
Information and Computation 202 (2005) 105–140

www.elsevier.com/locate/ic

The existential theory of equations with rational constraints
in free groups is Pspace-complete

Volker Diekert a,∗, Claudio Gutierrez b, Christian Hagenah a

aInstitut für Formale Methoden der Informatik (FMI), Universität Stuttgart,
Universitätsstr. 38 D-70569 Stuttgart, Germany

bDepto. de Ciencias de la Computación, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile

Received 12 March 2002; revised 8 September 2004
Available online 6 September 2005

Abstract

It is well-known that the existential theory of equations in free groups is decidable. This is a celebrated
result of Makanin which was published 1982. Makanin did not discuss complexity issues, but later it was
shown that the scheme of his algorithm is not primitive recursive. In this paper we present an algorithm that
works in polynomial space. This improvement is based upon an extension of Plandowski’s techniques for
solving word equations. We present a Pspace-algorithm in a more general setting where each variable has
a rational constraint, that is, the solution has to respect a specification given by a regular word language.
We obtain our main result about the existential theory in free groups as a corollary of the corresponding
statement in free monoids with involution.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Equations in free groups

∗ Corresponding author. Fax: +49 711 78 16 310.
E-mail addresses: diekert@fmi.uni-stuttgart.de (V. Diekert), cgutierr@dcc.uchile.cl (C. Gutierrez), christian@hagenah.

de (C. Hagenah).

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.04.002

106 V. Diekert et al. / Information and Computation 202 (2005) 105–140

1. Introduction

Around 1980 great progress was achieved on the algorithmic decidability of elementary theories
of free monoids and groups. In 1977 Makanin [24], proved that the existential theory of equations
in free monoids is decidable by presenting an algorithm which solves the satisfiability problem for
a single word equation with constants. In 1982 he extended his result to the more complicated situ-
ation in free groups [25]. Using a result by Merzlyakov [31] Makanin also showed that the positive
theory of equations in free groups is decidable [26]. In [37] Razborov obtained a description of the
general solution of given bounded periodicity exponent of an arbitrary system of equations in a
free group.

The algorithms of Makanin are very complex: for word equations the running time was first
estimated by several towers of exponentials and it took more than 20 years to lower this bound
for Makanin’s original algorithm to ExpSpace [14]. For solving equations in free groups Kościelski
and Pacholski showed that the scheme proposed by Makanin is not primitive recursive [21].

In 1999 Plandowski used another method for solving word equations and he showed that the
satisfiability problem for word equations is in Pspace [34,35]. One ingredient of his work is to use
data compression to reduce the space. The importance of data compression was first recognized by
Rytter and Plandowski when applying Lempel-Ziv encodings to the minimal solution of a word
equation [36]. Another important definition is the �-factorization of a solution to a word equation.
The roots of the notion of �-factorization are in the notion of synchronizing factorization from [19].

Gutierrez extended Plandowski’s method to the case of free groups [16]. Thus, a non-primitive
recursive scheme for solving equations in free groups has been replaced by a polynomial space
bounded algorithm. Hagenah and Diekert worked independently in the same direction and using
some ideas ofGutierrez [15] they obtained a resultwhich includes the presence of rational constraints
[4,17].

The present paper is the journal version of [16,4]. It shows that the existential theory of equations
in free groups with rational constraints is Pspace-complete. Rational constraints mean that a pos-
sible solution has to respect a specification which is given by a regular word language. The idea to
consider regular constraints for word equations goes back to Schulz [38] who also pointed out the
importance of this concept, see also [7,13]. The Pspace-completeness for the case of word equations
with regular constraints has already been stated by Rytter according to [34, Theorem 1].

Our proof reduces the case of equations with rational constraints in free groups to the case of
equations with regular constraints in free monoids with involution, which turn out to be central
objects. (Makanin uses the notion of “paired alphabet;” one of the differences is that he considered
“non-contractible” solutions only, whereas we deal with general solutions.) Our work extends the
method of [34,35] so that it copes with involutions, and it extends the method of [16] so that it
copes with rational constraints. The first step is a reduction to the satisfiability problem of a single
equation with regular constraints in a free monoid with involution. To avoid an exponential blow-
up, we do not use a reduction as in [26], but a simpler one. In particular, we can handle negations
simply by positive rational constraints. In the second step we show that the satisfiability problem of
a single equation with regular constraints in a free monoid with involution is in Pspace. This part is
technical and first we introduce several notions like base-change, projection, partial solution, and
free interval. After these preparations we can follow Plandowski’s method. Throughout we shall
use many of the deep ideas which were presented in [34,35], but we apply them in a different setting.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 107

Hence, as we cannot use Plandowski’s result as a black box, we have to go through the whole
construction again. On the positive side, we obtain a self-contained presentation.

2. Basic notions and statements of theorems

2.1. Preliminaries

An involution on a set is a bijection such that x = x for all elements x. IfM is a monoid, then an
involution : M → M means that we also require 1 = 1 for the unit element 1 and xy = y x for all
x, y ∈ M .

Let � be a finite alphabet. By �∗ we denote the free monoid over �. Elements of �∗ are called
words. The length of awordw is denoted by |w|. A factorof awordw is aword v such thatw = w1vw2;
it is called proper if 1 /= v /= w. By F(�) we denote the free group over �. Elements of F(�) can be
represented by words over � = � ∪�, where� = { a | a ∈ � } is a disjoint copy of�. We let a = a,
this defines an involution : �→ �; and the involution is extended to �∗ by a1 · · · an = an · · · a1.
The meaning of w is the inverse w−1 in F(�). A word w ∈ �∗ is freely reduced , if it contains no
factor of the form aawith a ∈ �. For w ∈ �∗ we denote by ŵ the freely reduced word which denotes
the same group element in F(�). Hence, û = v̂ if and only if (u) = (v), where : �∗ → F(�)

denotes the canonical homomorphism.
The classes of rational and recognizable subsets are defined for everymonoidM [10]. Rational sets

(or languages) are defined inductively as follows. All finite subsets ofM are rational. If C1,C2 ⊆ M
are rational, then the unionC1 ∪ C2, the concatenationC1 · C2, and the generated submonoidC∗1 are
rational. A subset C ⊆ M is recognizable, if and only if there is a homomorphism h to some finite
monoidM ′ such that C = h−1h(C). Kleene’s Theorem states that in finitely generated free monoids
both classes coincide, and we follow the usual convention to call a rational (or recognizable) subset
of a free monoid regular.

The empty word is the unit element of a freemonoid, it is denoted by 1 as the unit element in other
monoids. The singleton set {1} is rational in F(�), but not recognizable if� /= ∅. A subset C ⊆ F(�)
is rational if and only if C = (C ′) for some regular language C ′ ⊆ �∗. In particular, we can use a
non-deterministic finite automata over � for specifying rational group languages over F(�).

The existential theory of equations with rational constraints in a monoid M with a generating
set � is defined as follows. Let � be a set of variables (or unknowns). Atomic formulae are either
of the form L = R, where L,R ∈ (� ∪�)∗ or of the form X ∈ C , where X is in � and C ⊆ M is a
rational language. An existentially quantified formula is a block of existentially quantified variables
followed by a Boolean combination of atomic formulae. It is closed, if there are no free variables.
The existential theory of equations with rational constraints inM is the set of all closed existentially
quantified formulae which are true in M .

2.2. Free groups

The next proposition is due to Benois [1], see also [2, Section III.2].

Proposition 1. The family of rational languages over the free group F(�) forms an effective Boolean
algebra.

108 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Proof. (Sketch.) It is enough to show that the family of rational languages is closed under com-
plementation. Let C ′ ⊆ �∗ be a regular language and C = (C ′) the corresponding rational group
language in F(�). Assume that C ′ is given by some non-deterministic finite automaton. Using the
same state set we can construct (in polynomial time) a finite automaton which accepts the following
language

C ′′ = { v ∈ �∗ | ∃u ∈ C ′ : u ∗→ v }
where u

∗→ v means that v is a descendant of u by the rewriting system { aa→ 1 | a ∈ � }. Then
we complement C ′′ with respect to �∗; and intersect �∗ \ C ′′ with the regular set of freely reduced
words.Weobtain a regular set C̃ ′. Hence, the complement ofC in F(�) is the rational group language
 (C̃ ′). �
Problem 2. By EFG we denote the following decision problem:

INPUT: A finite alphabet � and a closed existentially quantified formula with rational con-
straints in the free group F(�).

QUESTION: Is the formula true in F(�)?

Theorem 3. The problem EFG is Pspace-complete.

The difficult part is to show that EFG is in Pspace. For this we prove a more general statement
about the existential theory of equations with regular constraints in free monoids with involution.

2.3. Free monoids with involution

In the following let � be a finite alphabet of constants and� be an alphabet of variables together
with involutions : �→ � and : �→ �. The involution on� is without fixedpoints, butwe allow
fixed points for the involution on �. The involution is extended to (� ∪�)∗ by x1 · · · xn = xn · · · x1
for n � 0 and xi ∈ � ∪�, 1 � i � n. Clearly, u = u for all u ∈ (� ∪�)∗.

From now on, almost all monoids M under consideration are equipped with an involution :
M → M . Amorphism betweenmonoidswith involutionM andM ′ is henceforth amapping h : M →
M ′ such thath(1) = 1,h(xy) = h(x)h(y), andh(x) = h(x) for all x, y ∈ M . Thus, amorphism is ahomo-
morphismofmonoidswhich respects the involution. Thepair (�∗,) is called a freemonoidwith invo-
lution. Amorphism h : �∗ → M is specified by a list (h(a); a ∈ �) such that h(a) = h(a) for all a ∈ �.
Problem 4. By EFMI we denote the following decision problem:

INPUT: A closed existentially quantified formula with regular constraints in a free monoid with
involution (�∗,).

QUESTION: Is the formula true in (�∗,)?

The proof of the following statement is the main technical contribution of the paper.

Theorem 5. The problem EFMI is Pspace-complete.

2.4. Equations with constraints

In the following it is more suitable to work with Boolean matrices instead of finite automata. Let
n � 1. Henceforth, M2n ⊆ �2n×2n denotes the following monoid with involution:

V. Diekert et al. / Information and Computation 202 (2005) 105–140 109

M2n =
{ (

A 0
0 B

)
| A,B ∈ �n×n

}
,

where(
A 0
0 B

)
=

(
B 0
0 A

)T

=
(
BT 0
0 AT

)
.

The operator T denotes transposition and �n×n is the monoid of Boolean n× n–matrices.

Definition 6. An equation E with constraints is a list

E = (�, h,�, �;L = R)

containing the following items:

• The alphabet � = (�,) with involution.
• The morphism h : �∗ → M2n which is specified by a mapping h : �→ M2n such that h(a) = h(a)
for all a ∈ �.
• The alphabet � = (�,) with involution without fixed points.
• A mapping � : �→ M2n such that �(X) = �(X) for all X ∈ �.
• The word equation L = R where L,R ∈ (� ∪�)+.

A solution of E is a mapping � : �→ �∗, which is extended to a morphism � : (� ∪�)∗ → �∗
by leaving the letters from � invariant such that the following three conditions are satisfied:

�(L) = �(R) ,
�(X) = �(X) for all X ∈ �,
h�(X) = �(X) for all X ∈ �.

Let d = |LR| be the denotational length of the word equation L = R. The input size of E is given by

‖E‖ = d + n+ log2(|�| + |�|).

The definition of input size takes into account that there might be constants or variables with
constraints which are not present in the equation. Due to this definition we assume that the input
to Problem 7 is kept on a separate read-only storage.

Problem 7. By EWC we denote the following decision problem:
INPUT: An equation with constraints, E = (�, h,�, �;L = R).
QUESTION: Is there a solution � : �→ �∗?

Theorem 8. The problem EWC is Pspace-complete.

We now turn to the proofs of Theorems 3, 5, and 8. The Pspace-hardness of the problems EFMI,
EFG, and EWC follows directly from a result of Kozen [22], since the empty intersection problem

110 V. Diekert et al. / Information and Computation 202 (2005) 105–140

of regular sets can easily be encoded in the problems above. Therefore the Pspace-hardness is not
discussed further in the sequel.

The difficult part is to show that the problems EFG, EFMI, and EWC can be solved in polynomial
space. We proceed as follows. Section 3.1 yields a (polynomial time) reduction from the problem
EFG to the problem EFMI. Section 3.2 yields a reduction from EFMI to EWC, but this reduction
involves non-deterministic steps. It can be performed however in non-deterministic polynomial
time. Section 4 is the core of the paper. It shows that the problem EWC can be solved by some
non-deterministic Pspace algorithm. By Savitch’s theorem such a procedure can be transformed
into a polynomially space bounded deterministic decision procedure, see e.g. [18]. This concludes
the proof of Theorems 3, 5, and 8.

Remark 9. Problem EWC is NP–hard for n = 1 already, since then we are in the framework of word
equations (without constraints); and linear integer programming can easily be reduced to word
equations, see e.g. [3]. We conjecture that the problem is in fact NP -complete, if n is bounded by
some constant which is not part of the input, see also [36].

3. Reductions

3.1. Reduction of problem EFG to EFMI

The next technical lemma follows directly from the well known fact that the Cayley graph of a
free group is a tree. The proof of Lemma 10 is therefore omitted. As above, let : �∗ → F(�) be
the canonical morphism.

Lemma 10. Let u, v,w ∈ �∗ be freely reduced words. Then we have uvw = 1 in F(�) (i.e. (uvw) = 1)
if and only if there are words P ,Q,R ∈ �∗ such that u = PQ, v = QR, and w = RP in �∗.

Proposition 11. There is a polynomial time reduction of problem EFG to EFMI.

Proof. The reduction follows standard lines. The input to the problem EFG is a closed existentially
quantified formula with rational constraints in the free group F(�). UsingDeMorgan’s lawwemay
assume that there are no negations at all. Since we are in a group, the atomic formulae are now of the
either form: W = 1, W /= 1, X ∈ C or X �∈ C where W ∈ (� ∪�)∗, X ∈ �, and C ⊆ F(�) is rational.
The reason that we keep X �∈ C instead of X ∈ C̃ where C̃ = F(�) \ C is that the complementation
may involve an exponential blow-up.

