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0. Udowodnij, że dla k > 0, liczba 2
k
 (2

k+1
 – 1) jest doskonała, jeśli (2

k+1
 – 1) jest liczbą pierwszą.  

1. Wykaż, że każdy wielościan wypukły zawiera co najmniej dwie ściany o tej samej liczbie krawędzi.  

2. Dany jest ciąg liczb naturalnych a1, a2, ..., an. Pokaż, że istnieją takie i oraz j, i  j, że suma ai + ai+1 

+ ... + aj jest podzielna przez n.  

3. Pokaż, że wśród dziewięciu nieujemnych liczb rzeczywistych, których suma wynosi 90, istnieją 

trzy, których suma wynosi przynajmniej 30 i cztery liczby, których suma wynosi przynajmniej 40.  

4. Wśród liczb naturalnych 1, 2, ..., 800, ile jest takich, które nie są podzielne przez 7, ale są podzielne 

przez 6 lub przez 8.  

5. Korzystając z zasady włączania-wyłączania oblicz, ile jest sposobów ustawienia liter a, a, a, a, b, b, 

b, c, c w taki sposób, aby żadne wszystkie takie same litery nie tworzyły jednego bloku.  

6. Nieporządkiem nazywa się taką permutację elementów, w której żaden element nie znajduje się na 

swoim miejscu. Niech dn oznacza liczbę nieporządków utworzonych z n kolejnych liczb naturalnych. 

Wyprowadź wzór na dn stosując zasadę włączania i wyłączania.  

7. Oblicz liczby całkowite x i y spełniające równość 333x + 1234y = 1. Ile wynosi 333
–1

 w Z1234.  

8. Oblicz –69
–1 

mod 1313.  

9. Wykaż prawdziwość następujących zależności (wszystkie liczby m, x, y, z są całkowite):  

(a) xz  yz (mod mz)  x  y (mod m), dla z  0. 

(b) xz  yz (mod m)  x  y (mod m/NWD(z, m)).  

(c) x  y (mod mz)  x  y (mod m). 

10. Określ liczbę podzielną przez 7, która leży najbliżej liczby 10
100 000

. 

11. Opisz postać liczb podzielnych przez 13, które leżą najbliżej liczby utworzonej z jedynki i miliona 

zer. A może ta liczba jest podzielna przez 13?  

12. Posługując się arytmetyką modularną z trzema modułami: 5, 7 i 9 oblicz wartości następujących 

wyrażeń: 100+4*39, 16*16, 2
7
.  

13. Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne: 

(a)   tn = tn–1 + 3
n
    dla n > 1 i t1 = 3.  

(b)  hn = hn–1 + (–1)
n+1

n  dla n > 1 i h1 = 1. 

14. Stosując metodę podstawiania rozwiąż zależność rekurencyjną, dotyczącą liczby porównań w me-

todzie porządkowania przez scalanie, dla przypadku, gdy liczba porządkowanych elementów n jest 

potęgą liczby 2.  

15. Niech  

Wykaż, że f(n) = f( n/2 ) + f( n/2 ) + (n – 1) dla n > 0. Wyprowadź jawną 

postać funkcji f(n), czyli taką, która nie zawiera znaku sumowania.  
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