
Approximation of grammar-based compression via recompression1

Artur Jeża

aInstitute of Computer Science, University of Wrocław, 50-383 Wrocław, Poland.

Abstract

In this paper we present a simple linear-time algorithm constructing a context-free grammar of
size O(g log(N/g)) for the input string, where N is the size of the input string and g the size of
the optimal grammar generating this string. The algorithm works for arbitrary size alphabets,
but the running time is linear assuming that the alphabet Σ of the input string can be identified
with numbers from {1, . . . , N c} for some constant c. Otherwise, additional cost of O(N log |Σ|) is
needed.

Algorithms with such an approximation guarantee and running time are known, the novelty
of this paper is a particular simplicity of the algorithm as well as the analysis of the algorithm,
which uses a general technique of recompression recently introduced by the author. Furthermore,
contrary to the previous results, this work does not use the LZ representation of the input string
in the construction, nor in the analysis.

Keywords: grammar-based compression, construction of the smallest grammar, SLP,
compression
2000 MSC: 68W01, 68W05, 68W25, 68W40, 68Q42, 68Q45

1. Introduction

1.1. Grammar based compression
In the grammar-based compression text is represented by a context-free grammar (CFG) gen-

erating exactly one string. The idea behind this approach is that a CFG can compactly represent
the structure of the text, even if this structure is not apparent. Furthermore, the natural hier-
archical definition of the CFGs make such a representation suitable for algorithms, in which case
the string operations can be performed on the compressed representation, without the need of the
explicit decompression [2, 8, 10, 17, 3, 1]. Lastly, there is a close connection between block-based
compression methods and the grammar compression: it is fairly easy to rewrite the LZW defi-
nition as a O(1) larger CFG, LZ77 can also be presented in this way, introducing a polynomial
blow-up in size (reducing the blow up to log(N/`), where ` is the size of the LZ77 representation,
is non-trivial [18, 1]).

While grammar-based compression was introduced with practical purposes in mind and the
paradigm was used in several implementations [12, 11, 16], it also turned out to be very useful
in more theoretical considerations. Intuitively, in many cases large data have relatively simple
inductive definition, which results in a grammar representation of a small size. On the other hand,
it was already mentioned that the hierarchical structure of the CFGs allows operations directly on

1An extended abstract of this paper was presented at CPM 2013 conference [4].

Preprint submitted to Theoretical Computer Science November 17, 2015

the compressed representation. A recent survey by Lohrey [13] gives a comprehensive description of
several areas of theoretical computer science in which grammar-based compression was successfully
applied.

The main drawback of the grammar-based compression is that producing the smallest CFG
for a text is intractable: given a string w and number k it is NP-hard to decide whether there
exists a CFG of size k that generates w [20]. Furthermore, the size of the grammar cannot be
approximated with an approximation factor better than 8569

8568 , unless P=NP [1].
Lastly, it is worth noting that in an extremely simple case of strings of the form a`1ba`2b · · · ba`k

construction of the grammar generating a given string is equivalent (up to a small constant factor)
to a construction of an addition chain for the sequence `1 < `2 < . . . < `k and for the latter
problem the best algorithm returns an addition chain of size log `k +O

(∑k
i=1

log `i
log log `i

)
[21], which

in particular yields anO
(

log n
log log n

)
approximation of the size of the smallest addition chain. Since the

addition chains are well studied, showing a construction of an addition chain shorter than log `k +
O
(∑k

i=1
log `i

log log `i

)
seems unlikely. Note, that this construction was not aimed at approximating the

shortest addition chain, so it is still possible that O(log n
log log n) approximation can be improved. In

any case, any new result for addition chains would be interesting on its own.

1.2. Approximation
The hardness of the smallest grammar problem naturally leads to two directions of research:

on one hand, several heuristics are considered [12, 11, 16], on the other, approximation algorithms,
with a guaranteed approximation ratio, are proposed; in this paper we consider only the latter
approach. Note that the heuristical algorithms can work differently depending on the distribution
of letters in the input (and often the principle behind them assumes that the data has some sort of
regularity). On the other hand, the approximation guarantees shown for the latter algorithms are
universal, in the sense that they do not depend on the distribution of letters or any other properties
of the provided text.

The first two algorithms with an approximation ratio O(log(N/g)) were developed indepen-
dently (and simultaneously) by Rytter [18] and Charikar et al. [1]. They followed a similar ap-
proach, we first present Rytter’s one as it is a bit easier to explain.

Rytter’s algorithm [18] applies the LZ77 compression to the input string and then transforms
the obtained LZ77 representation to an O(` log(N/`)) size grammar, where ` is the size of the LZ77
representation. It is easy to show that ` ≤ g and as f(x) = x log(N/x) is increasing, the bound
O(g log(N/g)) on the size of the grammar follows (and so a bound O(log(N/g)) on approximation
ratio). The crucial part of the construction is the requirement that the intermediate constructed
grammar defines a derivation tree satisfying the AVL condition. The bound on the running time
and the approximation guarantee are all consequences of the balanced form of the derivation tree
and of the known algorithms for merging, splitting, etc. of AVL trees (in fact these procedures are
much simpler in this case, as we do not store any information in the internal nodes [18]). Note that
also the final grammar for the input text is balanced, which makes it suitable for later processing.
Since the construction of LZ77 representation can be performed in linear time (assuming that the
letters of the input word can be sorted in linear time), also the running time of the whole algorithm
can be easily bounded by a linear function.

Charikar et al. [1] followed more or less the same path, with a different condition imposed on
the grammar: it was required that its derivation tree is length-balanced, i.e. for a rule X → Y Z

2

the lengths of words generated by Y and Z are within a certain multiplicative constant factor from
each other. For such trees efficient implementation of merging, splitting etc. operations were given
(i.e. constructed from scratch) by the authors and so the same running time as in the case of the
AVL trees was obtained.

Lastly, Sakamoto [19] proposed a different algorithm, based on RePair [12], which is one of
the practically implemented and used algorithms for grammar-based compression. His algorithm
iteratively replaced pairs of different letters and maximal blocks of letters (a` is a maximal block
if it cannot be extended by a to either side). A special pairing of the letters was devised, so that
it is ‘synchronising’: if w has 2 disjoint occurrences in the text, then those two occurrences can be
represented as w1w

′w2, where w1, w2 = O(1), such that both occurrences of w′ in text are paired
and compressed in the same way. The analysis was based on considering the LZ77 representation
of the text and proving that due to ‘synchronisation’ the factors of LZ77 are compressed very
similarly as the text to which they refer.

However, to the author’s best knowledge and understanding, the presented analysis [19] is in-
complete, as the cost of nonterminals introduced when maximal blocks are replaced is not bounded
at all in the paper, see the appendix; the bound that the author was able to obtain using the ap-
proach of Sakamoto is O(log(N/g)2), so worse than claimed.

1.3. Proposed approach: recompression
In this paper another algorithm is proposed, it is constructed using the general approach of

recompression, developed by the author. In essence, we iteratively apply two replacement schemes
to the text T :

pair compression of ab For two different symbols (i.e. letters or nonterminals) a, b such that
substring ab occurs in T replace each of ab in T by a fresh nonterminal c.

a’s block compression For each maximal block a`, where a is a letter or a nonterminal and
` > 1, that occurs in T , replace all a`s in T by a fresh nonterminal a`.

Then the returned grammar is obtained by backtracking the compression operations performed by
the algorithm: observe that replacing ab with c corresponds to a grammar production

c→ ab (1a)

and similarly replacing a` with a` corresponds to a grammar production

a` → a` . (1b)

The algorithm is divided into phases: in the beginning of a phase, all pairs occurring in the
current text are listed and stored in a list P , similarly, L contains all letters occurring in the current
text. Then pair compression is applied to an appropriately chosen subset of P and all blocks of
symbols from L are compressed, then the phase ends. If everything works perfectly, each symbol
of T is replaced and so T ’s length drops by half; in reality the text length drops by some smaller,
but constant, factor per phase. For the sake of simplicity, we treat all nonterminals introduced by
the algorithm as letters.

In the previous work of the author it was shown that such an approach can be efficiently
applied to text represented in a grammar compressed form. In this way new results for compressed
membership problem [6], fully compressed pattern matching [8] and word equations [5, 7] were

3

obtained. In this paper a somehow opposite direction is followed: the recompression method is
applied to the input string. This yields a simple linear-time algorithm: Performing one phase in
O(|T |) running time is relatively easy, since the length of T drops by a constant factor in each
phase, the O(N) running time is obtained. The used space is also linear, under the assumption
that a unit machine word can hold Ω(logn) bits.

However, the more interesting is the analysis, and not the algorithm itself: it is performed
by applying (as a mental experiment) the recompression to the optimal grammar G for the input
text. In this way, the current G always generates the current string kept by the algorithm and the
number of nonterminals introduced during the construction can be calculated in terms of |G| ≤ g.

A relatively straightforward analysis yields that the generated grammar is of size O(g logN),
a slightly more involved analysis yields a bound O(g log(N/g) + g) (for the same grammar).

1.4. Advantages and disadvantages of the proposed technique
The author believes that the proposed algorithm is interesting, as it is very simple and its

analysis for the first time does not rely on LZ77 representation of the string. Potentially this can
help in both design of an algorithm with a better approximation ratio and in showing a logarithmic
lower bound: Observe that LZ77 representation is known to be at most as large as the smallest
grammar, so it might be that some algorithm produces a grammar of size o(g log(N/g)), even
though this is of size Ω(` log(N/`)), where ` is the size of the LZ77 representation of the string.
Secondly, as the analysis ‘considers’ the optimal grammar, it may be much easier to observe, where
every approximation algorithm performs badly, and so try to approach a logarithmic lower bound.
This is much harder to imagine, when the approximation analysis is done in terms of the LZ77.

Unfortunately, the obtained grammar is not balanced in any sense, in fact it is easy to give
examples on which it returns grammar of height Ω(

√
N) (note though that the same applies also to

grammar returned by Sakamoto’s algorithm). This makes the obtained grammar less suitable for
later processing; on the other hand, the practically used grammar-based compressors [12, 11, 16]
also do not produce a balanced grammar, nor do they give a guarantee on its height.

On the good side, there is no reason why the optimal grammar should be balanced, neither
can we expect that for an unbalanced grammar a small balanced one exists. Thus it is possible
that while o(log(N/g)) approximation algorithm exists, there is no such an algorithm that always
returns a balanced grammar.

We note that the reason why the grammar returned by the proposed algorithm can have large
height is only due to block compression: if we assume that the nonterminal generating a` has
height one, the whole grammar has height O(logN). It looks reasonable to assume that many
data structures for grammar representation of text as well as later processing of it can indeed
process a production a` → a` in constant time.

