝜀𝐿

so that 𝑑′′min = 2 and 𝑑′′max ≤ 2𝑛𝑁
𝜀

. Clearly
this final scaling is approximation preserving.

One of the key tools that we use is the notion of probabilistic tree embedding, which we use to map the
input metric into a metric on a hierarchically well-separated tree (HST) while stretching the distances by a
small enough factor. We recall that an HST is an edge weighted rooted tree where all the leaves are at the
same distance from the root 𝑟 . Furthermore, on every path from a leaf to 𝑟 the edge weights are 1, 2, 4, . . .
In particular, edges at the same level have the same weight. We will use the following construction1 by
Fakcharoenphol, Rao and Talwar [58].

Theorem 4.1.4 (FRT metric tree embedding [58]). For any finite metric space (𝑀, 𝑑) with 𝑑min > 1, there
exists a randomized polynomial-time algorithm returning an HST 𝑇 such that:

1. Every 𝑎 ∈ 𝑀 is mapped to some leaf 𝑚𝑎𝑝(𝑎) of 𝑇 (with elements at distance zero being mapped to the
same leaf);

2. Let 𝑑𝑇 (𝑎, 𝑏) := 𝑑𝑇 (𝑚𝑎𝑝(𝑎), 𝑚𝑎𝑝(𝑏)) be the length of the path between the leaves𝑚𝑎𝑝(𝑎) and𝑚𝑎𝑝(𝑏)
of 𝑇 . Then 𝑑𝑇 (𝑎, 𝑏) ≥ 𝑑 (𝑎, 𝑏) and E

[
𝑑𝑇 (𝑎, 𝑏)

]
≤ 8 log |𝑀 | · 𝑑 (𝑎, 𝑏);

3. 𝑇 has depth 𝑂 (log 𝑑max).
1We slightly and trivially extend their claim to consider nodes at distance 0.

88:35432

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 82

For a given set 𝐶, let ℎ : 2𝐶 → R be a monotone submodular function with ℎ(∅) = 0. The Lovász
extension ℎ̂ : [0, 1]𝐶 → R of ℎ(·) is defined as

ℎ̂(𝑦) B min
{ ∑︁

𝑅⊆𝐶
ℎ(𝑅)𝜇𝑅 :

∑︁
𝑅⊆𝐶

∑︁
𝑅∋𝑐

𝜇𝑅 = 𝑦𝑐 ∀𝑐 ∈ 𝐶,
∑︁
𝑅⊆𝐶

𝜇𝑅 = 1, 𝜇 ≥ 0
}
. (4.1)

The function ℎ̂(·) is convex. We remark that ℎ̂(𝑦) can be alternatively defined as

ℎ̂(𝑦) B
𝑛−1∑︁
𝑘=1

ℎ ({𝑐1, . . . , 𝑐𝑘}) (𝑦𝑐𝑘 − 𝑦𝑐𝑘+1) + ℎ(𝐶)𝑦𝑐𝑛 , (4.2)

where the components of 𝑦 are sorted in decreasing order, i.e. 𝑦𝑐1 ≥ 𝑦𝑐2 ≥ · · · ≥ 𝑦𝑐𝑛 [66, Section 6.3]. By
the monotonicity of ℎ(·), ℎ̂(·) is also non-decreasing in the sense that ℎ̂(𝑦) ≥ ℎ̂(𝑦′) if 𝑦 ≥ 𝑦′.

4.2 Reducing the Connection Cost

In this section, we show how to compute a random partial assignment 𝑆1 = (𝑆 𝑓

1) 𝑓 ∈𝐹 covering a random
subset of clients 𝐶1 B ∪ 𝑓 ∈𝐹𝑆

𝑓

1 ⊆ 𝐶 with the following high-level properties: the expected cost of 𝑆1 is
“small enough” and (2) each client belongs to 𝐶1 with “large enough” probability. In the next section, we
will describe a different partial assignment 𝑆2 = (𝑆 𝑓

2) 𝑓 ∈𝐹 , again of small enough cost, covering the remaining
clients 𝐶2 B 𝐶 \ 𝐶1. By merging these two partial assignments we obtain a feasible solution for the input
problem of small enough total cost.

Let ¤𝑥 be an optimal solution to (Conf-LP) with at most poly(𝑁) non-zero entries that can be computed
via Lemma 4.0.1. The basic idea behind the next lemma is fairly standard: we sample partial assignments
according to the distribution induced by ¤𝑥 for ln ln 𝑁 times, and merge them together.

Lemma 4.2.1. In polynomial time one can compute a random partial assignment 𝑆1 covering a random subset
of clients 𝐶1 such that: (1) E [cost(𝑆1)] ≤ ln ln(𝑁) · cost(¤𝑥) and (2) For each 𝑐 ∈ 𝐶, P[𝑐 ∈ 𝐶1] ≥ 1 − 1

ln 𝑁
.

Proof. For 𝑖 ∈ {1, 2, . . . , ln ln 𝑁} and for every 𝑅 ⊆ 𝐶, we define a partial assignment 𝑆(𝑖, 𝑅) by setting
𝑆 𝑓 (𝑖, 𝑅) = 𝑅 independently with probability ¤𝑥 𝑓

𝑅
and 𝑆 𝑓 (𝑖, 𝑅) = ∅ otherwise. Let 𝑆1 =

∑ln ln 𝑁
𝑖=1

∑
𝑅⊆𝐶 𝑆(𝑖, 𝑅)

be obtained by merging all these solutions, and let 𝐶1 = ∪ 𝑓 ∈𝐹𝑆
𝑓

1 . Observe that

P[𝑐 ∉ 𝐶1] =
∏
𝑓 ∈𝐹

∏
𝑅∋𝑐
(1 − ¤𝑥 𝑓

𝑅
)ln ln 𝑁 ≤ 𝑒− ln ln 𝑁

∑
𝑓 ∈𝐹

∑
𝑅∋𝑐 ¤𝑥

𝑓

𝑅 ≤ 𝑒− ln ln 𝑁 =
1

ln 𝑁
.

Furthermore, by Lemma 4.1.1, E[cost(𝑆1)] is upper-bounded by

ln ln 𝑁∑︁
𝑖=1

∑︁
𝑅⊆𝐶
E[cost(𝑆(𝑖, 𝑅))] = ln ln 𝑁 ·

∑︁
𝑓 ∈𝐹,𝑅⊆𝐶

¤𝑥 𝑓

𝑅
·
(
𝑔(𝑅) +

∑︁
𝑐∈𝑅

𝑑 (𝑐, 𝑓)
)
= ln ln 𝑁 · cost(¤𝑥).

89:36199

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 83

Consider the partial assignment 𝑆1 covering the random subset of clients𝐶1 as in the previous lemma. Let
𝐶2 B 𝐶 \ 𝐶2 be the remaining (uncovered) clients. Let also ¥𝑥 be ¤𝑥 restricted to 𝐶2, i.e. ¥𝑥 𝑓

𝑅
=
∑

𝑅′⊆𝐶1 ¤𝑥
𝑓

𝑅∪𝑅′

for 𝑅 ⊆ 𝐶2 and 𝑓 ∈ 𝐹. The following lemma upper bounds the expected opening and connection cost of ¥𝑥.

Lemma 4.2.2. One has open(¥𝑥) ≤ open(¤𝑥) and E[conn(¥𝑥)] ≤ 1
ln 𝑁

conn(¤𝑥).

Proof. We have open(¥𝑥) ≤ open(¤𝑥) by the monotonicity of 𝑔(·). For the connection cost, notice that the
probability of a client 𝑐 being in 𝐶2 is at most 1/ln 𝑁 , and only in that case one has to pay the associated
connection cost. Thus by linearity of expectation, the expected connection cost of ¥𝑥 is at most conn(¤𝑥)/ln 𝑁 .
The claim follows.

Notice that ¥𝑥 is a feasible fractional solution for (Conf-LP) limited to𝐶2. In the following section, we show
how to randomly round ¥𝑥 to a partial assignment 𝑆2 which covers 𝐶2 at expected cost 𝑂 (log log 𝑁) · cost(¥𝑥).
It will then follow that 𝑆1 + 𝑆2 is a feasible 𝑂 (log log 𝑁)-approximate solution to the input SFL instance.

4.3 Approximating SFL on an HST

Given an SFL instance and a tree embedding of (𝐶 ∪ 𝐹, 𝑑) into an HST 𝑇 as in Theorem 4.1.4, we say
that (𝐶 ∪ 𝐹, 𝑑𝑇 , 𝑔(·), 𝑚𝑎𝑝(·)) is the corresponding HST-type instance. We remark that we allow multiple
clients 𝐶 (𝑣) and facilities 𝐹 (𝑣) to be colocated at each leaf 𝑣 of 𝑇 . In this section we will describe an
𝑂 (log log 𝑁)-approximate LP-rounding algorithm for the considered instances w.r.t. (Conf-LP).

Lemma 4.3.1. Given a feasible fractional solution 𝑥 to (Conf-LP) for an HST-type SFL instance, in polynomial
time one can compute a feasible (integral) solution for the same instance with cost at most 𝑂 (log log 𝑁) ·
cost(𝑥).

Theorem 1.3.11 directly follows.

Proof of Theorem 1.3.11. By Lemma 4.1.2 it is sufficient to describe an 𝑂 (log log 𝑁)-approximation. Fur-
thermore by Lemma 4.1.3, we can assume that 𝑑min = 2 and 𝑑max ≤ 2𝑛𝑁

𝜀
.

