
Contents

1 Word equations: basic notions and results 5
1.1 Introduction . 5
1.2 Definitions . 5
1.3 SLPs . 6

1.3.1 Equivalence of SLPs . 6
1.4 Composition systems . 7
1.5 Satisfiability via SLPs . 7

2 Satisfiability of word equations in PSPACE 11
2.1 Bottom-up costruction of an SLP for a word . 11
2.2 Soundness and completeness . 11
2.3 Crossing and Noncrossing Pairs and Blocks . 12
2.4 Compression of noncrossing pairs and blocks . 12
2.5 Uncrossing . 13
2.6 The algorithm . 14

3 Exponent of periodicity: simple case 19
3.1 Exponent of periodicity . 19
3.2 Touching blocks and their lengths . 19
3.3 Arithmetic expressions and their equations . 20
3.4 Parametrised solutions . 21
3.5 Solutions of system of linear Diophantine equations . 21
3.6 Bound on Σ-exponent of periodicity . 22

4 Basic string combinatorics (stringology) 25
4.1 Periodicity . 25
4.2 Failure function . 26
4.3 Primitive words . 26
4.4 Suffix trees . 27

5 Exponent of periodicity: general case 29
5.1 P -presentations . 29
5.2 System of equations . 30

6 Quadratic word equations 33
6.1 Analysis . 33

7 Word equations with one variable 35
7.1 One variable equations . 35
7.2 One-variable equations: structure . 35
7.3 Via word combinatorics . 36

7.3.1 |A0| ≤ |B1| . 36
7.3.2 |s(X)| ≥ |A0| − |B1| > 0 . 37
7.3.3 |A0| − |B1| > |s(X)| > 0 . 37

1

2 CONTENTS

7.3.4 Verification of candidate solutions . 38
7.4 Via recompression . 38

7.4.1 Representation of solutions . 39
7.4.2 Weight . 39
7.4.3 Preserving solutions . 39
7.4.4 Specialisation of procedures . 40
7.4.5 The algorithm . 41
7.4.6 Running time . 42

8 Word equations with two variables 47
8.1 Parametrised words . 47
8.2 Canonisation . 47
8.3 Simple systems of equations and their solutions . 48

8.3.1 S1 . 48
8.3.2 S2 . 48
8.3.3 S3 . 48
8.3.4 S4 . 48

8.4 Solving system S1 . 48

9 Equations without constants and related topics 51
9.1 General results . 51

9.1.1 Equivalent subsystems . 51
9.1.2 Defect Theorem . 51

9.2 An interesting new result/proof . 51
9.3 Lyndon-Schützenberge Theorem . 53

10 Free groups 57
10.1 Free groups . 57
10.2 Free monoids/semigroups with involution . 57
10.3 Reduction: equations in groups to equations in free semigroup with involution and

rational constraint . 58

11 Positive theory of free groups 59
11.1 Notation . 59
11.2 Main result . 59
11.3 Main technical Lemma . 60
11.4 Main proof: quantifier elimination . 61

12 Solving equations in free groups 65
12.1 Regular sets . 65
12.2 Regular constraints . 65
12.3 Model . 66
12.4 Main issue . 66
12.5 The algorithm . 66
12.6 Needed modifications . 66

12.6.1 Constraints . 66
12.6.2 Involution . 66
12.6.3 Pair compression . 67
12.6.4 Blocks and Quasiblocks compression . 67
12.6.5 Preprocessing . 67

12.7 Letters . 67

13 Linear Monadic Second Order Unification 71

CONTENTS 3

14 Compressed pattern matching: Combinatorial approach 75
14.1 AP table . 75

14.1.1 Filling AP using LSP . 76
14.2 Local search procedure . 76

15 Equality testing for dynamic strings 79
15.1 How to calculate assignment . 80
15.2 Storing . 80
15.3 Update . 80
15.4 Comments . 81

4 CONTENTS

Chapter 1

Word equations: basic notions and results

1.1 Introduction

A word equation consists of a pair (u, v) of words over letters (constants) and variables and a solution
is a substitution of the variables by words in letters such that the formal equality u = v becomes a
true equality of words (strings).

The study of satisfiability word equations has a long tradition. It is fairly easy to see that WordE-
quation reduces to Hilbert’s 10th Problem. Hence in the mid 1960s the Russian school of mathematics
outlined the roadmap to prove undecidability of Hilbert 10th Problem via undecidability of word
equations. The program failed in the sense that Matiyasevich proved Hilbert’s 10th Problem to be
undecidable in 1970, but by a completely different method, which employed number theory. On the
other hand, in 1977 Makanin showed in a seminal paper [43] that satisfiability of word equations is
decidable. Makanin’s algorithm became famous since it settled a long standing problem and also
because his algorithm had an extremely complex termination proof. Furthermore Makanin extended
his results to free groups and showed that the existential and positive theories in free groups are
decidable [44, 45].

1.2 Definitions

Definition 1.1 (Alphabet, variables). In context of word equations we always consider a finite alphabet
Σ and finite set of variables X , which is disjoint with Σ. Elements of Σ are usually denoted by small
letters a, b, c, Elements of X are usually denoted as X,Y, Z,

Definition 1.2 (Word equation, systems of word equations). A word equation is a pair (u, v), usually
written as u = v, where u, v ∈ (Σ ∪ X)∗ is a sequence of letters and variables. A system of word
equations is a set of word equations, usually denoted as (u1, v1), (u2, v2), . . .

Definition 1.3 (Substitution, solution, length-minimal solution). Given a set of variables X and a
set of letters Σ, a substitution is a morphism s : X 7→ Γ+ ⊇ Σ+. A substitution is extended to Σ as
an identity (so s(a) = a for a ∈ Σ) and to (Σ ∪ X)∗ as a homomorphism (so s(αβ) = s(α)s(β) for
α, β ∈ (Σ ∪ X)∗).

A substitution is a solution of a word equation u = v, when s(u) = s(v); a solution of a system of
equations is defined accordingly. A solution s of a word equation u = v is length-minimal (or simply
minimal), when for any other solution s′ it holds that

|s(u)| ≤ |s′(u)| .

Given a solution s for the equation u = v the s(u) is a solution word for this solution of the
equation.

Note that we do allow that the solution uses letters that are not in the instance, but this is a slight
technical detail.

5

6 CHAPTER 1. WORD EQUATIONS: BASIC NOTIONS AND RESULTS

Problem: (Satisfiability of) Word Equations
Input: A system of word equations with variables X over Σ.
Task: Decide, whether this system has a solution.

Definition 1.4 (Cubic and quadratic systems of equations). We say that a system of word equations
is quadratic, if every variable occurs at most twice in it. It is cubic, when every variable occurs at
most thrice.

Definition 1.5 (Constraints). Constraints for system of word equations are given as additional con-
straints of the form X ∈ C or X /∈ C, where X ∈ X and C comes from some specified language class
(say: regular, context-free, etc.). The meaning of the constraint X ∈ C (or X /∈ C) is that we require
from a solution s that s(X) ∈ C (or s(X) /∈ C).

Example 1.1. The equation
aXca = abY a

has a solution s(X) = baba and s(Y) = abac.
The equation

aX = Xa

has an infinite number of solutions, each is of the form s(X) = ak for some k > 0.
The equation

aXb = Y

has a solution s(X) = w and s(Y) = awb for each word w.
The equation

aXY X3 = XY aY 2

has infinite number of solutions: Since s(aXY) and s(XY a) have always the same length, this is
equivalent to a system of equations

aXY = XY a and X3 = Y 2 .

The former has solutions X = an, Y = am and the latter ensures that 3n = 2m.
The equation

XbaY b = baaababbab

has a solution s(X) = baaa, s(Y) = bba

1.3 SLPs
Definition 1.6 (Straight Line Programme, SLP). Straight Line Programme (SLP) is a CFG in the
Chomsky normal form that generates a unique string. The size of the SLP is the sum lengths of its
right-hand sides and for an SLP A it is denoted by |A|. The unique word generated by A is denoted
by val(A).

Without loss of generality we assume that nonterminals of an SLP are X1, . . . , Xg, each rule is
either of the form Xi → a or Xi → XjXk, where j, k < i; the latter condition essentially means that
they are in the Chomsky normal form. This increases the size of the SLP only by a constant fraction.
With this assumption the size is asymptotically the same as the number of nonterminals: in this case
— g.

Note, that an SLP can be seen as a word equation of a very restricted kind.

1.3.1 Equivalence of SLPs
Given two SLPs A,B the equivalence problem is the question whether they define the same string, i.e.
val(A) = val(B). This can clearly be tested in PSPACE, but in fact can be done in P, which we will
learn later on.

1.4. COMPOSITION SYSTEMS 7

1.4 Composition systems
In many proofs it is easier to use the ‘substring’ approach rather than the SLPs. Thus the composition
systems are SLPs that additionally allow a usage of substrings of nonterminals, i.e. we can use A[b : e]
in a rule, its semantics is ‘substring of a string generated by A from position b to e’. It is easy to show
that composition system can be transformed into an SLP with a polynomial size increase; the proof
is left as an exercise.

Lemma 1.7. A composition system of size n can be transformed into an equivalent SLP of size O(n2)

Proof. Proof is left as an exercise. This is not the best bound.

1.5 Satisfiability via SLPs
This section is based on [55].

Definition 1.8 (Cut, touching a cut). A cut (in an equation) is a position between two symbols (i.e.
letters, variables or ‘=’ sign) or at the beginning or end of the equation. We generalise this notion to
a cut for a solution.

A substring in s(u) or s(v) overlaps a cut α, if α is within this word or at its beginning or end.

Fact 1.9. There are |u|+ |v|+ 2 cuts in a word equation u = v.

Definition 1.10. For a function f : X 7→ N a substitution (solution) s is an f -substitution (f -
solution), if |s(X)| = f(X) for each variable X.

Definition 1.11. Given a substitution s we say that two positions in s(uv) are in R′ relation, if:

• they are corresponding positions of s(u) and s(v) or

• they are corresponding positions of different occurrences of some s(X)

Define R as a transitive, reflexive and symmetric closure of R′

Lemma 1.12. Consider a substitution s and the R relation, let f be such that s is an f -substitution.
Then

1. There is an f -solution if and only if no equivalence class contains two positions corresponding
to different constants and the sides of the equation have equal lengths when substituted with an
f -substitution.

2. if s is a solution and there is an equivalence class containing no constants from the equation
then it is not length-minimal. Moreover, the symbols at positions in this class can be filled with
the same arbitrary string, in particular by ε, and the obtained substitution is a solution.

3. For any two positions iRj in an f -solution s′ we have s′(uv)[i] = s′(uv)[j].

Proof. Rather obvious.

Lemma 1.13. Suppose that s is a length-minimal solution and w is a substring in s(u). Then there
is a substring w in s(u) or s(v) which overlaps with a cut.

Proof. Left as an easy exercise.

In the following, we denote cuts by Greek letters. For a cut α let (α)k be the word that extends
2k−1 to the left and right from α (truncate it, when this exceeds the s(u) or s(v)).

Consider (α)k+1 and express it as

(α)k+1 = wk(α)kw′k

8 CHAPTER 1. WORD EQUATIONS: BASIC NOTIONS AND RESULTS

where |wk|, |w′k| ≤ 2k−1.
By Lemma 1.13, we get that wk and w′k are substrings of some (β)i and (γ)i. As they are of length

2k−1, so when wk overlaps β, it is within (β)k), so we can in fact take (β)k and (γ)k
Thus

(α)k+1 = (β)k[i . . j](α)k(γ)k[i′ . . j′]

Treating (α)k+1 as nonterminals, we obtain a composition systems for those cuts. Now, for k = logN
the (α)k+1 is actually the whole s(u). Thus, we have a composition system of size O(n2 logN) for
the smallest solution (and so also the same size for each variable). The same argument applies also to
each variable

Theorem 1.14. Given a length-minimal solution of an equation u = v there is a composition system
of size O(n2 logN) of a solution word.

Exercises

Task 1 Show that a satisfiability of a system of word equations is NP-hard already when Σ = {a}.

Hint:Thisreducestosomeotherknownequations.

Task 2 Show that the satisfiability of word equations is NP-hard when we consider only systems in
which every vi does not contain variables.

(Note: it might be easier to show this when we allow also ε as a substitution for a variable).

Task 3 Show that the problem of satisfiability of a system of word equations can be reduced to the
problem of satisfiability of a single word equation, when we are allowed to add letters to the alphabet.
Show the same result also when adding letters is not allowed, but |Σ| ≥ 2.

Task 4 Suppose that s is a length-minimal solution of a word equation u = v. Let w be a substring of
s(u). Show that w has an occurrence that overlaps with some cut. Strengthen this for w = a ∈ Σ: in
this case a occurs in u or in v. Conclude that without loss of generality the length-minimal solutions
do not use letters outside the alphabet Σ.

Hint:Usingtheinductivedefinitionofthetransitiveclosuremaybehelpful.

Task 5 Reduce the satisfiability problem for word equations to the satisfiability problem of cubic word
equations

Task 6 Show that the problem of word equations with context-free constraints is undecidable. (Mean-
ing, that we allow constraints with languages from the class of context-free languages).

Task 7 Show that the Intersection Problem for DFAs
Problem: Non-emptiness of Intersection for DFAs
Input: DFAs (deterministic finite automata) D1, D2, . . . , Dm

Task: Decide, whether the intersection of their languages is non-empty

is PSPACE-hard.
Show that this problem is in PSPACE even when we allowe NFAs.
Deduce from this that word equations with regular constraints are PSPACE-hard.

Task 8 (Long: two points) Consider a mapping from Σ = {a, b} to 2× 2 matrices over N, defined
as

ϕ(a) =
[
1 1
0 1

]
and ϕ(b) =

[
1 0
1 1

]
.

Extend this to Σ∗ as a homomorphism.
Show that for any w ∈ Σ∗ its image is a a matrix with a determinant one.

1.5. SATISFIABILITY VIA SLPS 9

Show that this mapping is injective; to do this, consider, what are the rows of a matrix ϕ(a)
[
n n′

m m′

]

and what are the rows of ϕ(a)
[
n n′

m m′

]
. Deduce from this that looking at the matrix Mw = ϕ(w) we

can determine the left-most letter of w by looking at rows of Mw.
Show that if a 2 × 2 matrix M with determinant 1 and all natural entries can be represented as

either ϕ(a)M ′ or ϕ(b)M ′, where M ′ has a determinant 1 and all natural entries. Again: compare the
rows.

Deduce from this that ϕ is an isomorphism between Σ∗ and 2×2 matrices with determinant 1 and
all entries natural.

Deduce from this that satisfiability of word equation over Σ = {a, b} reduces to the satisfiability
of equations over natural numbers (to do this, represent a ϕ(X) as a matrix of variables representing
natural numbers).

Task 9 Show that the composition system of size n can be turned into an SLP of polynomial size.
How small you can make the polynomial?

Task 10 Give a PSPACE algorithm for the equivalence problem of two composition systems.
Problem: Equivalance of Compositions Sytems
Input: Two composition systems C and C′.
Task: Decide, whether val(C) = val(C′).

Give also a coNP algorithm for this problem.

10 CHAPTER 1. WORD EQUATIONS: BASIC NOTIONS AND RESULTS

Chapter 2

Satisfiability of word equations in PSPACE

Idea
In Section 1.5 we showed that there is an SLP for the length-minimal solution of size poly(n, logN).
The construction of the SLP was top-down and it required an external bound on the size of the SLP,
i.e. N . In this chapter we show that a bottom-up approach for such a construction is more useful, as
we do not need an upper-bound on the size of the solution.

2.1 Bottom-up costruction of an SLP for a word
Definition 2.1. Two different letters ab are called a pair. An occurrence of a` in w is a maximal block
if it cannot be extended to the right nor left.

A pair compression of ab in w replaces each occurrence of ab by occurrence of a fresh letter c. A
block compression of a in w for each ` replaces all maximal blocks a` with a fresh letter a`.

“a`” is just a naming convention, it does not store any information about `.
The following algorithm builds an SLP for a word. Our goal is to simulate it on the solution word.

Algorithm 1 Compression of a word w
1: while |w| > 1 do
2: L← list of letters in w
3: for a ∈ L do
4: compress blocks of a
5: P ← list pairs in w
6: for ab ∈ P do
7: replace all occurrences of ab in w by a fresh letter c

2.2 Soundness and completeness
Definition 2.2 (Soundness, completeness). A nondeterministic procedure is sound, when given an
unsatisfiable word equation u = v it cannot transform it to a satisfiable one, regardless of the non-
deterministic choices; such a procedure is complete, if given a satisfiable equation u = v for some
nondeterministic choices it returns a satisfiable equation u′ = v′.

Observe, that a composition of sound (complete) procedures is sound (complete, respectively)

Lemma 2.3. The following operations are sound:

1. replacing all occurrences of a variable X with wXw′ for arbitrary w,w′ ∈ (Σ ∪ X)∗;

2. replacing some occurrences of a word w ∈ Σ+ (in u and v) with a fresh letter c;

3. replacing occurrences of a variable X with a nonempty word w 6= ε.

11

12 CHAPTER 2. SATISFIABILITY OF WORD EQUATIONS IN PSPACE

Proof. In the first case, if s′ is a solution of u′ = v′ then s defined as s(X) = s′(wXw′) and s(Y) = s′(Y)
otherwise is a solution of u = v.

In the second case, if s′ is a solution of u′ = v′ then s obtained from s′ by replacing each c with w
is a solution of u = v.

Lastly, in the third case, if s′ is a solution of u′ = v′ then we can obtain s from s′ by defining the
substitution s(X) = w and s(Y) = s′(Y) in other cases.

2.3 Crossing and Noncrossing Pairs and Blocks

Definition 2.4. Given an equation u = v and a substitution s and an occurrence of a substring
w ∈ Σ+ in s(u) (or s(v)) we say that this occurrence of w is

• explicit, if it comes from substring w of u (or v, respectively)

• implicit, it it comes from substitution of s(X) for a single occurrence of a variable X

• crossing otherwise.

A string w is crossing (with respect to a solution s) if it has a crossing occurrence and non-crossing
(with respect to a solution s) otherwise.

We say that a pair of ab is a crossing pair (with respect to a solution s), if ab has a crossing
occurrence. Otherwise, a pair is non-crossing. Similarly, a letter a ∈ Σ has a crossing block, if there
is a maximal block of a which has a crossing occurrence. This is equivalent to a (simpler) condition
that aa is a crossing pair.

Unless explicitly stated, we consider crossing/non-crossing pairs ab in which a 6= b.