Lastly, the proposed method seems to be much easier to generalise then the LZ77-based ones:
generalisations of SLPs to grammars generating other objects (mostly: trees) are known but it
seems that LZ77-based approach does not generalise to such settings, as LZ77 ignores any ad-
ditional structure (like: tree-structure) of the data. In recent work of Lohrey and the author
the algorithm presented in this paper is generalised to the case of tree-grammars, yielding a first
provable approximation for the smallest tree grammar problem [9].

Comparison with Sakamoto’s algorithm
The general approach is similar to Sakamoto’s method, and both papers contain separate

analyses and estimations for (variants of) pair compression and block compression. However, the
4

pairing of letters seems more natural in the presented paper and the analysis is simpler. Also, the
construction of nonterminals for blocks of letters is different, the author failed to show that the
bound actually holds for the variant proposed by Sakamoto (see Appendix). Note, that the analysis
for block compression in this paper is much more involved than the one for pair compression. On
the other hand, the connection to the addition chains suggests that the compression of blocks is
the difficult part of the smallest grammar problem.

Note on computational model
The presented algorithm runs in linear time, assuming that the Σ can be identified with a

continuous subset of natural numbers of size O(N c) for some constant c and the RadixSort can be
performed on it. Should this not be the case for the input, we can replace the original letters with
such a subset, in O(n log |Σ|) time (by creating a balanced tree for letters occurring in the input
string). Note that the same comment applies to previous algorithms: there are many different
algorithms for constructing the LZ77 representation of the text, but all of them first compute
a suffix array (or a suffix tree) of the text, and linear-time algorithms for that are rely on linear-
time sorting of letters (treated as integers); although Sakamoto’s method was designed to work
with constant-size alphabet, it can be easily extended to the case when Σ can be identified with a
sequence of O(N c) numbers, retaining the linear running-time.

In such a computational model we assume that a unit machine word can store a number using
Θ(logn) bits, and with such an assumption the space consumption of the algorithm is linear.

Roadmap
In Section 2 we define block and pair compression in detail and explain, how they are used to

compute an SLP for a given string. We also describe, how to perform them in linear time: This
is achieved by grouping appropriate substrings from a string, which is done using RadixSort. Then
we show that the size of the input string is reduced by a constant factor in each phase, which can
be used to conclude that the running time is linear.

Next we move to the analysis of the approximation ratio of the algorithm, which is performed
in Section 3. To this end we consider the smallest grammar G generating this text, it is of
size g. During the algorithm we modify appropriately the grammar, so that it always generates
the current text T stored by the algorithm. The modifications follow the general recompression
approach [6, 8, 5, 7] and they are of the following type: when a nonterminal X of G generates
awb we change its rule so that it now generates w and replace in each rule X by aXb, so that
other nonterminals generate exactly the same strings. Moreover, only O(1) such modification per
phase per variable are done, and so the size of the grammar increases by O(g) per phase. This is
explained in Sections 3.4 and 3.5. The actual cost of the constructed rules is estimated based on
the G stored by the analysis: whenever we perform a compression, we perform it also on the rules
of G and thus the size of G decreases after each compression. The total cost is the size of all such
decrements and it is the same as the total size of increments, which are O(g) per phase. There are
only logN phases, which yields the approximation bound.

However, this analysis is unable to cover the cost introduced when very long blocks of letter
a are replaced. We show that we can associate each such long block with a particular rule of a
grammar G and so we charge the cost of such a representation to this rule. Then we show that if
a rule is charged p (in total) then it originally produced a piece of input of length at least 2p, thus
at most logN is charged to a rule. This again yields O(g logN) bound on the size of the generated
rules.

5

Lastly, in Section 4 we improve the analysis to O(g + g log(N/g)). The crucial observation is
that any reasonable grammar for a string T has size O(|T |), which follows by simple summation of
lengths added by the productions. We divide the computation of the algorithm into two phases: the
first one lasts until |T | ≈ g and the second begins afterwards and lasts till the end. We separately
calculate the size of grammar productions introduced in those two phases. The latter are of size
O(g), by the already mentioned observation. Using the same analysis as in the case of O(g logN)
we can show that the number of phases till the text is shortened to size g is O(log(N/g)) and so
the size of the grammar is O(g log(N/g)). In most cases the generalisation is straightforward, with
the only exception of the analysis for long blocks of a. In this case we need to make the analysis
more precise: for each replaced power a`, instead of charging the cost to the rule, we mark ` letters
of the input that somehow correspond to this block. We ensure that those markings are disjoint
and their number of those markings is linear in g. Using standard calculus this yields a desired
bound O(g log(N/g)). Details of this construction are separately presented in Section 4.7.

2. The algorithm

Notation conventions
The input sequence to be represented by a context-free grammar is T ∈ Σ∗, we shall use the

same letter also for the text currently kept by the algorithm. By N we denote the initial length
of T , by |T | the current one. The algorithm TtoG introduces new symbols to the instance, those
symbols are the nonterminals of the constructed grammar. However, these are later treated exactly
as the original letters, so we insist on calling them letters as well and use common set Σ for both
letters and nonterminals. We assume that T is represented as a doubly-linked list, so that removal
and replacement of its elements can be performed in constant time (assuming that we have a link
to such an occurrence). Note though that if we were to store T in a table, the running time would
be the same. The smallest grammar generating the input sequence is denoted by G and its size
|G|, measured as the length of the productions, is g.

Grammar
The crucial part of the analysis is the modification of G according to the compression performed

on T . The terms nonterminal, rules, etc. always address the optimal grammar G (or its transformed
version). To avoid confusion, we do not use terms ‘production’ and ‘nonterminal’ for a that replaced
some substring in T (even though this is formally a nonterminal of the constructed grammar). Still,
when a new ‘letter’ a is introduced to T we need to estimate the length of the ‘productions’ in the
constructed grammar that are needed for a (note that we can of course use all letters previously
used in T). The ‘productions’ introduced for a is called a representation of a letter a, the sum of
lengths of those ‘productions’ is a cost of representation of a letter a (or simply: representation
cost). For example, in production (1a) then the representation cost is 2 (as we have only one
rule c → ab) and in a rule (1b) we have a cost `; the latter cost can be significantly reduced, for
instance for a12 we can have a representation cost of 8 instead of 12, when we use a subgrammar
a2 → aa, a3 → a2a, a6 → a3a3 and a12 → a6a6. Note that when c replaces a pair (as in (1a)), its
representation cost is always 2, but when a replaces a block of letters, say a`, the cost might be
larger than constant. In the latter case our algorithm constructs a special subgrammar for a` that
generates a`, the exact way is given in Section 2.1.1.

6

2.1. The algorithm
The algorithm TtoG is divided into phases: in each phase we first list all letters and for each of

them we perform the block compression and then again list all letters, choose appropriate partition
and perform the pair compression for each pair from this partition that occurs in the text.

Algorithm 1 TtoG: outline
1: while |T | > 1 do
2: L← list of letters in T
3: for each a ∈ L do . Blocks compression
4: compress maximal blocks of a . O(|T |)
5: P ← list of pairs
6: find partition of Σ into Σ` and Σr . Covering at least 1/2 of occurrences of letters in T
7: . O(|T |), see Lemma 5
8: for ab ∈ P ∩ Σ`Σr do . These pairs do not overlap
9: compress pair ab . Pair compression

10: return the constructed grammar

Before we make any analysis, we note that at the beginning of each phase we can make a
linear-time preprocessing that guarantees that the letters in T form an interval of numbers (which
makes them more suitable for sorting using RadixSort).

Lemma 1. At the beginning of the phase, in time O(|T |) we can rename the letters used in T so
that they form an interval of numbers.

Proof. Observe that we assumed that the input alphabet consists of letters that can be identified
with subset of {1, . . . , N c}, see the discussion in the introduction. Treating them as vectors of
length c over {0, . . . , N −1} we can sort them using RadixSort in O(cN) time, i.e. linear one. Then
we can re-number those letters to 1, 2, . . . , n for some n ≤ N .

Suppose that at the beginning of the phase the letters form an interval [m, . . ,m + k]. Each
new letter, introduced in place of a compressed substring (i.e. a block a` or a pair ab), is assigned
a consecutive number, and so after the phase the letters occurring in T are within an interval
[m. .m+ k′] for some k′ > k. It is now left to re-number the letters from [m. .m+ k′], so that the
ones appearing in T indeed form an interval, which begins at m+ k′+ 1. For each symbol a in the
interval [m. .m + k′] we set a flag to flag[a] = 0. Moreover, we set a variable next to m + k′ + 1.
Then we read T . Whenever we spot a letter a ∈ [m. .m+ k′] with flag[a] = 0, we set flag[a] := 1;
new[a] := next, and next := next + 1. Moreover, we replace this a by new[a]. When we spot a
symbol a ∈ [m. .m + k′] with flag[a] = 1, then we replace this a by new[a]. Clearly the running
time is O(|T |) and after the algorithm the symbols form a subinterval [m + k′ + 1 . .m + k′ + k′′]
for appropriate k′′ ≤ |T |.

2.1.1. Blocks compression
The blocks compression is very simple to implement: We read T , for a maximal block of as

of length greater than 1 we create a record (a, `, p), where ` is a length of the block, and p is
the pointer to the first letter in this block. We then sort these records lexicographically using
RadixSort (ignoring the last component). There are only O(|T |) records and we assume that Σ can
be identified with an interval, see Lemma 1, this is all done in O(|T |). Now, for a fixed letter a,

7

the consecutive tuples with the first coordinate a correspond to all blocks of a, ordered by the size.
It is easy to replace them in O(|T |) time with new letters. Clearly, the space consumption is linear
as well.

Lemma 2. Block compression runs in O(O(|T |)) time and space.

Note that so far we did not care about the cost of representation of new letters that replaced a-
blocks. We use a particular schema to represent a`1 , a`2 , . . . , a`k

, which shall have a representation
cost O(

∑k
i=1[1 + log(`i − `i−1)]), where `0 = 0 for convenience.

Lemma 3. Given a list 1 < `1 < `2 < · · · < `k we can represent letters a`1 , a`2 , . . . , a`k
that replace

blocks a`1 , a`2 , . . . , a`k with a cost

O
(

k∑
i=1

[1 + log(`i − `i−1)]
)

,

where `0 = 0.

