
20

Faster Fully Compressed Pattern Matching by Recompression

ARTUR JEŻ, Max Planck Institute für Informatik and Institute of Computer Science,
University of Wrocław

In this article, a fully compressed pattern matching problem is studied. The compression is represented
by straight-line programs (SLPs)—that is, context-free grammars generating exactly one string; the term
fully means that both the pattern and the text are given in the compressed form. The problem is approached
using a recently developed technique of local recompression: the SLPs are refactored so that substrings of the
pattern and text are encoded in both SLPs in the same way. To this end, the SLPs are locally decompressed
and then recompressed in a uniform way.

This technique yields an O((n + m) log M) algorithm for compressed pattern matching, assuming that M
fits in O(1) machine words, where n (m) is the size of the compressed representation of the text (pattern,
respectively), and M is the size of the decompressed pattern. If only m+ n fits in O(1) machine words, the
running time increases to O((n+m) log M log(n+m)). The previous best algorithm due to Lifshits has O(n2m)
running time.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Computations on
Discrete Structures; F.4.2 [Grammars and Other Rewriting Systems]: Decision Problems

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Pattern matching, compressed pattern matching, algorithms for com-
pressed data, straight-line programs, Lempel-Ziv compression

ACM Reference Format:
Artur Jeż. 2015. Faster fully compressed pattern matching by recompression. ACM Trans. Algor. 11, 3,
Article 20 (January 2015), 43 pages.
DOI: http://dx.doi.org/10.1145/2631920

1. INTRODUCTION

Compression and straight-line programs. Due to an ever-increasing amount of data,
compression methods are widely applied to decrease the data’s size. Still, the stored
data is accessed and processed. Decompressing it on each such an occasion basically
wastes the gain of reduced storage size. Thus, there is a large demand for algorithms
dealing directly with the compressed data, without explicit decompression.

Processing compressed data is not as hopeless as it may seem: it is a popular view that
compression basically extracts the hidden structure of the text, and if the compression
rate is high, the data has a lot of internal structure. In addition, it is natural to assume
that such a structure helps in devising methods dealing directly with the compressed
representation. Indeed, efficient algorithms for fundamental text operations (pattern

This research has been supported by National Science Centre (NCN) SONATA 1 grant number
2011/01/D/ST6/07164, 2011–2015.
Author’s address: A. Jeż, Max Planck Institute für Informatik, Campus E1 4, DE-66123 Saarbrücken,
Germany, and Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław,
Poland; email: aje@cs.uni.wroc.pl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1549-6325/2015/01-ART20 $15.00

DOI: http://dx.doi.org/10.1145/2631920

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1145/2631920

20:2 A. Jeż

matching, equality testing, etc.) are known for various practically used compression
methods (LZ77, LZW, their variants, etc.) [Gawrychowski 2011b, 2012a, 2012b, 2013;
Gąsieniec et al. 1996a, 1996b; Gąsieniec and Rytter 1999; Hirao et al. 2000; Plandowski
1994].

The compression standards differ in the main idea as well as in details. Thus, when
devising algorithms for compressed data, one needs to focus quite early on the exact
compression method to which the algorithm is applied. The most practical (and chal-
lenging) choice is one of the widely used standards, such as LZW or LZ77. However, a
different approach is also pursued: for some applications (and most of theory-oriented
considerations), it would be useful to model one of the practical compression standards
by a more mathematically well-founded and “clean” method. This idea rests at the
foundations of the notion of straight-line programs (SLPs), which simply are context-
free grammars generating exactly one string. Other reasons for the popularity of SLPs
is that usually they compress well the input text [Larsson and Moffat 1999; Nevill-
Manning and Witten 1997] and that they are closely related to the LZ77 compression
standard: each LZ77 compressed text can be converted into an equivalent SLP of size
O(n log(N/n)) and in O(n log(N/n)) time [Rytter 2003; Charikar et al. 2005] (where N is
the size of the decompressed text), whereas each SLP can be converted to an equivalent
LZ77-like ofO(n) size in polynomial time. Finally, a greedy grammar compression can be
efficiently implemented and thus can be used as a preprocessing to other compression
methods, like those based on Burrows-Wheeler transform [Kärkkäinen et al. 2012].

Problem statement. In this article, we consider the fully compressed membership
problem (FCPM), in which we are given a text of length N and pattern of length M,
represented by SLPs of size nand m, respectively. We are to answer whether the pattern
occurs in the text and give a compact representation of all such occurrences.

Previous and related results. The first algorithmic result dealing with SLPs is for the
compressed equality testing—that is, the question of whether two SLPs represent the
same text, solved by Plandowski [1994], with O(n4) running time. The first solution for
FCPM by Karpiński et al. [1995] followed a year later. Next, a polynomial algorithm
for computing various combinatorial properties of SLP-compressed texts, particularly
pattern matching, was given by Gąsieniec et al. [1996a]; the same authors also pre-
sented a faster randomised algorithm for FCPM [Gąsieniec et al. 1996b]. Yet another
year later, Miyazaki et al. [1997] constructed an O(n2m2) algorithm for FCPM. A faster
O(mn) algorithm for a special subcase (restricting the form of SLPs) was given by Hirao
et al. [2000]. Finally, a state-of-the-art O(n2m) algorithm was given by Lifshits [2007].
Note that it beats the O(n4) algorithm for equality testing by Plandowski [1994], and
no faster algorithm for equality testing was known.

Concerning related problems, fully compressed pattern matching was also considered
for LZW compressed strings [Gąsieniec and Rytter 1999], and a linear-time algorithm
was developed recently [Gawrychowski 2012b]. Apart from that, there is a large body of
work dealing with compressed pattern matching (i.e., when the pattern is given explic-
itly) for practically used compression standards. We recall those for LZ77 and LZW, as
those compression standards are related to SLPs: for LZW a linear-time algorithm was
recently given [Gawrychowski 2013], and the case of multiple pattern was also studied
[Gawrychowski 2012a], with running time O(n log M + M) (alternatively, O(n+ M1+ε)).
For the LZ77-compressed text, for which the problem becomes substantially harder
than in the LZW case, an O(n log(N/n) + m) algorithm, which is in some sense optimal,
was proposed in 2011 [Gawrychowski 2011b].

Equality testing for dynamic strings. Independently of the work on algorithms
dealing with SLPs, the data structures for equality testing for dynamic strings were

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:3

investigated. In this setting, we have a collection of strings and can add a new string s,
which is either a single letter, a substring of string s′ from the collection (we are given
the first and last position of the substring), or a concatenation of two strings in the col-
lection. The queries to the structure ask for the equality of two strings in the collection.
The first and last operation together are enough to straightforwardly simulate SLPs.

The data structure by Mehlhorn et al. [1997], stated in terms of SLPs, yields nearly
a cubic algorithm for equality testing of SLPs (as observed by Gawrychowski [2011a]).
However, the inside technical details of the construction make extension to pattern
matching problematic: although this method can be used to build “canonical” SLPs for
the text and the pattern, there is no apparent way to control how these SLPs actually
look and how they encode the strings. Moreover, the algorithm essentially uses the
fact that the numbers of size N can be manipulated in constant time (in fact, even bit
manipulations are needed).

An improved implementation of a similar data structure by Alstrup et al. [2000]
solves those problems and allows pattern matching for dynamic strings (as well as
improves the running time to a nearly quadratic one). However, the algorithm uses
randomised hashing, and derandomisation introduces a logarithmic factor to the run-
ning time. Due to the different setting, the transitions to SLPs is possible but not
straightforward (especially in the case of pattern matching).

Our results and techniques. We give an O((n + m) log M) algorithm for FCPM—that
is, a pattern matching problem in which both the text and the pattern are supplied as
SLPs. It assumes that numbers of size M can be manipulated in constant time. When
this is not allowed and only numbers of O(n+ m) time can be manipulated in constant
time, the running time increases to O((n + m) log M log(n + m)). Since M ≤ 2m, this
outperforms, in any case, the previously best O(n2m) algorithm by Lifshits [2007] (as
well as the earlier algorithms with larger running time). In addition, it outperforms
the nearly quadratic randomised algorithm that follows from work of Alstrup et al.
[2000] for pattern matching for dynamic strings.

THEOREM 1.1. Assuming that numbers of size M can be manipulated in constant time,
algorithm FCPM returns an O(n+ m) representation of all pattern occurrences, where n
(m) is the size of the SLP-compressed text (pattern, respectively) and M is the size of the
decompressed pattern. It runs in O((n + m) log M) time.

If only numbers of size n + m can be manipulated in constant time, the running time
and the representation size increase by a multiplicative O(log(n + m)) factor.

This representation allows calculation of the number of pattern occurrences and, if
N fits in O(1) codewords, also the position of the first/last pattern. Under the same
assumption, the position of an occurrence of an arbitrary rank can be given in O(n+ m)
time.

Our approach to the problem is different from all of those previously applied for
compressed pattern matching (although it does relate to dynamic string equality testing
considered by Mehlhorn et al. [1997] and its generalisation to pattern matching by
Alstrup et al. [2000]). We do not consider any combinatorial properties of the encoded
strings. Instead, we analyse and change the way in which strings are described by
the SLPs in the instance. In other words, we focus on the SLPs alone, ignoring any
properties of the encoded strings. Roughly speaking, our algorithm aims at having
all strings in the instance compressed “in the same way.” To achieve this goal, we
decompress the SLPs. Since the compressed text can be exponentially long, we do
this locally: we introduce explicit letters into the right-hand sides of the productions.
Then we recompress these explicit strings uniformly: roughly, a fixed pair of letters
ab is replaced by a new letter c in both the string and the pattern; such a procedure

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:4 A. Jeż

is applied for every possible pair of letters. The compression is performed within the
rules of the grammar, and often it is necessary to modify the grammar so that this
is possible. Since such pieces of text are compressed in the same way, we can “forget”
about the original substrings of the input and treat the introduced nonterminals as
atomic letters. Such recompression shortens the pattern (and the text) significantly:
roughly one “phase” of recompression, in which every pair of letters that was present at
the beginning of the phase is compressed, shortens the encoded strings by a constant
factor. The compression ends when the pattern is reduced to one letter, in which case the
text is a simple SLP-like representation of all pattern occurrences. With some effort,
one phase can be implemented in linear time, which yields the promised running
time.

Remark 1.2. Notice that in some sense we build an SLP for both the pattern and
string in a bottom-up fashion: pair compression of ab to c is in fact introducing a new
nonterminal with a production c → ab. This justifies the name recompression being
used for the whole process. This is explained in detail later on.

Similar techniques. Although application of the idea of recompression to SLPS is
new, related approaches were employed previously: most notably, the idea of replacing
short strings by a fresh letter and iterating this procedure was used by Mehlhorn et al.
[1997] in their work on data structures for equality testing for dynamic strings, as well
as in the later improved implementation by Alstrup et al. [2000]).

In the area of compressed membership problems [Plandowski and Rytter 1999], from
which the recompression method emerged, recent work of Lohrey and Mathissen [2011]
already implemented the idea of replacing strings with fresh letters, as well as modifi-
cations of the instance so that such replacement is possible. However, the replacement
was not iterated, and the newly introduced letters were not further compressed.

Additionally, a somehow similar algorithm, which replaces pairs and blocks, was
proposed by Sakamoto [2005] in connection with the (approximate) construction of
the smallest grammar for the input text. His algorithm was inspired by the RePair
algorithm [Larsson and Moffat 1999], which is a practical grammar-based compressor.
However, as the text in this case is given explicitly, the analysis is much simpler; in
particular, it does not introduce the technique of modification of the grammar according
to the applied compressions. Still, the analysis is based on modifying (as a mental
experiment) the LZ77 representation.

Other applications of the technique. A variant of the recompression technique has
been used to establish the computational complexity of the FCMP for NFAs [Jeż 2014].
This method can also be applied in the area of word equations, yielding simpler proofs
and faster algorithms of many classical results in the area, such as the PSPACE algo-
rithm for solving word equations, double exponential bound on the size of the solution,
and exponential bound on the exponent of periodicity [Jeż 2013c]. Furthermore, a more
tuned algorithm and detailed analysis yields a first linear-time algorithm for word
equations with one variable (and arbitrarily, many occurrences of it) [Jeż 2013b]. The
method can be straightforwardly applied to obtain a simple algorithm for construction
of the (approximation of) smallest grammar generating a given word [Jeż 2013a].

The recompression approach can be also generalised from strings to (ordered and
rooted) trees, essentially by reinterpreting the operations for trees and adding one
new compression operation. In this way, the first algorithm with a guaranteed approx-
imation ratio for the smallest tree grammar problem was devised [Jeż and Lohrey
2014]. Moreover, the PSPACE algorithm for word equation was extended to context
unification, yielding a first decidability proof for this problem [Jeż 2014].

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:5

Computational model. Our algorithm uses RadixSort, and we assume that the ma-
chine word is of size �(log(n+m)). RadixSort can sort k numbers represented as strings
of d-ary digits of lengths �1, �2, . . . , �k in time O(d+∑k

i=1 �i). In particular, n+mnumbers
of size O((n + m)c) can be sorted in time O(c(n + m)).

We assume that the alphabet of the input is {1, 2, . . . , (n + m)c} for some constant c.
This is not restrictive, as we can sort the letters of the input and replace them with
consecutive numbers, starting with 1, in total O((n + m) log(n + m)) time.

The position of the first occurrence of the pattern in the text might be exponential in
n, so we need to make some assumptions to be able to output such a position. Assuming
that N fits in a constant amount of codewords, our algorithm can also output the
position of the first/last position of the pattern.

We assume that the rules of the grammar are stored as lists so that insertion and
deletion of characters can be done in constant time (assuming that a pointer to an
element is provided).

Organisation of the article. In Section 2, as a toy example, we show that through
using recompression, we can check the equality of two explicit strings. This introduces
the first half of the main idea of recompression: iterative replacement of pairs and
blocks, as well as some key ideas of the analysis. On the other hand, it completely
ignores the (also crucial) way in which the SLP is refactored to match the applied
recompression. In Section 3, it is explained how this approach can be extended to
pattern matching, and we again consider only the case in which the text and pattern
are given explicitly. Although the main idea is relatively easy, the method and the proof
involve an exhaustive case inspection.

Next, in Section 4, we show how to perform the equality testing in the case of SLPs.
This section introduces the second crucial half of the technique: modification of SLPs
in the instance according to the compressions. This section is independent of Section 3
and can be read beforehand. In Section 5, we show how to merge the results of Sections
3 and 4, yielding an algorithm for fully compressed pattern matching, which runs in
O((n + m) log M log(n + m)).

Finally, in Section 6, we explain how to improve the running time from O((n +
m) log M log(n + m)) to O((n + m) log M) when M fits in O(1) machine words.

2. TOY EXAMPLE: EQUALITY TESTING

In this section, we introduce the recompression technique and apply it in the trivial
case of equality testing of two explicit strings—that is, when their representation is not
compressed. This serves as an easy introduction. In Section 3, we take this process a
step further by explaining how to perform a pattern matching for explicit strings using
recompression. To stress the future connection with the pattern matching, we shall use
the letters p (as pattern) and t (as text) to denote the current two strings for which we
test the equality (note that they change during the run of the algorithm). By m and n,
we shall denote their initial sizes and by |p| and |t| the current ones.

Earlier work on equality testing. In equality testing, our approach is somehow similar
to the one of Mehlhorn et al. [1997] from their work on equality testing for the dynamic
strings. In that setting, we are given a set of strings, initially empty, and a set of
operations that add new strings to the set. We are to create a data structure that could
answer whether two strings in this collection are equal or not.

The method proposed by Mehlhorn et al. [1997] is based on iterative replacement of
strings: they defined a schema that replaces a string s with a string s′ (where |s′| ≤ c|s|
for some constant c < 1) and iterates the process until a length-1 string is obtained.
Most importantly, the replacement is injective—in other words, if s1 �= s2, then s1 and

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:6 A. Jeż

s2 are replaced with different strings.1 In this way, we calculate the unique signature
of each string, and two strings are equal if and only if their signatures are equal.

The second important property of this schema is that the replacement is local: the
string is first partitioned into blocks (of constant size), the assignment of the letter to
a block depends only on the log∗ n neighbouring letters to the left and right, and each
block is replaced (by a single letter) independently.

Recompression. The recompression, as presented in this section, is a variant of this
approach in which a different replacement schema is applied. To be specific, our algo-
rithm is based on two types of compressions performed on strings:

Pair compression of ab. For two different letters ab occurring in p or t, replace each
of ab in p and t by a fresh letter c.

Block compression of a. For each maximal block a�, with � > 1, that occurs in p or t,
replace all a�’s in p and t by a fresh letter a�.

By a fresh letter, we denote any letter that does not occur in p or t. The ablocka� is
maximal when it cannot be extended by a letter a to the left or to the right. We adopt
the following notational convention throughout the rest of the article: whenever we
refer to a letter a�, it means that the block compression was done for a and a� is the
letter that replaced a�.

Clearly, both compressions preserve the equality of strings

LEMMA 2.1. Let p′, t′ be obtained from p and t by a pair compression (or block
compression). Then, p = t if and only if p′ = t′.

Using those two operations, we can define the algorithm for testing the equality of
two strings.

