Algebra — Egzamin, I termin, rozwigzania

Zadanie 1 Dla przestrzeni liniowych S = LIN({(1,6,5,5,3),(1,2,3,2,2)}) oraz T = LIN({(3,4, 5, 3,3),(2,1,3,1,2)})
oblicz dim(S + T') oraz dim(S NT). Podaj dowolng baze S + T

Rozwigzanie

Latwo zauwazy¢, ze podany zbiér generatoréw S ma dwa wektory niezalezne (sa rézne, a maja taka sama pierwsza
wspOlrzedna), podobnie T ma wymiar 2. Bedziemy korzystaé z zaleznosci:

dim(S +T) = dim(S) + dim(7) — dim(SNT)

Czyli wystarczy, ze policzymy wymiar S+7'. Suma (mnogosciowa) generatoréw S oraz T' generuje S+7, zastosujemy
metode eliminacji Gaussa w celu obliczenia wymiaru.

1 6 5 5 3 1 6 5 5 3 0 4 2 3 1]
1 2 3 2 2 ®»-©2-@ |1 2 3 2 2 (H—(2),4)-2-(2) |1 2 3 2 2
ey e
3 4 5 3 3 01 -1 0 -1 o 1 -1 0 -1
21 3 1 2 21 3 1 2 0o -3 -3 -3 —2_
0 0 0 0 0 0 0 O 0 0]
mH-3)+1@ |1 2 3 2 2 @®H+33) |1 2 3 2 2
o 1 -1 0 -1 01 -1 0 -1
0 -3 -3 -3 -2 00 -6 -3 75_

Rzad LIN(S + T') wynosi wiec 3. Tym samym rzad S N7T wynosi wigc 1.
Co do bazy S+1T zauwazmy, ze wektory uzyskane przez kombinacje liniowe zbioru wektorow rozpinajacych S+7T
(czyli wierszy macierzy) dalej naleza do S + T', tym samym trzy wektory

(13 2’ 37 27 2)3 (07 17 713 0’ 71)3 (07 07 763 737 75)
sg baza tej przestrzeni.



Zadanie 2 Rozwazmy grupe G oraz jej dwie podgrupy H oraz K; niech g € G. Pokaz, ze warstwa lewostronna
g podgrupy H N K jest przecieciem warstw lewostronnych elementu g dla H oraz dla K, innymi stowy:

(1) gHNK)=gHNgK .
Wywnioskuj z tego, ze przeciecie dwéch podgrup normalnych G jest podgrupa normalna G.

Rozwigzanie
Aby pokazaé réwnosé (1), pokazemy dwa zawierania: g(H N K) C gH NgK oraz g(HN K) D gH NgK.

Pierwsze zawieranie jest proste: dowolny element nalezacy do warstwy g(H N K) jest postaci gf dla f € HN K.
Ale wtedy réwniez f € H oraz f € K, czyli gf jednoczesnie nalezy do gH oraz do gK, czyli tez do przeciecia
gH NgK.

Drugie zawieranie jest rowniez proste: rozwazmy dowolny element nalezacy do gH NgK. Jest on postaci gh oraz
gk dla pewnych elementéw g € H oraz k € K, przy czym gh = gk. Jako ze wszystkie elementy g, h, k pochodza z
jednej grupy G, oznacza to, ze h =k. Czyli h =k € HN K i tym samym gh € g(H N K).

Aby pokazaé drugg czes$é zadania zauwazmy, ze w ten sam sposéb mozemy pokazaé analogiczny fakt dla warstw
prawostronnych, tzn.:

(2) (HNK)g=HgnNKg .
Niech teraz H, K beda podgrupami normalnymi. Chcemy pokazaé, ze H N K réwniez jest normalna, czyli ze dla

dowolnego elementu g € G zachodzi

g(HNK)=(HNK)g
Rozwinmy: z (1) wiemy, ze

g HNK)=gHNgK .
Poniewaz H oraz K sa normalne, gH = Hg oraz gK = Kg, czyli

gHNgK =HgNKg ,
i tym samym z (2) mamy:

HgNKg=(HNK)g ,
co konczy dowdd.