Proof. Firstly observe that without loss of generality we may assume that the list `1, `2, . . . , `k is
given to us in a sorted way, as it can be easily obtained from the sorted list of occurrences of blocks.
For simplicity define `0 = 0 and let ` = maxk

i=1(`i − `i−1).
In the following, we shall define rules for certain new letters am, each of them ‘derives’ am (in

other words, am represents am). For each 1 ≤ i ≤ log ` introduce a new letter a2i , defined as
a2i → a2i−1a2i−1 , where a1 simply denotes a. Clearly a2i represents a2i and the representation cost
summed over all i ≤ ` is 2 log ` = O(log `).

Now introduce new letters a`i−`i−1 for each i > 0, which shall represent a`i−`i−1 . They are
represented using the binary expansion, i.e. by concatenation of at most 1+log(`i−`i−1) from among
the letters a1, a2, a4, . . . , a2blog(`i−`i−1)c . This has a representation cost O(

∑k
i=1[1 + log(`i − `i−1)]).

Lastly, each a`i
is represented as a`i

→ a`i−`i−1a`i−1 , which has a total representation cost O(k).
Summing up O(log `), O(

∑k
i=1[1 + log(`i − `i−1)]) and O(k) we obtain O(

∑k
i=1[1 + log(`i −

`i−1)]).

In the following we shall also use a simple property of the block compression: since no two
maximal blocks of the same letter can be next to each other, after the block compression there are
no blocks of length greater than 1 in T .

Lemma 4. In TtoG right after after the block compression, so in line 5, there are no two consec-
utive letters aa in T .

Proof. Suppose for the sake of contradiction that there are such two letters. There are two cases:

a was present in T before block compression, so in line 2 of TtoG But then a was listed
in L in line 2 and aa was replaced by another letter in line 4.

a was introduced during block compression, so in line 4 of TtoG Both a replaced some max-
imal blocks b` thus aa replaced b2`, and so each of those two b`s was not a maximal block.

8

2.1.2. Pair compression
The pair compression is performed similarly as the block compression. However, since the pairs

can overlap, compressing all pairs at the same time is not possible. Still, we can find a subset of
non-overlapping pairs in T such that a constant fraction (1/4) of letters T is covered by occurrences
of these pairs. This subset is defined by a partition of Σ into Σ` and Σr and choosing the pairs
with the first letter in Σ` and the second in Σr; for a choice of Σ`Σr we say that occurrences of
ab ∈ P ∩ Σ`Σr are covered by Σ`Σr.

Observe that the problem of finding such a partition reduces to the problem of finding a maximal
weight cut in a directed weighted graph: for the reduction, we create a node for each letter and put
an edge from a to b with weight k if there are k occurrences of pair ab in T . It is easy to see that
a (directed) cut of weight k corresponds to a partition of letters covering exactly k occurrences of
pairs and vice-versa. We use a standard solution to this problem [15, Section 6.3] presented in our
terminology. We do that mostly for the reasons of running-time analysis.

The existence of a partition covering at least one fourth of the occurrences can be shown by a
simple probabilistic lgorithm: divide Σ into Σ` and Σr randomly, where each letter goes to each
of the parts with probability 1/2. Consider two consecutive letters ab in T , note that they are
different by Lemma 4. Then a ∈ Σ` and b ∈ Σr with probability 1/4. There are |T | − 1 such pairs
in T , so the expected number of pairs in T from Σ`Σr is (|T | − 1)/4. Observe, that if we were to
count the number of pairs that are covered by Σ`Σr or by ΣrΣ` then the expected number of pairs
covered by Σ`Σr ∪ ΣrΣ` is (|T | − 1)/2.

The deterministic construction of such a partition follows by a simple derandomisation [15,
Section 6.3], using the conditional expectation approach. It is easier to first find a partition such
that at least half of pairs’ occurrences in T are covered by Σ`Σr ∪ ΣrΣ` and then choose Σ`Σr or
ΣrΣ`, depending on which of them covers more occurrences.

Lemma 5. For T in O(|T |) time we can find (in line 6 of TtoG) a partition of Σ into Σ`, Σr such
that number of occurrences of pairs ab ∈ Σ`Σr in T is at least (|T | − 1)/4.

In the same running time we can provide, for each ab ∈ P ∩ Σ`Σr, a lists of pointers to
occurrences of ab in T .

Proof. Suppose that we have already assigned some letters to Σ` and Σr and we are to decide,
where the next letter a is assigned. If it is assigned to Σ`, then all occurrences of pairs from
aΣ` ∪ Σ`a are not going to be covered, while occurrences of pairs from aΣr ∪ Σra are; similarly
observation holds for a being assigned to Σr. The algorithm makes a greedy choice, maximising
the number of covered pairs in each step. As there are only two options, the choice brings in at
least half of occurrences considered. Lastly, as each occurrence of a pair ab from T is considered
exactly once (i.e. when the second of a, b is considered in the main loop), this procedure guarantees
that at least half of occurrences of pairs in T is covered.

In order to make the selection effective, the algorithm GreedyPairs keeps an up to date counters
count`[a] and countr[a], denoting, respectively, the number of occurrences of pairs from aΣ` ∪Σ`a
and aΣr ∪ Σra in T (for the current assignment of letters to Σ` and Σr). Those counters are
updated as soon as a letter is assigned to Σ` or Σr.

By the argument given above, when Σ is partitioned into Σ` and Σr by GreedyPairs, at least
half of the occurrences of pairs from T are covered by Σ`Σr ∪ΣrΣ`. Then one of the choices Σ`Σr

or ΣrΣ` covers at least one fourth of the occurrences.
It is left to give an efficient variant of GreedyPairs, the non-obvious operations are the choice of

the actual partition in lines 13–14 and the updating of count`[b] or countr[b] in line 12. All other
9

Algorithm 2 GreedyPairs
1: L← set of letters used in P
2: Σ` ← Σr ← ∅ . Organised as a bit vector
3: for a ∈ L do
4: count`[a]← countr[a]← 0 . Initialisation
5: for a ∈ L do
6: if countr[a] ≥ count`[a] then . Choose the one that guarantees larger cover
7: choice ← `
8: else
9: choice ← r

10: Σchoice ← Σchoice ∪ {a}
11: for each ab or ba occurrence in T do
12: countchoice[b]← countchoice[b] + 1
13: if # occurrences of pairs from ΣrΣ` in T> # occurrences of pairs from Σ`Σr in T then
14: switch Σr and Σ`

15: return (Σ`,Σr)

operations clearly take at most O(|T |) time. The former is simple: since we organise Σ` and Σr

as bit vectors, we can read T from left to right and calculate the number of pairs from Σ`Σr and
those from ΣrΣ` in O(|T |) time (when we read a pair ab we check in O(1) time whether ab ∈ Σ`Σr

or ab ∈ ΣrΣ`). Afterwards we choose the partition that covers more occurrences of pairs in T .
To implement the count, for each letter a in T we have a right list right(a) = {b|ab occurs in T},

represented as a list. Furthermore, the element b on right list right(a) stores a list of all occurrences
of the pair ab in T . There is a similar left list left(a) = {b | ba occurs in T}. We comment, how to
create left lists and right lists later.

Given right and left, performing the update in line 12 is easy: we go through right(a) (left(a))
and increase the count`[b] (or countr[b]) for each occurrence of ab (ba, respectively). Note that in
this way each of the list right(a) (left(a)) is read once during GreedyPairs, and so this time can be
charged to their creation.

It remains to show how to initially create right(a) (left(a) is created similarly). We read T ,
when reading a pair ab we create a record (a, b, p), where p is a pointer to this occurrence. We
then sort these records lexicographically using RadixSort. There are only O(|T |) records and we
assume that Σ can be identified with an interval, see Lemma 1, so this all is done in O(|T |). Now,
for a fixed letters a, the consecutive tuples with the first coordinate a can be turned into right(a):
for b ∈ right(a) we want to store a list I of pointers to occurrences of ab, and on a sorted list of
tuples the {(a, b, p)}p∈I are consecutive elements.

Lastly, in order to get for each ab ∈ P ∩ Σ`Σr the lists of pointers to occurrences of ab in T it
is enough to read right and filter the pairs such that a ∈ Σ` and b ∈ Σr; the filtering can be done
in O(1) as Σ` and Σr are represented as bitvectors. The needed time is O(|T |).

The total running time is O(|T |), as each subprocedure has time constant per pair processed
or O(|T |) in total.

When for each pair ab ∈ Σ`Σr the list of its occurrences in T is provided, the replacement of
pairs is done by going through the list and replacing each of the pair, which is done in linear time.

10

Note, that as Σ`, Σr are disjoint, the considered pairs cannot overlap.

Lemma 6. Pair compression runs in O(O(|T |)) time and space.

2.2. Size and running time
It remains to estimate the total running time, summed over all phases. Clearly each subproce-

dure in a phase has a running time O(|T |) so it is enough to show that |T | is reduced by a constant
factor per phase.

Lemma 7. In each phase |T | is reduced by a constant factor.

Proof. Let m = |T | at the beginning of the phase. Let m′ ≤ m be the length of T after the
compression of blocks. First observe that if m < 5 then we satisfy the lemma when we make at
least one compression, which can be always done, so in the following we assume that m ≥ 5.

By Lemma 5 at least (m′− 1)/4 pairs are compressed during the pair compression, hence after
this phase |T ′| ≤ m′ − (m′ − 1)/4 ≤ 3

4m+ 1
4 .

Theorem 1. TtoG runs in linear time and linear space.

Proof. Each phase clearly takes O(|T |) time and by Lemma 7 the |T | drops by a constant factor
in each phase. As the initial length of T is N , the total running time is O(N).

The space consumption is also linear.

3. Size of the grammar: SLPs and recompression

To bound the cost of representation of letters introduced during the construction of the gram-
mar, we start with the smallest grammar G generating (the input) T and then modify the grammar
so that it generates T (i.e. the current string kept by TtoG) after each of the compression steps.
Then the cost of representing the introduced letters is paid by various credits assigned to G. Hence,
instead of the actual representation cost, which is difficult to estimate, we calculate the total value
of issued credit. Note that this is entirely a mental experiment for the purpose of the analysis, as
G is not stored or even known to the algorithm. We just perform some changes on it depending
on the TtoG actions.

3.1. Definitions
We assume that grammar G is a Straight Line Programme (SLP), however, we relax the notion

a bit (and call it an SLP with explicit letters, when an explicit reference is needed):

• the nonterminals are X1, . . . , Xm;

• each nonterminal has exactly one rule, which has at most two nonterminals in its body (i.e.
there are two, one or none nonterminals and an arbitrary number of letters in the rule’s
body);

• if Xi → αi is a rule and Xj occurs in αi then j < i.

Note that every CFG generating a unique string can be transformed into an SLP with explicit
letters, with the size increased only by a constant factor:

11

• The renaming of nonterminals is obvious, we also remove the useless nonterminals.

