
Algebra — Egzamin, I termin, rozwiązania

Zadanie 1 Dla przestrzeni liniowych S = LIN({(1, 6, 5, 5, 3), (1, 2, 3, 2, 2)}) oraz T = LIN({(3, 4, 5, 3, 3), (2, 1, 3, 1, 2)})
oblicz dim(S + T ) oraz dim(S ∩ T ). Podaj dowolną bazę S + T .

Rozwiązanie

Łatwo zauważyć, że podany zbiór generatorów S ma dwa wektory niezależne (są różne, a mają taką samą pierwszą
współrzędną), podobnie T ma wymiar 2. Będziemy korzystać z zależności:

dim(S + T ) = dim(S) + dim(T )− dim(S ∩ T )
Czyli wystarczy, że policzymy wymiar S+T . Suma (mnogościowa) generatorów S oraz T generuje S+T , zastosujemy
metodę eliminacji Gaussa w celu obliczenia wymiaru.

1 6 5 5 3
1 2 3 2 2
3 4 5 3 3
2 1 3 1 2

 (3)−(2)−(4)−−−−−−−−→


1 6 5 5 3
1 2 3 2 2
0 1 −1 0 −1
2 1 3 1 2

 (1)−(2),(4)−2·(2)−−−−−−−−−−−→


0 4 2 3 1
1 2 3 2 2
0 1 −1 0 −1
0 −3 −3 −3 −2


(1)−(3)+(4)−−−−−−−−→


0 0 0 0 0
1 2 3 2 2
0 1 −1 0 −1
0 −3 −3 −3 −2

 (4)+3·(3)−−−−−−→


0 0 0 0 0
1 2 3 2 2
0 1 −1 0 −1
0 0 −6 −3 −5


Rząd LIN(S + T ) wynosi więc 3. Tym samym rząd S ∩ T wynosi więc 1.

Co do bazy S+T zauważmy, że wektory uzyskane przez kombinacje liniowe zbioru wektorów rozpinających S+T
(czyli wierszy macierzy) dalej należą do S + T , tym samym trzy wektory

(1, 2, 3, 2, 2), (0, 1,−1, 0,−1), (0, 0,−6,−3,−5)
są bazą tej przestrzeni.



Zadanie 2 Rozważmy grupę G oraz jej dwie podgrupy H oraz K; niech g ∈ G. Pokaż, że warstwa lewostronna
g podgrupy H ∩K jest przecięciem warstw lewostronnych elementu g dla H oraz dla K, innymi słowy:
(1) g(H ∩K) = gH ∩ gK .

Wywnioskuj z tego, że przecięcie dwóch podgrup normalnych G jest podgrupą normalną G.

Rozwiązanie
Aby pokazać równość (1), pokażemy dwa zawierania: g(H ∩K) ⊆ gH ∩ gK oraz g(H ∩K) ⊇ gH ∩ gK.

Pierwsze zawieranie jest proste: dowolny element należący do warstwy g(H ∩K) jest postaci gf dla f ∈ H ∩K.
Ale wtedy również f ∈ H oraz f ∈ K, czyli gf jednocześnie należy do gH oraz do gK, czyli też do przecięcia
gH ∩ gK.

Drugie zawieranie jest również proste: rozważmy dowolny element należący do gH ∩ gK. Jest on postaci gh oraz
gk dla pewnych elementów g ∈ H oraz k ∈ K, przy czym gh = gk. Jako że wszystkie elementy g, h, k pochodzą z
jednej grupy G, oznacza to, że h = k. Czyli h = k ∈ H ∩K i tym samym gh ∈ g(H ∩K).

Aby pokazać drugą część zadania zauważmy, że w ten sam sposób możemy pokazać analogiczny fakt dla warstw
prawostronnych, tzn.:
(2) (H ∩K)g = Hg ∩Kg .

Niech teraz H,K będą podgrupami normalnymi. Chcemy pokazać, że H ∩K również jest normalna, czyli że dla
dowolnego elementu g ∈ G zachodzi

g(H ∩K) = (H ∩K)g
Rozwińmy: z (1) wiemy, że

g(H ∩K) = gH ∩ gK .