ALGORITHM 1: SimpleEqualityTesting: outline
1: while |p| > 1 and |t| > 1 do
2: L ← list of letters occurring in t and p
3: P ← list of pairs occurring in t and p
4: for each a ∈ L do
5: compress blocks of a
6: for each ab ∈ P do
7: compress pair ab
8: Naively check the equality and output the answer.

We call one iteration of the main loop of SimpleEqualityTesting a phase.
To implement the SimpleEqualityTesting in linear time, we want to use RadixSort on

letters. However, it might be that the letters in the current string are from an interval
that is much larger than |p| + |t|. To exclude this case, at the beginning of each phase
we renumber the letters so that they are indeed numbers from an interval of size at
most |p|+ |t|. The following lemma formally states that this can be done in linear time.

LEMMA 2.2. Without loss of generality, at the beginning of each phase the letters
present in p and t form an interval {k + 1, k + 2, . . . , k + k′} for some k and k′ ≤ |p| + |t|,
ensuring this takes at most O(|t′| + |p′|) time, where |p′| and |t′| are the lengths of the
pattern and text at the beginning of the previous phase.

1This is not a information theory problem, as we replace only strings that occur in the instance and moreover
can reuse original letters. In other words, the new strings do not encode the original ones but just preserve
equality.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:7

In the first phase, we take |p′| = |p| and |t′| = |t|.
PROOF. The proof proceeds by an induction on the number of phases.
Consider the first phase. We assumed that the input alphabet consists of letters that

can be identified with a subset of {1, . . . , (n + m)c}. Treating them as vectors of length
c over {0, . . . , (n + m) − 1}, we can sort them using RadixSort in O(c(n + m)) time (i.e.,
linear one). Then we can renumber those letters as 1, 2, . . . , k for some k ≤ n+ m. This
takes O(n + m) = O(|p| + |t|) time.

For the induction proof, note that we can equivalently show that at the end of the
phase, we can ensure that the letters form an interval of numbers, and this takes time
O(|p′| + |t′|), where p and t are the pattern and text at the beginning of the phase.

Suppose that at the beginning of the phase the letters formed an interval [k+ 1 .. k+
k′]. Each new letter, introduced in place of a compressed pair or block, is assigned a
consecutive value, starting from k+ k′ + 1, and so after the phase the letters occurring
in p and t are either within [k + 1 .. k + k′] (the old letters) or within an interval
[k + k′ + 1 .. k + k′′] (the new letters), for some k′ ≤ k′′ ≤ k′ + |p| + |t| (the second
inequality follows from the fact that the introduction of a new letter shortens p or t by
at least one letter). We now want to renumber the letters so that the ones actually used
in p and t form an interval of numbers (which is then of size at most |p| + |t|). We go
through p and t, and for each letter a we increase the counter count[a] by 1. We then go
through count[k + 1 .. k + k′] and assign consecutive numbers, starting from k + k′′ + 1,
to letters with nonzero count. As each such number occurs in either p or t, there are at
most |p| + |t| of them, so the obtained interval [k + k′ + 1 .. k + k′ + k′′] is of size at most
|p| + |t|. Last, we replace each letter a in p and t with the corresponding new letter.

Concerning the running time, by induction assumption k′ ≤ |p′| + |t′|, and k′′ by
definition is at most k′ + |p′| + |t′|. Hence, all operations take time O(|p′| + |t′|), as
claimed.

The crucial property of SimpleEqualityTesting is that in each phase the lengths of p
and t shorten by a constant factor.

LEMMA 2.3. Let |p|, |t| > 1, and consider any two consecutive letters in one of them at
the beginning of the phase. Then at least one of those letters is compressed until the end
of the phase. In particular, the strings p′ and t′ obtained after one phase have lengths at
most 2|p|+1

3 and 2|t|+1
3 , respectively.

PROOF. Fix the two consecutive letters of p at the beginning of the phase, as in the
statement of the first claim of the lemma (the proof for t is the same). Let those letters
be a and b. If a = b, then they are compressed during the blocks compression. Suppose
that a �= b. Then ab is listed in P, and we try to compress this occurrence of ab during
the pair compressions. This fails if and only if one of letters from this occurrence was
already compressed when we considered ab during the pair compression, which shows
the first claim.

Let mu and mc denote the number of uncompressed and compressed letters of the
pattern (in this phase). Of course, mu + mc = |p|. Consider an uncompressed letter
that is not the last letter of p. The two letters to the right are compressed together: by
the already proved first claim, the left one is compressed and clearly is not compressed
with the uncompressed letter. Thus, with each uncompressed letter (except perhaps the
last letter of p), we can associate two compressed letters to its right. Therefore, mu ≤
1 + |p|−1

3 = |p|+2
3 (the “+1” is for the last letter of p, which may be also uncompressed).

Then, also mc ≥ 2|p|−2
3 . The length of the new pattern p′ is equal to |p| minus the

number of removed letters, which is at least mc/2. As mu + mc = |p|, we obtain that

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:8 A. Jeż

after the compression

|p′| ≤ |p| − mc

2

≤ |p| − 1
2

· 2|p| − 2
3

= 2|p| + 1
3

.

The calculations for t are the same.

With proper implementation, one phase takes O(|p| + |t|) time, assuming that the
alphabet � used in p and t can be identified with numbers an interval of size |p| + |t|.
By Lemma 2.2, this can be ensured.

LEMMA 2.4. Assuming that at the beginning of a phase the alphabet � used in p
and t can be identified with an interval of size at most |p| + |t|, one phase of Simple-
EqualityTesting can be implemented in O(|p| + |t|) time.

PROOF. We go through the p and t. Whenever we spot a pair ab (of different letters),
we create a record (a, b, p), where p is the pointer to this occurrence of ab (i.e., this is
a pointer to the first letter in the pair). Similarly, when we spot a maximal block a�

(where � > 1), we put a record (a, �, p), where p is again a link to this maximal block
(say, to the first letter of the block). Clearly, this takes linear time.

We sort the triples for blocks using RadixSort (we ignore the third coordinate). Since
the letters form an interval of size at most |p| + |t| and blocks have length at most
|p| + |t|, this can be done in O(|p| + |t|) time. Then we go through the sorted list and
replace a� with a� for � > 1. Since all occurrences of a� are consecutive on the sorted
list, this can be done in time O(1) per processed letter. Hence, the total running time
is linear.

Similarly, we sort the triples of pairs. For each ab on the list, we replace all of its
occurrences by a fresh letter. Note that as the list is sorted, before considering a pair
a′b′ we either replaced all or none occurrences of a different pair ab (depending on
whether ab is earlier or later in the list). Hence, this effectively implements iterated
pair compression.

It might be that the occurrence of a pair ab that we want to replace is no longer there,
as one of its letters (or both) were already compressed as part of occurrences of different
pairs. This situation is easy to identify: when we consider a link to an occurrence of ab,
we verify whether the letter at this position is indeed a and the one to the right is b. If
not, then we do nothing; if so, then we replace them appropriately.

Now, we can state the theorem describing all of the important properties of SimpleE-
qualityTesting.

THEOREM 2.5. SimpleEqualityTesting runs in O(n + m), where m and n are the initial
lengths of p and t, and tests the equality of p and t.

PROOF. By iterative application of Lemma 2.1, each compression that is performed by
SimpleEqualityTesting preserves the equality of strings, so SimpleEqualityTesting returns
a proper answer. Concerning the running time, the assumptions of Lemma 2.4 are met
due to Lemma 2.2, and so each phase of SimpleEqualityTesting takes time linear in the
current length of p and t. And as |p| and |t| shorten by a constant factor in each phase
(see Lemma 2.3), this takes a total of O(n + m) time.

Building of a grammar. As noted in the Introduction, SimpleEqualityTesting basi-
cally generates a context-free grammar, whose some nonterminals generate p and t

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:9

Fig. 1. Two potential problems for pattern matching based on recompression. The grey letters are to be
replaced. On the left-hand side, there are occurrences of the pattern in the text, and on the right-hand side,
they are lost. On the right, we present a variant that fixes the beginning in those cases.

(additionally, this context-free grammar is an SLP, which is formally defined in the
Introduction as well). To be more precise, each replacement of ab by c corresponds to
an introduction of a new nonterminal c with a production c → ab and replacement of
each ab with c, which generates the same string as ab does. Similarly, the replacement
of ak with ak corresponds to an introduction of a new nonterminal ak with a rule ak → ak.

Weight. When we think of introduced letters as nonterminals of an SLP, it is useful
to store the lengths of the derived string, which alternatively can be viewed as the
length of the substring of the input represented by the letter. This is formalised using
weight of letters, which is extended to strings in a natural way. Every letter a in the
input grammar has w(a) = 1, whereas when a new letter a replaces the string w, we set
w(a) = w(w). When N (i.e., the size of the text) fits in a constant amount of code words,
the weight of each letter can be calculated in constant time, so we can store the weights
of the letters on the fly in a table. If this is not the case, we use a notion as a tool in the
analysis.

3. TOY EXAMPLE: PATTERN MATCHING

Potential problems. The approach used in the previous section basically applies to
the pattern matching as well but with one exception: we have to treat the “ends” of
the pattern in a careful way. Consider t = ababa and p = baba (see Figure 1). Then
compression of ab into c results in t′ = cca and p′ = bca, which no longer occurs in t′.
The other problem occurs during the block compression (which is also illustrated in
Figure 1): consider p = aab and t = aaab. After the block compression, the pattern is
replaced with p′ = a2b and the text with t′ = a3b.

In general, the problems arise because the compression in t is done partially on the
p occurrence and partially outside it, so it cannot be reflected in the compression of p
itself. We say that the compression spoils pattern’s beginning (end) when such partial
compression occurs on the pattern occurrence beginning (end, respectively). In other
words, when a, b are the first and last letters of p, then we cannot perform a pair
compression for ca or bc (for any letter c) or the a or b block compression. If there is no
spoiling, the compression preserves the occurrences of the pattern in the text.

LEMMA 3.1. If the pair compression (block compression) does not spoil the end or the
beginning, then there is a one-to-one correspondence between occurrences of the (old)
pattern in the (old) text before the compression step and occurrences of the (new) pattern
in the (new) text after the compression step.

Solving the problem. In the first example illustrated in Figure 1 (i.e., for t = ababa
and p = baba), spoiling of the pattern’s beginning can be circumvented by enforcing a
compression of the pair ba in the first place: when the two first letters of the pattern
are replaced by a fresh letter c, then the beginning of the pattern no longer can be
spoiled in this phase (as c will not be compressed in this phase). We say that a pattern’s
beginning (end) is fixed by a pair or block compression if after this compression a first
(last, respectively) letter of the pattern is a fresh letter, so it is not in L and no pair

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:10 A. Jeż

Fig. 2. Neither ab compression nor ba compression preserves the occurrences of the pattern.

containing it is in P. Our goal is to fix both the beginning and end without spoiling any
of them. Then, by Lemma 3.1, the following pair and block compressions performed by
SimplePatternMatching will preserve the occurrences of the pattern in the text.

Notice that at the same time, the same compression can fix the beginning and spoil
the end: for instance, in the example depicted in Figure 2 for t = ababa and p = bab,
compressing ba into c fixes the beginning and spoils the end, whereas compression of
ab into c spoils the beginning and fixes the end. This example demonstrates that the
case in which the first and last letter of the pattern are the same is more problematic
than the case in which they are different.

In general, fixing the beginning and end without prior spoiling of them requires
some work. We first describe the idea behind the particular actions, then show that
they indeed fix the beginning and end without spoiling them, and finally show that we
can guarantee that the lengths of p and t shorten by a constant factor in a phase in
this case as well.

ALGORITHM 2: SimplePatternMatching: outline
1: while |p| > 1 do
2: L ← list of letters in p, t
3: P ← list of pairs in p, t
4: if p[1] �= p[|p|] then
 The first and last letter of the pattern are different
5: FixEndsDifferent(p[1], p[|p|])
6: else
 p[1] = p[m]
 The first and last letter of the pattern are the same
7: FixEndsSame(p[1])
8: for a ∈ L do
9: compress blocks of a in p and t

10: for ab ∈ P do
11: compress pair ab in p and t
12: verify, whether p[1] occurs in t

There are four main subcases to consider when trying to fix the beginning. They
depend on the following:

—whether the first and last letter of the pattern are the same or not, and
—whether the first and second letter of the pattern are the same or not (i.e., whether

p begins with a pair or a block).

We consider them in the order of increasing difficulty.

The first and last letter of the pattern are different. Suppose that the first and last
letter of the pattern are different. Furthermore, if the first two letters of the pattern
are ab for a �= b, then we can fix the beginning by compressing the pair ab before any
other pairs (or blocks) are compressed. This will fix the beginning and not spoil the end
(since the last letter is not a).

This cannot be applied when a = b or, in other words, p has a leading �-block of letters
a for some � > 1. The problem is that each m-block for m ≥ � can begin an occurrence
of the pattern in the text. The idea of the solution is to replace the leading �-block of p
with a� but then treat a� in both p and t as a marker of a (potential) beginning of the

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:11

pattern, meaning that each block am for m > � should be replaced with a string ending
with a�. To be more precise:

—for m < �, each m-block is replaced by a fresh letter am;
—each �-block is replaced with a�; and
—for m > �, each m-block is replaced by a pair of letters ama�, where am is a fresh letter.

This modifies the block compression; however, there is no reason why we needed to
replace am by exactly one letter in the block compression. Rwo letters are fine as long
as

—the replacement function is injective;
—they are shorter than the replaced text; and
—the introduced substring does not occur in p and t.

We shall not formalise this intuition; instead, the proofs will simply show that there is
a one-to-one correspondence between occurrences of the pattern before and after such
a modified block compression.

For instance, in the example considered in Figure 1 from the original t = aaab and
p = aab, we obtain t′ = a3a2b and p′ = a2b; clearly, p′ has an occurrence in t′. In this
way, we fixed the pattern beginning (without spoiling the end).

Note that if t ends with an a block of length greater than �, then we introduce ending
a� in t. This a� cannot be used by any pattern occurrence, so we remove it from t.

Now it is left to fix the pattern’s end, which is done in a similar way. There are two
details:

—It might be that the end was already fixed during the fixing of the beginning (which
happens when the first two letters ab of p are the same as the last two letters). In
such a case we do nothing, as the end was already fixed.

—We may need to compress a pair including a letter introduced during the fixing of the
beginning: it might be that the second to last letter of p, say b′, was introduced during
the fixing of the beginning. However, there is no additional difficulty in this (note that
in SimpleEqualityTesting, we never compressed letters that were compressed earlier
in the phase, yet no part of the analysis assumed this).

ALGORITHM 3: FixEndsDifferent(a, a′) : the a �= a′ are the first and last letter of p
Require: a �= a′

1: b ← p[2]
2: if a �= b then
 Compress the leading pair ab
3: compress ab in t and p
4: else
 a = b: compress the a blocks
5: let � ← length of the p’s a-prefix
6: for 1 < m ≤ � do
7: replace each maximal block am in p, t by am

8: for m > � do
9: replace each maximal block am in p, t by ama�

10: if t ends with a� then
11: remove this a�
 Cannot be used by pattern occurrence

 Symmetric for the ending letter

The first and last letter of the pattern are the same. The described approach does not
work when the first and last letter of the pattern are the same. As a workaround, we
alter the pattern so that the first and last letter are in fact different and then apply

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:12 A. Jeż

the previous approach: let a� and ar be the a-prefix and suffix of p (it may be that � = 1
or r = 1). Then we replace them with aL and aR, which are different, even if � = r. The
aL and aR are ”markers,” and their occurrences in t denote that a pattern occurrence
can begin or end here (so they have a role similar to a� in FixEndsDifferent). Now we
make a block compression for a in which we additionally put those markers: am, for
m ≥ �, r, is replaced by aRamaL. This reflects the fact that am can both begin and end the
pattern occurrence—the former consumes ending aL and the latter the leading aR. The
exact replacement of am for m ≤ max(�, r) depends on whether � < r, � = r, or � > r; for
instance, when � = r:

—for m < �, we replace m-blocks with am; and
—for m = �, we replace �-blocks with aRaL.

The other replacement schemes are similar (see Lemma 3.2 and FixEndsSame for
details).

Note that in this way, it is possible that t begins with aR or ends with aL, none of
which can be used by a pattern occurrence. For simplicity, we remove such occurrences
of aR and aL.

For � = r = 1, this actually enlarges p and t, and for � = r = 2 not always shortens
them. To fix this, we make an additional round of pair replacement immediately after
the blocks replacement: we make the compression of pairs of the form {aLb|b ∈ � \{aL}}
(note that those pairs cannot overlap, so all of them can be replaced in parallel), followed
by compression of pairs {baR | b ∈ � \ {aR}}. The latter compression allows compression
of the letters introduced in this phase—that is, aLbaR is first compressed into caR and
then into c′. It can be routinely checked that this schema shortens both p and t: as an
example, consider bab′, which is first replaced with baRaLb′, then by baRc, and finally
with c′c, which is shorter than bab′; other cases are analysed similarly (see Lemma 3.5
for details). When a block compression and pair compression is applied afterward,
Lemma 2.3 still holds, although for a smaller constant (i.e., pattern and text shorten
by a constant factor in each phase).

Concerning the occurrences of the pattern, when pattern is reduced to single letter,
say c, each occurrence of c in t corresponds to one occurrence of a pattern in the original
text. There is also a special case: when pattern is reduced to a�, then after the blocks
compression, we list all occurrences of letters am for m ≥ � within t, each of them
represents m− � + 1 occurrences of the original pattern in the original text.