By applying the construction of Section 4.2 we compute a random partial assignment 𝑆1 = (𝑆 𝑓

1) 𝑓 ∈𝐹
covering the clients 𝐶1 = ∪ 𝑓 ∈𝐹𝑆

𝑓

1 with expected cost at most 𝑂 (log log 𝑁) · cost(¤𝑥), where ¤𝑥 is an optimal
solution to (Conf-LP). Furthermore, by Lemma 4.2.2, we obtain a feasible solution ¥𝑥 to (Conf-LP) restricted
to clients 𝐶2 B 𝐶 \ 𝐶1 which satisfies open(¥𝑥) ≤ open(¤𝑥) and E[conn(¥𝑥)] ≤ 1

ln 𝑁
conn(¤𝑥). By applying

the probabilistic tree embedding from Theorem 4.1.4 to the metric (𝐶2 ∪ 𝐹, 𝑑), we obtain an HST-type SFL
instance (𝐶2 ∪ 𝐹, 𝑑𝑇 , 𝑔(·), 𝑚𝑎𝑝(·)) where the tree has depth 𝐷 = 𝑂 (log 𝑑max) = 𝑂 (log 𝑁). Observe that
¥𝑥 is a feasible fractional solution for (Conf-LP) restricted to 𝐶2 on the HST-type instance. Furthermore, let
conn𝑇 (¥𝑥) denote the connection cost of ¥𝑥 w.r.t. the HST-type instance, and define similarly open𝑇 (¥𝑥) and
cost𝑇 (¥𝑥). Then one has

E[cost𝑇 (¥𝑥)] = open(¥𝑥) + E[conn𝑇 (¥𝑥)] ≤ open(¤𝑥) +𝑂 (log 𝑁) · E[conn(¥𝑥)] ≤ 𝑂 (cost(¤𝑥)).

90:10335

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 84

By applying the LP-rounding algorithm from Lemma 4.3.1 to ¥𝑥 one obtains a partial assignment (𝑆 𝑓

2) 𝑓 ∈𝐹
covering the clients 𝐶2 of cost at most 𝑂 (log log 𝑁)cost(¤𝑥). The same solution has no larger cost in the
original problem (on a non-tree metric). Altogether 𝑆1 + 𝑆2 is a feasible solution to the input SFL problem of
expected cost at most 𝑂 (log log 𝑁) · cost(¤𝑥) ≤ 𝑂 (log log 𝑁) · cost(OPT).

In the rest of this section, we prove Lemma 4.3.1. To this aim, we will first present a reduction to a
different problem that we call the Descendent-Leaf Assignment problem (DLA) (see Section 4.3.1). Then,
we will present a good-enough approximation algorithm for DLA (see Section 4.3.2).

4.3.1 A Reduction to DLA

In the Descendent-Leaf Assignment problem (DLA) we are given a rooted tree 𝑇 with depth 𝐷, a set of
facilities �̃� and a set of clients �̃�. Each 𝑥 ∈ �̃� ∪ �̃� is mapped to some node 𝑣(𝑥) of 𝑇 , with the restriction
that facilities are mapped to leaves of 𝑇 . By �̃�𝑐 we denote the facilities which are mapped to nodes that
are descendants of 𝑣(𝑐) in 𝑇 (𝑣(𝑐) included if it is a leaf). A feasible solution consists of an assignment
�̃� : �̃� → �̃� of each 𝑐 ∈ �̃� to some 𝑓 ∈ �̃�𝑐. The cost of this solution is

∑
𝑓 ∈�̃� ℎ(�̃�−1 (𝑓)), where ℎ(·) is a

monotone submodular function over �̃� with ℎ(∅) = 0. Similarly to SFL, we also express a feasible solution
as 𝑆 = (𝑆 𝑓) 𝑓 ∈�̃� , where 𝑆 𝑓 = �̃�−1 (𝑓), and let costDLA (𝑆) =

∑
𝑓 ∈�̃� ℎ(𝑆 𝑓) be the associated cost. We define a

convex-programming (CP) relaxation for DLA as follows:

min
∑︁
𝑓 ∈�̃�

ℎ̂(𝑧 𝑓) (DLA-CP)

s.t.
∑︁
𝑓 ∈�̃�𝑐

𝑧
𝑓
𝑐 = 1 ∀𝑐 ∈ �̃�;

𝑧
𝑓
𝑐 ≥ 0 ∀𝑐 ∈ �̃�, ∀ 𝑓 ∈ �̃�.

In a 0-1 integral solution we interpret 𝑧 𝑓𝑐 = 1 as 𝑐 being assigned to 𝑓 . Recall that ℎ̂(·) is convex, which
makes (DLA-CP) a convex program. We also notice that each feasible assignment 𝑆 = (𝑆 𝑓) 𝑓 ∈�̃� corresponds
to a feasible integral solution 𝑧 = (𝑧 𝑓) 𝑓 ∈�̃� to (DLA-CP) with costDLA (𝑆) = costDLA (𝑧) B

∑
𝑓 ∈�̃� ℎ̂(𝑧 𝑓) and

vice versa. Hence indeed (DLA-CP) is a CP-relaxation of DLA.
The next lemma provides the claimed reduction from SFL on HST-type instances to DLA.

Lemma 4.3.2. Given a polynomial-time 𝑂 (log 𝐷)-approximate CP-rounding algorithm for DLA w.r.t.
(DLA-CP), where 𝐷 is the depth of the tree, there is polynomial-time 𝑂 (log log 𝑁)-approximate LP-rounding
algorithm for SFL on HST-type instances with tree-depth 𝑂 (log 𝑁) w.r.t. (Conf-LP).

Proof. Let (𝐶 ∪ 𝐹, 𝑑𝑇 , 𝑔(·), 𝑚𝑎𝑝(·)) be the considered HST-type instance of SFL over an HST 𝑇 , and 𝑥 be
an input feasible fractional solution to (Conf-LP) for this instance.

We build an instance (�̃� ∪ �̃�, 𝑇, ℎ(·), 𝑣(·)) of DLA as follows. First, let 𝑦 𝑓
𝑐 B

∑
𝑅⊆𝐶:𝑐∈𝑅 𝑥

𝑓

𝑅
: intuitively

this is the fractional amount by which 𝑐 is assigned to 𝑓 in 𝑥. We set ℎ(·) = 𝑔(·) and 𝑇 = 𝑇 . Notice that

91:61646

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 85

𝐷 = 𝑂 (log 𝑁). We set �̃� = 𝐹 and 𝑣(𝑓) = 𝑚𝑎𝑝(𝑓) for each 𝑓 ∈ �̃�. We associate to each 𝑐 ∈ 𝐶 a new
client 𝑐 ∈ �̃�. Let 𝑇𝑣 be the subtree rooted at 𝑣 (containing 𝑣 and all its descendants) and 𝐹𝑣 be the facilities
located in the leaves of 𝑇𝑣 according to 𝑚𝑎𝑝(·). We map 𝑐 into the lowest ancestor 𝑣(𝑐) of 𝑚𝑎𝑝(𝑐) such
that

∑
𝑓 ∈𝐹𝑣 (�̃�) 𝑦

𝑓
𝑐 ≥ 1/2. Notice that 𝑣(𝑐) = 𝑚𝑎𝑝(𝑐) is possible (in which case there is at least one facility 𝑓

colocated with 𝑐 in 𝑇).
We next define a feasible fractional solution 𝑧 for (DLA-CP) w.r.t this DLA instance as follows. For each

𝑐 ∈ �̃� we set 𝑧 𝑓
�̃�
= 𝑦

𝑓
𝑐 /(

∑
𝑓 ′∈𝐹𝑣 (�̃�) 𝑦

𝑓 ′
𝑐) if 𝑓 ∈ 𝐹𝑣 (�̃�) , and otherwise 𝑧

𝑓

�̃�
= 0. Let �̃� be a solution to the DLA

instance obtained with the CP-rounding algorithm in the claim w.r.t. 𝑧. We obtain a feasible solution 𝜑 for the
input instance by simply setting 𝜑(𝑐) = �̃�(𝑐).

It remains to analyze the cost of 𝜑. Define 𝑧
𝑓

�̃�
= 𝑦

𝑓
𝑐 /(

∑
𝑓 ′∈𝐹𝑣 (�̃�) 𝑦

𝑓 ′
𝑐) for all 𝑓 ∈ 𝐹. Notice that 𝑧 ≥ 𝑧.

By the definition of ℎ̂(·) and its monotonicity, ℎ̂(𝑧 𝑓) ≤ ℎ̂(𝑧 𝑓) = ℎ̂(𝑦 𝑓 /(∑ 𝑓 ′∈𝐹𝑣 (�̃�) 𝑦
𝑓 ′
𝑐)) ≤ 2ℎ̂(𝑦 𝑓) = 2�̂�(𝑦 𝑓).

Notice that by plugging in 𝑥
𝑓

𝑅
for 𝜇𝑅 in the set in (4.1) and by how 𝑦 is defined w.r.t. 𝑥 above, we get

�̂�(𝑦 𝑓) ≤ ∑
𝑅⊆𝐶 𝑔(𝑅) · 𝑥 𝑓

𝑅
and in particular

∑
𝑓 ∈𝐹 �̂�(𝑦 𝑓) ≤ open(𝑥). Thus, we have costDLA (𝑧) ≤ 2 open(𝑥)

and
open(𝜑) = costDLA (�̃�) = 𝑂 (log 𝐷) · costDLA (𝑧) ≤ 𝑂 (log log 𝑁) · 2 open(𝑥). (4.3)

Consider next the connection cost of a given 𝑐 ∈ 𝐶. If 𝑣(𝑐) = 𝑚𝑎𝑝(𝑐), i.e 𝑣(𝑐) has no child, then
𝑑𝑇 (𝑐, 𝜑(𝑐)) = 0 ≤ ∑

𝑓 ∈𝐹 𝑑𝑇 (𝑐, 𝑓)𝑦 𝑓
𝑐 . Otherwise, let 𝑤(𝑐) be the child of 𝑣(𝑐) along the 𝑣(𝑐)-𝑚𝑎𝑝(𝑐) path

in 𝑇 . Let Δ be the weight of the edge between 𝑣(𝑐) and 𝑤(𝑐). Observe that the distance between 𝑣(𝑐) and the
leaves in 𝑇𝑣 (�̃�) is exactly 2Δ − 1. Furthermore, both 𝑐 and 𝜑(𝑐) are located in the leaves of 𝑇𝑣 (�̃�) in the HST
mapping 𝑚𝑎𝑝(·). Hence 𝑑𝑇 (𝑐, 𝜑(𝑐)) ≤ 2(2Δ − 1).

