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Abstract

The aim of this paper is to present a PSPACE algorithm which yields a finite graph of
exponential size and which describes the set of all solutions of equations in free groups as
well as the set of all solutions of equations in free monoids with involution in the presence
of rational constraints. This became possible due to the recently invented recompression
technique of the second author.

While the recompression technique was successfully applied for pure word equations
without involution or rational constraints it could not be used as a black box for free groups
(even without rational constraints). Actually, the presence of an involution (inverse ele-
ments) and rational constraints complicates the situation and some additional analysis is
necessary. Still, the recompression technique is general enough to accommodate both ex-
tensions. In the end, it simplifies proofs that satisfiability of word equations is in PSPACE
(Plandowski 1999) and the corresponding result for equations in free groups with rational
constraints (Diekert, Hagenah and Gutiérrez 2001). As a by-product we obtain a direct
proof that it is decidable in PSPACE whether or not the solution set is finite. 1
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Introduction

A word equation is a simple object. It consists of a pair (U, V ) of words over constants
and variables and a solution is a substitution of the variables by words in constants such that
U and V become identical words. The study of word equations has a long tradition. Let
WordEquation be the problem of deciding whether a given word equation has a solution. It is

1A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7-11,
2014.
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fairly easy to see that WordEquation reduces to Hilbert’s 10th Problem (in Hilbert’s famous
list presented in 1900 for his address at the International Congress of Mathematicians).
Hence in the mid 1960s the Russian school of mathematics outlined the roadmap to prove
undecidability of Hilbert 10th Problem via undecidability of WordEquation. The program
failed in the sense that Matiyasevich proved Hilbert’s 10th Problem to be undecidable in
1970, but by a completely different method, which employed number theory. The missing
piece in the proof of the undecidability of Hilbert’s 10th Problem was based on methods due
to Robinson, Davis, and Putnam [22]. On the other hand, in 1977 Makanin showed in a
seminal paper [18] that WordEquation is decidable! The program went a different way, but
its outcome were two major achievements in mathematics. Makanin’s algorithm became
famous since it settled a long standing problem and also because his algorithm had an
extremely complex termination proof. In fact, his paper showed that the existential theory
of equations in free monoids is decidable. This is close to the borderline of decidability as
already the ∀∃3 positive theory of free monoids is undecidable [8]. Furthermore Makanin
extended his results to free groups and showed that the existential and positive theories in
free groups are decidable [19, 20]. Later Razborov was able in [28] (partly shown also in
[29]) to describe the set of all solutions for systems of equations in free groups (see also
[15] for a description of Razborov’s work). This line of decidability results culminated in
the proof of Tarski’s conjectures by Kharlampovich and Myasnikov. In a series of papers
ending in [16] they showed: 1.) The elementary theory of free groups is decidable. 2.) Free
non-abelian groups are elementary equivalent. The second result has also been shown by
Sela [32], independently.

Another branch of research was to extend Makanin’s result to more general algebraic
structures including free partially commutative monoids [21, 6], free partially commutative
monoids with involution, graph groups (also known as right-angled Artin groups) [7], graph
products [5], and hyperbolic groups [30, 2]. In all these cases the existential theory of
equations is decidable. Proofs used the notion of equation with rational constraints, which
was first developed in the habilitation of Schulz [31]. The concept of equation with rational
constraints is used also throughout the present paper.

In parallel to these developments there were drastic improvements in the complexity of
deciding WordEquation. It is fairly easy to see that the problem is NP-hard. Thus, NP is
a lower bound. First estimations for the time complexity on Makanin’s algorithm for free
monoids led to a tower of several exponentials, but it was lowered over time to EXPSPACE in
[10]. On the the other hand it was shown in [17] that Makanin’s algorithm to solve equations
in free groups is not primitive recursive. (Already in the mid 1990 this statement was some-
how puzzling and counter-intuitive, as it suggested a strange crossing of complexities: The
existential theory in free monoids seemed to be easier than the one in free groups, whereas
it was already known at that time that the positive theory in free monoids is undecidable,
but decidable in free groups.) The next important step was done by Plandowski and Ryt-
ter, whose approach [27] was the first essentially different than Makanin’s original solution.
The main idea was to apply compression to WordEquation and the result was that the
length-minimal solution of a word equation compresses well, in the sense that Lempel-Ziv
encoding, which is a popular practical standard of compression, of such a solution is expo-
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nentially smaller than the solution itself (if the solution is at least exponential in the length
of the equation). This yielded an npoly(n, logN) algorithm for length n WordEquation with
a length-minimal solution of length N , note that at that time the only available bound on
N was the triply exponential bound by Makanin. Still, this result prompted Plandowski
and Rytter to formulate a (still open) conjecture that WordEquation is NP-complete.

Soon after a doubly exponential bound on N was shown by Plandowski [23], this bound
in particular used the idea of representing the solutions in a compressed form (in fact, the
equation as well is kept in a compressed form) as well as employing a novel type of factori-
sations. Exploiting better the interplay between factorisations and compression Plandowski
showed that WordEquation is in PSPACE, i.e., it can be solved in polynomial space and
exponential time [24]. His method was quite different from Makanin’s approach and more
symmetric. Furthermore, it could be also used to generate all solutions of a given word
equation [25], however, this required nontrivial extensions of the original method.

Using Plandowski’s method Gutiérrez showed that satisfiability of equations in free
groups is in PSPACE [11], which led Diekert, Hagenah and Gutiérrez to the result that the
existential theory of equations with rational constraints in free groups is PSPACE-complete
[4]. Without constraints PSPACE is still the best upper bound, although the existential
theories for equations in free monoids (with involution) and free groups are believed to be
NP-complete. Since this proof generalized Plandowski’s satisfiability result [24], it is tempt-
ing to also extend the generator of all solutions [25]. Indeed, Plandowski claimed that his
method applies also to free groups with rational constraints, but he found a gap in his
generalization [26].

However in 2013 another substantial progress in solving word equations was done due
to a powerful recompression technique by Jeż [14]. His new proof that WordEquation is
in PSPACE simplified the existing proofs drastically. In particular, this approach could
be used to describe the set of all solutions rather easily, so the previous construction of
Plandowski [25] was simplified as well.

What was missing however was the extension to include free monoids with involution and
therefore free groups and another missing block was the the presence of rational constraints.
Both extensions are the subject of the present paper.

Outline
We first follow the approach of [4] how to (bijectively) transform (in polynomial time)

the set of all solutions of an equation with rational constraints over a free group into a set of
all solutions of an equation with regular constraints over a free monoid with involution, see
Section 1.2. Starting at that point in Section 2 we formulate the main technical claim of the
paper: (effective) existence of a procedure that transforms equations over the free monoid
and (roughly speaking) keeps the set of solutions as well as does not increase the size of
the word equation; in particular in this section we make all the intuitive statements precise.
Moreover, we show how this procedure can be used to create a PSPACE-transducer which
produces a finite graph (of exponential size) describing all solutions and which is nonempty if
and only if the equation has at least one solution. Moreover, the graph also encodes whether
or not there are finitely many solutions, only. The technique of recompression simplifies
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thereby [4] and it yields the important new feature that we can describe all solutions. The
next Section 3 is devoted to a proof of the statements from Section 2: we formalize, what
type of factors we compress, see Section 3.2, and how to compress them. Lastly, in Section 4,
we show that a slight modification of our method also provides an O(n3 logN) upper bound
on the (non-deterministic) running time in case of a free group, where n is a size of the
equation and N the length of the length-minimal solution.

1. Preliminaries

As already mentioned, the general plan is to reduce the problem of word equation with
regular constraints over free group to the problem of word equation with regular constraints
over a free monoid with an involution and give an algorithm for the latter problem. In
this section we first introduce all notions regarding the word equation over the free monoid,
see Section 1.1, and only afterwards the similar notions for a free group together with the
reduction of the latter scenario to the former one, see Section 1.2.

1.1. Word equations over a free monoid with involution
Let A and Ω be two finite disjoint sets, called the alphabet of constants and the alphabet

of variables (or unknowns), respectively. For the purpose of this paper A and Ω are endowed
with an involution, which is a mapping such that x = x for all elements. In particular, an
involution is a bijection. If involution is defined for a monoid, then we additionally require
that xy = y x for all its elements x, y. This applies in particular to a free monoid A∗ over a
set with involution: For a word w = a1 · · · am we thus have w = am · · · a1. If a = a for all
a ∈ A then w simply means to read the word from right-to-left. It is sometimes useful to
consider involution closed sets, i.e., such that S = S.

A word equation is a pair (U, V ) of words over A∪Ω, often denoted by U = V . A solution
σ of a word equation U = V is a substitution σ of unknowns in Ω by words over constants,
such that the replacement of unknowns by the substituted words in U and in V give the
same word. Moreover, as we work with involutions we additionally demand that the solution
satisfies σ(X) = σ(X) for all X ∈ Ω. If an equation does not have simultaneous occurrences
of X and X where X 6= X then this additional requirement is vacuous. A solution is non-
empty, if σ(X) 6= ε for every variable X such that X or X occurs in the equation. During the
proof we will consider only non-empty solutions. This is non-restrictive, as we can always
non-deterministically guess the variables that are assigned ε by a solution and remove such
variables from the equation. On the other hand, it is useful to assume that a solution assigns
ε to each variable X such that neither X, nor X occur in the equation: during the algorithm
we remove the variables that are assigned ε in the solution. Nevertheless, we need to know
the substitution for such X, as we create the set of all solutions by backtracking.

Example 1. Let Ω =
{
X, Y,X, Y

}
and A = {a, b} with b = a. Then XabY = Y baX

behaves as a word equation without involution One of its solutions is the substitution
σ(X) = bab, σ(Y ) = babab. Under this substitution we have σ(X)abσ(Y ) = bababbabab =
σ(Y )baσ(X). It can be proved that the solution set of the equation XabY = Y baX is closely
related to Sturmian words [13].
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The notion of word equation immediately generalizes to a system of word equations
(U1, V1), . . . , (Us, Vs). In this case a solution σ must satisfy all (Ui, Vi) simultaneously. How-
ever, such a system can be reduced to a single equation (U1a · · ·UsaU1b · · ·Usb, V1a · · ·VsaV1b · · ·Vsb)
where a, b are fresh constants with a 6= b. To see the correctness of the reduction consider
that U1a · · ·Us and U1b · · ·Us always have the same length, the same applies to V1a · · ·Vs
and V1b · · ·Vs, thus this equation is equivalent to two equations (U1a · · ·Us, V1a · · ·Vs) and
(U1b · · ·Us, V1b · · ·Vs). Then any solution must align all as (bs) between Ui and Ui+1 against
the corresponding as (bs) between Vi and Vi+1: otherwise a corresponding a and b from
two equations are aligned against the same constant from one of the original equations.
Note, this reduction remains valid when additionally regular constraints are introduced,
such constraints are properly defined below.

Lastly, we always assume that the involution on Ω is without fixed points: otherwise for
a variable X such that X = X we can introduce a fresh variable X ′, set X = X ′ and add
an equation X = X ′, which ensures that σ(X) = σ(X). In this way we can avoid some case
distinctions.

Constraints
Let C be a class of formal languages, then a system of word equations with constraints

in C is given by a finite list (Ui, Vi)i of word equations and a finite list of constraints of
type X ∈ L (resp. X /∈ L) where X ∈ Ω and L ⊆ A∗ with L ∈ C. For a solution we now
additionally demand that σ(X) ∈ L (resp. σ(X) /∈ L) for all constraints.

Here, we focus on rational and recognizable (or regular) constraints and we assume that
the reader is familiar with basic facts in formal language theory. The classes of rational
and recognizable subsets are defined for every monoid M [9], and they are incomparable, in
general. Rational sets (or languages) are defined inductively as follows.

• All finite subsets of M are rational.

• If L1, L2 ⊆M are rational, then the union L1 ∪L2, the concatenation L1 ·L2, and the
generated submonoid L∗1 are rational.

A subset L ⊆M is called recognizable, if there is a homomorphism ρ to some finite monoid E
such that L = ρ−1ρ(L). We also say that ρ (or E) recognizes L in this case. Kleene’s Theorem
states that in finitely generated free monoids both classes coincide, and we follow the usual
convention to call a rational subset of a free monoid regular. If M is generated by some
finite set Γ ⊆M (as it always the case in this paper) then every rational set is the image of
a regular set L under the canonical homomorphism from Γ∗ onto M ; and every recognizable
set of M is rational. (These statements are trivial consequences of Kleene’s Theorem.)
Therefore, throughout we assume that a rational (or regular) language is specified by a
nondeterministic finite automaton, NFA for short.

Consider a list of k regular languages Li ⊆ A∗ each of them being specified by some
NFA with mi states. The disjoint union of these automata yields a single NFA with m =
m1 + · · · + mk states which accepts all Li by choosing appropriate initial and final sets for
each Li; we may assume that the NFA has state set {1, . . .m}. Then each constant a ∈ A
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defines a Boolean m × m matrix τ(a) where the entry (p, q) is 1 if (p, a, q) is a transition
and 0 otherwise. This yields a homomorphism τ : A∗ → Bm×m such that τ recognizes Li
for all 1 ≤ i ≤ k. Moreover, for each i there is a row vector Ii ∈ B1×n and a column vector
Fi ∈ Bn×1 such that we have w ∈ Li if and only if Ii · τ(w) · Fi = 1.