Analysis

LEMMA 3.2. When the first and last letter of the pattern are different, in O(|p| + |t|)
time FixEndsSame fixes both the beginning and end without prior spoiling of them.

There is a one-to-one correspondence between the pattern occurrences in the new text
and old pattern occurrences in the old text.

PROOF. The manner of performing the appropriate operations has been described;
now we will analyse their properties and implementations.

Fixing the beginning. Let b be the second letter of p. First, suppose that b �= a. We
(naively) perform the compression of the pair ab by reading both p and t from the left to
the right and changing each ab into c as we go. Clearly, the running time is O(|p| + |t|).
Note that the beginning and end were not spoiled in the process, and so there is a
one-to-one correspondence of new and old pattern occurrences (see Lemma 3.1).

Now, suppose that b = a, and let a� be the a-prefix of p. Then, we perform the
compression of blocks for the letter a as in SimpleEqualityTesting, with the additional

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:13

replacement of am with ama� for m > �. Identifying blocks am for m > � is done on the
way, as we sort according to length of blocks anyway.

We show that no pattern occurrence was lost, neither has any new pattern occurrence
been introduced. Therefore, let t = w1amw2w3 and p = a�w2, where w2 does not begin
or end with a; first, consider the case in which m > �. Observe that as the first and last
letter of the pattern are different, we know that w2 �= ε. Let wi be replaced by w′

i; note
that the two occurrences of w2 in p and t are replaced with the same string (as they do
not begin or end with a). Then, the new text is t′ = w′

1ama�w
′
2w

′
3, and the new pattern is

p′ = a�w
′
2; thus, there is a pattern occurrence in the new text. The case in which m = �

is shown in the same way.
Conversely, let w′

1a�w
′
2w

′
3 be the new text and a�w

′
2 the new pattern. The pattern was

obtained from a�w2 for some w2. Furthermore, w′
1a� was obtained from some w1am for

m ≥ � (this is the only way to obtain a�), and the only way to obtain w′
2 is from the same

w2. Hence, no new pattern occurrence has been introduced.
This fixes the pattern beginning, and since the last letter of p is not a, it did not spoil

the pattern end.

Fixing the end. We want to apply the same procedure at the end of the p. However,
there can be some perturbation, as fixing the beginning might have influenced the end.
Let b′a′ be the two last letters of p:

—The last letter could have been compressed already, which happens only when b′a′ =
ab. In this case, we got lucky and make no additional compression, as the end of the
pattern has been already fixed.

—The second to last letter (b′) of p was compressed (not with the last letter) into the
letter c (either due to pair compression or block compression). In this case, we make
the compression of the pair ca′ even though c is a fresh letter. Note that as c is the
first letter of this pair, this will not spoil the beginning of the pattern.

The rest of the cases, as well as the analysis of the preceding exceptions, are the same
as those in the case of fixing the beginning.

Now we consider the more involved case in which the first and last letter of the
pattern are the same.

Remark 3.3. Observe that the treatment in FixEndsSame is not symmetrical for
beginning a� and ending ar. This is because we want the weights of letters, particularly
aL and aR, to be natural numbers, and we are interested in positions of beginnings of
the pattern (and not its ends). The approach in FixEndsSame allows a simple weight
assignment in which w(aL) = Lw(a) and w(aR) = 0.

LEMMA 3.4. When the first and last letter of the pattern are equal, in O(|p| + |t|) time
FixEndsSame fixes both the beginning and end without prior spoiling of them.

There is a one-to-one correspondence between the pattern occurrences in the new text
and old pattern occurrences in the old text.

PROOF. Let the first (and last) letter of the pattern be a. There is a simple
special case when p ∈ a∗. Then it is enough to perform a usual compression of
ablocksandmarktheletters am for m ≥ �; each such letter corresponds to m − � + 1 oc-
currences of the pattern. To this end, we perform the a-blocks compression (for blocks
of a only), as in SimpleEqualityTesting. This includes the sorting of blocks according to
their length. Hence, blocks of length at least � can be identified and marked in time
O(|p| + |t|).

Now consider the case in which the pattern has some letter other than a—
that is, p = a�uar where u �= ε and u does not begin or end with a. The main

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:14 A. Jeż

ALGORITHM 4: FixEndsSame(a)
Require: first and last letter of p is a

1: let � ← the length of p’s a-prefix, r ← the length of a-suffix
2: replace the leading a� and ending ar in p by aL and aR
3: for 1 < m < min(�, r) do
4: replace each maximal am in p, t by am

5: for m > max(�, r) do
6: replace each maximal am in p, t by aRamaL
 The following actions depend on the relation between � and r.
7: if � = r then
8: replace each maximal a� in p, t by aRaL

9: if � < r then
10: replace each maximal a� in p, t by aL
11: for r > m > � do
12: replace each maximal am in p, t by amaL

13: replace each maximal ar in p, t by aRaraL

14: if � > r then
15: for r ≤ m < � do
16: replace each maximal am in p, t by aRam

17: replace each maximal a� in p, t by aRaL
 End of replacement
18: if t ends with aL then
19: remove this aL

20: if t begins with aR then
21: remove this aR

22: compress all pairs of the form aLb with b ∈ � \ {aL}
23: compress all pairs of the form baR with b ∈ � \ {aR}
24: if 1 = r < � then
25: compress all pairs of the form a1b with b ∈ � \ {a1}

principle of the replacement was already discussed: first, a tuned version of the
a-blockscompressionisper f ormed, whichintroducesmarkers aL and aR denoting the pat-
tern beginning and end, respectively; then a compression of the pairs of the form
{aLb | b ∈ � \ {aL}}; and finally {baR | b ∈ � \ {aR}} is performed.

Although the block compression scheme was already given for r = �, the ones for
� > r and r < � were not, so we begin with their precise description (see Algorithm 3).

The replacement of blocks for � < r is as follows:

—for m < �, maximal blocks am are replaced with am;
—for m = �, maximal blocks a� are replaced with aL;
—for � < m < r, maximal blocks am are replaced with amaL; and
—for m ≥ r, maximal blocks am are replaced with aRamaL.

As in the case of the normal block compression, for m = 1 we identify a1 with a (and
do not make any replacement) and further in the phase allow the compression of pairs
including a.

The compression of blocks for r < � is similar:

—for m < r, blocks am are replaced with am;
—for r ≤ m < �, blocks am are replaced with aRam;
—for m = �, blocks a� are replaced with aRaL; and
—for m > �, blocks am are replaced with aRamaL.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:15

Again, we identify a1 with a (and do not make any replacement) and allow further
compression of pairs including a.

After the block compression, regardless of the actual scheme, we compress pairs of
the form {aLb | b ∈ � \ {aL}} and then {baR | b ∈ � \ {aR}}. Since in one such group pairs
do not overlap, this can be done easily in linear time using RadixSort, as in the case
of pair compression in SimpleEqualityTesting. (When compressing the second group of
pairs, we allow compression of letters introduced in the compression in the first group.)

Finally, there is a special case: when 1 = r < �, the compression of the pairs {a1b | b ∈
� \ a1} is also performed (this is needed, because so far a single a is replaced with
aRa1 and aR is compressed with the letter to the left). The running time is again linear.
When t after the block compression begins (ends) with aR (aL, respectively), we remove
it from t, as this letter cannot be used by any pattern occurrence anyway.

Clearly, both the beginning and end were fixed during the block compression, and we
still need to guarantee that pattern occurrences were not lost or gained in the process.
The argument is similar to that in Lemma 3.2. Therefore, let p = a�w2ar; where w2 �= ε
and it does not begin or end with a, we can make this assumption as p /∈ a∗. Let
t = w1amw2anw3, where m ≥ � and n ≥ r. There are several cases: we focus on one,
and the others are shown in the same way. Suppose that m > � > r and � > n > r.
Let wi be replaced by w′

i; note that as w2 does not begin or end with a, indeed both
occurrences in p and t are replaced with the same string. Then, p′ = aLw′

2aR, whereas
t′ = w′

1aRamaLw′
2aRanw

′
3, so there is an occurrence of the pattern. The other cases are

shown similarly.
In the other direction, suppose that p′ = aLw′

2aR occurs in t′ = w′
1aLw′

2aRw′
3. Observe

that w′
2 in both was obtained from the same w2; furthermore, the only way to obtain aL

(aR) in t′ is from am (an, respectively) for some m ≥ � (some n ≥ r, respectively). Thus,
p = a�w2ar appeared in t = w1amw2anw3.

Thus, it is left to show that the following pair compressions do not spoil the beginning
or end of the (new) pattern. Consider the first compression of the pairs of the form
{aLb | b ∈ � \ {aL}}: is it possible that it spoils the end? Spoiling of the end happens
when the last letter of the pattern (i.e., aR) is compressed with a letter to its right.
Hence, aL = aR, which is not possible, as aL and aR are different symbols. Therefore,
consider the second compression phase in which pairs of the form {baR | b ∈ � \ aR}
are compressed. Suppose that the beginning was spoiled in the process. Let b be the
letter compressed with the leading aL in the pattern (by the assumption that p /∈ a∗,
such b exists), and let c be the fresh letter that replaced aLb. Then, the beginning is
spoiled when the pair of the form xc is compressed, but this implies aR = c, which is
not possible. Last, consider the special case (i.e., r = 1 < �) in which pairs of the form
a1x additionally were compressed. This cannot spoil the end, as the last letter of p is
not a1. Suppose that this spoils the beginning. We already know that aLb was replaced
with c. As already shown, c could not be compressed with the letter to the left; however,
it is possible that it was compressed with the letter to the right and replaced with c′.
Still, the only possible way to spoil the beginning is to compress a1c or a1c′, depending
on the case. In both cases, this implies that before the first compression phase, there
was a substring aRa1aLb in p, which contradicts our replacement scheme.

Shortening

Now, when the whole replacement scheme is defined, it is time to show that fixing
preserves the main property of original SimpleEqualityTesting: that in each round the
lengths of p and t are reduced by a constant factor (see Lemma 2.3). Roughly, our
replacement schema took care of that: for instance, even though we replaced a single a
with aRaL, we made sure that aR is compressed with a previous letter and aL is merged
with a following letter. Effectively, we replaced three letters with two. This is slightly

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:16 A. Jeż

weaker than replacing two letters with one but still shortens the string by a constant
factor. The other cases are analysed similarly. The following lemma takes care of the
details.

LEMMA 3.5. When |p|, |t| > 1, then one phase of SimplePatternMatching shortens those
lengths by a constant factor.

PROOF. We group the compressed substrings into fragments; one fragment shall
intuitively correspond to a (short) substring that was compressed into a shorter one.
Letters that were not altered are not assigned to fragments. Formally, we show that
there is a grouping of letters in p and t into fragments (in the beginning of the phase)
such that

—(Fra 1) there are no consecutive letters not assigned to fragments; and
—(Fra 2) each fragment w is of length at least two, and until the end of the phase it is

replaced with a substring of length at most min(|w| − 1, 3).

The somewhat cryptic (Fra 2) is a short way of saying that we disallow fragments of
length 1, fragments of length 2 are replaced with a single letter, fragments of length 3
are replaced with at most two letters, and fragments of length 4 or more are replaced
with at most three letters. In this way, a similar reasoning as in Lemma 2.3 yields
that one phase of SimplePatternMatching shortens both p and t by a constant factor
(although smaller than in case of SimpleEqualityTesting).

So it is left to show that fixing, followed by block compression and pair compression,
allows grouping into fragments satisfying (Fra 1–Fra 2). The analysis splits, depending
on whether the first and last letter of p are different or not.

We first investigate the simpler case, in which the first and last letter of the pattern
are different. A fragment is created for each substring that is substituted with a smaller
one (i.e., a block or a compressed pair). Then (Fra 1) is equivalent to saying that there
are no two consecutive letters in p or t that were both not compressed. A reasoning
identical to the one in Lemma 2.3 shows that this is the case.

Concerning (Fra 2), we focus on the changes performed during the fixing of the
beginning; the analysis is similar for the fixing of the end. First observe that indeed
each fragment is of length at least 2. Moreover, when the first and second letter of p
are different, each fragment is replaced with a single letter, so (Fra 2) holds. When the
first and second letter of p are identical, then this analysis does not apply to am that
are replaced with ama�. But this happens for m > � > 1 (i.e., m ≥ 3). So in this case,
(Fra 2) holds as well.

So we now move to the more difficult case, when the first and last letter of the pattern
are the same (say it is a letter a). In general, the proof follows a similar idea, but we
need to accommodate the special actions that were performed during the fixing of the
beginning and end.

Except for blocks of a (and perhaps letters neighbouring them), all fragments are
defined for the input strings in the same way—that is, each pair or block compressed
after FixEndsSame forms a fragment. As in the preceding case, it can be showed that
for them (Fra 2) holds. Therefore, it is left to define the fragments for blocks of a and
letters neighbouring them.

To define fragments, let us first consider a more coarser notion, called clusters. Clus-
ters are defined using the smallest transitive and symmetric relation satisfying the
following conditions:

—Two neighbouring a’s are in the same cluster.
—If this a will be replaced with a string containing aR, then the letter to its left is in

the same cluster as this a as well.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:17

—If this a will be replaced with a string containing aL, then the letter to its right is in
the same cluster as well.

—If 1 = r < �, then each a is in the same cluster with the letter to its right.

As an example, if m > �, r, then all letters in bamcand are in the same cluster. Note
that if r > 1, then a maximal block consisting of a single letter a does not end up in
a cluster, and if r = 1, then it is in a cluster. This is a small technicality that shall be
addressed at the appropriate moment.

From the definition, it follows that the maximal cluster if of the form

x(0)am1 x(1)am2 x(2) · · · x(k−1)amkx(k)

for some k ≥ 1, where x(1), x(2), . . . , x(k−1) are single letters and x(0) and x(k) are single
letters or ε. Then define the first fragment as x(0)am1 x(1) and each other as ami x(i). It
remains to be seen that such defined fragments satisfy (Fra 1–Fra 2).

To see that (Fra 1) holds, first observe that if a letter b �= a is compressed during
FixEndsSame, then it is in a cluster: it could be compressed with aR (to its right) or aL
(to its left) or a1 (to its left), but from the definition of the cluster, it is included in the
cluster. Then, considering that any two consecutive letters unassigned to fragments
were not altered during FixEndsSame, the same analysis as in Lemma 2.3 shows that
at least one of them was compressed during the rest of SimplePatternMatching, so it was
assigned to a fragment, which is a contradiction.

We now show that (Fra 2) holds for the fragments defined using clusters (other
fragments were already considered). If during FixEndsSame a block ami introduces a
letter aL to the right, then x(i) �= ε—that is, it is a letter, and this aL is compressed with
x(i) (the only exception: ami ends t, in which case this aL is removed from t). Similarly,
if it introduces aR to the left, it is compressed with x(i−1) (or removed). Then, ami is
replaced with a single letter or ε (and in the special case mi = r = 1 < �, it is replaced
with a1, which is then compressed with x(i)). Hence, the resulting string is

y(0)am1 y(1)am2 y(2) · · · y(k+1)amk y(k),

where |y(i)| = |x(i)| for each i and each ami is either a letter or ε. We define the results
of compressing the fragments as y(0)am1 y(1) for the first fragment and ami y

(i) for each
other fragment. We check (Fra 2) for them. Observe that as |ymi |, |ami | ≤ 1, each of
the compressed fragments have length at most 3. It is left to show that the length of
each fragment decreases by at least 1. Since |y(i)| = |x(i)|, it is enough to show that
|ami | ≤ |ami | − 1 = mi − 1. As |ami | ≤ 1, this is true for mi ≥ 2, so we are left with
mi = 1—that is, a single a that is a maximal block. We need to show that ami = ε. The
further proof depends on the relation between �, r and 1:

—If �, r > 1, then a is not going to be replaced during FixEndsSame, so this case is
nonexistent.

—If 1 = � < r, then a is replaced with aL, which is merged with x(i), so ami = ε.
—If 1 = � = r, then a is replaced with aRaL, which are merged with x(i−1) and x(i), so

ami = ε.
—If 1 = r < �, then a is replaced with aRa1, which are merged with x(i−1) and x(i), so

ami = ε.

Concerning other operations, they are implemented in the same way as in the case
of SimpleEqualityTesting, so in particular, the pair compression and block compression
run in O(|p|+|t|) (see Lemma 2.4). Furthermore, since the beginning and end are fixed,
those operations do not spoil pattern occurrences (see Lemma 3.1).

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:18 A. Jeż

As a result, we are able to show that SimplePatternMatching runs in linear time and
preserves the occurrences of the pattern, which follows from Lemmas 3.2 and 3.4.

THEOREM 3.6. SimplePatternMatching runs in O(n + m) time and correctly reports all
occurrences of a pattern in a text, where n and m are the original lengths of t and p.

The running time is clear: each phase takes linear time, and the length of text and
pattern are shortened by a constant factor in a phase.

Building of a grammar and weights of letters revisited. Note that the more sophis-
ticated replacement rules in the fixing of beginning and end endanger our view of
recompression as creation of a context-free grammar for p and t. Still, this can be fixed
easily.

