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A BOUND ON SOLUTIONS OF LINEAR INTEGER
EQUALITIES AND INEQUALITIES

JOACHIM VON ZUR GATHEN AND MALTE SIEVEKING

ABSTRACT. Consider a system of linear equalities and inequalities with
integer coefficients. We describe the set of rational solutions by a finite
generating set of solution vectors. The entries of these vectors can be
bounded by the absolute value of a certain subdeterminant. The smallest
integer solution of the system has coefficients not larger than this subde-
terminant times the number of indeterminates. Up to the latter factor, the
bound is sharp.

Let 4, B,C,Dbem X n-,m X 1-,p X n-, p X 1-matrices respectively with
integer entries. The rank of A is r, and s is the rank of the (m + p) X n-
matrix (¢). Let M be an upper bound on the absolute values of those
(s — 1) X (s — 1)- or s X s-subdeterminants of the (m + p) X (n + 1)-matrix
4. 8), which are formed with at least r rows from (4, B).

THEOREM. If Ax = B and Cx > D have a common integer solution, then
they have one with coefficients bounded by (n + 1) M.

Let M,, M,, and M; be upper bounds on the absolute values of the
r X r-subdeterminants, the subdeterminants, and the entries of (A4, B)
respectively. Taking the n X n-identity matrix for C and D = 0, we have the
following

COROLLARY. If Ax = B has a nonnegative integer solution, then it has one
with coefficients bounded by (n + 1)M,.

~

S. Cook [4] obtained a bound of the order of M3"'z in this case. I. Borosh
and L. B. Treybig conjecture that one can always have the bound M,. For
many cases, this bound would be sharp. They give an elegant proof for M7 in
[2]. In [1], [3] they obtain M, in the cases where r = n — 1 and for homo-
geneous systems (only nontrivial solutions being considered), and nrM, if the
matrix has no r X r-subdeterminants which are zero. Their work arose from
topological questions, while Cook’s and our aim was to prove that the
solvable linear integer programs form a NP-complete set (see Remarks 2 and
3).

For the proof of the theorem we first note that it suffices to consider the
case s = n. For if s < n, then choose an integer solution y, let ¢; be 1 or —1
according to whether y, is > 0 or < 0. To the given system add n — s
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inequalities ¢;x; > 0 so that the resulting system has rank n. Then the theorem
for tuis system implies that for the one with rank s.

Let S=[A=B]lNn[C>D]={x€Q:Ax=BandCx > D}, H=[A
= 0] N [C > 0]. The ith row A4; of A corresponds to a linear form on Q”,
which we also denote by 4;, and similarly for C. Let I C {1,...,p}. If
S N N;e; [C; = D,] is nonempty and the matrix with rows 4,, ..., 4,, and
C; for i € I has rank n, then the single vector in this set is called a vertex of S.
We call H n N;¢;[C; = 0] an edge of H, if it is not equal to {0}, and the
matrix with rows A4,,..., 4, and C; for i € I has rank n — 1. We may
assume # 1 = n — r for a vertex, and #1 = n — r — 1 for an edge. Choose a
nonzero vector in each edge of H. Let F be the set of all these vectors, and E
the set of all vertices of S.

LEMMA. § = conv(E) + Q_F.

Here conv(E) + Q. F denotes the set of all 3, A.e + 2 cr pf with
nonnegative rational numbers A,, p, and X, A, = 1. The proof is by
induction on n. n = 0 is trivial, the empty sum being 0. Obviously conv(E) +
Q.,FcS.Soletn>0,x €8S.

Case 1.r > 0.