For a matrix P we let P T be its transposition. There is no reason that τ(a) = τ(a)T ,
hence τ is not necessarily a homomorphism which respects the involution. So, as done in [4],
we let M2m ⊆ B2m×2m denote the following monoid with involution:

M2m =
{(

P 0
0 Q

) ∣∣∣ P,Q ∈ Bm×m
}

with
(
P 0
0 Q

)
=
(
QT 0
0 PT

)
.

Define ρ(a) =
(
τ(a) 0

0 τ(a)T

)
. Then the homomorphism ρ : A∗ →M2m respects the involution.

Moreover ρ recognizes all Li and Li = {w | w ∈ Li}.
Consider regular constraints X ∈ L and X /∈ L′. As ρ recognises both L and L′, the

conditions σ(X) ∈ L and σ(X) /∈ L′ are equivalent to ρ(σ(X)) ∈ ρ(L) and ρ(σ(X)) /∈ ρ(L′).
As the image of ρ is a subset of M2m, there are only finitely many elements in it. Thus all
regular constraints on X boil down to restrictions of possible values of ρ(σ(X)). To be more
precise, if all positive constraints on X are (Li)i∈I and all negative are (L′i)i∈I′ , all those
constraints are equivalent to

ρ(σ(X)) ∈
⋂
i∈I
ρ(Li) ∩

⋂
i∈I′

(M2m \ ρ(L′i)) .

Thus, as a preprocessing step our algorithm guesses the ρ(σ(X)), which we shall shortly
denote as ρ(X), moreover this guess needs to satisfy

• ρ(X) = ρ(X)

• ρ(X) ∈ ρ(L) for each positive constraint L on X;

• ρ(X) /∈ ρ(L′) for each negative constraint L′ on X.

In the following we are interested only in solutions for which ρ(σ(X)) = ρ(X). Note that,
as ρ is a function, each solution of the original system corresponds to a solution for exactly
one such guess, thus we can focus on generating the solutions for this restricted problem.

We now give a precise definition of the main problem we are considering in the rest of
the paper:

Definition 1. An equation E with constraints is a tuple E = (A,Ω, ρ;U = V ) containing
the following items:

• An alphabet of constants with involution A.

• An alphabet of variables with involution without fixed points Ω.

• A mapping ρ : A ∪ Ω→M2m such that σ(x) = σ(x) for all x ∈ A ∪ Ω.

• The word equation U = V where U, V ∈ (A ∪ Ω)∗.
6



A solution of E is a homomorphism σ : (A∪Ω)∗ → A∗ leaving the constants from A invariant
such that the following conditions are satisfied:

σ(U) = σ(V ) ,
σ(X) = σ(X) for all X ∈ Ω,

ρ(σ(X)) = ρ(X) for all X ∈ Ω.

The input size of E is given by ‖E‖ = |A|+ |Ω|+ |UV |+m.

In the following, when this does not cause a confusion, we denote both the size of the
instance and the length of the equation by n. Note that we can always increase the size of
the equation by repeating it several times.

The measure of size of the equation is accurate enough with respect to polynomial time
and/or space. For example note that if an NFA has m states then the number of transitions
is bounded by m |A|. Note also that |A| can be much larger than the sum over the lengths
of the equations plus the sum of the number of states of the NFAs in the lists for the
constraints.

As already noted, by a convention, when a variable X and its involution X are not present
in the equation, each solution assigns ε to both X and X. In particular, this assignment
should satisfy the constraint, i.e., ρ(X) = ρ(ε) for each variable not present in the solution.
Note that the input equation can have variables that are not present in the equation and
have constraints other than ρ(X) = ρ(ε), however, such a situation can be removed by a
simple preprocessing: we check (in PSPACE) whether there is a word satisfying the given
set of constraints, if not, we reject, if yes then we remove the variable from the instance.

Equations during the algorithm.. During the procedure we will create various other equations
and introduce new constants. Still, the original alphabet A never changes and new constants
shall represent words in A∗. As a consequence, we will work with equations over B ∪ Ω,
where B is the smallest alphabet containing A and all constants in UV UV . We shall call
such B the alphabet of (U, V ). Note that |B| ≤ |A|+ 2 |UV | and we therefore we can ignore
|B| for the complexity.

Ideally, a solution of (U, V ) assigns to variables words over the alphabet of (U, V ), call it
B. However, as our algorithm transforms the equations and solutions, it is sometimes more
convenient to allow also solutions that assign words from some B′ ⊃ B. A solution is simple
if it uses only constants from B, by default we consider simple solutions. Whenever we
consider a non-simple solution, we explicitly give the alphabet over which this is a solution.

To track the meaning of constants outside A, we additionally require that a solution
(over an alphabet B′) supplies some homomorphism h : B′ 7→ A∗, which is constant on A
and compatible with ρ, in the sense that ρ(b) = ρ(h(b)) for all b ∈ B. (Due to its nature, we
also assume that h(b) contains at least two constants for b ∈ B′ \A.) Thus, in the following,
a solution is a pair (σ, h). In particular, given an equation (U, V ) the h(σ(U)) corresponds
to a solution of the original equation. Note, that h is a homomorphism with respect to the
involution, i.e., we assume that h(a) = h(a).
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A weight of a solution (σ, h) of an an equation (U, V ) is

w(σ, h) = |U |+ |V |+
∑
X∈Ω
|UV |X |h(σ(X))| , (1)

where |UV |X denotes the number of occurrences of X in U and V together. The main
property of such defined weight is that it decreases during the run of the algorithm, using
this property we shall guarantee a termination of the algorithm: each next equation in the
sequence will have a smaller weight, which ensures that we do not cycle.

Given a non-simple solution (σ, h) we can replace all constants c /∈ B (where B is the
alphabet of the equation) in all σ(X) by h(c) (note, that as ρ(c) = ρ(h(c)), the ρ(X) is
preserved in this way). This process is called a simplification of a solution and the obtained
substitution σ′ is a simplification of σ. It is easy to show that σ′ is a solution and that
h(σ′(U)) = h(σ(U)), so in some sense both σ and σ′ represent the same solution of the
original equation. Lastly, σ and σ′ have the same weight, see Lemma 1. Thus, in some sense
we can always simplify the solution.

Lemma 1. Suppose that (σ, h) is a solution of the equation (U, V ). Then the simplification
(σ′, h) of (σ, h) is also a solution of (U, V ), h(σ′(U)) = h(σ(U)) and w(σ′, h) = w(σ, h).

Proof. Let B be the alphabet of the equation and B′ the alphabet of the solution σ. Consider
any constant b ∈ B′ \ B. As it does not occur in the equation, all its occurrences in σ(U)
and σ(V ) come from the variables, i.e., from some σ(X). Then replacing all occurrences of
b in each σ(X) by the same string w preserves the equality of σ(U) = σ(V ), thus σ′ is also
a solution. Since we replace some constants b with h(b) (and h ◦ h = h), clearly h(σ(X)) =
h(σ′(X)) for each variable, in particular, the weight contributed by each variable occurrence
does not change. Furthermore, as ρ(c) = ρ(h(c)) we have that ρ(σ(X)) = ρ(σ′(X)). Thus,
h(σ′(U)) = h(σ(U)) and w(σ′, h) = w(σ, h), as claimed.

As a final note observe that h is a technical tool used in the analysis, it is not stored,
nor transformed by the algorithm, nor it is used in the graph representation of all solutions.

1.2. Word equations with rational constraints over free groups.
By F (Γ) we denote the free group over a finite set Γ. We let A = Γ ∪ Γ−1. Set also

x = x−1 for all x ∈ F (Γ). Thus, in (free) groups we identify x−1 and x. By a classical result
of Benois [1] rational subsets of F (Γ) form an effective Boolean algebra. That is: if L is
rational and specified by some NFA then F (Γ) \ L is rational; and we can effectively find
the corresponding NFA. There might be an exponential blow-up in the NFA size, though.
This is the main reason to allow negative constraints X /∈ L, so we can avoid explicit
complementation.

Proposition 1 ([4]). Let F (Γ) be a free group and A = Γ ∪ Γ−1 be the corresponding set
with involution as above. There is a polynomial time transformation which takes as input a
system S of equations (and inequalities) with rational constraints over F (Γ) and outputs a
word equation with regular constraints S ′ over A which is solvable if and only if S ′ is solvable
in F (Γ).
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More precisely, let ϕ : A∗ → F (Γ) be the canonical morphism of the free monoid with
involution A∗ onto the free group F (Γ). Then the set of all solutions for S ′ is bijectively
mapped via σ′ 7→ ϕ ◦ σ′ onto the set of all solutions of S.

Proposition 1 in particular shows that the description of all solutions of a system of
equations and inequalities (with rational constraints) over a free group can be efficiently
reduced to solving the corresponding task for word equations with regular constraints in
a free monoid with involution. For convenience of the reader let us remark that the proof
of Proposition 1 is fairly straightforward. It is based on the fact that XY Z = 1 in F (Γ)
is equivalent with the existence of words P,Q,R ∈ A∗ such that X = PQ, Y = QR, and
Z = RP . Indeed, if XY Z = 1 in F (Γ) then we can represent X, Y , and Z by reduced
words and the existence of P,Q,R follows because F (Γ) is a free group. The other direction
is trivial and holds for non reduced words as well.

Input size.
The input size for the reduction is given by the sum over the lengths of the equations

and inequalities plus the size of Γ plus the sum of the number of states of the NFAs in the
lists for the constraints. As in the case of word equations over free monoid, the measure is
accurate enough with respect to polynomial time and or space. Note that |Γ| can be much
larger than the sum over the lengths of the equations and inequalities plus the sum of the
number of states of the NFAs in the lists for the constraints. We encode X 6= 1 by a rational
constraint, which introduces an NFA with 2 |Γ|+1 states. Since |Γ| is part of the input, this
does not cause any problem. The output size remains at most quadratic in the input size.

1.3. Existential theory for free groups
We can easily extend the algorithm for word equations over free groups with rational

constraints to the existential theory of free groups with rational constraints. As a first
step note that we can eliminate the disjunction by non-deterministic guesses. Secondly, as
the singleton {1} ⊆ F (Γ) is, by definition, rational, the set F (Γ) \ {1} is rational, too.
Therefore an inequality U 6= V can be handled by a new fresh variable X and writing
U = XV & X ∈ F (Γ) \ {1} instead of U 6= V .

1.4. Linear Diophantine systems
We shall consider linear Diophantine systems with solutions over natural numbers. For-

mally, such a system is given by an m×n matrix A with coefficients in Z and an m×1 vector
b ∈ Zm. We write Ax = b and its set of solutions is given by the set {x ∈ Nn | Ax = b}. We
say that Ax = b is satisfiable over N if the set of solutions is non-empty. Note that while we
could also allow inequalities, a system of inequalities Ax ≥ b can be reduced to equalities by
introducing fresh variables y and rewriting the system as Ax− y = b. Looking for solutions
in Nn makes the problem NP-hard. Actually, we use the following well-known proposition.
Proposition 2. The following two problems are NP-complete.
Input. Ax = b where A ∈ Zn×n and b ∈ Zn×1 and coefficients are written in binary.
Question 1. Is the set {x ∈ Nn | Ax = b} non-empty?
Question 2. Is the set {x ∈ Nn | Ax = b} infinite?
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Proof. The NP-completeness of the first problem is standard, see e.g., [12]. It can be reduced
to the second problem by adding an equation y − z = 0 where y, z are fresh variables. A
possible reduction of the second problem to satisfiability is as follows. Given an equation
Ax = b we create a system Ax = b & Ax′ = b, where x = (x1, . . . , xn) and x′ = (x′1, . . . , x′n)
use disjoint sets of variables. Then we add equations x′ = x+y where y uses fresh variables.
This guarantees that x′ ≥ x. Finally, we add an equation x′1 + · · ·+x′n = x1 + · · ·+xn+z+1.
This guarantees that x′ > x, in the sense that at least one of the inequalities x′i ≥ xi is strict.
If the new system is satisfiable then Ax = b has infinitely many solutions x+ k(x′− x) with
k ∈ N. Conversely, if Ax = b has infinitely many solutions then there must exist solutions
x and x′ with x < x′ due to Dickson’s Lemma [3], and they satisfy the created system.

2. Graph representation of all solutions

In this section we give an overview of the graph representation of all solutions and the way
such a representation is generated as well as a detailed description of the graph representation
of all solution of a word equation with constraints. This description is devised so that it
is (together with Section 1) a citable reference, in particular, it is supposed to be usable
without reading the actual construction and the proof of its correctness. It will include all
the necessary definitions, though. The actual construction and the proof of correctness is
given in Section 3.

2.1. Transforming the equation
By an operator we denote a function that transforms substitutions (for variables). All

our operators have simple description: σ′(X) is usually obtained from σ(X) by morphisms,
appending/prepending constants, etc. In particular, they have a polynomial description.
We usually denote them by ϕ and their applications by ϕ[σ].

Recall that the instance size is n, so in particular the input equation is of length at most
n and has at most n variables.

Definition 2. A word equation (U, V ) with constraints is proper if

• in total U and V have at most cn2 occurrences of constants;

• in total U and V have at most n occurrences of variables;

• there is a homomorphism h : B 7→ A+ that is compatible with ρ, that is ρ(h(b)) = ρ(b)
for each b ∈ B, where B is the alphabet of (U, V ) and A is the alphabet of the input
equation.

A possible constant is c = 16 as we will see later.
Concerning the homomorphism h, note that we do not want to consider equations con-

taining constants that cannot represent strings in the input alphabet. For the input equation
we may assume A = B and therefore we can take h as the identity. In particular, the input
equation is proper. Note that it is essential that h is also a homomorphism for the involution.