Lemma 2.5. Given an equation with n occurrences of variables the number of different crossing pairs
and blocks is at most 2n.

Proof is left as an easy exercise.

2.4 Compression of noncrossing pairs and blocks

Algorithm 2 PairCompNCr(a, b) Pair compression for a non-crossing pair
1: let c ∈ Σ be an unused letter
2: replace each explicit ab in u and v by c

Algorithm 3 BlockCompNCr(a) Block compression for a letter a with no crossing block
1: for each explicit a occurring in u or v do
2: for each ` do
3: let a` ∈ Σ be an unused letter
4: replace every explicit a’s maximal `-block occurring in u or v by a`

Lemma 2.6. PairCompNCr(a, b) is sound and when ab is a non-crossing pair in an equation u = v
(with respect to some solution s) then it is complete: the new equation u′ = v′ has a solution s′ such
that s′(u′) is obtained by compression of pair ab in s(u).

Similarly, BlockCompNCr(a) is sound and when a has no crossing blocks in u = v (with respect to
some solution s) it is complete: the new equation u′ = v′ has a solution s′ such that s′(u′) is obtained
by compression of each maximal block a` in s(u) into a`.

In particular, in both cases if anything was compressed, so (u, v) 6= (u′, v′) then |s′(u′)| < |s(u)|.

2.5. UNCROSSING 13

Proof. From Lemma 2.3 it follows that both PairCompNCr(a, b) and BlockCompNCr(a) are sound.
Suppose that u = v has a solution s such that ab is a noncrossing pair with respect to s. Define

s′: s′(X) is equal to s(X) with each ab replaced with c (where c is a new letter). Consider s(u) and
s′(u′). Then s′(u′) is obtained from s(u) by replacing each ab:

explicit the explicit occurrences of ab are replaced by PairCompNCr(a, b),

implicit the implicit ones are replaced by the definition of s′ and by the assumption

crossing there are no crossing occurrences.

In particular, if anything was compressed in the equation then |s′(u′)| < |s(u)|.
The same argument applies to s(v) and s′(v′). Hence s′(u′) = s′(v′), which concludes the proof in

this case.
The proof for the block compression follows in the same way.

2.5 Uncrossing

Algorithm 4 Pop(a, b)
1: for X ∈ X do
2: let b be the first letter of s(X) . Guess
3: if the first letter of s(X) is b then
4: replace each X in u and v by bX . Implicitly change s(X) = bw to s(X) = w
5: if s(X) = ε then . Guess
6: remove X from u and v
7: Perform a symmetric action for the last letter and a

Lemma 2.7. The Pop(a, b) is sound and complete.
Furthermore, if s is a solution of u = v then for some nondeterministic choices the obtained u′ = v′

has a solution s′ such that s′(u′) = s(u) and ab is non-crossing (with regards to s′).

Algorithm 5 Pop (a) Popping a-prefixes and a-suffixes
1: for X ∈ X do
2: let `X and rX be the lengths of the a-prefix and suffix of s(X) . Guess

. If s(X) = a`XX then rX = 0
3: replace each X in u and v by a`XXarX . `X and rX are stored as bitvectors,

. implicitly change s(X) = a`XwarX to s(X) = w
4: if s(X) = ε then . Guess
5: remove X from u and v

Lemma 2.8. Pop(a) is sound. It is complete, to be more precise: For a solution s of u = v let for
each X `X , rX be the lengths of a-prefix and a-suffix of s(X). Then when Pop pops a`X to the left and
arX to the right, the returned equation u′ = v′ has a solution s′ such that s(u) = s′(u′) and a has no
crossing blocks with respect to s′.

14 CHAPTER 2. SATISFIABILITY OF WORD EQUATIONS IN PSPACE

2.6 The algorithm

Algorithm 6 WordEqSat Checking the satisfiability of a word equation
1: while |U | > 1 or |V | > 1 do
2: L← list of letters (in the equation)
3: while there is a ∈ L without crossing blocks do . Guess
4: BlockCompNCr(a)
5: remove a from L
6: for a ∈ L do . |L| ≤ 2n
7: Pop (a)
8: BlockCompNCr(a)
9: P ← list pairs in the equation

10: while there is non-crossing ab ∈ P do
11: take some non-crossing ab ∈ P
12: PairCompNCr(a, b)
13: remove ab from P
14: for ab ∈ P do . |P | ≤ 2n
15: Pop (a, b)
16: PairCompNCr(a, b)
17: Solve the problem naively . With sides of length 1, the problem is trivial

One iteration of the main loop is a called a phase.

Lemma 2.9. Consider two consecutive letters a, b at the beginning of the phase in u or v. At least
one of those letters is compressed in this phase.

Note that this does not depend on the nondeterministic choices.

Proof. Consider whether a = b or not:

• a = b: In this case they are compressed using BlockCompNCr.

• a 6= b: In this case ab is a pair occurring in the equation at the beginning of the phase and so it
was listed in P and as such we try to compress it. This occurrence cannot be compressed only
when one of the letters a, b was already compressed, in some other pair or by BlockCompNCr.
In either case we are done.

Lemma 2.10. Given an equation u = v and its length-minimal solution s the length of the maximal
a-block in s(u) is 2O(|uv|).

The proof is given in the next Chapter 3 and it follows from a more general bound on the exponent
of periodicity.

Lemma 2.11. For appropriate nondeterministic choices, the equations stored by (successful) compu-
tation of WordEqSat are of length O(n2), the additional computation performed by WordEqSat use
O(n2) space.

Note that the bound does not hold for all nondeterministic choices, but by using standard tech-
niques we can bound the space available to the algorithm and reject the computation that try to
exceed this space.

Proof. As we do not add occurrences of variables, the equation has at most n occurrences of variables.
By Lemma 2.5 there are at most 2n crossing blocks and pairs. Each uncrossing brings at most 2n

new letters, so in total at most 8n2 new letters are introduced during a phase.

2.6. THE ALGORITHM 15

On the other hand, from Lemma 2.9 the equation gets shorter: if the words between variables are
w1, w2, . . . wn+2. Each wi is reduced by at least |wi|−1

3 letters due to compression. Thus we remove at
least ∑

i=1

|wi| − 1
3 ≥ |uv| − n3 − n+ 2

3 = |uv|3 − 2n+ 2
3

So the equation stabilises at at most 24n2 +2n+2 letters: if |uv| ≤ 24n2 +2n+2 then |u′v′| ≤ 24n2 +
2n+ 2:

|u′v′| ≤ |uv| − |uv|3 + 2n+ 2
3 + 8n2

= 2|uv|
3 + 2n+ 2

3 + 8n2

≤ 2
3(24n2 + 2n+ 2) + 2n+ 2

3 + 8n2

= 24n2 + 2n+ 2

As the input equation has length n, so smaller than 24n2 + 2n+ 2 a simple inductive argument shows
the bound.

Theorem 2.12. Satisfiability of word equations is in PSPACE.

Proof. First of all, the whole algorithm runs in polynomial space.
As all subprocedures are sound, we never return YES for an unsatisfiable equation.
If the equation is satisfiable, then after each compression step, which changes something, we end up

with an equation with a shorter solution word (for a length-minimal solution). Thus we cannot cycle.
So we can have counter, which after visiting large enough number of equations tells us to reject.

Exercises

Task 11 Show that for a word equation with n occurrences of variables there are at most 2n different
crossing pairs and at most 2n different letters with crossing blocks.

Task 12 Let s be a length-minimal solution of a word equation u = v. Show that

• Let ab occur in s(u). Show that ab has a crossing or explicit occurrence in s(u) or s(v) (with
respect to s).

• Let a occur in s(u). Show that a occurs in u or v, i.e. it has an explicit occurrence.

• Let a` be a maximal block in s(u). Show that it has a crossing, explicit occurrence or it is a
prefix or suffix of some s(X) (so in other words: it touches the cut). It might help to look at
ba`c.

Task 13 Show that we can uncross and compress all blocks of all letters in parallel, i.e. as one
procedure that pops at most one prefix and one suffix per occurrence of variable.

Task 14 A partition of an alphabet Σ is a pair (Σ1,Σ2) such that Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = ∅.
Show that we can uncross and compress a set of pairs {aibi}i∈I in parallel, assuming that ai ∈ Σ1

and bi ∈ Σ2 for each i ∈ I.

Task 15 Consider a word w ∈ Σ∗ such that none of its two consecutive letters are the same. An
occurrence of a pair ab in w is covered by a partition (Σ1,Σ2) if a ∈ Σ1 and b ∈ Σ2. Show that there
is a partition of Σ such that it covers at least |w|−1

2 letters in w. Show that it can be computed in
linear time.

Generalise this observation to a word equation with a solution s (and at most n occurrences of
variables).

16 CHAPTER 2. SATISFIABILITY OF WORD EQUATIONS IN PSPACE

Hint:Reducethisproblemtocalculationofamaximal(weighted)cutinagraph.Ithasasimple
randomisedsolutionwhichcanbederandomisedusingexpectedvalueapproach.Itisdescribedin
MichaelMitzenmacher,EliUpfalProbabilityandcomputingbook[48]aswellasinVijayVazirani
Approximationalgorithmsbook[71].

Task 16 Using Tasks 13–15 give a linear-time algorithm for compressing a word based on the algorithm
presented during the lecture. (Model assumption: all letters are integers, we can employ RadixSort on
them.)

Task 17 Using Tasks 13–15 devise an algorithm for word equation that keeps a linear-size equation;
the algorithm can use more memory when processing the equations, moreover, at some point it will
have to store blocks acn, but we treat them as size-1. (The latter is a cheat, but we will learn how to
deal with this later on).

Task 18 Underspecified, but should be doable with the hints inside.
Show that for a suitable constant c, if a word equation with at most n occurrences of variables

and size at least cn2 has a length-minimal solution s, then one of the following holds:

• there is a non-crossing pair ab in s(u);

• for some non-crossing a there is a block a` in s(u), for ` > 1;

• there is a crossing ab such that uncrossing and compressing it does not increase the size of the
equation;

• there is a with crossing blocks such that uncrossing and compressing a-blocks does not increase
the size of the equation.

Employ this observation in an algorithm for word equations.

Task 19 (Long and tedious, but not that difficult) The goal of this task is to create a variant
of algorithm that performs only compression of pairs, perhaps pairs of the same letter.

The reason why we cannot use compression of pairs aa is that they can overlap and the compression
is ambiguous, for instance consider an equation aX = Xa (all its solutions have s(X) ∈ a∗). We cannot
pair letters in X and in s(aX) in the same way.

However, this can be walked around: observe, that a and X commute, as they both represent
blocks of a. Thus we can change aX to Xa on the left-hand side, without affecting the equation.

Show, that if there is a particular letter a, such that each variable either:

1. has no a-prefix and no a-suffix or

2. is a block of a

then we can rearrange the variables and perform the aa-pair compression. This should pop at most 1
letter from each variable.

Show that afterwards 1–2 is satisfied for a′, which represents aa.
To reach an equations satisfying 1–2 we pop a-prefixes and a-suffixes of variables, but represent

them as variables.
However, this is not yet enough, as we pile up with many letters popped from variables. To remedy

this, we type the letters that represent compressed blocks of a: initially we type a and variables
satisfying 2; then we additionally perform pair compression for letters that are a-typed. Show that in
this way 1 can be generalised: there is no prefix and suffix of a-typed letters.

This should be enough for the algorithm.

Task 20 Suppose that the above algorithm was implemented, i.e. we are able to solve word equations
in (non-deterministic) polynomial space performing only compressions of the form ab→ c. Show that
this implies that the size of the size-minimal solution is at most doubly exponential.

This argument does not work that easily for variant with block compression. Can you say why?

2.6. THE ALGORITHM 17

Task 21 Show that the algorithm for word equations (in some variant: choose whichever you like) in
fact generates an SLP of size poly(n, logN) for some solution of a word equation of size N . How low
can you make the dependency on logN?

Task 12 should be helpful.

18 CHAPTER 2. SATISFIABILITY OF WORD EQUATIONS IN PSPACE

Chapter 3

Exponent of periodicity: simple case

In this section it is more convenient to use s for a solution. By n we denote the length of the equation
and by nv the number of occurrences of variables in this equation.

3.1 Exponent of periodicity
Definition 3.1. For a word w the exponent of periodicity per(w) is the maximal k such that uk is a
substring of w, for some u ∈ Σ+; Σ-exponent of periodicity perΣ(w) restricts the choice of u to Σ.

The notion of exponent of periodicity is naturally transferred from strings to equations: For an
equation u = v, define the exponent of periodicity as

per(u = v) = max
s

[per(s(u))] ,

where the maximum is taken over all length-minimal solutions s of u = v; define the Σ-exponent of
periodicity of u = v in a similar way.

The ultimate goal is to prove a well-known exponential bound on exponent of periodicity of length-
minimal solutions.

Theorem 3.2 (Kościelski and Pacholski [31]). Given an equation u = v its exponent of periodicity
per(u = v) is at most exponential in |uv|:

per(u = v) = 2O(|uv|) .

.

This bound is known to be tight (and relatively easy to show), up to the constant in the exponent.
In this chapter we shall show an exponential bound on the Σ-exponent of periodicity (so in other

words: exponential bound on the lengths of maximal blocks in length-minimal solutions). The general
case needs some further knowledge in word combinatorics, Chapter 4, and is given in Chapter 5.

3.2 Touching blocks and their lengths
Definition 3.3. A maximal a-block in s(u) or s(v) is touching for a solution s, if it contains an
explicit letter or non-empty a-prefix or a-suffix of some occurrence of s(X). In other words, it touches
a cut.

A touching length is a length of a touching (maximal) a-block.

Lemma 3.4. Given a word equation of length n and nv occurrences of variables, there are at most
n+ 2nv different touching blocks.

When s is length-minimal, each maximal a-block has a touching length.

Proof. One letter and one prefix/suffix belongs to at most one maximal a-block.
If such a block has a length that is not touching, then all maximal blocks of this length can be

deleted (requires some further argument, but works — this is left as an exercise).

19

20 CHAPTER 3. EXPONENT OF PERIODICITY: SIMPLE CASE

By e1, e2, . . . , ek we denote the lengths of touching a-blocks, listed from left-to-right. Note that
some of those values may be equal. By `X , rX we denote the length of the a-prefix and a-suffix of
s(X), if s(X) ∈ a+ then we set rX = 0. W generally disregard those values that are equal 0: simply
remove them.
Example 3.1. Consider an equation

XabXXa = aXbY Y Y . (3.1)

It is easy to show that the solutions of of the form s(X) = a`X , s(Y) = a`Y if and only if

2`X + 1 = 3`Y .

3.3 Arithmetic expressions and their equations
The Example 3.1 suggests that the solution can have a-blocks whose lengths are parametrised and
those parameters are to satisfy a certain system of Diophantine equations. We first formalise, what
type of lengths we are dealing with.

Definition 3.5. Arithmetic expressions may use positive constants and variables {LX , RX}X∈X ,
which represent positive natural numbers. They are usually denoted by E1, E2, . . . , Ek.

For a given word equation of length n a set of such expressions is a system of small arithmetic
expressions when

• it uses variables {LX , RX}X∈X , where X is a set of variables used in the word eqution

• the sum of constants in those expressions is at most n

• variables LX (RX) is multiplied only by positive constants and the sum of those constants is at
most the number of occurrences of the variable X in the word equation.

For an expression E depending on variables {LX , RX}X∈X by E[{`X , rX}X∈X] we denote the value
that is obtained by substituting `X and rX , which are positive natural numbers, for variables LX and
RX , for each variable X ∈ X .

Consider an equation u = v and its solution s. We shall construct a system of small Diophantine
expressions associated with u = v and s, in the following way: list the touching lengths of a-blocks
in s(u) and s(v), e1, . . . , ek, we create small Diophantine expressions E1, . . . , Ek. If the ei includes
a prefix/suffix `X/rX then we include LX/RX in Ei. When ei spans (in total) over m explicit letters
a then we add to Ei the constant m.

Lemma 3.6. For a given word equation u = v with variables X and lengths of touching blocks e1,
e2, . . . , ek the constructed set of arithmetic expressions E1, E2, . . . , Ek in variables {LX , RX}X∈X is
small, moreover ei = Ei[{`X , rX}X∈X], where `X and rX are the lengths of the a-prefix and a-suffix
of s(X).

Proof. Consider the maximal touching block and think of the a-prefixes and a-suffixes.

Example (Example 3.1 continued). For the equation (3.1) the maximal blocks (from left to right) are
e1, e2, e3, e4 and we have

E1 = LX + 1, E2 = 2LX + 1, E3 = LX + 1, E4 = 3LY .

Let e1, . . . , ek be touching lengths of maximal blocks of a and E1, . . . , Ek the corresponding arith-
metic expressions. Define a system of equations: partition the lengths e1, e2, . . . , ek into groups of the
same value. For each such group {ei1 , ei2 , . . . , eij} add equations

Ei1 = Ei2 , Ei2 = Ei3 , . . . , Eij−1 = Eij

Then add inequalities LX > 0 (RX > 0), when `X exists, i.e. it is non-zero, otherwise add `X = 0 (the
same for rX). Call this system of equations and inequalities D.

3.4. PARAMETRISED SOLUTIONS 21

Lemma 3.7. {`X , rX}X∈X is a solution of D.
For every solution of this system {`′X , r′X}X∈X it holds that

ei = ej implies Ei[{`′X , r′X}X∈X] = Ej [{`′X , r′X}X∈X]

Proof. Straight from the definition: Ei = Ej is added when ei = ej and Ei[{`X , rX}X∈X] = ei,
similarly Ej [{`X , rX}X∈X] = ej .

Again, when ei = ej then Ei = Ej is a consequence of D.

3.4 Parametrised solutions
Consider a length-minimal solution s(X). Each maximal block of a in s(X) that is not touching is of
touching length. Assign to each such block one of ei (of the same value) in an arbitrary way. To a
touching block assign its length.

Define a parametrised solution S(X): it is s(X) in which we replace each block assigned with ei
with aEi ; moreover, we replace the a-prefix and a-suffix with aLX and aRX .

Lemma 3.8. S(u) and S(v) are obtained by replacing each maximal a-block of length ei (or assigned
to length ei) with aEi.

Proof. Easy induction.

We define S[{`′X , r′X}X∈X](X) in a natural way: each aE we turn into aE[{`′X ,r
′
X}X∈X] and each

aLX , aRX into a`′X , ar′X .

Lemma 3.9. Each S[{`′X , r′X}X∈X] is a well-defined substitution.
S[{`X , rX}X∈X] = s.