• If a nonterminal X with a rule X → α has more than two nonterminals in α, we can replace
a substring Y wZ in α by a new nonterminal X ′ with a rule X ′ → Y wZ. In this way the
number of nonterminals in α drops by 1 and the size of the grammar increases by 1.

• As only one string is generated, we can reorder the nonterminals.

We call the letters (strings) occurring in the productions the explicit letters (strings, respec-
tively). The unique string derived by Xi is denoted by val(Xi); the grammar G shall satisfy the
condition val(Xm) = T . We do not assume that val(Xi) 6= ε, however, if val(Xi) = ε then Xi is
not used in the productions of G (as this is a mental experiment, such Xi can be removed from
the rules and in fact from the SLP).

3.2. Intuition and road map
3.2.1. Paying the representation cost: credit

With each explicit letter we associate two units of credit and pay most of the cost of representing
the letters introduced during TtoG with these credits. More formally: when the algorithm modifies
G and in the process it creates an occurrence of a letter, we issue (or pay) 2 new credits. On
the other hand, if we do a compression step in G, then we remove some occurrences of letters.
The credit associated with these occurrences is then released and can be used to pay for the
representation cost of the new letters introduced by the compression step as well as for the credit for
the newly introduced letters (so that the algorithm does not issue new credit). For pair compression
the released credit indeed suffices to pay both the credit of the new letters occurrences and their
representation cost, but for chain compression the released credit does not suffice, as it is not enough
to pay the representation cost. Here we need some extra amount that is estimated separately later
on in Section 3.6. In the end, the total cost is the sum of credit that was issued during the
modifications of G plus the value that we estimate separately in Section 3.6.

3.2.2. Additional cost
The additional cost of representing letters during the block compression is estimated separately.

In most cases, the cost of creating blocks can be cover by released credit, the only exception is
when two long blocks of a are joined together. This can happen only between nonterminals in
some rule of G and then the additional cost is charged towards this rule. Then we show that one
rule has only O(logN) cost charged to it: if we charge

∑
i log `i cost to a rule, then it originally

derived a word of length at least
∏

i `i. This analysis is similar to the one given for equivalence of
two SLPs.

3.3. Modifying the grammar
Recall that whenever we say nonterminal, rule, production etc., we mean one of G.
When we replace each occurrence of the pair ab in T , we should also do this in G. However, this

may not be possible, as some abs generated by G do not come from explicit pairs in G but rather
are ‘between’ a nonterminal and a letter, for instance in a simple grammar X1 → a, X2 → X1b the
pair ab has such a problematic occurrence. If there are no such occurrences, it is enough to replace
each explicit ab in G and we are done. To deal with the problematic ones, we need to somehow
change the grammar, in the example above we replace X1 with a, leaving only X2 → ab, for which
the previous procedure can be applied. It turns out that this ad-hoc approach can be turned

12

into a systematic procedure that deals with all such problems at once, by removing appropriate
letters from rules and introducing them to other rules. This procedure is the main ingredient of
this section and it is given in Section 3.4. Similar problems occur also when we want to replace
maximal blocks of a and the solution to this problem is similar and it is given in Section 3.5.

Note that in the example above, when X1 is replaced with a, 2 credit for the occurrence of a
in X1 → a is released and wasted. Then we issue 2 credit for the new occurrence of a in the rule
X2. When ab is replaced with c, 4 credit is released when ab is removed from the rule, 2 of this
credit is used for the credit of c and the remaining 2 can be used to pay the representation cost
for c→ ab.

3.4. Pair compression
A pair of letters ab has a crossing occurrence in a nonterminal Xi (with a rule Xi → αi) if ab

is in val(Xi) but this occurrence does not come from an explicit occurrence of ab in αi nor it is
generated by any of the nonterminals in αi. A pair is non-crossing if it has no crossing occurrence.
Unless explicitly written, we use this notion only to pairs of different letters.

By PCab→c(w) we denote the text obtained from w by replacing each ab by a letter c (we
assume that a 6= b). We say that a procedure (that changes a grammar G with nonterminals
X1, . . . , Xm to G′ with nonterminals X ′1, . . . , X ′m) properly implements the pair compression of ab
to c, if val(X ′m) = PCab→c(val(Xm)) and G′ is an SLP with explicit letters. When a pair ab is
noncrossing the procedure that implements the pair compression is easy to give: it is enough to
replace each explicit ab with c.

Algorithm 3 PairCompNCr(ab, c): compressing a non-crossing pair ab.
1: replace each explicit ab in G by c

In order to distinguish between the nonterminals, grammar, etc. before and after the application
of compression of ab (or, in general, any procedure) we use ‘primed’ letters, i.e. X ′i, G′, T ′ for the
nonterminals, grammar and text after this compression and ‘unprimed’, i.e. Xi, G, T for the ones
before.

Lemma 8. If ab is a noncrossing pair, then PairCompNCr(ab, c) properly implements the pair
compression of ab. The credit of new letters in G′ and cost of representing the new letter c is paid
by the released credit; no new credit is issued. If a pair de, where d 6= c 6= e, is noncrossing in G,
it is in G′.

Proof. By induction on i we show that val(X ′i) = PCab→c(val(Xi)). Consider any occurrence of ab
in the string generated by Xi. If it is an explicit string then it is replaced by PairCompNCr(ab, c).
If it is contained within substring generated by some Xj , this occurrence was compressed by
the inductive assumption. The remaining case is the crossing occurrence of ab: since the only
modifications to the rules made by PairCompNCr(ab, c) is the replacement of ab by c, such a crossing
pair existed already before PairCompNCr(ab, c), but this is not possible by the lemma assumption
that ab is non-crossing.

Each occurrence of ab had 4 units of credit while c has only 2, so the replacement released 4
units of credit, 2 of which are used to pay for the credit of c and the other 2 to pay the cost of
representation of c (if we replace more than one occurrence of ab then some credit is wasted).

Lastly, replacing ab in G by a new letter c cannot make de (where d 6= c 6= e) a crossing pair in
G, as no new occurrence of d, e was introduced on the way.

13

If all pairs in Σ`Σr are non-crossing, iteration of PairCompNCr(ab, c) for each pair ab in Σ`Σr

properly implements the pair compression for all pairs in Σ`Σr (note that as Σ` and Σr are disjoint,
occurrences of different pairs from Σ`Σr cannot overlap and so the order of replacement does not
matter). So it is left to assure that indeed the pairs from Σ`Σr are all noncrossing. It is easy to see
that ab ∈ Σ`Σr is a crossing pair if and only if one of the following three ‘bad’ situations occurs:

CP1 there is a nonterminal Xi, where i < m, such that val(Xi) begins with b and aXi occurs in
one of the rules;

CP2 there is a nonterminal Xi, where i < m, such that val(Xi) ends with a and Xib occurs in one
of the rules;

CP3 there are nonterminals Xi, Xj , where i, j < m, such that val(Xi) ends with a and val(Xj)
begins with b and XiXj occurs in one of the rules.

Consider (CP1), let bw = val(Xi). Then it is enough to modify the rule for Xi so that val(Xi) = w
and replace each Xi in the rules by bXi, we call this action the left-popping b from Xi. Similar
operation of right-popping a letter a from Xi is symmetrically defined. It is shown in the Lemma 9
below that they indeed take care of all crossing occurrences of ab.

Furthermore, left-popping and right-popping can be performed for many letters in parallel: the
below procedure Pop(Σ`,Σr) ‘uncrosses’ all pairs from the set Σ`Σr, assuming that Σ` and Σr are
disjoint subsets of Σ (and we apply Pop(Σ`,Σr) only in the cases in which they are).

Algorithm 4 Pop(Σ`,Σr): Popping letters from Σ` and Σr

1: for i← 1 . .m− 1 do
2: let the production for Xi be Xi → αi

3: if the first symbol of αi is b ∈ Σr then . Left-popping b
4: remove this b from αi

5: replace Xi in G’s productions by bXi

6: if val(Xi) = ε then
7: remove Xi from G’s productions
8: for i← 1 . .m− 1 do
9: let the production of Xi be Xi → αi

10: if the last symbol of αi is a ∈ Σ` then . Right-popping a
11: remove this a from αi

12: replace Xi in G’s productions by Xia
13: if val(Xi) = ε then
14: remove Xi from G’s productions

Lemma 9. After application of Pop(Σ`,Σr), where Σ` ∩ Σr = ∅, none of the pairs ab ∈ Σ`Σr is
crossing. Furthermore, val(X ′m) = val(Xm). At most O(m) credit is issued during Pop(Σ`,Σr).

Proof. Observe first that whenever we remove b from the front of some αi we replace each of Xi

occurrence with bXi and if afterwards val(Xi) = ε then we remove Xi from the rules, hence the
words derived by each other nonterminal (in particular Xm) do not change, the same applies to
replacement of Xi with Xia. Hence, in the end val(X ′m) = val(Xm) = T (note that we do not pop
letters from Xm).

14

Secondly, we show that if val(X ′i) begins with a letter b′ ∈ Σr then we left-popped a letter from
Xi (which by the code is some b ∈ Σr), a similar claim (by symmetry) of course holds for the last
letter of val(Xi) and Σ`. So suppose that the claim is not true and consider the nonterminal Xi

with the smallest i such that val(X ′i) begins with b′ ∈ Σr but we did not left-pop a letter from
Xi. Consider what was the first symbol in αi when Pop considered Xi in line 3. As Pop did not
left-pop a letter from Xi, the first letter of val(Xi) and val(X ′i) is the same and hence it is b′ ∈ Σr.
So αi cannot begin with a letter as then it is b′ ∈ Σr, which should have been left-popped. Hence
it is some nonterminal Xj for j < i. But then val(X ′j) begins with b′ ∈ Σr and so by the induction
assumption Pop left-popped a letter from Xj . But there was no way to remove this letter from αi,
so αi should begin with a letter, contradiction.

Suppose that after Pop there is a crossing pair ab ∈ Σ`Σr. There are three already mentioned
cases (CP1)–(CP3): consider only (CP1), in which aXi occurs in the rule and val(Xi) begins with
b. Note that as a /∈ Σr is the letter to the left of X ′i, X ′i did not left-pop a letter. But it begins
with b ∈ Σr, so it should have. Contradiction. The other cases are dealt with in a similar manner.

Note that at most 4 new letters are introduced to each rule (2 per nonterminal) thus at most
8m credit is issued.

In order to compress pairs from Σ`Σr it is enough to first uncross them all using Pop(Σ`,Σr)
and then compress them all by PairCompNCr(ab, c) for each ab ∈ Σ`Σr.