By the definition of 𝑣(𝑐), it must be the case that
∑

𝑓 ∈𝐹𝑤 (𝑐) 𝑦
𝑓
𝑐 < 1

2 , and consequently
∑

𝑓 ∈𝐹\𝐹𝑤 (𝑐) 𝑦
𝑓
𝑐 ≥ 1

2 .
For each 𝑓 ∈ 𝐹 \ 𝐹𝑤 (𝑐) , the 𝑚𝑎𝑝(𝑓)-𝑚𝑎𝑝(𝑐) path in 𝑇 has length at least 2(2Δ − 1). Thus∑︁

𝑓 ∈𝐹
𝑑𝑇 (𝑐, 𝑓)𝑦 𝑓

𝑐 ≥
∑︁

𝑓 ∈𝐹\𝐹𝑤 (𝑐)

𝑑𝑇 (𝑐, 𝑓)𝑦 𝑓
𝑐 ≥

1
2

2(2Δ − 1).

Therefore, the connection cost of 𝑐 in 𝜑 is at most 2 times its connection cost in 𝑥. We conclude that conn(𝜑) ≤
2 conn(𝑥). Altogether we have cost(𝜑) ≤ 2 conn(𝑥) +𝑂 (log log 𝑁) · 2 open(𝑥) ≤ 𝑂 (log log 𝑁) · cost(𝑥).

4.3.2 An Approximation Algorithm for DLA

In this section, we present a CP-rounding algorithm for DLA. Lemma 4.3.1 follows by chaining Lemmas 4.3.2
and 4.3.3.

Lemma 4.3.3. Given a feasible fractional solution 𝑧 to (DLA-CP) on an instance of DLA with tree-depth
𝐷, in polynomial time one can compute a feasible (integral) solution to the same instance of cost at most
𝑂 (log 𝐷) · costDLA (𝑧).

The CP-rounding algorithm from Lemma 4.3.3 is essentially the algorithm by Bosman and Olver [22]
with minor modifications that we introduced to simplify our correctness analysis. Also, the analysis of its

92:58591

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 86

approximation ratio is essentially identical to [22], but we reproduce it for the sake of completeness. In
particular, we will exploit the following definitions and lemma from [22]. Let ℎ : 2�̃� → R≥0 be a monotone
submodular function with ℎ(∅) = 0. For a given 𝑓 ∈ �̃� and a (possibly infeasible) solution 𝑧 to (DLA-CP),
let 𝐿 𝜃 (𝑧 𝑓) B {𝑐 ∈ �̃� : 𝑧 𝑓𝑐 ≥ 𝜃} be the set of clients that are served fractionally by at least some value 𝜃 by
𝑓 . Let also 𝑧 𝑓 | 𝜃 be obtained from 𝑧 𝑓 by rounding down to 𝜃 the values larger than 𝜃, i.e. 𝑧 𝑓 | 𝜃𝑐 B min{𝑧 𝑓𝑐 , 𝜃}
for each 𝑐 ∈ �̃�. Given 𝜃 ∈ [0, 1] and 𝑧 𝑓 ∈ [0, 1]�̃� , we say that the set 𝐿 𝜃 (𝑧 𝑓) is 𝛼-supported (w.r.t. ℎ) if
ℎ̂(𝑧 𝑓) − ℎ̂(𝑧 𝑓 | 𝜃) ≥ 𝛼ℎ(𝐿 𝜃 (𝑧 𝑓)).

Lemma 4.3.4 (Lemma 5.2 from [22]). Given 𝑧 𝑓 ∈ [0, 1]�̃� and 𝛼 ∈ (0, 1], at least one of the following holds:
(1) there exists 𝜃 ∈ [0, 1], which can be computed in polynomial time, such that 𝐿 𝜃 (𝑧 𝑓) is 𝛼

32 -supported; (2)
21/𝛼ℎ(𝐿1 (𝑧 𝑓)) ≤ ℎ̂(𝑧 𝑓).

Our algorithm is Algorithm 5 in the figure. Recall that𝑇𝑣 is the subtree rooted at node 𝑣, where𝑇𝑣 includes
𝑣 and all its descendants. Furthermore, �̃�𝑣 is the set of facilities mapped to the leaves of 𝑇𝑣 . As usual the level
of a node is its hop-distance from the root.

Algorithm 5:
Input: Feasible solution 𝑧 to (DLA-CP)

1 𝑆 𝑓 ← ∅ for all 𝑓 ∈ 𝐹;
2 for 𝑖 = 0, . . . , 𝐷 do
3 For every node 𝑣 at level 𝐷 − 𝑖, choose an arbitrary 𝑓𝑣 ∈ �̃�𝑣 and set 𝑧 𝑓𝑣 ← ∑

𝑓 ′∈�̃�𝑣
𝑧 𝑓
′ and

𝑧 𝑓
′ ← 0 for all 𝑓 ′ ∈ �̃�𝑣 \ { 𝑓𝑣};

4 if there exists 𝜃 ∈ [0, 1] such that 𝐿 𝜃 (𝑧 𝑓𝑣) is 1
32 log(𝐷+1) -supported then

5 Choose an arbitrary such 𝜃 𝑆 𝑓𝑣 ← 𝑆 𝑓𝑣 ∪ 𝐿 𝜃 (𝑧 𝑓𝑣) and 𝑧
𝑓𝑣
𝑐 ← 0 for all 𝑐 ∈ 𝐿 𝜃 (𝑧 𝑓𝑣);

6 end
7 else
8 𝑆 𝑓𝑣 ← 𝑆 𝑓𝑣 ∪ 𝐿1 (𝑧 𝑓𝑣) and 𝑧

𝑓𝑣
𝑐 ← 0 for all 𝑐 ∈ 𝐿1 (𝑧 𝑓𝑣);

9 end
10 end
11 For every 𝑐 ∈ �̃�, choose 𝑓 ∈ �̃�𝑐 such that 𝑐 ∈ 𝑆 𝑓 and set 𝑆 𝑓 ′ ← 𝑆 𝑓 ′ \ {𝑐} for all 𝑓 ′ ∈ �̃� \ { 𝑓 };
12 return (𝑆 𝑓) 𝑓 ∈�̃�

Clearly Algorithm 5 runs in polynomial time. The next two lemmas analyze the correctness and the
approximation ratio of Algorithm 5, hence proving Lemma 4.3.3.

Lemma 4.3.5. Algorithm 5 computes a feasible DLA solution.

Proof. Consider a given client 𝑐 ∈ �̃� such that 𝑣(𝑐) is at level 𝐷 − 𝑖 in 𝑇 . Let us show that the following
invariant holds at the beginning of each iteration 𝑗 ≤ 𝑖: either

∑
𝑓 ∈�̃�𝑐

𝑧
𝑓
𝑐 = 1 or 𝑐 ∈ 𝑆 𝑓 for some 𝑓 ∈ �̃�𝑐. The

invariant trivially holds for 𝑗 = 0. Assume that it holds up to the beginning of iteration 𝑗 < 𝑖, and consider
what happens during that iteration. Notice that for every node 𝑣 at level 𝐷 − 𝑗 > 𝐷 − 𝑖, we either have that
every 𝑓 ∈ �̃�𝑣 is a descendant of 𝑣(𝑐) or every 𝑓 ∈ �̃�𝑣 is not in �̃�𝑐. Therefore, in Step (3) the value of

∑
𝑓 ∈�̃�𝑐

𝑧
𝑓
𝑐

93:85050

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 87

does not change. In more detail, it remains 1 by inductive hypothesis. The same value can decrease in Steps
(5) or (8), however, this can only happen if 𝑐 is added to 𝑆 𝑓𝑣 for some 𝑓𝑣 ∈ �̃�𝑐. Thus the invariant holds at the
end of the 𝑗-th iteration, hence at the beginning of the next iteration 𝑗 + 1.

Due to the invariant, during the iteration 𝑖, when one considers the node 𝑣 = 𝑣(𝑐), one has that either 𝑐
already belongs to some 𝑆 𝑓 with 𝑓 ∈ �̃�𝑐, or

∑
𝑓 ∈�̃�𝑐

𝑧
𝑓
𝑐 = 1. In the latter case, after Step (3), 𝑧 𝑓𝑣𝑐 = 1 where

𝑓𝑣 ∈ �̃�𝑐, so 𝑐 belongs to every set 𝐿 𝜃 (𝑧 𝑓𝑣) with 𝜃 ∈ [0, 1]. As a consequence, 𝑐 is added to 𝑆 𝑓𝑣 either in Step
(5) or in Step (8).

It might happen that a client 𝑐 is assigned also to a facility not in �̃�𝑐. Step (11) guarantees that the final
assignment of 𝑐 is correct and unique.

Lemma 4.3.6. Algorithm 5 outputs a solution of cost at most 𝑂 (log 𝐷) · costDLA (𝑧).