Proof. First: obvious.
Second: as Ei[{`X , rX}X∈X] = ei.

Theorem 3.10. If {`′X , r′X}X∈X is a solution of D then S[{`′X , r′X}X∈X] is a solution of the word
equation.

Moreover this solution is obtained by replacing an a-maximal block of length ei with aEi[{`′X ,r
′
X}X∈X].

Proof. Both follow from the second observation in Lemma 3.7.

3.5 Solutions of system of linear Diophantine equations
Consider a system of m linear Diophantine equations in r variables x1, . . . , xr, written as

r∑
j=1

ni,jxj = ni for i = 1, . . . , m (3.2a)

together with inequalities guaranteeing that each xi is positive

xj ≥ 1 for j = 1, . . . , r . (3.2b)

In the following, we are interested only in natural solutions, i.e. the ones in which each component
is a natural number; observe that inequality (3.2b) guarantees that each of the component is greater
than zero. We introduce a partial ordering on such solutions:

(q1, . . . , qr) ≥ (q′1, . . . , q′r) if and only if qj ≥ q′j for each j = 1, . . . , r.

A solution (q1, . . . , qr) is minimal if it satisfies (3.2) and there is no solution smaller than it. (Note,
that there may be incomparable minimal solutions.)

It is known, that each component of the minimal solution is at most exponential:

22 CHAPTER 3. EXPONENT OF PERIODICITY: SIMPLE CASE

Lemma 3.11 (cf. [31, Corollary 4.4]). For a system of linear Diophantine equations (3.2) let w =
r +

∑m
i=1 |ni| and c =

∑m
i=1

∑r
j=1 |ni,j |. If (q1, . . . , qr) is its minimal solution, then qj ≤ (w + r)ec/e.

The proof is a slight extension of the original proof of Kościelski and Pacholski, which takes in to
the account also the inequalities. For completeness, we recall its proof, as given in [31].

proof, cf. [31]. The proof follows by estimation based on work of [72] and independently by [33]

Claim 3.11.1 (cf. [31]). Consider a (vector) equations and inequalities Ax = B, Cx ≥ D with integer
entries in A, B, C and D. Let M be the upper bound on the absolute values of the determinants

of square submatrices of the matrix
(
A
C

)
, r be the number of variables and w the sum of absolute

values of elements in B and D. Let q = (q1, . . . , qr) be a minimal non-zero (i.e. there is a non-zero
coordinate) solution. Then for each 1 ≤ i ≤ r we have qi ≤ (w + r)M .

So it remains to estimate M from Claim 3.11.1, we recall the argument of [31].
Recall the Hadamard inequality: for any matrix N = (ni,j)ki,j=1 we have

det2(N) ≤
k∏
j=1

k∑
i=1

n2
i,j .

Therefore

|det(N)| ≤

 k∏
j=1

k∑
i=1

n2
i,j

1/2

Hadamard inequality

≤

 k∏
j=1

(
k∑
i=1
|ni,j |

)21/2

trivial

=
k∏
j=1

k∑
i=1
|ni,j | simplification

≤

∑k
j=1

(∑k
i=1 |ni,j |

)
k

k inequality between means

≤
(
c

k

)k
by definition

k∑
j=1

k∑
i=1
|ni,j | = c

≤ ec/e calculus: sup at k = c/e.

Taking N to be any submatrix of (ni,j) yields that M ≤ ec/e and consequently qi ≤ (w + r)ec/e, as
claimed.

3.6 Bound on Σ-exponent of periodicity

We can now infer the upper-bound on the Σ-exponent of periodicity of the length-minimal solution of
the word equation.

As a first step, let us estimate the values w, r, c from Lemma 3.11 in case of system of equations D

Lemma 3.12. For a system of equations D Lemma 3.11 yields a bound of

O(ne4nv/e)

on coordinates of its minimal solutions.

3.6. BOUND ON Σ-EXPONENT OF PERIODICITY 23

Proof. Concerning the sum of coefficients on the left hand side, for inequalities we have 1 per variable,
so 2nv in total, for equalities we have 2nv, as each expression can be used twice and they have sum of
constants n. Thus w ≤ 2nv + 2n. For r: we have 2nv variables.

Observe that as the matrix for the inequalities, so the matrix C from Claim 3.11.1, in our case is
an identity, it is enough to consider the bound on the values of determinants of square submatrices of
A from this Claim, i.e. the matrix of equalities. Those are coefficients by the variables, so by definition
of small set of arithmetic expressions, this sum is at most 4nv.

Thus the bound is O(ne4nv/e).

Lemma 3.13 (cf. [31]). Consider a solution s of a word equation u = v, and a system D created for it.
Consider all solutions {`X , rX}X∈X of this system and the corresponding solutions S[{`X , rX}X∈X].
For a length-minimal s′ among them the lengths of longest a-block in s′(u) is O(poly(n)e4nv/e), while
for any variable it is O(poly(n)e4nv/e).

Proof. We know that all S[{`X , rX}X∈X] are solutions. Let, as in the statement, s′ be a length minimal
among them, let it correspond to a solution {`′X , r′X}X∈X of D. Then by definition `′X , (r′X) are the
lengths of the a-prefix and suffix of s′(X). We show that {`′X , r′X}X∈X is a minimal solution of D:
suppose for the sake of contradiction that it is not. Then there is a solution {`′′X , r′′X}X∈X of D, such
that

`′′X ≤ `′X and r′′X ≤ r′X for each X ∈ X (3.3)

and at least one of those inequalities is strict, without loss of generality let `′′Y < `′Y .
Then the lengths of all substitutions |s′′(X)| ≤ |s′(X)| and for Y the equality is strict. Thus s′ is

not length-minimal, contradiction.
Now we can use Lemma 3.12 to get our bounds (note that we need to sum some of such coordinates

to get a length of one a-block).

As a short corollary we obtain:

Theorem 3.14 (cf. [31]). The Σ-exponent of periodicity of a word equation u = v with nv occurrences
of variables is O(poly(n)e4nv/e).

Proof. We can estimate the lengths of maximal a-blocks for each a separately by Lemma 3.13.

Exercises

Task 22 Show Hadamard inequality for a square matrix N = (ni,j)ki,j=1

|det(N)| ≤
k∏
j=1

√√√√ k∑
i=1

n2
i,j .

Task 23 Show that the exponential bound on the length of a-blocks for length-minimal solutions is
tight (the exact constant at the exponent is not tight, though).

Task 24 Show that we can use the a-presentation approach for the compression algorithm: we do
not guess the lengths of the a-prefixes and suffixes, but denote them as variables and we write an
appropriate system of linear equations.

Show that when the word equation can be encoded using m bits (in a natural encoding) then the
constructed system has size O(m) bits.

Hint:Unaryencodingtheconstants,inwhichaconstantpisencodedusingpbits,maybeeasierfor
proofpurposes,eventhoughitisnotefficient.

Task 25 Show that we can verify the system of linear Diophantine equations in which all constants
are encoded in unary in linear space (counted in bits).

24 CHAPTER 3. EXPONENT OF PERIODICITY: SIMPLE CASE

Hint:Repeatedlyguesstheparityofsidesofallequationsanddivideby2.Doyouseesomeconnection
withblockcompression,bothways?

Task 26 Using the bound on the size of the minimal solutions of integer programming show that
the doubly exponential bound on the size of the length-minimal solution follows from our original
algorithm

Task 27 Show that the exponential bound on the exponent of periodicity (but not with a 2O(n) bound,
though) can be inferred already from our original algorithm for word equations plus the bound on the
length of a-blocks in the length-minimal solutions.

Hint:Howdoestheexponentofperiodicitychangesafteronecompressionstep?Whatisthedifference
betweenpaircompressionandblockcompression?

Chapter 4

Basic string combinatorics (stringology)

4.1 Periodicity
Definition 4.1 (Prefix, suffix). A word u is a prefix of w when w = uv for some v, this is denoted
by uvw, it is a proper prefix when additionally u 6= w, this is denote by u@w. Similarly v is a suffix
(proper suffix) of w when w = uv for some u (some u 6= ε), this is denoted by wwv (wAv, respectively).

Given a word w is u-prefix is the longest prefix of w from the set u∗.

Definition 4.2 (Period of a word). A word w = w[1 . . n] has a period u if

w = uw[1 . . n− |u|] .

A string p is a border of w when it is both a suffix and a prefix.
A string w is a power of (or repetition of) u if w = uk for some k ≥ 0. It is a power (or repetition),

if it is of the form w = uk for some k > 1.

Fact 4.3. A word w has a period of length p if and only if it has a border of length |w| − p.

Fact 4.4. If a word w has a period p then it is of the form

w = pkp′

where p′ is a prefix of p and k ≥ 1.

Example 4.1. Consider a word aabaaba. It has periods aab and aabaab. It has a borders aaba and a.
It is not a power. Its prefix aabaab = (aab)2 is a power. It is of the form (aab)2a.

Depending of the context, the period and border are either words or the lengths of those words.

Lemma 4.5 (Periodicity Lemma). If a word w has periods p, q such that

p+ q ≤ |w|

then w has a period gcd(p, q).

Corollary 4.6 (Alternative formulation). For two words u, v if

uv = vu

then there is w and natural numbers n,m ≥ 0 such that u = wn, v = wm, i.e. they are (perhaps
trivial) powers of a the same word.

Proof. The proof follows by an induction on the unordered pairs {max(|u|, |v|),min(|u|, |v|)} sorted
lexicographically. If |u| = |v| then clearly u = v and we are done; if one of u, v is empty then we are
also done.

Otherwise, without loss of generality let |v| < |u|. Then from uv = vu we conclude that v is a
prefix of u and so u = vu′. Writing it down

vu′v = vvu′ implies u′v = vu′ .

The rest follows from the induction assumption.

25

26 CHAPTER 4. BASIC STRING COMBINATORICS (STRINGOLOGY)

The periodicity lemma has also a stronger variant

Lemma 4.7 (Strong Periodicity Lemma). If a word w has periods p, q such that

p+ q ≤ |w|+ gcd(p, q)

then w has a period gcd(p, q)

Corollary 4.8 (Alternative formulation). For two words u, v if uv and vu have a common prefix of
length at least |uv| − gcd(|u|, |v|) then then there is w and n,m such that u = wn, v = wm, i.e. they
are powers of a the same word.

4.2 Failure function
Definition 4.9 (MP failure function). Given a word w = w[1 . . n] define

πw[i] = max{j < i : w[1 . . j] is a border of w[1 . . i]}

In other words, for a prefix w[1 . . i] we store the length of the longest non-trivial border (so other
than whole w[1 . . i]).

Lemma 4.10. Given a word w its failure function πw can be computed in O(|w|) time.

Example 4.2. Consider the word aabaaba. Then

πaabaaba = [0, 1, 0, 1, 2, 3, 4] .

4.3 Primitive words
Definition 4.11. A word u 6= ε is primitive if u = wk implies w = u and k = 1

Example 4.3. Word p = aabaa is primitive, so is a word p′ = aabaaabaa. Note that p is border of p′.

Definition 4.12. We say that word u, v are conjugate if there are words p, q such that

v = pq, u = qp.

Lemma 4.13. Word u is primitive if an only if it is conjugates are pairwise different.

Lemma 4.14. Let u, u′ be nonempty, conjugate words. Then u is primitive if and only if u′ is
primitive.

Lemma 4.15. Let u be primitive then
u2 = u′uu′′

implies that {u′, u′′} = {ε, u}.

Proof. From the statement it follows that |u′u′′| = |u|. Furthermore, u′ is a prefix of u and u′′ is a
suffix of u. Thus u = u′u′′. Again from the equation we get

u′u′′u′u′′ = u′u′u′′u′′

and so u′′u′ = u′u′′ = u, which implies that one of u′, u′′ is u and the other ε.

Theorem 4.16. Let u, v, w be primitive such that u2 is a prefix of v2 and v2 of w2. Then |u|+|v| ≤ |w|.

Theorem 4.17. Given a word w there are O(log |w|) different primitive p such that p2vw. All such
p can be found in O(|w|) time.

Proof. The proof is left as ax exercise. It follows from Theorem 4.16 and simple application of the
MP array.

4.4. SUFFIX TREES 27

4.4 Suffix trees
Definition 4.18 (Trie). A trie for a set of word w1, . . . , wk over an alphabet Σ is a tree whose edges
are labelled with elements of Σ such that:

• each node has at most one edge to its child labelled with a given letter a;

• for every word wi in the set there is a leaf such that the sequence of labels to this leaf forms wi;

• all leaves have the property described above.

Definition 4.19 (Suffix tree). Given a word w[1 . . n] the suffix tree of w is a trie for the set of suffixes
of w$, where $ is a special symbol outside the alphabet. Each path on which there are no branching
nodes is compressed, i.e. represented as a single edge (labelled with a word obtained as a concatenation
of labels on this path).

Lemma 4.20. The suffix tree of w$ has |w|+ 1 leaves and so also at most |w| branching nodes.

Theorem 4.21. Suffix tree for w can be constructed on-line in time O(|w| log |Σ|).
It can be also constructed offline in time O(|w|) assuming that Σ ⊆ {0, 1, 2, . . . , |w|c} for some

constant c.

Definition 4.22 (LCP data structure for suffix tree). The LCP da structure for a tree answers queries
of the form: given two leaves in the tree, what is their lowest common ancestor.

Theorem 4.23. Given a suffix tree, a structure for answering the LCP queries in O(1) and using
O(|w|) memory can be constructed in O(|w|) time, in the standard RAM model.

Fact 4.24. The suffix tree for a word w together with the LCP supports queries for the longest common
prefix of substring of w in O(1) time.

Exercises

Task 28 Show equivalence of Lemma 4.5 and Corollary 4.6 and the equivalences of Lemma 4.8 and
Corollary 4.8.

Task 29 Show that Lemma 4.7 follows from its variant in which gcd(|u|, |v|) = 1.

Task 30 Prove Lemma 4.7, it may be easiest to prove Corollary 4.8 by adapting the proof of Corol-
lary 4.6.

Task 31 (Alternative proof of Periodicity Lemma 4.5) Given a word w[1 . . p+ q] with periods
p, q such that gcd(p, q) = 1 define a graph on the positions of this word: there is an edge {i, j} if and
only if |i− j| ∈ {p, q}. Show that this graph is a cycle. Deduce from this that w ∈ a∗ for appropriate
a.

Strengthen this to the case, when w = w[1 . . p+ q − 1].

Hint:Whathappenswiththegraphfromthefirstpoint,whenweremovethelastnode?

Task 32 Show that u is primitive if and only if all its conjugates are pairwise distinct.
Let u, u′ be conjugate. Show that u is primitive if and only if u′ is primitive.

Task 33 Prove Theorem 4.16.

Task 34 Prove Theorem 4.17.

Task 35 Recall the linear-time construction of the MP array.

28 CHAPTER 4. BASIC STRING COMBINATORICS (STRINGOLOGY)

Chapter 5

Exponent of periodicity: general case

5.1 P -presentations
Definition 5.1. Let P be a primitive word and U0, . . . , Uu be a sequence of words. Define a function:

[U0, . . . , Uu] : Nu → Σ∗ by [U0, . . . , Uu](`1, . . . , `u) = U0P
`1U1P

`2 · · ·P `uUu .

A P -presentation of a word W is a sequence (U0, . . . , Uu) such that:

1. for i ≤ u P 2 is not a subword of Ui,

2. for 0 < i < u P 6= Ui,

3. for 0 < i ≤ u P is a prefix of Ui,

4. for 0 ≤ i < u P is a suffix of Ui,

and for some `1, . . . , `u we have
W = [U0, . . . , Uu](`1, . . . , `u)

Note that only first condition is non-void if the presentation has u = 0.
Our main goal is to show that the P -presentation of a word is unique and that given a P -

presentation of W,W ′ the P -presentation of WW ′ can be computed and that it does not depend
on the sequences `1, . . . , `u.

Theorem 5.2. Given a primitive word P and a word W the P -presentation of W exists and it is
unique; it can be computed greedily.

Given P -presentations of strings W,W ′:

W = [U0, . . . , Uu](k1, . . . , ku)
W ′ = [V0, . . . , Vv](`1, . . . , `v)

the P -presentation of WW ′ is of one of the following forms, the form depends only on Uu and V0.

• WW ′ = [U0, . . . , Uu−1, V1, . . . , Vv](k1, . . . , ku−1, ku + `1 + c, `2, . . . , `v) for some 0 ≤ c ≤ 3.

• WW ′ = [U0, . . . , Uu−1, U
′, V1, . . . , Vv](k1, . . . , ku−1, ku+c, `1+c′, `2, . . . , `v) for some 0 ≤ c, c′ ≤ 2.

• WW ′ = [U0, . . . , Uu−1, U
′, V ′, V1, . . . , Vv](k1, . . . , ku−1, ku + c, c′, `1 + c′′, `2, . . . , `v) for some 0 ≤

c, c′, c′′ ≤ 2.

• WW ′ = [U0, . . . , Uu−1, U
′, U ′′, V ′, V1, . . . , Vv](k1, . . . , ku−1, ku, 0, 0, `1, `2, . . . , `v).

The proof of the Theorem 5.2 is not overaly difficult, but it follows in a couple of steps.

Lemma 5.3. For a given primitive word P the P -presentation of a word W exists and it is unique.
It can be found greedily.

29

30 CHAPTER 5. EXPONENT OF PERIODICITY: GENERAL CASE

Proof left as an exercise.

Lemma 5.4. Given a primitive P and two wordsW,W ′ with presentations (W), (W ′) the presentation
of WW ′ is of one of the following forms:

• (WW ′)

• (U, V) and WW ′ = UV

• (U, V) and WW ′ = UPV

• (U,Z, V) and WW ′ = UZV .

Proof left as an exercise.
Example 5.1. P = aabaa, W = aabaaaaba = Paaba, W ′ = abaaaabaa = abaaP . Then WW ′ has a
P -presentation (P, aabaabaa, P). And this is the last case in the Lemma 5.4

The Theorem follows from case inspection and Lemma 5.4 an is left as an exercise.

5.2 System of equations
We now allow parametrised P -presentations and parametrised words defined by them. The parametrised
P -presentation can use variables instead of numbers for the powers of P .

The approach is similar as in the restricted case of exponent of periodicity. We fix a solution s
and create a parametrised substitution S out of it. We then inspect the word equation and create a
system of linear Diophantine equations, in variables that are used in the parametrised presentation
for variables. Every solution of this system will give values for variables that turn the parametrised
substitution into a true solution of the word equation.