The main technical result of the paper states that:
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Lemma 2. Suppose that (U0, V0) is a proper equation with |U0| > 1 or |V0| > 1 over an
alphabet B0 which has a simple solution (σ0, h0). Then there exists a proper equation (U1, V1)
over an alphabet B1 and a family of operators Φ such that

• There is ϕ ∈ Φ and a solution (σ′1, h1) of (U1, V1) over B0 ∪B1 such that

– σ0 = ϕ[σ′1]
– σ1 is a simplification of σ′1
– h0(σ0(U0)) = h1(σ1(U1)) = h1(σ′1(U1)).

Furthermore, w(σ0, h0) > w(σ1, h1) = w(σ′1, h1).

• If (σ′1, h′1) is a solution of (U1, V1) (over an arbitrary alphabet) and ϕ ∈ Φ then (σ′0, h′0)
is a solution of (U0, V0), where σ′0 = ϕ[σ′1] and h′0 is some homomorphism compatible
with ρ.

• Φ has a polynomial-size descriptions.

Given (U0, V0), all possible equations (U1, V1) (for all possible solutions σ0) can be produced
in PSPACE.

Discussion. The exact definition of allowed families of operators Φ is deferred to Section 2.2,
for the time being let us only note that Φ has polynomial description (which can be read
from (U0, V0) and (U1, V1)), may be infinite and its elements can be efficiently listed, (in
particular, it can be tested, whether Φ is empty, finite or infinite).

Concerning the difference between σ1 and σ′1: while we know that σ0 = ϕ[σ′1] we cannot
guarantee that (σ′1, h1) is simple, so the claim of the Lemma 2 does not apply to σ′1. However,
when we take a simplification (σ1, h1) of σ′1, the claim of Lemma 2 does apply. Moreover,
σ1 and σ′1 represent the same solution h1(σ1(U1)) = h1(σ′1(U1)) of the original equation, so
nothing is lost in the simplification. Alternatively, we could impose the condition that the
solution (σ′1, h1) is simple however then we cannot assume that σ0 = ϕ1[σ′1], we can only
guarantee that h0(σ0(U0)) = h1(σ′1(U1)). The authors realise, that both possible choices
make the details of many proofs more complicated, but in any case this is a technical detail
that should not bother the reader.

Getting back to the solutions, an equation in which both U0 and V0 have length 1 has
easy to describe solutions:

• if U0, V0 are the same constant then the equation has exactly one solution, in which
every variable is assigned ε (recall our convention that a variable not present in the
equation is assigned ε);

• if U0, V0 are both variables, say X and Y , then if ρ(X) 6= ρ(Y ) then there is no solution,
otherwise any σ that assigns ε to other variables and w to X, Y , where ρ(w) = ρ(X),
is a solution;
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• if U0 is a constant and V0 a variable, say a and X, then if ρ(a) 6= ρ(X) then there is no
solution, otherwise there is a unique solution, which assigns a to X and ε to all other
variables.

In this way all solutions of the input equation (U, V ) are obtained by a path from (U, V ) to
some satisfiable (Ui, Vi) satisfying |Ui| = |Vi| = 1 and the solution of (U, V ) is a composition
of operators from the families on the path applied to the solution of (Ui, Vi). Note that there
may be several ways to obtain the same solution, using different paths in the graph.

2.2. Construction of the solution graph
Using Lemma 2 one can construct in PSPACE a graph like representation of all solutions

of a given word equation: for the input equation (U, V ) we construct a directed graph G
which has nodes labelled with proper equations. Then for such node, say labelled with
(U0, V0), such that |U0| > 1 or |V0| > 1 we use Lemma 2 to list all equations (U1, V1) such
that (U0, V0), (U1, V1) satisfy the claim of Lemma 2 for some solution of (U0, V0). For each
such equation we put the edge (U0, V0) → (U1, V1) and annotate it with the appropriate
family of operators Φ. We lastly remove the nodes that are not reachable from the starting
node and those that do not have a path to an ending node.

In this way we obtain a finite description of all solution of a word equation with regular
constraints.

Theorem 1. There exists effectively a PSPACE transducer working as follows.
Input. A word equation with regular constraints over a free monoid with involution.
Ouput. A finite graph representation of all solutions of the equation.

Using Proposition 1 we obtain a similar claim for word equation with rational constraints
over a free group.

Corollary 1. There exists effectively a PSPACE transducer working as follows.
Input. A word equation with rational constraints over a free group.
Ouput. A finite graph representation of all solutions of the equation.

2.2.1. Families of operators
Let us now describe the used family of operators. Given an edge (U, V ) → (U ′, V ′) the

class Φ of operators is defined using:

• A linear Diophantine system of polynomial size in parameters {xX , yX}X∈Ω.

• A set {sX , s′X}X∈Ω of strings, length of string sX (s′X) may depend on xX (yX , respec-
tively): it may use one expression of the form (ab)xX ((ab)yX , respectively) or axX (ayX ,
respectively) when a = b. The constants a, b need to be from alphabet B, which is the
alphabet of constants used in (U, V ) plus the constants used by the input equation.
Each sX and s′X is of polynomial length (we treat (ab)xX as having description of O(1)
size).
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• A set of E1, . . . , Ek of strings which may use expressions (ab)xX and (ab)yX (or axX

and ayX , when a = b), similarly to sX and s′X , k is of polynomial size and each Ei has
polynomial-size description. There are corresponding constants cE1 , cE2 , . . . , cEk

that
occur in (U ′, V ′) but not in (U, V ).

Note that the Diophantine system may be empty and some of {sX , s′X}X∈Ω may be ε or not
dependent on parameters. On the other hand, each Ei consists of at least two constants.

Particular operator ϕ ∈ Φ corresponds to a solution {`X , rX}X∈Ω of the system of Dio-
phantine equations. Given such a solution, the corresponding operator ϕ acts on the substi-
tutions for variables as follows: It first replaces each constant cEi

with strings Ei in which
all xX and yX are replaced with numbers `X and rX . Then it prepends to σ(X) the sX in
which parameter xX is replaced with `X , then appends s′X in which parameter yX is replaced
with rX .

Example 2. Consider an equation abXZXXXd = XabdY Y Z ′ and an equation c1Zc2d =
c1dc2Z

′. The linear Diophantine system is xX + 1 = xX + 1, 3xX = 2xY ; the strings are
sX = (ab)xX , sY = (ab)xY and s′X = s′Y = ε. There are two expressions E1 = (ab)xX+1 and
E2 = (ab)3xX , they correspond to c1 and c2, respectively. The operator ϕ replaces c1 with
(ab)`X+1 and c2 with (ab)3`X , prepends (ab)`X to the (empty) substitution for X and (ab)`X
to the (empty) substitution for Y .

Consider again abXZXXXd = XabdY Y Z ′ and the equation abXcXbXbXc = XbacY bY c.
The Diophantine system is empty. The strings are sX = sY = ε, s′X = s′Y = b, sZ = sZ′ = d
and s′Z = s′Z′ = ε; there is one expression: bd. The operator replaces c with bd, appends b
to substitutions for X and Y and d to (empty) substitutions for Z,Z ′.

3. Compression step

In this section we describe procedures that show the claim of Lemma 2. In essence, for
a word equation (with constraints) (U, V ) with a solution σ we want to compress the word
σ(U) directly on the equation, i.e., without the knowledge of the actual solution. In case of
the free monoid (without involution) [14], the ‘compression’ essentially is a replacement of
all substrings ab with a single constant c. However, due to the involution (and possibility
that a = b) the compressions in case of free monoid with involution are more involved:
we replace the ab-blocks, as defined later in this section, see Definition 4. To do this, we
sometimes need to modify the equation (U, V ).

The crucial observation is that some of such compressions guarantee that if the com-
pressed equation is proper then so is the obtained one, see Lemma 8. Moreover, each
compression step decreases the weight of the corresponding solution, which guarantees a
termination of the whole process.

3.1. Transforming solutions and inverse operators.
As we want to describe the set of all solutions, ideally there should be a one-to-one

correspondence between the solutions before and after the application of used subproce-
dures. However, as those subprocedures are non-deterministic and the output depends on
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the non-deterministic choices, the situation becomes a little more involved. What we want
to guarantee is that no solution is ‘lost’ in the process and no solution is ‘gained’: given
a solution for some non-deterministic choices we transform the equation into another one,
which has a ‘corresponding’ solution and we know a way to transform this solution back into
the original equation. Furthermore, when we transform back in this way any solution of the
new equation, we obtain a solution of the original equation, i.e., we do not gain solutions.

As already noticed, to ease the presentation, the solutions of the new equation may use
constants outside the alphabet of the new equation. To be more precise, they can ‘inherit’
some constants from the previous solution and therefore use also the constants that occurred
in the previous equation.

Definition 3 (Transforming the solution). Given a (nondeterministic) procedure we say
that it transforms the equation (U, V ) with a solution (σ, h) if

• (U, V ) is proper and (σ, h) is non-empty;

• Based on the nondeterministic choices and equation (U, V ) we can define a family of
operators Φ, called the corresponding family of inverse operators.

• For some nondeterministic choices the procedure returns an equation (U ′, V ′) with a
nonempty solution (σ′, h′) and for some operator ϕ ∈ Φ we have ϕ[σ′] = σ. Further-
more, h(σ(U)) = h′(σ′(U ′)) and w(σ′, h′) ≤ w(σ, h) and if (U, V ) 6= (U ′, V ′) then this
inequality is in fact strict.
In such a case we also say that this procedure transforms (U, V ) with (σ, h) to (U ′, V ′)
with (σ′, h′).

• For every equation (U ′, V ′) that can be returned by this procedure applied on (U, V )
and any its solution (σ′, h′) and for every operator ϕ ∈ Φ the (ϕ[σ′], h0) is a solution
of (U, V ) for some homomorphism h0 : B 7→ A+ compatible with ρ, where B is the
alphabet of ϕ[σ′](U).

If a procedure transforms every proper equation with every nonempty solution then we say
that it transforms solutions.

Example 3. Consider a procedure that can replace X with aX (for any constant a) and
Y by bY (also for any constant b). Then it transforms the equation X = Y with a solution
σ(X) = cc, σ(Y ) = cc and any h: The inverse operator ϕ prepends a to σ(X) and b to
σ(Y ), where a and b are constants that were introduced by the procedure. If (σ′, h′) is a
solution of the obtained equation then (ϕ[σ′], h′) is a solution of the original equation; note
that when a 6= b then the obtained equation does not have solutions at all, but this is fine
with the definition. Moreover, for the nondeterministic choice in which we pop c from both
X and Y , the obtained equation has a solution σ′(X) = σ′(Y ) = c, for which σ = ϕ[σ′].

On the other hand, this procedure does not transform solutions: a solution σ(X) =
σ(Y ) = c cannot be transformed, as we do not allow empty solutions. We can modify the
procedure, though: it can either replace X with aX or with a, similarly for Y . In our case
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X = Y with σ(X) = σ(Y ) = c is transformed into c = c with a solution σ(X) = σ(Y ) = ε.
It is easy to see that this modified procedure transforms solutions.

Discussion. Note that both the (U ′, V ′) and Φ depend on the nondeterministic choices, so
it might be that for different choices we can transform (U, V ) to (U ′, V ′) (with a family Φ′)
and to (U ′′, V ′′) (with a family Φ′′).

In many cases, Φ consists of a single operator ϕ, in such a case we call it the corresponding
inverse operator furthermore, in some cases ϕ does not depend on (U, V ).

Note that when (U, V ) with a (σ, h) is transformed into (U ′, V ′) with (σ′, h′) then the
simplification σ′′ of σ′ (recall that a simplification replaces all constants b /∈ B′ that do
not occur in the equation (U ′, V ′) by h′(b) in all σ′(X)) is also a solution of (U ′, V ′) and
moreover h′(σ′′(U ′)) = h′(σ′(U ′)), so it corresponds to the same original solution of the
input equation as (σ′(U ′), h′) see Lemma 1, and so consequently the same as (σ, h), since
h′(σ(U ′)) = h(σ(U)).

Clearly, composition of two operations that transform the equations also transforms the
equations (although the description of the family of inverse operators may be more complex).

As a last comment, observe that when we take an arbitrary solution (σ′, h′) and operator
ϕ then we cannot guarantee that there is some h for which h′(ϕ[σ′](U)) = h′(σ′(U ′)): imagine
we can replace factor aba with a single constant c while h′(c) = a′b′, so there is no way to
reasonably define h(a) and h(b). Thus we can take any h for ϕ[σ′], and we know that one
exists by the assumption that (U, V ) is proper.

3.2. ab-blocks.
In an earlier paper using the recompression technique [14] there were two types of com-

pression steps: compression of pairs ab, where a 6= b were two different constants, and
compression of maximal factor a` (i.e., ones that cannot be extended to the right, nor left).
In both cases, such factors were replaced with a single fresh constant, say c. While the
actual replacement was performed only on the equation (U, V ) implicitly it was performed
also on the solution σ(U) as well.

The advantage of such compression steps was that the replaced factors were non-overlapping,
in the sense that when we fixed a pair (or block) to be compressed, each constant in a word
w belonged to at most one replaced factor.

We would like to use similar compression rules also for the case of monoids with involu-
tion, however, one needs to take into the account that when w is replaced with a constant
c, then also w should be replaced with c. The situation gets complicated, when some of
constants in w are fixed-points for the involution, i.e., a = a. In the worst case, when a = a
and b = b the occurrences of ab and ab = ba are overlapping, so the previous approach no
longer directly applies. (Even if we start with a situation such that a 6= a for all a ∈ A,
as it is the case for free groups, fixed points in larger alphabets are produced during the
algorithm.)