Proof. Recall that costDLA (𝑧) =
∑

𝑓 ∈�̃� ℎ̂(𝑧 𝑓). We start by observing that the value of costDLA (𝑧) can not
increase over time when 𝑧 changes during the execution of the algorithm. Indeed, Steps (5) and (8) can
only decrease the entries of 𝑧, hence costDLA (𝑧) by the monotonicity of ℎ̂(·). The only other changes of 𝑧
happen in Step (3). Let us interpret this step as iteratively decreasing to zero 𝑧 𝑓

′ for each 𝑓 ′ ∈ �̃�𝑣 \ { 𝑓𝑣} and
increasing 𝑧 𝑓𝑣 by the same amount. The decrease of the cost at each step is ℎ̂(𝑧 𝑓𝑣) + ℎ̂(𝑧 𝑓 ′) − ℎ̂(𝑧 𝑓𝑣 + 𝑧 𝑓 ′).
By the alternative definition of ℎ̂(·) as in (4.2) and its convexity, one has ℎ̂(𝑧 𝑓𝑣 + 𝑧 𝑓 ′) = 2ℎ̂

(
𝑧 𝑓𝑣+𝑧 𝑓 ′

2

)
≤

2
(

1
2 ℎ̂(𝑧

𝑓𝑣) + 1
2 ℎ̂(𝑧

𝑓 ′)
)
= ℎ̂(𝑧 𝑓𝑣) + ℎ̂(𝑧 𝑓 ′). Hence the decrease of the cost is non-negative as required.

For each facility 𝑓 and level 𝑖, let Δ𝜃
𝑖
(𝑓) be the clients added to 𝑆 𝑓 in Step (5) during iteration 𝑖 (possibly

Δ𝜃
𝑖
(𝑓) = ∅). We define similarlyΔ1

𝑖
(𝑓) w.r.t. Step (8). Notice that, by the submodularity (hence subadditivity)

of ℎ(·), the increase of the cost of the solution due to adding Δ to 𝑆 𝑓 is at most ℎ(Δ). Therefore we can upper
bound the cost of the final solution 𝑆 = (𝑆 𝑓) 𝑓 ∈�̃� by

costDLA (𝑆) B
∑︁
𝑓 ∈�̃�

ℎ(𝑆 𝑓) ≤
𝐷∑︁
𝑖=0

∑︁
𝑓 ∈�̃�

(
ℎ(Δ𝜃

𝑖 (𝑓)) + ℎ(Δ1
𝑖 (𝑓))

)
.

Let us upper bound the right-hand side of the above inequality. Let 𝑧(𝑖) denote the value of 𝑧 at the beginning
of iteration 𝑖. From the previous observation, we have ℎ̂(𝑧(𝑖)) ≤ ℎ̂(𝑧) for every 𝑖. By Lemma 4.3.4 with
𝛼 = 1

log(𝐷+1) , for any Δ1
𝑖
(𝑓) one has ℎ(Δ1

𝑖
(𝑓)) ≤ 1

𝐷+1 ℎ̂(𝑧
𝑓 (𝑖)). Thus

𝐷∑︁
𝑖=0

∑︁
𝑓 ∈�̃�

ℎ
(
Δ1
𝑖 (𝑓)

)
≤

𝐷∑︁
𝑖=0

∑︁
𝑓 ∈�̃�

1
𝐷 + 1

ℎ̂
(
𝑧 𝑓 (𝑖)

)
≤

𝐷∑︁
𝑖=0

1
𝐷 + 1

costDLA (𝑧(𝑖)) ≤ costDLA (𝑧). (4.4)

Let 𝑧(𝐷 + 1) be the value of 𝑧 at the end of the 𝐷-th iteration, hence in particular costDLA (𝑧(𝐷 + 1)) ≥ 0.
Notice that 𝑧 = 𝑧(0). We can lower bound costDLA (𝑧) by

costDLA (𝑧) ≥
𝐷∑︁
𝑖=0

(
costDLA (𝑧(𝑖)) − costDLA (𝑧(𝑖 + 1))

)
.

94:76625

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 88

Let 𝑧1 (𝑖) be the value of 𝑧 obtained from 𝑧(𝑖) after applying Step (3) for all nodes of level 𝐷 − 𝑖. Let also 𝑧2 (𝑖)
be the value obtained from 𝑧1 (𝑖) if, for all the facilities 𝐹′

𝑖
where Step (5) is applied during iteration 𝑖, instead

of setting 𝑧
𝑓
𝑐 = 0 one sets 𝑧 𝑓𝑐 = 𝜃 for the corresponding value of 𝜃. For the facilities not in 𝐹′

𝑖
we simply let

𝑧
𝑓

2 (𝑖) = 𝑧
𝑓

1 (𝑖). Observe that 𝑧(𝑖 + 1) ≤ 𝑧2 (𝑖) ≤ 𝑧1 (𝑖) ≤ 𝑧(𝑖). One has

costDLA (𝑧(𝑖)) − costDLA (𝑧(𝑖 + 1)) ≥costDLA (𝑧1 (𝑖)) − costDLA (𝑧(𝑖 + 1))

≥costDLA (𝑧1 (𝑖)) − costDLA (𝑧2 (𝑖))

=
∑︁
𝑓 ∈�̃�

ℎ̂

(
𝑧
𝑓

1 (𝑖)
)
− ℎ̂

(
𝑧
𝑓

2 (𝑖)
)
=
∑︁
𝑓 ∈𝐹′

𝑖

ℎ̂

(
𝑧
𝑓

1 (𝑖)
)
− ℎ̂

(
𝑧
𝑓

2 (𝑖)
)

≥
∑

𝑓 ∈𝐹′
𝑖
ℎ
(
Δ𝜃
𝑖
(𝑓)

)
32 log(𝐷 + 1) =

∑
𝑓 ∈�̃� ℎ

(
Δ𝜃
𝑖
(𝑓)

)
32 log(𝐷 + 1) .

In the first two inequalities above we used the monotonicity of ℎ̂(·), while in the last inequality the definition
of 𝛼-supported. Altogether

𝐷∑︁
𝑖=0

∑︁
𝑓 ∈�̃�

ℎ

(
Δ𝜃
𝑖 (𝑓)

)
≤ 32 log(𝐷 + 1) ·

𝐷∑︁
𝑖=0

(
costDLA (𝑧(𝑖)) − costDLA (𝑧(𝑖 + 1))

)
≤ 𝑂 (log 𝐷) · costDLA (𝑧). (4.5)

By the monotonicity of ℎ(·), Step (11) cannot increase the cost of the solution, hence the claim.

4.4 Universal Stochastic Facility Location

In this section we sketch our approximation algorithm for univFL. We first present a weaker approximation
factor 𝑂 (log log 𝑁 + log log 𝑑max

𝑑min
). Later we will show how to refine it.

Define 𝑔(𝑅) B P𝐴∼𝜋 [𝑅 ∩ 𝐴 ≠ ∅]. We observe that this function is monotone submodular and 𝑔(∅) = 0.
Recall that 𝑔(𝑐) = 𝑔({𝑐}) for every 𝑐 ∈ 𝐶. W.l.o.g. we can assume 𝑔(𝑐) > 0 since otherwise we can discard
𝑐. We can define the objective function of univFL for a given assignment 𝜑 : 𝐶 → 𝐹 as

cost(𝜑) = conn(𝜑) + open(𝜑) =
∑︁
𝑐∈𝐶

𝑑 (𝑐, 𝜑(𝑐)) · 𝑔(𝑐) +
∑︁
𝑓 ∈𝐹

𝑤 𝑓 · 𝑔(𝜑−1 (𝑓)).

Notice that only the connection cost changes w.r.t. multSFL. In more detail, the connection cost of each client
𝑐 is scaled by the factor 𝑔(𝑐).

We can similarly define a configuration LP for univFL, and solve it by the same arguments as in Lemma
4.0.1. We next use an analogous notation as for SFL. Let ¤𝑥 be an optimal solution to this LP with poly(𝑁)
many non-zero variables. We can apply the first stage of our algorithm for SFL (described in Section 4.2) with
essentially no changes. This will lead to a partial assignment 𝑆1 of expected costE[cost(𝑆1)] ≤ ln ln 𝑁 ·cost(¤𝑥)

95:11073

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 89

and serving the clients 𝐶1, where P[𝑐 ∉ 𝐶1] ≤ 1
ln 𝑁

. Mapping the metric over an HST 𝑇 and considering the
restriction ¥𝑥 of ¤𝑥 to 𝐶2 B 𝐶 \ 𝐶1, we obtain that E[cost𝐻𝑆𝑇 (¥𝑥)] = 𝑂 (cost(¤𝑥)). A reduction similar to the
one in Lemma 4.3.2 works also in this case (since the scaling of the fractional solution is done on a per-client
base). However in this case 𝐷 = 𝑂 (log 𝑑max

𝑑min
) (since we did not reduce the ratio 𝑑max

𝑑min
in a preprocessing

step). Hence we can apply the result from Lemma 4.3.3 to obtain an assignment covering 𝐶2 of expected cost
𝑂 (log log 𝑑max

𝑑min
) · cost(¤𝑥). This concludes the sketch of the 𝑂 (log log 𝑁 + log log 𝑑max

𝑑min
) approximation.

We next improve this bound via a preprocessing step. Recall that 0 < 𝜋min B min𝑐∈𝐶 {𝑔(𝑐)}. We first
scale the ratio 𝑑max/𝑑min. Let us guess2 the largest distance 𝐿 = max𝑐∈𝐶 {𝑑 (𝑐,OPT(𝑐))} in some optimal
(universal) solution OPT. Notice that cost(OPT) ≥ 𝜋min𝐿. We use essentially the same arguments as in
Lemma 4.1.3, we can enforce that 𝑑max ≤ 𝑁𝐿 and 𝑑min ≥ 𝜀

𝑛
𝜋min𝐿. Hence we obtain 𝑑max

𝑑min
≤ 𝑛𝑁

𝜀𝜋min
.