Ponieważ H oraz K są normalne, gH = Hg oraz gK = Kg, czyli
gH ∩ gK = Hg ∩Kg ,

i tym samym z (2) mamy:
Hg ∩Kg = (H ∩K)g ,

co kończy dowód.



Zadanie 3 Niech M,N będą macierzami symetrycznymi rozmiaru n× n. Pokaż, że:
• M +N jest macierzą symetryczną;
• MN jest macierzą symetryczną wtedy i tylko wtedy gdy M,N komutują (tj. MN = NM);
• jeśli M jest odwracalna, to również M−1 jest macierzą symetryczną.

Rozwiązanie
Niech M = (ai,j)ni,j=1 oraz N = (bi,j)ni,j=1, przy czym ai,j = aj,i oraz bi,j = bj,i dla wszystkich możliwych par i, j.

• Niech C = M +N . Wtedy
ci,j = ai,j + bi,j = aj,i + bj,i = cj,i.

I tym samym C jest symetryczna.
• Przypomnijmy, że

(3) (MN)T = NTMT .

Załóżmy, że M,N komutują. Wtedy

(MN)T komutacja======== (NM)T z (3)===== MTNT M,N symetryczne============= MN

Czyli MN jest symetryczna.
Załóżmy, że MN jest symetryczna. Czyli

(MN)T = MN .

Obliczmy lewą stronę tego równania:

(MN)T z (3)===== NTMT M,N symetryczne============= NM .

Czyli MN = NM i tym samym macierze M,N komutują.
• Niech M będzie odwracalna. Wiemy, że dla dowolnej macierzy kwadratowej E zachodzi

(4) (ET )−1 = (E−1)T .
Sprawdźmy, jak wygląda macierz transponowana do M−1

(M−1)T z (4)===== (MT )−1 M symetryczna=========== M−1

Czyli jest to macierz symetryczna.
Jeśli ktoś nie pamięta zależności (4), można ją łatwo udowodnić używając (3): wystarczy pokazać, że ET (E−1)T =

Id

ET (E−1)T z (3)===== (E−1E)T = (Id)T = Id .



Zadanie 4 Ile rozwiązań, w zależności od parametry λ, ma podany układ równań? 3x1 −x2 +4x3 = 1
5x1 −2x2 +6x3 = 1 + λ

(6 + λ2)x1 −3x2 +(9− λ2)x3 = 3
.

Rozwiązanie
Podany układ równań zapisany w postaci macierzowej wygląda następująco 3 −1 4

5 −2 6
(6 + λ2) −3 (9− λ2)

 ·
x1
x2
x3

 =

 1
1 + λ

3


Jeśli wyznacznik macierzy głównej jest niezerowy, to ma on dokładnie jedno rozwiązanie. Policzmy więc wartość
tego wyznacznika, użyjemy metody Sarrusa:

3 −1 4 3 −1
5 −2 6 5 −2

(6 + λ2) −3 (9− λ2) (6 + λ2) −3
=

3 · (−2) · (9− λ2) + (−1) · 6 · (6 + λ2) + 4 · 5 · (−3)− 4 · (−2) · (6 + λ2)− 3 · 6 · (−3)− (−1) · 5 · (9− λ2) =
− 54 + 6λ2 − 36− 6λ2 − 60 + 48 + 8λ2 + 54 + 45 + 5λ2 =
− 13 + 13λ2 = 13(λ2 − 1)

Zauważmy, że wartość wyznacznika głównego tego układu równań jest niezerowa dla λ /∈ {1,−1}, czyli dla takich
wartości układ równań ma dokładnie jedno rozwiązanie.

Rozważmy więc pozostałe wartości. Zastosujemy w nich twierdzenia Kroneckera-Capellego: w tym celu musimy
policzyć rząd macierzy głównej oraz rząd macierzy rozszerzonej tego układu. Rząd macierzy głównej jest taki sam
dla λ = 1 oraz λ = −1: 3 −1 4

5 −2 6
7 −3 8

 (3)−(2),(2)−(1)−−−−−−−−−−→

3 −1 4
2 −1 2
2 −1 2


Łatwo zauważyć, że ma ona rząd 2: wiersz drugi i trzeci są identyczne, zaś pierwszy i drugi różne (i mają tą samą
drugą współrzędną).