The next step is to replace every formula W /= 1 by

∃X : WX = 1 ∧ X �∈ {1},
where X is a fresh variable, hence we can put ∃X to the front.

We may assume that |W | � 3, since if 1 � |W | < 3, then we may replace W = 1 by Waa = 1 for
some a ∈ �. For the present reduction it is convenient to assume that |W | = 3 for all subformulae
W = 1. This is easy to achieve. As long as there is a subformula x1 · · · xk = 1, xi ∈ � ∪� for 1 � i � k

and k � 4, we replace it by the conjunction

∃Y : x1x2Y = 1 ∧ Y x3 · · · xk = 1,

V. Diekert et al. / Information and Computation 202 (2005) 105–140 111

where Y is a fresh variable and ∃Y is put to the front, and then proceed recursively.
Now, there are no negations and all atomic formulae are of type W = 1, X ∈ C or X �∈ C , where

W ∈ (� ∪�)+, |W | = 3, X ∈ �, and C ⊆ F(�) is rational.
At this point we switch to free monoids with involution. Recall that : �∗ → F(�) denotes the

canonical morphism and that X ∈ C (respectively, X �∈ C) means in fact X ∈ (C ′) (respectively,
X �∈ (C ′)), where C ′ ⊆ �∗ is a regular language specified by some finite non-deterministic au-
tomaton over the alphabet �∗. Using -symbols we obtain an interpretation over (�∗,) without
changing the truth value of the input formula: We replace each subformula X ∈ C (respectively,
X �∈ C) syntactically by (X) ∈ (C ′) (respectively, (X) �∈ (C ′)) and we replace each subformula
W = 1 by (W) = 1.

We keep the interpretation over words, but we now eliminate all occurrences of again. We
begin with the occurrences of in the constraints. Let C ′ ⊆ �∗ be regular. According to the proof
of Proposition 1 we construct a finite automaton, which accepts the following language

C ′′ = { v ∈ �∗ | ∃u ∈ C ′ : u ∗→ v }.
In particular, (C ′) = (C ′′) and Ĉ ⊆ C ′′ where Ĉ = { û ∈ �̂∗ | u ∈ C ′ }.

We replace all positive atomic subformulae of the form (X) ∈ (C ′) by X ∈ C ′′. A simple reflec-
tion shows that the truth value has not changed since we can think of X as being a freely reduced
word. For a negative formula (X) �∈ (C ′) we have to be a little more careful. Let N ⊆ �∗ be the
regular set of all freely reduced words. The language N is accepted by some deterministic finite
automaton with |�| + 2 states. We replace (X) �∈ (C ′) by

X �∈ C ′′ ∧ X ∈ N ,
where C ′′ is as above. Again the truth value did not change.

We now have to deal with the formulae (xyz) = 1 where x, y , z ∈ � ∪�. Observe that the un-
derlying quantifier free formula is satisfiable over �∗ if and only if it is satisfiable in freely reduced
words.

Based on Lemma 10 we replace each atomic subformulae (xyz) = 1 with x, y , z ∈ � ∪� by a
conjunction

∃P∃Q∃R : x = PQ ∧ y = QR ∧ z = RP ,
where P , Q, R are fresh variables and the existential block is put to the front. The new existential
formula has no occurrence of anymore. The atomic subformulae are of the form x = yz, X ∈ C
or X �∈ C , where x, y , z ∈ � ∪� and C ⊆ �∗ is regular. The size of the new formula is polynomial
in the size of the original formula. This finishes the reduction from the problem EFG to EFMI. �

3.2. Reduction of Problem EFMI to EWC

Proposition 12. There is a non-deterministic polynomial time reduction of problem EFMI to EWC.

Proof. The input to problem EFMI is a closed existentially quantified formula ' with regular con-
straints over a free monoid with involution. We define a procedure which transforms the input '

112 V. Diekert et al. / Information and Computation 202 (2005) 105–140

into an equation with constraints E'. If ' is true, then at least one possible output E' has a solu-
tion. If the output E' has a solution, then ' is true. The procedure will work in non-deterministic
polynomial time.

We may assume that the formula ' contains no negations and all atomic subformulae are of
type U = V , U /= V , X ∈ C or X �∈ C , where U , V ∈ (� ∪�)∗, X ∈ �, and C ⊆ �∗ is regular.

Since we work over a free monoid �∗ it is easy to handle inequalities U /= V where U , V ∈
(� ∪�)∗. If two words u, v in �∗ are different, then there are three cases: u is a proper prefix of v or
v is a proper prefix of u or there is some word x such that xa is a prefix of u, xb is a prefix of v, and
a /= b. Therefore, a subformula U /= V can be replaced by

∃X ∃Y ∃Z :
∨
a∈�

(
U = VaX ∨ V = UaX ∨

∨
a /=b∈�

(U = XaY ∧ V = XbZ)).
Making guesses we can eliminate all disjunctions to obtain an existentially quantified formula

which consists of a block of existentially quantified variables followed by a single conjunction over
atomic subformulae of type U = V , X ∈ C or X �∈ C , where U , V ∈ (� ∪�)∗, X ∈ �, and C ⊆ �∗
is regular.

By a standard procedure we can replace a conjunction of word equations over (� ∪�)∗ by a
single word equation L = R where neither L nor R is empty. For example, we may choose a new
letter a (a �∈ �) and then we can replace a system L1 = R1, L2 = R2, . . . ,Lk = Rk by L1aL2a · · · aLk
= R1aR2a · · · aRk and we add for all variables X the constraint X ∈ �∗.

Therefore, we may assume that our input is now given by three items: a single word equation
L = Rwith L,R ∈ (� ∪�)+ and two lists: (Xj ∈ Cj , 1 � j � m) and (Xj �∈ Cj ,m < j � k). Each regu-
lar languageCj ⊆ �∗ is specified by some non-deterministic automatonAj = (Qj ,�, .j , Ij , Fj)where
Qj is the set of states, .j ⊆ Qj × �× Qj is the transition relation, Ij ⊆ Qj is the subset of initial states,
and Fj ⊆ Qj is the subset of final states, 1 � j � k . Of course, a variable X may occur several times
in the list with different constraints, therefore we might have k greater than |�|.

For the reduction to the problem EWC we have to consider Boolean matrices instead of finite
automata. This allows us to store all constraints concerning a variable in a single Boolean matrix.
LetQ be the disjoint union of the state spacesQj , 1 � j � k . Wemay assume thatQ = {1, . . . , n}. Let
. =⋃

1�j�k .j , then . ⊆ Q × �× Q and with each a ∈ � we can associate a Boolean n× n matrix
g(a) ∈ �n×n such that g(a)i,j = 1, if (i, a, j) ∈ . and g(a)i,j = 0 otherwise. We define a morphism
h : �∗ → M2n by

h(a) =
(
g(a) 0
0 g(a)T

)
for a ∈ �.

The list of matrices (h(a); a ∈ �) can be computed in polynomial time and we have h(ā) = h(a).
Now, for each regular language Cj , 1 � j � k we compute vectors Ij , Fj ∈ �2n (corresponding to
initial and final states) such that for all w ∈ �∗ and 1 � j � k we have the equivalence:

w ∈ Cj ⇔ ITj h(w)Fj = 1.

Having done these computations we make a non-deterministic guess �(X) ∈ M2n for each variable
X ∈ �. We verify �(X) = �(X) for all X ∈ � and whenever there is a constraint of type X ∈ Cj

V. Diekert et al. / Information and Computation 202 (2005) 105–140 113

for some 1 � j � m (or X �∈ Cj for some m < j � k), then we verify ITj �(X)Fj = 1, if 1 � j � m (or
ITj �(X)Fj = 0, if m < j � k).

This finishes the reduction of problem EFMI to EWC. �

4. Problem EWC is in PSPACE

4.1. Road-map

The proof of Theorem 8 is based on three transformation rules for equations with constraints.
Each transformation preserves unsolvability; and it can be applied as long as the computation re-
spects a given polynomial space bound. (The notion of admissibility given inDefinition 31 formalizes
the notion that the size of some object is bounded polynomially in the input size.)

No transformation rule introduces any new variable, but it may happen that the number of vari-
ables decreases. So, the global strategy is to apply the rules until all variables have been eliminated;
the final step is then a direct evaluation of an equation without variables.

If the final output is yes, then the input equation is solvable, too. The main difficulty in the proof
is the converse. We have to show that we can perform all these transformations within polynomial
space such that for a solvable equation with constraints at least one computation path leads to the
output yes.

To overcome this difficulty various notions and concepts are developed. We follow the approach
of Plandowski [34,35], but we have two sources for additional complications. We have to cope
with the involution and we have constraints. It is fairly standard to handle regular constraints. It
may look rather technical if a reader sees it for the first time, but there is no surprise and the real
additional difficulty is condensed in one section.

There are in fact three Sections 4.2, 4.6, and 4.9, where regular constraints play a crucial role. In
Section 4.2, we show why an explicit specification of the constants is necessary. On an algebraic
level we have to solve a membership problem in a submonoid of Boolean matrices. The submonoid
is given by a list of matrices and we ask whether some other matrix A is a product of matrices from
the list. Clearly, the answer may be no, but if we add A to the list, then it becomes trivially yes. In
our language this means that it may happen that an equation with constraints becomes solvable by
enlarging the alphabet of constants. This effect is not possible without constraints: If a word equa-
tion L = R without constraints has a solution, then it has a solution over the alphabet of constants
which appear in the string LR.

The presence of constraints makes it necessary to formalize the notion of projection in
Section 4.6. A projection is a controlled way of introducing new constants such that unsolvable
equations remain unsolvable. The use of new constants is inherent in Plandowski’s method. If
during the transformation the underlying word equations becomes too long, long subsequenc-
es of constants (factors) are coded as a single new letter. So, the alphabet of constants
changes all the time: We remove constants in order to keep the alphabet size polynomially
bounded, and introduce them in order to keep the length of the underlying word equation
polynomially bounded. The technical preparation for this is done in Section 4.9. It introduces
the notion of free interval and it is there where our presentation becomes more involved due to
constraints.

114 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Dealing with involutions is the main source for new difficulties. For example, we cannot directly
apply the usualmethod for bounding the exponent of periodicity.We need a new concept of p-stable
normal form in Section 4.3. The result of this section is however as expected: If a w0 represents a
solution of minimal length, then the number of repetitions inside w0 is bounded singly exponential
in the size of the equation. Thus, if w0 = uvkw, then in binary notation k uses polynomially many
bits only.

This leads directly to Section 4.4. Word equations are not stored in plain form, but Plandowski’s
method uses data compression to keep them within polynomial size. More specifically, we allow
regular expressions with exponents in binary notation.

The following three sections explain the transformation rules in detail: In Section 4.5, we formal-
ize the way to remove constants and Section 4.6 deals with the controlled way of introducing them.
In Section 4.7, we formalize guessing a partial solution.

The transformation rules lead to the formal description of a search graph in 4.8. The difficulty
of proving Theorem 8 is reduced to showing that the search graph contains a path from a solvable
input equation to some trivial equation. This part is very complex, but the basic ideas can be traced
to [36] where Lempel-Ziv encodings of minimal solutions of a word equation are investigated. Key
notions are critical word and �-factorization. The technical part is developed in sections 4.10 to 4.15.

4.2. A PSPACE-complete subproblem

Thenext proposition states that twobasic operations, which are used several times as subroutines,
can be performed in Pspace.

Proposition 13. The following problems are Pspace-complete with respect to the input size n+ log |�|.
INPUT: A matrix B ∈ �n×n and a homomorphism g : �∗ → �n×n given as a list of matrices

(B1, . . . ,B|�|).
QUESTION: Is there some u ∈ �∗ such that g(u) = B?
INPUT: A matrix A ∈ M2n and a morphism h : �→ M2n given as a list of matrices (A1, . . . ,A|�|)

with Aai = Aai for all ai ∈ �.
QUESTION: Is there some w ∈ �∗ such that h(w) = A and w = w?

Proof. The first problem is closely related to the intersection problem of regular languages and its
Pspace-hardness is again due to Kozen [22], see also [11, MS5]. The Pspace-algorithm starts with the
unit matrix. Then it guesses a word u letter by letter and, simultaneously, calculates g(u): If we guess
the letter ai, then we move to the ith matrix in the list (B1, . . . ,B|�|) describing g, and we multiply Bi
on the right to the current value held in the work space. We terminate if and only if g(u) = B.

The second problem can be solved since w = w implies w = ubu for some u ∈ �∗ and b ∈ � ∪ {1}
with b = b. Hence we can guess some B and b and we verify A = Bh(b)B and b = b. Then using the
first part, we check that B = h(u) for some u ∈ �∗.

Since there is no reference which shows the Pspace-hardness of the second problem, we sketch
a reduction from the first to the second one: Consider a mapping g : �→ �n×n and B ∈ �n×n, the
pair (B, g) is an instance of the first problem. Let � be the disjoint union � ∪� and let g(ā) = 1,

where 1 ∈ �n×n is the identity matrix. In the notations of above we have h(a) =
(
g(a) 0
0 1

)
for a ∈ �.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 115

LetA =
(
B 0
0 BT

)
, then thepair (A, h)becomes an instanceof the secondproblem.Clearly, if g(u) = B

for some u ∈ �∗, then h(uu) =
(
B 0
0 BT

)
.For the converse note that thematrices h(a) and h(b̄) com-

mute for all a, b ∈ �. If there is somew = w ∈ �∗ with h(w) =
(
B 0
0 BT

)
, then we can writew = w1w1

and we may assume that w1 = u1u2 with u1, u2 ∈ �∗. It follows that g(u1u2) = B. �
Assume that an equation E = (�, h,�, �;L = R) contains a variable X in the specification which

does not occur in LRLR. In this case the equationmight be unsolvable, simply because �(X) �∈ h(�∗).
However, by Proposition 13 we can test this in Pspace. Therefore, if X does not appear in LRLR and
�(X) ∈ h(�∗), then we can remove X and X from the specification. This yields the following remark.