For the fixing of the beginning when the first and last letter are different, there
are symmetric actions performed at the beginning and at the end, so we focus only
on the former. The problematic part is the replacement of am for m > � with ama�

(as in all other cases, the replacement is the same as in the case of equality testing).
Then we simply declare that a� replaced a� (note that this is consistent with the fact
that a� is replaced with a�) and am replaced am−�. Since m > �, this is well defined.
In addition, the weights are defined as w(a�) = � · w(a) and w(am) = (m − �) · w(a)
for m > �.

When the first and last letter are the same, the situation is a bit more complicated.
For the block replacement, similarly we declare that aL replaces a� (and so w(aL) =
� · w(a)), am the am for m < � (so w(am) = m · w(a)), and am−� for m > �, which implies
w(am) = (m− �) ·w(a). Finally, to be consistent, we need to define aR → ε and w(aR) = 0.
It can be verified by case inspection that in this way all blocks are replaced properly
and the weight is preserved, except the ending block for p (for which the ar is replaced
with aR). Although this somehow falsifies our informal claim that we create an SLP for
p, this is not a problem, as the occurrences of the pattern are preserved and the weight
of p decreases. (We can think that we shortened the pattern by those ending ar letters,
but the occurrences were preserved.) The removal of letters aL from the end of text and
aR from the beginning can be viewed in the same way.

The aR generating ε (and having weight 0) is a bit disturbing, but note that we enforce
the compression of pairs of the form {baR | b ∈ � \ aR} (and if aR is the first letter of t,
then we remove it). In this way, all aR are removed from the instance. Furthermore,
when baR is replaced with b′, we can declare that the rule for b′ is b′ → α, where b
has a rule b → α (and we can forget about the letter aR altogether). In this way, no
productions have ε at their right-hand sides, and no letters have weight 0.

4. EQUALITY TESTING FOR STRAIGHT-LINE PROGRAMS

In this section, we extend the SimpleEqualityTesting to the setting in which both p and
t are given using SLPs. In particular, we introduce and describe the second important
property of the recompression: local modifications of the instance so that pair and block
compressions can be performed on the compressed representation directly.

4.1. Straight-Line Programmes

Formally, an SLP is a context-free grammar G over the alphabet � with a set of non-
terminals {X1, . . . , Xk}, generating a one-word language. We denote the string defined
by nonterminal X by val(X), like value. The size of the SLP is the sum of lengths of the
right-hand sides of the rules. Without loss of generality, we may assume that in each
rule there are at most two nonterminals (and arbitrary many letters), as each SLP can

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:19

be transformed to such a form and its size at most doubles during such a transforma-
tion. More formally, we assume that the SLP satisfies the following conditions:

—each Xi has exactly one production, which has at most two nonterminals; (1a)

—if Xj occurs in the rule for Xi, then j < i; and (1b)

—if val(Xi) = ε, then Xi is not on the right-hand side of any production. (1c)

We refer to these conditions collectively as (1). Note that (1) does not exclude the case
when Xi → ε, and allowing such a possibility streamlines the analysis.

SLPs for p and t. For our purposes, it is more convenient to treat the two SLPs for
p and t as a single context-free grammar G. By m, n, we denote the initial sizes of the
SLPs for p and t, respectively. For simplicity, we assume that the set of nonterminals
is {X1, . . . , Xn+m}, the text being given by Xn+m and the pattern by Xm. If the input
SLP has fewer nonterminals, we can always add some dummy ones that are not used
in any production. Additionally, we assume that Xm is not referenced by any other
nonterminal (this simplifies the analysis). The size of G kept by the algorithm will be
small: O((n + m) log(n + m)) (see Lemma 4.10). Recall as well that M and N are the
initial lengths of the pattern and text, respectively.

Letters. During our algorithm, the alphabet � is increased many times, and whenever
this happens, the new letter is assigned number |�| + 1. The |�| does not become large
in this way: it remains of size O((n+m) log(n+m) log M) (see Lemma 4.10). Furthermore,
observe that Lemma 2.2 generalises easily to SLPs; thus, without loss of generality, we
may assume that in each phase � consists of consecutive natural numbers.

Let Xi → αi be a production in G, then a substring u ∈ �+ of αi occurs explicitly in
the rule; this notion is introduced to distinguish them from the substrings of val(Xi).

(Non)crossing occurrences. The outline of the algorithm matches SimpleEqualityTest-
ing; the crucial difference is the way in which we perform the compression of pairs
and blocks when p and t are given as SLPs. Before we investigate this, we need to
understand when the compression (of pairs and blocks) is easy to perform and when it
is hard.

Suppose that we are to compress a pair ab. If b is a first letter of some val(Xi) and
aXi occurs explicitly in the grammar, then the compression seems hard, as it requires
modification of G. Similar problems occur when: a is the last letter of some val(Xj) and
Xjb occurs in G; or Xi Xj occurs in G and val(Xi) ends with a while val(Xj) begins with
b. On the other hand, if none of mentioned situations occur, then replacing all explicit
ab’s in G does the job. This intuition is formalised in the following definition.

Definition 4.1 ((Non)crossing Pairs). Consider a pair ab and its fixed occurrence in
val(Xi), where the rule for Xi is Xi → uXjvXkw (or Xi → uXjv or Xi → u). We say that
this occurrence is

explicit (f orXi) if this ab comes from u, v, or w;
imlicit (f orXi) if this occurrence comes from val(Xj) or val(Xk); and
crossing (f orXi). otherwise.

A pair ab is crossing if it has a crossing occurrence for any Xi; it is noncrossing
otherwise.

Unless explicitly written, we use the notions of crossing and noncrossing pairs only to
pairs of different letters. Note that if ab occurs implicitly in some Xi, then it has an
explicit or crossing occurrence in some Xj for j < i.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:20 A. Jeż

It can be easily shown that a pair ab is crossing if and only if one of the following
conditions hold:

(CP 1) aXi occurs in one of the rules and val(Xi) begins with b;
(CP 2) Xib occurs in one of the rules and val(Xj) ends with a;
(CP 3) Xi Xj occurs in one of the rules, val(Xi) ends with a, and val(Xj) begins with b.

Therefore, when ab is crossing, in some sense it “crosses” between nonterminal and a
neighbouring letter (or a nonterminal).

The notions of (non)crossing pairs is usually not applied to pairs of the form aa;
instead, for a letter a ∈ �, we consider its maximal blocks as defined in earlier sections.

Definition 4.2 ((Non)crossing Blocks). Consider a letter a and an occurrence of a� in
val(Xi), where the rule for Xi is Xi → uXjvXkw (or Xi → uXjv or Xi → u). We say that
this occurrence is

explicit (f orXi) if this a� comes from u, v, or w;
implicit (f orXi) if this occurrence comes from val(Xj) or val(Xk); and
crossing (f orXi) otherwise.

A letter a has a crossing block if some a� has a crossing occurrence in some Xi; a has
no crossing blocks otherwise.

It can be easily shown that a has a crossing block if and only if aa is a crossing pair.
Note that when a has crossing blocks, it might be that some blocks of a are part of

explicit and crossing occurrences at the same time. However, when a has no crossing
blocks, then a maximal explicit block of a is not part of a larger crossing block.

The crossing pairs and letters with crossing blocks are intuitively hard to compress,
whereas noncrossing pairs and letters without crossing blocks are easy to compress.
The good news is that we can give a bound on the number of crossing pairs and blocks
in terms of n, m alone—that is, this bound is independent of the size of the grammar.
This implies that even when we enlarge G during the algorithm, the bound on the
number of crossing pairs is still the same. Note that the lemma allows a slightly more
general form of the grammar, in which blocks a� are represented using a single symbol.
Such a form occurs as an intermediate product of our algorithm, so we need to deal
with it as well.

LEMMA 4.3. Consider a grammar satisfying (1) in which blocks of a letter additionally
can be represented as a single symbol. Let the number of nonterminals of this grammar
be n + m. Then there are at most 2(n + m) different letters with crossing blocks and at
most 4(n + m) different crossing pairs and at most |G| noncrossing pairs. For a letter a,
there are at most |G| + 4(n + m) different lengths of a’s maximal blocks in p and t.

PROOF. Observe that if a has a crossing block, then for some Xi the first or last letter
of val(Xi) is a. Since there are n + m nonterminals, there are at most 2(m+ n) letters
with crossing blocks.

If ab is a crossing pair, then it can be associated with an occurrence of some Xi in the
grammar, as in (CP 1)–(CP 3). Only two different crossing pairs can be associated with
a single occurrence of Xi, as the total number of occurrences of variables in the right-
hand sides is at most 2(n+ m); it follows that there are at most 4(n+ m) occurrences of
a crossing pair, so there are at most 4(n + m) different crossing pairs.

If ab is a noncrossing pair, then ab occurs explicitly in some of the rules of the
grammar, and there are at most |G| such substrings (note that when a� is represented
by one symbol, it still contributes to pairs in the same way as a single a: if we replace
a� with a single a, exactly the same noncrossing pairs occur in the rule).

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:21

The argument for maximal blocks of a is a little more involved. First, consider max-
imal blocks that have an explicit occurrence in the rules of G; for simplicity, let the
nonterminals also count for ending maximal blocks and similarly for the ends of rules.
Then, each letter (or block of letters that are represented as one symbol) is assigned
to at most one maximal block and so there are at most |G| such blocks, so at most |G|
different lengths. Assign other blocks to nonterminals: a crossing block a� is assigned
to Xi with a rule Xi → uXjvXkw (the analysis for Xi → uXjv is similar, and no block
is assigned to Xi when its rule is Xi → u) if a maximal block a� occurs in val(Xi), but
it does not in val(Xj) or in val(Xk)—that is, it has a crossing occurrence for Xi. This
implies that this maximal block contains the first or last letter of val(Xj) or val(Xk), so
there are at most four blocks assigned to this rule, which yields the desired bound of
4(n + m) on the number of such blocks.

4.2. The Algorithm

When the notions of crossing and noncrossing pairs (blocks) are known, we can give
some more detail of EqualityTesting. Similarly to SimpleEqualityTesting, it performs the
compression in phases until one of p, t has only one letter; however, for running time
reasons, it is important to distinguish between compression of noncrossing pairs and
crossing ones (this is not crucial for blocks, as shown later).

ALGORITHM 5: EqualityTesting: outline
1: while |p|, |t| > 1 do
2: P ← list of pairs
3: L ← list of letters
4: for each a ∈ L do
5: compress blocks of a
6: P ′ ← crossing pairs out of P
7: P ← noncrossing pairs out of P
8: for each ab ∈ P do
9: compress pair ab

10: for each ab ∈ P ′ do
11: compress pair ab
12: Output the answer.

As in the case of SimpleEqualityTesting, the length of p and t shorten by a constant
factor in a phase, so there are O(log(min(M, N))) many phases.

LEMMA 4.4. EqualityTesting has O(min(log M, log N)) phases.

The proof is the same as in the case of Lemma 2.3, as EqualityTesting and SimpleEqual-
ityTesting transform p and t in the same way.

4.2.1. Compression of Noncrossing Pairs. We begin with describing the compression of a
noncrossing pair ab, as it is the easiest to explain. Intuitively, when ab is a noncrossing
pair, each of its occurrences in G are implicit or explicit; thus, it should be enough to
compress each explicit occurrence of ab.

ALGORITHM 6: PairCompNcr(ab, c): compression of a noncrossing pair ab
1: for i ← 1 . . m+ n do
2: replace every explicit ab in the rule for Xi by c

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:22 A. Jeż

As in case of SimpleEqualityTesting, the compression of all noncrossing pairs can be
performed in parallel in linear time, using RadixSort to group the occurrences.

To simplify the notation, we use PCab→c(w) to denote w with each ab replaced by c.
Moreover, we say that a procedure implements the pair compression for ab if after its
application the obtained p′ and t′ satisfy p′ = PCab→c(p) and t′ = PCab→c(t).

LEMMA 4.5. When ab is noncrossing, PairCompNcr properly implements the pair
compression.

PROOF. To distinguish between the nonterminals before and after the compression of
ab, we use “primed” nonterminals (i.e., X′

i, for the nonterminals after this compression)
and “unprimed” (i.e., Xi) for the ones before. We show by induction on i that

val(X ′
i) = PCab→c(val(Xi)); (2)

note that PCab→c is well defined, as we assumed that a �= b.
Indeed, (2) holds when the production for Xi has no nonterminal on the right-hand

side, as in this case each pair ab on right-hand side of the production for Xi was replaced
by c and so val(X ′

i) = PCab→c(val(Xi)).
When Xi → uXjvXkw, then

val(Xi) = uval(Xj)v val(Xk)w and
val(X ′

i) = PCab→c(u) val(X′
j)PCab→c(v) val(X′

k)PCab→c(w)

= PCab→c(u)PCab→c(val(Xj))PCab→c(v)PCab→c(val(Xk))PCab→c(w),

with the last equality following by the induction assumption. Notice that since ab is
a noncrossing pair, all occurrences of ab in val(Xi) are contained in u, v, w, val(Xj) or
val(Xk), as otherwise ab is a crossing pair, which contradicts the assumption. Thus,

PCab→c(val(Xi)) = PCab→c(u)PCab→c(val(Xj))PCab→c(v)PCab→c(val(Xk))PCab→c(w),

which shows that PCab→c(val(Xi)) = val(X′
i).

As in the case of SimpleEqualityTesting, the pair compression of all noncrossing
pairs can be effectively implemented, with the help of RadixSort for grouping of the
occurrences.

LEMMA 4.6. The noncrossing pairs compression can be performed in O(|G|) time.

PROOF. We go through the list productions of G. Whenever we spot an explicit pair ab,
we put (a, b, 1, p) in the list of pairs’ occurrences, where 1 indicates that this occurrence
is noncrossing and p is the pointer to the occurrence in G.

It is easy to list the crossing pairs. We begin by calculating for each nonterminal
Xi the first and last letter of val(Xi), which is done in a bottom-up fashion. Then for
each nonterminal Xi occurring in the right-hand side of some rule, we list the crossing
pairs that it creates, as listed in (CP 1)–(CP 3). To be more precise, when a is the first
and b the last letter of val(Xi), we look at the letters preceding and succeeding this
occurrence of Xi (or the last and first letters of nonterminals preceding or succeeding
Xi); let them be a′ and b′. We then create tuples (a′, a, 0, p) and (b, b′, 0, p): the flag 0
indicates that these pairs are crossing and the pointer p is not important, as it is not
going to be used for anything.

Then we sort all of these tuples lexicographically, using RadixSort in O(|G|) time:
by Lemma 4.10, the size of � is polynomial in n + m, so RadixSort sorts the tuples in
O(|G| + n + m) = O(|G|) time. Thus, for each pair, we obtain a list of its occurrences.
Moreover, we can establish in O(|G|) time which pairs are crossing and which are
noncrossing: since 0 < 1, the first occurrence of ab on the list will have 0 on the third
coordinate of the tuple if and only if the pair ab is crossing.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:23

For a fixed noncrossing pair ab, the compression is performed as in the case of
SimpleEqualityTesting(see Lemma 2.4). We go through the associated list and use point-
ers to localise and replace all occurrences of ab. As in SimpleEqualityTesting, if any of the
letters of this occurrence were already compressed, we do nothing. Such the situation
can be easily verified, we simply look at whether the pointed letter is a and the one to
the right in the rule is b, which is done by comparing the occurrence of the pair with
the letters in the tuple representing the pair. For a crossing pair, we do nothing.

The correctness follows in the same way as in Lemma 2.4; it only remains to es-
timate the running time. Since rules of G are organised as lists, the pointers can be
manipulated in constant time, so the whole procedure takes O(|G|) time.

4.2.2. Compression of Crossing Pairs. We intend to reduce the case of crossing pairs
to the case of noncrossing ones—that is, given a crossing pair, we want to “uncross”
it and then compress using the procedure for compression of noncrossing pairs (i.e.,
PairCompNcr). Note that we do not uncross all pairs in one go; instead, we fix the pair,
make it uncrossing, and then compress it.

Let ab be a crossing pair. Suppose that this is because of (CP 1)—that is, aXi occurs
in some rule and val(Xi) = bw for some nonterminal Xi. To remedy this, we “left-pop”
the leading b from Xi: we modify G so that val(Xi) = w and replace each Xi with bXi in
the rules’ bodies. We apply this procedure to each nonterminal in an increasing order.

It turns out that the condition that Xi is to the right of a is not needed; we left-pop b
whenever val(Xi) begins with b. A symmetrical procedure is applied for a letter a and
nonterminals Xi such that val(Xi) = w′a. It can be easily shown that after left-popping
b and right-popping a, the pair ab is no longer crossing; therefore, it can be compressed
using an approach similar to the one in Algorithm 6.

Uncrossing a pair ab works for a fixed pair ab, so it has to be applied to each crossing
pair separately. It would be good to uncross several pairs at the same time. In general,
it seems difficult (or even impossible) to uncross an arbitrary set of pairs at the same
time. Still, parallel uncrossing can be done for group of pairs of a specific form: when we
partition the alphabet � to �� and �r, pairs from ���r can be uncrossed in parallel, as
occurrences of pairs from ���r cannot overlap, moreover, we pop to the left only letters
from �� and to the right only letters from �r, so for each letter we want to perform at
most one pop. Furthermore, using a general construction (based on binary expansion
of numbers), we can find O(log(n + m)) partitions such that each of 4(n + m) crossing
pairs is included in at least one of those partitions.