Intuitively, when we want to compress ab into a single constant, also ba needs to be
replaced. Furthermore, if factors s and s′ are to be replaced and they are overlapping, we
should replace their union with a single constant. Lastly, the factors to be replaced naturally
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ab-factor ab-factor

ab-factor?

Figure 1: To prove Lemma 3 we need to show that a union of two overlapping ab-factors is also an ab-factor.

fall into types, depending on whether the first constant of the factor is a or b and the last b
or a.

These intuitions lead to the following definition of ab-blocks (for a fixed pair of constants
ab) and their types.

Definition 4. Depending on a and b, ab-blocks are

1. If a = b then there are two types of ab-blocks: ai for i ≥ 2 and ai for i ≥ 2.

2. If a 6= b, a 6= a and b 6= b then ab and ab = ba are the two types of ab-blocks.

3. If a 6= b, a = a and b 6= b then ab, ab = ba and bab are the three types of ab-blocks.

4. If a 6= b, a 6= a and b = b then ab, ab = ba and aba are the three types of ab-blocks.

5. If a 6= b, a = a and b = b then the (ba)i, a(ba)i, (ba)ib and (ab)i (where in each case
i ≥ 1) are the four types of ab-blocks.

An occurrence of an ab-block in a word is an ab-factor, it is maximal, if it is not contained
in any other ab-factor.

The ab-blocks of the first and last kind are called nontrivial, as they can have arbitrary
large length, the other are called trivial, as they can have at most 3 constants.

Note that for the purpose of this definition when a = a we treat a and a as the same
constant, even if for some syntactic reason we write a and a.

The following fact is a consequence of the definitions of maximal ab-blocks and shows
the correctness of the definition.

Lemma 3. For any word w ∈ B∗ and two constants a, b ∈ B, maximal ab-factors in w do
not overlap.

Proof. For the proof it is enough to show that when two ab-factors s and s′ are overlapping
then their union (i.e., the smallest factor that encompasses them both) is also an ab-factor,
see Figure 1. Due to case distinction it follows by a case by case analysis according to
Definition 4.
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If a = b and a 6= a then as ab and ba have no common constants, two overlapping
ab-factors are both factors consisting of repetitions of the same constant and so also their
union is an ab-factor. If a = a then ab = ba and so the same argument as before applies.

If a 6= b, a 6= a and b 6= b then two overlapping ab-factors need to be the same factor
(note that here we do not exclude the case a = b).

If a 6= b, a = a and b 6= b then consider two different overlapping ab-factors. As all
constants in any ab-block are different, if s and s′ are of the same type and overlapping then
they are in fact the same factor. If the factors ab and ba overlap then their union is bab,
which is also an ab-factor. If factors ab and bab overlap, then the latter contains the former;
the same applies to the factors ba and bab.

If a 6= b, a 6= a and b = b then the analysis is symmetric to the one given above.
In the last case, when a 6= b, a = a and b = b observe that a factor is an ab-factor if and

only if it has length at least 2 and consists solely of alternating constants a and b. Thus also
a union of two overlapping ab-factors is an ab-factor.

Given a set of ab-blocks we perform the compression by replacing maximal ab-factors
from this set. For consistency, we assume that such a set is involution closed.

Definition 5 (S-reduction). For a fixed ab and an involution-closed set of ab-blocks S the
S-reduction of the word w is the word w′ in which all maximal factors s ∈ S are replaced
by a new constant cs, where cs = cs. The inverse operation is an S-expansion.

There are the following observations.

• The S-expansion is a function on B∗, using Lemma 3 we obtain that also S-reduction
is a function on B∗ as well.

• The S-reduction introduces new constants to B, we extend ρ to it in a natural way:
ρ(cs) = ρ(s).

• We let c = c if and only if s = s. In this way constants may become fixed points for
the involution. For example, aa is an aa-block for a 6= a. If aa is compressed into c
then c = c.

• It might be that after S-reduction some constant c in the solution is no longer in B
(as it was removed from the equation). In such a case the corresponding solution will
not be simple, this is described in more detail later on.

Example 4. Consider the case in which a = a, b = b and d 6= d. Take a word dabadababadbabadababdad.
Consider the ab, then d(aba)d(ababa)d(baba)d(abab)dad lists the maximal ab-factors. The
factors aba, ababa, baba, abab are replaced with new constants c1, c2, c3, c4, obtaining dc1dc2dc3dc4dad.
Then c1 = c1, c2 = c2 and c3 = c4.

Consider now ad. The maximal factors are (da)b(ad)abab(ad)baba(da)bab(dad). The
factors ad, da and dad are replaced with c1, c2, c3, where c1 = c2 and c3 = c3. In this way
we obtain c2bc1ababc1babac2babc3.
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3.3. Crossing and noncrossing factors
Performing the S-reduction is easy, if all maximal factors from S are wholly contained

within the equation or within the substitution for a variable: in such a case we perform the
S-reduction separately on the equation and on each substitution for a variable (the latter is
done implicitly). It looks non-obvious, when part of some factor s is within the substitution
for the variable and part in the equation. Let us formalise those notions.

Definition 6. For a word equation (U, V ) an ab-factor is crossing in a solution σ if it does
not come from U (V , respectively), nor from any σ(X) for an occurrence of a variable X; ab
is crossing in a solution σ, if some ab-factor is crossing. Otherwise ab is non-crossing in σ.

Note that as ba is an ab-block, it might be that ab is crossing because of a factor ba.

Example 5. Consider an equation abXcdY Y = XabcdXXX and a solution σ(X) = abab
and σ(Y ) = ababab. Then after the substitution left-hand side is equal to ab(ab)cd(ababab)(ababab).
The first factor ab is explicit, second: implicit, the first factor ba is crossing, factor cd is
explicit; first factor aba is crossing. In total, cd is non-crossing, ba, bc, da are crossing. If
a 6= a or b 6= b then ab is non-crossing; if a = a and b = b then ab is crossing (as ba = ab = ab
is).

By guessing all X ∈ Ω with σ(X) = ε (and removing them) we can always assume that
σ(X) 6= ε for all X. In this case crossing ab’s can be alternatively characterized in a more
operational manner.

Lemma 4. Let σ(X) 6= ε for all X. Then ab is crossing in σ if and only if one of the
following holds:

• aX or aX = Xa, for an unknown X, occurs in U or V and σ(X) begins with b (so
σ(X) ends with b) or

• Xb or Xb = bX, for an unknown X, occurs in U or V and σ(X) ends with a (so
σ(X) begins with a) or

• XY or XY = Y X, for unknowns X, Y , occurs in U or V and σ(X) ends with a while
σ(Y ) begins with b (so σ(Y ) ends with b and σ(X) begins with a).

Proof. Suppose that ab is crossing, which means that there is some ab-factor that is crossing.
By definition it means that it does not come from one occurrence of a variable, nor from
equation. Thus one of its constants comes from a variable and the other from the equation
or from a different variable (note that as the solution is non-empty, that is σ(Z) 6= ε for
any variable Z, the considered constants and variables are neighbouring in the word). Case
inspection implies that one of the conditions listed in the lemma describes this situation.

So suppose that ab satisfies one of the conditions in the lemma. Then clearly ab is
crossing: for instance, if aX occurs in the equation and σ(X) begins with b then the ab-
factor formed by this a and the first b in σ(X) is crossing, other cases are shown in the same
way.
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Since a crossing ab can be associated with an occurrence of a variable X, it follows that
the number of crossing abs is linear in the number of occurrences of variables.

Lemma 5. Let σ be a solution of an equation (U, V ) with at most n occurrences of variables.
Then there are at most 4n different crossing words in σ.

Note that in particular Lemma 5 applies to proper equations.

Proof. Firstly observe that if σ(X) = ε for any variable, then we can remove all Xes from
the equation and this does not influence whether ab is crossing or not and can only reduce
the number of occurrences of variables. Thus we can assume that σ is non-empty, in the
sense that σ(X) 6= ε for every variable present in the equation. So in the remaining part we
assume that the assumptions of Lemma 4 are satisfied.

By Lemma 4 when ab is crossing, then one can associate ab (or ba) with an occurrence
of a variable and its first or last constant. There are at most n occurrences of variables,
so 2n occurrences with distinguished first or last constant and we have also two options of
associating (ab or ba), so 4n possibilities in total, which yields the claim.

3.4. Reduction for non-crossing ab.
When ab is non-crossing in the solution σ we can make the compression for all ab-factors

that occur in the equation (U, V ) on σ(U) by replacing each ab-factor in U and V . The
correctness follows from the fact that each maximal factor of ab-block in σ(U) and σ(V )
comes either wholly from U (V , respectively) or from σ(X). The former are replaced by our
procedure and the latter are replaced implicitly, by changing the solution. Thus it can be
shown that the solutions of the new and old equation are in one-to-one correspondence, i.e.,
are transformed by the procedure.

Algorithm 1 CompNCr(U, V, ab, ρ) Reduction for a non-crossing ab
1: S ← all maximal ab-factors in U and V and their involutions . S needs to be

involution closed
2: for s ∈ S do
3: let cs be a fresh constant
4: if s = s then
5: let cs denote cs
6: else
7: let cs be a fresh constant
8: replace each maximal ab-factor s (s) in U and V by cs (cs, respectively)
9: set ρ(cs)← ρ(s) and ρ(cs)← ρ(s)

10: return (U ′, V ′)

To show that CompNCr(U, V, ab, ρ) transforms (U, V ) with (σ, h), for which ab is non-
crossing, we should define a corresponding solution (σ′, h′) of the obtained (U ′, V ′) as well as
an inverse operator ϕ. Intuitively, they are defined as follows (let as in CompNCr(U, V, ab, ρ)
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the S be the set of all maximal ab-blocks in (U, V ) and their involutions and let CompNCr(U, V, ab, ρ)
replace s ∈ S by cs):

• σ′(X) is obtained by replacing each s ∈ S by cs

• h′ is h extended to new constants by setting h′(cs) = h(s)

• the operator ϕ{cs→s}s∈S
is the the S-expansion, i.e., in each σ(X) it replaces each cs

by s, for all s ∈ S.

Note that the defined operator is in the class defined in Section 2.2: all sX , s′X are ε while
E1, . . . , Ek are exactly the elements of S and thus new constants cEi

are the constants cs.

Lemma 6. Let ab be non-crossing in a solution σ and let CompNCr(U, V, ab, ρ) compute a
set of ab-blocks S in (U, V ) and replace s ∈ S by cs. Then CompNCr(U, V, ab, ρ) transforms
(U, V ) with (σ, h) to (U ′, V ′) with (σ′, h′), where h′ is defined as above and ϕ{cs→s}s∈S

is the
inverse operator. Moreover, σ′(U ′) is an S-reduction of σ(U).

Proof. We define a new solution σ′ by replacing each maximal factor s ∈ S in any σ(X) by
cs. Note that in this way ρ(σ(X)) = ρ(σ′(X)), as for each s we define ρ(cs)← ρ(s). As all
constants {cs}s∈S are fresh, they do not occur in σ(U) and so σ(X) can be recreated from
σ′(X) by replacing each cs by s, formally σ = ϕ{cs→s}s∈S

[σ′], as claimed. This is a solution
of (U ′, V ′): consider any maximal ab-factor s in σ(U) (or σ(V )):

• If it came from the equation then it was replaced by CompNCr(U, V, ab, ρ).

• If it came from a substitution for a variable and s

– is in S then it was replaced implicitly in the definition of σ′;
– is not in S then it is left as it was.

• It cannot be crossing, as this contradicts the assumption.

Thus, σ′(U ′) is obtained from σ(U) by replacing each maximal ab-factor s ∈ S by cs (recall
that by Lemma 3 all such maximal factors are disjoint), and the same applies to σ′(V ′), in
particular we obtain that σ′(U ′) = σ′(V ′) and that this is an S-reductions of σ(U) = σ(V ).

We define h′ simply by extending h to new constant cs in a natural way: h(cs) = h(s)
for each s ∈ S; note that such defined h′ is compatible, since ρ(cs) = ρ(s) and h is known
to be compatible. Furthermore h′(σ′(U ′)) = h(σ(U)), as σ′(U ′) is obtained from σ(U) by
replacing each maximal factor s ∈ S by cs and by definition h′(cs) = h(s) and on all other
constants they are equal.

We now must show that if (σ′′, h′′) is any solution of (U ′, V ′) then σ′′′(U) = σ′′′(V ),
where σ′′′ = ϕ{cs→s}s∈S

[σ′′]: observe that ϕ{cs→s}s∈S
[σ′′](U) is obtained from σ′′(U ′) by re-

placing each cs by s: each constant cs in U ′ was obtained from s in U , so in the other
direction we replace cs by s and for a constant cs in σ′′(X) this follows by the definition of
ϕ{cs→s}s∈S

. The same applies to ϕ{cs→s}s∈S
[σ′′](V ), we obtain that indeed ϕ{cs→s}s∈S

[σ′′](U) =
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ϕ{cs→s}s∈S
[σ′′](V ). So it is left to show that there is a h′′′ for constants present in σ′′′(U). We

know that there is such a homomorphism for the alphabet of (U, V ) (as it is a proper equa-
tion) and for other constants we can use the homomorphism h′′, by the form of ϕ{cs→s}s∈S

there are no other constants in h′′′(U).
Concerning the weight, observe first that h′(σ′(X)) = h(σ(X)):

• if cs replaced s then h′(cs) = h(s);

• for every preserved constant a it holds that h′(a) = h(a).