Now let us reduce the number of facilities 𝑚 to 𝑂 (𝑛 + log 1
𝜋min
) (hence 𝑁 as well). Here we use essentially

the same argument as in the proof of Lemma 4.5.1 (with 𝑝 𝑓 = 0). In more detail, we can assume that
𝑚 ≤ 2𝑛. Indeed, otherwise we can reduce the input instance to a Weighted Set Cover instance (that we
can solve exactly in polynomial time) in the same way as in the mentioned lemma, with the difference that
now, for 𝑅 ≠ ∅, we set 𝜅𝑅 = min 𝑓 ∈𝐹 {𝑤 𝑓 · 𝑔(𝑅) +

∑
𝑐∈𝑅 𝑑 (𝑐, 𝑓) · 𝑔(𝑐)}. By the rest of the construction

in the same lemma, we can reduce (with a constant loss in the approximation factor) our instance to one
where there are 𝑂 (log 𝑑max

𝑑min
) = 𝑂 (log 𝑛2𝑛

𝜀𝜋min
) = 𝑂 (𝑛 + log 1

𝜋min
) facilities per client. Altogether we reduce 𝑁 to

𝑁 ′ = 𝑂 (𝑛(𝑛 + log 1
𝜋min
)). Now we can apply again the above scaling trick over the distances (with 𝑁 replaced

by 𝑁 ′) to obtain distances 𝑑′ which satisfy:

𝑑′max
𝑑′min

≤ 𝑛𝑁 ′

𝜀𝜋min
= 𝑂

(
𝑛3 + 𝑛2 log 1

𝜋min

𝜋min

)
.

This leads to the approximation factor

𝑂

(
log log

𝑑′max
𝑑′min

+ log log 𝑁 ′
)
= 𝑂

(
log log

𝑛

𝜋𝑚𝑖𝑛

)
.

4.5 Generalizations of SFL

In this section we discuss some generalizations of SFL.

4.5.1 Reduction of the Number of Facilities

We consider the generalization of SFL, next called Affine SFL, where the opening cost of each facility 𝑓

with assigned clients 𝑅 ≠ ∅ is 𝑔 𝑓 (𝑅) B 𝑝 𝑓 + 𝑤 𝑓 · 𝑔(𝑅), where 𝑝 𝑓 , 𝑤 𝑓 ≥ 0 are input values. Notice that
this generalizes SFL with Additive (resp., Multiplicative) Opening Costs. We also observe that each 𝑔 𝑓 (·) is
non-negative monotone submodular.

2Throughout this chapter, by guessing we mean trying all the (polynomially many) possible options. Each such options leads to a
different solution, and we return the best one.

96:27481

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 90

We show how to reduce to the case where 𝑚 = poly(𝑛) (hence 𝑁 = poly(𝑛)) while loosing a constant
factor in the approximation. We will use this reduction in the following sections to convert an 𝑂 (log log 𝑁)
approximation into an 𝑂 (log log 𝑛) one.

Lemma 4.5.1. For any constant 𝜀 > 0, there is a (3 + 37𝜀)-approximate reduction from Affine SFL to the
special case where the number of facilities is 𝑂 𝜀 (𝑛3).

Proof. First of all, consider the case 𝑚 ≥ 2𝑛. In this case we can solve the problem optimally in polynomial
time via the following reduction to the Weighted Set Cover problem. For an instance 𝐼 = (𝐶, 𝐹, 𝑑, 𝑔(·)) of
Affine SFL, consider the instance 𝐽 = (U,R, 𝜅) of Weighted Set Cover with universeU = 𝐶, set collection
R = 2𝐶 and weight function 𝜅 given as 𝜅𝑅 = 0 if 𝑅 = ∅ and 𝜅𝑅 = min 𝑓 ∈𝐹 (𝑝 𝑓 + 𝑤 𝑓 · 𝑔(𝑅) +

∑
𝑐∈𝑅 𝑑 (𝑐, 𝑓))

for 𝑅 ∈ 2𝐶 \ {∅} (which can be computed in poly(𝑁) time). Notice that 2 |U | = 2𝑛 which is polynomially
bounded in the input size of 𝐼. The optimal solution to 𝐽 induces a solution of exactly the same cost to 𝐼 and
vice versa. There is a simple dynamic program which solves Weighted Set Cover in time 𝑂 (2 |𝑈 | · |𝑈 | · |R |)
[63, Lemma 2]. Applying this algorithm to 𝐽, one obtains an optimal solution for the input instance 𝐼 in time
𝑂 (2𝑛 · poly(𝑛, 𝑚)), which is polynomial in 𝑚.

Hence it remains to consider the case 𝑚 ≤ 2𝑛. We show how to reduce the number of facilities to
𝑂 𝜀 (𝑛2 log(𝑛𝑁)) = 𝑂 𝜀 (𝑛3), while losing the approximation factor in the claim. By exactly the same reduction
as in Lemma 4.1.3, we can assume that in the input metric 𝑑 the maximum distance is 0 < 𝑑max ≤ 𝑁𝐿 and
the minimum non-zero distance is 𝑑min ≥ 𝜀

𝑛
𝐿 while loosing a factor (1 + 4𝜀) in the approximation. Here 𝐿

is some value that lower bounds the cost of a given optimum solution OPT. Let us guess the largest value
𝑃 of 𝑝 𝑓 over the facilities with at least one assigned client in OPT. We discard all the facilities 𝑓 with
𝑝 𝑓 > 𝑃. Now, assuming 𝑃 > 0, we replace each 𝑝 𝑓 with the value 𝑝′

𝑓
B ⌈ 𝑝 𝑓 ·𝑛

𝜀𝑃
⌉ · 𝜀𝑃

𝑛
(𝑝′

𝑓
= 𝑝 𝑓 for 𝑃 = 0).

Notice that this can only increase the cost of a given solution 𝜑, however this increase is upper bounded by
𝑛 · 𝜀𝑃

𝑛
≤ 𝜀 · cost𝐼 (OPT), where 𝐼 is the input instance of the problem. Hence this reduction preserves the

approximation guarantee up to a factor 1 + 𝜀. After this reduction, the set P′ of different possible values of
𝑝′
𝑓

has cardinality at most 𝑛
𝜀
.

Let 𝐼 = (𝐶, 𝐹, 𝑑, 𝑝′, 𝑤, 𝑔(·)) be the instance of Affine SFL obtained after the above two reductions.
Consider the complete edge-weighted graph on nodes𝐶∪𝐹, with weights induced by 𝑑. We modify this graph
as follows. For each client 𝑐 and value 𝑝′ ∈ P′, we consider the set of facilities 𝐹𝑝′ with 𝑝′

𝑓
= 𝑝′. Let 𝐹𝑝′ (𝑐, 𝑖),

𝑖 ≥ 0, be the facilities in 𝐹𝑝′ whose distances from 𝑐 are in the range [𝜀
𝑛
𝐿 · (1 + 𝜀)𝑖 , 𝜀

𝑛
𝐿 · (1 + 𝜀)𝑖+1). We also

define the set 𝐹𝑝′ (𝑐,−1) of the facilities in 𝐹𝑝′ at distance 0 from 𝑐. Notice that there are at most 1+⌈log1+𝜀
𝑛𝑁
𝜀
⌉

sets 𝐹𝑝′ (𝑐, 𝑖) which are non-empty. For each 𝐹𝑝′ (𝑐, 𝑖) ≠ ∅, we choose a facility 𝑓 = 𝑓𝑝′ (𝑐, 𝑖) with minimum
value of 𝑤 𝑓 . We create a dummy facility 𝑓 ′ = 𝑓 ′

𝑝′ (𝑐, 𝑖) with opening cost 𝑔′
𝑓 ′ (𝐶

′) = 𝑝′ + 𝑤 𝑓 · 𝑔(𝐶′) for
𝐶′ ≠ ∅, and add a dummy edge {𝑐, 𝑓 ′} of weight 𝑑 (𝑐, 𝑓). Let 𝐹′ be the set of dummy facilities. Notice
that, considering also the previous reduction, one has |𝐹′ | ≤ 𝑛 · 𝑛

𝜀
· (1 + ⌈log1+𝜀

𝑛𝑁
𝜀
⌉) = 𝑂 (𝑛2 log(𝑛𝑁)). We

remove the original facilities 𝐹, and let 𝑑′ be the metric given by the distances in the resulting graph 𝐺′ on
nodes 𝐶 ∪ 𝐹′. We solve the problem on the resulting instance 𝐼 ′ = (𝐶, 𝐹′, 𝑑′, 𝑝′, 𝑤, 𝑔(·)). Given a solution
𝜑′ for 𝐼 ′, we obtain a solution 𝜑 for 𝐼 naturally as follows: if 𝜑′ (𝑐′) = 𝑓 ′

𝑝′ (𝑐, 𝑖), we assign 𝑐′ to 𝑓𝑝′ (𝑐, 𝑖).

97:78715

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 91

Let us analyze the approximation factor of this final reduction. The opening costs of 𝜑 and 𝜑′ are
identical. Furthermore, for each client 𝑐′ assigned to 𝑓 = 𝑓𝑝′ (𝑐, 𝑖) in 𝜑, and for 𝑓 ′ = 𝑓 ′

𝑝′ (𝑐, 𝑖), one has
𝑑 (𝑐′, 𝑓) ≤ 𝑑 (𝑐′, 𝑐) + 𝑑 (𝑐, 𝑓) = 𝑑′ (𝑐′, 𝑐) + 𝑑′ (𝑐, 𝑓 ′) = 𝑑′ (𝑐′, 𝑓 ′). Hence cost𝐼 (𝜑) = cost𝐼 ′ (𝜑′).

