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0. Ile porównań wykonuje najlepszy znany Ci algorytm porządkowania 3, 4, 5 liczb. 

1. Znasz już zapewne kilka algorytmów porządkowania n liczb. Dla znanych Ci metod podaj, ile jest 
wykonywanych w nich porównań i zamian, ile wykonują działań, jeśli ciąg jest już uporządkowany 
lub dany jest w odwrotnej kolejności. Czy któryś algorytm nic nie robi, jeśli ciąg jest już uporządko-
wany?

2. Podaj metodę postępowania, prowadzącą do postawienia na podium trzech najlepszych zawodni-
ków turnieju. 
Podpowiedź. Posłuż się metodą porządkowania na drzewie. 

3. Opisz, w jaki sposób rozszerzyć algorytm z zad. 2 na metodę porządkowania całego ciągu. 

4. Jak podaje D.E. Knuth, chociaż opis poszukiwania w ciągu uporządkowanym przez połowienie był 
już znany w latach czterdziestych, dopiero w latach sześćdziesiątych pojawiła się pierwsza, bezbłędna 
realizacja tej metody. Podaj opis algorytmu poszukiwania przez połowienie w wybranym przez siebie 
języku. Może to być język programowania. Przetestuj na przykładach, czy Twoja realizacja tej me-
tody działa poprawnie. Użyj komputera, jeśli opis jest w języku programowania. Postaraj się wyka-
zać, że jest to poprawna realizacja. 

5. Zapoznaj się (jeśli nie znasz) z metodą kubełkowego (lub koszykowego) porządkowania słów (jed-
nakowej i różnej długości). Określ jej złożoność. Zgromadź argumenty „za” i „przeciw” użyciu tej 
metody do komputerowego porządkowania liczb – uwzględnij komputerową reprezentację liczb, róż-
ne systemy pozycyjne, złożoność obliczeniową metody. 

6. Podaj w terminach funkcji podłoga i powała oraz udowodnij, ile liczb całkowitych znajduje się w 
przedziałach [a, b) oraz (a, b], gdzie a i b są dwoma dowolnymi liczbami. 

7. Podaj warunek konieczny i dostateczny na to, aby nx = nx, gdzie n jest liczbą naturalną. 
Podpowiedź. Warunek powinien zawierać funkcję część ułamkowa {x}. 

8. Uporządkuj (dowodząc każdą z relacji) następujące funkcje tak, aby każda poprzednia funkcja była 
„o małe” od następnej (wszystkie logarytmy są przy takiej samej podstawie, np. 2): 

log n, (1 – 1/n)n, (log n)n, nlog n, log(nn), 2log n, n, n3, 3n/3, 1.001n, 0.88n, n(1+1/n)n

9. Sprawdź prawdziwość następujących relacji: 

n2 ∈ O(n3); n3 ∈ O(n2.99); 2n+1 ∈ O(2n); (n +1)! ∈ O(n!);     log n ∈ O(√n);   √n ∈ O(log n);
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