Moreover, the number of occurrences of each variable is the same in (U, V ) and in (U ′, V ′),
so the contribution to weight from variables is the same in both cases. Clearly we have
|U ′| + |V ′| ≤ |U | + |V |, so the weight does not increase. Furthermore, if (U, V ) 6= (U ′, V ′)
then at least one factor was replaced in the equation and so |U ′| + |V ′| < |U | + |V | and so
the weight decreases.

Example 6. Consider an equation abXY Y = XabXXX, with a 6= a and b 6= b. It has a
solution σ(X) = abab and σ(Y ) = bababa. It is easy to see that ab is noncrossing. After
CompNCr(U, V, ab, ρ) the obtained equation is cXY Y = XcXXX and it has a solution
σ(X) = cc and σ(Y ) = ccc.

3.5. Reduction for crossing ab.
Since we already know how to compress a non-crossing ab, a natural way to deal with a

crossing ab is to ‘uncross’ it and then compress using CompNCr. To this end we pop from
the variables the whole parts of maximal ab-blocks which cause this block to be crossing.
Afterwards all maximal ab-blocks are noncrossing and so they can be compressed using
CompNCr.

3.5.1. Idea (example)
As an example consider an equation abaXaXaXa = aXabY bY bY , let a = a an b = b

so that the ab-blocks are nontrivial. For simplicity, let us for now ignore the constraints.
Also, let us focus on the solutions of the form X ∈ b(ab)`X and Y = (ab)`Y a; clearly, ab is
crossing in this solution. So we ‘pop’ from X the b(ab)`X and (ab)`Y a from Y (and remove
those variables). After the popping this equation is turned into (ab)3`X+4a = (ab)`X+3`Y +4a,
for which ab is noncrossing. Thus solutions of the original equation (of the prescribed form
X = b(ab)`X and Y = (ab)`Y a) correspond to the solutions of the Diophantine equation:
3`X + 4 = `X + 3`Y + 4. This points out another idea of the popping: when we pop the
whole part of block that is crossing, we do not immediately guess its length, instead we treat
the number of repetitions of ab in the variables (here: `X and `Y ) as parameters, identify
ab-blocks of the same length (and type) and only afterwards verify, whether our guesses
were correct. The verification is formalised as a linear system of Diophantine equations
(here: 3`X + 4 = `X + 3`Y + 4) in parameters (here: `X and `Y ). We can check solvability
(and compute a minimal solution) in NP (so in particular in PSPACE), see e.g., [12]. (For
a more accurate estimation of constants see [4]). Each solution of the Diophantine system
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corresponds to one ‘real’ set of lengths of ab-blocks popped from variables. Now we replace
equation (ab)3`X+4a = (ab)`X+3`Y +4a with ca = ca, which has a unique solution σ(X) =
σ(Y ) = ε. Of course there is no single inverse operator, instead, they should take into the
account the system 3`X + 4 = `X + 3`Y + 4. And it is so, for each solution (`X , `Y ) of the
Diophatine equation there is one inverse operator, which first replaces c with (ab)`X+3`Y +4

and then appends b(ab)`X to the substitution for X and (ab)`Y a to the substitution for Y .
There are some details that were ignored in this example: during popping we need to also

guess the types of the popped blocks and whether the variable should be removed (as now
it represents ε) or not. Furthermore, we also need to calculate the transition of the popped
ab-block, which depends on the number of repetitions of ab (i.e., on particular `X , `Y , etc.).
Now, when we look at ρ(ab), ρ(ab)2, . . . then starting from some (at most exponential)
value it becomes periodic, the period is also at most exponential; to be more precise, we
can guess the period p that is at most exponential and verify the guess by checking that
ρ(ab)2p = ρ(ab)p. Then either `X is smaller than p or ρ(ab)`X = ρ(ab)p+`X mod p. In both
cases to calculate ρ(ab)`X it is enough to know `X mod p, which we can guess, as it is at
most exponential. The appropriate conditions are also written as Diophantine equations
and added to the constructed linear Diophantine system which in total has polynomial size,
as its coefficients are written in binary.

3.5.2. Detailed description
A full description is available also as a pseudocode, see Algorithm 2. The proof of

correctness is provided in Lemma 7.

Idempotent power. In the preprocessing, when the ab-blocks are nontrivial (i.e., when a = b
or a 6= b and a = a and b = b)2 we guess (some) idempotent power p of ρ(ab) (when a 6= b)
or ρ(a) (when a = b, in the following we consider only the former case) in M2m, i.e., p such
that ρ(ab)2p = ρ(ab)p. It is easy to show that there is such p ≤ |M2m| ≤ 24m2 , so we can
restrict the guess so that the binary notation of p is of polynomial size. We verify the guess
by computing ρ(ab)2p and ρ(ab)p in time poly(log p,m) (the powers are computed be iterated
squaring of the matrices) and checking, whether ρ(ab)2p = ρ(ab)p. Note that as p is also an
idempotent power for ab, ba and ba: the first is clear, as (ab)k = (ab)k; for the second, there
are two cases: if a = b then this is trivial, as ab = ba, if not then a = a and b = b and so
ba = ab; the third case is a combination of the two previous ones.

Popping and transitions. Now for every variable X we guess whether σ(X) begins (and ends)
with an ab-factor or a single-constant suffix (prefix, respectively) of an ab-factor; to simplify
the notation, the ab-prefix of σ(X) is the maximal prefix of σ(X) that is also a (proper)
suffix of some ab-factor; define the ab-suffix in a symmetric way. Note that an ab-prefix of
σ(X) may be empty, may consist of a single-constant (i.e., a or b, which are the possible
final constants of an ab-factor) or have more constants in which case it is also an ab-factor

2Note that in the trivial case the maximal ab-blocks do not include any exponentiation of ab or a, and
this is the reason, why they are “trivial”.
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itself. Thus, for each X we guess its ab-prefix sX and and ab-suffix s′X ; note that sX = s′
X

,
so we make the guesses consistent. We then left pop sX and right-pop s′X from X, i.e., we
replace X with sXXs′X , when σ(X) 6= sXs

′
X or with sXs′X , when σ(X) = sXXs

′
X . Consider

sX , if it includes a parameter xX then it is of one of the forms: sX = axX or sX = axX for
some xX ≥ 2 (when a = b ) or sX ∈ {(ab)xX , (ab)xXb, b(ab)xX , (ba)xX}, for some xX ≥ 1
(when a = a, b = b and a 6= b). Similar observation can be made for ab-suffix of X, i.e.,
s′X , which uses yX instead of xX . We treat xX , yX as parameters denoting integers whose
values are to be established later on (we do not use name variables, as this is reserved for
variables representing words). Note that xX = yX , so we add appropriate equations to the
constructed system of Diophantine equations D. Eventually, we fix the values of xX and
yX , say to `X and rX . Then sX [`X ] denotes a string sX in which we substituted a number
`X for parameter xX and so sX [`X ] is a string of a well-defined length (the same applies to
s′X [rX ]). If sX does not depend on xX then also sX [`X ] is a string that does not depend on
`X , still we use this notion to streamline the presentation.

We now establish the new transitions by X as well as the the transitions of the popped
blocks; if xX and yX are defined, the transition depends on them. Consider a transition
ρ(ab)xX . Recall that p is the idempotent power for ρ(ab) (and so also of ρ(ba)). Let `′X be xX
modulo p, which is formalised by adding xX = kxX

p+ `′X to D, where k is a new parameter
and `′X is guessed. Then if xX < p (equivalently: xX = `′X) then ρ(ab)xX = ρ(ab)`′X ;
otherwise, when xX ≥ p (equivalently: xX > `′X) then ρ(ab)xX = ρ(ab)p+`′X , as p is an
idempotent power. Since `′X is already fixed, we guess, which of the cases holds, add an
appropriate condition (xX = `′X or xX > `′X) to D and calculate the value of ρ(ab)xX , which
is ρ(ab)`′X or ρ(ab)p+`′X . We perform similar operations for yx, with r′X as a modulo reminder.
As a last step we also guess the new transitions for variables, the new ρ(X ′) is such that
ρ(X) = ρ(sX)ρ(X ′)ρ(s′X).

Identical blocks. As we know the types of ab-factors in the equation (note that they do not
depend on particular values of {xX , yX}X∈Ω), we can calculate the maximal ab-factors in
the equation (as well as their types), even though xX and yX are not yet known. Denote
those maximal ab-factors by E1, . . . , E`, note that they may use (ab)xX or (ab)yX , similarly as
{sX , s′X}X∈Ω, we do not impose the condition that one Ei uses at most one such an expression
(in fact, as seen in the example in Section 3.5.1, it can use several such expressions). Similarly
as in case of {sX , s′X}X∈Ω, by Ei[{`X , rX}X∈Ω] we denote Ei in which parameters xX and
yX were replaced with numbers `X and rX , for each variable X. Concerning their lengths,
denote by ei the length for Ei. Since the popped factors have lengths that are linear in xX
or yX for some X the lengths e1, e2, . . . , e` are also linear in {xX , yX}X∈Ω. It is easy to see
(Lemma 7) that ` is polynomial in the size of the equation and so are the descriptions of
each ei. For the future reference, by ei[{`X , rX}X∈Ω] we denote the evaluation of expression
ei when xX is substituted by `X and yX is substituted by rX , for each X ∈ Ω. Clearly
|Ei[{`X , rX}X∈Ω]| = ei[{`X , rX}X∈Ω].

Consider all maximal ab-factors of the same type, we guess the order between their
lengths, i.e., we guess which of them are equal and what is the order between groups of
expressions denoting equal lengths. We write the corresponding conditions into the system
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of equations; formally we divide these expressions into groups E1, E2, . . . , Ek, one group
contains only factors of the same type and its elements correspond to factors of the same
length. For each group E = {Ei1 , Ei2 , . . . , Ei`} we add equations ei1 = ei2 , ei2 = ei3 , . . . ,
ei`−1 = ei` , which ensure that indeed those factors are of the same length. Then for all
groups E1, E2, . . . , Ek of factors of the same type we guess the relation between the lengths
of factors between the groups, i.e.,. for each two groups Ei and Ej we choose elements from
the group, say Ei and Ej, and add the appropriate of the inequalities ei < ej or ei > ej to
the system. Intuitively, we can rule out the possibility that ei = ej, as we put ei and ej in
different groups

Satisfiability of the system of Diophantine equations and inequalities. As the constructed
Diophantine system D is of polynomial size, its satisfiability is in NP, see e.g., [12], so
in particular in PSPACE. So we check the satisfiability of D: if it is not satisfiable, we
terminate.

Replacement. When the system D is satisfiable, we replace all ab-factors in one group by a
new constant, i.e., blocks {Ei1 , Ei2 , . . . , Eik} are replaced with a constant cEi1

(the choice of
Ei1 is arbitrary), obtaining the new equation.

Family of inverse operators. The corresponding family of inverse operators is defined in
terms of system D, the popped prefixes and suffixes {sX , s′X}X∈Ω and the maximal blocks
E1, E2, . . . , Ek (replaced with constants cE1 , cE2 , . . . , cEk

), call this class ΦD,{sX ,s
′
X}X∈Ω,E1,...,Ek

.
For each solution {`X , rX}X∈Ω of D the family contains an operator ϕ{`X ,rX}X∈Ω . The action
of such an operator (on X) is as follows: it first replaces each constant cEi

with ab-block
Ei[{`X , rX}X∈Ω] (so of length ei[{`X , rX}X∈Ω]). Afterwards, we append sX [`X ] and prepend
s′X [rX ] to the substitution for X.

Note that this family of operators is of the form promised in Section 2.2.1.
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Algorithm 2 CompCr(U, V, ab, ρ) Compression of ab-blocks for a crossing ab
1: p← idempotent power of ρ(ab) in M2m . Guess and verify when needed.