As a last remark, note that letters should not be popped from Xm and Xn+m. On one
hand, those nonterminals are not used in the rules, so they cannot be used to create a
crossing pair; on the other hand, since they define p and t, we should not apply popping
to them, as this would change the text or pattern. (This is the place in which we use
the assumption that Xm does not occur in the rules’ bodies.)

LEMMA 4.7. If �� and �r are disjoint, after Pop(��,�r) no pair in ���r is crossing.
Furthermore, val(Xm) and val(Xn+m) have not changed.

Pop runs in time O(n + m) and introduces at most 4(n + m) letters to G.

PROOF. Let βi be the string popped from αi to the left—that is, a letter from �r or ε and
similarly γi the string popped to the right. As before, by Xi, αi, and so forth, we denote
the nonterminals, rules, and the like in the input and X ′

i, α′
i, and the like the ones

in the output. We use the term i-th rule (and i-th string) to denote the contemporary
value of the rule for Xi and the derived string. As a first step of the proof, we show the
following by a simple induction on i:

(1) When we have processed the i-th rule, for j > i the j-th string is equal to val(Xi),
i.e. as in the input.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:24 A. Jeż

ALGORITHM 7: Pop(��,�r): popping letters from �� and �r

1: for i ← 1 . . n + m, except m and m+ n do
2: let Xi → αi and b the first letter of αi
3: if b ∈ �r then
 Left-popping
4: remove leading b from αi
5: replace Xi in G’s rules by bXi
6: if αi = ε then
7: remove Xi from rules of G
 Xi is empty
8: else
9: let a be the last letter of αi

10: if a ∈ �� then
 Right-popping
11: remove ending a from αi
12: replace Xi in G’s rules by Xia
13: if αi = ε then
14: remove Xi from rules of G
 Xi is empty

(2) βi �= ε if and only if val(Xi) begins with a letter from �r; additionally, this letter is
βi.

(3) γi �= ε if and only if val(Xi) ends with a letter from ��; additionally, this letter is γi.
(4) val(Xi) = βi val(X′

i)γi.

To see (1), observe that if we remove βi from the front of i-th rule, we also replace Xi
with βi Xi; the same applies to popping letters to the right. In addition, Xi is removed
from the rules if and only if i-th string is ε. To see (2), note that by induction assumption
on (1) before considering i-th rule, the i-th string is val(Xi). Thus, if the i-th rule begins
with a letter, it is the first letter of val(Xi) and we are done (as it is popped). The
remaining case is that the i-th rule begins with a nonterminal, say X′

j . But this means
that we did not pop a letter to the left from the j-th rule when it was considered.
Therefore, by (4), the val(X′

j) and val(Xj) begin with the same letter, which is the same
as the first letter of val(Xi), so it is in �r, which is a contradiction with (2) for Xj . The
same analysis applies to (3) as well. Finally, for (4), note that the i-th string does not
change when we consider j �= i. Thus, the only changes to the i-th rule are done when
the algorithm considers it and the claim is obvious.

Returning to the main claim, we want to show that it is impossible that after Pop
there is a crossing pair (i.e., that one of (CP 1)–(CP 3) holds). Suppose for the sake
of contradiction that (CP 1) holds—that is, for some j < i, the aX′

j occurs in the rule
for X′

i, where val(X′
j) begins with b ∈ �r. By (4), we know that β j val(X′

j)γ j = val(Xj).
Therefore, val(Xj) begins with a letter from �r: if β j is a letter, then it is from �r by
(1), and if not, then we know that val(X′

j) begins with a letter from �r. Then, by (2), we
popped a letter from Xj and so β j is a letter. But then the letter to the left of X′

j is this
β j , and we assume that it is from ��, which is a contradiction, as �� ∩ �r = ∅.

The other cases are shown in the same way.
Concerning the running time, note that we do not need to read the whole G: it is

enough to read the first and last letter in each rule. To perform the replacement, for each
nonterminal Xi we keep a list of pointers to its occurrences so that Xi can be replaced
with aXib in O(1) time, and there are at most 2(n + m) occurrences of nonterminals
in G.

Note that at most two letters are popped from each nonterminal, so at most 4(n+ m)
are introduced to G.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:25

After Pop(��,�r), the pairs ab ∈ ���r are no longer crossing, so we can compress
them. Since such pairs do not overlap, this can be done in parallel in linear time,
similarly as in Lemma 4.6 and in time O(|G|).

The obvious way to compress all crossing pairs is to make a series of partitions
(�(1)

� , �(1)
r), (�(2)

� , �(2)
r), . . . such that each crossing pair is in at least one of those parti-

tions. Since there are 4(n+ m) crossing pairs (see Lemma 4.3), in the naive solution we
would have 4(n + m) partitions. However, we can reduce this number to O(log(n + m)).
Roughly, we make the partitions according to the binary expansion of notations of
letters. For i = 1, . . .
log |�|�, define:

—�
(2i−1)
� = �(2i)

r consist of elements of � that have 0 at the i-th position in the binary
notation (counting from the least significant digit); and

—�(2i−1)
r = �

(2i)
� consist of elements of � that have 1 at the i-th position in the binary

notation.

For a �= b, their binary notations differ at some position, so the pair ab is in some group
�

(j)
� �

(j)
r . Note that ab may be in many �

(j)
� �

(j)
r , but it will be compressed only once

for the smallest possible j. Thus, we define the lists Pj , where we include ab from P ′

(i.e., a crossing pair) in the group Pj when j is the smallest number such that a ∈ �
(j)
�

and b ∈ �
(j)
r . Observe that using standard bit operations, we can calculate the first

position on which a and b differ (and so also j) for ab in constant time. Finally, since
|�| = O((n+ m) log(n+ m) log M) = O((n+ m)3) by Lemma 4.10, we create O(log(n+ m))
partitions for P ′.

ALGORITHM 8: PairComp compressing all crossing pairs
1: find partitions of � into {�(i)

� , �(i)
r }, i ∈ O(log(n + m))
 see earlier discussion

2: partition the crossing pairs into groups P1, P2, . . . , Pi according to partitions of �
3: for j ← 1 . . i do
4: run Pop(�(j)

� , �(j)
r)

5: compress each of the pairs ab ∈ Pj
 Pj is more or less P ′ ∩ �
(j)
� �(j)

r

Concerning the running time of an efficient implementation, we first compute the list
of explicit occurrences of each crossing pair, which is done in linear time using the same
methods as in the case of noncrossing pairs (see Lemma 4.6) and divide those pairs
into groups in linear time as well. For each group Pj , which corresponds to a partition
�

(j)
� , �

(j)
r , we first apply Pop(�(j)

� , �
(j)
r) and then compress all pairs from Pj ; each of those

operations takes linear time. However, Pop creates new explicit occurrences of pairs,
which should also be compressed. Still, we can easily identify those new occurrences
and assign them to appropriate groups. Re-sorting each group before the compression
ensures that we replace the pairs appropriately.

LEMMA 4.8. The PairComp properly compresses all crossing pairs. It runs in O(|G| +
(n + m) log(n + m)) time. It introduces O(log(n + m)) letters to each rule.

PROOF. The sorted list of all occurrences of each crossing pair is obtained as a by-
product of creation of a similar list for noncrossing pairs (see Lemma 4.6). Each pair
ab is assigned to the appropriate group Pj (according to the partition for �

(j)
� , �

(j)
r) in

constant time: we just need to find the first bit on which a and b differ, which can be
done in constant time using standard operations on machine words.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:26 A. Jeż

We analyse the processing of a single group Pj ; by pj, we denote its initial size and
by p′

j its size when it is processed. By induction on the number of the group (j), we
show the following claim:

(P 1) Compression of pairs from one group Pj—that is, lines 4 and 5—is done in time
O(p′

j + n + m).

First, by Lemma 4.7, the application of Pop(�(j)
� , �

(j)
r) takes time O(n + m), and

afterward the pairs from Pj are noncrossing. Note that Pop(�(j)
� , �

(j)
r) introduces new

explicit pairs to G: when we replace Xi by bXi and a is a letter to the left of Xj , a new
explicit pair ab occurs. In constant time, we can decide to which Pj ′ this pair should
belong. We simply add it an appropriate tuple (a, b, 1, p) to the list Pj ′ (which makes
the list Pj ′ unsorted). There two remarks: first, by inductive assumption on (P 1), all
occurrences of pairs from Pj ′′ for j ′′ < j were already replaced. Thus, if j ′ > j, then
this pair should not be compressed at all (it is not one of the crossing pairs). Hence,
we can focus on j ′ ≥ j, in which case the newly introduced pairs will be handled later.
Second, we do not know in advance whether the pair ab is one of the crossing pairs
added initially to Pj or whether it was added later on and should not be compressed.
To remedy this, each element Pj stores information as well, whether it was a crossing
pair or perhaps was added later on; those are used to decide whether ab should be
compressed at all, as described later.

Now, since we cannot assume that the records in the list Pj are sorted or even that
they should be compressed at all (as we might have added some pairs to Pj when
considering Pj ′ for j ′ < j), we sort them again using RadixSort, ignoring the coordinate
for the pointers; furthermore, we add another coordinate, which is 0 for original crossing
pairs and 1 for those introduced due to recompression. The sorting can be done in time
O(p′

j + n + m): there are p′
j elements, and by Lemma 4.10 the size of � is at most

O((n + m)3).
Now, as the list of occurrences of pairs are sorted, we can cut it into several lists, each

consisting of occurrences of a fixed pair. Going through one list, say for a pair ab, we first
check whether the first occurrence is an original crossing pair; if not, then we do not
compress occurrences of this pair at all (as this pair is not one of the original crossing
pairs). If it is an original crossing pair, we replace the listed occurrences of ab (if they
are still there) in O(p′

j) time: since we replace occurrences of one fixed pair, we always
replace by the same (fresh) letter and do not need to use any dictionary operations to
look up the appropriate letter. Clearly, this procedure properly implements the pair
compression for a single pair ab and thus also for all pairs in Pj (note that pairs in Pj
cannot overlap). This ends the inductive proof of (P 1).

The running time of the whole loop 3 is at most (for some constant c)

i∑
j=1

c(p′
j + n + m) = c(n + m)i + c

i∑
j=1

p′
j

= O((n + m) log(n + m)) + c
i∑

j=1

p′
j .

Initially, each element of
⋃i

j=1 pj corresponds to some occurrence of a (crossing) pair in
G, and there are only |G| + 4(n+ m) such occurrences by Lemma 4.3. Hence,

∑i
j=1 pj =

|G| + 4(n + m). The difference p′
j − pj is the number of pairs introduced to Pj by Pop.

Still, there are at most 4(n + m) pairs added by one run of Pop(see Lemma 4.7), and

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:27

hence in total there are only 4i(n + m) pairs introduced in this way (as in total there
are i groups). Hence,

i∑
j=1

p′
j ≤

i∑
j=1

pj

︸ ︷︷ ︸
original occurrences of crossing pairs

+
i∑

j=1

(p′
j − pj)

︸ ︷︷ ︸
occurrences introduced by Pop

≤ (|G| + 4(n + m)
) + 4i(n + m)

= O(|G| + (n + m) log(n + m)).

Thus, the total running time is O((n + m) log(n + m) + |G|), and at most O(log(n + m))
symbols are introduced into a rule.

4.3. Blocks Compression

We now turn our attention to the block compression. Suppose first that G has no letters
with a crossing block. Then a procedure similar to the one compressing noncrossing
pairs can be performed: when reading G, we establish all maximal blocks of letters. We
group these occurrences according to the letter—that is, for each letter a, we create a
list of a’s maximal blocks in G and sort this list according to the lengths of the blocks.
We go through the list and replace each occurrence of a� by a fresh letter a�.

However, usually there are letters with crossing blocks. We deal with this similarly
as in the case of crossing pairs: recall that a letter a has a crossing block if and only if
aa is a crossing pair. Thus, suppose that aa is a crossing pair because of (CP 1)—that
is, aXi occurs in a rule and the first letter of val(Xi) is a. In such a case, we left-pop a
letter from Xi. In general, this does not solve the problem, as it may happen that still
a is the first letter of val(Xi) (and clearly aXi still occurs in the rule). So we keep on
left-popping until the first letter in val(Xi) is not a (this includes val(Xi) = ε). In other
words, we remove the a-prefix of val(Xi). A symmetrical procedure is applied to Xj such
that a is the last letter of val(Xj) and Xja occurs in a rule.

As in the case of pairs, it turns out that even a simplified approach works: for each
nonterminal Xi, where the first letter of val(Xi) is a and the last letter of val(Xi) is b,
it is enough to pop its a-prefix and b-suffix (see RemCrBlocks).

Observe that during the procedure, long blocks of a (up to 2n+m) may be explicitly
written in the rules. This is conveniently represented: a� is simply denoted as (a, �),
with � encoded in binary. When � fits in one code word, a� representation is still of
constant size and everything works smoothly. For simplicity, for now we consider only
this case; the general case (in which we assume only that n + m fits in O(1) machine
words) is treated in Section 6.

After RemCrBlocks, every letter a has no crossing blocks, and we may compress
maximal blocks using the already described method.

LEMMA 4.9. After RemCrBlocks, there are no crossing blocks. This algorithm and
following block compression can be performed in time O(|G| + (m + n) log(m + n)).
Together, they introduce at most four new letters to each rule.

PROOF. We first show the first claim of the lemma—that is, that after RemCrBlocks
there are no letters with crossing blocks. This follows from the following observations:

(1) When Xi is processed by RemCrBlocks, val(Xj) for j �= i is not changed.
(2) When RemCrBlocks considers Xi with a rule Xi → αi such that val(Xi) = a�wbr,

where w does not start with a and does not end with b and �, r > 0, then αi has an
explicit a� prefix and explicit br suffix. If val(Xi) = a�, then αi = a�.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:28 A. Jeż

ALGORITHM 9: RemCrBlocks: removing crossing blocks
1: for i ← 1 . . m+ n, except m and n + m do
2: let Xi → αi be the production for Xi and a its first letter
3: calculate and remove the a-prefix a�i of αi
4: replace each Xi in rule’s bodies by a�i Xi
5: if val(Xi) = ε then
6: remove Xi from the rules’ bodies
7: else
8: let b be the last letter of αi
9: calculate and remove the b-suffix bri of αi

10: replace each Xi in rule’s bodies by Xibri

11: if val(Xi) = ε then
12: remove Xi from the rules’ bodies

(3) When RemCrBlocks replaces Xi with a�i Xibri , then afterward the only letter to the
right of Xi in the rules is b; similarly, the only letter to the left is a.

(4) After RemCrBlocks considered Xi, and Xi is to the right (left) of a, then a is not the
first (last, respectively) letter of val(Xi).

As in Lemma 4.7, all properties follow by a simple induction on the number i of the
considered nonterminal.

We infer from these observations that after RemCrBlocks, there are no crossing
blocks in G. Suppose for the sake of contradiction that there are; let a be the letter that
has a crossing block. We consider only the case of (CP 1)—that is, when there is Xj
such that aXj occurs in some rule and val(Xj) begins with a. Note that by observation
(2) when RemCrBlocks considered Xj, it replaced it with b�Xjcr for some letters b and
c. By observation (3), the letter to the left of Xj in the rule for Xi is not changed by
RemCrBlocks afterward (except that it can be popped when considering some other
nonterminal); hence, b = a. Finally, by observation (4), the first letter of val(Xj) is not
b = a, which is a contradiction.

RemCrBlocks is performed in O(|G|) time: we represent block a� as a pair (a, �), then
the length of the a-prefix (b-suffix) is calculated simply by reading the rule until a
different letter is read (note that the lengths of the blocks fit in one machine word).
Since there are at most four symbols introduced by RemCrBlocks to the rule, this takes
O(|G| + n+ m) time. The replacement of Xi by a�i Xibri is done at most twice inside one
rule and therefore takes in total O(n + m) time.

Note that right after RemCrBlocks, it might be that there are neighbouring blocks
of the same letter in the rules of G. However, we can easily replace such neighbouring
blocks by one block of appropriate length in one reading of G in time O(|G|).

Concerning the compression of the blocks of letters, we adapt the block compres-
sion from SimpleEqualityTesting(see Lemma 2.4). This is done similarly to the way in
which we adapted the compression of noncrossing pairs from SimpleEqualityTesting(see
Lemma 4.6). For the sake of completeness, we present a sketch. We read the description
of G. Whenever we spot a maximal block a� for some letter a, we add a triple (a, �, p)
to the list, where p is the pointer to this occurrence of the block in G. Notice that as
there are no crossing blocks, the nonterminals (and end or rules) count for termination
of maximal blocks.

After reading the whole G, we sort these pairs lexicographically. However, separately,
we sort the blocks that include the a-prefixes (or b-suffixes) popped from nonterminals
and the other blocks. In total, we popped at most 4(n + m) prefixes and suffixes, so
there are at most 4(n + m) blocks of the former form, and thus we can sort their
tuples in O((n + m) log(n + m)) time using any usual sorting algorithm of guaranteed

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:29

O(n log n) running time. The remaining blocks are sorted using RadixSort in linear time:
note that each of those blocks cannot have length greater than |G|, as they consist
only of explicit letters that were present in G before RemCrBlocks. Furthermore, as
� = O((n+m) log M log(n+m)) = O((n+m)3), those tuples can be sorted in O(|G|+n+m)
time. Finally, we can merge those two lists in O(|G| + n + m) time.