Algorithm 5 PairComp(Σ`,Σr): compresses pairs from Σ`Σr

1: run Pop(Σ`,Σr)
2: for ab ∈ Σ`Σr do
3: run PairCompNCr(ab, c) . c is a fresh letter

Lemma 10. PairComp implements pair compression for each ab ∈ Σ`Σr. It issues O(m) new
credit to G, where m is the number of nonterminals of G. The credit of the new letters introduced
to G and their representation costs are covered by the credit issued or released by PairComp.

Proof. By Lemma 9 after Pop(Σ`,Σr) each pair in Σ`Σr is non-crossing and O(m) credit is issued
in the process, furthermore val(Xm) does not change.

By Lemma 8 for a non-crossing pair ab the PairCompNCr(ab, c) implements the pair compression,
furthermore, any other non-crossing pair a′b′ ∈ Σ`Σr remains non-crossing. Lastly, all occurrences
of different pairs from Σ`Σr are disjoint (as Σ` and Σr are disjoint subsets of Σ) as so the order
of replacing them does not matter and so we implemented the pair compression for all pairs in
Σ`Σr. The cost of representation and credit of new letters is covered by the released credit, see
Lemma 8.

Using Lemma 10 we can estimate the total credit issued during the pair compression.

Corollary 1. The compression of pairs issues in total O(m logN) credit during the run of TtoG;
the credit of the new letters introduced to G and their representation costs are covered by the credit
issued or released during PairComp.

15

3.5. Blocks compression
Similar notions and analysis as the ones for pairs are applied for blocks. Consider occurrences

of maximal a-blocks in T and their derivation by G. Then a block a` has a crossing occurrence in
Xi with a rule Xi → αi, if it is contained in val(Xi) but this occurrence is not generated by the
explicit as in the rule nor in the substrings generated by the nonterminals in αi. If a-blocks have no
crossing occurrences, then a has no crossing blocks. As for noncrossing pairs, the compression of a
blocks, when it has no crossing blocks, is easy: it is enough to replace each explicit maximal a-block
in the rules of G. We use similar terminology as in the case of pairs: we say that a subprocedure
properly implements a block compression for a.

Algorithm 6 BlockCompNCr(a), which compresses a blocks when a has no crossing blocks
1: for each a`m do
2: replace every explicit maximal block a`m in G by a`m

Lemma 11. If a has no crossing blocks then BlockCompNCr(a) properly implements the a’s blocks
compression.

Furthermore, if a letter b from T had no crossing blocks in G, it does not have them in G′.

The proof is similar to the proof of Lemma 8 and so it is omitted. Note that we do not yet
discuss the issued credit, nor the cost of the representation of letters representing blocks (the latter
is done in Section 3.6).

It is left to ensure that no letter has a crossing block. The solution is similar to Pop, this time
though we need to remove the whole prefix and suffix from val(Xi) instead of a single letter. The
idea is as follows: suppose that a has a crossing block because aXi occurs in the rule and val(Xi)
begins with a. Left-popping a does not solve the problem, as it might be that val(Xi) still begins
with a. Thus, we keep on left-popping until the first letter of val(Xi) is not a, i.e. we remove the
a-prefix of val(Xi). The same works for suffixes.

Algorithm 7 RemCrBlocks: removing crossing blocks.
1: for i← 1 . .m− 1 do
2: let a, b be the first and last letter of val(Xi)
3: let `i, ri be the length of the a-prefix and b-suffix of val(Xi)
4: . If val(Xi) ∈ a∗ then ri = 0 and `i = | val(Xi)|
5: remove a`i from the beginning and bri from the end of αi

6: replace Xi by a`iXib
ri in the rules

7: if val(Xi) = ε then
8: remove Xi from the rules

Lemma 12. After RemCrBlocks no letter has a crossing block and val(Xm) = val(X ′m).

Proof. Firstly, val(X ′m) = val(Xm): observe that when we remove a-prefix a`i from αi we replace
each Xi with a`iXi (and similarly for the b-suffix), also when we remove Xi from the rules then
val(Xi) = ε. Hence when processing Xi, the strings generated by all other nonterminals are not
affected. In particular, as we do not remove the prefix and suffix of Xm, the string generated by
Xm remains the same after RemCrBlocks.

16

By above observation, the value of val(Xi) does not change until RemCrBlocks considers Xi.
We show that when RemCrBlocks considers Xi such that val(Xi) has a-prefix a`i and b-suffix bri ,
then αi begins with a`i and ends with bri (the trivial case, when val(Xi) = a`i is shown in the same
way). Suppose that this is not the case and consider Xi with smallest i for which this is not true.
Clearly it is not X1, as there are no nonterminals in α1 and so val(X1) = α1. So let Xi have a rule
Xi → αi, we deal only with the a-prefix, the proof of b-suffix is symmetrical. Since the a-prefix
of val(Xi) and αi are different, this means that the a-prefix of val(Xi) is partially generated by
the first nonterminal in αi, let it be Xj . By the choice of i we know that Xj popped its prefix (of
some letter, say a′) and so it was replaced with a′`jX ′j . Furthermore, val(X ′j) begins with a′′ 6= a′.
Since there is no way to remove this a′ prefix from αi, this a′`j is part of the a-prefix of val(Xi),
in particular a′ = a. However, val(X ′j) begins with a′′ 6= a, so the a-prefixes of αi and val(Xi) are
the same, contradiction.

As a consequence, if aXi occurs in any rule after RemCrBlocks, then a is not the first letter of
val(Xi), as prefix of letters a was removed from Xi. Other cases are handled similarly. So there
are no crossing blocks after RemCrBlocks.

The compression of all blocks of letters is done by first running RemCrBlocks and then com-
pressing each of the block by BlockCompNCr. Note that we do not compress blocks of letters that
are introduced in this way. Concerning the number of credit, the arbitrary long blocks popped by
RemCrBlocks are compressed (each into a single letter) and so at most 8 credit per rule is issued.

Algorithm 8 BlockComp: compresses blocks of letters
1: run RemCrBlocks
2: L← list of letters in T
3: for each a ∈ L do
4: run BlockCompNCr(a)

Lemma 13. BlockComp properly implements the blocks compression for each letter a occurring in
T before its application and issues O(m) credit. The issued credit covers the cost of credit of letters
introduced during the BlockComp (but not their representation cost).

The proof is similar as the proof of Lemma 10 so it is omitted.

Corollary 2. During the whole TtoG the BlockComp issues in total O(m logN) credit. The credit
of the new letters introduced to G is covered by the issued credit.

Note that the cost of representation of letters replacing blocks is not covered by the credit, this
cost is separately estimated in the next subsection.

3.6. Calculating the cost of representing letters in block compression
The issued credit is enough to pay the 2 credit for occurrences of letters introduced during

TtoG and the released credit is enough to pay the credit of the letters introduced during the pair
compression and their representation cost. However, credit alone cannot cover the representation
cost of letters replacing blocks. The appropriate analysis is presented in this section. The overall
plan is as follows: firstly, we define a scheme of representing the letters based on the grammar G and
the way G is changed by BlockComp (the G-based representation). Then for such a representation

17

schema, we show that the cost of representation is O(g logN). Lastly, it is proved that the actual
cost of representing the letters by TtoG (the TtoG-based representation) is smaller than the G-based
one, hence it is also O(g logN).

3.6.1. G-based representation
The intuition is as follows: while the a blocks can have exponential length, most of them do

not differ much, as in most cases the new blocks are obtained by concatenating letters a that
occur explicitly in the grammar and in such a case the released credit can be used to pay for the
representation cost. This does not apply when the new block is obtained by concatenating two
different blocks of a (popped from nonterminals) inside a rule. However, this cannot happen too
often: when blocks of length p1, p2, . . . , p` are compressed (at the cost of O

(∑`
i=1 (1 + log pi)

)
=

O(log(
∏`

i=1 pi)), as each pi ≥ 2), the length of the corresponding text in the input text is
∏`

i=1 pi,
which is at most N . Thus O

(∑`
i=1(1 + log pi)

)
= O(log

∏`
i=1 pi) = O(logN) cost per nonterminal

is scored.
Getting back to the representation of letters: we create a new letter for each a block in the

rule Xi → αi after RemCrBlocks popped prefixes and suffixes from X1, . . . , Xi−1 but before it
popped letters from Xi. (We add the artificial empty block ε to streamline the later description
and analysis.) Such a block is a power if it is obtained by concatenation of two a-blocks popped
from nonterminals inside a rule (and perhaps some other explicit letters a), note that this power
may be then popped from a rule (as it may be a prefix or suffix in this rule). This implies that in
the rule Xi → uXjvXkw the popped suffix of Xj and popped prefix of Xk are blocks of the same
letter, say a, and furthermore v ∈ a∗. Note that it might be that one (or both) of Xj and Xk

were removed in the process (in this case the power can be popped from a rule as well). For each
block a` that is not a power we may uniquely identify another block ak (perhaps ε, not necessarily
a power) such that a` was obtained by concatenating `− k explicit letters to ak in some rule.

Lemma 14. For each block a` represented in the G-based representation that is not a power there
is block ak (perhaps k = 0) such that ak is also represented in G-based representation and a` was
obtained in a rule by concatenating `− k explicit letters that existed in the rule to ak.

Note that the block ak is not necessarily unique: it might be that there are several a` blocks
in G which are obtained as different concatenations of ak and `− k explicit letters.

Proof. Let a` be created in the rule for Xi, after popping prefixes and suffixes from X1, . . . , Xi−1.
Consider, how many popped prefixes and suffixes take part in this a`.

If two, then it is a power, contradiction.
If one, then let the popped prefix (or suffix) be ak. Since it was popped, say from Xj , then ak

was a maximal block in Xj before popping, so it is represented as well. Then in the rule for Xi

the a` is obtained by concatenating `− k letters a to ak. None of those letters come from popped
prefixes and suffixes, so they are all explicit letters that were present in this rule.

If there are none popped prefixes and suffixes that are part of this a`, then all its letters are
explicit letters from the rule for Xi, and we treat it as a concatenation of k explicit letters to ε.

We represent the blocks as follows:

1. for a block a` that is a power we represent a` using the binary expansion, which costs
O(1 + log `);

18

2. for a block a` that is obtained by concatenating ` − k explicit letters to a block ak (see
Lemma 14) we represent a` as ak a · · · a︸ ︷︷ ︸

`−k times

, which has a representation cost of `− k + 1, this

cost is covered by the 2(`− k) ≥ `− k+ 1 credit released by the `− k explicit letters a. Note
that the credit released by those letters was not used for any other purpose. (Furthermore
recall that the 2 units of credit per occurrence of a` in the rules of grammar are already
covered by the credit issued by BlockComp, see Lemma 13.)

