Word Equations: Sheet 2

Task 7 is very underspecified, but should be doable with the hints inside.

Task 1 Show that for a word equation with n occurrences of variables there are at
most 2n different crossing pairs and at most 2n different letters with crossing blocks.

Task 2 Show that we can uncross and compress all blocks of all letters in parallel, i.e.
as one procedure that pops at most one prefix and one suffix per occurrence of variable.

Task 3 A partition of an alphabet X is a pair (X1, 3s) such that ¥; U ¥y = ¥ and
YNy =10.

Show that we can uncross and compress a set of pairs {a;b; };er in parallel, assuming
that a;, € X1 and b; € 25 for each i € 1.

Task 4 Consider a word w € ¥* such that none of its two consecutive letters are the
same. An occurrence of a pair ab in w is covered by a partition (X1, %s) if a € ¥; and
b € 35. Show that there is a partition of ¥ such that it covers at least ‘w‘% letters in w.
Show that it can be computed in linear time.

Generalise this observation to a word equation with a solution S (and at most n

occurrences of variables).
Hint: Reduce this problem to calculation of a maximal (weighted) cut in a graph. It has
a simple randomised solution which can be derandomised using expected value approach.
It is described in Michael Mitzenmacher, Eli Upfal Probability and computing book as
well as in Vijay Vazirani Approzimation algorithm book.

Task 5 Using tasks 24 give a linear-time algorithm for compressing a word based on
the algorithm presented during the lecture. (Model assumption: all letters are integers,
we can employ RadixSort on them.)

Task 6 Using tasks 2-4 devise an algorithm for word equation that keeps a linear-size
equation; the algorithm can use more memory when processing the equations, moreover,
at some point it will have to store blocks a®, but we treat them as size-1. (The latter is
a cheat, but we will learn how to deal with this later on).

Task 7 Show that for a suitable constant ¢, if a word equation with at most n occur-
rences of variables and size at least cn? has a length-minimal solution S, then one of the
following holds:

e there is a non-crossing pair ab in S(u);
e for some non-crossing a there is a block a* in S(u), for £ > 1;

e there is a crossing ab such that uncrossing and compressing it does not increase the
size of the equation;

e there is a with crossing blocks such that uncrossing and compressing a-blocks does
not increase the size of the equation.



Employ this observation in an algorithm for word equations.

Task 8 Long and tedious, but not that difficult The goal of this task is to create
a variant of algorithm that performs only compression of pairs, perhaps pairs of the same
letter.

The reason why we cannot use compression of pairs aa is that they can overlap and the
compression is ambiguous, for instance consider an equation aX = Xa (all its solutions
have S(X) € a*). We cannot pair letters in X and in S(aX) in the same way:.

However, this can be walked around: observe, that a and X commute, as they both
represent blocks of a. Thus we can change aX to Xa on the left-hand side, without
affecting the equation.

Show, that if there is a particular letter a, such that each variable either:

1. has no a-prefix and no a-suffix or
2. is a block of a

then we can rearrange the variables and perform the aa-pair compression. This should
pop at most 1 letter from each variable.

Show that afterwards 1-2 is satisfied for a’, which represents aa.

To reach an equations satisfying 1-2 we pop a-prefixes and a-suffixes of variables, but
represent them as variables.

However, this is not yet enough, as we pile up with many letters popped from variables.
To remedy this, we type the letters that represent compressed blocks of a: initially we
type a and variables satisfying 2; then we additionally perform pair compression for letters
that are a-typed. Show that in this way 1 can be generalised: there is no prefix and suffix
of a-typed letters.

This should be enough for the algorithm.

Task 9 Suppose that the above algorithm was implemented, i.e. we are able to solve
word equations in (non-deterministic) polynomial space performing only compressions of
the form ab — c¢. Show that this implies that the size of the size-minimal solution is at
most doubly exponential.

This argument does not work that easily for variant with block compression. Can you
say why?

Task 10 An SLP is a context-free grammar generating exactly one word, its size is
the size of the right-hand sides of all productions.

Show that the algorithm for word equations (in some variant: choose whichever you
like) in fact generates an SLP of size poly(n,log N) for some solution of a word equation
of size N. How low can you make the dependency on log N7