Remark 14. Henceforth, if E = (�, h,�, �;L = R) is an equation with constraints, then we assume
that all variables occur somewhere in LRLR. As a consequence, we may assume |�| � 2|LR|.

4.3. The exponent of periodicity

A key step in proving Theorem 8 is to find an effective bound on the exponent of periodicity in a
solution of minimal length. This idea is used in all known algorithms for solving word equations, c.f.
[24,34,35]. It turns out that the well-known result on word equations [20] transfers to the situation
here: The exponent of periodicity can be bounded by a singly exponential function.

Let w ∈ �∗ be a word. The exponent of periodicity exp(w) is defined by

exp(w) = sup{2 ∈ � | ∃u, v, p ∈ �∗, p /= 1 : w = up2v }.

Proposition 15. Let E = (�, h,�, �;L = R) be a solvable equation with constraints. Then there is a
solution � : �→ �∗ such that exp(�(L)) ∈ 2O(d+n log n).

The proof of Proposition 15 is independent of the rest of the paper. Therefore, we postpone it to
the appendix, Section 6.

4.4. Exponential expressions

To keep computations in polynomial space Plandowski’s method uses exponential expressions.
We give inductive definitions for an exponential expression, its evaluation, and its size.

Definition 16.

• Every word w ∈ �∗ is an exponential expression. The evaluation eval(w) is equal to w, its size
‖w‖ is equal to the length |w|.
• Let e, e′ be exponential expressions. Then ee′ is an exponential expression. Its evaluation is the
concatenation eval(ee′) = eval(e)eval(e′), its size is ‖ee′‖ = ‖e‖ + ‖e′‖.
• Let e be an exponential expression and k ∈ �. Then (e)k is an exponential expression. Its evalu-
ation is eval((e)k) = (eval(e))k , its size is ‖(e)k‖ = ‖e‖ +max{1, �log2(k)�}.

116 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Lemma 17. Let u ∈ �∗ be a factor of a word w ∈ �∗. Assume that w can be represented by some
exponential expression of size p. Then we can find an exponential expression of size at most p2 that
represents u.

Proof. The proof is an easy argument by structural induction. �
Lemma 17 will be applied to exponential expressions where the size ‖e‖ is bounded by some

value which is polynomial in the input size of the equation E0. Since the size of the exponential
expressions for factors can be the square of the original polynomial, we can apply this subroutine
in nested way a constant number of times, only. In our application the nested depth does not go
beyond two.

The next lemma is straightforward since we allow a polynomial space bound without any time
restriction. The proof of Lemma 18 is omitted.

Lemma 18. The following two problems can be solved in PSPACE.

INPUT: Exponential expressions e and e′.
QUESTION: Do we have eval(e) = eval(e′)?
INPUT: A mapping h : �→ M2n and an exponential expression e.
OUTPUT: The matrix h(eval(e)) ∈ M2n.

Remark 19. The computation above can actually be performed in polynomial time, but this is not
evident for the first question, see [32] for details.

Henceforth, we allow that the part L = R of an equation with constraints may be given by a pair
of exponential expressions (eL, eR) with eval(eL) = L and eval(eR) = R.
Definition 20. Let E = (�, h,�, �; eL = eR) and E′ = (�, h,�, �; e′L = e′R) be equations with con-
straints. We write E ≡ E′, if eval(eL) = eval(e′L) and eval(eR) = eval(e′R) as strings in (� ∪�)∗.

The meaning of E ≡ E′ is that E and E′ represent exactly the same equation if they were written
out explicitly. By Lemma 18 we can decide E ≡ E′ in polynomial space; moreover, Remark 19 says
that this decision is actually possible in polynomial time.

4.5. Base changes

In this section, we describe the first transformation rule. Let h : �∗ → M2n be a morphism. Let
(�′,) be another alphabet with involution and let 4 : �′ → �∗ be some mapping such that 4(a)
= 4(a) for all a ∈ �′. We define h′ : �′ → M2n by h′ = h4. We extend 4 to a morphism 4 : (�′ ∪�)∗
→ (� ∪�)∗ by leaving the variables invariant and we call the morphism 4 a base change.

Let 4 be a base change and E′ = (�′, h4,�, �;L′ = R′) be an equation with constraints. The
equation 4∗(E′) is defined by

4∗(E′) = (�, h,�, �;4(L′) = 4(R′)).

Lemma 21. Let E′ be an equation with constraints and 4 : �′ → �∗ be a base change. If �′ is a solution
of E′, then � = 4�′ is a solution of 4∗(E′).

V. Diekert et al. / Information and Computation 202 (2005) 105–140 117

Proof. Clearly �(X) = �(X) and h�(X) = h4�′(X) = h′�′(X) = �(X) for all X ∈ �. Next by defini-
tion �(a) = a for a ∈ � and 4(X) = X for X ∈ �. Hence �4(a) = 4�′(a) for a ∈ �′ and therefore
�4 = 4�′ : (�′ ∪�)∗ → �∗. This means �4(L) = 4�′(L) = 4�′(R) = �4(R) since �′(L) = �′(R). �

Lemma 21 leads to the first rule.

Rule 1. If we have E ≡ 4∗(E′) and we are looking for a solution of E, then it is enough to find a solution
for E′. Hence, during a non-deterministic search we may replace E by E′.

For readability of the following examples all constraints are defined by membership in a regular
language rather than by a mapping �. We also strengthen constraints in the examples (thereby
having fewer solutions) in order to avoid lengthy regular expressions.

Example 22. Let � = {a, b, c, ā, b̄, c̄}. Consider the following equation E:

XX = Y b̄c̄b̄āb̄c̄b̄YZabcbY
with constraints X ∈ �300�∗ and Z ∈ b̄c̄b̄ā�∗. Let �′ = {a, b, ā, b̄} and define a base change 4 : �′ →
�∗ by 4(a) = abcb and 4(b) = bcb. Then the equation E is of the form 4∗(E′) where E′ is given by

XX = Y āb̄YZaY .
Wemay strengthen the constraint to X ∈ �′100�′∗ and Z ∈ ā�′∗. According to Rule 1 it is enough to
solve E′. The effect of the base change 4 is that both the equation E′ and the alphabet of constants
are smaller. (The letter c is not used anymore.) Note also that the length restriction on X switched
from |X | � 300 to |X | � 100. However, base changes may have a prize: It might be that E = 4∗(E′)
has a solution, whereas E′ is unsolvable. As we will see later, in our example the guess has been
correct in the sense that E′ has a solution.

4.6. Projections

Let (�,) and (�′,) be alphabets with involution such that � ⊆ �′. A projection is a morphism
6 : �′∗ → �∗ such that both, 6(a) = a for a ∈ � and 6(a) = 6(a) for all a ∈ �′.

Let E be an equation with constraints E = (�, h,�, �;L = R). Then we define an equation with
constraints 6∗(E) by

6∗(E) = (�′, h6,�, �;L = R).
The equation 6∗(E) uses a larger alphabet of constants than E does, but the word equation L = R
is exactly the same. Therefore 6∗(E) uses constants which do not appear in L = R. These constants
may help to find (short) solutions which satisfy regular constraints. Note that every projection
6 : �′∗ → �∗ defines a base change 6 such that 6∗6∗(E) = E. Let E′ = 6∗(E). By Rule 1 we may
replace 6∗(E′) by 6∗(E). We formulate this special case a second rule.

Rule 2. Let 6 be a projection. If we are looking for a solution of E, then it is enough to find a solution
for 6∗(E). Hence, during a non-deterministic search we may replace E by 6∗(E).

118 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Remark 23. The reason to introduce Rule 2 will become clear only later. In Section 4.8, we define
the formal notion of a search graph. We restrict the use of Rule 1 to so-called admissible base
changes (cf. Definition 31), whereas there is no such restriction for the projection 6 when we apply
Rule 2.

Lemma 24. Let E = (�, h,�, �;L = R) and E′ = (�′, h′,�, �;L = R) be equations with constraints.
Then the following two statements hold.

(i) There is a projection 6 : �′∗ → �∗ such that 6∗(E) = E′, if and only if both, h′(�′) ⊆ h(�∗) and
for all a ∈ �′ with a = a there is some w ∈ �∗ with w = w such that h′(a) = h(w).

(ii) Let 6∗(E) = E′ for some projection 6 and let �′ : �→ �′∗ be a solution of E′. Then there is a
solution � for E such that |�(L)| � 2|M2n||�′(L)|.

Proof. (i) Clearly, the only-if condition is satisfied by the definition of a projection since then h′ = h6.
For the converse, assume that h′(�′) ⊆ h(�∗) and that a = a implies h′(a) ∈ h({w ∈ �∗ | w = w}).
Then for each a ∈ �′ \ � we can choose a word wa ∈ �∗ such that h′(a) = h(wa). We can make the
choice such that wa = wa for all a ∈ �′ \ �. If a /= a, then we can find wa such that |wa| < |M2n|,
since we can take the shortest word wa ∈ �∗ such that h(wa) = h′(a) ∈ M2n. For a = a we know
that there is some word wa ∈ �∗ with h′(a) = h(wa) and wa = wa. Hence we can write wa = vbv
with b ∈ � ∪ {1} and b = b. For b /= 1 we can demand |wa| � 2|M2n| − 1. For b = 1 we can demand
|wa| � 2|M2n| − 2. Thus, we find a projection 6 : �′∗ → �∗ such that 6∗(E) = E′ and moreover,
|6(a)| < 2|M2n| for all a ∈ �′.

(ii) According to the proof of (i) we may assume that 6 : �′∗ → �∗ satisfies |6(a)| < 2|M2n| for
all a ∈ �′. Since 6 defines a base change with 6∗(E′) = E, we know by Lemma 21 that � = 6�′ is a
solution of E. Clearly, |�(L)| = |6�′(L)| � 2|M2n||�′(L)|. �
Example 25. Let us continue with the equation which has been obtained by the transformation in
Example 22. To simplify notations, we let E be the equation XX = Y āb̄YZaY , and � = {a, b, ā, b̄}.

Remember that the constraint on X has changed to |X | � 100. Let us reintroduce a letter c
and put �′ = {a, b, c, ā, b̄, c̄}. We may define a projection 6 : �′ → �∗ by 6(c) = b100. The equa-
tion E′ = 6∗(E) looks as above, but in E′ the constraint for X has changed. The new constraint is
|X | � 100 ∨ X ∈ �∗c�∗. Thus, a solution for X might be very short now.

During the procedure we occasionally have to decide whether there is a projection 6 : �′∗ → �∗
such that 6∗(E) = E′. This decision is possible according to the next proposition.

Proposition 26. The following problem Pspace-complete.
INPUT: Alphabets (�,) ⊆ (�′,) and mappings h, h′, where h is the restriction of h′.
QUESTION: Is there a projection 6 : �′∗ → �∗ such that h′ = h6?

Proof. This follows from Lemma 24 (i) and Proposition 13. �

4.7. Partial solutions

Let �′ ⊆ � be a subset of the variables which is closed under involution. We assume that there
is a mapping �′ : �′ → M2n with �′(X) = �′(X), but we do not require that �′ is the restriction of

V. Diekert et al. / Information and Computation 202 (2005) 105–140 119

� : �→ M2n. Consider an equation with constraints E = (�, h,�, �; eL = eR). A partial solution is
a mapping . : �→ �∗�′�∗ ∪ �∗ such that the following conditions are satisfied:

(i) .(X) ∈ �∗X�∗ for all X ∈ �′,
(ii) .(X) ∈ �∗ for all X ∈ � \�′,
(iii) .(X) = .(X) for all X ∈ �.

The mapping . is extended to a morphism . : (� ∪�)∗ → (� ∪�′)∗ by leaving the elements of �
invariant. Let E′ = (�, h,�′, �′; eL′ = eR′) be another equation with constraints (using the same �
and h). By abuse of language, we write E′ ≡ .∗(E), if there exists some partial solution . : �→
�∗�′�∗ ∪ �∗ such that the following conditions hold: L′ = .(L), R′ = .(R), �(X) = h(u)�′(X)h(v)
for .(X) = uXv, and �(X) = h(w) for .(X) = w ∈ �∗.
Lemma 27. In the notation of above, let E′ ≡ .∗(E) for some partial solution . : �→ �∗�′�∗ ∪ �∗. If
�′ is a solution ofE′, then� = �′. is a solution ofE.Moreover,we have�(L) = �′(L′)and�(R) = �′(R′).
Proof. By definition, . and �′ are extended to morphisms . : (� ∪�)∗ → (� ∪�′)∗ and �′ : (� ∪
�′)∗ → �∗ leaving the letters of� invariant. SinceE′ = .∗(E)we have .(L) = L′ and .(R) = R′. Since
�′ is a solution, we have �(L) = �′.(L) = �′(L′) = �′(R′) = �′.(R) = �(R) and � leaves the letters
of � invariant. The solution �′ satisfies h�′(X) = �′(X) for all X ∈ �′. Hence, if .(X) = uXv, then
�(X) = h(u)�′(X)h(v) = h(u�′(X)v) = h�′(uXv) = h�′.(X) = h�(X). If .(X) = w ∈ �∗, then �(X) =
�′.(X) = w and �(X) = h(w), again by the definition of a partial solution. �
Lemma 28. The following problem can be solved in Pspace.

INPUT: Two equations with constraints E = (�, h,�, �; eL = eR) and E′ = (�, h,�′, �′; eL′ = eR′).
QUESTION: Is there some partial solution . such that .∗(E) ≡ E′?
If .∗(E) ≡ E′ is true, then there are exponential expressions of polynomial size eu, ev for eachX ∈ �′

and ew for each X ∈ � \�′ such that

.(X) = eval(eu)X eval(ev) for X ∈ �′,

.(X) = eval(ew) for X ∈ � \�′.
Proof. Let L = eval(eL), R = eval(eR), L′ = eval(eL′), and R′ = eval(eR′). The non-deterministic
Pspace algorithm works as follows:

For each variable X ∈ �′ we guess exponential expressions eu and ev with eval(eu), eval(ev) ∈ �∗.
We define exponential expressions eX = euXev and we define .(X) = eval(eX). For each X ∈ � \�′
we guess an exponential expression eX with eval(eX) ∈ �∗ and we define .(X) = eval(eX).