Suppose that 4, # 0, and let u: [4, = 0] > Q"' be the projection that
takes the kth coordinate to zero. u is an isomorphism of vector spaces.
Al=Acutand C/=C, o u~! are linear forms on Q"~!, and the rank of
the matrix (¢)isn — 1. Let B/ = 0, D/ = D, = C{(x), E' = w(E — x), F' =
u(F). Here E — x = {e — x: e € E}. We show that E’ contains every vertex
and F’ a nonzero vector of each edge with respect to 4’, B, C’, D’. Let
{y}=1[4"= BN N;elC/ = D/] be a vertex of [A"= BN [C’' > D’].
Then {u#~'(y) + x} =[4 = BI N N,¢,[C, = D] is a vertex of S, and hence
u'(»)+xEETheny EE.Let Z=[A'=01N[C’" > 0N N,,[C/ =
0] be an edge of [A’ =0] N [C’ > 0]. Then u"(Z) = H N N,¢,[C, = 0] is
an edge of H, and hence there is an f € u~(Z) N F\ {0}. Then u(f) € Z
N F'\ {0}.

We have 0 € iA’ = BN [C’ > D’], and using the induction hypothesis,
we obtain 0 € conv(E’) + Q_ F/,

x Econv(E) + Q. F.

Case2.r = 0.

We assume B = 0 and n > 1. Then for some i, j, C; and C; are linearly
independent. We can find a y, € [C; > 0] N [C, < 0]. Let A > D,/ Ci(»)),
(2Ci(x) — D;)/ Ci(»,)- Then for y = Ay, we have C;(y) < D; and G;(2x — y)
< D;, and hence the intersection of [C > D] with the line

I={x+a(y — x):a €Q}
is a finite interval [z,, z,] containing x. Thus it is sufficient to prove that z,,
z, € conv(E) + Q. F. Let z be z, or z,. There is a j with z € [C; = D}, for
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otherwise an open interval on / containing z would be contained in [C > D].
Suppose that C; # 0, and let u: [C; = 0] - Q"' be the projection that takes
the kth coordinate to zero. Let C/ = C;cu~' and D/ = D, — C(z), E' =
u((E - 2)n [G =0)), F' = u(F N [C; = 0]). To a vertex of [C’ > D’] with
index set I corresponds the vertex of [C > D] with index set 7 U {,}, and
similarly for edges. Like in Case 1, it now follows that z € conv(E) + Q F.
This completes the proof of the lemma.

We can now prove the theorem stated at the beginning. By Cramer’s rule,
we can choose the sets E and F such that all coefficients of their elements are
bounded by M, and all elements of F are integer vectors. Let x be an integer
solution of Ax = B and Cx > D. Then x € conv(E) + Q_ F, and it is easy
to see [6, 2.2] that there exists F' C F with #F' < n and x € conv(E) +
Q. F'. Take a representation

x=2 Ae+ X Ief-
e€E fEF
Then x — 2, [ ] f is the desired integer solution of Ax = B and Cx > D
with coefficients bounded by Z A M + 2 .M < (n + 1)M.

REMARKS. 1. The lemma states a decomposition of the set S of rational
solutions into the sum of a compact convex set and a pointed cone (i.e. one
that does not contain a line). A corresponding decomposition can be made
without the assumption that s = n, by adding the common null space of A4
and C. However, the construction of the generating set F for the cone
requires a little more care, and the bounds obtained in this way are
considerably worse than the one in the theorem.

2. It follows from the theorem that the set of all A, B, C, D as above, for
which there exists an integer vector x with Ax = Band Cx > D, isin NP. It
is then easy to see that it is an NP-complete set. The same holds for slight
variations of the problem, such as {(4, B): Ax = B has a nonnegative integer
solution}, {(C, D): Cx > D has an integer solution}, and {(C, D): Cx > D
has a nonnegative integer solution}. One easily finds polynomial transfor-
mations between these sets. For terminology concerning NP, see [5], e.g.

3. For any entry C; of C, let C; = £,C/, - 2* with C/, € {—1,0, 1}, and
for x € Q" lety, = x;- 2* Then

Cx > Deforalli, ), Cii 2 D
ok

Furthermore, for any j

forallk, y, = x;- 2 &
Yo = x; and for all k there exists z;, € Q" with
Zj = Yik—1 and Yik = Vik-1 + Zjk-

Combining these, we obtain a polynomial transformation from the set of all
solvable systems of linear integer inequalities to the set of those inequalities
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(C, D), for which all entries of C are —1,0, or 1. This set is therefore
NP-complete. For C consisting of 0’s and1’s only, the problem is in P.
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