Niech λ = 1, rozważamy macierz rozszerzoną, wykonujemy na niej takie same operacje, jak powyżej na macierzy
głównej: 3 −1 4 1

5 −2 6 2
7 −3 8 3

 (3)−(2),(2)−(1)−−−−−−−−−−→

3 −1 4 1
2 −1 2 1
2 −1 2 1


Rząd tej macierzy również wynosi 2, gdyż, jak powyżej, wiersz drugi i trzeci są identyczne, zaś pierwszy i drugi:
różne i mają taką samą drugą współrzędną. Czyli rząd macierzy głównej i macierzy rozszerzonej jest taki sam i z
tw. Kroneckera-Capellego ten układ równań ma nieskończenie wiele rozwiązań.

Dla λ = −13 −1 4 1
5 −2 6 0
7 −3 8 3

 (3)−(2),(2)−(1)−−−−−−−−−−→

3 −1 4 1
2 −1 2 −1
2 −1 2 1

 (3)−(2)−−−−−→

3 −1 4 1
2 −1 2 −1
0 0 0 2

 (2)− 1
2 (3),(1)− 1

2 (3)
−−−−−−−−−−−−→

3 −1 4 0
2 −1 2 0
0 0 0 2


(1)−(2)−−−−−→

1 0 2 0
2 −1 2 0
0 0 0 2

 (2)−(1)−−−−−→

1 0 2 0
1 −1 0 0
0 0 0 2


Łatwo zauważyć, że rząd wynosi 3. Czyli rząd macierzy głównej jest mniejszy niż rząd macierzy rozszerzonej i z
tw. Kroneckera-Capellego ten układ równań nie ma rozwiązań.



Zadanie 5 Rozważmy wielomian p oraz macierz kwadratową M . Pokaż, że
• jeśli M jest diagonalizowalna, to również p(M) jest;
• jeśli λ jest wartością własną M , to p(λ) jest wartością własną p(M).

Rozwiązanie
Skoro M jest diagonalizowalna, to znaczy, że jest postaci

M = A−1DA ,

gdzie D jest macierzą przekątniową, zaś A jest macierzą odwracalną.
Zauważmy, że dla dowolnej liczby naturalnej k zachodzi

(5) Mk = (A−1DA)k = A−1DAA−1DA . . . A−1DA =
= A−1D(AA−1)D(AA−1) . . . (AA−1)DA = A−1D(Id)D(Id) . . . (Id)DA = A−1DkA .

Niech p(x) =
∑m
i=0 aix

i. Wtedy

p(M) =
m∑
i=0

aiM
i z (5)=====

m∑
i=0

aiA
−1DiA = A−1

(
m∑
i=0

aiD
i

)
A .

Łatwo zauważyć, że skoro jeśli D jest macierzą przekątniową, to również aiDi jest macierzą przekątniową, czyli
także ich suma. Tym samym p(M) jest diagonalizowalna.

Co do wartości własnych, niech X będzie wektorem własnym dla wartości własnej λ. Zauważmy najpierw, że
MkX = λkX, co można łatwo pokazać przez indukcję po k: dla k = 1 zachodzi to, gdyż X jest wektorem własnym.
Jeśli teza zachodzi dla k, to dla k + 1:

Mk+1X = M(MkX) z założenia indukcyjnego================= MλkX
wyjęcie skalara=========== λkMX

z założenia indukcyjnego================= λkλX = λk+1X .

Wtedy

p(M) ·X =
(

m∑
i=0

aiM
i

)
·X liniowowość przekształcenia===================

m∑
i=0

ai
(
M i ·X

) bo Mi·X=λiX===========
m∑
i=0

ai · λi ·X

liniowowość przekształcenia===================
(

m∑
i=0

ai · λi
)
·X = p(λ)X



Zadanie 6 Dla wielomianów f = x5 − 3x4 − x3 + 7x2 − 4, g = x3 − 3x2 + 2x z R[X] podziel (z resztą) f przez
g. Oblicz też gcd(f, g) i przedstaw je w postaci af + bg dla odpowiednich wielomianów a, b ∈ R[X].