Now, for a fixed letter a, we use the pointers to localise a’s blocks in the rules and
replace each of its maximal block of length � > 1 by a fresh letter. Since the blocks of
a are sorted according to their length, all blocks of the same length are consecutive on
the list; therefore, replacing them by the same letter is done easily.

Since we already know that there are no letters with a crossing block, we can show,
as in Lemma 4.6, that this procedure implements the block compression. The simple
proof, which is essentially the same as the proof in Lemma 4.6, is omitted.

4.4. Grammar and Alphabet Sizes

The subroutines of FCPM run in time that depends on |G| and |�|; we bound these
sizes.

LEMMA 4.10. During FCPM, |G| = O((n + m) log(n + m)) and |�| = O((n + m) log(n +
m) log |M|).
The proof is straightforward. Using an argument similar to Lemma 2.3, we show
that the size of the words that were in a rule at the beginning of the phase shorten
by a constant factor (in this phase). On the other hand, only Pop and RemCrBlocks
introduce new letters to the rules, and it can be estimated that in total they introduced
O(log(n + m)) letters to a rule in each phase. Thus, bound O(log(n + m)) on each rules’
length holds. Concerning |�|, new letters occur as a result of a compression. Since each
compression decreases the size of |G| by at least 1, there are no more than |G| of them
in a phase, which yields the bound.

PROOF. We begin by showing the bound on |G|. Consider a rule of G. On one hand, its
size drops as we compress letters in it. On the other, some new letters are introduced
to the rule by popping them from nonterminals. We estimate both influences.

Observe that the main claim of Lemma 2.3 (about two consecutive letters) applies to
the bodies of the rules, so an argument similar to the one in the proof of Lemma 2.3
can be used to show that the length of the explicit strings that were in the rules at the
beginning of the phase decreases by a constant factor in each phase. To be more precise,
if the rule had k letters, it is shortened by at least k−3

3 letters (the “−3” represents that
there are at most three substrings separated by nonterminals and the last letter in the
rule, and the last letter in those substring may be uncompressed). Since there are at
most n+mrules and the sum of lengths of strings in them is at least G−2(n+m), in one
phase the length of strings in G is reduced by at least |G|−5(n+m)

3 . Of course, the newly
introduced letters may be unaffected by this compression. By routine calculations, if
O((n+m) log(n+m)) letters are introduced to G, the |G| is also O((n+m) log(n+m)) (with
a larger constant, however). Hence, it is left to show that O((n + m) log(n + m)) letters
are introduced to G in one phase. We do not count the letters that merely replaced
some other letters (as a compression of maximal block or a pair compression), but only
the letters that were popped into the rules.

In noncrossing pair compression, there are no new letters introduced. Concerning
the crossing pairs compression, by Lemma 4.8 this introduces at most O(log(n + m))
letters to a rule, which is fine. When RemCrBlocks is applied, it introduces at most four
new symbols into a rule (see Lemma 4.9). In total, this gives O(log(n + m)) letters per
rule, so O((n + m) log(n + m)) letters in total.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:30 A. Jeż

Concerning the alphabet, the time used in one phase is O((n + m) log(n + m) + |G|),
which is O((n+ m) log(n+ m)). Thus, no more than this amount of letters is introduced
in one phase. Lemma 2.3 guarantees that there are O(log(min(M, N))) phases, so a
bound O((n + m) log(min(M, N)) log(n + m)) on |�| follows.

Main result.

THEOREM 4.11. EqualityTesting correctly verifies the equality of two strings defined by
SLPs. It runs in time O((n + m) log(min(M, N)) log(n + m)), where n + m is the sum of
sizes of the SLPs and M, N are lengths of those strings. It uses O((n + m) log(n + m))
space (counted in machine words).

The bounds in the theorem are shown under the assumption that M, N fit in the
machine word; those assumption are relaxed in Section 6 (see proof of Theorem 1.1
there).

PROOF. The cost of one phase of EqualityTesting is O(|G|+(n+m)+(m+n) log(n+m)), by
Lemmata 4.6, 4.8, and 4.9, whereas Lemma 4.10 shows that |G| = O((n+ m) log(n+ m))
and Lemma 2.3 shows that there are O(log(min(M, N))) phases. Thus, the total running
time is O((n + m) log(min(M, N)) log(n + m)).

EqualityTesting uses memory proportional to the size of grammar representation, so
O((n + m) log(n + m)).

The correctness follows as in Lemma 2.1.

5. PATTERN MATCHING

In Section 3, we showed how to perform the pattern matching using recompression
on explicit strings. In this section, we extend this method to the case in which p and
t are given as SLPs. Note that most of the tools are already known: on one hand,
in Section 4 it was shown how to perform the equality testing when both p and t are
given as SLPs; on the other hand, in Section 3 it was shown that extending the equality
testing algorithm to pattern matching algorithm boils down to fixing the beginning and
ends. We already know the appropriate procedures FixEndsDifferent and FixEndsSame.
Therefore, we need to focus only on the efficient implementations of FixEndsDifferent
and FixEndsSame in the compressed setting, as other operations are used already in
EqualityTesting.

The outline of the algorithm is similar to the variant for explicit pattern (see
SimplePatternMatching). In the rest of the section, we comment on the implementa-
tion details and running time.

ALGORITHM 10: FCPM: outline
1: while |p| > 1 do
2: P ← list of pairs
3: L ← list of letters
4: fix the beginning and end
 See Section 3
5: for each a ∈ L do
6: compress blocks of a
7: P ′ ← crossing pairs from P
8: P ← noncrossing pairs from P
9: for each ab ∈ P do

10: compress pair ab
11: for ab ∈ P ′ do
12: compress pair ab
13: Output the answer.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:31

Fixing of beginning and end. The first operation in the FCPM is the fixing of the
beginning and end, which adapts FixEndsSame and FixEndsDifferent to the compressed
setting.

LEMMA 5.1. The fixing of beginning and end for an SLP represented as p and t can
be performed in O(|G| + (n+ m) log(n+ m)) time. It introduces O(n+ m) new letters to G.

PROOF. To see this, we look at the operations performed by FixEndsSame (the ones
for FixEndsDifferent are even simpler) and comment on how to perform them efficiently
in the compressed setting. First, in linear time, we can find out the first and last letter
of pto see whether FixEndsDifferent or FixEndsSame should be applied; suppose the
latter. Now, FixEndsSame performs a (modified) block compression; the only difference
is that we compress only blocks of a and replace them not by a single letter but by up
to three letters. To this end, we apply a modified RemCrBlocks, which removes only
a-prefixes and a-suffixes; using the same argument as in Lemma 4.9, it can be shown
that after the modified removal of prefixes and suffixes, there are no crossing a blocks.
Afterward, we compress blocks of a. The running time bounds O(|G|+ (n+m) log(n+m))
(see Lemma 4.9) are preserved. Furthermore, by the same lemma O(n+ m) new letters
are introduced to G.

The next operation in FixEndsSame is the compression of pairs of the form {aLb | b ∈
� \ aL}, then {baR | b ∈ � \ aR} (and then perhaps also {a1b | b ∈ � \ a1}). In each case,
the pairs are obtained by partitioning the alphabet into �� and �r (where one of the
parts is a singleton); in the following discussion, we focus on the pairs of the form
{aLb | b ∈ � \ aL}, in which case �� = {aL} and �r = � \ {aL}. Thus, by Lemma 4.7,
one such group can be uncrossed in O(n+ m) time; the uncrossing introduces O(n+ m)
letters to G. Afterward, we can compress pairs from this partition in O(|G| + n + m)
time, similarly as in PairComp(see Lemma 4.8): we read G, listing all explicit pairs
in which the first letter is aL. Then, we sort them using RadixSort and replace their
occurrences. This clearly takes O(|G| + n + m) time.

The rest of the operations on G (pair compression, block compression) are imple-
mented as in Section 4 and have the same running time.

We now move to the analysis of FCPM. We show that FCPM preserves the crucial
important property of EqualityTesting: that |p| decreases by a constant factor in each
phase and that |G| = O((n + m) log(n + m)) as well as |�| = O((n + m) log(n + m) log M).

LEMMA 5.2. In each phase, the FCPM shortens p by a constant factor. The size of G is
O((n + m) log(n + m)), whereas the size of � is O((n + m) log(n + m) log M).

PROOF. Observe that FCPM performs the same operations on p as SimplePattern-
Matching, but it only does it on the compressed representation. Thus, it follows from
Lemma 3.5 that both p and t are shortened by a constant factor in one phase of FCPM.

Concerning the size of the grammar, a similar argument as in Lemma 4.10 applies.
Note that as in EqualityTesting, the FCPM introduces O((n + m) log(n + m)) letters per
phase into G: it uses the same operations as SimpleEqualityTesting as well as the fixing
of beginning and end, which introduce O(n + m) letters per phase by Lemma 5.1. On
the other hand, the analysis performed in Lemma 3.5 (that SimplePatternMatching
shortens p) applies to each substring of p and t, so each explicit string in the rules
of G is shortened during the phase by a constant factor (i.e., the same as in Lemma
4.10). Hence, the size of G kept by FCPM can be also bounded by O((n+ m) log(n+ m)).
Consequently, also |�| = O((n + m) log(n + m) log M).

This is enough to show the running time and correctness of FCPM.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:32 A. Jeż

THEOREM 5.3. FCPM runs in O((n+ m) log(n+ m) log M) time and returns a represen-
tation of all pattern occurrences in text.

Observe that as the proof of Lemma 4.9 assumes that N and M fit in O(1) machine
words, the same assumption applies here. This assumption is lifted in Section 6, so the
proof there shows the same result without this assumption.

PROOF. Lemma 5.2 implies that FCPM runs in O((n + m) log(n + m) log M) time:
each subprocedure runs in time O(|G| + (n + m) log(n + m)) = O((n + m) log(n + m)),
so this is the running time of one phase as well. Since the pattern is shortened by
a constant factor in each phase (see Lemma 5.2), there are O(log M) many phases.
The correctness (returning representation of all pattern occurrence) follows from the
correctness of SimplePatternMatching (as the performed operations are the same, just
the representation of p and t is different).

Occurrences and their positions. When p was reduced into a single letter, say c,
then there are two possibilities: if the last compression applied on the pattern was
a pair compression, then each occurrence of c in t corresponds to one occurrence of
original pattern in the original text. Note that t is given by a grammar G, which is of
size O((n + m) log(n + m)) (in the next section, we show a bound O(n + m)). The other
possibility is that the last compression was a-block compression. If the pattern is a
letter a�, then each occurrence of a letter am in t (for m ≥ �) corresponds to m− � + 1
occurrences of the original pattern in the original text.

Recall the notion of weight. For a letter, it is the length of the corresponding substring
in the input string; every letter in that instance has a positive integer weight. When N
fits in a constant amount of code words, the weight of each letter can be calculated in
constant time, so we store the weights of the letters on the fly in a table. To calculate
the position of the first pattern occurrence, it is enough to calculate the weight of the
string preceding it. To this end, we keep up-to-date table of weights of val(Xi) for each
Xi. To return the first position of a pattern occurrence, we determine the derivation
path for this occurrence and sum up the weights of nonterminals and letters that are
to the left of this derivation path; this is easy to perform in time linear in O(|G|).

Note that there is a small technical issue: in one special case, we remove the first
letter from twhen it is aR. However, w(aR) = 0, so it does not influence anything.

This approach can be extended to return a position of an arbitrary occurrence of the
pattern. To this end, for each nonterminal, we also store the number of occurrences
of the pattern that it derives. This is easy to built in a bottom-up fashion as soon as
the pattern is equal to ak for some k ≥ 1. Then, in O(|G|) time, we can also find this
particular occurrence of the pattern in text.

6. IMPROVING THE RUNNING TIME

To reduce the running time to O((n+m) log M), we need to make sure that the grammar
size is O(n + m) and improve the running time of block compression (see Lemma 4.9)
so that it is O(|G|), without the extra (n + m) log(n + m) summand. For the former, the
argument in Lemma 4.10 (and its adaptation in Lemma 5.2) guarantees this size as
long as there are only O(n + m) letters introduced to G in a phase. The crossing blocks
compression, as well as fixing the beginning and end, already possesses this property
(see Lemma 4.9 and Lemma 5.1), so it is enough to alter the crossing pairs compression.

We show that it is enough to consider O(1) partitions ��,�r and pairs that fall into
them. Roughly, we choose a partition such that a constant fraction of crossing pairs
occurrences in p fall into this partition. In particular, for each crossing pair ab, we
calculate the number of its occurrences in p. This requires that we can manipulate

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:33

numbers of size M in constant time—that is, this construction requires that M fits in
O(1) machine words.

For the block compression, we improve the sorting time: we group block lengths into
groups of similar lengths and sort one such group in linear time using RadixSort. The
groups are also established using RadixSort performed on representatives of groups.
The latter sorting treats numbers as a bit string and therefore may have high running
time, but we show that overall it cannot exceed O((n + m) log M) during the whole
FCPM.

6.1. Faster Compression of Crossing Pairs

For a given partition ��,�r, we say that it covers the occurrences of ab ∈ ���r in p. The
main idea of improving the running time of the crossing pairs is quite simple: instead
of considering O(log(n + m)) partitions such that each crossing pair from P ′ is covered
by at least one of them, we consider only one partition ��,�r such that at least one
fourth of occurrences of crossing pairs in p are covered by it. Then, estimations about
shortening of the pattern in one phase hold as before, although with a larger constant.

Existence of such a partition can be shown by a simple probabilistic argument:
if we assign each letter to �� with probability 1/2, then a fixed occurrences of ab
in p is covered with probability 1/4. The standard expected value derandomisation
technique gives a deterministic algorithm finding such a partition, and it can easily be
implemented in O(|G|) time (see Lemma 6.2).

It is not guaranteed that this partition shortens |G| as well; however, we can use
exactly the same approach to shorten G: we find another partition ���r such that at
least one fourth of crossing pairs expliciting occurrences in G are from this partition.

Our to-be-presented algorithm constructing a partition requires a list of all crossing
pairs together with the number of their occurrences in p. This can be supplied using
a simple linear-time algorithm: for each nonterminal Xi, we calculate the amount ki
of substrings val(Xi) that it generates in p. We associate an occurrence of ab with the
least nonterminal that generates it. Then the number of all occurrences of ab can be
calculated by summing the appropriate ki ’s.

LEMMA 6.1. Assuming that M fits in O(1) code words, in O(|G| + n+ m) we can return
a sorted list of crossing pairs together with number of their occurrences in p as well as
links to these occurrences.

PROOF. Clearly, km = 1 (as Xm simply generates the whole p), and other numbers
satisfy a simple recursive formula:

kj =
∑
i> j

ki · #{number of times Xj occurs in the rule for Xi}. (3)

Then, (3) can be used in a simple linear-time procedure for calculation of k′s: for i =
m.. 1, we add ki to kj when Xj occurs in the rule for Xi (we add twice if there are two
such occurrences). Clearly, this can be implemented in O(m) time.

Concerning the number of occurrences of crossing pairs, observe that each occurrence
of ab in p can be assigned to a unique rule Xi → αi: this is the rule that generates
this particular occurrence of ab; moreover, this occurrence of ab comes from an explicit
occurrence of ab in αi or a crossing occurrence of ab in this rule. To see this, imagine
that we try to retrace the generation of this particular ab. Given Xi generating this
occurrence of ab (we start with Xm, as we know that it generates this ab), we check if it
is generated by nonterminal Xj in the rule. If so, we replace Xi with Xj and iterate the
process. If not, then this ab is comes from either an explicit or crossing pair in this Xi.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:34 A. Jeż

Given a rule for Xi, listing all pairs that occur explicitly or have a crossing occur-
rence in the rule for Xi is easy; we only need to know the first and last letter of each
nonterminal. Then, for each such pair ab, we create a tuple (a, b, ki, p) (where ki is
the number of substrings that Xi generates and p the pointer to this occurrence in
the rule). We sort the tuples using RadixSort, ignoring the two last coordinates, which
takes O(|G| + n+ m) time: there are |G| + n+ m such tuples by Lemma 4.3, and letters
have value at most O((n + m) log(n + m) log M) = O((n + m)3) by Lemma 4.10.

Now, for a given pair ab, the tuples with the number of its occurrences are listed
consecutively on the list, so for each pair we can add those numbers and obtain the
desired (sorted) list of pairs with numbers of their occurrences in G; this also takes
linear time, since the list is of this length.

This list includes both crossing and noncrossing pairs. We use the same procedure as
in Lemma 4.6 to establish the crossing and noncrossing pairs. Note that it generated a
sorted list of crossing (and noncrossing) pairs; this takes O(|G| + n + m) time. Without
loss of generality, the order on those lists is the same as on our list, so we can filter from
it only crossing pairs in time linear in the size of the lists—that is, O(|G| + n + m).

In the following discussion, for a crossing pair ab, we shall denote by kab the number
of its occurrences in p, calculated in Lemma 6.1.

Now we are ready to find the partition covering at least one fourth of the occur-
rences of crossing pairs. This is done by a derandomisation of a probabilistic argument
mentioned at the beginning of this section.

LEMMA 6.2. For p in O(|G| + n+ m) time, we can find a partition of � into ��, �r such
that the number of occurrences of crossing pairs in p covered by this partition is at least
one fourth of all such occurrences in p. In the same running time, we can provide for
each covered crossing ab a lists of pointers to its explicit occurrences in G.