We refer to cost in 1 as the cost of representing powers and redirect this cost to the nonterminal
in whose rule this power is created. The cost in 2, as marked there, is covered by released credit.

3.6.2. Cost of G-based representation
We now estimate the cost of representing powers. The idea is that if nonterminal Xi is charged

the cost of representing powers of length p1, p2, . . . , p`, which have representation cost O(
∑`

i=1 1+
log pi) = O(log(

∏`
i=1 pi)), then in the input this nonterminal generated a text of length at least

p1 · p2 · · · p` ≤ N and so the total cost of representing powers is O(logN) (per nonterminal). This
is formalised in the lemma below.

Lemma 15. The total cost of representing powers by G-based representation charged towards
a single rule is O(logN).

Proof. There are two cases: first, after the creation of the power in a rule Xi → uXjvXkw one of
the nonterminals Xj , Xk is removed. But this happens at most once for the rule and the cost of
O(logN) of representing the power can be charged to a rule.

The second and crucial case is when after the creation of power both nonterminals remained
in a rule Xi → uXjvXkw. Note that creation of the a power here means that val(Xj) has a-suffix,
val(Xk) an a-prefix and v ∈ a∗.

Fix this rule and consider all such creations of powers performed on this rule. Let the con-
secutive letters, whose blocks are compressed, be a(1), a(2), . . . , a(`) and their lengths p1, p2, . . . ,
p`. Lastly, the p` repetitions of a(`) are replaced by a(`+1). (Observe, that a(i+1) does not need
to be the letter that replaced the a(i)’s block, as there might have been some other compression
performed on that letter.) Then the cost of the representing powers is constant time more than

∑̀
i=1

(1 + log pi) ≤ 2
∑̀
i=1

log pi . (2)

Define weight: for a letter it is the length of the substring of the original input string that it
‘derives’. Note that the maximal weight of any letter is N , the length of the input word.

Consider the weight of the strings betweenXj andXk. Clearly, after the i-th blocks compression
it is exactly pi · w(a(i)), as the block of pi letters a(i) was replaced by one letter. We claim that
w(a(i+1)) ≥ pi w(a(i)): right after the i-th blocks compression the string between Xj and Xk is
simply a letter a(i)

pi , which replaced the pi block of a(i). After some operations, this string consists
of pi+1 letters a(i+1). Observe that (a(i+1))pi+1 ‘derives’ a(i)

pi : indeed all operations performed by
TtoG do not remove the letters from string between Xj and Xk in a rule, only replace strings with
single letters and perhaps add letters at the ends of this string. But if (a(i+1))pi+1 ‘derives’ a(i)

pi , i.e.
a single letter, then also a(i+1) ‘derives’ a(i)

pi , hence

w(a(i+1)) ≥ w(a(i)
pi

) = pi w(a(i)) .

19

Since w(a(1)) ≥ 1 it follows that w(a(`+1)) ≥
∏`

i=1 pi. As w(a(`+1)) ≤ N we have

N ≥
∏̀
i=1

pi

and so it can be concluded that

log(N) ≥ log
(∏̀

i=1
pi

)

=
∑̀
i=1

log pi .

Therefore, the whole cost
∑`

i=1 log pi, as estimated in (2), is O(logN), as claimed.

Corollary 3. The cost of G-based representation is O(g + g logN).

Proof. Concerning the cost of representing powers, by Lemma 15 we redirect at most O(logN)
against each of the m ≤ g rules of G. The cost of representing non-powers is covered by the
released credit; the initial value of credit is at most 2g and by Corollary 1 and Corollary 2 at most
O(g logN) credit is issued during the whole run of TtoG, which ends the proof.

3.6.3. Comparing the G-based representation cost and TtoG-based representation cost
We now show that the cost of TtoG-based representation is at most as high as G-based one.

We first represent G-based representation cost using a weighted graph GG, such that the G-based
representation is (up to a constant factor) w(GG), i.e. the sum of weights of edges of GG.

Lemma 16. The cost of G-based representation of all blocks is Θ(w(GG)), where nodes of GG are
labelled with blocks represented in the G-based representation and edge from a` to ak, where ` > k,
has weight `− k or 1 + log(`− k) (in this case additionally k = 0). Each node (other than a and
ε) has at least one outgoing edge.

The former corresponds to the representation cost covered by the released credit while the latter
to the cost of representing powers.

Proof. We give a construction of the graph GG.
Fix the letter a and consider any of the blocks a` that is represented by G, we put a node a`

in GG. Note that a single a` may be represented in many ways: different occurrences of a` are
replaced with a` and may be represented in different ways (or even twice in the same way), this
means that GG may have more than one outgoing edge per node.

• when a` is a power, we create an edge from the node labelled with a` to ε, the weight is
1 + log ` (recall that this is the cost of representing this power);

• when a` is represented as a concatenation of `− k letters to ak, we create and edge from the
node a` to ak, the weight is ` − k (this is the cost of representing this block; it was paid by
the credit on the `− k explicit letters a).

Then the sum of the weight of the created graph is a cost of representing the blocks using the
G-based representation (up to a constant factor).

20

Similarly, the cost of TtoG-based representation has a graph representation GTtoG.

Lemma 17. The cost of TtoG-representation for blocks of a letter a is Θ(w(GTtoG)), where the
nodes of GTtoG are labelled with blocks represented by TtoG-representation and it has an edge from
a` to ak if and only if ` and k are two consecutive lengths of a-blocks. Such an edge has weight
1 + log(`− k).

Proof. Observe that this is a straightforward consequence of the way the blocks are represented:
Lemma 3 guarantees that when blocks a`1 , a`2 , . . . , a`k (where 1 < `1 < `2 < · · · < `k) are
represented the TtoG-representation cost is O(

∑k
i=1[1 + log(`i − `i−1)]), so we can assign cost

1 + log(`i − `i−1) to a`i (and make it the weight on the edge to the previous block).

We now show that GG can be transformed to GTtoG without increasing the sum of weights of
the edges. This is done by simple redirection of edges and changing their cost.

Lemma 18. GG can be transformed to GTtoG without increasing the sum of weights of the edges.

Proof. Fix a letter a, we show how to transform the subgraph of GG induced by nodes labelled
with blocks of a to the corresponding subgraph of GTtoG, without increasing the sum of weights.

Firstly, let us sort the nodes according to the increasing length of the blocks. For each node
a`, if it has many edges, we delete all except one and then we redirect this edge to a`’s direct
predecessor (say ak) and label it with a cost 1+log(`−k). This cannot increase the sum of weights
of edges:

• deleting does not increase the sum of weights;

• if a` has an edge to ε with weight 1 + log ` then 1 + log ` ≥ 1 + log(`− k);

• otherwise it had an edge to some k′ ≤ k with a weight `−k′. Then 1+log(`−k) ≤ `−k ≤ `−k′,
as claimed (note that 1 + log x ≤ x for x ≥ 1).

Some blocks labelling nodes in GG perhaps do not label the nodes in GTtoG. For such a block a`

we remove its node a` and redirect its unique incoming edge to its predecessor, say a`′ , changing
the weight appropriately. Since 1 + log(x) + 1 + log(y) ≥ 1 + log(x+ y) when x, y ≥ 1, we do not
increase the total weight.

It is left to observe that if a node labelled with a` exists in GTtoG then it also exists in GG, i.e.
all blocks represented in TtoG occur in T . After RemCrBlocks there are no crossing blocks, see
Lemma 12. So any maximal block in T (i.e. one represented by TtoG-based representation) is also
a maximal block a` in some rule (after RemCrBlocks), say in Xi. But then this block is present in
Xi also just before action of RemCrBlocks on Xi and so it is represented by G-based representation.

In this way we obtained a graph corresponding to the TtoG-based representation.

Corollary 4. The total cost of TtoG-representation is O(g logN).

Proof. By Lemma 18 it is enough to show this for the G-based representation, which holds by
Corollary 3

21

4. Improved analysis

Intuitively, each “reasonable” grammar should have size O(|T |): application of a rule X → α
makes the current text longer by at least |α| − 1, so the sum of all lengths of right-hand sides
(so |α|s) cannot be shorter than the input text. In some extreme cases this estimation might be
better than O(g logN) guaranteed by TtoG, thus TtoG should have an approximation guarantee
O(min(N, g logN)). This approach can be further improved: the trivial upper bound applies to
any intermediate string obtained during TtoG and we can choose any of those estimations. We
choose a specific point, where |T | ≈ g. As a result, we divide the analysis of a computation of TtoG
into two stages: the first one lasts while |T | ≥ g and then the second one begins. We separately
estimate the cost of representation in the first stage, by O(g log(N/g)), and in the second, by O(g).
In total this yields O(g+g log(N/g)); this matches the best known results for the smallest grammar
problem [18, 1, 19] and is not worse than both O(g logN) and O(g).

Theorem 2. The TtoG runs in linear time and returns a grammar of size O
(
g + g log

(
N
g

))
,

where g is the size of the optimal grammar for the input text.

Note that the time analysis was done already in Theorem 1, in the rest of this section we focus
on the improved size analysis.

4.1. Outline
Firstly, in Section 4.2 we show that indeed any reasonable grammar for a text T has size O(T).

This follows by simple calculation and shows that it is enough to calculate the cost of representation
for the grammar when |T | ≥ g. From Corollary 1 and Lemma 13 we know that those costs are
covered by the issued credit and the additional representation cost for a-blocks. The analysis
for credit is easy: since in each phase we introduce O(m) ≤ O(g) credit, it is enough to bound
the number of phases and this follows from the fact that we shorten the text in each phase, see
Lemma 7; this is done in Section 4.3. On the other hand, the analysis of the representation cost for
blocks is much more involved. The general outline remain as it was as in Section 3.6: we again use
the G-based representation as a middle step, estimate its cost and compare it with the TtoG-based
one. The difference is in the estimation of the G-based representation cost. We no longer can
simply charge O(logN) cost to a rule, we need a more subtle analysis. Instead of direct charging
to a rule Xi → αi, we associate the cost with some of the letters (of the original text) generated
by Xi. To this end we ‘mark’ those letters and distinguish between different such markings. We
ensure that such markings are disjoint, there are at most 2 of them per non-terminal and that the
cost of representation is related to the total size of the markings, to be more precise, when we have
markings of lengths p1, p2, . . . , pk then the G-representation cost is O(

∑k
i=1 1 + log pi). Then the

estimation of the size of the whole grammar is just a matter of calculation. The markings and the
analysis of representation cost using them is performed in Section 4.4. For technical reasons we
also consider the cost of representation in the phase in which |T | is reduced from more than g to
smaller than g separately, the analysis is a simple combination of the case when |T | > g and when
|T | < g and is done in Section 4.5. Wrapping up all estimations and giving the proof of Theorem 2
is done in Section 4.6. What is left is to describe the way we modify the markings to ensure their
properties. This technical construction is presented separately in Section 4.7.