Zadanie 3 Niech M, N beda macierzami symetrycznymi rozmiaru n x n. Pokaz, ze:
e M + N jest macierza symetryczna;

e MN jest macierza symetryczna wtedy i tylko wtedy gdy M, N komutuja (tj. MN = NM);

e jedli M jest odwracalna, to réwniez M ! jest macierzg symetryczna.

Rozwigzanie

Niech M = (a;;)}'j—; oraz N = (b; ;)7 ;_y, Przy czym a; ; = a;; oraz b; ; = b;; dla wszystkich mozliwych par i, j.

e Niech C = M + N. Wtedy
Cij =G5+ bi,j =a;;+ bjﬁ = Cj;-
I tym samym C' jest symetryczna.
e Przypomnijmy, ze

(3) (MN)T = NTMT,
Zatézmy, ze M, N komutuja. Wtedy

(M7 emitade, (2O g7y AN symetryeme

Czyli M N jest symetryczna.
Zalézmy, ze M N jest symetryczna. Czyli

(MN)T = MN .
Obliczmy lewa strone tego réwnania:
(MN)T z (3) NTMT M,N symetryczne NM .
Czyli MN = NM i tym samym macierze M, N komutuja.

e Niech M bedzie odwracalna. Wiemy, ze dla dowolnej macierzy kwadratowej E zachodzi

) (B") = (BN
Sprawdzmy, jak wyglada macierz transponowana do M !
(1T 2L (7)1 Maymetyema oy

Czyli jest to macierz symetryczna.

Jedli kto$ nie pamieta zaleznoéci (4), mozna ja tatwo udowodnié uzywajac (3): wystarczy pokazaé, ze ET(E~1)

1d
ET(EH 22 (p1p)T = 1a)T = 1.

T



Zadanie 4 Ile rozwiazan, w zalezno$ci od parametry A, ma podany uktad réwnan?

31 —XT2 +4x3 = 1
511 —215 4623 = 1+A
6+ X2y =320 +(9— N2z = 3
Rozwigzanie
Podany uklad réwnan zapisany w postaci macierzowej wyglada nastepujaco
3 -1 4 1 1
5 -2 6 clag| = [T+ A
(6+A2) =3 (9—=N)| |x3 3

Jedli wyznacznik macierzy gléwnej jest niezerowy, to ma on dokladnie jedno rozwiazanie. Policzmy wiec wartosé
tego wyznacznika, uzyjemy metody Sarrusa:

3 ~1 4 3 -1
5 -2 6 5 -2 =
(6+22) =3 (9—X2)| (6+7%) -3

3-(=2)- (9= A)+(=1)-6-(6+A)+4-5-(=3)—4-(=2)-(6+A*)=3-6-(=3)—(=1)-5-(9—\?) =
— 54+ 6A% — 36 — 6% — 60 + 48 + 8\* + 54 + 45 + 5\ =
—13+13X2 =13(\% - 1)

Zauwazmy, ze wartos¢ wyznacznika gléwnego tego ukladu réwnan jest niezerowa dla A ¢ {1, —1}, czyli dla takich
wartoéci uklad réwnan ma dokladnie jedno rozwigzanie.

Rozwazmy wigc pozostate wartodci. Zastosujemy w nich twierdzenia Kroneckera-Capellego: w tym celu musimy
policzy¢ rzad macierzy gléwnej oraz rzad macierzy rozszerzonej tego ukladu. Rzad macierzy gléwnej jest taki sam
dla A =1 oraz A = —1:

3 -1 4] oo 3 -1 4
E o g ®@@-0 |5 ],
7 -3 8 2 -1 2

Latwo zauwazy¢, ze ma ona rzad 2: wiersz drugi i trzeci sa identyczne, za$ pierwszy i drugi rézne (i maja ta sama
druga wspéhrzedna).