. It is the same for ab, ba, ba.
2: for X ∈ Ω do
3: non-deterministically guess ab-prefix sX and ab-suffix s′X of σ(X)

. May depend on a parameter xX and yX , respectively
4: ensure that sX = s′

X
and s′X = sX

5: add equations xX = yX and yX = xX to D . They need to be equal
6: add xX ≥ 1 (or xX ≥ 2) to D, when applicable

. Depending on sX and whether a = b
. xX ≥ 1 for a 6= b, a = a, b = b and xX ≥ 2 for a = b:

7: replace each X with sXXs
′
X

8: nondeterministically guess the reminders `′X and r′X of xX and yX by p
9: add xX = kxX

p+ x′X , yX = kyX
p+ r′X to D

10: nondeterministically guess, whether xX < p or not
11: if xX < p then
12: add xX = `′X to D, calculate ρs ← ρ(sX [xX ])
13: else
14: add xX > `′X to D, calculate ρs ← ρ(p+ sX [xX ])
15: . Perform similar actions for s′X , yX and ρs′
16: guess ρX such that ρ(X) = ρsρXρs′
17: update ρ(X)← ρX
18: Guess nondeterministically, whether σ(X) = ε . Make the same guess for σ(X) and

σ(X)
19: if σ(X) = ε and ρ(X) = ρ(ε) then . Make the same guess for σ(X) and σ(X)
20: remove X from the equation
21: let E1, E2, . . . , E` be the maximal ab-factors in (U, V ) and e1, e2, . . . , e` their lengths
22: partition {E1, E2, . . . , E`} into groups {E1, . . . , Ek}, . Guess the partition

. Each group has ab-factors of the same type
23: for each group Eij = {Ei1 , Ei2 , . . . , Ei`} do
24: add equations {ei1 = ei2 , ei2 = ei3 , . . . , ei`−1 = ei`} to D
25: for different groups Ei and Ej of ab-factors of the same type do
26: take any ei ∈ Ei, ej ∈ Ej, add one of inequalities {ei < ej} or {ei > ej} to D
27: non-deterministically check, whether D has a solution . In NP
28: for each part Ei = {Ei1 , Ei2 , . . . , Ei`} do
29: let cEi1

be an unused constant . Choice of Ei1 is arbitrary
30: replace blocks Ei1 , Ei2 , . . . , Ei` by cEi1

Inverse operator for a particular solution. For a solution (σ, h) consider the run of CompCr(U, V, ab, ρ)
in which the non-deterministic choices are done according to σ: i.e., we guess {sX , s′X}X∈Ω
such that sX [`X ] is the ab-prefix of σ(X) and s′X [rX ] is the ab-suffix of σ(X) for appropriate
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values {`X , rX}X∈Ω (when σ(X) is a single ab-block then we divide it into sX and s′X in
an arbitrary way, but we make the guesses consistent for X and X ′, for instance we can
guess we guess s′X = ε, sX = ε and s′

X
= σ(X)); note that such values can be read out

of σ(X): we know that its ab-prefix and ab-suffix are of the same type as sX and s′X , so
they are equal to sX [`X ] and s′X [rX ] for some values `X and rX (when whole σ(X) is an
ab-block then there is more then one choice for `X and rX). We partition the arithmetic
expressions according to σ, i.e., Ei and Ej (of the same type) are in one group if and only
if Ei[{`X , rX}X∈Ω] = Ej[{`X , rX}X∈Ω], note that those are the ab-factors created for σ after
popping the ab-prefix and ab-suffix from each variable. In particular their lengths are equal,
i.e., ei[{`X , rX}X∈Ω] = ej[{`X , rX}X∈Ω]. Additionally, for two different groups Ei and Ej of
expressions of the same type we add an equation ei < ej for some ei ∈ Ei and ej ∈ Ej if
and only if ei[{`X , rX}X∈Ω] < ej[{`X , rX}X∈Ω] (and in the other case we add the converse
inequality ei > ej).

Then {`X , rX}X∈Ω is a solution of a constructed system D and CompCr(U, V, ab, ρ) trans-
forms (U, V ) with (σ, h) and ϕ{`X ,rX}X∈Ω ∈ ΦD,{sX ,s

′
X}X∈Ω,E1,...,Ek

is the corresponding in-
verse operator. Concerning homomorphism h′, we extend h to new constants by setting
h′(cEi

) = h(Ei[{`X , rX}X∈Ω]).
It remains to formally state and prove the above intuitions.

Lemma 7. CompCr(U, V, ab, ρ) transforms solutions. Let D be the system returned by
CompCr(U, V, ab, ρ) for the corresponding non-deterministic choices, and let X left-popped
sX and right-popped s′X and let expressions in groups E1, . . . , Ek be replaced with constants
cE1, . . . , cEk

. Then the family ΦD,{sX ,s
′
X}X∈Ω,E1,...,Ek

is the corresponding family of operators.
Furthermore σ′(U ′) is an S-reduction of σ(U), for a set S that contains all ab-blocks that

have explicit or crossing maximal factors in σ(U) and their involutions (and perhaps some
more ab blocks).

Proof. Let us focus on a proper equation (U, V ). As a first step, we shall show that indeed
all maximal blocks have lengths that are arithmetic expressions in {xX , yX}X∈Ω, there are
polynomially (in n) many such lengths and that each of them of them is also of polynomial
size. Consider, what constants can be included in a maximal ab-factor. Before any popping
there are O(|U | + |V |) constants in the equation. There are at most 2(|U | + |V |) popped
factors (two for each occurrence of a variable) and each of their lengths is at most 1 + 2xX
(or 1 + 2yX), when it depends on a parameter, or 2, when it does not. Hence, the total sum
of lengths is at most O(|U |+ |V |) plus 2∑X∈Ω(xX + yX). Since the equation is proper, the
former is quadratic in n, the latter is linear in n, as we count one expression (ab)xX as if
it had a constant length. Now, every popped sX (and s′X) goes into exactly one maximal
ab-factor, so indeed the lengths are expressions linear in {xX , yX}X∈Ω.

We now show that if (U, V ) has a solution (σ, h) then for appropriate non-deterministic
choices we transform it into (U ′, V ′) with (σ′, h′) and the inverse operator is in the defined
family. So consider such a solution (σ, h). As already noted, consider the non-deterministic
guesses of CompCr(U, V, ab, ρ) that are consistent with (σ, h), i.e., for each variable X let
its ab-prefix and ab-suffix be sX [`X ] and s′X [rX ] (note that it may be that sX does not
depend on the parameter xX , or s′X on yX , it may be that one of them is ε; if whole σ(X)
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is an ab-block then we split between sX and s′X arbitrarily). Note that such sX , `X , s′X
and rX exist, as various sX and s′X define all types of ab-prefix and ab-suffix of σ(X) and
particular ab-prefixes and suffixes are obtained by substituting `X and rX for xX and yX ,
respectively. Note that when σ(X) is an ab-block (or a single constant a or b) then the
division of σ(X) into ab-prefix and ab-suffix is not unique. We can make it in an arbitrary
way, as long as it is consistent for σ(X) and σ(X). Let CompCr(U, V, ab, ρ) guess those sX
and s′X . Let also CompCr(U, V, ab, ρ) remove X from the equation only when this is needed,
i.e., σ(X) = sX [`X ]s′X [rX ].

Consider the equation (U1, V1) obtained from the equation calculated so far by CompCr(U, V, ab, ρ)
by substituting {`X , rX}X∈Ω for {xX , yX}X∈Ω. Then it has a solution (σ1, h), where σ(X) =
sX [`X ]σ1(X)s′X [rX ]. Moreover, σ(U) = σ1(U1). This is easy to see: sX [`X ] and s′X [rX ] are
the ab-prefix and ab-suffix of σ(X) (by their definition) and we replace X by sX [`X ]Xs′X [rX ]
(or sX [`X ]s′X [rX ]).

Let E1, . . . , E` be the maximal ab-factors calculated by the CompCr(U, V, ab, ρ). Then in
(U1, V1) the maximal ab-factors are E1[{`X , rX}X∈Ω], . . . , E`[{`X , rX}X∈Ω] and have lengths
e1[{`X , rX}X∈Ω], . . . , e`[{`X , rX}X∈Ω]: the sX and s′X were chosen so that they are of the
type of the ab-prefix and ab-suffix of σ(X) and sX [`X ] and s′X [rX ] are the ab-prefix and
ab-suffix of σ(X).

Lastly, the ab is non-crossing in (U1, V1) in σ1: suppose that it is not. As we assumed
that we removed X when σ(X) = sX [`X ]s′X [rX ] then this means that σ1 is non-empty and
so we can apply Lemma 4. As the cases listed in the lemma are symmetric, suppose that aX
occurs in (U1, V1) and σ1(X) begins with b. If sX = ε then this is a contradiction, as then
σ(X) also begins with b and so we guessed the ab-prefix of σ(X) incorrectly. Thus sX 6= ε
and so also sX [`X ] 6= ε. If sX [`X ] consists of at least two constants then it is an ab-factor
and it overlaps with the ab-factor consisting of the last constant of sX [`X ] and the following
b and so by Lemma 3 the sX [`X ]b is also an ab-factor, which contradicts the choice of sX . If
sX is a single constant, i.e., a, then we clearly guessed incorrectly: sX [`X ]σ1(X) begins with
ab and so also σ(X) begins with ab, thus we should have popped an ab-factor from it and
not a single a. The other cases are shown in the same way.

At this moment CompCr(U, V, ab, ρ) also calculates the transitions ρs, ρs′ as well as adds
some equations to the system; we focus on ρs, the actions for ρs′ are symmetrical. Let it
make the following choices: firstly, it correctly guesses the remainder `′X of xX modulo p,
i.e., it guesses `′X = `X mod p. In particular, the equation xX = kxX

p+ `′X is satisfiable. If
`X < p then let it guess that xX < p. Then `X satisfies the added equation xX = `′X . Then
ρ(sX [`X ]) = ρ(sX [`′X ]) and this is the value substituted for ρs, so ρs = ρ(sX [`X ]). On the
other hand, if `X ≥ p then the added inequality xX > `′X is satisfied by `X . Moreover, as
p is an idempotent power for ρ(ab) (or ρ(a), when a = b; for the simplicity of presentation
in the following we consider only the former case), we know that ρ(sX [`X ]) = ρ(sX [kp +
`′X ]) = ρ(sX [p + `′X ]), thus ρs has the value ρ(sX [`X ]). The same analysis applies to the
actions that calculate ρs′ = ρ(s′X [rX ]). Hence there is a transition ρX = ρ(σ1(X)) such that
ρsρXρs′ = ρ(X), we guess this value for ρX .

Consider the equations and inequalities on e1, . . . , ek added to D. An equality ei = ej is
added if and only if Ei[{`X , rX}X∈Ω] = Ej[{`X , rX}X∈Ω] (which implies that ei[{`X , rX}X∈Ω] =

27



ej[{`X , rX}X∈Ω]) and we consider the choices in which inequality ei < ej is added only when
the corresponding blocks are of the same type and ei[{`X , rX}X∈Ω] < ej[{`X , rX}X∈Ω]. Thus
{`X , rX}X∈Ω satisfy those equations and inequalities as well.

Let us now investigate the replacement of ab-factors by CompCr(U, V, ab, ρ). Recall that
we take the non-deterministic choices in which it assigns Ei and Ej into the same group if and
only if Ei[{`X , rX}X∈Ω] = Ej[{`X , rX}X∈Ω] and they represent factors of the same type. Then
the corresponding ab-factors in (U1, V1) are equal. Hence the action of CompCr(U, V, ab, ρ)
are equivalent to CompNCr(U1, V1, ab, ρ) (up to naming of the new constants), recall that
we already showed that ab is non-crossing in σ1. Lemma 6 guarantees that when ab is non-
crossing in σ then CompNCr(U1, V1, ab, ρ) transforms the solution σ and the inverse operator
replaces constants cEi

with the corresponding blocks of length ei[{`X , rX}X∈Ω]. So let (U1, V1)
with (σ1, h1) be transformed to (U ′, V ′) with (σ′, h′), as guaranteed Lemma 6. By the same
lemma we know what is the inverse operator that transforms (U ′, V ′) with (σ′, h′) to (U1, V1)
with (σ1, h1). From previous considerations we also know what is the inverse operator that
transforms (U1, V1) with (σ1, h1) to (U, V ) with (σ, h). It is easy to see that their composition
is exactly ϕ{`X ,rX}X∈Ω from ΦD,{sX ,s

′
X}X∈Ω,E1,...,Ek

. As {`X , rX}X∈Ω is a solution of D, this
shows the the appropriate inverse operator indeed is in ΦD,{sX ,s

′
X}X∈Ω,E1,...,Ek

.
To show that σ′U ′ is an S-reduction of σ(U), we can use Lemma 6: note that σ1(U1) =

σ(U) so it is enough to show that σ′U ′ is an S-reduction of σ1(U1). But Lemma 6 says
that CompNCr(U1, V1, ab, ρ) performs a reduction for a set of all explicit ab-blocks on σ1(U1).
Since each crossing or explicit ab-block in (U, V ) for σ is explicit in (U1, V1) for σ1, we get
the claim.

Concerning the weight, note that Lemma 6 shows that w(σ′, h′) ≤ w(σ1, h1) and the
inequality is strict if (U ′, V ′) 6= (U1, V1). Similarly, since σ(X) = sX [`X ]σ(X)s′X [rX ] and
each X was replaced with sX [`X ]Xs′X [rX ], each popped sX [`X ] contributed 2|h1(sX [`X ])|
to w(σ, h), while in w(σ1, h1) it contributes |sX [`X ]|, the same applies to s′X [rX ]. Thus
w(σ1, h1) ≤ w(σ, h) and if any of sX , s′X is non-empty, the inequality is strict. In the end,
w(σ′, h′) ≤ w(σ, h) and the equality happens only when no factor was replaced and nothing
was popped, i.e., when (U, V ) = (U ′, V ′), as claimed.

We now move to the next part of the proof. Assume that (U, V ) is turned into the
equation (U ′, V ′) that has a solution (σ′, h′) and system D was created on the way; let also
sX and s′X be popped to the left and right from X (any of those may be ε), finally, let blocks
from partition parts E1, E2, . . . , Ek be replaced with constants cE1 , cE2 , . . . , cEk

. We are to
show that for any operator ϕ ∈ ΦD,{sX ,s

′
X}X∈Ω,E1,...,Ek

it holds that ϕ[σ′](U) = ϕ[σ′](V ) and
that there is some homomorphism h for ϕ[σ′](U) compatible with ρ.

By definition, ϕ corresponds to some solution {`X , rX}X∈Ω of D, let us fix this solution.
Consider the equation obtained by CompCr(U, V, ab, ρ) after popping constants but before

replacement of ab-factors, i.e., the one using parameters {xX , yX}X∈Ω. Consider the equation
obtained by substituting {`X , rX}X∈Ω for those parameters, i.e., each sX is replaced with
sX [`X ] and each s′X by s′X [rX ]. Denote this equation by (U1, V1). If (σ1, h) is a solution of
(U1, V1) then (σ, h) is a solution of (U, V ), where σ(X) is obtained from σ(X) by appending
sX [`X ] and prepending s′X [rX ] to σ1(X):
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• Since σ(X) = sX [`X ]σ1(X)s′X(rX) and (U1, V1) was obtained by replacing X with
sX [`X ]Xs′X [rX ] (or sX [`X ]s′X [rX ] and then σ1(X) = ε), we get that σ(U) = σ1(U1) and
similarly σ(V ) = σ1(V1).