Rozwiązanie
Podzielmy wielomiany f oraz g z resztą:

x2 − 3
x3 − 3x2 + 2x

)
x5 − 3x4 − x3 + 7x2 − 4
− x5 + 3x4 − 2x3

− 3x3 + 7x2

3x3 − 9x2 + 6x
− 2x2 + 6x

Czyli x5 − 3x4 − x3 + 7x2 − 4 = (x3 − 3x2 + 2x)(x2 − 3) + (−2x2 + 6x− 4).
Dzielenie to jest pierwszym krokiem w algorytmie Euklidesa obliczania gcd wielomianów, w którym korzystamy

z faktu:
gcd(af + b, f) = gcd(b, f).

Tym samym pozostaje nam policzenie gcd(−2x2 + 6x− 4, x3 − 3x2 + 2x).
− 1

2x

− 2x2 + 6x− 4
)

x3 − 3x2 + 2x
− x3 + 3x2 − 2x

0

Tj., x3 − 3x2 + 2x = (− 1
2x)(−2x2 + 6x− 4) i w takim razie gcd(−2x2 + 6x− 4, x3 − 3x2 + 2x) to −2x2 + 6x− 4.

Tym samym poszukiwany największy wspólny dzielnik f oraz g to
−2x2 + 6x− 4 = 1 · (x5 − 3x4 − x3 + 7x2 − 4) + (−x2 + 3) · (−2x2 + 6x− 4).



Zadanie 7 Dla standardowego iloczynu skalarnego w R4 zortonormalizuj podany układ wektorów. Uzupełnij go
do bazy ortonormalnej.

{(4, 4,−2, 0); (1, 4, 1, 0); (5,−4,−7, 1)} .

Rozwiązanie
Oznaczmy zadane wektory jako v1, v2, v3. Dokonamy najpierw ortonormalizacji bazy metodą Gramma-Schmidta;
niech v′1, v′2, v′3 to wektory po tym procesie.

Długość wektora v1 to to
√

16 + 16 + 4 = 6, czyli pierwszy wektor ortonormalny z bazy to

v′1 = 1
6 · v1 =

(
2
3 ,

2
3 ,−

1
3 , 0
)
.

Liczymy iloczyn tego wektora (v′1) i wektora drugiego (v2):

〈v′1, v2〉 =
〈(2

3 ,
2
3 ,−

1
3 , 0
)

; (1, 4, 1, 0)
〉

= 2
3 + 8

3 −
1
3 = 9

3 = 3

I tym samym
v2 − 3v′1 = (1, 4, 1, 0)− (2, 2,−1, 0) = (−1, 2, 2, 0)

Jego długość to
√

1 + 4 + 4 = 3 i tym samym

v′2 = 1
3(−1, 2, 2, 0) =

(
−1

3 ,
2
3 ,

2
3 , 0
)

Obliczamy teraz iloczyny skalarne 〈v′1, v3〉 oraz 〈v′2, v3〉:

〈v′1, v3〉 =
〈(2

3 ,
2
3 ,−

1
3 , 0
)

; (5,−4,−7, 1)
〉

= 1
3 (10− 8 + 7) = 9

3 = 3

〈v′2, v3〉 =
〈(
−1

3 ,
2
3 ,

2
3 , 0
)

; (5,−4,−7, 1)
〉

= 1
3 (−5− 8− 14) = −27

3 = −9

Obliczamy v3 − 3v′1 + 9v′2:

(5,−4,−7, 1)− 3 ·
(

2
3 ,

2
3 ,−

1
3 , 0
)

+ 9
(
−1

3 ,
2
3 ,

2
3 , 0
)

= (5− 2− 3,−4− 2 + 6,−7 + 1 + 6, 1) = (0, 0, 0, 1)

Wektor ten ma długość 1, czyli
v′3 = (0, 0, 0, 1).