We will use natural variable {LX , RX}X ∈X and an infinite set of variables {Ni}. Unless specifically
said, each time we use a variable Ni, it is fresh, i.e. not used elsewhere.

Fix a solution s and a primitive word P . Let s(X) has a P -presentation [U0, . . . , Uu](k1, . . . , ku).
We create a parametrised substitution S defined on X as

S(X) = [U0, . . . , Uu](LX , N1, . . . , Nu−1, RX)

If u = 0 then it has no variables, if u = 1 then the only variable is LX . Note that the indices in N are
used only for illustration: those are variables not used elsewhere.

Let R be the right-hand side. Our goal is to calculate the P -presentation of S(R). To this end we
consider the consecutive prefixes R′vR and define the P -presentation of S(R′) for them.

• R′ = ε and so it has a P -presentation (ε).

• When we have such a representation for S(R′) and we want to extend it to the P -presentation
of S(R′X) then by Theorem 5.2 the P -presentation of S(R′X) is the presentation of S(R)′ and
S(X) concatenated with some small changes in the middle.
The parametrised P -presentation of S(u′X) uses fresh variables and adds equations that for-
malise the equalities between old and new variables, according to Theorem 5.2. Note that at
most 4 of them are not of the form Ni = Nj and so at most 8 sides of the equation are other
than the variables from {Ni}.

• we do a similar things for S(R′a).

In the end we get a P -factorisation of S(R). We do the same for S(L), where L is the left-hand side
of the equation, and add equalities between corresponding variables.

In the end we get a set of linear equation D. In total it has at most 8|uv| sides that are different
than the variables from {Ni}.

5.2. SYSTEM OF EQUATIONS 31

Lemma 5.5. For any prefix R′ of R and a parametrised solution S let the parametrised P -presentation
of S(R′)

[U0, . . . , U`]({LX , RX}X∈X , {Ni})

For any numbers {`X , rX}X∈X , {ni} the P -presentation of S[{`X , rX}X∈X , {ni}](u′) is

[U0, . . . , U`]({`X , rX}X∈X , {ni}) .

Each solution of the system D yields a solution of the word equation.

Lemma 5.6. Each solution of D gives a solution of the word equation, obtained by replacing variables
with their values in the P -presentations.

Recall that in D there are at most 4|uv| equations whose at least one side that is other than
the variables from {Ni}i∈N, take sides of those equations. Those terms can be grouped into parts
representing those that are equalised by D. This can be formalised as an equation with 8|uv| equations.
Each side contains at most 2 variables and a constant at most 3.

Lastly, we argue as in Section 3.6: if there is a length-minimal solution then it has to correspond
to a minimal solution of D. So every component in it, so the variable LX , RX is at most exponential.
For other variables are equal to one of those terms, they are at most exponential. If there are any
other variables: we set them to 0.

Exercises

Task 36 Prove Lemma 5.4.

Task 37 Prove Lemma 5.3.

Task 38 Prove Theorem 5.2.

32 CHAPTER 5. EXPONENT OF PERIODICITY: GENERAL CASE

Chapter 6

Quadratic word equations

Since in general the satisfiability of word equations is NP-hard, it is natural to try to find a smaller
subclass of this problem, which is decidable in P. Limiting the number of possible variables or the
number of their occurrences are such candidates. In case of quadratic equations it is easy to give a
(non-deterministic) linear-space algorithm, which preceded a general PSPACE algorithm.

Algorithm 7 Lentin/Plotkin/Siekman algorithm for word equations
1: while The equation u = v is nontrivial do
2: let u = αu′, v = βv′

3: if α = β then
4: set u← u′, v ← v′

5: else if α is a variable then
6: if s(α) = ε then . Non-deterministic guess
7: remove α from the equation
8: else if s(β) = ε then . Non-deterministic guess
9: remove β from the equation

10: else if s(α)≥ s(β) then . Non-deterministic guess
11: replace α in the equation with βα
12: else . β is a variable
13: replace β with αβ
14: else if β is a variable then . Symmetric actions
15: else if α, β are different letters then
16: reject

6.1 Analysis
It is easy to see that Algorithm 7 is sound — this follows straight from Lemma 2.3; it is not difficult
to see that it is complete (when we make the choices according to some solution). What is not obvious
is that it is terminating. However, for quadratic word equations the length of the equation does not
increase: we introduce at most two new symbols, but at the same time removed exactly two due to
reduction. This procedure can be easily written down as a graph with nodes labelled with possible
(systems of equations) and edges between them representing the possible steps.

It remains unknown, whether quadratic equations are in NP. This is known in case of equations
in free groups [30], but the argument is heavy in terms of geometry, so it will not be presented here.

Exercises

Task 39 Show that the algorithm for quadratic equations in fact yields a description of all solutions
of such na equation.
Task 40 Consider a restricted class of word equations satisfying the following two conditions:

33

34 CHAPTER 6. QUADRATIC WORD EQUATIONS

regular Each variable occurs at most once at each side;

oriented If two variables X,Y occur on both sides of the equation then they appear in the same
order on both sides (i.e. if X occurs to the left of Y on the left-hand side, the same happens on
the right-hand side and vice-versa).

Show that satisfiability of such equations is in NP.

Task 41 Give an algorithm that computes πw for a given word w.

Chapter 7

Word equations with one variable

As of today, the case of word equations with 3 variables remains unknown: it is not known to be
NP-hard, nor it is known to be within NP. (It is known to be within NP in some restricted cases [58]).

On the other hand, it was shown by Charatonik and Pacholski [4] that indeed, when only two
variables are allowed (though with arbitrarily many occurrences), the satisfiability can be verified
in deterministic polynomial time. The degree of the polynomial was very high, though. This was
improved over the years and the best known algorithm is by Dąbrowski and Plandowski [14] and it
runs in O(n5) and returns a description of all solutions.

7.1 One variable equations
Clearly, the case of equations with only one variable is in P. Constructing a cubic algorithm is almost
trivial, small improvements are needed to guarantee a quadratic running time. First non-trivial
bound was given by Obono, Goralcik and Maksimenko, who devised an O(n logn) algorithm [51].
This was improved by Dąbrowksi and Plandowski [15] to O(n+#X logn), where #X is the number of
occurrences of the variable in the equation. Furthermore they showed that there are at most O(logn)
distinct solutions and at most one infinite family of solutions. Intuitively, the O(#X logn) summand
in the running time comes from the time needed to find and test these O(logn) solutions.

This work was not completely model-independent, as it assumed that the alphabet Σ is finite
or that it can be identified with numbers. A more general solution was presented by Laine and
Plandowski [32], who improved the bound on the number of solutions to O(log #X) (plus the infinite
family) and gave an O(n log #X) algorithm that runs in a pointer machine model (i.e. letters can be
only compared and no arithmetical operations on them are allowed); roughly one candidate for the
solution is found and tested in linear time. Note that there is a conjecture that one variable word
equations have O(1) solutions (plus the infinite family), in fact, an equation with 3 solutions outside
the infinite family is not known.

We present a specialisation of the recompression algorithm for word equation for the one-variable
case and show that it has the running time O(n log #X). This running time can be improved to linear,
at the expense of heavy usage of stringology data structures and combinatorial analysis.

7.2 One-variable equations: structure
Without loss of generality in a word equation A = B one of A and B begins with a variable and the
other with a letter:
• if they both begin with the same symbol (be it letter or variable), we can remove this symbol
from them, without affecting the set of solutions;

• if they begin with different letters, this equation clearly has no solution.
The same applies to the last symbols of A and B. Thus, in the following we assume that the equation
is of the form

A0XA1 . . . AnA−1XAnA = XB1 . . . BnB−1XBnB , (7.1)

35

36 CHAPTER 7. WORD EQUATIONS WITH ONE VARIABLE

where Ai, Bi ∈ Σ∗ and nA (nB) denote the number of X occurrences in A (B, respectively). Note that
exactly one of AnA , BnB is empty and A0 is non-empty. It the number of occurrences of variables at
both sides are different than it is easy to show that there is at most one solution and it can be easily
found (exercise). Similarly, if AnA 6= ε then the equation can be split into two equivalent ones (and
then joined in the reverse order, slightly more challenging exercise). Thus in the following we assume
that the equation is of the form

A0XA1 . . . AnX−1X = XB1 . . . BnX−1XBnX . (7.2)

7.3 Via word combinatorics
Lemma 7.1. Given a word equation xp = qx, if it is satisfiable then:

• p, q are conjugate and consequently also their primitive roots of p, q are conjugate, that is, there
are u, v such that uv, vu are primitive and p = (vu)k and q = (uv)k for some k ≥ 1;

• the set of solutions of the equation is of the form (uv)∗u.

Given p, q the u, v can be calculated in linear time.

Proof is left as an exercise

7.3.1 |A0| ≤ |B1|

Let B0 be a prefix of B1 of length A0. Then A0X = XB0. Hence by Lemma 7.1 the A0 and B0
are conjugate. We can calculate their primitives roots and so obtain u, v such that A0 = (uv)m,
B0 = (vu)m and s(X) = (uv)ju and uv is primitive.

Lemma 7.2. Given two words u, v such that uv is primitive solutions of (7.2) such that s(X) = (uv)iu
can be found in time O(|uv|+ n).

Moreover, let sj be defined as sj(X) = (uv)ju. Then among s1, . . . , sn, . . . either none, one or all
are solutions.

Proof. We treat s0(X) = u separately. Using the MP table for u it is easy to test, whether it is a
solution, in linear time.

We will calculate the (uv)-prefix of the solution word, let us begin with the left-hand side. We
distinguish two cases: A0 is and is not a power of uv

A0 is not a power of uv

Claim 7.2.1. Let i ≥ 1. If A0 is not a power of uv then the uv-prefix of si(A) is the same as
the uv-prefix of A0uv.
Observe first that uvvsi(X) and so A0uvvsi(A). Let A0 = (uv)ku′ where uv is not a prefix of
u′ 6= ε. If |u′| ≥ |uv| then we are done as the uv-prefix is (uv)k. If the uv-prefix is (uv)k+1 then
it is in A0uv and we are done. If it is at least (uv)k+2 then it includes u′ and it is continued by
some v′ such that u′v′ = uv. But then the ending v′ of the k + 1 uv and the beginning u′ of
the k + 2 uv should also form uv, as they are equal to the last uv in A0uv, contradiction with
u′v′ = v′u′ = uv which is primitive.

A0 is a power of uv If A0 is a power of uv then for all consecutive Ai which are of the form v(uv)∗
this prefix spans over them. Let Aj be the first which is not in v(uv)∗.

Claim 7.2.2. Let i ≥ 1. Let A0 be a power of uv and all Aj′ for j′ < j are from the set (vu)∗v
and Aj is not. Then the uv-prefix of si(A) is the same as the uv-prefix of si(A0XA1 · · ·XAjuv).

The argument is as in the case of Claim 7.2.1. Note that if there is no such j then the uv prefix
span through the whole left-hand side.

7.3. VIA WORD COMBINATORICS 37

The length of this prefix can be easily calculated in terms of i and j (and constants depending on A)
We do a similar calculation for the right hand side, this time expressed in i and j′, where Bj′ is

the first of Bs that is not from the set (vu)∗v. A similar statement to Claim 7.2.2 holds.
Since the uv-prefixes of both sides must be equal, we obtain an equation for i, i′, j. Either it is not

satisfiable (and there is no solution of this form) or it has exactly one solution or all numbers are a
solution. In the second case we get one candidate s(X) = (uv)ju and it can be easily tested in linear
time using MP table. In the last case, we recursively deal with the remaining part of the equation
(note that some care is needed at the ends, as the prefix could extend beyond the word).

Lemma 7.3. Given an equation (7.2) with |A0| ≤ |B1| in linear time we can return the set of
solutions. It consists of 0, 1, 2 or infinite number of solutions.

7.3.2 |s(X)| ≥ |A0| − |B1| > 0
We consider first the solutions in which |s(X)| ≥ |A0| − |B1| > 0. Let A′ be a prefix of A0 of length
|A0| − |B1|. Note that A0vs(X) or s(X)vA0 and A′vA0 and |s(X)| ≥ |A′|, in any case A′vs(X).
Thus A0s(X) = s(X)B1A

′. The rest of the argument is as in the case above.

Lemma 7.4. Given an equation (7.2) with |A0| > |B1| in linear time we can return the set of
solutions such that |s(X)| ≥ |A0| − |B1|. It consists of 0, 1, 2 or infinite number of solutions.

7.3.3 |A0| − |B1| > |s(X)| > 0
The remaining cases are called individual solutions, all of them are of length smaller than |A0| − |B1|.

Let us prepend both sides of the equation with B1. Then the right-hand sides begins with (B1X)2

and the left with B1A0X. As |B1s(X)| ≤ |A0| it follows that (B1X)2vB1A0A0.
Let P be the primitive root of B1s(X). Then there are u, v such that P = vu and

B1 = (vu)jv and s(X) = (uv)iu (7.3)

Moreover, P 2vB1A0A0. It is known that that there are at most O(log |B1A0A0|) such P and all of
them can be found in linear O(|B1A0A0|) time, see Theorem 4.17.

Now, for each such candidate P we can compare it with B1 and obtain appropriate u, v. Then
for each family of candidate solutions si(X) = (uv)iu we separately test s0 in linear time and for the
others we can use Lemma 7.2 to test others in linear time. This in total yields O(n logn) running
time for the algorithm.

This can be sped up: on one hand we show that in total linear time for each P we can reject all
but two candidate solutions, thus we are left with O(logn) candidate solutions. Then, assuming that
the alphabet is constant or contained in {1, 2, . . . , nc} for a constant c, so that RadixSort can be used
on it, we can test a single candidate solution in O(nX) time, see Section 7.3.4.

From the assumption on the length of the solution we get that

|A0| > |s(x)|+ |B1| ≥ |vu| = |P |

Let us consider the vu prefix of B1A0A0. We first show that at most one of them spans through the
whole B1A0A0.

Lemma 7.5. Suppose that the (vu)-prefix of B1A0A0 contains at least |vu| letters in the second A0.
Then uv is the primitive root of A0.

Proof. We know that |A0| > |uv| by the case assumption. Since B1 ends with v, the A0 begins with uv
and this is not the whole A0. Now, the second A0 also begins with uv; the argument as in Claim 7.2.1
shows that the vu prefix cannot extend over the whole |uv| first letters of the second occurrence of
A0, contradiction. Thus A0 is the power of uv, so it is its primitive root.

We verify this case separately by Lemma 7.2.
So in the following we can assume that the vu-prefix of B1A0A0 ends not later than after |vu|

letters of the second A0; note that this is the same as the vu prefix of B1A0s(X) as |s(x)| ≥ |uv| and
s(X)vA0.

38 CHAPTER 7. WORD EQUATIONS WITH ONE VARIABLE

Lemma 7.6. Given a set of primitive words P1, . . . , Pk such that for each i P 2
i vB1A0A0, in total

time O(|B1A0A0|) we can establish for all Pi from P1, . . . , Pk the Pi-prefix of B1A0A0.

This can be done using the MP table, and is left as an exercise.
We will also calculate the length of the P -prefixes of the right-hand side of the equation.

Lemma 7.7. There are at most three different primitive P = vu such that B1 = (vu)jv for j > 0.
Those candidates can be determined in linear time and for them the length of the vu-prefix of s(B)
can be determined in linear time.

Proof. • If B1 has such a representation (vu)jv for j ≥ 2 for two different P and P ′, where
|P | > |P ′|, in particular, P and P ′ are its periods. But then |P |+ |P ′| < |B1| and so there is a
common smaller period, contradiction.

• If B1 = vuv then in particular |P | ≤ |B1| < 2|P |. But when P1, . . . , Pi are all primitive square
prefixes of B1A0A0 then |Pj+2| ≥ 2|Pj |.

In the second case the P satisfying this condition can be determined based only on the length:
|P | ≤ |B1| < 2|P | and there are at most two such P s. In the first case we need to use Lemma 7.6:
using it we can establish the P for which the P -prefix of B1 includes more than one P s.

Then for each of those P we can establish the vu prefix of s(B) in linear time: using an argument
as in Claim 7.2.2 we are to look for the first Bk which is not in (vu)∗v, which can be done in linear
time, and the vu-prefix of s(B) is the vu-prefix of s(B1X · · ·XBkvu) (or without the extra vu, when
Bk is the last one).

Then the length of the vu prefix on the left-hand side is fixed and on the right-hand side it depend
of k|s(X)|, in particular, it uniquely determines the length of s(X).

So we are left with the case in which B1 = v. Note that this does not uniquely determines P , as
u is not known. In this case we look for the first Bk 6= v. There are two cases: either the first such
Bk ∈ (vu)+v or not. In the first case we use the same argument as in Lemma 7.7 to conclude that this
can be for at most three different P s and thus the vu-prefix can be also determined in linear time, as
in Lemma 7.7.

So the last remaining case is that Bk 6= v and it is not of the form (vu)j′v for any v. Then an argu-
ment as in Claim 7.2.2 shows that the vu-prefix of s(B) is the same as vu-prefix of s(XB1XB2X · · ·XBkuv)
(the special case that Bk is the last is handled separately). For a given P we can establish this by
looking at the MP table of Bkuv. But as uvvA0, it can be established from the MP table of BkA0,
moreover, all those calculations take in total O(BkA0) time. After that we can establish the length of
the prefix on the right-hand side and determine the length of s(X), as in Lemma 7.6.

7.3.4 Verification of candidate solutions

Lemma 7.8. Using a suffix tree LCP data structure, one singular solution can be verified in O(#X)
time; those data structures can be constructed in time O(n) time.

7.4 Via recompression
If (7.2) is violated for any reason, we greedily repair it by cutting identical letters (or variables) from
both sides of the equation. We say that A0 is the first word of the equation and BnX is the last word.
We additionally assume that none of words Ai, Bj is empty. We later (after Lemma 2.7) justify why
this is indeed without loss of generality.

Note that if s(X) 6= ε, then using (7.2) we can always determine the first (a) and last (b) letter of
s(X) in O(1) time. In fact, we can determine the length of the a-prefix and b-suffix of s(X).

Lemma 7.9. For every solution s of a word equation such that s(X) 6= ε the first letter of s(X) is
the first letter of A0 and the last the last letter of BnX (whichever is non-empty).

If A0 ∈ a+ then s(X) ∈ a+ for each solution s of A = B.