Next consider an optimum solution OPT for 𝐼. We construct a feasible solution OPT′ for 𝐼 ′ as follows.
Let 𝑆 𝑓 ≠ ∅ be the clients assigned to some 𝑓 ∈ 𝐹 in OPT. Recall that the opening cost of 𝑓 is 𝑔′

𝑓
(𝑆 𝑓) =

𝑝′
𝑓
+ 𝑤 𝑓 · 𝑔(𝑆 𝑓). Let 𝑐 ∈ 𝑆 𝑓 be the client at minimum distance 𝑑 (𝑐, 𝑓) from 𝑓 . Define 𝑖 as −1 if 𝑑 (𝑐, 𝑓) = 0,

and otherwise, 𝑖 such that 𝑑 (𝑐, 𝑓) ∈ [𝜀
𝑛
𝐿 · (1 + 𝜀)𝑖 , 𝜀

𝑛
𝐿 · (1 + 𝜀)𝑖+1). In OPT′ we reassign all the clients in

𝑆 𝑓 to 𝑓 ′ = 𝑓 ′
𝑝′
𝑓

(𝑐, 𝑖). The opening cost associated with 𝑓 ′ in OPT′ is no larger than the corresponding cost in
OPT since

𝑝′𝑓 ′ + 𝑤 𝑓 ′ · 𝑔(𝑆 𝑓 ′) = 𝑝′𝑓 + 𝑤 𝑓 ′ · 𝑔(𝑆 𝑓) ≤ 𝑝′𝑓 + 𝑤 𝑓 · 𝑔(𝑆 𝑓).

In the last inequality above we used the fact that 𝑓 ∈ 𝐹𝑝′
𝑓
(𝑐, 𝑖) and 𝑓𝑝′

𝑓
(𝑐, 𝑖) is the facility in the latter set with

minimum 𝑤 𝑓 value. The connection cost of each 𝑐′ ∈ 𝑆 𝑓 w.r.t. OPT′ satisfies

𝑑′ (𝑐′, 𝑓 ′) = 𝑑′ (𝑐′, 𝑐) + 𝑑′ (𝑐, 𝑓 ′) = 𝑑 (𝑐, 𝑐′) + 𝑑 (𝑐, 𝑓𝑝′
𝑓
(𝑐, 𝑖))

≤ 𝑑 (𝑐′, 𝑓) + 𝑑 (𝑐, 𝑓) + (1 + 𝜀)𝑑 (𝑐, 𝑓) ≤ (3 + 𝜀)𝑑 (𝑐′, 𝑓).

Altogether, cost𝐼 ′ (OPT′) ≤ (3 + 𝜀)cost𝐼 (OPT). Considering also the first two reductions, we obtain a global
reduction which preserves the approximation guarantee up to a factor (1 + 4𝜀) (1 + 𝜀) (3 + 𝜀) ≤ 3 + 37𝜀.

4.5.2 SFL with Multiplicative Opening Costs

In this section we sketch the proof of the following Theorem. By Lemma 4.5.1, it is sufficient to provide an
𝑂 (log log 𝑁) approximation.

Theorem 1.3.12. There is a polynomial-time 𝑂 (log log 𝑛)-approximation algorithm for multSFL.

For 𝑓 ∈ 𝐹 and 𝑅 ⊆ 𝐶 let 𝑔 𝑓 (𝑅) B 𝑤 𝑓 · 𝑔(𝑅). Note that 𝑔 𝑓 (·) is submodular, monotone and has
𝑔(∅) = 0 for every 𝑓 ∈ 𝐹. For any (partial) assignment 𝑆 = (𝑆 𝑓) and any vector (𝑥 𝑓

𝑅
) 𝑓 ∈𝐹
𝑅⊆𝐶 let also

open′ (𝑆) B ∑
𝑓 ∈𝐹 𝑔 𝑓 (𝑆 𝑓), resp. open′ (𝑥) B ∑

𝑓 ∈𝐹
∑

𝑅⊆𝐶 𝑔 𝑓 (𝑅) · 𝑥 𝑓

𝑅
and cost′ (𝑆) B open′ (𝑆) + conn(𝑆)

resp. cost′ (𝑥) B open′ (𝑥) + conn(𝑥).
By these definitions, the LP-relaxation of the multSFL is given by the constraints from (Conf-LP) and

the objective cost′ (·). In particular, the LP-relaxation of multSFL can be solved with the approach from
Lemma 4.0.1. We keep the merging rule defined in Section 4.1.1 and the sampling procedure from Section 4.2.
It is easy to verify that the vector ¥𝑥 resulting from this procedure fulfills Lemma 4.2.2 w.r.t. open′ instead of
open.

We reduce multSFL to a similar problem to DLA which we call DLA∗ which is the same problem
as DLA and with the same input variables as DLA, additional inputs �̃� 𝑓 ≥ 0 for every 𝑓 ∈ �̃� and cost
cost∗DLA (𝜑) =

∑
𝑓 ∈�̃� ℎ 𝑓 (𝜑−1 (𝑓)) where ℎ 𝑓 (·) B �̃� 𝑓 ℎ(·) for every 𝑓 ∈ �̃�. Its convex relaxation is given

by the constraints in (DLA-CP) with the cost function cost∗DLA (𝑧) B
∑

𝑓 ∈�̃� ℎ̂ 𝑓 (𝑧 𝑓) (where ℎ̂ 𝑓 is the Lovász

98:79554

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 92

extension of ℎ 𝑓). The reduction described in Lemma 4.3.2 can be reproduced to reduce multSFL to DLA∗.
We define the input values of DLA∗ w.r.t. multSFL in the same way we define the input values of DLA w.r.t.
SFL, with additionally �̃� 𝑓 = 𝑤 𝑓 for every 𝑓 ∈ 𝐹. Notice that ℎ 𝑓 (·) = �̃� 𝑓 ℎ(·) = 𝑔 𝑓 (·) = 𝑤 𝑓 𝑔(·). Every
reasoning made in the proof of Lemma 4.3.2 stays valid.

We now adjust Algorithm 5 for DLA∗ as follows: in Step 3, we select the facility 𝑓𝑣 ∈ 𝐹𝑣 with minimum
weight �̃� 𝑓𝑣 . In the if-clause 4, we search and verify for supportedness w.r.t. ℎ 𝑓𝑣 instead of ℎ (which is
equivalent unless �̃� 𝑓𝑣 = 0, in which case 𝐿 𝜃 (𝑧 𝑓𝑣) is supported for every 𝜃). Since the new algorithm
functions exactly like Algorithm 5, except for an arbitrary selection step becoming determined (in particular,
the new algorithm is a possible implementation of Algorithm 5), its correctness is implied by the correctness
of Algorithm 5.

Notice that since 𝑓𝑣 in Step 3 is now chosen to have minimal weight, we have for any 𝑓 ′ ∈ �̃�𝑣 \ { 𝑓𝑣}

ℎ̂ 𝑓𝑣

(
𝑧 𝑓𝑣 + 𝑧 𝑓 ′

)
≤ ℎ̂ 𝑓𝑣

(
𝑧 𝑓𝑣

)
+ ℎ̂ 𝑓𝑣

(
𝑧 𝑓
′) ≤ ℎ̂ 𝑓𝑣

(
𝑧 𝑓𝑣

)
+ ℎ̂ 𝑓 ′

(
𝑧 𝑓
′)
,

which means that the cost of 𝑧 does not increase at any time by the arguments as before. Also, notice that
since ℎ 𝑓 is submodular, monotone and ℎ 𝑓 (∅) = 0 we can apply Lemma 4.3.4 with respect to ℎ 𝑓𝑣 instead of
ℎ. Thus, the cost of the sets added at Step 5 and Step 8 is still bounded as in (4.4) and (4.5).

4.5.3 SFL with Additive Opening Costs

In this section we sketch the proof of the following Theorem. As in the previous section, by Lemma 4.5.1, it
is sufficient to provide an 𝑂 (log log 𝑁) approximation.

Theorem 1.3.13. There is a polynomial-time 𝑂 (log log 𝑛)-approximation algorithm for addSFL.

Similarly to the previous section, we define the set function 𝑔 𝑓 (·) as 𝑔 𝑓 (𝑅) = 𝑔(𝑅) + 𝑝 𝑓 for 𝑅 ≠ ∅ and
𝑔 𝑓 (∅) = 0. As argued in the previous section, we can find an optimum to the LP relaxation of addSFL and
reduce it to the problem DLA∗ as defined in the last section, but with input weights 𝑝 𝑓 instead of �̃� 𝑓 and
ℎ 𝑓 (·) as ℎ 𝑓 (𝑅) B ℎ(𝑅) + 𝑝 𝑓 for 𝑅 ≠ ∅, and ℎ 𝑓 (∅) = 0.

We adapt Algorithm 5 like in the previous section: in Step 3, we select the facility 𝑓𝑣 ∈ 𝐹𝑣 with minimum
weight 𝑝 𝑓𝑣 . In the if-clause 4, we search and verify for supportedness w.r.t. ℎ 𝑓𝑣 instead of ℎ. The correctness
of the new algorithm here is given by the same argument as in the previous section. Notice that by (4.2) we
have ℎ̂ 𝑓 (𝑧) = ℎ̂(𝑧) + 𝑝 𝑓 ·max𝑐∈�̃� 𝑧𝑐, which implies ℎ̂ 𝑓𝑣 (𝑧 𝑓𝑣 + 𝑧 𝑓

′) ≤ ℎ̂ 𝑓𝑣 (𝑧 𝑓𝑣) + ℎ̂ 𝑓 ′ (𝑧 𝑓
′) with 𝑓𝑣 chosen as in

Step 3 in Algorithm 5. The cost of 𝑧 does therefore not increase throughout the algorithm. Bounding the cost
of sets added to the solution at Step 5 and Step 8 can be done, like for multSFL, by applying Lemma 4.3.4 to
ℎ 𝑓𝑣 .

99:87456

CHAPTER 4. AN 𝑂 (log log 𝑛)-APPROXIMATION FOR SUBMODULAR FACILITY LOCATION 93

4.6 Conclusions and Open Problems

In this chapter we improved the best known approximation algorithm for Submodular Facility Location
problem, we designe an 𝑂 (log log 𝑛) approximation algortihm. Our approach is rather flexible and can be
easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation
factor for the practically relevant generalizations of SFL where the opening cost of each facility 𝑓 is of the
form of 𝑝 𝑓 + 𝑔(𝑆 𝑓) (addSFL) or 𝑤 𝑓 · 𝑔(𝑆 𝑓) (multSFL), where 𝑝 𝑓 , 𝑤 𝑓 ≥ 0 are input values. We also obtain
an improved approximation algorithm for the related Universal Stochastic Facility Location problem.