Niech A = 1, rozwazamy macierz rozszerzona, wykonujemy na niej takie same operacje, jak powyzej na macierzy
gléwnej:

3 -1 4 1 (3)-(2),(2)— (1) 3 -1 41
5 -2 6 2 ——= 12 -1 2 1
7T -3 8 3 2 -1 2 1

Rzad tej macierzy rowniez wynosi 2, gdyz, jak powyzej, wiersz drugi i trzeci sa identyczne, za$ pierwszy i drugi:
rozne i maja taka sama druga wspolrzedna. Czyli rzad macierzy glownej i macierzy rozszerzonej jest taki sam i z
tw. Kroneckera-Capellego ten uklad réwnan ma nieskoiiczenie wiele rozwiazan.

Dla A = —1
3 1 4 1 3 -1 4 1 3 -1 4 1 3 -1 4 0]
5 —2 6 o B-@@-O o 1 9 4| O=@ 1y ) 9 3| O®0G 1y o
7 -3 8 3 29 —1 2 1 00 0 2 0 0 0 2
0 2 0 10 2 0]
W@ 1y 1 9 o @2W 11 1 0 0
0 0 0 2 0 0 0 2

Latwo zauwazy¢, ze rzad wynosi 3. Czyli rzad macierzy gtéwnej jest mniejszy niz rzad macierzy rozszerzonej i z
tw. Kroneckera-Capellego ten uklad réwnan nie ma rozwiazan.



Zadanie 5 Rozwazmy wielomian p oraz macierz kwadratowa M. Pokaz, ze
e jesli M jest diagonalizowalna, to réwniez p(M) jest;
e jesli A jest wartoscig wlasna M, to p(\) jest wartoscia wlasna p(M).

Rozwigzanie
Skoro M jest diagonalizowalna, to znaczy, ze jest postaci

M=A"'DA .

gdzie D jest macierza przekatniowa, za$ A jest macierza odwracalna.
Zauwazmy, ze dla dowolnej liczby naturalnej k zachodzi

(5) M"=(A"'DA)" = AT'DAAT'DA...A7'DA =
= A'D(AAY)D(AA™Y) .. (AA"HYDA = A~'DId)D(d) ... (Id)DA = A"*D*A .
Niech p(z) = Y% a;z'. Wtedy

p(M) = iaiMi 20 iaiA*DiA =A <i aiDi) A
=0 =0 i=0

Latwo zauwazyé, ze skoro jedli D jest macierza przekatniows, to réwniez a; D jest macierza przekatniows, czyli
takze ich suma. Tym samym p(M) jest diagonalizowalna.

Co do wartosci wlasnych, niech X bedzie wektorem wlasnym dla wartosci wlasnej A. Zauwazmy najpierw, ze
MFX = M\ X, co mozna tatwo pokazaé przez indukcje po k: dla k = 1 zachodzi to, gdyz X jest wektorem wlasnym.
Jesli teza zachodzi dla k, to dla k + 1:

z zalozenia indukcyjnego wyjecie skalara z zalozenia indukcyjnego

AeMX AAX =\ x

M*IX = M(M*X) M X

Wtedy

p(M) X = (zm: G,ZM1> X liniowowo$¢ przeksztalcenia iai (‘2\4Z . X) bo M . X=\*X iai . )\z X
=0 =0 i=0

m
liniowowos¢ przeksztalcenia s
(Zai.x> X = pOyx
=0



Zadanie 6 Dla wielomianéw f = 2° — 32* — 2% + 722 — 4, g = 2® — 32 + 22 z R[X] podziel (z reszta) f przez
g. Oblicz tez ged(f,g) i przedstaw je w postaci af 4 bg dla odpowiednich wielomianéw a,b € R[X].