7.4. VIA RECOMPRESSION 39

If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution s(X) ∈ a+, existence
of such a solution can be tested (and its length returned) in O(|A| + |B|) time. Furthermore, for
s(X) /∈ a+ the lengths of the a-prefixes of s(X) and A0 are the same.

Two comments are in place:

• Symmetric version of Lemma 7.9 holds for the suffix of s(X).

• It is later shown that finding all solutions from a+ can be done in linear time, see Lemma 7.16.

A simple proof is left as an exercise.
By TestSimpleSolution(a) we denote a procedure, described in Lemma 7.9, that for A0 /∈ a∗ estab-

lishes the unique possible solution s(X) = a`, tests it and returns ` if this indeed is a solution.

7.4.1 Representation of solutions

Consider any solution s of A = B. We claim that s(X) is uniquely determined by its length and so
when describing solution of A = B it is enough to give their lengths.

Lemma 7.10. Each solution s of equation of the form (7.2) is of the form s(X) = (A0)kA, where A
is a prefix of A0 and k ≥ 0. In particular, it is uniquely defined by its length.

Proof. If |s(X)| ≤ |A0| then s(X) is a prefix of A0. When |s(X)| > |A0| then s(A) begins with A0s(X)
while s(B) begins with s(X) and thus s(X) has a period A0. Consequently, it is of the form Ak0A,
where A is a prefix of A0.

7.4.2 Weight

Each letter in the current instance of our algorithm OneVarWordEq represents some string (in a com-
pressed form) of the input equation, we store its weight which is the length of such a string. Further-
more, when we replace X with a`X (or Xa`) we keep track of the sum of weights of all letters removed
so far from X. In this way, for each solution of the current equation we know what is the length of
the corresponding solution of the original equation (it is the sum of weights of letters removed so far
from X and the weight of the current solution). Therefore, in the following, we will not explain how
we recreate the solutions of the original equation from the solution of the current one. Concerning
the running time needed to calculate the length of the original solution: our algorithm OneVarWordEq
reports only solutions of the form a`, so we just need to multiply ` with the weight of a and add the
weights of the removed suffix and prefix.

7.4.3 Preserving solutions

All subprocedures of the presented algorithm should preserve solutions, i.e. there should be a one-to-
one correspondence between solution before and after the application of the subprocedure. However,
when we replace X with a`X (or Xbr), some solutions may be lost in the process and so they should
be reported. We formalise these notions.

Definition 7.11 (Preserving solutions). A subprocedure preserves solutions when given an equation
A = B it returns A′ = B′ such that for some strings u and v (calculated by the subprocedure)

• some solutions of A = B are reported by the subprocedure;

• for each unreported solution s of A = B there is a solution s′ of A′ = B′, where s(X) = us′(X)v
and s(A) = us′(A′)v;

• for each solution s′ of A′ = B′ the s(X) = us′(X)v is an unreported solution of A = B and
additionally s(A) = us′(A′)v.

40 CHAPTER 7. WORD EQUATIONS WITH ONE VARIABLE

The intuitive meaning of these conditions is that during transformation of the equation, either we
report a solution or the new equation has a corresponding solution (and no new ‘extra’ solutions).

By hc→ab(w) we denote the string obtained from w by replacing each c by ab, which corresponds
to the inverse of pair compression. We say that a subprocedure implements pair compression for
ab, if it satisfies the conditions from Definition 7.11, but with s(X) = uhc→ab(s′(X))v and s(A) =
uhc→ab(s′(A′))v replacing s(X) = us′(X)v and s(A) = us′(A′)v.

Similarly, by h{a`→a`}`>1(w) we denote the string w with letters a` replaced with blocks a`, for
each ` > 1; note that this requires that we know, which letters ‘are’ a` and what is the value of `,
but this is always clear from the context. A notion of implementing blocks compression for a letter a
is defined similarly as the notion of implementing pair compression. The intuitive meaning of both
those notions is the same as in case of preserving solutions: we not loose, nor gain any solutions.

7.4.4 Specialisation of procedures

We now specialise the general algorithms to our specific setting. Pair compression and block compres-
sion work exactly as before. However, during popping we need to additionally verify some solutions,
which may be lost.

Algorithm 8 Pop(a, b)
1: if b is the first letter of s(X) then
2: if TestSimpleSolution(b) returns 1 then . s(X) = b is a solution
3: report solution s(X) = b

4: replace each X in A = B by bX
. Implicitly change s(X) = bw to s(X) = w

5: if a is the last letter of s(X) then
6: if TestSimpleSolution(a) returns 1 then . s(X) = a is a solution
7: report solution s(X) = a

8: replace each X in A = B by Xa
. Implicitly change s(X) = w′a to s(X) = w′

Lemma 7.12. Pop(a, b) preserves solutions and after its application the pair ab is noncrossing.

The only new part is the preservation of solutions. But this easily follows from Lemma 7.9.
Thus first uncrossing a pair ab and then compressing it as a noncrossing pair implements the pair

compression.
There is one issue: the number of non-crossing pairs can be large, however, a simple preprocessing,

which basically applies Pop, is enough to reduce the number of crossing pairs to 2.

Algorithm 9 PreProc Ensures that there are at most 2 crossing pairs
1: let a, b be the first and last letter of s(X)
2: run Pop(a, b)

Lemma 7.13. PreProc preserves solution and after its application there are at most two crossing
pairs.

Proof. It is enough to show that there are at most 2 crossing pairs, as the rest follows from Lemma 2.7.
Let a and b be the first and last letters of s(X), and a′, b′ such letters after the application of PreProc.
Then each X is preceded with a and succeeded with b in A′ = B′. So the only crossing pairs are aa′
and b′b (note that this might be the same pair or part of a letter-block, i.e. a = a′ or b = b′).

Note that in order to claim that the lengths of a-prefix of s(X) and A0 are the same, see Lemma 7.9,
we need to assume that s(X) is a not block of letters. This is fine though, as this condition holds
when we apply Algorithm 10.

7.4. VIA RECOMPRESSION 41

Algorithm 10 Pop Cutting prefixes and suffixes; assumes that A0 is not a block of letters
Require: A0 is not a block of letters, the BnX is not a block of letters

1: let a be the first letter of s(X)
2: report solution found by TestSimpleSolution(a) . Excludes s(X) ∈ a+ from further considerations.
3: let ` > 0 be the length of the a-prefix of A0

. By Lemma 7.9 s(X) has the same a-prefix
4: replace each X in A = B by a`X . a` is stored in a compressed form,

. implicitly change s(X) = a`w to s(X) = w
5: let b be the last letter of s(X)
6: report solution found by TestSimpleSolution(b) . Exclude s(X) ∈ b+ from further considerations.
7: let r > 0 be the length of the b-suffix of the BnX

. By Lemma 7.9 s(X) has the same b-suffix
8: replace each X in A = B by Xbr . br is stored in a compressed form,

. implicitly change s(X) = wbr to s(X) = w

Lemma 7.14. Let a be the first letter of the first word and b the last of the last word. If the first word
is not a block of as and the last not a block of bs then Pop preserves solutions and after its application
there are no crossing blocks of letters.

Thus we can implement the block compression by first uncrossing all letters and then compressing
them all.

7.4.5 The algorithm
The following algorithm OneVarWordEq is basically a specialisation of the general algorithm for testing
the satisfiability of word equations [26] and is built up from procedures presented in the previous
section.

Algorithm 11 OneVarWordEq Reports solutions of a given one-variable word equation
1: while the first block and the last block are not blocks of a letter do
2: Pairs ← pairs occurring in s(A) = s(B)
3: BlockComp . Compress blocks, in O(|A|+ |B|) time.
4: PreProc . There are only two crossing pairs, see Lemma 7.13
5: Crossing ← list of crossing pairs from Pairs . There are two such pairs
6: Non-Crossing ← list of non-crossing pairs from Pairs
7: for each ab ∈ Non-Crossing do . Compress non-crossing pairs, in time O(|A|+ |B|)
8: PairCompNCr(a, b)
9: for ab ∈ Crossing do . Compress the 2 crossing pairs, in time O(|A|+ |B|)

10: PairComp(a, b)
11: TestSolution . Test solutions from a∗, see Lemma 7.16

We say that a word Ai (Bi) is short if it consists of at most 100 letters and long otherwise. To
avoid usage of strange constants and its multiplicities, we shall use K = 100 to denote this value and
we shall usually say that K = O(1).

Recall, that by Lemma 2.9 for any two consecutive letters a, b at the beginning of the phase in
s(A) for any solution s. At least one of those letters is compressed in this phase.

Lemma 7.15. Consider the length of the (A, i)-word (or (B, j)-word). If it is long then its length is
reduced by 1/4 in this phase. If it is short then after the phase it still is. The length of each unreported
solution is reduced by at least 1/4 in a phase.

Additionally, if the first (last) word is short and has at least 2 letters then its length is shortened
by at least 1 in a phase.

Proof. We shall first deal with the words and then comment how this argument extends to the solu-
tions. Consider two consecutive letters a, b in any word at the beginning of a phase. By Lemma 2.9

42 CHAPTER 7. WORD EQUATIONS WITH ONE VARIABLE

at least one of those letters is compressed in this phase. Hence each uncompressed letter in a word
(except perhaps the last letter) can be associated with the two letters to the right that are compressed.
This means that in a word of length k during the phase at least 2(k−1)

3 letters are compressed i.e. its
length is reduced by at least k−1

3 letters.
On the other hand, letters are introduced into words by popping them from variables. Let symbol

denote a single letter or block a` that is popped into a word. We investigate, how many symbols are
introduced in this way in one phase. At most one symbol is popped to the left and one to the right by
BlockComp in line 3, the same holds for PreProc in line 4. Moreover, one symbol is popped to the left
and one to the right in line 10; since this line is executed twice, this yields 8 symbols in total. Note
that the symbols popped by BlockComp are replaced by single letters, so the claim in fact holds for
letters as well.

So, consider any word Ai ∈ Σ∗ (the proof for Bj is the same), at the beginning of the phase and
let A′i be the corresponding word at the end of the phase. There were at most 8 symbols introduced
into A′i (some of them might be compressed later). On the other hand, by Lemma 2.9, at least |Ai|−1

3
letters were removed Ai due to compression. Hence

|A′i| ≤ |Ai| −
|Ai| − 1

3 + 8 ≤ 2|Ai|
3 + 81

3 .

It is easy to check that when Ai is short, i.e. |Ai| ≤ K = 100, then A′i is short as well and when Ai is
long, i.e. |Ai| > K then |A′i| ≤ 3

4 |Ai|.
It is left to show that the first word shortens by at least one letter in each phase. Consider that if

a letter a is left-popped from X then we created B0 and in order to preserve (7.2) the first letters of
B0 and A0 are removed. Thus, A0 gained one letter on the right and lost one on the left, so its length
stayed the same. Furthermore the right-popping does not affect the first word at all (as X is not to its
left); the same analysis applies to cutting the prefixes and suffixes. Hence the length of the first word
is never increased by popping letters. Moreover, if at least one compression (be it block compression
or pair compression) is performed inside the first word, its length drops. So consider the first word at
the end of the phase let it be A0. Note that there is no letter representing a compressed pair or block
in A0: consider for the sake of contradiction the first such letter that occurred in the first word. It
could not occur through a compression inside the first word (as we assumed that it did not happen),
cutting prefixes does not introduce compressed letters, nor does popping letters. So in A0 there are
no compressed letters. But this cannot happen.

Now, consider a solution s(X). We know that s(X) is either a prefix of A0 or of the form A`0A,
where A is a prefix of A0, see Lemma 7.10. In the former case, s(X) is compressed as a substring of
A0. In the latter observe that argument follows in the same way, as long as we try to compress every
pair of letters in s(X). So consider such a pair ab. If it is inside A0 then we are done. Otherwise, a is
the last letter of A0 and b the first. Then this pair occurs also on the crossing between A0 and X in
A, i.e. ab is one of the crossing pairs. In particular, we try to compress it. So, the claim of the lemma
holds for s(X) as well.

Lemma 7.16. For a ∈ Σ we can report all solutions in which s(X) = a` for some natural ` in
O(|A| + |B|) time. There is either exactly one ` for which s(X) = a` is a solution or s(X) = a` is a
solution for each ` or there is no solution of this form.

Note that we do not assume that the first or last word is a block of as.
A proof is left as an exercise.

7.4.6 Running time
Concerning the running time, we first show that one phase runs in linear time, which follows by
standard approach, and then that in total the running time is O(n+ #X logn). To this end we assign
in a fixed phase to each (A, i)-word and (B, j)-word cost proportional to their lengths in this phase.
For a fixed (A, i)-word the sum of costs assigned while it was long forms a geometric sequence, so
sums up to at most constant more than the initial length of (A, i)-word; on the other hand the cost
assigned when (A, i)-word is short is O(1) per phase and there are O(logn) phases.

7.4. VIA RECOMPRESSION 43

Lemma 7.17. One phase of OneVarWordEq can be performed in O(|A|+ |B|) time.

Proof. For grouping of pairs and blocks we use RadixSort, to this end it is needed that the alphabet
of (used) letters can be identified with consecutive numbers, i.e. with an interval of at most |A|+ |B|
integers. In the first phase of OneVarWordEq this follows from the assumption on the input. 1 At the
end of this proof we describe how to bring back this property at the end of the phase.

To perform BlockComp we want for each letter a occurring in the equation to have lists of all
maximal a-blocks occurring inA = B (note that after Pop there are no crossing blocks, see Lemma 2.8).
This is done by reading A = B and listing triples (a, k, p), where k is the length of a maximal block of
as and p is a pointer to the beginning of this occurrence. Notice, that the maximal block of a’s may
consist also of prefixes/suffixes that were cut from X by Pop. However, by Lemma 7.9 such a prefix
is of length at most |A0| ≤ |A|+ |B| (and similar analysis applies for the suffix). Then each maximal
block includes at most one such prefix and one such suffix thus the length of the a maximal block
is at most 3(|A| + |B|). Hence, the triples (a, k, p) can be sorted by their first two coordinates using
RadixSort in total time O(|A|+ |B|).

After the sorting, we go through the list of maximal blocks. For a fixed letter a, we use the pointers
to localise a’s blocks in the rules and we replace each of its maximal block of length ` > 1 by a fresh
letter. Since the blocks of a are sorted, all blocks of the same length are consecutive on the list, and
replacing them by the same letter is easily done.

To compress all non-crossing pairs, i.e. to perform the loop in line 8, we do a similar thing as for
blocks: we read both A and B, whenever we read a pair ab where a 6= b and both a and b are not
letters that replaced blocks during the blocks compression, we add a triple (a, b, p) to the temporary
list, where p is a pointer to this position. Then we sort all these pairs according to lexicographic
order on first two coordinates, we use RadixSort for that. Since in each phase we number the letters
occurring in A = B using consecutive numbers, this can be done in time O(|A|+ |B|). The occurrences
of the crossing pairs can be removed from the list: by Lemma 7.13 there are at most two crossing
pairs and they can be easily established (by looking at A0XA1). So we read the sorted list of pairs
occurrences and we remove from it the ones that correspond to a crossing pair. Lastly, we go through
this list and replaces pairs, as in the case of blocks. Note that when we try to replace ab it might
be that this pair is no longer there as one of its letters was already replaced, in such a case we do
nothing. This situation is easy to identify: before replacing the pair we check whether it is indeed ab
that we expect there, as we know a and b, this is done in costant time.

We can compress each of the crossing pairs naively in O(|A| + |B|) time by simply first applying
the popping and then reading the equation form the left to the right and replacing occurrences of this
fixed pair.

It is left to describe, how to enumerate (with consecutive numbers) letters in Σ at the end of each
phase. Firstly notice that we can easily enumerate all letters introduced in this phase and identify
them (at the end of this phase) with {1, . . . ,m}, where m is the number of introduced letters (note
that none of them were removed during the OneVarWordEq). Next by the assumption the letters in Σ
(from the beginning of this phase) are already identified with a subset of {1, . . . , |A|+ |B|}, we want
to renumber them, so that the subset of letters from Σ that are present at the end of the phase is
identified with {m+1, . . . ,m+m′} for an appropriate m′. To this end we read the equation, whenever
we spot a letter a that was present at the beginning of the phase we add a pair (a, p) where p is a
pointer to this occurrence. We sort the list in time O(|A|+ |B|). From this list we can obtain a list of
present letters together with list of pointers to their occurrences in the equation. Using those pointers
the renumbering is easy to perform in O(|A|+ |B|) time.

So the total running time is O(|A|+ |B|).

The amortisation is much easier when we know that both the first and last words are long. This
assumption is not restrictive, as as soon as one of them becomes short, the remaining running time of
OneVarWordEq is linear.

1In fact, this assumption can be weakened a little: it is enough to assume that Σ ⊆ {1, 2, . . . , poly(|A|+ |B|)}: in such
case we can use RadixSort to sort Σ in time O(|A|+ |B|) and then replace Σ with set of consecutive natural numbers.

44 CHAPTER 7. WORD EQUATIONS WITH ONE VARIABLE

Lemma 7.18. As soon as first or last word becomes short, the rest of the running time of OneVar-
WordEq is O(n).

Proof. One phase takes O(|A|+ |B|) time by Lemma 7.17 (this is at most O(n) by Lemma 7.15) and as
Lemma 7.15 guarantees that both the first word and the last word are shortened by at least one letter
in a phase, there will be at most K = O(1) many phases. Lastly, Lemma 7.16 shows that TestSolution
also runs in O(n).

So it remains to estimate the running time until one of the last or first word becomes short.

Lemma 7.19. The running time of OneVarWordEq till one of first or last word becomes short is
O(n+ nX logn).

Proof. By Lemma 7.17 the time of one iteration of OneVarWordEq is O(|A|+ |B|). We distribute the
cost among the A words and B words: we charge β|Ai| to (A, i)-word and β|Bj | to (B, j)-word, for
appropriate positive β. Fix (A, i)-word, we separately estimate how much was charged to it when it
was a long and short word.

• long: Let ni be the initial length of (A, i)-word. Then by Lemma 7.15 the length in the (k+1)-th
phase it at most (3

4)kni and so these costs are at most βni + 3
4βni + (3

4)2βni + . . . ≤ 4βni.

• short: Since (A, i)-word is short, its length is at most K, so we charge at most Kβ to it. Notice,
that there are O(logn) iterations of the loop in total, as first word is of length at most n and
it shortens by 3

4 in each iteration when it is long and we calculate only the cost when it is long.
Hence we charge in this way O(logn) times, so in total O(logn).

Summing those costs over all phases over all words and phases yields O(n+ nX logn).