There are several possible directions for further research. The first question is whether we can achieve
the same approximation ratio of 𝑂 (log log 𝑛) for the extended version of SFL where the opening costs are
submodular functions of the form 𝑔 𝑓 (𝑆 𝑓) = 𝑝 𝑓 +𝑤 𝑓 · 𝑔(𝑆 𝑓). We call this problem Affine SFL. It generalizes
both addSFL and multSFL. The second question is whether it is possible to achieve a constant approximation
algorithm for SFL over tree instance. Finally, can we achieve a constant approximation algorithm for the
general SFL problem?

100:34909

Bibliography

[1] Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof
Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In Karl
Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium
on Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 5:1–5:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[2] Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar
Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation
For Robust Clustering in Discrete Geometric Spaces. In Karl Bringmann, Martin Grohe, Gabriele
Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and
Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 6:1–6:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[3] Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar
Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized approximation
schemes for clustering with general norm objectives. In 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1377–1399, 2023.

[4] Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via equitable group
representations. In Proc. ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21),
pages 504–514, 2021.

[5] Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via equitable
group representations. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, pages 504–514, 2021.

[6] Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michal Wlodarczyk. When the optimum
is also blind: A new perspective on universal optimization. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,

94

101:83097

BIBLIOGRAPHY 95

and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages
35:1–35:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[7] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-
means and euclidean k-median by primal-dual algorithms. In Proc. 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS’17), pages 61–72, 2017.

[8] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means
and Euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4), 2020.

[9] Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated facility location.
SIAM J. Comput., 46(1):272–306, 2017.

[10] Barbara Anthony, Vineet Goyal, Anupam Gupta, and Viswanath Nagarajan. A plant location guide for
the unsure: Approximation algorithms for min-max location problems. Mathematics of Operations
Research, 35(1):79–101, 2010.

[11] Barbara M. Anthony, Vineet Goyal, Anupam Gupta, and Viswanath Nagarajan. A plant location
guide for the unsure: Approximation algorithms for min-max location problems. Math. Oper. Res.,
35(1):79–101, 2010.

[12] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The hardness of
approximation of euclidean k-means. In 31st International Symposium on Computational Geometry
(SoCG 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[13] Mihai Badŏiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In Proc. 34th
Annual ACM Symposium on Theory of Computing (STOC’04), pages 250–257, 2002.

[14] Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani. Revisiting priority
k-center: Fairness and outliers. In 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[15] Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H-C Jiang, Robert Krauthgamer, and
Xuan Wu. Coresets for clustering in graphs of bounded treewidth. In International Conference on
Machine Learning (ICML’20), pages 569–579. PMLR, 2020.

[16] Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer,
and Xuan Wu. Coresets for clustering in graphs of bounded treewidth. In Proc. 37th International
Conference on Machine Learning (ICML’20), volume 119, pages 569–579, 2020.

[17] Sayan Bandyapadhyay, Zachary Friggstad, and Ramin Mousavi. Parameterized approximation al-
gorithms for k-center clustering and variants. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 3895–3903, 2022.

102:49799

BIBLIOGRAPHY 96

[18] Sandip Banerjee, Rafail Ostrovsky, and Yuval Rabani. Min-sum clustering (with outliers). In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, (AP-
PROX/RANDOM’21), volume 207 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[19] Nikhil Bansal, Rohit Khandekar, Jochen Könemann, Viswanath Nagarajan, and Britta Peis. On gener-
alizations of network design problems with degree bounds. Mathematical Programming, 141(1):479–
506, 2013.

[20] Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the constrained k-means
problem. Theory of computing systems, 62(1):93–115, 2018.

[21] Sayan Bhattacharya, Parinya Chalermsook, Kurt Mehlhorn, and Adrian Neumann. New approximability
results for the robust k-median problem. In Proc. Scandinavian Workshop on Algorithm Theory
(SWAT’14), pages 50–61, 2014.

[22] Thomas Bosman and Neil Olver. Improved approximation algorithms for inventory problems. In Daniel
Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimization -
21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, volume 12125 of Lecture
Notes in Computer Science, pages 91–103. Springer, 2020.

[23] Romain Bourneuf and Marcin Pilipczuk. Bounding 𝜀-scatter dimension via metric sparsity. In Proceed-
ings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3155–3171.
SIAM, 2025.

[24] Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for ordered
weighted clustering. In Proc. International Conference on Machine Learning (ICML’19), pages 744–
753, 2019.

[25] Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering
in excluded-minor graphs and beyond. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA’21), pages 2679–2696. SIAM, 2021.

[26] Jarosław Byrka and Karen Aardal. An optimal bifactor approximation algorithm for the metric unca-
pacitated facility location problem. SIAM J. Comput., 39(6):2212–2231, 2010.

[27] Jarosław Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation for ordered
k median. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 620–631, 2018.

[28] T.W. Byrka, J.and Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation
algorithm for k-median and positive correlation in budgeted optimization. ACM Trans. Algorithms,
13(2)(23):1–31, 2013.

103:22868

BIBLIOGRAPHY 97

[29] Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum norm and
ordered optimization problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 126–137, 2019.

[30] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location problems.
SIAM J. Comput., 34(4):803–824, 2005.

[31] Eden Chlamtáč, Yury Makarychev, and Ali Vakilian. Approximating fair clustering with cascaded
norm objectives. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22), pages 2664–2683. SIAM, 2022.

[32] Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 430–440. SIAM,
2018.

[33] Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Improved approx-
imations for euclidean k-means and k-median, via nested quasi-independent sets. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1621–1628, 2022.

[34] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Improved
approximations for Euclidean k-means and k-median, via nested quasi-independent sets. In Proc. 54th
Annual ACM SIGACT Symposium on Theory of Computing (STOC’22), pages 1621–1628, 2022.

[35] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Improved
approximations for Euclidean k-means and k-median, via nested quasi-independent sets. In Stefano
Leonardi and Anupam Gupta, editors, 54th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2022, Rome, Italy, June 20 - 24, 2022, pages 1621–1628. ACM, 2022.

[36] Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approximation
schemes for clustering in doubling metrics. Journal of the ACM (JACM), 68(6):1–34, 2021.

[37] Vincent Cohen-Addad, Arnold Filtser, Philip N Klein, and Hung Le. On light spanners, low-treewidth
embeddings and efficient traversing in minor-free graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS’20), pages 589–600. IEEE, 2020.

[38] Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn. Breaching the
2 LMP approximation barrier for facility location with applications to k-median. In Nikhil Bansal
and Viswanath Nagarajan, editors, 34th ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 940–986. SIAM, 2023.

[39] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight fpt approxi-
mations for 𝑘-median and 𝑘-means. arXiv preprint arXiv:1904.12334, 2019.

104:51392

BIBLIOGRAPHY 98

[40] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT Approx-
imations for k-Median and k-Means. In Proc. 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), volume 132, pages 42:1–42:14, 2019.

[41] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT approx-
imations for 𝑘-median and 𝑘-means. In Proc. 46th International Colloquium on Automata, Languages,
and Programming (ICALP’19), volume 132 of LIPIcs, pages 42:1–42:14, 2019.

[42] Vincent Cohen-Addad and CS Karthik. Inapproximability of clustering in lp metrics. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pages 519–539. IEEE, 2019.

[43] Vincent Cohen-Addad, CS Karthik, and Euiwoong Lee. On approximability of clustering problems
without candidate centers. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2635–2648. SIAM, 2021.

[44] Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields approximation schemes
for k-means and k-median in euclidean and minor-free metrics. SIAM Journal on Computing, 48(2):644–
667, 2019.

[45] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards
optimal lower bounds for 𝑘-median and 𝑘-means coresets. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing (STOC’22), pages 1038–1051, 2022.

[46] Vincent Cohen-Addad and Euiwoong Lee. Johnson coverage hypothesis: Inapproximability of k-means
and k-median in lp-metrics. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1493–1530. SIAM, 2022.

[47] Vincent Cohen-Addad, Marcin Pilipczuk, and Michal Pilipczuk. Efficient approximation schemes for
uniform-cost clustering problems in planar graphs. In 27th Annual European Symposium on Algorithms
(ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[48] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In Samir Khuller and Virginia Vassilevska Williams, editors, Proc. 53rd Annual ACM
SIGACT Symposium on Theory of Computing (STOC’21), pages 169–182, 2021.

[49] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
(STOC’21), pages 169–182, 2021.

[50] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[51] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

105:56281

BIBLIOGRAPHY 99

[52] Marek Cygan, Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk,
and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[53] Sanjoy Dasgupta. The hardness of 𝑘-means clustering. Technical Report CS2008-0916, University of
California, San Diego, San Diego, CA, 2008.

[54] Shichuan Deng and Qianfan Zhang. Ordered 𝑘-median with outliers. In Amit Chakrabarti and Chaitanya
Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, (APPROX/RANDOM’22), volume 245 of LIPIcs, pages 34:1–34:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[55] Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality property.
Algorithmica, 82(4):808–852, 2020.

[56] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh S. Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Mach. Learn., 56(1-3):9–33, 2004.

[57] David Eisenstat, Philip N Klein, and Claire Mathieu. Approximating k-center in planar graphs. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 617–
627. SIAM, 2014.

[58] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[59] Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering. In Proc. 20th
Annual ACM Symposium on Theory of Computing (STOC’88), pages 434–444, 1988.

[60] Andreas Emil Feldmann and Dániel Marx. The parameterized hardness of the k-center problem in
transportation networks. Algorithmica, 82(7):1989–2005, 2020.

[61] Arnold Filtser and Hung Le. Low treewidth embeddings of planar and minor-free metrics. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS’22), pages 1081–1092.
IEEE, 2022.