• For the constraints: ρ(σ1(X1)) = ρX calculated by CompCr(U, V, ab, ρ) and satis-
fying the condition ρ(X) = ρsX

ρXρs′X . As {`X , rX}X∈Ω is a solution of D then
CompCr(U, V, ab, ρ) calculated ρs = ρ(sX [`X ]) and ρs′ = ρ(s′X [rX ]): the ρs and ρs′
do not depend on a particular solution of D, they are equal for all of them.

• For the involution, note that we assume that σ1(X) = σ1(X) and sX = s′
X

and so we
get that σ(X) = σ(X).

Concerning the homomorphism h, observe that σ and σ1 use exactly the same constants out
of A, so if h is compatible with σ1, it is also with σ.

Note that the inverse operator transforming the solutions of (U1, V1) to solutions of (U, V )
is a ‘second part’ of the inverse operator ϕ.

We now consider the ‘first part’ of the inverse operator. Consider an equation obtained
from (U ′, V ′) by replacing every constant cEi

by an ab-factor Ei[{`X , rX}X∈Ω]. Note that
this is exactly the equation (U1, V1) considered before, i.e., the one that is obtained after
popping sX [`X ] to the left and s′X [rX ] to the right from X, for each variable X. Change
the solution of σ′ in the same way, that is by replacing each constant cEi

by an ab-factor
Ei[{`X , rX}X∈Ω], in this way we obtain a substitution σ1. Observe that σ1(U1) = σ1(V1), as
each constant cEi

∈ σ′(U ′) and σ′(V ′) was replaced in the same way.
Concerning the constraints, we need to show that ρ(Ei[{`X , rX}X∈Ω]) is the same as

ρ(cEi
). This follows from the way (U ′, V ′) is constructed from (U, V ). The constants a, b

are from the alphabet of (U, V ) and so we know their transition. The constructed system D
ensures that sX [`X ] (and ρ(s′X [rx])) have always the same transition ρs and ρs′ . Thus ρ(cEi

)
always has the transition as ρ(Ei[{`X , rX}X∈Ω]), regardless of the solution {`X , rX}X∈Ω.

Lastly, we show that there is a homomorphism h for the equation (U, V ) defined for all
constants in σ(U) compatible with ρ. For the constants that are present in (U, V ) we take
any homomorphism compatible with (U, V ), we know that it exists, as (U, V ) is proper;
for the constants that were present in (U ′, V ′) we similarly take a compatible h′ and assign
h(c) = h′(c). Lastly, there are constants that came from decompressing cEi

into ab-factors,
but due to definition of ϕ, both a and b are present in (U, V ) (or are from original alphabet).
Hence h can be defined for each constant: either as any homomorphism for (U, V ) or as any
homomorphism on (U ′, V ′).

Main transformation.
The main procedure TransformEq(U, V ) simply performs the ab-compression, the crossing

or non-crossing variant, depending on whether ab is crossing or not (this is found out by a
non-deterministic choice).
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Algorithm 3 TransformEq(U, V )
1: choose ab, where a (b) is a constant from (U, V ) or from B
2: if ab is crossing then . Guess non-deterministically
3: CompNCr(U, V, ab, ρ)
4: else
5: CompCr(U, V, ab, ρ)
6: return (U, V )

The crucial property of TransformEq is that for an appropriate choice the resulting equa-
tion is proper (assuming that the input one was): if there is any noncrossing ab available
then we choose it and performing the compression reduces the size of the equation. If all
possible ab are crossing, we choose the one that occurs most often in the equation. Uncross-
ing introduces 2n constants to the equation, but the compression of a frequent pair removes
at least as much.

Lemma 8. Suppose that (U, V ) is a proper equation such that |U > 1| or |V | > 1 and it
has a solution (σ, h). Then for appropriate choice of ab TransformEq transforms (U, V ) with
(σ, h) into (U ′, V ′) with (σ′, h′), where (U ′, V ′) is again proper.

Proof. Observe that the claim about the transformation holds by Lemma 6 and Lemma 7,
what we need to show is that for some choice of ab the obtained equation is indeed proper.

If there is any non-crossing ab occurring in U or V then choose it: its compression will
shorten U or V and then clearly also (U ′, V ′) is proper (moreover, h′ for (U ′, V ′) exists by
Lemma 6).

We show that when there is no non-crossing ab then there is at least one ab which is
crossing: the assumption that |U | > 1 or |V | > 1 so one of those sides has size at least 2. If it
has 2 consecutive constants, we have ab which cannot be non-crossing (by case assumption),
so it is crossing. If there are no two such consecutive constants, we also have a crossing
pair: take any constant (or last constant of the first occurrence of a variable) and the next
constant, which comes from a variable. This ab is crossing.

Since the equation (U, V ) is proper, it has at most m ≤ 16n2 constants. Consider all
crossing abs, let there be k of them, by earlier discussion we know that k ≥ 1. By Lemma 5
we know that k ≤ 4n. Consider, how many constants are covered by ab-factors in the
equation, for each crossing ab. Each constant is covered by at least one such factor (as there
are no non-crossing abs, such a factor may include constants from a variable), so there is an
ab whose maximal factors cover at least m/k constants, choose such an ab. As each ab-factor
consist of at least 2 constants, replacing a factor by a single constants removes at least half
of constants in a factor. Thus during the CompCr(U, V, ab, ρ) at least m/(2k) constants are
removed from the equation. Note that there is no contradiction in assuming that at least
half of the constants is removed and that each variable pops one constant to each side:

• if the ab factor is explicit, it will loose at least half of its constants;
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• if it is implicit and was popped from a variable then it will be replaced with one
constant and does not count towards the amount of compressed constants;

• if the ab factor is crossing and has length k then it is replaced with 1 constant, which
we charge towards the number of popped constants, so we can think that all explicit
constants from this factor were in fact compressed.

Thus the new equation has size at most

m− m

2k + 2n = (1− 1
2k )m+ 2n

≤ (1− 1
8n)m+ 2n

≤ (1− 1
8n) · 16n2 + 2n

≤ 16n2 − 2n+ 2n
= 16n2 ,

as claimed.

Proof of Lemma 2 and generation of the graphs representation of all solutions
The Lemma 2 is just a reformulation of Lemma 8. To see this, we reformulate it in the

language of transformation of solutions.

Lemma 9 (A modernised statement of Lemma 2). Suppose that (U0, V0) is a proper equation
with |U0| > 1 or |V0| > 1 and a simple solution (σ0, h0). Then for some nondeterministic
choices a run of TransformEq on (U0, V0) the returned equation (U1, V1) and the corresponding
family of inverse operators Φ satisfy

• (U1, V1) is proper

• (U0, V0) with (σ0, h0) is transformed to (U1, V1) with (σ′1, h1), Φ is the corresponding
family of inverse operators and (σ1, h1) is a simplification of (σ′1, h1).

4. Running time for satisfiability

For word equations over the free monoid (without the regular constraints) the known
algorithms [27, 14] (non-deterministically) verify the satisfiability in time polynomial in n
and logN , where N is the length of the length-minimal solution. It is the common belief
that N is at most exponential in n, and should this be so, those algorithms would yield that
WordEquation is in NP. While our algorithm works in polynomial space, so far a similar
bound on its running time is not known.
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4.1. Outline
The approach for the free monoid follows the lines similar to Lemma 8: whenever possible,

we compress the non-crossing abs, which shortens the equation (and does not increase the
length of the solution). Thus there are only polynomially many such steps in a row. When
only crossing abs are available, instead of choosing one that occurs often in (U, V ), we choose
one which occurs often in σ(U), which ensures that |σ(U)| drops by a fraction (1 − 1/8n).
As (1− 1/8n)8n < 1/e, after 8n such compressions the length of the solution is reduced by
a constant fraction 1/e; so there are poly(n) logN compressions in total.

To control both the size of the equation and solution, we alternatively reduce the size
of one and the other. This affects the bound on the size of kept equations: their maximal
length can be up to 32n2 instead of 16n2. We modify the definition of proper equations
appropriately, so that it allows equations of length up to 32n2.

There is a slight problem, though: it might be that some ab-factors occur only in sub-
stitutions for variables (so they are non-crossing) and a compression for them is ‘void’: in
the simplification we replace them back with two constants (or more).

However, when no constraints are allowed in the equations, the initial approach works:
if s is a factor in σ(U) for a length-minimal solution σ then either s is a factor of U or it
has a crossing occurrence in σ. Otherwise we could remove all factors s from the solution,
obtaining a shorter solution, which contradicts the length-minimality of σ.

The regular constraints make such an argument harder: when we cross out a factor s
from σ(X), the ρ(σ(X)) changes, which is not allowed. This can be walked around: instead
of crossing s out we replace it with a single constant that has the same transition as s,
i.e., ρ(a) = ρ(s). To this end we extend the original alphabet: we add to the original
alphabet A constants aP for each P ∈ ρ(A+), where ρ(A+) denotes the image of A+ by ρ,
i.e., {ρ(w) | w ∈ A+}. This set can be big, so we do not store it explicitly, instead we have
a subprocedure that tests whether P ∈ ρ(A+).

There is another technical issue: as we often apply simplification we do not really know
what happens with a length-minimal solution: it could be that we shorten the solution by
performing the S-reduction but then the simplification of the solution enlarges the solution,
negating the gain of the compression. However, this is not the case for an alphabet extended
as above: for such alphabets a length-minimal solution is simple; note that, we need to tune
the definition of length-minimal solutions: now it takes into the account also the weight of
the solution as a secondary factor.

4.2. ρ-closed alphabets
We begin with the precise definition of the ρ-closure of the alphabet and then show that

a word equation with constraints is satisfiable over A if and only if it is satisfiable over the
ρ-closure of A.

Given a finite alphabet A with involution together with a homomorphism ρ from A to
M2m we say that an alphabet A is ρ-closed if ρ(A) = ρ(A+), i.e., for each word w ∈ A+

there exists a constant a such that ρ(w) = ρ(a).
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Usually, an alphabet is not ρ-closed, however, we can naturally extend it with ‘missing’
constants: for an alphabet A define a ρ-closure clρ(A) of A:

clρ(A) = A ∪
{
aP

∣∣∣ there is w ∈ A+ such that ρ(w) = P
}
,

where each aP is a fresh constant not in A, aP = aPT and aP 6= aP ′ when P 6= P ′. It is easy
to see that clρ(A) is ρ-closed. Whenever clear from the context (or unimportant), we will
drop ρ in the notation and talk about closure and cl.

Viewing the equation over A as an equation over cl(A) does not change the satisfiability.

Lemma 10. Suppose that we are given a word equation (U, V ) with regular constraints
(defined using a homomorphism ρ) over a free monoid generated by A. Then (U, V ) has a
solution over A if and only if it has a solution when treated as an equation over the alphabet
of constants clρ(A).

Note that the set of all solutions of the equation may be different for A and clρ(A), but
in this section we are interested only in the satisfiability.

Proof. If (σ, h) is a solution over A then (σ, h′) is of course a solution over clρ(A), where h′
is h extended as an identity to cl(A) \ A.

On the other hand, when (σ, h) is a solution over clρ(A) then we can create a solution
over A: for each P ∈ ρ(A+) choose a word wP such that ρ(wP ) = P , moreover choose in
a way so that wP = wPT , and replace every aP in σ(X) by wP . Since constants aP do not
occur in the equation, it is routine to check that the obtained substitution is a solution (and
since ρ(wP ) = ρ(aP ), that all constraints are satisfied). Lastly, we restrict h.

Oracles for cl(A). Note that the size of cl(A) may be much larger than |A| (in fact, exponen-
tial in the input size). Thus we cannot store it explicitly, instead, whenever a constant from
cl(A) \A is introduced to the instance, we verify, whether it is indeed in cl(A), i.e., whether
the corresponding transition matrix P is in ρ(A+). In general, such check can be performed
in PSPACE (and in fact it is PSPACE-complete in some cases), but it can be performed more
efficiently, when we know an upper-bound on | cl(A)|.

Lemma 11. It can be verified in PSPACE, whether P ∈ ρ(A). Alternatively, this can be
verified in poly(|ρ(A+)|, n) time.

Proof. The proof is standard.
Let wP = a1a2 · · · ak be the shortest (non-empty) word such that ρ(wP ) = P . As M2m has

at most 24m2 elements, we have that k ≤ 24m2 : if it were longer then ρ(a1 · · · ai) = ρ(a1 · · · aj)
for some i < j and thus ρ(a1a2 · · · ak) = ρ(a1a2 · · · aiaj+1 · · · ak), which cannot happen, as
this word is shorter than wP .

Thus in PSPACE we can non-deterministically guess the constants a1, a2, . . . , ak and
verify that indeed ρ(a1a2 · · · ak) = P . Alternatively, we can deterministically list all elements
of ρ(A+) in poly(|ρ(A+)|, n) time.
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4.3. Length-minimal solution
We now give a proper definition of a length minimal solution: First, we compare the

solutions (σ1, h1) and (σ2, h2) by |σ1(U)| and |σ2(U)| and if those are equal, by w(σ1, h1)
and w(σ2, h2).

Definition 7 (Length-minimal solution). A solution (σ1, h1) (of an equation (U, V )) is
length-minimal if for every other solution (σ2, h2) of this equation either

• |σ1(U)| < |σ2(U)| or

• |σ1(U)| = |σ2(U)| and w(σ1, h1) ≤ w(σ2, h2).