Exercises

Task 42 Given a word equation (7.2)

A0XA1 . . . AnA−1XAnA = XB1 . . . BnB−1XBnB ,

show that if the number of occurrences of variables on both sides are different (so nA 6= nB) then this
equation has at most one solution and it can be easily given in linear time.

Task 43 Show that if in (7.2) the AnA 6= ε and BnA = ε then it has an equivalent equation in which
A′nA = ε and B′nA 6= ε.

Hint:Firstshowthatthereisasystemofequivalentequationsandthenconcatenatethem.

Task 44 Prove Lemma 7.1.

Task 45 Show Lemma 7.6.

Task 46 Suppose that given a word w we can construct in O(n) time a structure that given two indices
i, j in O(1) time returns the length of the longest common prefix of words w[i . . n] and w[j . . n].

Explain how it can be used to verify in O(n+nX logn) time the O(logn) candidate solutions, each
of which is a prefix of A0, defined as in (7.2); recall that nX is the number of occurrences of the variable
X in the equation.

Task 47 Show that for every solution s of a word equation such that s(X) 6= ε the first letter of s(X)
is the first letter of A0 and the last the last letter of AnA or BnB (whichever is non-empty).

If A0 ∈ a+ then s(X) ∈ a+ for each solution s of A = B.
If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution s(X) ∈ a+, existence

of such a solution can be tested (and its length returned) in O(|A| + |B|) time. Furthermore, for
s(X) /∈ a+ the lengths of the a-prefixes of s(X) and A0 are the same.

7.4. VIA RECOMPRESSION 45

Task 48 Let A0 ∈ a+. Show how to compute all solutions of the equation in linear time.

Hint:Lookforthefirstnon-asymbolatbothsidesoftheequationandrecurseontherest.

Task 49 Show that a word equation with 1 variable of length n has O(logn) solutions and at most
one infinite family of solutions of the form {wkw′ : k ≥ 0} and w′ is a prefix of w.

46 CHAPTER 7. WORD EQUATIONS WITH ONE VARIABLE

Chapter 8

Word equations with two variables

In this section be n we consistently mean the size of the input equation over two variables.

8.1 Parametrised words
This chapter is based on [14].

0 A 0-parametrised word is a language consisting of a single word p of length O(n); the size of this
parametrised word is |p|.

1 A 1-parametrised word is a language {pjq : j ≥ 0}, where p, q are words, p is not a prefix of q and
|pq| ∈ O(n); the size of this parametrised word is |pq|.

2 A 2-parametrised word is a language {(pj+aq)kpjp′ : j, k ≥ 0}, where p, q, p′ are words, p′vp, p is
not a prefix of q and |pqp′| ∈ O(n) and a ∈ N; the size of this parametrised word is |pqp′|.

8.2 Canonisation
We say that a word equation with two variables is in a canonised form if its sides begin with different
variables and end with different variables.
Lemma 8.1. Given an equation over two variables it can be transformed into an equation in a canon-
ised form or a superset of solutions for one of the variables which is a union of O(n) 1-parametrised
words or 0-parametrised words can be found. If the equation is transformed then during this transfor-
mation variables are substituted with X ← uXXvX , Y ← uY Y vY such that uXvXuY vY ∈ O(n) and
among uX , uY one is empty and among vX , vY one is empty.

Note that both cases can happen: we have a set of substitutions for a variable to test and a
canonised equation.

Proof. We proceed similarly as in the case of quadratic equations:
• if sides of the equation begin with the same symbol (be it a letter or a variable) then we delete
it;

• if the sides of the equation begin with different variable then we are done;

• if one side of the equation begins with X and the other with AY then we return a set of test
substitutions for X: {A′ : A′vA} and otherwise execute the substitution X ← AX. After
removing the leading A from both sides of the equation we are done at this end of the equation.

• if one side of the equation begins with X and the other with AX then we return the following
union of 1-parametrised words of possible substitutions for X: {AjA′ : A′vA}.

• we perform symmetric actions at the end of the equation. If we deleted the equation and
no parametrised solutions were proposed then this equation is always satisfied. If some were
proposed then we are done.

47

48 CHAPTER 8. WORD EQUATIONS WITH TWO VARIABLES

8.3 Simple systems of equations and their solutions
We are interested in simple systems that occur during the main reduction steps; those systems are of
the following forms.

In the following subsections n denotes the length of the input equation and A,B,C,D are words,
such that |ABCD| ∈ O(n).

8.3.1 S1

Assume additionally that CD is a primitive word. Then the system S1 is defined as{
Y AX = XBY
CDY = Y DC

. (S1)

8.3.2 S2

Let additionally |A| = |B| ≤ |C| = |D|. Then the system S2 is defined as{
Y AX = XBY
Y CX = XDY

, (S2)

and we are interested only in solutions for which s(Y) < s(X).

8.3.3 S3

Let now A 6= B. Then the system S3 is defined as

Y AX = XBY . (S3)

8.3.4 S4

Finally, the system S4 is defined as
Y AX = XAY . (S4)

8.4 Solving system S1

Lemma 8.2. Given a system of equations S1, in time O(n2) we can find a superset of subsitutuions
for X in all solutions, which is of a union of

• At most one 2-parametric word {(pj+aq)kpjp′ : j, k ≥ 0} where p is primitive and 0 ≤ a ≤ n.

• A set of O(n) 1-parametric words {pjq : j ≥ 0} with p primitive.

• At set of O(n2) 0-parametric words.

This representation is also a superset of substitutions for Y AX.

Proof. First of all, from Lemma 7.1, we know that the set of solutions (for Y) for the second equation
is (CD)∗C. After substituting this to the first equation we are left with the task of solving the equation

(CD)iCAX = XB(CD)iC (S ′1)

for each value of i. Clearly, if |A| 6= |B| then there is no solution at all, so we deal only with the case
that |A| = |B|.

If CD is the primitive root of CA then it is the primitive root of the whole (CD)iCA, thus, again
from Lemma 7.1 we conclude that B(CD)iC is conjugate to (CD)iCA, so they have primitive roots of
the same lengths and so DC is the primitive root of B(CD)iC, as it is its suffix of appropriate length.

8.4. SOLVING SYSTEM S1 49

In this case the set of solutions (for s(X)) is exactly the (CD)∗C, which is a 1-parametric word (for
p = CD and q = C).

So in the following we deal with the case when CD is not the primitive root of (CD)iCA, and
so also DC is not the primitive root of B(CD)iC. Let v = (CD)iCA and w = B(CD)iC. Let also
m = 3 +

⌈
|CA|
|CD|

⌉
. For each i ≤ m we consider the v and w separately. Note that their lengths (which

are equal) are in O(n):
∣∣(CD)iCA

∣∣ ≤ m|CD||CA| ≤ 2|CD|+3|CA|. Since this is a conjugate equation
vX = Xw, it has the set of solutions of the form (pq)∗p, where pq is the primitive root of v and qp of
w. This is a 1-parametric word.

So consider now the case in which i > m. We first show that v is primitive (and so also w, as in
order for the equation vX = Xw to be satisfiable, the words v and w need to be conjugate). Suppose
it is not and let q be the primitive root of v, in particular, it is a period of v. Consider the CD-prefix
of v, it is at least (CD)i, we want to show that it is longer than q + |CD| and apply the periodicity
Lemma:

i · |CD| − q − |CD| ≥ (|v| − |CA|)− |v|2 − |CD|

= |v|2 − |CA| − |CD|

≥ (m+ 1)|CD|+ |CA|
2 − |CA| − |CD|

≥ m|CD| − |CD| − |CA|
2

≥ 3|CD|+ |CA| − |CD| − |CA|
2

> 0

Thus q and CD are both periods of the CD-prefix, thus they are both powers of the same word,
contradiction (as CD is not the primitive root of v).

Thus by Lemma 7.1 v and w are conjugates.
Let v = gh and w = hg, then each solution is of the form

s(X) = vkg (8.1)

NOTE, the original paper claims to show that |g| ≥ |CD| and g has a period CD. Unfortunately,
it not necessarily holds that |g| ≥ |CD|, but if it does then g has a period CD. The case |g| < |CD|
has to be shown somehow differently.

We show that |g| ≥ |CD| and g has a period CD. Suppose first that |g| < |CD|. We inspect the
prefix and suffix of v which has period |CD|. Details are left as an exercise. Similarly, knowing that g
has length at least |CD| we inspect the longest prefix and suffix of g that have period |CD|. Details
are again left as an exercise.

Thus |g| ≥ |CD| and g has period CD. We intend to show that g = (CD)jC for some j ≥ 0.
Let us look at CDg. Since CD is a period of g, we know that CDg[1 . . |g|] = g. On the other hand
w = hg and the last |CD| letters of w are DC. So CDg[|g| + 1 . . g + |CD|] = DC and consequently
CDg = gDC. Since CD is primitive, from Lemma 7.1 we obtain that g = (CD)jC for some j ≥ 0.
This brings us closer to the form from (8.1), but we also need to express h in a similar way. Consider
the largest a ≥ 0 such that g has a prefix (CD)j+aC, and note that this value is independent of i, j,
as it is the length of the DC-prefix of A; denote v = (CD)j+aCV . Let now h = (DC)bW with b ≥ 0
maximal possible. Then v = gh = (CD)jC(DC)bW and so i+a = j+ b⇒ j = i+a− b. Thus in (8.1)
we obtain

s(X) = ((CD)i+aCV︸ ︷︷ ︸
v=gh

)k (CD)i+a−bC︸ ︷︷ ︸
g

thus all substitutions for X in the solution are a subset of

{((CD)i+aCV)k(CD)i+a−bC : i, k ≥ 0}
= {((CD)i+bCV)k(CD)iC : k ≥ 0, i ≥ a− b}

50 CHAPTER 8. WORD EQUATIONS WITH TWO VARIABLES

Exercises

Chapter 9

Equations without constants and related
topics

9.1 General results

9.1.1 Equivalent subsystems

Definition 9.1. Two systems of equations E and E ′ (perhaps infinite) are equivalent if: for each
substitution s it is a solution of E if and only if it is a solution of E ′ (note that the number of variables
can be infinite).

Theorem 9.2. Every infinite system of word equations E in a finite number of variables has a finite
subsystem E ′ ⊆ E that is equivalent to E.

The proof first encodes the word equations as equations between matrices, see Task 8. Those can
be reduced to polynomials. Solutions of word equations correspond to ideals of polynomials, and for
that we know that polynomials with integer coefficients have finitely generated ideals.

9.1.2 Defect Theorem

Definition 9.3. A finite set A ⊆ Σ∗ of words is a code, if any word w ∈ Σ∗ has at most one
representation

w = v1v2 · · · vk

with k ∈ N and v1, . . . , vk ∈ A.

Theorem 9.4 (Defect Theorem). If a set of words A ⊆ Σ∗ is a not a code then there is B ⊆ Σ∗ such
that |B| < |A| and A ⊆ B∗.

The Theorem is in fact stronger (it restricts the form of B), but it requires some technical tools
and definitions.

Possible applications: results similar and stronger than the periodicity Lemma:
Example 9.1. Suppose that u, v ∈ Σ∗ satisfy a nontrivial equation (that is a one which does not reduce
to ε = ε after removing of the same prefixes/suffixes from both of them). Then there is a word w ∈ Σ∗
such that u, v ∈ w∗.

For instance, this implies the Periodicity Lemma, with the equation being uv = vu. But it works
for any other equation, say uuvv = vvuu.

9.2 An interesting new result/proof
This Section is based on [59].

In this section we say that a solution s is periodic if there is a word w such that for each variable
X we have s(X) ∈ w∗.

51

52 CHAPTER 9. EQUATIONS WITHOUT CONSTANTS AND RELATED TOPICS

Consider a system of the form

Xk
0 = Xk

1X
k
2 · · ·Xk

n for k = k1, k2, k3 (9.1)

with 0 < k1 < k2 < k3 being natural numbers.

Theorem 9.5. A system (9.1) has only trivial solutions.

Note that it is easy to define systems of this form with only two equations and they have nonperiodic
solutions.

We do not specify the alphabet, yet if (9.1) has a nonperiodic solution, it has one over the binary
alphabet.

Lemma 9.6. If the system (9.1) has a nonperiodic solution then it has a nonperiodic solution over a
binary alphabet.

A simple proof is left as an exercise.
In the following, we use Γ rather than Σ to denote the finite alphabet and identify Γ with a

subset of R. Given a word w = a1a2 . . . a` by
∑

(w) we denote a1 + a2 + . . . + a`. Also, by pswq(w)
(partial sum word) we denote a sequence q + a1, q + a1 + a2, . . . , q +

∑
(w) and think of if as a

piecewise linear function that goes through the points (0, q), (1, q + a1), (2, q + a1 + a2), If no
lower index is used then by default it is 0, i.e. psw(w) = psw0(w) The idea of the lower index is that
psw(ww′) = psw(w) pswΣ(w)(w′), the piecewise linear functions are concatenated in a natural way.

We sometimes normalise the solution: w is called a 0-word if
∑

(w) = 0. We usually assume that
s(X0) is a 0-word. This can be always achieved.

Lemma 9.7. Given a solution s to a system of word equations (9.1) by changing the alphabet Γ we
obtain a different solution such that s(X0) is a 0-word.

Again, a simple proof is left as an exercise.
As a first step towards the main proof we show that if a solution is length-minimal among the

non-periodic solutions then not all of s(X0), s(X1), . . . are 0-words.

Lemma 9.8. Let s be a length-minimal among the nonperiodic solutionso of the system of equa-
tions (9.1). Then not all among s(X0), s(X1),. . . , s(Xn) are 0-words.

Proof. Suppose not. Consider the factorisations of s(Xk1
0), s(Xk2

0) and s(Xk3
0) into 0-words that

cannot be further factorised into 0-words. Let V = {v1, . . . , v`} be the set of all obtained such words.
Then s(X0) is a concatenation of some words from this set. We claim that this is the same for each
s(Xi), which is claimed by induction: suppose that each of s(X0), s(X1), . . . , s(Xi) factorises into
words from V . Look at the first occurrence of s(Xi+1) in s(Xk

1X
k
2 · · ·). The corresponding word on

the left hand side factorizes into words form V . Also the prefix factorizes into words from V . So also
s(Xi+1) factorizes into them, as it is a 0-word.

Observe that s(X0) is not a power of one of elements from V : in such a case it would be a periodic
solution and by easy induction also all s(Xi) would be powers of the same word. Thus some of used
words from V is of length graeater than 1. Make a new solution over the alphabet V , which is equal to
the factorisation of each s(Xi) into elements of V . This is a shorter solution and it is nonperiodic.

We now are ready to prove Theorem 9.5

proof of Theorem 9.5. Take the shortest non-periodic solution of the system of word equations (9.1).
By Lemma 9.7 we can assume that

∑
(s(X0)) = 0 and by Lemma 9.8 for some other variable Xi we

have that
∑

(s(Xi)) 6= 0.
Divide the variables into two groups: good and bad. A variable Xi is bad, if

∑
(s(Xi)) = 0 =∑

(s(X1X2 · · ·Xi−1)) and it is good otherwise. Fix a number a and let us count, how many times it
occurs in psw(s(X0)k). If a occurs m0 times in psw(s(X0)) then it occurs km0 times in psw(s(X0)k),
as s(X0) is a 0-word and so each copy of psw(s(X0)) begins with an offset 0.

9.3. LYNDON-SCHÜTZENBERGE THEOREM 53

The same argument applies to each of the bad variables (with a different value of m, of course).
Let us now fix a as the maximal value of that occurs in psw(s(X1)ks(X2)k · · · s(Xn)k) and comes from
some good variable. For this fixed a it occurs km times on the left hand side and has km′ occurrences
that come from bad variables on the right-hand side. Thus it has k(m − m′) > 0 occurrences that
come from good variables. To obtain a contradiction we show that for each good variable Xi it has at
least as many occurrences that come from s(Xi)k1 as from s(Xi)k2 , which cannot be, as they should
all sum (over all good variables) to, respectively, k1(m−m′) < k2(m−m′).

For this fixed i let s =
∑

(s(X1 · · ·Xi−1)), then s 6= 0 or
∑

(s(Xi)) 6= 0, as this is a good variable.
Define wi = pswkis(s(X

ki
i)). This is the part of the right-hand side that corresponds to the input of

Xi in the equation for ki.
We consider some cases. If

∑
(s(Xi)) = 0 then w1, w2, w3 are all 0-words and they begin at height

k1s, k2s, k3s, which are different. Thus w2 cannot have any occurrences of a, as w1 or w3 is above it
and a is at least the maximal value in them. In particular a has not more occurrences in w2 then in
w1.

If s = 0 then
∑

(s(Xi)) 6= 0 and so all w1, . . . , w3 begin at the same point (0) and they all either
increase or decrease with each copy of s(X)i. If they increase then a has no occurrence in w2, as the
last copy of s(Xi) in w3 is higher. If they decrease then the maximal value is attained in the first copy
of s(Xi) and it is identical in w1 and w2.

The other cases are shown in a similar fashion (sometimes we need to consider the sign of s +∑
(s(Xi))).

9.3 Lyndon-Schützenberge Theorem

The presentation is based on [16].
The main goal is to prove the following Theorem, originally stated for the free groups [42], so in a

slightly stronger form.

Theorem 9.9 (Lyndon-Schützenberge). Let m,n, k ≥ 2 be natural numbers. Then all solutions of
the equation

XmY n = Zk

are periodic, i.e. for each solution s there is a word ws such that s(X), s(Y), s(Z) ∈ w∗s for each
solution s.

We will show the theorem in a less general case of word equations.

Definition 9.10. A word w is bordered, if there exists ε 6= v 6= w such that w = vw′′ = w′v for some
w′, w′′.

Lemma 9.11. A word w is bordered if and only if there exists v, w′ with ε 6= v 6= w such that w = vw′v.
A word w is bordered if and only if there exists a word u with |u| < |w| and a natural number k

such that w is a subword of uk.

A simple proof is left as an exercise.

Lemma 9.12. If w is a conjugate to am then there are words p, q such that a = pq and w = (qp)m.

Definition 9.13. Let ≤ denote a linear-order on letters, which is extended to strings as a lexico-
graphical order.

A primitive word w is a Lyndon word (according to the order ≤), if it is the lexicographically
minimal one among the cyclic shifts of w.

Lemma 9.14. Lyndon word is not bordered.

A simple proof is left as an exercise.