[62] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[63] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (exponential) algorithms for the
dominating set problem. In Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors,
Graph-Theoretic Concepts in Computer Science, 30th International Workshop, WG 2004, Bad Honnef,
Germany, June 21-23, 2004, Revised Papers, volume 3353 of Lecture Notes in Computer Science,
pages 245–256. Springer, 2004.

106:19601

BIBLIOGRAPHY 100

[64] Eli Fox-Epstein, Philip N Klein, and Aaron Schild. Embedding planar graphs into low-treewidth
graphs with applications to efficient approximation schemes for metric problems. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1069–1088. SIAM, 2019.

[65] Zachary Friggstad, Mohsen Rezapour, and Mohammad R Salavatipour. Local search yields a ptas for
k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.

[66] Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.

[67] Ameet Gadekar and Tanmay Inamdar. Dimension-free parameterized approximation schemes for
hybrid clustering. arXiv preprint arXiv:2501.03663, 2025.

[68] Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses for online
combinatorial optimization problems. In Shang-Hua Teng, editor, 19th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages
942–951. SIAM, 2008.

[69] Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-means clustering. In Pro-
ceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 438–448,
2021.

[70] Mehrdad Ghadiri, Mohit Singh, and Santosh S Vempala. Constant-factor approximation algorithms
for socially fair 𝑘-clustering. arXiv preprint arXiv:2206.11210, 2022.

[71] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293–306, 1985.

[72] Kishen N. Gowda, Thomas W. Pensyl, Aravind Srinivasan, and Khoa Trinh. Improved bi-point rounding
algorithms and a golden barrier for k-median. In Nikhil Bansal and Viswanath Nagarajan, editors, 34th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pages 987–1011. SIAM, 2023.

[73] Dishant Goyal and Ragesh Jaiswal. Tight fpt approximation for socially fair clustering. Information
Processing Letters, page 106383, 2023.

[74] Dishant Goyal and Ragesh Jaiswal. Tight fpt approximation for socially fair clustering. Information
Processing Letters, 182:106383, 2023.

[75] Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski, and Mohit
Singh. Set covering with our eyes closed. SIAM J. Comput., 42(3):808–830, 2013.

[76] Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh Venkat. A
refined approximation for Euclidean k-means. Inf. Process. Lett., 176:106251, 2022.

107:59067

BIBLIOGRAPHY 101

[77] Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh Venkat. A
refined approximation for euclidean k-means. Inf. Process. Lett., 176:106251, 2022.

[78] Martin Grötschel, László Lovász, and Alexander Schrĳver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

[79] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. Journal
of Algorithms, 31(1):228–248, 1999.

[80] Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals, and low-
distortion embeddings. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 534–543. IEEE, 2003.

[81] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Sampling and cost-sharing: Approximation
algorithms for stochastic optimization problems. SIAM J. Comput., 40(5):1361–1401, 2011.

[82] Shalmoli Gupta. Approximation algorithms for clustering and facility location problems. PhD thesis,
University of Illinois at Urbana-Champaign, USA, 2018.

[83] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In Proc.
36th annual ACM symposium on Theory of Computing (STOC’04), pages 291–300, 2004.

[84] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In Proc.
36th Annual ACM Symposium on Theory of Computing (STOC’04), page 291–300, 2004.

[85] Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media, 2001.

[86] Lingxiao Huang and Nisheeth K Vishnoi. Coresets for clustering in euclidean spaces: importance
sampling is nearly optimal. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing (STOC’20), pages 1416–1429, 2020.

[87] Nicole Immorlica, David R. Karger, Maria Minkoff, and Vahab S. Mirrokni. On the costs and benefits
of procrastination: Approximation algorithms for stochastic combinatorial optimization problems. In
J. Ian Munro, editor, 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004, pages 691–700. SIAM, 2004.

[88] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial algorithm for
minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777, 2001.

[89] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vĳay V Vazirani. Greedy
facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM
(JACM), 50(6):795–824, 2003.

108:67106

BIBLIOGRAPHY 102

[90] Kamal Jain and Vĳay V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM (JACM),
48(2):274–296, 2001.

[91] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th Paschos. Structural parameters, tight bounds,
and approximation for (k, r)-center. Discrete Applied Mathematics, 264:90–117, 2019.

[92] Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the euclidean
k-median problem. SIAM Journal on Computing, 37(3):757–782, 2007.

[93] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for 𝑘-median and 𝑘-
means with outliers via iterative rounding. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18),
pages 646–659. ACM, 2018.

[94] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for clustering
problems in any dimensions. Journal of the ACM (JACM), 57(2):1–32, 2010.

[95] Piyush Kumar and E. Alper Yildirim. An algorithm and a core set result for the weighted euclidean
one-center problem. INFORMS J. Comput., 21(4):614–629, 2009.

[96] G. Laporte, S. Nickel, and F. S. da Gama. Location Science. Springer, 2015.

[97] Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex optimization with membership
oracles. In Conference On Learning Theory (COLT’18), pages 1292–1294. PMLR, 2018.

[98] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf. Comput.,
222:45–58, 2013.

[99] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J. Comput.,
45(2):530–547, 2016.

[100] Inge Li Gørtz and Anthony Wirth. Asymmetry in k-center variants. In Approximation, Randomization,
and Combinatorial Optimization.. Algorithms and Techniques, pages 59–70. Springer, 2003.

[101] László Lovász and Santosh Vempala. Fast algorithms for logconcave functions: Sampling, rounding,
integration and optimization. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 57–68. IEEE, 2006.

[102] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for metric facility
location problems. SIAM J. Comput., 36(2):411–432, 2006.

[103] Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering. In Mikhail
Belkin and Samory Kpotufe, editors, Proceedings of Thirty Fourth Conference on Learning Theory,

109:89641

BIBLIOGRAPHY 103

volume 134 of Proceedings of Machine Learning Research, pages 3246–3264. PMLR, 15–19 Aug
2021.

[104] Jirı Matoušek. On approximate geometric k-clustering. Discrete & Computational Geometry, 24(1):61–
84, 2000.

[105] Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 426–431. IEEE Computer
Society, 2001.

[106] Viswanath Nagarajan, Baruch Schieber, and Hadas Shachnai. The Euclidean k-supplier problem. Math.
Oper. Res., 45(1):1–14, 2020.

[107] S. Nickel and J. Puerto. Location Theory. Springer Science & Business Media, 2005.

[108] Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of
lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):1–22, 2013.

[109] Ján Plesník. A heuristic for the p-center problems in graphs. Discrete Applied Mathematics, 17(3):263–
268, 1987.

[110] Alexander Schrĳver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[111] David B. Shmoys, Chaitanya Swamy, and Retsef Levi. Facility location with service installation costs.
In J. Ian Munro, editor, 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004, pages 1088–1097. SIAM, 2004.

[112] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility location
problems (extended abstract). In Frank Thomson Leighton and Peter W. Shor, editors, 29th Annual
ACM Symposium on the Theory of Computing, STOC 1997, El Paso, Texas, USA, May 4-6, 1997, pages
265–274. ACM, 1997.

[113] Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace approximation:
Goodbye dimension. In Proc. 59th IEEE Annual Symposium on Foundations of Computer Science
(FOCS’18), pages 802–813, 2018.

[114] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. In SODA, volume 6,
pages 153–161, 2006.

[115] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. ACM Trans. Algorithms,
6(2):37:1–37:22, 2010.

[116] Amnon Ta-Shma. Explicit, almost optimal, 𝜖-balanced codes. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC’17), pages 238–251. ACM, 2017.

110:93721

BIBLIOGRAPHY 104

[117] Arie Tamir. The k-centrum multi-facility location problem. Discrete Applied Mathematics, 109(3):293–
307, 2001.

[118] Di Wu, Jinhui Xu, and Jianxin Wang. A ptas framework for clustering problems in doubling metrics.
In International Computing and Combinatorics Conference, pages 384–397. Springer, 2023.

[119] Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiexchange local search algorithm for the capacitated
facility location problem. Mathematics of Operations Research, 30(2):389–403, 2005.

111:58181

	Abstrakt
	Abstract
	Acknowledgments
	Introduction
	Approximation Algorithms
	Types of Schemes for Parameterized Approximation Algorithms
	 Parameterized Complexity

	Problem Setting
	Thesis Outline of Results
	Socially Fair/Robust Clustering in Discrete Euclidean space
	EPAS for General Norm Clustering
	Submodular Facility Location

	Parameterized Approximation for Socially Fair Clustering
	Overview of Techniques
	High-Dimensional Discrete Euclidean Space
	FPT Approximation Algorithm for Socially Fair (k,z)-Clustering

	Hardness of Discrete k-Center
	EPAS for Metrics of Sub-Logarithmic Doubling Dimension
	Coreset for Socially Fair (k,z)-Clustering
	EPAS for Socially Fair (k,z)-Clustering

	Conclusions and Open Problems

	EPAS for General Norm Clustering
	 Efficient Parameterized Approximation Schemes for Norm k-Clustering
	Overview of Techniques
	Preliminaries
	
	Framework for Efficient Parameterized Approximation Schemes
	Algorithm
	Analysis

	Bounds
	Bounded Doubling Dimension
	Bounded Treewidth Graphs
	Bounding via Low-Treewidth Embedding
	High-Dimensional Euclidean Space

	Conclusions and Open Problems

	An O(n)-Approximation for Submodular Facility Location
	Related Work
	Preliminaries and Notation

	Reducing the Connection Cost
	Approximating SFL on an HST
	A Reduction to DLA
	An Approximation Algorithm for DLA

	Universal Stochastic Facility Location
	Generalizations of SFL
	Reduction of the Number of Facilities
	SFL with Multiplicative Opening Costs
	SFL with Additive Opening Costs

	Conclusions and Open Problems

	Bibliography