Next we verify whether or not .∗(E) ≡ E′. During this test we have to create an exponential ex-
pression fL (and fR, respectively) by replacing X in eL (and eR, respectively) with the expression eX .
This increases the size in the worst case by a factor of max{||eX || | X ∈ �}. The other tests whether
�(X) = h(u)�′(X)h(v) for .(X) = uXv and �(X) = h(w) for .(X) = w ∈ �∗ involve exponential ex-
pressions over Boolean matrices and can be done in polynomial time.

The correctness of the algorithm follows fromour general assumption (Remark 14) that allX ∈ �
appear in LRLR. Therefore, if we have .∗(E) ≡ E′, then every factor of .(X) (or of .(X)) appears
necessarily as a factor in L′R′ = .(LR). Hence every factor of .(X) has an exponential expression of
polynomial size by Lemma 17. �

120 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Remark 29.Actually, the test for .∗(E) ≡ E′ can be performed in non-deterministic polynomial time
by Remark 19.

Lemma 27 leads to the third and last rule.

Rule 3. If . is a partial solution and if we are looking for a solution of E, then it is enough to find a
solution for .∗(E). Hence, during a non-deterministic search we may replace E by .∗(E).

Example 30. We continue with our running example. After renaming, the equation E is given by

XX = Y āb̄YZaY ,
and the alphabet of constant is given by � = {a, b, c, ā, b̄, c̄}. We strengthen constraints such that
X ∈ �∗c�∗ and Z ∈ ā{a, b, ā, b̄}∗.

We may guess the partial solution as follows: .(X) = aX , .(Y) = Y , and .(Z) = āb. The new
equation .∗(E) is

aXX ā = Y āb̄Y ābaY .
The remaining constraint is that the solution for X has to use the letter c.

The process can continue, for example, we can applyRule 1 again by defining another base change
4(b) = ba to get the equation

aXX ā = Y b̄Y ābY
over � = {a, b, c, ā, b̄, c̄}. Since the last equation has a solution (e.g., given by �(X) = bcc̄b̄b̄abc and
�(Y) = abcc̄b̄), the first equation with constraints in Example 22 has a solution too.

4.8. The search graph and Plandowski’s algorithm

The input of Problem EWC is an equation with constraints. In order to fix notations we call it
E0 = (�0, h0,�0, �0;L0 = R0) and we let d = |L0R0|. According to Remark 14 we assume |�0| � 2d .

Definition 31.Let p0 be a polynomial. The notion of admissibility is definedwith respect to p0(‖E0‖).

• An exponential expression e is admissible, if ‖e‖ � p0(‖E0‖).
• Abase change4 : �′ → �∗ is admissible, if |�′| � p0(‖E0‖) and for all a ∈ �′ there is an admissible
exponential expression for 4(a).
• Anequationwith constraintsE = (�, h,�, �; eL = eR) is admissible, if |� \ �0| � p0(‖E0‖), h(a) =
h0(a) for a ∈ �0, and eLeR is admissible.

In the followingwe assume that a polynomial p0 (of large enough degree) has been fixedwhenever
we speak about admissibility. We do not calculate p0 explicitly, but it will become clear from the
context what large enough actually means.

Definition 32. The search graph of E0 is a directed graph where nodes are admissible equations with
constraints. For two nodes E, E′ there is an arc E→ E′, if there are an admissible base change 4, a
projection 6, and a partial solution . such that .∗(6∗(E)) ≡ 4∗(E′).

V. Diekert et al. / Information and Computation 202 (2005) 105–140 121

Lemma 33. Let p0 be a polynomial of degree at least 1. The following problem is Pspace-complete.
INPUT: Equations with constraints E0,E, and E′ such that E and E′ are admissible with respect to

p0(‖E0‖).
QUESTION: Is there an arc E→ E′ in the search graph of E0?

Proof. The arc from E to E′ is established by applying Rules 2, 1, and 3 (in this order) to E. More
precisely, we let E0 = (�0, h0,�0, �0;L0 = R0), E = (�, ,�, �; eL = eR), and E′ = (�′, h′,�′, �′; eL′ =
eR′). We first guess some alphabet (�′′,) of polynomial size together with h′′ : �′′ → M2n and we
guess some admissible base change 4 : �′ → �′′∗ such that h′ = h′′4. We compute 4∗(E′). Next, we
guess some equation with constraints E′′ which uses �′′ and �. We check using Lemma 28 that
there is some partial solution . : �→ �′′∗�′�′′∗ ∪ �′′∗ such that .∗(E′′) ≡ 4∗(E′). (Note that every
equation with constraints E′′ satisfying .∗(E′′) ≡ 4∗(E′) for some . can be represented in polyno-
mial space by Lemma 17.) Finally, we check using Proposition 26 that there is some projection
6 : �′′ → � such that 6∗(E) ≡ E′′. We obtain .∗(6∗(E)) ≡ 4∗(E′).

The Pspace-hardness follows by Proposition 13 which shows that the problem is Pspace–hard on
instances of the following type: The equation for E and E′ is X = X , we have �(X) = �′(X) = A ∈
M2n, and �′ \ � = {a, ā} with h′(a) = A. �
Remark 34. Following Remarks 19 and 29, the problem presented in Lemma 33 can be decided in
non-deterministic polynomial time, if the monoidM2n is not part of the input and the parameter n
is viewed as a constant.

On a high-level description, Plandowski’s algorithm applies Rules 1 to 3 in a non-deterministic
way until a trivial equation is found. An actual implementation of the algorithm depends on the
chosen polynomial p0 and it has the following structure.

begin
E := E0
while � /= ∅ do

Guess an equation with constraints E′, which is admissible with respect to p0(|E0|)
Verify that E→ E′ is an arc in the search graph of E0
E := E′

endwhile
return “eval(eL) = eval(eR)”

end

Lemmata 21, 24 (ii), and 27 say that the algorithm returns true only if E0 is solvable. The proof
of Theorem 8 is therefore reduced to the statement that there is a polynomial p0 such that for all E0
we have, if E0 is solvable, then the search graph contains a path to some solvable equation without
variables.

Remark 35. If the arc E→ E′ is due to some 6 : �′′∗ → �∗, . : �→ �′′∗�′�′′∗ ∪ �′′∗, and 4 : �′∗ →
�′′∗, then a solution �′ : �′ → �′∗ of E′ yields the solution � = 6(4�′).. Hence we may assume that
the length of a solution has increased by at most an exponential factor by Lemma 24 (ii). Since
we are going to perform the search in a graph of at most exponential size, we automatically get a
doubly exponential upper bound for the length of a minimal solution by backwards computation

122 V. Diekert et al. / Information and Computation 202 (2005) 105–140

on such a path. This is still the best known upper bound (although a singly exponential bound is
conjectured), see [33].

4.9. Free intervals

For a word w ∈ �∗ we let {0, . . . , |w|} be the set of its positions. The idea is that factors of w are
between positions. To be more specific, let w = a1 · · · am be a word with ai ∈ �. Then [2,4] with
0 � 2 < 4 � m is called a positive interval and the word w[2,4] is defined as the factor a2+1 · · · a4.

It is convenient to have an involution on the set of intervals. If [2,4] is a positive interval, then
[4,2] is also called a (non-positive) interval, and we define w[4,2] = w[2,4]. Moreover, we define
w[2,2] to be the empty word. For all 0 � 2,4 � mwe let [2,4] = [4,2]; therefore,w[2,4] = w[2,4].

In the following we assume that the input equation E0 has a solution � with w0 = �(L0) = �(R0)
and m0 = |w0|. We have w0 ∈ �∗0, but in this section the alphabet �0 is replaced by some other
alphabet �, which turns out to be a set of non-empty words over �0. We let d be the denotation-
al length of the equation and L0 = x1 · · · xg and R0 = xg+1 · · · xd , xi ∈ (�0 ∪�0) for 1 � i � d . We
assume 2 � g < d < m0 whenever necessary. We also make the assumption that �(xi) /= 1 for all
1 � i � d . This assumption can be realized, e.g., in the preprocessing.

We are going to define an equivalence relation ≈ on the set of intervals of w0. For this we need
some preparation. For i ∈ {1, . . . , d} we define positions l(i) and r(i) such that �(xi) starts in w0 at
the left position l(i) and it ends at the right position r(i). Formally, we define l(i) ∈ {0, . . . ,m0 − 1}
and r(i) ∈ {1, . . . ,m0} by the congruences:

l(i) ≡ |�(x1 · · · xi−1)| mod m0
r(i) ≡ |�(x1 · · · xi)| mod m0

We have l(1) = l(g+ 1) = 0 and r(g) = r(d) = m0 since the range for the congruences are differ-
ent for left- and right positions. We have �(xi) = w0[l(i), r(i)] and �(xi) = w0[r(i), l(i)] for 1 � i � d .
The interval [l(i), r(i)] is positive, because �(xi) /= 1.

The set of l- and r-positions is called the set of cuts. Thus, the set of cuts is { l(i), r(i) | 1 � i � d }.
The positions 0 and m0 are cuts and there are at most d cuts. These positions split the word w0 into
at most d − 1 factors.

Let us consider a pair (i, j) such that i, j ∈ {1, . . . , d} and xi = xj or xi = xj . For8, 9 ∈ {0, . . . , r(i)−
l(i)} we define a relation ∼ by:

[l(i)+ 8, l(i)+ 9] ∼ [l(j)+ 8, l(j)+ 9], if xi = xj ,
[l(i)+ 8, l(i)+ 9] ∼ [r(j)− 8, r(j)− 9], if xi = xj.

Note that ∼ is a symmetric relation. Moreover, [2,4] ∼ [2′,4′] implies both, [4,2] ∼ [4′,2′] and
w0[2,4] = w0[2′,4′]. By ≈ we denote the reflexive and transitive closure of ∼. Then ≈ is an equiv-
alence relation and again, [2,4] ≈ [2′,4′] implies both, [4,2] ≈ [4′,2′] and w0[2,4] = w0[2′,4′].

Next we define the notion of free interval using this equivalence and cuts.

Definition 36. An interval [2,4] is free, if, whenever [2,4] ≈ [2′,4′], then there is no cut : ′ with
min{2′,4′} < : ′ < max{2′,4′}.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 123

Clearly, the set of free intervals is closed under involution, i.e., [2,4] is free if and only if [4,2] is
free. It is also clear that [2,4] is free if |4 − 2| � 1.

Free intervals correspond to long factors in the solution which are not related to any cut. If there
were no constraints, then these factors would not appear in a solution where m0 is minimal. In our
setting we cannot avoid these factors.

Example 37. The last equation in Example 30, namely

aXX ā = Y b̄Y ābY ,

has a solution which yields the word

w0 =
0| a 1|

X︷ ︸︸ ︷
bcc̄b̄

5| b̄ 6| abc 9|

X︷ ︸︸ ︷
c̄b̄

11| ā 12| b 13| bcc̄b̄ 17| ā 18| .︸ ︷︷ ︸
Y

︸ ︷︷ ︸
Y

︸ ︷︷ ︸
Y

The set of cuts is shown by the vertical bars. The intervals [1, 5], [13, 17], and [6, 9] are not free,
since [1, 5] ≈ [17, 13] ≈ [7, 11] and [6, 9] ≈ [0, 3] and [7, 11], [0, 3] contain cuts. There is only one
equivalence class of free intervals of length longer than 1 (up to involution), which is given by
[1, 3] ∼ [17, 15] ∼ [7, 9] ∼ [11, 9] ∼ [5, 3] ∼ [13, 15].

The next lemma says that subintervals of free intervals are free again.

Lemma 38. Let [2,4] be a free interval and 8, 9 having the property min{2,4} � 8, 9 � max{2,4}.
Then the interval [8, 9] is also free.

Proof. We may assume that 2 � 8 < 9 � 4. By contradiction assume that [8, 9] is not free. Then
there is some k � 0 and some cut : ′ such that

[8, 9] = [80, 90] ∼ [81, 91] ∼ · · · ∼ [8k , 9k]

with min{8k , 9k} < : ′ < max{8k , 9k}. If k = 0, then we have a immediate contradiction. For k � 1
the relation [8, 9] ∼ [81, 91] is due to some pair xi, xj with xi = xj or xi = xj . Since [2,4] contains
no cut, the same pair xi, xj defines an interval [21,41] such that [2,4] ∼ [21,41] and min{21,41} �
81, 91 � max{21,41}. Using induction on k we see that [21,41] is not free. But then [2,4] is not free,
and this is a contradiction. �

Next we introduce the notion of implicit cut for non-free intervals. For our purpose it is enough
to define it for positive intervals. So, let 0 � 2 < 4 � m0 such that [2,4] is not free. A position :
with 2 < : < 4 is called an implicit cut of [2,4], if there is a cut : ′ and an interval [2′,4′] such that

min{2′,4′} < : ′ < max{2′,4′},
[2,4] ≈ [2′,4′],
: − 2 = |: ′ − 2′|.

124 V. Diekert et al. / Information and Computation 202 (2005) 105–140

The following observation will be used throughout. If we have 2 � 8 < : < 9 � 4 and : is an im-
plicit cut of [2,4], then : is also an implicit cut of [8, 9]. In particular, neither [8, 9] nor [9,8] is a
free interval.

Definition 39.A free interval [2,4] is called maximal free, if there is no free interval [2′,4′] such that
both, 2′ � min{2,4} � max{2′,4′} � 4′ and |4 − 2| < 4′ − 2′.

Lemma 40 states that maximal free intervals do not overlap.