54 CHAPTER 9. EQUATIONS WITHOUT CONSTANTS AND RELATED TOPICS

Lemma 9.15. Let u, v be primitive words and w a word such that |w| ≤ |v|. If they satisfy an equation

um = vkw

for some k,m ≥ 2 then either

• u = v and w ∈ {ε, v} or

• m = k = 2 and there exist p, q such that their primitive roots are different and there are natural
s, ` such that u = (pq)s+`p(pq)`, v = (pq)s+`p and w = (qp)`(pq)`.

Proof. If u = v then clearly w ∈ {ε, v}. Moreover, if w ∈ {ε, v} then um is equal to vk or vk+1 and so
has periods u, v and thus from periodicity Lemma we obtain that v, u are powers of the same primitive
words, so the assumption yields that v = u.

So it is left to consider the case in which w /∈ {ε, v}. First, observe that both u and v are periods
of vk, so if |u|+ |v| ≤

∣∣∣vk∣∣∣ then they are both the periods of it which, together with the primitivity of
u, v, leads to a conclusion that u = v. Thus we can assume that

|u|+ |v| >
∣∣∣vk∣∣∣ .

Then on one hand we have

m|u| = |um|

=
∣∣∣vkw∣∣∣

≤ (k + 1)|v|

and on the other

|u| >
∣∣∣vk∣∣∣− |v|

= (k − 1)|v|

Multiplying the second inequality by m and comparing them we obtain

(k + 1)|v| > m(k − 1)|v|

After simplification

2 > (m− 1)(k − 1) ,

which can hold only when m = k = 2.
Thus we arrive at the desired equation

u2 = v2w .

Since u 6= v we have that u = vv′ for some v′vv, let also v = v′v′′. Then

u = v′v′′v′

and on the other hand, from the second copy of u

u = v′′w

So |w| = 2 |v′| and so looking at the two expressions for w we get that

w = w′v′

9.3. LYNDON-SCHÜTZENBERGE THEOREM 55

for some w′vw. Looking again at u we finally obtain

u = v′v′′v′ = v′′w′v′

After removing the suffix v′ we see that
v′v′′ = v′′w′

Now from Lemma 7.1 this means that there exist p, q such that v′ = (pq)`, w′ = (qp)` and v′′ = (pq)sp
for some natural numbers `, s. This yields the required form of v, u, w. Proving that the primitive
roots of p, q are different, that u 6= v and w /∈ {ε, v} is left as an easy exercise.

Lemma 9.16. Let u, v be primitive words and v′@v be a prefix of v. If they satisfy an equation

um = vkv′

for some k,m ≥ 2 then u = v and v′ = ε.
A similar statement holds when v′ is a suffix and the equation is

um = v′vk

Proof. • If it does not hold that m = k = 2 then this follows directly from Lemma 9.15.

• If u = v (and k = m = 2) then equation u2 = v2v′ implies that v′ = ε.

• If k = m = 2 and u 6= v then from Lemma 9.15 we obtain the form of v, u, v′ and it is easy to
verify that this form implies that v′ is not a prefix of v, contradiction.

Thus u = v and v′ = ε.

Now we are ready to move to the main proof

proof of Theorem 9.9. Let a, b, c be words satisfying an equation

ambn = ck

for some m,n, k ≥ 2. We intend to show that there exist w such that a, b, c ∈ w∗.
If any of those words is not primitive then we can replace it with its primitive root (and increase

the power appropriately).
If ε ∈ {a, b, c} then the claim is clear: if c = ε then also a = b = c = ε and we are done. If, say,

a = ε then we get bn = ck and from Lemma 9.16 it follows that b = c; the proof is the same for b = ε.
If a = b then again we use Lemma 9.16 to conclude that a = b = c. If a = c then we can cancel

out powers of a and obtain bn = ck−m: if k −m ≤ 1 then the claim is clear. If k −m ≥ 2 then again
we use Lemma 9.16 to conclude that a = b = c. The proof is analogous for b = c.

Thus we are left with the main case, when a, b, c are pairwise different and non-empty. Let am = csc′

and bn = c′′ck−s−1 for some c′, c′′ such that c′c′′ = c. If s ≥ 2 or k − s − 1 ≥ 2 then we can use
Lemma 9.16 and conclude that a = c or b = c, which ends the argument. Thus assume s ≤ 1 and
k − s− 1 ≤ 1, thus k ≤ 3 (and by the assumption k ≥ 2). Moreover, if k = 3 then from k − s− 1 ≤ 1
we obtain that s = 1. Let us consider the two cases: k = 3, s = 1 and k = 2 separately.

First, let k = 3 and s = 1. Since am = cc′ and bn = c′′c then in particular |a|, |b| < |c|. Look at

c2 = c′c′′c′c′′ = amc′′ = c′bn

note that the overlap of am and bn in this representation is c′′c′, i.e. it is of length |c|. Now, each
conjugate of c occurs in cc and so it appears either in am or in bn. But then, from Lemma 9.11, we
obtain that each conjugate of c is bordered. But this cannot be, as c is primitive and so some of its
conjugates is a Lyndon word and such a word cannot be bordered, see Lemma 9.14.

So let us investigate the case k = 2. Thus we are looking at the equation

ambn = c2

56 CHAPTER 9. EQUATIONS WITHOUT CONSTANTS AND RELATED TOPICS

Without loss of generality we can take a, b, c such that |c| is the smallest possible.
If |an| = |bm| then an = bm and so from Lemma 9.14 we get that a = b and we are done. So consider

the case when |an| > |bm|, which implies |an| > |c| (the other case is symmetric, or we can make it by
reversing both sides of the equation). Then am = cc′ for some c′vc, and c′c = (c′)2bn. Thus am and
(c′)2bn are conjugate. From Lemma 9.12 we obtain that there are p, q such that (qp)m = (c′)2bn. Note
that this is also an equation of the type we are investigating. If m = 2 then we have an equation

(c′)2bn = (qp)2

and |qp| = |pq| = |a| < |c| and this is a contradiction with the choice of c.
So we are left with the case m ≥ 3, but we already proved that this implies that b, c′, qp are all

powers of the same word. But as b is a primitive word, they are all powers of b. Also, qp is conjugate
to pq = a and it also is primitive, so we get b = qp and by assumption b = c′′. Also c′ ∈ (qp)∗ and so
c = c′c′′ ∈ (qp)∗, contradiction, as it is primitive.

Chapter 10

Free groups

10.1 Free groups
Given a finite alphabet Σ define Σ−1 as {a−1 : a ∈ Σ}. Define a reduction (rewriting) rules

aa−1 → ε, a−1a→ ε . (10.1)

Lemma 10.1. Every word in (Σ∪Σ−1)∗ has a unique normal form under the rewriting rules (10.1).

A simple proof is left as an exercise.
Words as in Lemma 10.1 are called reduced or irreducible, for a word w this normal form is denoted

by IRR(w).

Definition 10.2. A free group over generators Σ consists of reduced words IRR((Σ ∪ Σ−1)∗) over
(Σ ∪ Σ−1)∗. The multiplication of w and w′ ∈ IRR((Σ ∪ Σ−1)∗) is defined as

w · w′ = IRR(ww′) .

It is easy to check that this operation is well defined and that it defines a group.
As the normal form is unique, it holds that

IRR(ww′) = IRR(IRR(w) IRR(w′))

and so we may also treat elements in (Σ ∪Σ−1)∗ as elements of the free group and the multiplication
is defined inthe same way.

We shall also denote a free group with generators g1, g2, . . . , g` by F (g1, g2, . . . , g`). Given two free
groups G,G′ by G ∗G′ we denote the free groups with the set of generators that is a disjoint union of
generators of G and G′.

We consider word equations in free groups, defined in a natural way. From algebraic perspective
they are more interesting than the semigroups. Makanin extended his results for word equations [44,
45]. We can naturally see a word equation over a free group as an ordinary word equation over
(Σ ∪ Σ−1)∗, however, we may loose some solutions in this way: consider an equation aX = bY .
Naturally it has no solution as a word equation, but it does in a free group: take X = a−1 and
Y = b−1.

10.2 Free monoids/semigroups with involution
In a similar way, we treat Σ∗ as a free monoid over the set of generators Σ. In such a setting we talk
about word equations in free monoids.

An involution (defined for any monoid) is a bijection · : M 7→ M such that x = x, xy = y x for
each x, y ∈ M . In case of a free monoid (Σ ∪ Σ−1)∗ the involution on a letter a is defined as a−1,
where (a−1)−1 = a. In case of groups, the inverse operator is also an involution.

In general, the reduction is possible, assuming that we allow regular constraints and involution in
the equation.

57

58 CHAPTER 10. FREE GROUPS

10.3 Reduction: equations in groups to equations in free semigroup with
involution and rational constraint

Theorem 10.3. Given a system of equations over a free group it can transformed one can construct
a system of equations over free monoid with involution such that there is a bijection between solutions
of the system of equations in the free group and solutions over the free monoid with involution that do
not contain factors aa. This bijection is an identity of variables that occur in both systems.

Firstly, each equation can be reduced to a form XY = Z or X = a by adding appropriate amount
of new variables.

Given one such equation we can replace it by a system of equations

X = X ′R Y = R−1Y ′ X ′Y ′ = Z

Then any solution of the original equation gives a solution of the new system in which X ′Y ′ is
irreducible and any irreducible solution of the new system gives a solution of the old one.

So it is left to turn such a system of word equations in groups into an equisatisfiable system in a
free monoid with involution.

We take the equation as they are and regular constraints that say that there are no factors aa−1

in any variable, for any a ∈ (Σ ∪ Σ′). Then we need to deal with the R−1: for each such variable we
introduce another equation R−1 = R.

It is easy to see that the new system has a solution (as a semigroup) iff the original system had a
solution.

Finally, note that the regular constraints about the irreducible form can be encoded in a different
way.

We shall later show how to solve equations (in a free semigroup) with regular constraints and
involution.

Chapter 11

Positive theory of free groups

Given a free group G (the definition is similar in case of semigroups) A positive sentence is of a form

Q1x1Q2x2 . . . Qkxkϕ(x1, x2, . . . , xk)

where each Qi is a quantifier and ϕ is a formula that uses only variables x1, x2, . . . , xk, constants from
appropriate domain and relations (and functions, when needed) and only ∧ and ∨ as used as logical
connectives. A positive theory of a structure A consists of positive sentences that hold in A. The
corresponding decision problem asks to decide, whether a given sentence belongs to a positive theory
(of A).

It is an easy exercise to show that positive theory of a free semigroup is undecidable (exercise).
On the other hand, the positive theory of a free semigroup is decidable, as shown by Makanin [45].
Below we show this result, in a variant given by Diekert and Lohrey [11], which is somehow based on
idea of Gurevich to use random words.

The true reason for this is that since our formula holds for “any X”, it means that it holds for
random word (in appropriate sense) X. But such a random word has very little interference with
other words (it provably has only a couple of letters that reduce) So in some sense it “is” a constant.
Still, we need to allow the following variables to “use” this new constant, thus we allow Yi to use
{k1, k2, . . . , ki}, but not the later constants. Consider a simple example ∀X∃Y XY = 1. Then when
we replace X with k we get ∃Y kY = 1 which is satisfiable for Y = k−1.

11.1 Notation
To make the visible distinction more clear, we will use small letters for constants and great letters for
variables (usually quantified).

The input free group, with generators Σ, is denoted as G. We shall extend our free semigroup
by new elements: let 〈E〉 denote the group generated by E, the relations between elements in E
are always clear from the context, usually those are free generators. Let also G ∗ H denote the free
product of G and H, i.e. this group is generated by 〈G,H〉 and there are no nontrivial relations
between elements of G,H. In the process, we will use many new constants k1, . . . , km. Then by Gi..j

we denote G ∗ 〈ki〉 ∗ 〈ki+1〉 ∗ · · · ∗ 〈kj〉.
In the proof we will also need to use the corresponding free monoid with involution. By M we

denote the free monoid with involution with generators Σ and M∗〈k〉 is defined analogously, also Mi..j

is defined in a similar way. We always assume that k 6= k in those monoids.

11.2 Main result
The main result of this section is the following theorem.

Theorem 11.1. Let G be a free group. Then for all #»z ∈ G a positive formula with no free variables

ϕ(#»

Z) = ∀X1∃Y1 · · · ∀Xm∃Ymϕ(X1, . . . , Xm, Y1, . . . , Ym,
#»z). (11.1)

59

60 CHAPTER 11. POSITIVE THEORY OF FREE GROUPS

holds in G if and only if

∃Y1 ∈ G ∗ 〈k1〉∃Y2 ∈ G ∗ 〈k1, k2〉 · · · ∃Ym ∈ G ∗ 〈k1, k2, . . . , km〉ϕ(k1, . . . , km, Y1, . . . , Ym,
#»z). (11.2)

holds in G ∗ 〈k1, k2, . . . , km〉.

The idea is that the universally quantified variables act like “independent constants”.

11.3 Main technical Lemma
Lemma 11.2. Let M be a free monoid with involution and let M2, . . . ,Mm be free monoids with
involution that contain it and let k be constant not present in any of them.

Let ϕ be a positive formula without free variables #»

Z of the form:

ϕ(#»

Z) = ∀X1 ∈ IRR(M)∃Y1 ∈ IRR(M)∃Y2 ∈ IRR(M2) . . . ∃Ym ∈ IRR(Mm)∃ #»

Y ∈ IRR(Mm)
ϕ(X1, Y1, . . . , Ym,

#»

Z,
#»

Y) .

If it holds on some sequence of elements #»z ∈M then there exist two words s1, s2 ∈ IRR(M) such that
the following formula holds:

∃Y1 ∈ IRR(M ∗ 〈k〉)∃Y2 ∈ IRR(M2 ∗ 〈k〉) . . . ∃Ym ∈ IRR(Mm ∗ 〈k〉)
∃ #»

Y ∈ IRR(Mm ∗ 〈k〉)ϕ(s1ks2, Y1, . . . , Ym,
#»z ,

#»

Y),

Note that the s1, s2 are constants but they can (and actually do) depend on the #»z .
The rest of this Section is devoted to the proof of the Lemma.
Take two different constants a, b and fix some word ` of length at least 2 that use both constants.

Fix λ ≥ 2d+ 1, where d is the number of equations. Consider a set R = {r0, r1, . . . , rλ} ⊆ {a, b, a, b}p,
where p is some large constant (to be established later), in particular, twice longer than any constant
in the system; those constants include those in #»z .

Consider a string
s = r0`r1` . . . rλ−1`rλ

Roughly, this is a string that we use for ∀X quantifier, but we shall replace some ri`ri+1 by rikri+1,
where k is a fresh constant.

Given |ri| and |`| we say that set of strings R has enough randomness, when each word w of length
at least (|ri| − |`|)/2 occurs in at most one of strings in R ∪ R and it has at most one occurrence is
such a string.

Lemma 11.3. There is a set R with properties above that has enough randomness.

Using Kolmogorov complexity/Probabilistic method it is easy to show that such set of strings exists,
for large enough m. Alternatively, one can give explicit construction. This is left as an exercise.

The meaning og enough randomness notion is that

Lemma 11.4. If r ∈ R∪R occurs in ri`ri+1 then this is either a prefix or suffix of ri`ri+1 (so r = ri
or r = ri+1).

Proof. Place r within ri`ri+1, and see that it will have an overlap with ri or ri+1 of length at least
(|r| − |`|)/2. So this substring has two occurrences in R ∪R, which is a contradiction.

Consider rewriting systems P1, . . . , Pλ, defined as

Pi = {(ri−1`ri, ri−1k1ri), (ri`ri−1, rik1ri−1)}

Each of those rewriting systems is confluent and so has a unique normal form, denoted by κi(w).
We say that t contains the cut of (u, v) if there is an occurrence of t in uv that is not contained in

u nor in v.

11.4. MAIN PROOF: QUANTIFIER ELIMINATION 61

Lemma 11.5. Given a pair of strings (u, v) there are at most two different ri`ri+1 that contain their
cut.

Proof. Otherwise there are three. So consider the first of those occurrences and the last. They overlap
with at least one letter. Then the middle occurrence overlaps with at least half of its length with the
first one or last one, so some r occurs in ri`ri+1, which cannot be.

Lemma 11.6. Let {xjyj = zj}dj=1 be all nontrivial equations. The there is i such that for each j

κi(xj)κi(yj) = κi(zj)

Proof. For a fixed equation there are at most 2 different ri`ri+1 that contain a cut between xj and yj .
So there is one ri`ri+1 that does not contain any cut. Hence when we calculate the normal form, each
rewriting on xjyj is done separately on xj and yj , which show the claim.

Since the rewriting systems introduce a fresh constant that is not rewritten, the

κi(xj)κi(yj) = κi(zj) implies xjyj = zj

holds always.

proof of Lemma 11.2. Take s as the string substituted for X and all the witnesses y1, . . . , ym,
#»y . We

then take the rewriting system guaranteed to exist by Lemma 11.6 and rewrite all the constants and
witnesses. Then

• x is replaced so that it contains a single occurrence of k;

• each witness is rewritten, maybe it has occurrences of k;

• constants are too short to be rewritten;

• all equations that used to hold still hold by Lemma 11.6).

• if after the rewriting the equation holds then it held also originally (we can replace k back with
` to get the original equation).

11.4 Main proof: quantifier elimination

The main property of positive formulas is that they are preserved under homomorphisms: if a positive
sentence ϕ(#»z) (where #»z is a vector of elements) holds in some structure A and i : A → B is a
homomorphism, then

»

i(z) holds in B.

Lemma 11.7. Let ϕ(#»

X) be a positive formula with free variables #»

X and let i : A → B be a homo-
morphism onto B. Then for any vector #»z of elements of A if ϕ(#»z) holds in A then ϕ(i(#»z)) holds in
B.

Proof. We make the induction over the structure of ϕ. First, if ϕ is a relation, this holds by the
definition of the homomorphism.

Then by easy induction this holds also when ϕ is quantifier-free (this holds for all atoms and we
take a positive Boolean combinations of the atoms).

Let ϕ(#»z) = ∀Xψ(X, #»z). Then by the induction assumption it holds for ψ(x, #»z) for each x and
#»z . Fix #»z . When we apply the quantifier, the formula ϕ(#»z) holds when for all x ∈ A it holds that
ψ(x, #»z) holds. But then by the induction assumption, also ψ(i(x), i(#»z)) holds for each i(x) and this
takes as values all elements of B. So also ϕ(i(#»z)) holds in B.

The argument for the existential quantifier is similar (for a witness x ∈ A we take the witness i(x)
in B).