Rozwigzanie
Podzielmy wielomiany f oraz g z reszta:
x? -3
x3—3x2+21') x® — 32t — 23 4 7a? —14
— 25 + 32% — 223
— 323 + T2?
32% — 922 + 6
— 222 + 62

Czyli % — 32* — 23 4+ T2? — 4 = (23 — 322 + 22) (22 — 3) + (—22% + 62 — 4).
Dzielenie to jest pierwszym krokiem w algorytmie Euklidesa obliczania gcd wielomiandéw, w ktorym korzystamy
z faktu:
ged(af +b, f) = ged(b, f).
Tym samym pozostaje nam policzenie ged(—222 + 62 — 4, 23 — 322 + 21).
1

— s
2

—2x2+6:1c—4) 3 — 322 + 2z

— 2% 4322 — 2z

0

Tj., #% — 32 + 2z = (—3x)(—22” + 6z — 4) i w takim razie ged(—22?% + 6z — 4,2° — 322 + 2z) to —22? + 6z — 4.
Tym samym poszukiwany najwiekszy wspélny dzielnik f oraz g to

202 46z —4=1-(2°—32* — 2>+ 72? —4) + (—2® +3) - (=222 + 62 — 4).



Zadanie 7 Dla standardowego iloczynu skalarnego w R* zortonormalizuj podany uklad wektoréw. Uzupetnij go
do bazy ortonormalnej.
{(4,4,-2,0);(1,4,1,0); (5,—4,-7,1)} .

Rozwigzanie
Oznaczmy zadane wektory jako vi,vs,v3. Dokonamy najpierw ortonormalizacji bazy metoda Gramma-Schmidta;
niech v}, v}, v} to wektory po tym procesie.

Dlugosé wektora vy to to /16 + 16 + 4 = 6, czyli pierwszy wektor ortonormalny z bazy to

Lol (22 1
1_6 1= 373 3 .
!

Liczymy iloczyn tego wektora (v]) i wektora drugiego (vs):
22 1 2 8 1 9
<U17U2> <<373a 370)7( ) Ty 70) 3+3 3 3 3

U2 — 3’01 = (1v47 170) - (2727 —1,0) = (_1a23270)
Jego dlugosé to 1+ 4+ 4 =3 i tym samym

1 12 2
”Ué = 5(717232a0) = (37 ga 370)

Obliczamy teraz iloczyny skalarne (v{,v3) oraz (v}, v3):

(v],v3) ( 7, ) (5, —4, 71)>
(vh, v3) = << ;§§>( —4, 71)> %(—5—8—14)=—§:_9

Obliczamy vs — 3v] + 9vh:

I tym samym

||
—~
—
)
|
oo
-+
-3
~—
I

I

I
w

22 1 122
—4,-71) =3 (2,2 -2 ——,220)=(5-2-3,-4-2+6,—-T+1+6,1) = 1
(5,—4,-7,1) — 3 (3,3, 3,0>+9( 3,3,3,0) (5 3, +6,-7+1+46,1) = (0,0,0,1)

Wektor ten ma dtugosé 1, czyli

=(0,0,0,1).
Aby rozszerzy¢ ten uklad wektoréw do bazy ortonormalnej, nalezy dodaé do niej jeden wektor (niezalezny) i nastep-
nie zortonormalizowaé caly uklad. Wezmy wektor vy = (1,0,0,0): ma on niewiele wspélrzednych i nie wyglada,
zeby byt liniowo zalezny od pozostatych:

2

<vl17v4> = g
1

<Ul27v4> = _g
<Ué,v4> =0

Obliczamy vy — 20} + $vh:

2 (22 1 1/ 122 4 1 4 2 2 2 4 24
1 S (- (=222 0)=(1—=—-0-=+204-420)=(=,-=,—
(1,0,0,0) =3 (3’3’ 3’0>+3( 3’3’3’0> ( 9 9" 9+9’0+9+9’O) <9’ 9’9’0)

Dhugos¢ tego wektora to:

1 6 2
—(16+4+16) =~ ==
g6 +a+16)=5=73

P 3 (424 0\ _(2_12
’04—2 97 97970 - 37 37370 9

ktéry to wektor jest dopetnieniem do bazy ortonormalne;j.