Lemma 40. Let 0 � 2 � 2′ < 4 � 4′ � m0 such that [2,4] and [2′,4′] are free intervals. Then the
interval [2,4′] is free, too.

Proof. Assume by contradiction that [2,4′] is not free. Then it contains an implicit cut : with
2 < : < 4′. By the observation above: If : < 4, then : is an implicit cut of [2,4] and [2,4] is not
free. Otherwise, 2′ < : and [2′,4′] is not free. �

Lemma 41 states the main observation of this section.

Lemma 41. Let [2,4] be a maximal free interval. Then there are intervals [: , .] and [: ′, .′] such that
[2,4] ≈ [: , .] ≈ [: ′, .′] and : and .′ are cuts.

Proof. We may assume that 2 < 4. We show the existence of [: , .] where [2,4] ≈ [: , .] and : is a
cut. (The existence of [: ′, .′] where [2,4] ≈ [: ′, .′] and .′ is a cut follows by a symmetric argument.)

If 2 = 0, then 2 is a cut and we can choose . = 4. Hence let 1 � 2 and consider the positive inter-
val [2− 1,4]. This interval is not free and the only possible position for an implicit cut is 2. Thus,
for some cut : we have [2− 1,4] ≈ [2′,4′] with min{2′,4′} < : < max{2′,4′} and |: − 2′| = 1. A
simple reflection shows that we have [2− 1,2] ≈ [2′, :] and [2,4] ≈ [: ,4′]. Hence we can choose
. = 4′. �

In the following proposition the symbol � refers to some set of factors of the word w0. (Recall
that w0 = �(L0) = �(R0) and � is a solution of the input equation E0.) The set � becomes the basic
alphabet later.

Proposition 42. Let � be the set of words w ∈ �∗0 such that there is a maximal free interval [2,4] with
w = w0[2,4]. Then � is a subset of �+0 of size at most 2d − 2. The set � is closed under involution.

Proof. Let [2,4] be maximal free. Then |4 − 2| � 1 and [4,2] is also maximal free by definition.
Hence � ⊆ �+0 and � is closed under involution. By Lemma 41 we may assume that 2 is a cut.
Say 2 < 4. Then 2 /= m0 and there is no other maximal free interval [2,4′] with 2 < 4′ because of
Lemma 40. Hence there are at most d − 1 such intervals [2,4]. Symmetrically, there are at most
d − 1 maximal free intervals [2,4] where 4 < 2 and 2 is a cut. �

For the moment let �′0 = �0 ∪ � where � ⊆ �+0 is the set defined in Proposition 42. The inclu-
sion �′0 ⊆ �+0 defines a natural projection 6 : �′0 → �∗0 and a mapping h′0 : �′0 → M2n by h′0 = h06.
Consider the equation with constraints 6∗(E0), this is a node in the search graph, because the size
of � is linear in d .

The reason to switch from �0 to �′0 is that, due to the constraints, the word w0 may have long
free intervals, even in a minimal solution. Over �′0 long free intervals can be avoided. Formally,

V. Diekert et al. / Information and Computation 202 (2005) 105–140 125

we replace w0 by a solution w′0 where w
′
0 ∈ �∗. The definition of w′0 is based on a factorization of

w0 into maximal free intervals. There is a unique sequence 0 = 20 < 21 < · · · < 2k = m0 such that
[2i−1,2i] is a maximal free interval for all 1 � i � k and

w0 = w0[20,21] · · ·w0[2k−1,2k].

Note that all cuts occur as some 2p , therefore we can think of the factors w0[2i−1,2i] as letters in �
for 1 � i � k . Moreover, all constants which appear in L0R0 are elements of �, too. We replace w0
by the word w′0 ∈ �∗. Then we can define �′ : �0 → �∗ such that both, �′(L0) = �′(R0) = w′0 and
�0 = h′0�′. In other words, �′ is a solution of 6∗(E0). We have w0 = 6(w′0) and exp(w′0) � exp(w0).
The crucial point is that w′0 has no long free intervals anymore. With respect to w′0 and �′0 all
maximal free intervals have length exactly one.

Example 43. Following Example 37, we use the same equation aXX ā = Y b̄Y ābY and we consider
the solution w0.

The new solution is defined by replacing in w0 each factor bc by a new letter d which represents
a maximal free interval. The new w0 has the form

w0 =
0| a 1| dd̄ 3| b̄ 4| ad 6| d̄ 7| ā 8| b 9| dd̄ 11| ā 12| .

Now all maximal free intervals have length one.

In the next step we show that we can reduce the alphabet of constants to be �. The inclusion of �
into �′0 defines an admissible base change 4 : �→ �′0. Consider E

′
0 = (�, h,�0, �0;L0 = R0) where

h is the restriction of the mapping h′0. Then we have 6∗(E0) = 4∗(E′0). The search graph contains an
arc from E0 to E′0, since we may choose . to be the identity. The equation with constraints E′0 has a
solution �′ with �′(L0) = w′0 and exp(w′0) � exp(w0).

In order to avoid an excess of notation we identify E0 and E′0, hence we also assume � = �′ and
w0 = w′0. However, as a reminder that we have changed the alphabet of constants (recall that some
words became letters), we prefer to use the symbol � rather than �0. Thus, in what follows we use
the following.

Assumption 44. The input equation E0 satisfies the following conditions:

E0 = (�, h,�0, �0;L0 = R0),
L0 = x1 · · · xg and g � 2,

R0 = xg+1 · · · xd and d > g,

|�| � 2d − 2,

|�0| � 2d.

Moreover, all variables X ∈ �0 occur in L0R0L0R0. There is a solution � and a word w0 with
|w0| = m0 and exp(w0) ∈ 2O(d+n log n) such thatw0 = �(L0) = �(R0)with �(Xi) /= 1 for 1 � i � d and
�0 = h� : �0 → M2n ⊆ �2n×2n. Allmaximal free intervals have length exactly one, i.e., every positive
interval [2,4] with 4 − 2 > 1 contains an implicit cut.

126 V. Diekert et al. / Information and Computation 202 (2005) 105–140

4.10. Critical words

For each 1 � � � m0 we define the set of critical words C� by

C� = {w0[: − �, : + �],w0[: + �, : − �] such that

� � : � m0 − � and : is a cut }.
We have 1 � |C�| � 2d − 4 and C� is closed under involution. Each word u ∈ C� has length 2�,

it can be written in the form u = u1u2 with |u1| = |u2| = �. The word u1 (respectively, u2) appears as
a suffix, to the left of some cut and u2 (respectively, u1) appears as a prefix, to the right of the same
cut.

By B� we denote the set of triples (u,w, v) ∈ ({1} ∪ ��)× �+ × ({1} ∪ ��)which satisfy the follow-
ing four conditions:

(1) No factor of the word w belongs to C�.
(2) If a factor of the word uwv belongs to C�, then this factor is a prefix or a suffix of uwv.
(3) If u /= 1, then a prefix of uwv of length 2� belongs to C�,
(4) If v /= 1, then a suffix of uwv of length 2� belongs to C�.

The set B� is viewed as a (possibly infinite) alphabet where the involution is defined by (u,w, v) =
(v,w, u). We can define a morphism 6� : B∗� → �∗ by 6�(u,w, v) = w ∈ �+. It is extended to a pro-
jection 6� : (B� ∪ �)∗ → �∗ by leaving � invariant. We define h� : (B� ∪ �)∗ → M2n by h� = h6�,
i.e., h�(a) = h(a) for a ∈ � and h�(u,w, v) = h(w) for (u,w, v) ∈ B�. The symbols 6� and h� are also
used for restrictions of the morphisms 6� and h�.

Later we consider finite sets ��,��,�′ such that � ⊆ �� ⊆ ��,�′ ⊆ B� ∪ �. Then 6�,�′ : �∗�,�′ → �∗�
denotes the projection given by 6�,�′(u,w, v) = w ∈ �∗ for (u,w, v) ∈ ��,�′ \ �� and 6�,�′(u,w, v) =
(u,w, v) for (u,w, v) ∈ ��. By h� : �∗� → M2n and h�,�′ : �∗�,�′ → M2n we denote the restrictions of
h� : (B� ∪ �)∗ → M2n. We have h�,�′ = h�6�,�′ .

For every non-empty word w ∈ �+ we define its �-factorization as follows. We write

F�(w) = (u1,w1, v1) · · · (uk ,wk , vk) ∈ B+�
such that w = w1 · · ·wk and for 1 � i � k the following conditions are satisfied (see Fig. 1):

• ui is a suffix of w1 · · ·wi−1,
• ui = 1 if and only if i = 1,
• vi is a prefix of wi+1 · · ·wk ,
• vi = 1 if and only if i = k .

Fig. 1. An �-factorization.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 127

Note that the �-factorization of a word w is unique. For k � 2 we have |w1| � � and |wk | � �,
but all other wi may be short. If no critical word appears as a factor of w, then F�(w) = (1,w, 1). In
particular, this is the case for |w| < 2�. If we have w = puvq with |u| = |v| = � and uv ∈ C�, then
there is a unique i ∈ {1, . . . , k − 1} such that u = ui+1, v = vi, and pu = w1 · · ·wi, vq = wi+1 · · ·wk .
Thus, F�(w) contains a factor (ui,wi, v)(u,wi+1, vi+1) where v is a prefix of wi+1vi+1 and u is a suffix
of uiwi . For example, the �-factorization of uv ∈ C� with |u| = |v| = � is

F�(uv) = (1, u, v)(u, v, 1).
We define the head, body, and tail of a word w based on its �-factorization

F�(w) = (u1,w1, v1) · · · (uk ,wk , vk)
in B∗� and �∗ as follows:

Head�(w) = (u1,w1, v1) ∈ B�,
head�(w) = w1 ∈ �+,
Body�(w) = (u2,w2, v2) · · · (uk−1,wk−1, vk−1) ∈ B∗� ,
body�(w) = w2 · · ·wk−1 ∈ �∗,
Tail�(w) = (uk ,wk , vk) ∈ B�,
tail�(w) = wk ∈ �+.

For k � 2 (in particular, if body�(w) /= 1) we have

F�(w) = Head�(w)Body�(w)Tail�(w),

w = head�(w)body�(w)tail�(w).

Moreover, u2 is a suffix of w1 and vk−1 is a prefix of wk .
Assume body�(w) /= 1 and let u, v ∈ �∗ be any words. Then we can view w in the context uwv and

Body�(w) appears as a proper factor in the �-factorization of uwv. More precisely, let

F�(uwv) = (u1,w1, v1) · · · (uk ,wk , vk).
Then there are unique 1 � p < q � k such that:

F�(uwv) = (u1,w1, v1) · · · (up ,wp , vp)Body�(w)(uq,wq, vq) · · · (uk ,wk , vk),
w1 · · ·wp = u head�(w), and wq · · ·wk = tail�(w)v.

Finally, we note that the above definitions are compatible with the involution. We have F�(w) =
F�(w), Head�(w) = Tail�(w), and Body�(w) = Body�(w).

4.11. The �-transformation

By Assumption 44, E0 = (�, h,�0, �0; x1 · · · xg = xg+1 · · · xd), and the equation has a solution
� where w0 = �(x1 · · · xg) = �(xg+1 · · · xd) and m0 = |w0|. We let 1 � � � m0 and we consider the
�-factorization of the word w0:

128 V. Diekert et al. / Information and Computation 202 (2005) 105–140

F�(w0) = (u1,w1, v1) · · · (uk ,wk , vk).

A sequence S = (up ,wp , vp) · · · (uq,wq, vq) with 1 � p � q � k is called an �-factor . We say
that S is a cover of a positive interval [2,4], if both, |w1 · · ·wp−1| � 2 and |wq+1 · · ·wk | �
m0 − 4. That is, w0[2,4] is a factor of wp · · ·wq. It is a minimal cover , if neither the sequence
(up+1,wp+1, vp+1) · · · (uq,wq, vq) nor (up ,wp , vp) · · · (uq−1,wq−1, vq−1) is a cover of [2,4]. The mini-
mal cover exists and it is unique.

We let �� = {X ∈ �0 | body�(�(X)) /= 1 }, and we are going to define a new left-hand side
L� ∈ (B� ∪��)∗ and a new right-hand side R� ∈ (B� ∪��)∗. For L� we consider those 1 � i � g

where body�(�(xi)) /= 1. Note that this implies xi ∈ �� since � � 1 and the body of a con-
stant is always empty. Recall the definition of l(i) and r(i), and define 2 = l(i)+ |head�(�(xi))|
and 4 = r(i)− |tail�(�(xi))|. We have w0[2,4] = body�(�(xi)). Next consider the �-factor Si =
(up ,wp , vp) · · · (uq,wq, vq) which is the minimal cover of [2,4]. Then we have 1 < p � q < k and
wp · · ·wq = w0[2,4] = body�(�(xi)). The value of Si depends only on xi, but not on the choice of
the index i. This means Si = Sj whenever xi = xj .

We replace the �-factor Si in F�(w0) by the variable xi . Having done this for all 1 � i � g with
body�(�(xi)) /= 1 we obtain the left-hand side L� ∈ (B� ∪��)∗ of the �-transformation E�. For R�
we proceed analogously by replacing those �-factors Si where body�(�(xi)) /= 1 and g+ 1 � i � d .

For E� we cannot use the alphabet B�, because it might be too large (even infinite). There-
fore we let �′� be the smallest subset of B� which is closed under involution and which satisfies
L�R� ∈ (�′� ∪��)∗.

We let �� = �′� ∪ �. (We allow � because the constants of � make it easy to cope with the
constraints.) Recall that h�(u,w, v) = h(w) for (u,w, v) ∈ �� \ � and h�(a) = h(a) for a ∈ �. Final-
ly, we define the mapping �� : ��→ M2n by ��(X) = h(body�(�(X))). The reason is that we know
�(X) = h(�(X)). We can write �(X) = ubody�(�(X))v, hence h(�(X)) = h(u)��(X)h(v).

The steps above define the �-transformation and yield the following equation:

E� = (��, h�,��, ��;L� = R�).

