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1. Przedstaw NWD(448, 721) w postaci 448x + 721y, czyli znajdź odpowiednie wartości liczb całko-
witych x i y. 

2. (Zadanie domowe, rozwiązanie proszę przynieść na ćwiczenia.) Zapisz w wybranym przez siebie ję-
zyku programowania i sprawdź na komputerze algorytm, który dla trzech danych liczb naturalnych a, 
b i k (gdzie liczba k = NWD(a, b)) znajduje liczby całkowite x i y spełniające równanie: ax + by = k. 
Określ złożoność swojego algorytmu. Rozważ modyfikację podanego algorytmu, w której liczba k jest 
podzielna przez NWD(a, b). 

3.  a. Wykaż, że F2n = Fn(Fn + 2 Fn–1)

b. Podaj podobną zależność dla F2n+1 zawierającą liczby Fibonacciego o mniejszych wskaźnikach. 

4. Korzystając z wyników poprzedniego zadania, zaproponuj algorytm wyznaczania wartości Fn. Ob-
licz liczbę wykonanych mnożeń i dodawań w zależności od n (patrz [4]). 

5. Wykaż, że dwie kolejne liczby Fibonacciego są względnie pierwsze. 
    Wskazówka. Skorzystaj z algorytmu Euklidesa. 

6. Udowodnij indukcyjnie, że NWD(Fm, Fn) = FNWD(m, n). 

7*. Jaki związek z liczbami Fibonacciego ma rozwiązanie następującego zadania: W skończonym cią-
gu dodatnich liczb całkowitych, nie większych niż miliard (to może być 10 miliardów, albo inna licz-
ba), reprezentujących długości odcinków, należy znaleźć trzy takie liczby, że z odpowiadających im 
odcinków można zbudować trójkąt (źródło: Materiały II Olimpiady Informatycznej, 1994/1995). 

8. Udowodnij, że jeśli (m1, m2, ...)p i (n1, n2, ...)p są reprezentacjami liczb naturalnych m i n względem 
układu kolejnych liczb pierwszych, to:

a. k = NWD(m, n)  iff  ki = min{mi, ni) dla każdego i = 1, 2, ...

b. k = NWW(m, n)  iff  ki = max{mi, ni) dla każdego i = 1, 2, ...

gdzie (k1, k2, ...)p jest rozkładem liczby k. Korzystając z powyższych równości pokaż, że 
mn = NWD(m,n)NWW(m,n). 

9. Wykaż, że jeśli 2n – 1 jest liczbą pierwszą, to n jest liczbą pierwszą (por. liczby Mersenne’a).

10. Wykaż, że jeśli an – 1 jest liczbą pierwszą, to a = 2 (por. liczby Mersenne’a).

11. Wykaż, że jeśli 2n + 1 jest liczbą pierwszą, to n jest potęgą liczby 2 (por. liczby Fermata).
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