22

4.2. Linear bound
We begin with formalising the argument that any “reasonable” grammar has size O(|T |).

Lemma 19. Let SLP G contain no production X → α with |α| ≤ 1 and assume that every
production is used in the derivation defined by G. Then |G| ≤ 2|T | − 1.

In particular, if at any point the letters created so-far by TtoG have representation cost k and
the remaining text is T then the final grammar for the input tree has size at most k + 2|T | − 1

Note that the grammar produced by TtoG clearly has the properties assumed by Lemma 19:
we introduce new letters in place of substrings of length at least 2 and each of them is used in the
derivation of the input text.

Proof. Assume that G has the properties from the lemma. An application of a rule Xi → αi to
the current string increases its size by |αi| − 1 ≥ 1 for each occurrence of Xi in the string derived
so far. As we assume that each production is used in the derivation, each of |αi| − 1 ≥ 1 is added
at least once and so we get

∑m
i=1(|αi| − 1) ≤ |T |. Thus

∑m
i=1 |αi| ≤ |T | + m and so it is left to

estimate m. As there are m productions and each application increases the size of the derived
string by at least 1, and we start the derivation with a text of length 1, we get m ≤ |T | − 1. Thus∑m

i=1 |αi| ≤ |T |+m ≤ 2|T | − 1.
The second claim now easily follows: when the current string kept by TtoG is T then we can

take as a whole grammar X → T together with the representation for the so-far created letters.

In the following analysis we focus on the phase such that the text before it has length greater
or equal to g and after it is smaller than g. Such phase exists: clearly N ≥ g (as we can take the
grammar with T on the right-hand side) and so initially |T | ≥ g and in the end T is reduced to a
single letter.

Lemma 20. There is a phase in computation of TtoG such that at the beginning of the phase
|T | ≥ g and at the end of the phase |T | < g.

We separately estimate the cost of representation (i.e. issued credit and the cost of TtoG-based
representation) up to the phase from Lemma 20, in this phase and after it. For the first two we
show an upper bound of O(g + g log(N/g)), for the latter we use Lemma 19 to get an estimation
O(g) on the representation cost.

4.3. Credit and pair compression when text is long
Lemma 21. If at the beginning of the phase |T | ≥ g then O(g + g log(N/g)) credit was issued.

Proof. Initial grammar G has at most g credit. The input text is of length N and the current
one is of t = |T | and so there were O(log(N/t)) phases, as in each phase the length of T drops
by a constant factor, see Lemma 7. As t ≥ g, we obtain a bound O(log(N/g)) on the number of
phases. Due to Lemmata 10, 13, at most O(m) ≤ O(g) credit per phase is issued during the pair
compression and block compression, so in total O(g + g log(N/g)) credit was issued.

From Lemma 10 we know that the representation cost of letters introduced by pair compression
is covered by the credit. Thus

Corollary 5. Suppose that at the beginning of the phase |T | ≥ g. Then the representation cost of
letters introduced by pair compression till this phase is O(g + g log(N/g)).

23

4.4. Cost of representing blocks when text is long
For the cost of representing blocks, we define the G-based and TtoG-based representations in the

same way as previously. However, we slightly extend the notion: we consider those representations
at any point of TtoG, not only at the end; this does not effect those notions in any way.

For both the G-based representation and the TtoG-based representation we again define graphs
GG and GTtoG and by Lemma 16 the cost of G-based representation is Θ(w(GG)) and by Lemma 17
the cost of TtoG-based representation is Θ(w(GTtoG)). Then Lemma 18 shows that we can transform
GG to GTtoG without increasing the sum of weights. Hence it is enough to show that the G-based
representation cost is at most O(g + log(N/g)).

The G-based representation cost consists of some released credit and the cost of representing
powers, see Lemma 16. The former was already addressed in Lemma 21 (the whole issued credit is
O(g + g log(N/g))) and so it is enough to estimate the latter, i.e. the cost of representing powers.

The outline of the analysis is as follows: when a new power a` is represented, we mark some
letters of the input text (and perhaps modify some other markings) those markings are associated
with nonterminals and are named Xi-pre-power marking and Xi-in marking (which are defined in
detail in Section 4.7). The markings satisfy the following conditions:

(M1) each marking marks at least 2 letters, no two markings mark the same letter;

(M2) for each Xi there is most one Xi-pre-power marking and at most one Xi-in marking;

(M3) when the substrings of length p1, p2, . . . , pk are marked, then the so-far cost of representing
the powers by G-based representation is c

∑k
i=1(1 + log pi) (for some fixed constant c).

We show that when we have a marking satisfying (M1)–(M3) then indeed the cost of repre-
senting blocks is O(g + g log(N/g)). The construction of the markings and the analysis of it is
technical and does not affect further estimations of th grammar size, so it is moved to a separate
Section 4.7.

Lemma 22. If at the beginning of the phase |T | ≥ g then so far the cost of representing blocks by
TtoG is O(g + g log(N/g)).

Proof. The G-based representation cost consists of some released credit and the cost of representing
powers, see Lemma 16. The former is bounded by O(g+g log(N/g)), see Lemma 21, in the following
we estimate the cost of representing powers.

Using (M1)–(M3) the cost of representing powers (in G-based representation) can be upper-
bounded by (a constant times):

k +
k∑

i=1
log pi, where k ≤ 2m and

k∑
i=1

pi ≤ N . (3a)

It is easy to show that (3a) is maximised for k = 2m and each pi equal to N/2m: clearly, the
sum is maximised for

∑k
i=1 pi = N . Then for a fixed k and

∑k
i=1 pi = N the sum

∑k
i=1 log pi is

maximised when all pi are equal, which follows from the fact that log(x) is concave, hence we can
set pi = N

2m , arriving at

2k + 2k log
(
N

2k

)
. (3b)

24

The function x+ x log(N/x) attains its maximum for x = 2N/e and it monotonically increases
on the interval [0, 2N/e]. If g ≤ N/e then (as l ≤ m ≤ g) we get that (3b) is at most

2g + 2g log
(
N

2g

)
= O

(
g + g log

(
N

g

))
. (3c)

If g ≥ N/e then by Lemma 19 the trivial estimation for the size of the whole grammar returned
by TtoG is 2N − 1 ≤ 2eg − 1 = O

(
g + g log

(
N
g

))
, so also as claimed.

4.5. Intermediate phase
We bounded the representation cost before the phase from Lemma 20 and after it, so it is left

to estimate the cost within this phase.
Lemma 23. The cost of representing letters in the phase from Lemma 20 is O(g + g log(N/g)).
Proof. Let at the beginning of this phase T have length t1 and after t2, where t1 ≥ g > t2.

The cost of representing letters introduced during the pair compression is covered by the released
credit, see Lemma 10. There was at most O(g+g log(N/g)) credit in the grammar at the beginning
of the phase, see Lemma 21, and during this phase at most O(g) credit was issued, see Lemma 10
and Lemma 13. So the total credit is O(g + g log(N/g)).

Consider the cost of representing blocks. This consists of representing blocks that are not
powers, which is covered by the released credit, and the cost of representing powers. The former
is already covered, as we already known that at most O(g + g log(N/g)) credit was issued till the
end of this phase. Thus we consider only the cost of representing powers. As T at the end of the
phase has t2 letters, at most 2t2 letters representing blocks could be introduced in this phase (since
at most two blocks can be merged into one letter by pair compression afterwards). Let p1, . . . ,
pk be the lengths of those powers. Then (see Lemma 3) the cost of representing those powers is
proportional to

k +
k∑

i=1
log pi, where k ≤ 2t2 and

k∑
i=1

pi ≤ t1 .

Using similar analysis as in the case of (3) it can be concluded that this is at most

2k + 2k log
(
t1
2k

)
≤ 2k + 2k log

(
N

2k

)
with the equality following from t1 ≤ N . Again, as in (3), if g ≤ N/e then (recall that k ≤ t2 ≤ g)
this is

2k + 2k log
(
N

2k

)
< 2g log

(
N

2g

)
= O

(
g log

(
N

g

))
and if g ≥ N/e then Lemma 19 yields that the whole returned grammar has size O(N) = O(g) =
O
(
g log

(
N
g

))
.

4.6. Proof of Theorem 2
Concerning the size of the returned grammar, consider the phase from Lemma 20. By Corol-

lary 5 the cost of letters introduced before this phase by pair compression is O
(
g log

(
N
g

))
. Sim-

ilarly, the cost of representation of letters introduced by block compression before this phase is
O
(
g log

(
N
g

))
, see Lemma 22. The cost of representing letters introduced during this phase is

also O
(
g log

(
N
g

))
, by Lemma 23. Lastly, by Lemma 19, the cost of representing letters after this

phase is O(g). Thus, in total, the whole representation cost is O
(
g log

(
N
g

))
, as claimed.

25

4.7. Markings’ modification
What is left to show is how to mark the letters and how to modify those markings so that

(M1)–(M3) are preserved.
The idea of preserving (M1)–(M3) is as follows: if a new power of length ` is represented, this

yields a cost O(1 + log `) = O(log `), see Lemma 16; we can choose c in (M3) so that this is at
most c log ` (as ` ≥ 2). Then either we mark new ` letters or we remove some marking of length `′
and mark ` · `′ letters, it is easy to see that in this way (M1)–(M3) is preserved (still, those details
are repeated later).

Whenever we are to represent powers a`1 , a`2 , . . . , for each power a`, where ` > 1, we find
the right-most maximal block a` in T . Let Xi be the smallest nonterminal that derives (before
RemCrBlocks) this right-most occurrence of maximal a` (clearly there is such a non-terminal, as
Xm derives it). It is possible that this particular a` in Xis’ rule was obtained as a concatenation of
`− k explicit letters to ak (so, not as a power). In such a case we are lucky, as the representation
of this a` is paid by the credit and we do not need to separately consider the cost of representing
power a`. Otherwise the a` in this rule is obtained as a power and we mark some of the letters in
the input that are ‘derived’ by this a`. The type of marking depends on the way this particular a`

is ‘derived’: If one of the nonterminals in Xi’s production was removed during RemCrBlocks, this
marking is an Xi-pre-power marking. Otherwise, this marking is an Xi-in marking.