Example 45. We continue with our example aXX ā = Y b̄Y ābY and the solution � which has been
given by

w0 = | a | dd̄ | b̄ | ad | d̄ | ā | b | dd̄ | ā |,

where the bars show the cuts.
Up to involution, the setC1 is given by {ad , bd , āb, dd̄} andC2 is given by {dd̄ b̄a, d̄ b̄ad , add̄ ā, dd̄ āb}.

The 1-factorization of w0 can be obtained letter by letter.
The 2-factorization of w0 is given by the following sequence:

(1, add̄ , b̄a)(dd̄ , b̄, ad) (d̄ b̄, ad , d̄ ā)

(ad , d̄ , āb) (dd̄ , ā, bd)(d̄ ā, b, dd̄)(āb, dd̄ ā, 1).

Recall that �(X) = dd̄ b̄ad and �(Y) = add̄ . Hence their 2-factorizations are (1, dd̄ , b̄a)(dd̄ , b̄, ad)
(d̄ b̄, ad , 1) and (1, add̄ , 1), respectively.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 129

Let us rename the letters:

a = (1, add̄ , b̄a)
b = (d̄ ā, b, dd̄)
c = (d̄ b̄, ad , d̄ ā)
d = (ad , d̄ , āb)
e = (dd̄ , ā, bd)

After this renaming the 2-factorization of w0 becomes ab̄cdebā and the equation E reduces to
E2 : aXcdeX ā = ab̄cdebā since the body of �(Y) is empty.

The reader can check that the 3-factorization of w0 after renaming is the very same word as the
2-factorization, but the 3-factorization of �(X) is now one letter, (1, dd̄ b̄ad , 1), so E3 becomes a trivial
equation. Plandowski’s algorithm will return true at this stage.

Remark 46. (i) In the extreme case � = m0, the �-transformation becomes trivial. Let a = (1,w0, 1).
Then a = (1,w0, 1) and �m0 = {a, a} ∪ �. Moreover, we have Lm0 = Rm0 = a, and hm0(a) = h(w0) ∈
M2n. Since �m0 = ∅, the equation with constraints Em0 trivially has a solution. It is clear that Em0 is
a node in the search graph, and if we reach Em0 , then the algorithm will return true.

(ii) The other extreme case is � = 1. We develop the technical details as an example. Consider a
triple (u,w, v) ∈ �1 which appears in F1(w0). Thenw = w0[2,4] for some 4 − 2 � 1. All maximal free
intervals have length 1 (byAssumption 44). Assume 4 − 2 � 2, then [2,4]would contain an implicit
cut : andw0[: − 1, : + 1] ∈ C1. But no critical word is a factor ofw, 4 − 2 = 1. An immediate conse-
quence is |�1| � (|�| + 1)3 ∈ O(d3), since |�| � 2d − 2. (More precisely, we could bound |�1| by 6d ,
but |�1| ∈ O(d3) is good enough for our purpose.) Let X ∈ �0. Then Body1(�(X)) /= 1 if and only if
|�(X)| � 3. Thus, for X ∈ �1 we have �(X) = bcu = vde with b, c, d , e ∈ � and u, v ∈ �+. It follows:

F1(�(X)) = (1, b, c)(b, c, v2) · · · (u|v|+1, d , e)(d , e, 1).
For example, for |v| = 1 this means b = u|v|+1, c = d , and v2 = e.

We can describe L1 ∈ �∗1 as follows:
For 1 � i � g let wi = �(xi) and ai the last letter of �(xi−1) if i > 1 and a1 = 1. Let fi the first letter

of �(xi+1) if i < g and fg = 1. Let bi the first letter of wi and ei the last letter of wi .
For |wi| = 1 we replace xi by the 1-factor (ai, bi, fi).
For |wi| = 2 we replace xi by the 1-factor (ai, bi, ei)(bi, ei, fi).
For |wi| � 3 we let ci be the second letter of wi and di its second last. In this case we replace xi

by (ai, bi, ci)xi(di, ei, fi).
The definition of R1 is analogous. Thus, we obtain |L1R1| � 3|L0R0| = 3d , and E1 is admissible.

ByRemark 46 the equationsE1 andEm0 are admissible and hence nodes of the search graph ofE0.
The goal is to reach Em0 , but it is not clear yet, neither that the �-transformations with 1 < � < m0
belong to the search graph nor that there are arcs from E0 to E1 or from E1 to E2 and so on. We
prove these statements in the next sections.

4.12. The �-transformation E� is admissible

Proposition 47. There is a polynomial p0 (of degree 4) such that each E� is admissible with respect to
p0 for all � � 1.

130 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Proof. The input size is d + n+ log2(|�| + |�0|). We have |�| + |�0| � 4d − 2 and E0 = (�, h,�0,
�0; x1 · · · xg = xg+1 · · · xd). The constraints are Boolean n× n-matrices and d is the length of the
equation. It is enough to show that L� and R� can be represented by exponential expressions of size
O(d2(d + n log n)). Then �� can have size at most O(d2(d + n log n)) and the assertion follows. We
will estimate the size of an exponential expression for L�, only.

We start again with the �-transformation

F�(w0) = (u1,w1, v1) · · · (uk ,wk , vk).
If k is small there is nothing to do since |L�| � |F�(w0)|. An easy reflection shows that |L�| can
become large, only if there is some 1 � i � g such that head�(�(xi)) or tail�(�(xi)) is long. By sym-
metry we treat the case head�(�(xi)) only and we fix some notation. We let 1 � i � g, 2 = l(i), and
4 = 2+ |head�(�(xi))|. Let

(up−1,wp−1, vp−1) · · · (uq+1,wq+1, vq+1)
be a minimal cover of [2,4]. (The definition of a minimal cover has been given at the beginning of
Section 4.11.) We may assume that q− p is large. It is enough to show that the �-factor

(up ,wp , vp) · · · (uq,wq, vq)
has an exponential expression of size in O(d(d + n log n)), because we want the whole expression to
have size in O(d2(d + n log n)).

Note that wp · · ·wq is a proper factor of head�(�(xi)). Hence no critical word of C� can appear as
a factor inside wp · · ·wq. This means there is some p � s � q such that both, |wp · · ·ws−1| < � and
|ws+1 · · ·wq| < �. Indeed, if |wp · · ·wq−1| < �, then we choose s = q. Otherwise we let p � s � q be
minimal such that |wp · · ·ws| � �. Then |ws+1 · · ·wq| � � is impossible because us+1vs ∈ C� would
appear as a factor in wp · · ·wq. We can write

(up ,wp , vp) · · · (uq,wq, vq) = S1(us,ws, vs)S2.
Since (us,ws, vs) ∈ �� is a letter, it is enough to show that there are exponential expressions for Si
of size O(d(d + n log n)) for i = 1, 2. This follows from Lemma 48 with c = 1. �

The statement of Lemma 48 is more general than needed for the proof of Proposition 47, but
later it is used for other values of c. In fact, it will be used for c � 32d .

Lemma 48. Let c > 0 be a value which might depend on d (and n) and let

S = (u1,w1, v1) · · · (uk ,wk , vk) ∈ B∗�
be a sequence which appears as some �-factor in F�(w0). If we have k � 3 or |w2 · · ·wk−1| � c�, then
the sequence S can be represented by some exponential expression of size O(cd(d + n log n)).
Proof. Clearly, we may assume k > 3. We show that there is an exponential expression of size
O(d(d + n log n)) under the assumption |w1 · · ·wk | < �. (Note that c has been removed from the

V. Diekert et al. / Information and Computation 202 (2005) 105–140 131

O–term.) This is enough, because we can write S as a0S1a1 · · · Sc′ac′ , where c′ � c, the ai are letters,
and each Si satisfies the assumption. Due to the factorization we may also assume u1 /= 1 /= vk and
therefore we may define uk+1 as the suffix of length � of u1w1 · · ·wk . For 1 � i � k let zi = ui+1vi .
Then zi ∈ C� is a critical word which appears as a factor in z = u1w1w2 · · ·wkvk . If the words zi,
1 � i < k are pairwise different, then k − 1 � |C�| ∈ O(d) and we are done. Hence we may assume
that there are repetitions. Let j be the smallest index such that a critical word is seen for the second
time and let i < j be the first appearance of zj . This means for 1 � i < j the words z1, . . . , zj−1 are
pairwise different and zi = zj . Now, |w1 · · ·wk | < � and |zi| = 2�, hence zi and zj overlap in z. We
can choose r maximal such that u1w1 · · ·wi(wi+1 · · ·wj)rvj is a prefix of the word z. (Note that the
last factor vj insures that the prefix ends with zj .) For some index s > j we can write

z = u1w1 · · ·wi(wi+1 · · ·wj)rws · · ·wkvk.
We claim that zi �∈ {zs, . . . , zk}. Indeed, let t be maximal such that zi = zt and assume that j �= t.
Then both, |wi+1 · · ·wj| and |wj+1 · · ·wt| are periods of zi, but |wi+1 · · ·wt| � |zi|. Hence by Fine and
Wilf’s Theorem [23] we obtain that the greatest common divisor of |wi+1 · · ·wj| and |wj+1 · · ·wt|
is a period, too. Due to the definition of an �-factorization (zj was the first repetition) the length
|wj+1 · · ·wt| is therefore a multiple of |wi+1 · · ·wj| and we must have t = s− 1. This shows the claim.
Moreover, we have

(u1,w1, v1) · · · (uk ,wk , vk)
= (u1,w1, v1) · · · (ui,wi, vi)[(ui+1,wi+1, vi+1) · · · (uj ,wj , vj)]r S ′

where S ′ = (us,ws, vs) · · · (uk ,wk , vk) for s = i + 1+ r(j − i) and r � 1. We have r � exp(w0), hence
r ∈ 2O(d+n log n). It follows that

(u1,w1, v1) · · · (ui,wi, vi)[(ui+1,wi+1, vi+1) · · · (uj ,wj , vj)]r

is an exponential expression of size j + �log2(r)� ∈ O(d + n log n).More precisely, we can effectively
calculate some constant c̃ such that j + �log2(r)� � c̃(d + n log2 n).

We have |{zs, . . . , zk}| < |{z1, . . . , zk}|. Therefore by induction we may assume that the sequence
S ′ = (us,ws, vs) · · · (uk ,wk , vk) has an exponential expression of size at most |{zs, . . . , zk}|̃c(d +
n) log2 n. Hence the exponential expression for S has size at most

c̃(d + n log2 n) + |{zs, . . . , zk}|̃c(d + n log2 n)
≤ |{z1, . . . , zk}|̃c(d + n log2 n).

Thus, the size is in O(d(d + n log n)). �
Remark 49. At this stage we know that all �-transformations are admissible with respect to some
suitable polynomial p0 of degree 4. Next we show that we can modify the polynomial p0 such that
the search graph also contains arcs E0 → E1 and E�→ E�′ for 1 � � < �′ � 2�. For this reason we
use the notion of admissibility with respect to the 4-th power p40 of p0. Thus, admissibility is meant
with respect to a polynomial of degree 16.

132 V. Diekert et al. / Information and Computation 202 (2005) 105–140

4.13. The arc from E0 to E1

We present the formal construction of the arc fromE0 toE1.We give all technical details since this
arc is the model for the more complicated way the other arcs are constructed in the search graph.

An explicit description ofE1 = (�1, h1,�1, �1;L1 = R1) has been given inRemark 46. The letters of
�1 can be written either as (a, b, c) or as bwith a, c ∈ � ∪ {1} and b ∈ �. We define an admissible base
change 4 : �1 → � by 4(a, b, c) = b and 4(b) = b for b ∈ �. Trivially, h1 = h4. Define E0,1 = 4∗(E1).
Then we have L0,1 = 4(L1) and R0,1 = 4(R1) where 4 : (�1 ∪�1)

∗ → (� ∪�1)
∗ is the extension with

4(X) = X for all X ∈ �1. We have �0,1 = �.
It is now obvious how to define the partial solution . : �0 → ��1� ∪ �∗ such that .∗(E0) = E0,1.

If |�(X)| � 2, then we let .(X) = �(X). For |�(X)| � 3 we write �(X) = aub with a, b ∈ � and u ∈ �+.
Then we have X ∈ �1 = �0,1 and we define .(X) = aXb and �0,1(X) = h(u). For X ∈ �1 we have, by
definition, �1(X) = h(body1(�(X))), hence �0,1 = �1, too. This shows that, indeed, .∗(E0) = 4∗(E1).
Formally, we can write this as .∗(6∗(E0)) = 4∗(E1), where 6 is the identity. This yields the arc from
E0 to E1.

4.14. The equation E�,�′ for 1 � � < �′ � 2�

To establish the arcs from E� to E�′ for all 1 � � < �′ � 2� we use an intermediate equation E�,�′
such that there is an admissible base change 4, a projection 6, and a partial solution . with

.∗(6∗(E�)) ≡ E�,�′ = 4∗(E�′).
The way we move from E� to E�′ is visualized in Fig. 2.
Webeginwith thedefinitionof thebase change4. Recall� ⊆ ��′ ⊆ B�′ ∪ �. As expected,wedefine

4(a) = a for a ∈ �. Consider some (u,w, v) ∈ ��′ \ �. It is enough to define 4(u,w, v) or 4(v,w, u).
Hence we may assume that (u,w, v) appears in the �′-factorization F�′(w0). Therefore we find a
positive interval [20,40] such that w = w0[20,40] and such that the following two conditions are
satisfied:

Fig. 2. The search graph and its neighborhood.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 133

Fig. 3. An �-factorization of uwv.

(1) We have u = 1 and 20 = 0 or |u| = �′, 20 � �′, and u = w0[20 − �′,20].
(2) We have v = 1 and 40 = m0 or |v| = �′, 40 � m0 − �′, and v = w0[40,40 + �′].