PROOF. The partition shall be represented by two bit vectors of size |�|: the first keeps
the letters in �� and the second in �r. When such bit vectors are known, obtaining the
list of pointers to occurrences of covered ab is easy: using Lemma 6.1, we create a sorted
list of occurrences of pairs in G. We read the list for each ab on this list that we check
whether ab ∈ ���r (which can be done in O(1) using the bit vectors). If so, nothing
happens; if not, we remove the pair from the list. In the following discussion, we shall
consider only the problem of finding the promised partition.

Observe that the problem of finding such a partition reduces to the problem of finding
a Max-Cut in a directed weighted graph: for the reduction, we create a node for each
letter and put an edge from a to b with weight k if there are k occurrences of pair ab.
It is easy to see that a (directed) cut of weight w corresponds to a partition of letters
covering exactly k occurrences of pairs (and vice versa). The rest of the the proof recalls
the standard construction [Mitzenmacher and Upfal 2005, Section 6.3] in terminology
used in the article.

First, observe that the probabilistic argument given before the lemma can be altered:
if we were to count the number of pairs that are covered either by ���r or �r��, then
the expected number of crossing pairs occurrences covered by ���r ∪ �r�� is one half.

The deterministic construction of such a partition follows by a simple derandomisa-
tion, using an expected value approach. It is easier to first find a partition such that
at least half of crossing pairs occurrences in p are covered by ���r ∪ �r�� and then
choose ���r or �r��, depending on which of them covers more occurrences.

According to Lemma 6.1, we assume that we are given a sorted list P ′, on which we
have all crossing pairs together with the number kab of their occurrences in p.

Suppose that we have already assigned some letters to �� and �r and that we are to
decide where the next letter a is assigned. If it is assigned to ��, then all occurrences

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:35

of pairs from a�� ∪ ��a are not going to be covered, whereas occurrences of pairs from
a�r ∪ �ra are; similarly, observation holds for a being assigned to �r. The algorithm
makes a greedy choice, maximising the number of covered pairs in each step. As there
are only two options, the choice brings in at least half of the occurrences considered.
Finally, as each occurrence of a pair ab from p is considered exactly once (i.e., when the
second of a, b is considered in the main loop), this procedure guarantees that at least
half of the occurrences of crossing pairs in p are covered.

To make the selection effective, the algorithm GreedyPairs keeps counters count�[a]
and countr[a], denoting, respectively, the number of occurrences of pairs from a�� ∪��a
and a�r ∪ �ra in p. Those counters are updated as soon as a letter is assigned to �� or
�r—that is, when one of ��, �r is increased. Note that as by Lemma 2.2 we can assume
that letters in p are from an interval of consecutive |G| letters, the counters can be
organised as a table with constant access time to count�[a] and countr[a].

ALGORITHM 11: GreedyPairs
1: L ← set of letters used in P ′

2: �� ← �r ← ∅
 Organised as bit vectors
3: for a ∈ L do
4: count�[a] ← countr[a] ← 0
 Initialisation
5: for a ∈ L do
6: if countr[a] ≥ count�[a] then
 Choose the one that guarantees larger cover
7: choice ← �
8: else
9: choice ← r

10: �choice ← �choice ∪ {a}
11: for each b ∈ L do
12: countchoice[b] ← countchoice[b] + kab + kba
 Update counters
13: if # occurrences of pairs from �r�� in p> # occurrences of pairs from ���r in p then
14: switch �r and ��

15: return (��, �r)

By the preceding argument, when � is partitioned into �� and �r, at least half of the
occurrences of pairs from p are covered by ���r ∪ �r��. Then one of the choices ���r
or �r�� covers at least one fourth of the occurrences.

It is left to give an efficient variant of GreedyPairs; the nonobvious operations are the
choice of the actual partition in line 14 and the updating of count�[b] or countr[b] in line
12. All other operations clearly take O(|G| + n+ m) time. The latter is simple: since ��

and �r are organised as a bit vector, we can read P ′; for each pair ab in it, check if it
is covered by ���r or �r�� (or by none of them) by verifying whether a ∈ �� or a ∈ �r
and similarly b ∈ �� or b ∈ �r. In this way, we can calculate the total number of pairs
occurrences covered by each of those two partitions and choose the larger one.

To implement the count, for each letter a in p we have a table right of right lists:
right[a] = {(b, kab) | ab occurs in P ′}, represented as a list. There is a similar left list:
left[a] = {(b, kba) | ba occurs in P ′}. Since at the input we get a sorted list of all pairs ab
together with kab, creation of right[a] can be easily done in in linear time (and similarly
left[a]).

Given right and left, performing the update in line 12 is easy (suppose that we are to
update count�): we go through right[a] (left[a]). When we spot (b, kab) (or (b, kba), respec-
tively), we increase the count�[b] by kab (kba, respectively). As right, left and count are
organised as tables; this takes O(1) time per read element of right[a] (left[a]). We can
then discard right[a] (left[a]), as they are not going to be used again. In this way, each

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:36 A. Jeż

of the list right[a] (left[a]) is read O(1) times during GreedyPairs, so this time is at most
as much as the time of their creation—that is, O(|G| + n + m).

A similar construction works when we want to calculate the partition that covers one
fourth of occurrences of crossing pairs in G: when calculating the number of occurrences
of pair ab, it is enough to drop the coefficient ki for occurring in the rule Xi and
take one for every rule. The rest of the construction and proofs are the same as in
Lemma 6.2.

LEMMA 6.3. In O(|G| + n+ m) time, we can find a partition of � into ��, �r such that
the number of occurrences of crossing pairs in G covered by this partition is at least one
fourth of all such occurrences in G. In the same running time, we can provide for each
covered crossing ab a lists of pointers to its explicit occurrences in G.

Thus, the modification of FCPM is as follows. After establishing the list of all crossing
pairs, we find two partitions ��,�r, �′

�, �
′
r, one of which covers one fourth of occurrences

of crossing pairs in the pattern the other in G. Then, instead of compressing all crossing
pairs, we compress only those covered by the first and then the second partition. Each
of those compressions requires only one call to Pop, so there are only O(1) letters
introduced to a rule during the crossing pairs compression.

LEMMA 6.4. FCPM using the modified crossing pair compression subprocedure intro-
duces O(1) letters to a rule in one phase.

It is left to estimate that indeed this modified compression schema shortens |p| and
|G| by a constant factor in a phase. The former will guarantee the O(log M) number of
phases and the latter an upper bound O(n + m) on the size of G.

LEMMA 6.5. FCPM using the modified crossing pair subprocedure keeps the size of the
grammar O(n + m) and has O(log M) phases.

PROOF. Let us consider the simpler case of EqualityTesting. First, consider the length
of p; we show that it is reduced by a constant factor in a phase. Consider two consecutive
letters ab in p. Observe that if EqualityTesting tried to compress ab (when a = b, this
means that a blocks were compressed), then at least one of those letters is compressed
in the phase: we tried to compress this ab, and the only reason we could fail is because
one of those letters was already compressed by some earlier compression. We want to
show that for at least 1/4 of occurrences of pairs, we tried to compress this occurrence.
Thus, at least 1/8 of all letters were compressed, so the length of p dropped by at least
1/16 in a phase.

If a = b, then we compressed them during the blocks compression. If a �= b and ab
was noncrossing, then we tried to compress them. Finally, when a �= b and ab was
a crossing pair, then we chose a partition ���r such that at least one fourth of all
occurrences of crossing pairs were covered by this partition. So for one in four of such
occurrences, we tried to compress it. In total, for at least one fourth of occurrences of
ab′s, we tried to compress them, as claimed.

A similar analysis yields that we reduced the length of |G| (excluding the new intro-
duced letters) by 15/16. Since we introduce only O(n + m) new letters to G per phase,
the size of G remains O(n + m), which is shown in Lemma 4.10.

Now, in the general case of FCPM, we combine this analysis with the one in
Lemma 3.5. We define the fragments of more than one letter as in Lemma 3.5—that is,
the letters that were replaced during the compression are grouped so that one group
(fragment) is replaced with a shorter string. The letters that were not altered are not
assigned to any fragments.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:37

Similarly as in the earlier argument for EqualityTesting, we want to show that for at
least one fourth of all pairs of consecutive letters, one of those letters was assigned to
a fragment. Since fragments are replaced with strings of at most three fourths their
length, as earlier, this shows that p is shortened by a constant factor. To show that at
least one of ab is in a fragment, it is again enough to show that we tried to compress
ab (either as a pair of different letters or as a part of a block of letters): if we succeed,
then a, b are in the same fragment; if we fail, then this means that at least one of them
is in some other fragment.

Thus, consider any two consecutive letters a and b. If any of them was compressed
during the fixing of beginning or end, then we are done, as it was assigned to a fragment.
Otherwise, if a = b, then they are compressed during the blocks compression, so both
of them are assigned to the same fragment. If a �= b and ab is a noncrossing pair, then
we tried to compress it during the noncrossing pairs compression. Finally, if a �= b and
ab is a crossing pair, then due to our construction of �� and �r from Lemma 6.3, at
least one fourth of occurrences of crossing pairs is chosen for the compression.

The rest of the argument follows as in the case of the one for EqualityTesting, with a
slightly larger constant. Hence, in each round, p is shortened by a constant factor and
so there are O(log M) phases.

Observe that a similar argument holds for G. Consider two consecutive letters in
the rule of G (note that as G has up to m + n rules, at most 3(n + m) do not have a
following letter). Then, there is a second round of compression of crossing pairs that
tries to compress at least one fourth of crossing pairs occurrences in G. Hence, the
explicit strings in G can be grouped into fragments as well, as described earlier. On the
other hand, by Lemmata 4.9, 5.1, and 6.4, there are O(n+ m) letters introduced to G in
one phase (and those are not necessarily compressed). Therefore, the size of the new
grammar (at the end of the phase) G′ can be given using the recursive equation

|G′| ≤ 3(n + m) + α|G| + β(n + m)

for some α < 1 and β (the 3(n+ m) is for the letters that do not have a letter to its right
and so are unaffected by our analysis). Since in the first phase |G| = n + m by simple
calculations, it follows that |G′| ≤ 2β+6

1−α
(n + m).

6.2. Block Compression

As already noted, we should improve the O(|G| + (n + m) log(n + m)) running time (see
Lemma 4.9) used for sorting of blocks’ lengths to O(|G|); recall that the cost O((n +
m) log(n + m)) came from sorting. Moreover, in Section 4, we assumed that M and N
fit in O(1) machine words for the purpose of blocks compression and promised to relax
this assumption. We now both improve the running time and relax this assumption,
requiring only that n+mfits in O(1) machine words. We do this by introducing a special
representation of the lengths of a blocks, which is represented as a sum of two numbers:
a big one (represented as a bit vector) and a small one (of size O(|G|)), which is stored
in O(1) machine words. The crucial observation will be that we can restrict ourselves
to O(n + m) such large numbers. The big numbers are so much larger that in order to
sort, we can sort the numbers with the same large component separately—that is, it is
enough to sort the small numbers. Since they are small (at most |G|), this can be done
by RadixSort in O(|G|) time. On the other hand, the large numbers shall also be sorted
using RadixSort (in which case those numbers are treated as bit strings), and more
involved analysis shows that the total time spent on such sorting is O((n + m) log M).

However, representation as bit strings introduces new problems. Observe that when
t is a block of letters, calculating the bit vector representation of its length takes
�(log N) time. It is difficult to account for such large costs. We avoid the problem by

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:38 A. Jeż

not calculating exactly the lengths of blocks that are longer than M (i.e., the original
pattern).

Too long blocks. Consider the blocks of letter a that do not occur in p. Then, there
is no difference whether we replace two occurrences of a� with the same letter or with
different letters, as they cannot be part of a pattern occurrence. Thus, for a that does
not occur in p, we perform a ” sloppy” blocks compression: we treat each maximal block
as if it had a unique length. To be precise, we perform RemCrBlocksbut represent a�

blocks as (a, ?) for � > 1. Then, when replacing blocks of a (we exclude the blocks of
length 1), we replace each of them with a fresh letter. In this way, the whole blocks
compression does not include any cost of sorting the lengths of blocks of a. Still, the
occurrences of the pattern are preserved.

A similar situation occurs for a that occurs in p, but t has a blocks of length greater
than M. We treat them similarly: as soon as we realise that a� has � > M, we represent
such blocks as (a,> M) and do not calculate the exact length and do not insist that
two such blocks of the same length are replaced with the same symbol. In this way,
we avoid the cost associated with sorting this length. Of course, when a is the first or
last letter of the pattern, we need to replace them with aRa?aL, to allow the pattern
beginning/ending at this block.

Faster sorting. Length representation. The intuition is as follows: although the a
blocks can have exponential length, most of them do not differ much, as they are
obtained by concatenating letters a that occur explicitly in the grammar. Such con-
catenations can, in total, increase the lengths of a blocks by |G|. Still, there are blocks
of exponential length: these “long” blocks are created only when two blocks coming
from two different nonterminals are concatenated. However, there are only n + m con-
catenations of nonterminals (one per production), so the total number of long blocks
“should be” at most n + m. Of course, the two mentioned ways of obtaining blocks can
mix, and our representation takes this into the account: we represent each block as a
concatenation of two blocks—a long one and short one:

—The long one corresponds to a block obtained as a concatenation of two nonterminals;
such a long block is common for many blocks of letters.

—The short one corresponds to concatenations of letters occurring explicitly in G; this
length is associated with the given block alone.

More formally, we store a list of common lengths—that is, the lengths of common
long blocks of letters. Such a length is stored as a bit vector. Each block length � is
represented as a sum c + o, where c is one of the common lengths and o (offset) is a
number associated with �. Internally, � is represented as a number o and a pointer to
c. One of the common lengths is 0. In the intermediate construction, some blocks can
be represented without the common length, which is different from having a common
length 0. The construction will guarantee that each offset is at most |G|.

We treat common lengths that are larger than M with a special disregard; in particu-
lar, we do not calculate them exactly but just store the information that they are larger
than M. To this end, for each common length, we also store the length of the associated
bit vector. If it is longer than log(M + 1), then the common length is larger than M.
Note that the length of the bit vector is log(M + 1) = O(m), so it can be manipulated in
constant time.

Creating a common length. During RemCrBlocks, each prefix and suffix popped from
nonterminals inside the rule is represented as a common length and an offset in the
following way (we add to them the common length 0 if they are represented without
a common length). Then we calculate the lengths of blocks inside the rule for Xi: the

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:39

explicit letter inside the rule simply increases the offset; the blocks that are formed
solely from explicit letters do not have a common length. If any length of the block is
represented as a sum of two common lengths (and perhaps some offset), we create a
new common length for it.

Before proceeding, let us note how large the offsets may be and how many of them
there are.

LEMMA 6.6. There are at most n+m+1 common lengths. There are at most |G|+n+m
offsets in total, and the largest offset is at most |G|.

PROOF. One common length is 0. Each other common length is created inside a rule
for a nonterminal. Furthermore, at most one common length can be created inside a
single rule: for a new common length c to be created, there have to be two nonterminals
Xj and Xk inside a rule before popping, and the block ac is then created between those
two nonterminals.

Creation of an offset corresponds to an explicit letter in G, so there are at most |G|
offsets created.

An offset is created or increased when an explicit letter a (not in a compressed form)
is concatenated to the block of a’s. One letter is used once for this purpose, and there is
no other way to increase an offset, so the maximal of them is at most |G|.

Comparing lengths. Since we intend to sort the lengths, we need to compare the
lengths of two numbers represented as common lengths with offsets, say o + c and
o′ + c′. Considering that the common lengths are so large, we expect that we can
compare them lexicographically, such as

o + c ≥ o′ + c′ ⇐⇒
{

c > c′, or
c = c′ ∧ o ≥ o′. (4)

Furthermore, (4) allows a simple way of sorting the lengths of maximal blocks:

—We first sort the common lengths (by their values).
—Then, for each common length, we (separately) sort the offsets assigned to this

common length.

Although (4) may not initially be true, we can apply a couple of patches that make it
true. Before that, however, the common lengths need to be sorted. We sort them using
RadixSort and treat each common length as a series of bits. Although this looks more
expensive, it allows a nice amortised analysis, as demonstrated later (see Lemma 6.10).
Recall that we do not sort lengths of blocks a� for � > M: we represent them as (a,> M)
as soon as we find out that they are longer than M.

LEMMA 6.7. Let c1, c2, . . . , ck be the common lengths. The time needed to find
those whose bit vectors are longer than log(M + 1) and sort the others is O(k +∑k

i=1 log(min(ci, M + 1))).

The large common lengths are found by simply counting the lengths of their bit vectors
until we reach a position larger than log(M + 1). The sorting is done by a standard
implementation of RadixSort that sorts the numbers of different lengths.

In the following discussion, we consider only the common lengths whose bit vectors
have length at most log(M + 1).

The problem with (4) is that even though ci and c j are so large, it can still happen
that |ci −c j | is small. We fix this naively: first, we remove some common lengths so that
ci+1 − ci > |G|. A simple greedy algorithm does the job in linear time. Since common
lengths are removed, we need to change the representations of lengths: when o was
assigned to remove c, consider the ci and ci+1 that remained in the sequence and

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:40 A. Jeż

ci < c < ci+1. We reassign � = c + o to either ci or ci+1: if o + c ≥ ci+1, then we reassign
it to ci+1 and otherwise to ci. It can be shown that in this way, all offsets are at most
2|G| and that (4) holds afterward.