Po przemnozeniu dostajemy



Zadanie 8 Rozwazmy grupe obrotéw i symetrii (odbi¢) szesciokata foremnego. Ile ma ona elementéw?

Malujemy kazdy bok sze$ciokata foremnego na jeden z szeéciu koloréw (niebieski i czerwony); szesciokaty uzna-
jemy za nierozroznialne, jesli mozna jeden przeksztalci¢ na drugi przez obrét lub symetrie. Ile jest takich rozréz-
nialnych szesciokatéw?

Rozwigzanie
Przypomnijmy, ze dla dowolnej grupy dzialajacej na zbiorze i dowolnego elementu x tego zbioru zachodzi:

|G| = |0z] - |Gl

gdzie O, jest orbita z, zad G, stabilizatorem z. Uzyjemy tej zaleznoéci w celu policzenia rzedu G.

Naszym zbiorem beda krawedzie szedciokata, zas grupa to obroty i symetrie tegoz szesciokata. Ustalmy jeden
bok tego szesciokata. Zauwazmy, ze kazdy bok mozna przeprowadzi¢ na kazdy inny, tym samym wielkosé orbity
boku wynosi 8. Jednoczesnie wielkoé¢ stabilizatora to 2: jesli ustalimy jeden bok, to sa jedynie dwa przeksztalce-
nia, po ktérych pozostaje on na miejscu: identyczno$é oraz symetria przechodzaca przez $rodek tego boku; czyli
wielkosé stabilizatora to 2. Czyli grupa wszystkich obrotéow i symetrii ma 6 - 2 = 12 elementow. Jednoczesnie
latwo sprawdzi¢, ze zawiera ona 6 obrotéw (o 0, %, 2?”, , %’T, %’T) oraz 6 symetrii (3 przechodzace przez pary
przeciwleglych bokéw oraz 3 przez pary przeciwleglych wierzchotkéw).

W celu obliczenia iloci rozréznialnych szesciokatéw skorzystamy z lematu Burnside’a:

1
0] = al Zﬁx(g) )

Gl 22
gdzie O to zbidr orbit zbioru, G to grupa, za$ fix(g) to elementy x takie ze g(x) = x. Zauwazmy, ze ilos¢ orbit
w dziataniu grupy obrotéw i symetrii na zbiorze pokolorowanych szesciokatéw to doktadnie ilos¢ takich rozréznial-
nych szesciokatéw. W tym celu musimy policzyé ilos¢ punktéw statych kazdego przeksztalcenia. Pomocne bedzie
rozpisanie kazdego przeksztalcenia jako permutacji (numerujemy boki 1, 2, 3, ..., 6 przeciwnie do ruchu wskazéwek
zegara)

e identycznoéé: (1)(2)(3)(4)(5)(6) ma 65 punktéw statych: kazdy bok mozemy pokolorowaé na inny kolor.

e obrét o %. Jako permutacja wyglada on tak: (1,2,3,4,5,6). Tym samym, aby wielokat byl punktem
stalym tego przeksztalcenia, musi mie¢ wszystkie boki w tym samym kolorze. Czy jest 6 mozliwych takich
wielokatéw.