Let (up ,wp , vp) · · · (uq,wq, vq) be the �-factor which is the minimal cover of [20,40] with respect
to the �-factorization F�(w0). Since � � �′ we have wp · · ·wq = w. Moreover, the word up is a suffix
of u and vq is a prefix of v. We define

4(u,w, v) = (up ,wp , vp) · · · (uq,wq, vq) ∈ B+� .
We have the picture shown in Fig. 3.
The definition does not depend on the choice of [20,40] as long as 0 � 20 < 40 � m0 and (1) and

(2) are satisfied.We have 4(u,w, v) = 4(v,w, u) and h�4 = h�′ . Now let ��,�′ ⊆ B� ∪ � be the smallest
subset such that 4(��′) ⊆ �∗�,�′ . Then ��,�′ contains � and it is closed under involution (since ��′ has
this property). An easy reflection shows that �� ⊆ ��,�′ . This will become essential in Section 4.15.

We view 4 as a morphism 4 : �∗�′ → �∗�,�′ and we have h�,�′4 = h�. Define E�,�′ = 4∗(E�′). Then
E�,�′ = (��,�′ , h�,�′ ,��′ , ��′ ;4(L�′) = 4(R�′).

Let us show that 4 is admissible. Since E�′ is already known to be admissible with respect to some
polynomial of degree 4, it is enough to find some admissible exponential expression (again with
respect to some polynomial of degree 4) for the �-factor above

4(u,w, v) = (up ,wp , vp) · · · (uq,wq, vq).
Using the same terminology as above there is some positive interval [20,40] such thatwp · · ·wq =

w0[20,40], the word u is a suffix of w0[0,20], and v is a prefix of w0[40,m0]. If q− p is small, there
is nothing to do. By Lemma 48 we may also assume that 40 − 20 > 32d�. We inductively define a
sequence of positions

20 � 21 � · · · � 2i � · · · � 4i � · · · � 41 � 40.

In each step we let Wi = w0[2i,4i]. Thus, W0 = wp · · ·wq. Assume that Wi = w0[2i,4i] is already
defined such that 4i − 2i � 2. The interval [2i,4i] is not free. Hence, there is some implicit cut :i
with 2i < :i < 4i . The word Wi is a factor of w, hence no factor of Wi belongs to the set of critical
words C�′ . This implies 4i − :i < �′ or :i − 2i < �′. If we have 4i − :i < �′ then we let 2i+1 = 2i and
4i+1 = :i . In the other case we let 2i+1 = :i and 4i+1 = 4i . Thus Wi+1 is defined such that Wi+1 is a
proper factor of Wi with |Wi| − |Wi+1| < �′.

We need some additional book keeping. We define ri ∈ {l, r} by ri = r if 4i = 4i+1 and ri = l
otherwise (i.e., 2i = 2i+1). Furthermore the implicit cut :i corresponds to some real cut : ′i and

134 V. Diekert et al. / Information and Computation 202 (2005) 105–140

2′i < : ′i < 4′i such that Wi = w0[2′i,4′i] or Wi = w0[4′i,2′i]. We define si ∈ {+,−} by si = + if Wi =
w0[2′i,4′i] and si = − otherwise (in particular, si = − implies Wi = w0[2′i,4′i]). The triple (: ′i , ri, si) is
denoted by :(i). There are at most 4(d − 2) such triples and :(i) is defined wheneverWi+1 is defined.
We stop the induction procedure after the first repetition of some :(i). Thus we find 0 � i < j < 4d
such that :(i) = :(j).We obtain a sequenceW0,W1, . . . ,Wi, . . . ,Wj where eachword is a proper factor
of the preceding one. We have |W0| − |Wj| < 4d�′ � 8d� and due to |W0| > 32d� the sequence above
really exists, moreover |Wj| > 24d�.

Next, we show that Wj has a non-trivial overlap with itself. We treat the case :(i) = :(j) =
(: , r,+) only. The other three cases (: , r,−), (: , l,+), and (: , l,−) can be treated analogously. For
some 2′ < : < 4′ we have Wi = w0[2′,4′] and Wi+1 = w0[: ,4′]. Thus, for some : � 8 < 9 � 4′
we have Wj = w0[8, 9] and we can assume that 8− : < (j − i)�′ � 4d�′ − �′ � 8d�− �′. On the
other hand we have :(j) = (: , r,+), too. Hence for some 8′ < : < 9′ with : − 8′ < �′ we have
Wj = w0[8′, 9′], too. Therefore 0 < 8− 8′ < 8d� and Wj has some non-trivial overlap. We may
chooseW = w0[8′,8] and it follows that we can writeWj = W eW ′ such that 1 � |W | < 8d� andW ′
is a prefix of W .

Putting everything together,we arrive in all cases at a factorizationW0 = UW eV with e � exp(w0),
1 � |W | < 8d�, and |U | + |V | < 16d�.

We have not finished yet. Recall that we are looking for an admissible exponential expression for

4(u,w, v) = (up ,wp , vp) · · · (uq,wq, vq).
Due to |W0| > � we can choose r minimal, p < r � q+ 1, and s maximal p − 1 � s < q such that
|wp · · ·wr−1| > |U | + � and |ws+1 · · ·wq| > |V | + �. By Lemma 48 we may assume r < s and it is
enough to find an exponential expression for

S = (ur ,wr , vr) · · · (us,ws, vs).
Note that the word urwrwr+1 · · ·wsvs is a factor of W e. Hence we may factorize W = W ′W ′′ in such
a way that after replacing W by W ′′W ′, we may assume that urwrwr+1 · · ·wsvs is in fact a prefix
of W e. Furthermore, we may assume that wrwr+1 · · ·ws > 32d� and by symmetry we may choose
some positive interval [20,40] such that w0[20,40] = urwrwr+1 · · ·wsvs. Clearly, we have w0[i, j] =
w0[i + |W |, j + |W |] for all 20 � i < j � 40 − |W |. In particular, the critical word w0[20,20 + 2�]
appears as w0[20 + |W |,20 + 2�+ |W |] again. This means that there is some r � t < s such that
|wr · · ·wt| = |W |. More precisely, we can choose r � t < t′ � s and a maximal e′ � e such that

S = (
(ur ,wr , vr) · · · (ut ,wt , vt)

)e′
(ut′ ,wt′ , vt′) · · · (us,ws, vs).

Since e′ � exp(w0), |wr · · ·wt| = |W |, and |wt′ · · ·ws| � |W |, the existence of an admissible exponen-
tial expression for 4(u,w, v) follows. Hence 4 is an admissible base change.

4.15. Passing from E� to E�,�′ for 1 � � < �′ � 2�

In the final step we have to show that there exists some projection 6 : �∗�,�′ → �∗� and some partial
solution . : ��→ �∗�,�′��′�

∗
�,�′ ∪ �∗�,�′ such that .∗(6∗(E�)) ≡ E�,�′ . We don’t have to worry about

admissibility anymore. Once .∗(6∗(E�)) ≡ E�,�′ is established, Theorem 8 is proved.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 135

For the definition of the projection 6 consider a letter in ��,�′ \ ��. Such a letter has the form
(u,w, v) ∈ B� withw ∈ �+. There is no length bound onw known (or needed).We define 6(u,w, v) =
w and this is possible since � ⊆ ��.

Clearly6((u,w, v)) = 6(u,w, v) and h�,�′(u,w, v) = h(w) = h�(6(u,w, v)). Thus,6 : �∗�,�′ → �∗� de-
fines a projection such that

6∗(E�) = (��,�′ , h�,�′ ,��, ��;L� = R�).

We have to define a partial solution . : ��→ �∗�,�′��′�
∗
�,�′ ∪ �∗�,�′ such that .(L�) = 4(L�′) and

.(R�) = 4(R�′). For this, we have to consider a variable X ∈ � with body�(�(X)) /= 1. By symmetry,
we may assume that X = xi for some 1 � i � g. Hence �(X) = w0[l(i), r(i)].

Let 2X = l(i)+ |head�(�(X))| and 4X = r(i)− |tail�(�(X))|. Then l(i)+ � � 2X < 4X � r(i)− �.
Let (up ,wp , vp) · · · (uq,wq, vq) be the minimal cover of [2X ,4X] with respect to the �-factorization.
We have wp · · ·wq = body�(�(X)).

For body�′(�(X)) = 1 we have X ∈ �� \��′ and we define

.(X) = (up ,wp , vp) · · · (uq,wq, vq).

It follows that .(X) ∈ B∗� and h�.(X) = ��(X), since ��(X) = h(body�(�(X))). It is also clear that the
definition does not depend on the choice of i, and we have .(X) = .(X).

Recall the definition of L�′ . Since body�′(�(X)) = 1, there is a factor f1 · · · fr of L�′ which belongs
to �∗�′ and f1 · · · fr covers [2X ,4X] with respect to the �′-factorization F�′(w0). It follows that .(X)
is a factor of 4(f1 · · · fr), hence .(X) ∈ �∗�,�′ by definition of ��,�′ .

For body�′(�(X)) /= 1 we have X ∈ ��′ and we find positions 8 < 9 such that 8 = l(i)+
|head�′(�(X))| and 9 = r(i)− |tail�′(�(X))|.

For some p � r � s � q we have w0[2X ,8] = wp · · ·wr−1, w0[9,4X] = ws+1 · · ·wq, and
body�′(�(X)) = wr · · ·ws. We define

.(X) = (up ,wp , vp) · · · (ur−1,wr−1, vr−1)X(us+1,ws+1, vs+1) · · · (uq,wq, vq).

As above, we can verify that .(X) = UXV with U , V ∈ �∗�,�′ such that .(X) = V X U and ��(X) =
h�,�′(U)��′(X)h�,�′(V). Finally, .(L�) = 4(L�′) and .(R�) = 4(R�′). Hence .∗(6∗(E�)) ≡ 4∗(E�′). The
final step in proving Theorem 8 is completed.

5. Concluding remarks

The Pspace-hardness stated in Theorems 3, 5, and 8 is due to rational constraints, but this is
a side effect and a nice coincidence, only. The reason to include constraints has been motivated
by possible applications to free partially commutative groups (graph groups). When Matiyasevich
showed in 1996 that the existential theory of equations in free partially commutative monoids (trace
monoids) is decidable [29,30,7], it became clear by his method that regular constraints are a power-
ful tool in order to extend decidability results to other algebraic structures and, in particular, they
are necessary for extending Makanin’s result from free groups to graph groups. At that time the

136 V. Diekert et al. / Information and Computation 202 (2005) 105–140

result of Schulz [38] on word equations with regular constraints had been available but no such
analogue for equations in free groups was known. So, the idea was to look for such an analogue
first. Inspired by Gutierrez [15] we were finally led to investigate free monoids with involution and
regular constrains. This approach turned out to be fruitful. Based on Theorem 5 of this paper (the
results date back to the year 2000) it is shown in [8] that the existential theory of equations in graph
groups is decidable. This result is a common generalization of Matiyasevich’s decidability result on
trace monoids andMakanin’s result on free groups. In a continuation of this work on graph groups
we obtained various other decidability results about the existential and positive theories in graph
products, see [5,6].

Makanin has also shown that the positive theory in free groups is decidable [26]. It remains de-
cidable with recognizable constraints [6]. In contrast, the positive theory of equations with rational
constraints is undecidable in free groups, because the positive ∀∃3-theory of word equations is
undecidable [27,9] and �∗ is a rational subset of the free group F(�). So the question remains
under which restricted type of constraints the positive theory of equations in free groups remains
decidable.

6. Appendix. Proof of Proposition 15

We first repeat the statement of Proposition 15:
LetE = (�, h,�, �;L = R) be a solvable equation with constraints. Then there is a solution � : �→

�∗ such that exp(�(L)) ∈ 2O(d+n log n).

Proof. Let p ∈ �+ be a primitive word. This means that p /= rk for all k > 1 and r ∈ �∗. In the fol-
lowing we also write p−1 instead of p . Then, p−3 for example means the same as p3. The definition
of the p-stable normal form depends on whether or not p is a factor of p2. So we distinguish two
cases.

First case. We assume that p is not a factor of p2. The idea is to replace each maximal factor
of the form p2 with 2 � 2 by a sequence p ,2− 2, p and each maximal factor of the form p2 with
2 � 2 by a sequence p ,−(2− 2), p .

The p-stable normal form (first kind) of w ∈ �∗ is a shortest sequence (k is minimal)

(u0, ε121, u1, . . . , εk2k , uk)

such that k � 0, u0, ui ∈ �∗, εi ∈ {+1,−1}, 2i � 0 for 1 � i � k , and the following conditions are
satisfied:

• w = u0pε121u1 · · · pεk2k uk .
• k = 0 if and only if neither p2 nor p2 is a factor of w.
• If k � 1, then:

u0 ∈ �∗pε1 \ �∗p±2�∗,
ui ∈ (�∗pεi+1 ∩ pεi�∗) \ �∗p±2�∗ for 1 � i < k ,

uk ∈ pεk�∗ \ �∗p±2�∗.

V. Diekert et al. / Information and Computation 202 (2005) 105–140 137

If (u0, ε121, u1, . . . , εk2k , uk) is the p-stable normal form of the word w, then the p-stable normal
form of the word w becomes (uk ,−εk2k , uk−1, . . . ,−ε121, u0).
Example 50. Let p = aabaa with b �= b and w = p4baap−1aabp−2. Then the p-stable normal form
of w is:

(aabaa, 2, aabaabaa,−1, aabaabaa, 0, aabaa).
Second case.We assume that p is a factor of p2. Then we can write p = rs with p = sr and r = r,

s = s. We allow r = 1, hence the second case includes the case p = p . In fact, if r = 1, then below we
obtain the usual definition of p-stable normal form, compare e.g. with [3].

The idea is to replace eachmaximal factor of the form (rs)2rwith2 � 2 by a sequence rs,2− 2, sr.
In this notation 2− 2 is representing the factor (rs)2−2r = p2−2r = rp2−2 = rp2−2.