LEMMA 6.8. Given a sorted list of common lengths c1 ≤ c2 ≤ · · · ≤ ck (whose bit vectors
have length at most log(M + 1)), we can in O(

∑k
i=1 log(ci) + k) time choose its sublist

and reassign offsets (preserving the represented lengths) such that all offsets are at most
2|G| and (4) holds.

PROOF. We include c0 = 0 for simplicity of presentation.
First, we calculate the differences 	 between consecutive c′s and store those that

are at most |G|. This can be done in O(
∑k

i=1 log(ci) + k) time: for two consecutive ci+1
and ci, we calculate their difference using the bivectors in time O(log ci+1 + 1). When
the difference is known, we begin to evaluate it (as a number) until it is calculated or
shown to be greater than |G|. In the former case, we store 	i. The running time thus
far is O(

∑k
i=1 log(ci) + k).

Given a sorted list c0 ≤ c1 ≤ c2 ≤ · · · ≤ ck of common lengths and their differences
	1,	i, . . . , we choose its subsequence 0 = c′

0 ≤ c′
1 ≤ c′

2 ≤ · · · ≤ c′
k′ such that the distance

between any two consecutive common lengths in it is at least |G|—that is, c′
i+1−c′

i ≤ |G|.
This is done naively: we choose c0 = 0 and then go through the list. Having last chosen
c, we look for the smallest common length c′ such that c′ − c > |G| and choose this c′ as
the next element. The condition c′ − c > |G| is verified by summing up appropriate 	s.
Since there are k common lengths in the beginning and adding defined 	s can be done
in O(1) time, this can be done in O(k) time. As the last step, we also update the 	s so
that they still show the difference between consecutive common lengths (again, we do
not store those that are larger than |G|).

For any removed c such that ci < c < ci+1, we reassign offsets assigned to c as
described earlier: for o assigned to c, if c + o ≥ ci+1 (which can be equivalently stated
as ci+1 − c ≤ o), then we reassign o to ci+1 and otherwise to ci. As o ≤ |G|, this condition
can be verified using 	s alone.

When o is reassigned to ci, then c − ci ≤ |G| (as c was removed), and if reassigned
to ci+1, then ci+1 − c ≤ o ≤ |G|. Thus, in any case, the new offset o′ can be calculated
in constant time using 	s and o. As there are O(|G|) offsets (see Lemma 6.6), all
reassigning takes O(|G|) time in total.

Let o′ be the offset after the reassignment. Then,

—o′ ≤ 2|G|, since o ≤ |G| and the only way to increase it is to reassign it to ci. Since c
is removed, it holds that c − ci ≤ |G|. Hence, o′ = o + (c − ci) ≤ |G| + |G|.

—When oi is assigned to ci, then oi + ci < ci+1: indeed, if oi was reassigned from c > ci,
then by definition ci + oi = c + o < ci+1; if oi was originally assigned to ci or it was
reassigned from ci−1, then oi < |G| and so ci + oi ≤ ci + |G| < ci+1.

Note that the second item in the preceding list implies (4). Hence, the claim of the
lemma holds.

Now, since (4) holds, to sort all lengths it is enough to sort the offsets within groups.
We do it simultaneously for all groups: offset o j assigned to common length ci is rep-
resented as (i, o j), and we sort these pairs lexicographically using RadixSort. Since the
offsets are at most 2|G| and there are at most |G| of them and at most O(n+m) common
lengths (see Lemma 6.6 for all those three estimations), RadixSort sorts them in O(|G|)
time.

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

Faster Fully Compressed Pattern Matching by Recompression 20:41

LEMMA 6.9. When common lengths whose bit vectors are of length at most log(M + 1)
are sorted and satisfy (4), sorting all lengths of blocks that are at most M takes O(|G|)
time.

Finally, we bound the time needed to identify and sort the common lengths whose
bit vectors are of length at most log(M + 1). Due to Lemmas 6.7 and 6.8, this cost is
O(k+∑k

i=1 log(min(ci, M + 1))), where c1, . . . , ck are all common lengths. Hence, we can
assign O(1+ log(min(c, M+1))) cost to a common length c and redirect this cost toward
the rule in which c was created. The O(1) cost for maintaining the common length 0 is
redirected toward the rule for X1. We estimate the total such cost over the whole run
of FCPM.

LEMMA 6.10. For a single rule, the cost redirected from common lengths toward this
rule during the whole run of FCPM is O(log M).

PROOF. First of all, we can consider O(log(min(c, M + 1))) instead of O(1 +
log(min(c, M + 1))): the 1 is added O(1) times per phase, and there are O(log M) many
phases. Second, the cost associated with the common length 0 is O(1) per phase, so
O(log M) in total. As said, we associate it with the rule for X1.

Each other common length c > 0 (of some a block) is created inside a rule for some Xi;
let this rule be Xi → uXjvXkw (by definition, two nonterminals in a rule are needed for
a creation of a new common length). Then, val(Xj) right-popped an a-suffix and val(Xk)
left-popped an a-prefix; moreover, v ∈ a∗.

First, consider the easier case of common lengths c, whose bit vector is of length
greater than log(M+1). We spendO(log M) time to find out that c > M. Let this common
length be created in the rule for Xi. If during the creation of c a nonterminal is removed
from the rule, then this is fine because this happens only once per nonterminal/rule
and so the cost charged toward the rule in such a case is O(log M). In the other case,
this common length occurs between nonterminals in a rule for Xi—that is, between Xj
and Xk. Afterward, between those nonterminals, there is a letter not occurring in p.
Furthermore, compression cannot change it: in each consecutive phase, there will be
such a letter between those nonterminals. So there can be no more creation of common
lengths of letters occurring in strings between those two nonterminals. Therefore, the
O(log M) cost is charged to this rule only once in this way.

Finally, we consider the main case of creation of common lengths whose bit vector
is of length at most log(M + 1). If the creation of the common length c removes a
nonterminal from the rule for Xi, then this happens at most twice for this rule and the
associated cost is O(log M).

Consider the case in which no nonterminal is removed from the rule during the
creation of a new common length c of an ablock. Consider all such creations of powers
in a rule for Xi. Let the consecutive letters, whose blocks were compressed, be a(1),
a(2), . . . , a(�) and the corresponding blocks’ lengths c1, c2, . . . , c� (the c� repetitions of a(�)

are replaced by a(�+1)). Observe that a(i+1) does not need to be a(i)
ci

, as there might have
been some other compression in between.

Recall the definition of weight: for a letter, it is the length of the represented string
in the original instance. Consider the weight of the strings between Xj and Xk. Clearly,
after the i-th blocks compression, it is exactly ci · w(a(i)). We show that

w(a(i+1)) ≥ ci w(a(i)). (5)

Right after the i-th blocks compression, the string between Xj and Xk is simply
a(i)

ci
. After some operations, this string consists of ci+1 letters a(i+1). All operations in

FCPM do not remove the symbols from the string between two nonterminals in a rule

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

20:42 A. Jeż

(removing of leading aR or ending aL from t cannot affect letters between nonterminals).
Recall that we can think of the recompression as building an SLP for p and t. In
particular, one of the letters a(i+1) derives a(i)

ci
(which is the letter that replaced the

block of ci letters a(i)). Since in the derivation the weight of the right- and left-hand
sides are equal, it holds that

w(a(i+1)) ≥ w(a(i)
ci

) = ci · w(a(i)).

Thus, w(a(�)) ≥ ∏�−1
i=1 ci. Recall that we consider only the cost of letters that occur in

the pattern. Hence, a(�) (or some heavier letter) occurs in the pattern, so M ≥ w(a(�))
(note that this argument does not apply to a(�+1), as it does not necessarily occur in p).
Hence,

log(M) ≥ log

(
�−1∏
i=1

ci

)
=

�−1∑
i=1

log ci.

What is missing is the cost of creation c�, which is at most log(M + 1); the whole charge
of

∑�
i=1 log ci to the single rule is O(log M).

Summing over the rules gives the total cost of O((n+m) log M), as claimed. This ends
the proof of Theorem 1.1.

ACKNOWLEDGMENTS

I would like to thank Paweł Gawrychowski for introducing me to the topic, for pointing out the relevant
literature [Alstrup et al. 2000; Lifshits 2007; Lohrey and Mathissen 2011; Mehlhorn et al. 1997], and
discussions [Gawrychowski 2011a], and anonymous referees whose comments helped to improve the article.

REFERENCES

Stephen Alstrup, Gerth Stolting Brodal, and Theis Rauhe. 2000. Pattern matching in dynamic texts. In
Proceedings of SODA. 819–828. DOI:http://dx.doi.org/10.1145/338219.338645

Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi Shelat.
2005. The smallest grammar problem. IEEE Transactions on Information Theory 51, 7, 2554–2576.
DOI:http://dx.doi.org/10.1109/TIT.2005.850116

Leszek Gąsieniec, Marek Karpiński, Wojciech Plandowski, and Wojciech Rytter. 1996a. Efficient algorithms
for Lempel-Ziv encoding. In Algorithm Theory—SWAT ’96. Lecture Notes in Computer Science, Vol. 1097.
Springer, 392–403. DOI:http://dx.doi.org/10.1007/3-540-61422-2_148

Leszek Gąsieniec, Marek Karpiński, Wojciech Plandowski, and Wojciech Rytter. 1996b. Randomized
efficient algorithms for compressed strings: The finger-print approach. In Combinatorial Pattern
Matching. Lecture Notes in Computer Science, Vol. 1075. Springer, 39–49. DOI:http://dx.doi.org/
10.1007/3-540-61258-0_3

Leszek Gąsieniec and Wojciech Rytter. 1999. Almost optimal fully LZW-compressed pattern matching. In
Proceedings of DCC. IEEE, Los Alamitos, CA, 316–325.

Paweł Gawrychowski. 2011a. Personal communication.
Paweł Gawrychowski. 2011b. Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and deter-

ministic. In Algorithms—ESA 2011. Lecture Notes in Computer Science, Vol. 6942. Springer, 421–432.
DOI:http://dx.doi.org/10.1007/978-3-642-23719-5_36

Paweł Gawrychowski. 2012a. Simple and efficient LZW-compressed multiple pattern matching. In Com-
binatorial Pattern MatchingLecture Notes in Computer Science, Vol. 7354. Springer, 232–242.
DOI:http://dx.doi.org/10.1007/978-3-642-31265-6_19

Paweł Gawrychowski. 2012b. Tying up the loose ends in fully LZW-compressed pattern matching. In Proceed-
ings of STACS. Leibniz International Proceedings in Informatics, Vol. 14. Schloss Dagstuhl, 624–635.
DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2012.624

Paweł Gawrychowski. 2013. Optimal pattern matching in LZW compressed strings. ACM Transactions on
Algorithms 9, 3, 25. DOI:http://dx.doi.org/10.1145/2483699.2483705

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

http://dx.doi.org/10.1145/338219.338645
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1007/3-540-61422-2_148
http://dx.doi.org/10.1007/3-540-61258-03
http://dx.doi.org/10.1007/3-540-61258-03
http://dx.doi.org/10.1007/978-3-642-23719-5_36
http://dx.doi.org/10.1007/978-3-642-31265-6_19
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.624
http://dx.doi.org/10.1145/2483699.2483705

Faster Fully Compressed Pattern Matching by Recompression 20:43

Masahiro Hirao, Ayumi Shinohara, Masayuki Takeda, and Setsuo Arikawa. 2000. Fully compressed pattern
matching algorithm for balanced straight-line programs. In Proceedings of SPIRE. 132–138.

Artur Jeż. 2014. Compressed membership for NFA (DFA) with compressed labels is in NP (P). Theory of
Computing Systems 55, 4, 685–718.

Artur Jeż. 2013a. Approximation of grammar-based compression via recompression. In Combina-
torial Pattern Matching. Lecture Notes in Computer Science, Vol. 7922. Springer, 165–176.
DOI:http://dx.doi.org/10.1007/978-3-642-38905-4_17 full version at http://arxiv.org/abs/1301.5842.

Artur Jeż. 2013b. One-variable word equations in linear time. In Automata, Languages, and Program-
ming. Lecture Notes in Computer Science, Vol. 7966. Springer, 324–335. DOI:http://dx.doi.org/10.1007/
978-3-642-39212-2_30 full version accepted to Algorithmica DOI:http://dx.doi.org/10.1007/s00453-014-
9931-3.

Artur Jeż. 2013c. Recompression: A simple and powerful technique for word equations. In Proceedings
of STACS. Leibniz International Proceedings in Informatics, Vol. 20. Schloss Dagstuhl, 233–244.
DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233

Artur Jeż. 2014. Context unification is in PSPACE. In Automata, Languages, and Programming. Lecture
Notes in Computer Science, Vol. 8573. Springer, 244–255. Available at http://arxiv.org/abs/1310.4367.

Artur Jeż and Markus Lohrey. 2014. Approximation of smallest linear tree grammar. In Proceedings of
STACS. Leibniz International Proceedings in Informatics, Vol. 25. Schloss Dagstuhl, 445–457.

Juha Kärkkäinen, Pekka Mikkola, and Dominik Kempa. 2012. Grammar precompression speeds up Burrows-
Wheeler compression. In String Processing and Information Retrieval. Lecture Notes in Computer
Science, Vol. 7608. Springer, 330–335. DOI:http://dx.doi.org/10.1007/978-3-642-34109-0_34

Marek Karpiński, Wojciech Rytter, and Ayumi Shinohara. 1995. Pattern-matching for strings with short
descriptions. In Combinatorial Pattern Matching. Lecture Notes in Computer Science, Vol. 937. Springer,
205–214. DOI:http://dx.doi.org/10.1007/3-540-60044-2_44

N. Jesper Larsson and Alistair Moffat. 1999. Offline dictionary-based compression. In Proceedings of
the Data Compression Conference. IEEE, Los Alamitos, CA, 296–305. DOI:http://dx.doi.org/10.1109/
DCC.1999.755679

Yury Lifshits. 2007. Processing compressed texts: A tractability border. In Combinatorial Pattern Match-
ing. Lecture Notes in Computer Science, Vol. 4580. Springer, 228–240. DOI:http://dx.doi.org/10.1007/
978-3-540-73437-6_24

Markus Lohrey and Christian Mathissen. 2011. Compressed membership in automata with compressed
labels. In Computer Science—Theory and Applications. Lecture Notes in Computer Science, Vol. 6651.
Springer, 275–288. DOI:http://dx.doi.org/10.1007/978-3-642-20712-9_21

Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. 1997. Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17, 2, 183–198. DOI:http://dx.doi.org/10.1007/BF02522825

Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press.

Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. 1997. An improved pattern matching algo-
rithm for strings in terms of straight-line programs. In Combinatorial Pattern Matching. Lecture Notes
in Computer Science, Vol. 1264. Springer, 1–11. DOI:http://dx.doi.org/10.1007/3-540-63220-4_45

Craig G. Nevill-Manning and Ian H. Witten. 1997. Identifying hierarchical strcture in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research 7, 67–82. DOI:http://dx.doi.org/
10.1613/jair.374

Wojciech Plandowski. 1994. Testing equivalence of morphisms on context-free languages. In Algorithms—
ESA ’94. Lecture Notes in Computer Science, Vol. 855. Springer, 460–470. DOI:http://dx.doi.org/
10.1007/BFb0049431

Wojciech Plandowski and Wojciech Rytter. 1999. Complexity of language recognition problems for compressed
words. In Jewels Are Forever, Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun, and Grzegorz
Rozenberg (Eds.). Springer, 262–272.

Wojciech Rytter. 2003. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science 302, 1-3, 211–222. DOI:http://dx.doi.org/10.1016/
S0304-3975(02)00777-6

Hiroshi Sakamoto. 2005. A fully linear-time approximation algorithm for grammar-based compression. Jour-
nal of Discrete Algorithms 3, 2-4, 416–430. DOI:http://dx.doi.org/10.1016/j.jda.2004.08.016

Received March 2013; revised March 2014; accepted June 2014

ACM Transactions on Algorithms, Vol. 11, No. 3, Article 20, Publication date: January 2015.

http://dx.doi.org/10.1007/978-3-642-38905-4_17
http://dx.doi.org/10.1007/978-3-642-39212-230
http://dx.doi.org/10.1007/978-3-642-39212-230
http://dx.doi.org/10.1007/s00453-014-9931-3
http://dx.doi.org/10.1007/s00453-014-9931-3
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233
http://dx.doi.org/10.1007/978-3-642-34109-0_34
http://dx.doi.org/10.1007/3-540-60044-2_44
http://dx.doi.org/10.1109/DCC.1999.755679
http://dx.doi.org/10.1109/DCC.1999.755679
http://dx.doi.org/10.1007/978-3-540-73437-624
http://dx.doi.org/10.1007/978-3-540-73437-624
http://dx.doi.org/10.1007/978-3-642-20712-9_21
http://dx.doi.org/10.1007/BF02522825
http://dx.doi.org/10.1007/3-540-63220-4_45
http://dx.doi.org/10.1613/jair.374
http://dx.doi.org/10.1613/jair.374
http://dx.doi.org/10.1007/BFb0049431
http://dx.doi.org/10.1007/BFb0049431
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/j.jda.2004.08.016