Lemma 24. There is at most one Xi-pre-power marking.
When Xi-in marking is created for a` then after the block compression Xi has two nonterminals

inside its rule and between them there is exactly a`.

Proof. Concerning theXi-pre-power marking, let a` be the first power that gets this marking. Then
by the definition of the marking, afterwards in the rule for Xi there is at most one nonterminal.
But this means that no power can be created in this rule later on, in particular, no new marking
associated with Xi (pre-power marking or in-marking) can be created.

Suppose that a` was assigned an Xi-in marking, which as in the previous case means that
the right-most occurrence of maximal block a` is generated by Xi but not by the nonterminals in
the rule for Xi. Since a` is a power it is obtained in the rule as a concatenation of the a-prefix
and the a-suffix popped from nonterminals in the rule for Xi. In particular this means that each
nonterminal in the rule for Xi generates a part of this right-most occurrence of a`. If any of those
nonterminals were removed during the block compression a` would be assigned an Xi-pre-power
marking, which is not the case. So both those nonterminals remained in the rule. Hence after
popping prefixes and suffixes, between those two nonterminals there is exactly a block a`, which is
then replaced by a`, as promised.

Consider the a` and the ‘derived’ substring w` of the input text. We show that if there are
markings inside w`, they are all inside the last among those ws.

Lemma 25. Let a` be an occurrence of a maximal block to be replaced with a` which ‘generates’
w` in the input text. If there is any marking within this w` then it is within the last among those
ws.

Proof. Consider any pre-existing marking within w`, say it was done when some bk was replaced
by bk. As bk is a single letter and a` derives it, each a derives at least one bk. The marking was
done inside the string generated by the right-most bk (as we always put the marking within the

26

rightmost occurrence of the string to be replaced). Clearly the right-most bk is ‘derived’ by the
right-most a within a`, so in particular it is inside the right-most w in this w`. So all markings
within w` are in fact within the right-most w.

We now demonstrate how to mark letters in the input text. Suppose that we replace a power
a`, let us consider the right-most occurrence of this a` in T and the smallest Xi that generates this
occurrence. This a` generates some w` in the input text. If there are no markings inside w` then
we simply mark any ` letters within w`. In the other case, by Lemma 25 we know that all those
markings are in fact in the last w. If any of them is the (unique) Xi-in marking, let us choose it.
Otherwise choose any other marking. Let `′ denote the length of the chosen marking. Consider,
whether this marking in w is unique or not

unique marking Then we remove it and mark arbitrary ` · `′ letters in w`; this is possible, as
|w| ≥ `′ and so |w`| ≥ ` · `′. Since log(` · `′) = log ` + log `′, the (M3) is preserved, as it is
enough to account for the 1 + log ` ≤ c log ` representation cost of a` as well as the c log `′
cost associated with the previous marking of length `′.

not unique Then |w| ≥ `′ + 2 (the 2 for the other markings, see (M1)). We remove the marking
of length `′, let us calculate how many unmarked letters are in w` afterwards: in w`−1 there
are at least (`− 1) · (`′ + 2) letters (by the Lemma 25: none of them marked) and in the last
w there are at least `′ unmarked letters (from the marking that we removed):

(`− 1) · (`′ + 2) + `′ = (``′ + 2`− `′ − 2) + `′

= ``′ + 2`− 2
> ``′ .

We mark those ` · `′ letters, as in the previous case, the associated c log(``′) is enough to pay
for the cost.

There is one issue: it might be that we created an Xi-in marking while there already was
one, violating (M2). However, we show that if there were such a marking, it was within w` (and
so within the last w, by Lemma 25) and so we could choose it as the marking that was deleted
when the new one was created. Consider the previous Xi-in marking. It was introduced for some
power bk, replaced by bk that was a unique letter between the nonterminals in the rule for Xi, by
Lemma 24. Consider the rightmost substring of the input text that is generated by the explicit
letters between nonterminals in the rule for Xi. The operations performed on G cannot shorten
this substring, in fact they often expand it. When bk is created, this substring is generated by bk,
by Lemma 24. When a` is created, it is generated by a`, by Lemma 24, i.e. this is exactly w`. So
in particular w` includes the marking for bk.

This shows that (M1)–(M3) are preserved.

Acknowledgements

I would like to thank Paweł Gawrychowski for introducing me to the topic, for pointing out the
relevant literature [14] and discussions; Markus Lohrey for suggesting the topic of this paper and
bringing the idea of applying the recompression to the smallest grammar. Moreover, I would like to

27

thank anonymous referees who pointed out many shortcomings as well as suggested improvements
of the presentation.

This research was partially supported by NCN grant number 2011/01/D/ST6/07164, 2011–
2015.

Appendix A. Sakamoto’s algorithm [19]

In proof that bounds the number of introduced nonterminals [19, Theorem 2], it is first esti-
mated that in one execution of the while loop for a factor fi the introduced nonterminals occur in
f1f2 · · · fi−1, except perhaps a constant number of them. This argument follows from observation
that fi is compressed to αβγ, where |α| and |γ| are bounded by a constant and the earlier occur-
rence of the same string as fi is compressed to α′βγ′ (where also |α′| and |γ′| are bounded by a
constant). This is true, however, when α and γ represent nonterminals introduced by repetition
procedure (i.e. they are blocks in the terminology used here) we need to take into the account also
the additional nonterminals that are introduced for representation of those blocks. The estimation
of O(1) is not enough, as in the worst case Ω(logN) are needed to represent a single block of as.
We do not see any easy patch to repair this flaw.

The improved analysis [19, Theorem 2], in which the number of nonterminals is bounded by
O
(
g + log

(
N
g

))
, has the same shortcoming.

[1] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, The smallest grammar
problem, IEEE Transactions on Information Theory 51 (7) (2005) 2554–2576.

[2] P. Gawrychowski, Pattern matching in Lempel-Ziv compressed strings: fast, simple, and deterministic, in:
C. Demetrescu, M. M. Halldórsson (eds.), ESA, vol. 6942 of LNCS, Springer, 2011.

[3] L. Gąsieniec, M. Karpiński, W. Plandowski, W. Rytter, Efficient algorithms for Lempel-Ziv encoding, in: R. G.
Karlsson, A. Lingas (eds.), SWAT, vol. 1097 of LNCS, Springer, 1996.

[4] A. Jeż, Approximation of grammar-based compression via recompression, in: J. Fischer, P. Sanders (eds.),
CPM, vol. 7922 of LNCS, Springer, 2013, full version available at http://arxiv.org/abs/1301.5842.

[5] A. Jeż, Recompression: a simple and powerful technique for word equations, in: N. Portier, T. Wilke (eds.),
STACS, vol. 20 of LIPIcs, Schloss Dagstuhl—Leibniz Zentrum fuer Informatik, Dagstuhl, Germany, 2013, full
version available at http://arxiv.org/abs/1203.3705, accepted to Journal of the ACM.
URL http://drops.dagstuhl.de/opus/volltexte/2013/3937

[6] A. Jeż, The complexity of compressed membership problems for finite automata, Theory of Computing Systems
55 (2014) 685–718.
URL http://dx.doi.org/10.1007/s00224-013-9443-6

[7] A. Jeż, One-variable word equations in linear time, AlgorithmicaAccepted and available online.
[8] A. Jeż, Faster fully compressed pattern matching by recompression, ACM Transactions on Algorithms 11 (3)

(2015) 20:1–20:43.
URL http://doi.acm.org/10.1145/2631920

[9] A. Jeż, M. Lohrey, Approximation of smallest linear tree grammar, in: E. W. Mayr, N. Portier (eds.), STACS,
vol. 25 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.
URL http://dx.doi.org/10.4230/LIPIcs.STACS.2014.445

[10] M. Karpiński, W. Rytter, A. Shinohara, Pattern-matching for strings with short descriptions, in: CPM, 1995.
[11] J. C. Kieffer, E.-H. Yang, Sequential codes, lossless compression of individual sequences, and Kolmogorov

complexity, IEEE Transactions on Information Theory 42 (1) (1996) 29–39.
[12] N. J. Larsson, A. Moffat, Offline dictionary-based compression, in: Data Compression Conference, IEEE Com-

puter Society, 1999.
[13] M. Lohrey, Algorithmics on SLP-compressed strings: A survey, Groups Complexity Cryptology 4 (2) (2012)

241–299.
[14] K. Mehlhorn, R. Sundar, C. Uhrig, Maintaining dynamic sequences under equality tests in polylogarithmic time,

Algorithmica 17 (2) (1997) 183–198.

28

http://arxiv.org/abs/1203.3705
http://drops.dagstuhl.de/opus/volltexte/2013/3937
http://dx.doi.org/10.1007/s00224-013-9443-6
http://doi.acm.org/10.1145/2631920
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.445

[15] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis,
Cambridge University Press, 2005.

[16] C. G. Nevill-Manning, I. H. Witten, Identifying hierarchical strcture in sequences: A linear-time algorithm, J.
Artif. Intell. Res. (JAIR) 7 (1997) 67–82.

[17] W. Plandowski, Testing equivalence of morphisms on context-free languages, in: J. van Leeuwen (ed.), ESA,
vol. 855 of LNCS, Springer, 1994.

[18] W. Rytter, Application of Lempel-Ziv factorization to the approximation of grammar-based compression, Theor.
Comput. Sci. 302 (1-3) (2003) 211–222.

[19] H. Sakamoto, A fully linear-time approximation algorithm for grammar-based compression, J. Discrete Algo-
rithms 3 (2-4) (2005) 416–430.

[20] J. A. Storer, T. G. Szymanski, The macro model for data compression, in: R. J. Lipton, W. A. Burkhard, W. J.
Savitch, E. P. Friedman, A. V. Aho (eds.), STOC, ACM, 1978.

[21] A. C.-C. Yao, On the evaluation of powers, SIAM J. Comput. 5 (1) (1976) 100–103.

29

	Introduction
	Grammar based compression
	Approximation
	Proposed approach: recompression
	Advantages and disadvantages of the proposed technique

	The algorithm
	The algorithm
	Blocks compression
	Pair compression

	Size and running time

	Size of the grammar: SLPs and recompression
	Definitions
	Intuition and road map
	Paying the representation cost: credit
	Additional cost

	Modifying the grammar
	Pair compression
	Blocks compression
	Calculating the cost of representing letters in block compression
	G-based representation
	Cost of G-based representation
	Comparing the G-based representation cost and TtoG-based representation cost

	Improved analysis
	Outline
	Linear bound
	Credit and pair compression when text is long
	Cost of representing blocks when text is long
	Intermediate phase
	Proof of Theorem 2
	Markings' modification

	Sakamoto's algorithm SLPaproxSakamoto