The usual definition says that σ1 is length-minimal, when for each other solution σ2
we have |σ1(U)| ≤ |σ2(U)|. Note that Definition 7 refines the usual one, in the sense that
if a solution is length-minimal according to Definition 7, it is also length-minimal in the
traditional sense, but not the other way around. Furthermore, for the input equation the
h1 is an identity on all constants in the solution, so our refined notion coincides with the
traditional one.

Combining the notions of length-minimal solutions and ρ-closed alphabet we can show
that indeed each ab that occurs in a solution needs to have an explicit or crossing factor in
the equation.

Lemma 12. Suppose that (U, V ) is an equation over an alphabet B ⊇ A, where A is ρ-
closed. Let (σ, h) be a length-minimal solution. If s is a maximal ab-factor of σ(U) then
there is a factor s that is explicit or crossing for σ. In particular, if ab is noncrossing and
there is an ab-factor s in σ(U) then there is an explicit maximal factor s in (U, V ).

Proof. Suppose that this is not the case, i.e., there is a maximal ab-factor s in σ(U) and
there are no explicit nor crossing factors s. Let P = ρ(s) and take constants aP and aP
(aP = aP if and only if s = s). Create a new substitution σ′ by replacing each maximal
factor s and s in each σ(X) by aP and aP , respectively. By Lemma 3 the maximal ab-factors
do not overlap, so such a replacement is well-defined. Moreover, our replacement respects
the involution. It is easy to see that σ′ is a solution: each replaced maximal factor s and
s is wholly inside a substitution for a variable, so all of them were replaced; moreover, as
the factors are maximal, by Lemma 3, they do not overlap. The constraints are satisfied, as
ρ(s) = P = ρ(aP ) and ρ(s) = P T = ρ(aP ). Clearly h is compatible with σ′, as each constant
outside of A used by σ′ is also used by σ. Lastly, |σ′(U)| < |σ(U)|, as we replaced at least
one ab-factor. This shows that (σ, h) is not length-minimal, contradiction.

For the second claim, note that if ab is non-crossing then there cannot be a crossing
ab-factor, so there needs to be an explicit one.

4.4. Equations over ρ-closed alphabet
We are now ready to show that for ρ-closed alphabets poly(n, logN) applications of

TransformEq reduce it to a trivial equation (for appropriate non-deterministic choices). The
proof follows in two steps: firstly, in Lemma 13, we show that when TransformEq transforms
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a length-minimal solution then the obtained solution is simple. Since the inverse operator
for TransformEq is a S-expansion for a set of ab-factors, we know that the obtained solution
is significantly shorter than the one before TransformEq. Then, Lemma 14 shows that for
appropriate choices the length of the length-minimal solution is reduced by a constant frac-
tion (1/e) each poly(n) application of TransformEq. As a wrap up, when we begin with a
length-minimal solution (of length N) after at most poly(n, logN) compressions we end up
with a solution of length 1, which ends the proof.

Lemma 13 (cf. Lemma 9). Suppose that a proper equation (U0, V0) over an alphabet of
constants B ⊇ A that is ρ-closed has a length-minimal solution (σ0, h0) and that TransformEq
transforms (U0, V0) with a (σ0, h0) into (U1, V1) with a solution (σ1, h1). Then (σ1, h1) is
simple, in particular, σ0 = ϕ[σ1], where ϕ is the corresponding inverse operator.

Proof. Consider an application of TransformEq on (U0, V0). According to Lemma 9 for
appropriate non-deterministic choices made by TransformEq we obtain an equation (U1, V1)
and an operator ϕ and a solution (σ1, h1) such that σ0 = ϕ[σ′1] and (σ1, h1) is a simplification
of (σ′1, h1). We show that (σ′1, h1) is in fact simple, i.e., (σ1, h1) = (σ′1, h1).

Suppose for the sake of contradiction that (σ′1, h1) is not simple. Hence (σ′1, h1) uses a
constant b that does not occur in the alphabet of (U1, V1). Let P = ρ(b); by definition of
h1, we know that ρ(b) = ρ(h1(b)) and h1(b) ∈ A+. Since A is ρ-closed, there is aP such that
ρ(b) = ρ(aP ) = P . Create (σ′′1 , h1) by replacing each b and b in any σ(X) by aP and aP . It
is easy to verify that (σ′′1 , h1) is a solution of (U1, V1). Recall that by definition of σ1 and ϕ

σ0 = ϕ[σ′1] .

Recall also that ϕ may append and prepend constants to σ(X) (independently of X and of
the substitution) and it may replace some constants (outside of A) by longer factors, again
independently of X and of the substitution. Consider now

σ′′0 = ϕ[σ′′1 ] .

We intend to show that (σ′′0 , h0) is a solution of (U0, V0) and that it contradicts the length-
minimality of (σ0, h0). Since ϕ is the inverse operator, we know that σ′′0(U0) = σ′′0(V0) and
we need to show that h0 is defined on any constant assigned by σ′′0 outside A and that it
is compatible with ρ on such constants. Suppose that this is not the case; then the same
constant is also used by σ0: if this constant was used by σ′′1 and not replaced by ϕ then it
cannot be aP nor aP , as they are both in A. Hence this constant is also used by σ′1 and as
it is not replaced, it occurs also in σ0. On the other hand, if this constant was appended
or prepended to σ′′1(X) by ϕ, then the same constant is appended or prepended to σ′1(X).
Thus (σ′′0 , h0) is a solution of (U0, V0), it is left to show that (σ0, h0) is not length-minimal.

Firstly, we show that |σ0(U0)| ≥ |σ′′0(U0)|. Consider that ϕ[σ′1] and ϕ[σ′′1 ] and their action
on substitution for X. Then ϕ prepends and appends the same strings to σ1(X) and σ′′1(X),
additionally, it replaces some constants (outside A) in σ1(X) and σ′′1(X) in the same way
in both of them. As σ′′1(X) is obtained from σ1(X) by replacing b and b by aP , aP ∈ A, so
h(σ′′0(X)) and h(σ0(X)) differ only in strings that replace b and b: in the former those are
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aP and aP while in the latter those are strings h(b) and h(b) (of lengths at least 2). Thus
|σ′′0(X)| ≤ |σ0(X)| and the inequality is strict when b or b is in σ′1(X). As this constant
occurs in at least one σ′1(X), we conclude that σ0 is not length-minimal.

Lemma 14. Suppose that a proper equation (U0, V0) over an alphabet of constants B ⊇ A
that is ρ-closed has a length-minimal solution of size N . Then after (appropriate) O(n3)
applications of TransformEq the obtained proper equation (Uk, Vk) has a solution of size at
most N/e.

Proof. Imagine the following process, see Algorithm 4. For an equation (U, V ) and its length-
minimal solution we guess, whether there is some non-crossing pair for them. If so, we make
the compression of this pair. If not, we choose one of the crossing abs. In an alternating
way we choose such an ab so that it covers many constants in σ(U) or in (U, V ), one of them
shortens the solution and the other shortens the equation. Note that as in the Lemma 8
we can show that when there are no non-crossing abs in (U, V ) then there is at least one
crossing ab.

Algorithm 4 ShortenSol(U, V )
1: odd← 0
2: while |U | > 1 or |V | > 1 do
3: fix a length-minimal solution (σ, h) . Mental experiment
4: if there is non-crossing ab in (σ, h) occurring in (U, V ) then
5: CompNCr(U, V, ab, ρ)
6: else
7: if odd is even then . ab that is shortening the solution
8: choose ab covering most constants in σ(U) . Guess
9: else . ab that is shortening the equation

10: choose ab covering most constants in (U, V ) . Guess
11: CompCr(U, V, ab, ρ)
12: odd← (odd+ 1) mod 2

We show that for appropriate choices all equations on the way are proper, we need to
redefine the notion first, though: the size of the equation is at most 32n2, not 16n2 as
before. Consider the run between two consecutive compressions of crossing abs and the size
of the equation. It is not increased during each of the non-crossing compressions. It can be
increased up to 2n constants (popped from a variable) for each crossing compression, so by
4n in total. Now the rest of the argument is as in Lemma 8, just with a larger constant, as
we introduced 4n and not 2n constants.

So consider the sizes of the length-minimal solutions of the consecutive equations. We
show, that

1. non-crossing compressions decrease the size of the equation by at least 1;

2. compressions do not increase the length of the length-minimal solution;
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3. each crossing compression that reduce the size of the solution reduces it by a fraction
at least (1− 1/8n)

From 1 we obtain that there are at most 32n2 non-crossing compressions in between crossing
compressions, so there are 64n2 + 1 compressions between two crossing compression that
reduces the size of the solution. From 2 in between such two compressions the size of the
length minimal solution does not increase. Thus, by 3, after 64n2+2 compressions the size of
the length-minimal solution is reduced by (1−1/8n). So after at most 8n(64n2 +2) = O(n3)
the size of the length minimal solution is reduced by (1− 1/8n)8n ≤ 1/e, as claimed.

Consider 1. By Lemma 12 if ab is non-crossing then there is an explicit ab-factor in the
equation. Thus the non-crossing ab removes at least 1 constant from the equation.

Consider 2, let us look first at the non-crossing compression: then CompNCr(U, V, ab, ρ)
transforms (U, V ) with (σ, h) to (U ′, V ′) with (σ′, h′), see Lemma 6. Since (σ, h) is length-
minimal, by Lemma 13 the (σ′, h′) is simple and so in particular |σ′(U ′)| upper-bounds the
length of the length-minimal solution. From Lemma 6 we know that σ′(U ′) is an S-reduction
of σ(U), thus |σ(U)| ≥ |σ(U ′)|. A similar argument (using Lemma 7 instead of Lemma 6)
applies to the crossing compression.

Consider 3, i.e., consider the application of the crossing compression that reduces the
size of the solution. Consider all different crossing ab factors. By Lemma 5 there are at most
4n of them. Each constant of σ(U) is covered by at least one constant of some maximal
ab-factor, where ab is crossing, see Lemma 12 (recall that by case assumption there are no
non-crossing abs). So there is ab whose factors cover at least |σ(U)|/4n constants. Consider
the equation that is obtained by compressing such an ab using CompCr(U, V, ab, ρ). Then by
Lemma 7, for appropriate non-deterministic choices, the obtained equation (U ′, V ′) has a
solution (σ′, h′) such that σ′(U ′) is an S-reduction of σ(U) for the set of all maximal ab-factors
that are explicit or crossing in σ and their involutions (and perhaps some other ab-blocks).
By Lemma 12 those are all maximal ab-factors. Thus each such factor is shortened by at
least half, so in total at least |σ(U)|/8n constants were removed.

|σ′(U ′)| ≤ |σ(U)| − |σ(U)|
8n =

(
1− 1

8n

)
|σ(U)|.

Now, from Lemma 13 we know that (σ′, h′) is a simple solution and so in particular |σ′(U ′)| ≤(
1− 1

8n

)
|σ(U)| upper-bounds the length of the length-minimal solution.

4.5. Running time for equations over groups
As a consequence of Lemma 13, we can verify the satisfiability of a word equation in free

groups (without rational constraints) in (nondeterministic) time npoly(logN, n), where N is
the size of the length minimal solution.

Theorem 2. The satisfiability of word equation over free group (without rational constraints)
can be verified in PSPACE and at the same time npoly(logN, n) time, where N is the size of
the length-minimal solution of this equation.

37



Proof. We reduce the problem in a free group to the corresponding one in a free semigroup,
see Proposition 1. In this way we introduce regular constraint, and these are the only
constraints in the problem. This constraint says that aa cannot be a factor of X, for any a.
The NFA for this condition has |Γ|2 + 2 states:

• sink (all transitions to itself)

• initial state

• a state (a, b), where a is the first constant of the word and b the last.

The transitions are obvious. It is easy to see that M2m has O(|Γ|2) elements. Thus the
subprocedure for checking whether P ∈ ρ(A+) can be implemented in poly(n), see Lemma 11.

Concerning the problem in the free monoid, we first extend the alphabet A to cl(A). By
Lemma 10 those problems are equisatisfiable. By Lemma 14 the length of the substitution
for a variable drops by a constant fraction after O(n3) applications of TransformEq (for
appropriate non-deterministic choices), so there are only O(n3 logN) application of this
procedure till the solution is reduced to a single constant, in which case also the sides of the
equation have sizes 1. Clearly each such an application takes time polynomial in n (as all
equation are proper by Lemma 8).

5. Applications

Using the results above we obtain the following theorem:

Theorem 3. It can be decided in PSPACE whether the input system with rational constraints
has a finite number of solutions.

Proof. To find out whether the equation has infinite number of solutions it is enough to find
a path from a start node of the graph to a final node which either

• contains a loop or

• one of the edges of the path is labelled by a linear system of equations having infinite
number of solutions or

• the final node has infinite number of solutions, which means that it is of the form
(X, Y ), ρ(X) = ρ(Y ) and there are infinitely many words w such that ρ(w) = ρ(X).

The first condition is a simple reachability problem in a graph, which can be performed in
NPSPACE, as the description of the nodes and edges are of polynomial size. The second
condition can be verified in NP, see Proposition 2. The last condition can be easily verified
in PSPACE. Since NPSPACE contains NP and is equal to PSPACE, the search of such a path
can be done in PSPACE.

Now if none of those conditions is satisfied, the graph representation of all solutions is
a finite DAG, for each edge the family of inverse operators is finite and each final node has
finitely many solutions, which implies that there are only finitely many solutions in total
(although we may counted some of them several times).
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