Aby rozszerzyć ten układ wektorów do bazy ortonormalnej, należy dodać do niej jeden wektor (niezależny) i następ-
nie zortonormalizować cały układ. Weźmy wektor v4 = (1, 0, 0, 0): ma on niewiele współrzędnych i nie wygląda,
żeby był liniowo zależny od pozostałych:

〈v′1, v4〉 = 2
3

〈v′2, v4〉 = −1
3

〈v′3, v4〉 = 0

Obliczamy v4 − 2
3v
′
1 + 1

3v
′
2:

(1, 0, 0, 0)− 2
3 ·
(

2
3 ,

2
3 ,−

1
3 , 0
)

+ 1
3

(
−1

3 ,
2
3 ,

2
3 , 0
)

=
(

1− 4
9 −

1
9 , 0−

4
9 + 2

9 , 0 + 2
9 + 2

9 , 0
)

=
(

4
9 ,−

2
9 ,

4
9 , 0
)

Długość tego wektora to: √
1
81(16 + 4 + 16) = 6

9 = 2
3

Po przemnożeniu dostajemy

v′4 = 3
2 ·
(

4
9 ,−

2
9 ,

4
9 , 0
)

=
(

2
3 ,−

1
3 ,

2
3 , 0
)
,

który to wektor jest dopełnieniem do bazy ortonormalnej.



Zadanie 8 Rozważmy grupę obrotów i symetrii (odbić) sześciokąta foremnego. Ile ma ona elementów?
Malujemy każdy bok sześciokąta foremnego na jeden z sześciu kolorów (niebieski i czerwony); sześciokąty uzna-

jemy za nierozróżnialne, jeśli można jeden przekształcić na drugi przez obrót lub symetrię. Ile jest takich rozróż-
nialnych sześciokątów?

Rozwiązanie
Przypomnijmy, że dla dowolnej grupy działającej na zbiorze i dowolnego elementu x tego zbioru zachodzi:

|G| = |Ox| · |Gx| ,
gdzie Ox jest orbitą x, zaś Gx stabilizatorem x. Użyjemy tej zależności w celu policzenia rzędu G.

Naszym zbiorem będą krawędzie sześciokąta, zaś grupa to obroty i symetrie tegoż sześciokąta. Ustalmy jeden
bok tego sześciokąta. Zauważmy, że każdy bok można przeprowadzić na każdy inny, tym samym wielkość orbity
boku wynosi 8. Jednocześnie wielkość stabilizatora to 2: jeśli ustalimy jeden bok, to są jedynie dwa przekształce-
nia, po których pozostaje on na miejscu: identyczność oraz symetria przechodząca przez środek tego boku; czyli
wielkość stabilizatora to 2. Czyli grupa wszystkich obrotów i symetrii ma 6 · 2 = 12 elementów. Jednocześnie
łatwo sprawdzić, że zawiera ona 6 obrotów (o 0, π

3 ,
2π
3 , π, 4π

3 , 5π
3 ) oraz 6 symetrii (3 przechodzące przez pary

przeciwległych boków oraz 3 przez pary przeciwległych wierzchołków).
W celu obliczenia ilości rozróżnialnych sześciokątów skorzystamy z lematu Burnside’a:

|O| = 1
|G|

∑
g∈G

fix(g) ,

gdzie O to zbiór orbit zbioru, G to grupa, zaś fix(g) to elementy x takie że g(x) = x. Zauważmy, że ilość orbit
w działaniu grupy obrotów i symetrii na zbiorze pokolorowanych sześciokątów to dokładnie ilość takich rozróżnial-
nych sześciokątów. W tym celu musimy policzyć ilość punktów stałych każdego przekształcenia. Pomocne będzie
rozpisanie każdego przekształcenia jako permutacji (numerujemy boki 1, 2, 3, . . . , 6 przeciwnie do ruchu wskazówek
zegara)

• identyczność: (1)(2)(3)(4)(5)(6) ma 66 punktów stałych: każdy bok możemy pokolorować na inny kolor.
• obrót o π

3 . Jako permutacja wygląda on tak: (1, 2, 3, 4, 5, 6). Tym samym, aby wielokąt był punktem
stałym tego przekształcenia, musi mieć wszystkie boki w tym samym kolorze. Czy jest 6 możliwych takich
wielokątów.

• 2π
3 . W rozbiciu na cykle to przekształcenie wygląda następująco: (1, 3, 5)(2, 4, 6). Czyli jest 62 takich
możliwych sześciokątów: malujemy boki 1, 2, 3 na jeden kolor a 2, 4, 6 na drugi.