The p-stable normal form (second kind) of w ∈ �∗ is the shortest sequence (k is minimal)

(u0,21, u1, . . . ,2k , uk)

such that k � 0, u0, ui ∈ �∗, 2i � 0 for 1 � i � k , and the following conditions are satisfied:

• w = u0p21ru1 · · · p2k ruk .
• k = 0 if and only if p2r is not a factor of w.
• If k � 1, then:
u0 ∈ �∗rs \ (�∗p2r�∗ ∪ �∗rsrs),
ui ∈ (�∗rs ∩ sr�∗) \ (srsr�∗ ∪ �∗p2r�∗ ∪ �∗rsrs) for 1 � i < k ,
uk ∈ sr�∗ \ (�∗p2r�∗ ∪ srsr�∗).

Since rs = sr, the p-stable normal form of w becomes

(uk ,2k , uk−1, . . . ,21, u0).

So, for the second kind no negative integers interfere.

Example 51. Let p = aab with b = b. Then r = aa and s = b. Let w = abp4ap3a. Then the p-stable
normal form of w is:

(abaab, 1, baabaaab, 0, baaba).

In both cases we can write the p-stable normal form of w as a sequence

(u0,21, u1, . . . ,2k , uk)

where ui are words and 2i are integers.
It is well-known [28] that for Boolean matrices A ∈ �n×n we have An! = An!An!. Hence the matrix

An! is idempotent. For the following we define and fix c(M2n) = max{4, n!}. This choice guarantees
h(uvc(M2n)w) = h(uv2c(M2n)w) for all u, v,w ∈ �∗ and all h : �∗ → M2n and, of course, c(M2n) � 3.
The fact c(M2n) � 3 is used at some point below.

138 V. Diekert et al. / Information and Computation 202 (2005) 105–140

Now, let w,w′ ∈ �∗ be two words whose p-stable normal forms are identical up to the position
of the ith integer. Assume that in the p-stable normal w at this position there is the integer 2i and
that for w′ at this position there is 2′i . We know h(w) = h(w′) as soon as the following conditions
are satisfied: 2i · 2′i > 0, |2i| � c(M2n), |2′i| � c(M2n), and 2i ≡ 2′i (mod c(M2n)). It is therefore
convenient to change the syntax of the p-stable normal form. Each non-zero integer 2′ is written as
2′ = ε(q+ 2c(M2n)) where ε, q,2 are uniquely defined by ε ∈ {+1,−1}, 0 � q < c(M2n), and 2 � 0.
For 2′ = 0 we may choose ε = q = 2 = 0. The values ε, q, and c(M2n) are viewed as constants, if
2 = 0, then it is viewed as a constant, too. Otherwise, if 2 � 1, then we view 2 as a variable ranging
over positive integers.

Let u, v, and w be words such that uv = w holds. Write these words in their p-stable normal
forms:

u: (u0, ε1(q1 + 21c(M2n)), u1, . . . , εk(qk + 2kc(M2n)), uk),
v: (v0, ε′1(s1 + 41c(M2n)), v1, . . . , ε′�(s� + 4�c(M2n)), v�),
w: (w0, ε′′1 (t1 + :1c(M2n)),w1, . . . , ε′′m(tm + :mc(M2n)),wm).

Since uv = w there are many identities. For example, for k , � � 2 we have u0 = w0, vl = wm,
q1 = t1, 21 = :1, etc. What exactly happens depends only on the p-stable normal form of the prod-
uct ukv0. There are several cases, which can be listed easily. We treat only one of them, which is
in some sense the most difficult one: We treat the case p = rs with r = r and s = s. It may lead
to a large exponent of periodicity. It might be that uk = srsr1 and v0 = r2srs with r1r2 = r (and
r1 �= 1 �= r2). Hence, we have ukv0 = sp3 and k + � = m+ 1. It follows that 21 = :1, . . . ,2k−1 = :k−1,
42 = :k+1, . . . ,4� = :m, and there is only one non-trivial identity:

qk + s1 + 4+ (2k + 41)c(M2n) = tk + :kc(M2n).

Since by assumption c(M2n) � 3, the case ukv0 = sp3 leads to the identity:

:k = 2k + 41 + c with c ∈ {0, 1, 2}.
Assume now that 2k � 1 and 41 � 1. If we replace 2k , 41, and :k by some 2′k � 1, 4′1 � 1, and

: ′k � 1 such that we still have : ′k = 2′k + 4′1 + c, then we obtain new words u′, v′, and w′ with the
same images under h in M2n and the identity u′v′ = w′ remains true.

The following step is completely analogous to what has been done in detail in [20,16,17,3]. Using
the p-stable normal formwe can associate with an equation L = R of denotational length d together
with its solution � : �→ �∗ some linearDiophantine system of d equations in at most 3d variables.
The variables range over positive natural numbers.

The parameters of this system are such that the maximal size of a minimal solution (with
respect to the component wise partial order of �d) is in O(21.6d) with the same approach as
in [20]. This tight bound is based in turn on the work of [12]; a more moderate bound 2O(d)

(which is enough for our purposes) is easier to obtain, see e.g. [3]. The maximal size of a min-
imal solution of the linear Diophantine system translates back into a bound on the exponent
of periodicity. For this translation we have to multiply the bound using the factor c(M2n) and
to add c(M2n)+ 1. Putting everything together we obtain the claim of the proposition since
c(M2n) ∈ 2O(n log n). �

V. Diekert et al. / Information and Computation 202 (2005) 105–140 139

Acknowledgments

The authors thank the anonymous referees and Géraud Sénizergues for detailed comments
which helped to improve the presentation of the paper. The research has been supported partly by
the German Research Foundation, Deutsche Forschungsgemeinschaft, DFG within the project em
GWSS. In addition,ClaudioGutierrez thanks theCentro deModelamientoMatemático, FONDAP
Matemáticas Discretas, for financial support.

References

[1] M. Benois, Parties rationelles du groupe libre, C.R. Acad. Sci. Paris, Sér. A 269 (1969) 1188–1190.
[2] J. Berstel, Transductions and Context-free Languages, Teubner Studienbücher, Stuttgart, 1979.
[3] V. Diekert, Makanin’s Algorithm, in: M. Lothaire (Ed.), Algebraic Combinatorics on Words, volume 90 of Ency-

clopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2002, pp. 387–442, Chapter
12.

[4] V. Diekert, C. Gutierrez, C. Hagenah, The existential theory of equations with rational constraints in free groups
is PSPACE-complete, in: A. Ferreira, H. Reichel (Eds.), Proceedings of the 18th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’01), Dresden (Germany), 2001, Lecture Notes in Computer Science, vol. 2010,
Springer-Verlag, Berlin, 2001, pp. 170–182.

[5] V. Diekert, M. Lohrey. Word equations over graph products, in: P.K. Pandya, J. Radhakrishnan (Eds.), Proceedings
of the 23rd Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2003),
Mumbai (India), Lecture Notes in Computer Science, vol. 2914, Springer-Verlag, Berlin, 2003, pp. 156–167.

[6] V. Diekert, M. Lohrey, Existential and positive theories of equations in graph products, Theory Comput. Syst. 37
(2004) 133–156.

[7] V. Diekert, Yu. Matiyasevich, A. Muscholl, Solving word equations modulo partial commutations, Theoretical
Comput. Sci. 224 (1999) 215–235, Special issue of LFCS’97.

[8] V. Diekert, A. Muscholl. Solvability of equations in free partially commutative groups is decidable, in: F. Orejas,
P.G. Spirakis, J. van Leeuwen (Eds.), Proceedings of the 28th International Colloquium on Automata, Languages
and Programming (ICALP’01), Lecture Notes in Computer Science, vol. 2076, Springer-Verlag, Berlin Heidelberg,
2001, pp. 543–554.

[9] V.G. Durnev, Undecidability of the positive ∀∃3-theory of a free semi-group. SibirskyMatematicheskie Jurnal, 36(5)
(1995) 1067–1080 (In Russian; English translation: Sib. Math. J. 36(5) (1995) 917–929).

[10] S. Eilenberg, Automata, Languages, and Machines, volume A. Academic Press, New York and London, 1974.
[11] M.R.Garey,D.S. Johnson,Computers and Intractability:AGuide to theTheoryofNP-Completeness,W.H.Freeman

and Company, San Francisco, 1979.
[12] J. von zur Gathen, M. Sieveking, A bound on solutions of linear integer equalities and inequalities, Proc. Am. Math.

Soc. 72 (1) (1978) 155–158.
[13] Y. Gurevich, A. Voronkov, Monadic simultaneous rigid E-unification and related problems, in: P. Degano, R. Gor-

rieri, A. Marchetti-Spaccamela (Eds.), Proceedings of the 24th International Colloquium on Automata, Languages
and Programming (ICALP’97), Bologna, Lecture Notes in Computer Science, vol. 1256, Springer-Verlag, Berlin
Heidelberg, 1997, pp. 154–165.

[14] C. Gutierrez, Satisfiability of word equations with constants is in exponential space, in: Proceedings of the 39th
Annual Symposium on Foundations of Computer Science (FOCS’98), Los Alamitos (California), EEE Computer
Society Press, 1998, pp. 112–119.

[15] C.Gutierrez, Equations in free semigroupswith anti-involution and their relation to equations in free groups, in:G.H.
Gonnet, D. Panario, A. Viola (Eds.), Proceedings Latin American Theoretical INformatics, LATIN’2000, Lecture
Notes in Computer Science, vol. 1776, Springer-Verlag, Berlin, 2000, pp. 387–396.

[16] C. Gutierrez, Satisfiability of equations in free groups is in PSPACE, in: Proceedings 32nd Annual ACMSymposium
on Theory of Computing, STOC’2000, ACM Press, 2000, pp. 21–27.

140 V. Diekert et al. / Information and Computation 202 (2005) 105–140

[17] C.Hagenah,Gleichungenmit regulärenRandbedingungen über freienGruppen, Ph.D. thesis, Institut für Informatik,
Universität Stuttgart, 2000.

[18] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley,
Reading, MA, 1979.

[19] J. Karhumäki, F. Mignosi, W. Plandowski, The expressibility of languages and relations by word equations, J. Assoc.
Comput. Machinery 47 (2000) 483–505.

[20] A. Kościelski, L. Pacholski, Complexity ofMakanin’s algorithm, J. Assoc. Comput.Machinery 43 (4) (1996) 670–684.
[21] A. Kościelski, L. Pacholski, Makanin’s algorithm is not primitive recursive, Theoretical Comput. Sci. 191 (1998)

145–156.
[22] D. Kozen, Lower bounds for natural proof systems, in: Proceedings of the 18th Annual Symposium on Foundations

of Computer Science, FOCS’77, Providence, Rhode Island, IEEE Computer Society Press, 1977, pp. 254–266.
[23] M.Lothaire,Combinatorics onwords, in:Encyclopedia ofMathematics and itsApplications, vol. 17Addison-Wesley,

Reading, MA, 1983, Reprinted by Cambridge University Press, 1997.
[24] G.S. Makanin, The problem of solvability of equations in a free semigroup. Math. Sbornik, 103 (1977) 147–236.

English transl. in Math. USSR Sbornik 32 (1977).
[25] G.S. Makanin, Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46 (1982) 1199–1273. English transl. in

Math. USSR Izv. 21 (1983).
[26] G.S. Makanin, Decidability of the universal and positive theories of a free group. Izv. Akad. Nauk SSSR, Ser. Mat.

48 (1984) 735–749. In Russian; English translation in: Math. USSR Izvestija, 25 (1985) 75–88.
[27] S.S. Marchenkov, Unsolvability of positive ∀∃-theory of a free semi-group, Sibirsky Matematicheskie Jurnal 23 (1)

(1982) 196–198, In Russian.
[28] G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum 13 (1977)

253–259.
[29] Yu.Matiyasevich, Reduction of trace equations toword equations. Talk given at the “ColloquiumonComputability,

Complexity, and Logic”, Institut für Informatik, Universität Stuttgart, Germany, Dec. 5–6, 1996.
[30] Yu. Matiyasevich, Some decision problems for traces, in: S. Adian, A. Nerode (Eds.), Proceedings of the 4th Inter-

national Symposium on Logical Foundations of Computer Science (LFCS’97), Yaroslavl, Russia, July 6–12, 1997,
Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, Berlin Heidelberg, 1997, pp. 248–257. Invited lecture.

[31] Yu.I. Merzlyakov, Positive formulae over free groups, Algebra i Logika 5 (4) (1966) 25–42, In Russian.
[32] W. Plandowski, Testing equivalence of morphisms on context-free languages, in: J. van Leeuwen (Ed.), Algorithms—

ESA’94, Second Annual European Symposium, Lecture Notes in Computer Science, vol. 855, Utrecht, The Nether-
lands, Springer, 1994, pp. 460–470.

[33] W. Plandowski, Satisfiability of word equations with constants is in NEXPTIME, in: Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, STOC’99, ACM Press, 1999, pp. 721–725.

[34] W. Plandowski, Satisfiability of word equations with constants is in PSPACE, in: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, FOCS’99, IEEE Computer Society Press, 1999, pp. 495–500.

[35] W. Plandowski, Satisfiability of word equations with constants is in PSPACE, J. Assoc. Comput.Machinery 51 (2004)
483–496.

[36] W. Plandowski, W. Rytter, Application of Lempel-Ziv encodings to the solution of word equations, in: K.G. Lar-
sen et al., (Eds.), Proceedings of the 25th International Colloquium on Automata, Languages and Programming
(ICALP’98), Aalborg (Denmark), 1998, Lecture Notes in Computer Science, vol. 1443, Springer-Verlag, Berlin
Heidelberg, 1998, pp. 731–742.

[37] A.A. Razborov, On systems of equations in a free group. Izv. Akad. Nauk SSSR, Ser. Mat. 48:779–832, 1984. In
Russian; English translation in: Math. USSR Izvestija, 25 (1985) 115–162.

[38] K.U. Schulz, Makanin’s algorithm for word equations—Two improvements and a generalization, in: K.U. Schulz
(Ed.), Word Equations and Related Topics, Lecture Notes in Computer Science, vol. 572, Springer-Verlag, Berlin
Heidelberg, 1991, pp. 85–150.

