

## Word Equations: Sheet 3

**Task 1** Show Hadamard inequality for a square matrix  $N = (n_{i,j})_{i,j=1}^k$

$$\det(N) \leq \prod_{j=1}^k \sqrt{\sum_{i=1}^k n_{i,j}^2}.$$

**Task 2** Show that if a maximal block  $a^\ell$  occurs in the length-minimal solution of a word equation than  $\ell$  is a visible length.

*Hint:* Looking at  $a^\ell$  may be not enough, try looking at  $ba^\ell c$ .

**Task 3** Show that the exponential bound on the length of  $a$ -blocks for length-minimal solutions is tight (the exact constant at the exponent is not tight, though).

**Task 4** Show that we can use the  $a$ -presentation approach for the compression algorithm: we do not guess the lengths of the  $a$ -prefixes and suffixes, but denote them as variables and we write an appropriate system of linear equations.

Show that when the word equation can be encoded using  $m$  bits (in a natural encoding) then the constructed system has size  $\mathcal{O}(m)$  bits. (We can encode the constants in unary).

**Task 5** Show that we can verify the system of linear Diophantine equations in which all constants are encoded in unary in linear space (counted in bits).

*Hint:* Repeatedly guess the parity of sides of all equations and divide by 2. Do you see some connection with block compression, both ways.

**Task 6** Using the bound on the size of the minimal solutions of integer programming show that the doubly exponential bound on the size of the length-minimal solution follows from our original algorithm (that uses the block compression variant from Task 3.)

**Task 7** Show that the exponential bound on the exponent of periodicity (but not with a  $2^{\mathcal{O}(n)}$  bound, though) can be inferred already from our original algorithm for word equations plus the bound on the length of  $a$ -blocks in the length-minimal solutions.

*Hint:* How does the exponent of periodicity changes after one compression step? What is the difference between pair compression and block compression?

**Task 8** The  $\exists^*$ -theory of word equations consists of all sentences of the form:

$$\exists_{x_1, x_2, \dots, x_k} \varphi(x_1, x_2, \dots, x_k)$$

where  $\varphi$  is quantifier-free logic formula that uses  $\wedge, \vee, \neg$  as connectives and atomic formulas that are word equations that use constants from  $\Sigma^*$  and variables  $x_1, x_2, \dots, x_k$ .

Show that we can verify sentences from this theory in **PSpace**.

*Hint:* The algorithm will heavily employ non-determinism to reduce this case to a system of word equations. The inequalities are easy to handle: look for first differences.

**Task 9 Long, probably as a seminar talk for 1 hour. 3 points?** Using papers supplied on the webpage, show an exponential bound on the size of the smallest solution of the integer programming. Show such a bound for each minimal solution.