. %” W rozbiciu na cykle to przeksztalcenie wyglada nastepujaco: (1,3,5)(2,4,6). Czyli jest 62 takich
mozliwych sze$ciokatéw: malujemy boki 1, 2,3 na jeden kolor a 2,4, 6 na drugi.

e 7. W rozbiciu na cykle to przeksztalcenie wyglada nastepujaco: (1,4)(2,5)(3,6). Czyli jest 63 takich
mozliwych szedciokatdw.

e obrét o 4?”. Rozbicie na cykle: (1,5,3)(2,6,4). Czyli iloé¢ punktéw stalych jest taka sama, jak dla obrotu
o2&, tj. 62.

e obrét o 5?” Rozbicie na cykle: (1,6,5,4,3,2). Czyli podobnie, jak obrét o Z: mamy 6 punktéw statych.

e symetria przez przeciwlegle boki (sa 3 takie symetrie), np. 1-4. Rozbicie na cykle to (1)(4)(2,6)(3,5). Czyli
jest 6% punktéw stalych.

e symetria przez przeciwlegle wierzcholki (sa 3 takie symetrie), np. ten miedzy bokami 1-2 oraz 4-5. Rozbicie
na cykle to (1,2)(6,3)(4,5). Czyli jest 62 punktéw statych.

Z lematu Burnside’a ilosé orbit to

1
E(66+2-6+2.62+63+3-64+3-63).



Zadanie 9 Rozwazmy grupe permutacji S,. Pokaz, ze je$li g i h sa rozlacznymi cyklami, to rzad gh jest
najmniejsza wspélna wielokrotnoscia rzedéw f oraz g.
Rozwazmy permutacje:

(1 2 3 4 5 6 7 8 9 10 11 12 13 14
“\7 3101 13 1496412 5 2 11 8

Podaj permutacje odwrotna o~1. Rozléz o oraz o~ na cykle. Jakie sa rzedy permutacji o oraz o=1?

Rozwigzanie
Rozwiazanie pierwszej czesci korzysta z paru prostych faktow:

Fakt 1. Jesli f, ' sq cyklami rozlgcznymi, to réwniez f™, f'™ sq cyklami rozlgcznymi
Zachodzi to, bo cykl f™ ma dziedzine niewickszg niz f.
Fakt 2. Jesli cykle f1, fa, ..., fx s@ parami rozlgczne to

( {m . gbz ’:mc) ( ni 2nz ’?k) — (f{nﬁ-nl .f;nz-i-nz“,f’;nk+nk)
Korzystamy z tego, ze cykle te sa roztaczne i tym samym sa przemienne, mozemy je odpowiednio pogrupowac.
Pokazemy teraz troche silniejszy fakt: jesli cykle f1, fo,. .., fx sa parami roztaczne oraz maja rzedy ni,no, . .., ng,
to ich rzad to najmniejsza wspdlna wielokrotnosé ny,na, ..., ny (dla ulatwienia nazwijmy ja n).

Zauwazmy, ze
(fr-fore f)"=(1 - f2 - fi) = (Id-1d---1d) = 1d
Czyli rzad tej permutacji jest dzielnikiem m. Pozostaje pokazaé, ze jeSli m jest rzedem permutacji, to jest tez
wielokrotnoscia n. Policzmy
Id=(fi-fo-- )™ =" 2" fi)
Jako ze wszystkie te cykle sa rozltaczne, kazdy z nich musi byé¢ identycznoscia. Czyli m jest wielokrotnoscia
n1,Na,-..,Nk. Ale to oznacza, ze m jest wielokrotnoscia n, co nalezalo pokazac.
Permutacjg odwrotna o~ ! do o jest
01_<1 2 34 5 6 7 8 9
4 11 2 9 11 8 1 14 7 3 13 10 5 6

10 11 12 13 14 )
Rozklady o i 0~ na cykle wygladaja nastepujaco:
o=(1,7,9,4)(2,3,10,12)(5,13,11)(6, 14, 8)
ot =1(1,4,9,7)(2,12,10,2)(5,11,13)(6, 8, 14)

Uzywajac faktu z poczatku zadania latwo zauwazyé, ze rzad o to najmniejsza wspélna wielokrotnosé {4, 4, 3,3},
czyli 12.
Rzad permutacji oraz permutacji odwrotnej jest taki sam, czyli rzad o~! réwniez wynosi 12.