• π. W rozbiciu na cykle to przekształcenie wygląda następująco: (1, 4)(2, 5)(3, 6). Czyli jest 63 takich
możliwych sześciokątów.

• obrót o 4π
3 . Rozbicie na cykle: (1, 5, 3)(2, 6, 4). Czyli ilość punktów stałych jest taka sama, jak dla obrotu

o 2π
3 , tj. 62.

• obrót o 5π
3 . Rozbicie na cykle: (1, 6, 5, 4, 3, 2). Czyli podobnie, jak obrót o π

3 : mamy 6 punktów stałych.
• symetria przez przeciwległe boki (są 3 takie symetrie), np. 1-4. Rozbicie na cykle to (1)(4)(2, 6)(3, 5). Czyli

jest 64 punktów stałych.
• symetria przez przeciwległe wierzchołki (są 3 takie symetrie), np. ten miedzy bokami 1-2 oraz 4-5. Rozbicie
na cykle to (1, 2)(6, 3)(4, 5). Czyli jest 63 punktów stałych.

Z lematu Burnside’a ilość orbit to
1
12(66 + 2 · 6 + 2 · 62 + 63 + 3 · 64 + 3 · 63).



Zadanie 9 Rozważmy grupę permutacji Sn. Pokaż, że jeśli g i h są rozłącznymi cyklami, to rząd gh jest
najmniejszą wspólną wielokrotnością rzędów f oraz g.

Rozważmy permutację:

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 3 10 1 13 14 9 6 4 12 5 2 11 8

)
.

Podaj permutację odwrotną σ−1. Rozłóż σ oraz σ−1 na cykle. Jakie są rzędy permutacji σ oraz σ−1?

Rozwiązanie
Rozwiązanie pierwszej części korzysta z paru prostych faktów:

Fakt 1. Jeśli f, f ′ są cyklami rozłącznymi, to również fn, f ′m są cyklami rozłącznymi

Zachodzi to, bo cykl fn ma dziedzinę niewiększą niż f .

Fakt 2. Jeśli cykle f1, f2, . . . , fk są parami rozłączne to
(fm1

1 · fm2
2 · · · fmk

k ) · (fn1
1 · f

n2
2 · · · f

nk

k ) = (fm1+n1
1 · fm2+n2

2 · · · fmk+nk

k )

Korzystamy z tego, że cykle te są rozłączne i tym samym są przemienne, możemy je odpowiednio pogrupować.
Pokażemy teraz trochę silniejszy fakt: jeśli cykle f1, f2, . . . , fk są parami rozłączne oraz mają rzędy n1, n2, . . . , nk,

to ich rząd to najmniejsza wspólna wielokrotność n1, n2, . . . , nk (dla ułatwienia nazwijmy ją n).
Zauważmy, że

(f1 · f2 · · · fk)n = (fn1 · fn2 · · · fnk ) = (Id · Id · · · Id) = Id
Czyli rząd tej permutacji jest dzielnikiem n. Pozostaje pokazać, że jeśli m jest rzędem permutacji, to jest też
wielokrotnością n. Policzmy

Id = (f1 · f2 · · · fk)m = (fm1 · fm2 · · · fmk )
Jako że wszystkie te cykle są rozłączne, każdy z nich musi być identycznością. Czyli m jest wielokrotnością
n1, n2, . . . , nk. Ale to oznacza, że m jest wielokrotnością n, co należało pokazać.

Permutacją odwrotną σ−1 do σ jest

σ−1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
4 11 2 9 11 8 1 14 7 3 13 10 5 6

)
.

Rozkłady σ i σ−1 na cykle wyglądają następująco:
σ = (1, 7, 9, 4)(2, 3, 10, 12)(5, 13, 11)(6, 14, 8)

σ−1 = (1, 4, 9, 7)(2, 12, 10, 2)(5, 11, 13)(6, 8, 14)
Używając faktu z początku zadania łatwo zauważyć, że rząd σ to najmniejsza wspólna wielokrotność {4, 4, 3, 3},
czyli 12.

Rząd permutacji oraz permutacji odwrotnej jest taki sam, czyli rząd σ−1 również wynosi 12.