62 CHAPTER 11. POSITIVE THEORY OF FREE GROUPS

Denote by G[i..j] the free group G ∗ 〈ki, . . . , kj〉 and introduce similar notation for the free monoid
with inversion. The proof of Theorem 11.1 is done by induction on the number of the quantifiers. If
there are none then we are done.

Otherwise the formula is

∀X1∃Y1∀X2∃Y2 · · · ∀Xm∃Ymϕ(X1, X2, . . . , Xm, Y1, Y2, . . . , Ym,
#»z) .

for some m > 0. By assumption for each x1, y1,
#»z ∈ G the formula

∀X2∃Y2 · · · ∀Xm∃Ymϕ(x1, X2, . . . , Xm, y1, Y2, . . . , Ym,
#»z) .

(note that x1 and y1 are now fixed elements) holds in G if and only if

∃Y2 ∈ G[2..2] · · · ∃YmG[2..m]ϕ(x1, k2, . . . , km, y1, Y2, . . . , Ym,
#»z) .

holds in G[2..m].
As x1, y1 are any elements, we can take the existential quantifier over y1 and then the universal

over x1, thus the following are equivalent:

∀X1∃Y1∀X2∃Y2 · · · ∀Xm∃Ymϕ(X1, X2, . . . , Xm, Y1, . . . , Ym,
#»z).

and
∀X1 ∈ G∃Y1 ∈ G∃Y2 ∈ G[2..2] . . . ∃Ym ∈ G[2..m]ϕ(X1, k2, . . . , km, Y1, . . . , Ym,

#»z), (11.3)

In the following we equivalence of (11.3) and (11.2).

Lemma 11.8. For ϕ positive if #»z satisfies (11.2) then it satisfies (11.3).

Proof. We use Lemma 11.7.
Take any x1 ∈ G. Take a homomorphism h : G[1..m] → G defined by h(k1) = x1 and as an identity

on other generators, note that it is naturally restricted to a homomorphism from G[1 . . i]. Take
y1, . . . , ym ∈ such that yi ∈ G[1 . . i] such that ϕ(k1, . . . , km, y1, . . . , ym,

#»z) holds. Then Lemma 11.7
yields that

ϕ(h(x1), h(k2), . . . , h(km), h(y1), . . . , h(ym), h(#»z)) = ϕ(k1, k2, . . . , km, h(y1), . . . , h(ym), #»z)

holds as well. Take h(yi) as a witness for Yi, which shows that (11.3) holds, as claimed.

Lemma 11.9. For ϕ positive if #»z satisfies (11.3) then it satisfies (11.2).

Proof. For the proof in the other direction we shall also use the reduction to the monoid case. Note
that a reduction described in the previous chapter reduces the problem of equations in free groups to
free monoids with involution. Denote by M,M[i..m] the free monoid (with involution) corresponding
to G,G[i..m]. Then the formula

ϕ(k1, . . . , km, Y1, . . . , Ym,
#»z)

is rewritten into formula

∃ #»

Y ∈ IRR(M)ϕ′(k1, . . . , km, Y1, . . . , Ym,
#»z ,

#»

Y)

(note that #»

Y may depend on #»z) where the new variables #»

Y are used to appropriately brake down the
equations. Adding the quantifiers yields that (11.3) is equivalent to:

∀X1 ∈ IRR(M)∃Y1 ∈ IRR(M)∃Y2 ∈ IRR(M[2..2]) . . . ∃Y[2..m] ∈ IRR(M[2..m])∃
#»

Y ∈ IRR(M[2..m])
ϕ′(k1, . . . , km, Y1, . . . , Ym,

#»z ,
#»

Y) .

By the Lemma 11.2 if it holds then for some s1, s2 ∈ IRR(M) the formula

∃Y1 ∈ IRR(M[1..1])∃Y2 ∈ IRR(M[1..2]) . . . ∃Ym ∈ IRR(M[1..m])
∃ #»

Y ∈ IRR(M[1..m])ϕ′(s1k1s2, . . . , km, Y1, . . . , Ym,
#»z ,

#»

Y) ,

11.4. MAIN PROOF: QUANTIFIER ELIMINATION 63

holds. So we can lift it back to the group setting, i.e. there are s1, s2 ∈ G such that

∃Y1 ∈ G[1..1]∃Y2 ∈ G[1..2] . . . ∃Ym ∈ G[1..m]ϕ(s1k1s2, . . . , km, Y1, . . . , Ym,
#»z) . (11.4)

Consider an automorphism of G[1..m] defined by h(k1) = s−1
1 k1s

−1
2 and an identity on other generators

(this is an automorphism, see Lemma 11.11). Since it is an isomorphism, we can apply it on (11.4),
see Lemma 11.10 The only affected is the k1 constant, so we get the following is equivalent:

∃Y1 ∈ G[1..1]∃Y2 ∈ G[1..2] . . . ∃Ym ∈ G[1..m]ϕ(k1, . . . , km, Y1, . . . , Ym,
#»z) ,

and this is exactly (11.2).

Lemma 11.10. Let G1, . . . ,Gm ≤ G be groups, #»z ∈ G be elements of G and let i : G → G be an
automorphism of G such that i(Gj) = Gj. Show that

∃Y1 ∈ G∃Y2 ∈ G2 . . . ∃Ym ∈ Gmϕ(Y1, . . . , Ym,
#»z)

holds if and only if

∃Y1 ∈ G1∃Y2 ∈ G2 . . . ∃Ym ∈ Gmϕ(Y1, . . . , Ym, i(#»z))

holds.

Proof. A simple proof is left as an exercise.

Lemma 11.11. Let G = 〈c1, . . . , cm〉 be a free group and consider h : G→ G defined as h(c1) = gc1g
′

where g, g′ ∈ 〈c2, . . . , cm〉. Show that h is an automorphism of G (so an isomorphism from G to G).

Proof. A simple proof is left as an exercise.

The Lemmata 11.8 and 11.9 give the proof of Theorem 11.1.

Exercises

Task 50 The ∃∗-theory of word equations consists of all sentences of the form:

∃x1,x2,...,xk
ϕ(x1, x2, . . . , xk)

where ϕ is quantifier-free logic formula that uses ∧,∨,¬ as connectives and atomic formulas that are
word equations that use constants from Σ∗ and variables x1, x2, . . . , xk.

Show that we can verify sentences form this theory in PSPACE.

Hint:Thealgorithmwillheavilyemploynon-determinismtoreducethiscasetoasystemofword
equations.Theinequalitiesareeasytohandle:lookforfirstdifferences.

Task 51 Show that a positive theory of word equations over free semigroup is undecidable. Two
alternations of quantifiers are enough (one, if you put some thought into it).

Hint:Firstmaketheclaimaboutthewholetheoryandtheneliminatethenegationaswedidbefore.

Task 52 Show that for large enough ri there is a set of enough random string.

Hint:ThesimplestproofisthroughKolmogorov’scomplexity,butrandomstringsshouldalsobe
good.

Task 53 (Newman’s lemma) A rewriting system S = {(`i, ri)}i∈I is called length-reducing if
(`, r) ∈ S implies |`| > |r|. S is called confluent, if for all s, t, u with s →∗S t and s →∗S u there exists
v with t, u→∗S v; it is local confluent, if s, t, u with s→S t and s→S u there exists v with t, u→∗S v.

Show that if S is length-reducing, then S is confluent if and only if it is local confluent.
Task 54 Show that each of the defined rewriting systems Pi is confluent and thus each term has a
unique normal form (note that the rewriting system is length-reducing).
Task 55 Prove Lemma 11.10.
Task 56 Prove Lemma 11.11.

64 CHAPTER 11. POSITIVE THEORY OF FREE GROUPS

Chapter 12

Solving equations in free groups

By Theorem 10.3 to solve equations in free groups it is enough to solve them in free semigroups with
involution and constraints w ∈ IRR(M) (and the results from Chapter 11 also ask for constraints of
the form “w does not use letter a”). In general we will do this with the regular constraints.

12.1 Regular sets

Consider Σ∗, think of it as a free semigroup. A regular language is defined using an NFA N , let it
have n states Q. Then the transition function naturally defines (Boolean) transition matrices, whose
rows and columns are indexed by Q: for a letter a the Ma has mp,q = 1 iff we can go from p to q using
letter a. Note that such a transition matrix can be defined for each word w ∈ Σ∗ and so we have a
natural homomorphism from Σ∗ to M, that is, the set of Boolean matrices of size n× n.

A regular language can be defined using this homomorphism as well: note that a word is accepted
if its transition matrix leads from starting state to final state. In other words, there is a finite amount
of matrices, which are accepting, and the (finite) rest is rejecting.

If we consider a monoid with involution, then we usually assume that the regular constraints are
given by a homomorphism that also respects this involution. The involution can be the inverse on the
Boolean matrices, but could be any other operation, for instance — the transpose.

It is easy to see that if ϕ : Σ∗ → M does not respect the involution then we can take larger
matrices and define the new homomorphism so that it does respect the involution (this may be a
different involution than originally, though).

We usually denote the homomorphism to matrices by ρ and talk about the transition of a letter.

12.2 Regular constraints

In the most convenient case, we specify the regular constraints with a series of conditions of a form
X ∈ R, X /∈ R′. Each such conditions is potentially given by a different automaton. When we move to
the matrix setting, creating one matrix for all such conditions essentially corresponds to the creation
of one automaton for the appropriate Boolean combination of such conditions, which is expensive.
Instead, we can think that ρ assigns a tuple of matrices, rather than just one. This allows to save
space.

Secondly, the list of conditions for X: X ∈ Ri, X 6∈ R′i can be viewed as a restriction of ρ(s(X))
to the (finite) set of legal transitions. In our algorithm we think that the constraints are given by
specifying the actual transition for s(X). From computational point of view this is not restricting, as
we can initially non-deterministically guess the appropriate transition from a set of transitions.

Lemma 12.1. Word equations with regular constraints of the form X ∈ R, Y /∈ R′ where the regular
languages are defined using NFAs that are part of the input are NP-equivalent to the same equation with
regular constraints given by ρ(X), where ρ maps letters and variables to vectors of Boolean matrices

65

66 CHAPTER 12. SOLVING EQUATIONS IN FREE GROUPS

12.3 Model

We work with equations over (Σ ∪ Σ)∗. Every variable X has the associated variable X. We require
that a solution satisfies

s(X) = s(X) .

Concerning the regular constraints, we assume that we are given ρ1, . . . , ρm that are homomorphisms
from (Σ∪Σ)∗ to Boolean matrices (with some involution) and that they do respect the involution, i.e.

ρ(w) = ρ(w) .

They are collectively called ρ, in the sense that ρ(w) = (ρ1(w), . . . , ρm(w)). The input specifies ρ(X)
for each X and we require that a solution s satisfies the equation and for each variable

ρ(s(X)) = ρ(X) .

As an additional technical assumption we assume that the involution has no fixed-points, i.e. a 6= a
for each a ∈ Σ ∪ Σ. This is not necessarily true for the input alphabet, but it is easy to modify the
instance so that this holds (exercise).

12.4 Main issue

It turns out that the main issue is the bounding of the alphabet used in the solution. We shall deal with
this problem at the end, as it distorts a little the flow of the argument. At the moment, imagine that
we begin with the given alphabet and whenever we make a compression, we add the new letter into
the alphabet. Note that this means that we can arrive at the same equation with different alphabets
(which may mean that the shortest solution is of different length). It is not possible to simply remove
those letters from the alphabet and from the equation, as they may be needed for the the regular
constraints.

Keeping such a large alphabet is a problem, as we cannot give a standard PSPACE argument that
an equation cannot repeat.

12.5 The algorithm

In essence we are going to run the previous algorithm, a couple of modifications are needed, though.
In particular, it is based on popping and compression.

12.6 Needed modifications

12.6.1 Constraints

Whenever we pop letters, we need to guess new values for variables, so that the total value is the
same. For instance, when we replace X with aX ′ then it should hold that ρ(aX ′) = ρ(X). The value
for ρ(X ′) is guessed and verified. We also need to guess when we remove the variable, in which case
we need to have ρ(X) = ρ(ε).

12.6.2 Involution

When we replace X with wXw′ then we also need to replace X by wXw′ = w′ Xw.
When we compress ab to c then we also need to compress ab to c. Firstly, this affects the notion

of a crossing pair (ab may be crossing due to ba). Concerning the replacement, this is easy, as long as
ab and ab do not overlap, which can happen only when a = a or b = b. There are different possible
approaches now. We present one, in which we forbid the creation of self-involuting letters, which boils
down to forbidding to compression of aa as a pair.

12.7. LETTERS 67

12.6.3 Pair compression

Since we do not want the letters b = b, we never compress pairs aa.

12.6.4 Blocks and Quasiblocks compression

With such a restriction the blocks compression works as intended. We could also do the variant with
only compression of two letters and using other variables for representing a-blocks, but here we need
to be careful: while we can move the extra a to the left, for a we then need to move the to the right.
This is fine, as a 6= a

There is a problem with (aa)k, as we do not compress it at all. We do this similarly to blocks
compression: we replace (aa)k with ckck. Note that technically ck “represents” a self-involuting string,
but we “forget” about this. But this is fine, as ckck is self-involuting.

As a result, aaa is still not compressible, but this is the longest incompressible string and so we
still get a PSPACE algorithm, with a constant-larger space consumption.

12.6.5 Preprocessing

For technical reasons, we need to ensure that there is at least one letter in the equation (as otherwise we
may end up with something like X = X plus constraints). This is clearly preserved by all operations,
so at the very beginning, in a preprocessing phase, we pop one letter from one variable.

12.7 Letters
As already noted, we cannot assume that there is a solution over the letters that are in the equation.
This is because the letters that are crossed out have non-trivial transitions and removing them changes
the total transition of a substitution for a variable.

The easiest solution is the extend the initial alphabet so that it has one letter for each possible
transition (note that in this way the alphabet may become exponential) and considering solutions over
the letters that are in the equation and in the initial alphabet (Exercise).

We follow a slightly more involved approach, which is much more useful, when we want to describe
the set of all solutions of a word equation.

The idea is that if there is a letter in the substitution for a variable that is not in the equation not
it is a letter from the original equation, then in some sense it was a mistake to compress this letter
in the first place. But each letter in any equation corresponds to some string of letters in the original
equation. To track the meaning of constants outside the current equation, we additionally require that
a solution (over an alphabet Σ′) supplies some homomorphism α : Σ′ → A∗, which is constant on A
and compatible with ρ, in the sense that ρ(b) = ρ(α(b)) for all letters b. Thus, we extend the notion of
a solution: a pair (s, α) is called a full solution of the equation. In particular, given an equation (u, v)
the α(s(u)) corresponds to a solution of the original equation. Note, that α is a homomorphism with
respect to the involution, i.e. we assume that α(a) = α(a). Note that α is used only in the analysis,
it is not stored or constructed by the algorithm, nor does it influence the working of the algorithm.

Definition 12.2. During the work of the algorithm that was given an equation over (Σ∪Σ)∗ we denote
Σ0 = Σ ∪ Σ and call it the input alphabet. Given the equation u = v and a solution s the solution’s
alphabet denotes the smallest alphabet that includes all letters of s(U) and the input alphabet and
the equation’s alphabet is the smallest alphabet that includes the input alphabet and all letters in
u = v (except variables).

For an equation u = v by a full solution we denote a pair (s, α) such that s is a solution of u = v
and α is a function from the solutions alphabet to words over the input alphabet that respects the
involution and it is compatible with the constraints ρ, i.e.

• α : Σ→ Σ∗0, where Σ is solution’s alphabet for s and Σ0 is the input alphabet;

• α(a) = α(a) for each a ∈ Σ;

68 CHAPTER 12. SOLVING EQUATIONS IN FREE GROUPS

• ρ(a) = ρ(α(a)) for each a ∈ Σ;

• α(a) = a for each letter in the input alphabet.

Example 12.1. If there are no constraints then for a given equation α can be defined in any way that
respects the involution.

On the other hand, if the equation contains a letter c that has a transition ρ(c) that is not realised
by any word w ∈ Σ∗, where Σ is the input alphabet, then there is no α; this is somehow to be
expected, as then c does not represent any word over the input alphabet (and in fact the algorithm
cannot construct it).

It is easy to define α after a compression operation: when w is replaced with c then we simply
denote α(c) = α(w) (note, that it may be that for two different letters we get that α(c) = α(c′), but
this is not a problem, as we never assume that α(c) 6= α(c′)).

Lemma 12.3. For any subprocedure, if the equation u = v before the procedure has a full solution
(s, α) then for appropriate non-deterministic choices the new equation (u′ = v′) has a full solution
(s′, α′) such that α(s(u)) = α′(s′(u′)).

Proof. If there is no compression, then α′ = α. If w is compressed to c then α′(c) = α(w). The
existence of the solution follows in the same way as before.

Definition 12.4. A solution s of an equation u = v it is simple if the solution’s alphabet is the
equation’s alphabet.

In other words, it uses only letters that are in the equation or were in the input equation.
Given a non-simple full solution (s, α) we can replace all constants c /∈ Σ (where Σ is the alphabet

of the equation) in all s(X) by α(c) (note, that as ρ(c) = ρ(α(c)), the ρ(s(X)) = ρ(s′(X))). This
process is called a simplification of a solution and the obtained substitution s′ is a simplification of s.
It is easy to show that (s′, α) is a full solution and that α(s′(u)) = α(s(u)), so in some sense both s
and s′ represent the same solution of the original equation.

Lemma 12.5. Suppose that (s, α) is a full solution of the equation (u, v). Then its simplification
(s′, α) is also a full solution of (u, v) and α(s′(u)) = α(s(u)).

Proof. Let Σ be the alphabet of the equation and Σ′ the alphabet of the solution s. Consider any
constant b ∈ Σ′ \ Σ. As it does not occur in the equation, all its occurrences in s(u) and s(v) come
from the variables, i.e. from some s(X). Then replacing all occurrences of b in each s(X) by the
same string w preserves the equality of s(u) = s(v), thus s′ is also a solution. Since we replace some
constants b with α(b) (and α ◦ α = α), clearly α(s(X)) = α(s′(X)) for each variable. in particular,
the weight contributed by each variable occurrence does not change. Furthermore, as ρ(b) = ρ(α(b))
we have that ρ(s(X)) = ρ(s′(X)). Thus, α(s′(u)) = α(s(u)).

In other words, we can always assume that if the equation has a solution then it has a simple one.

Algorithm 12 WordEqInvRegSat Checking the satisfiability of a word equation with involution and
regular constraints

1: Σ← input equation
2: Pop (Σ,Σ) . Pop some letter from some variable
3: while u or v is not a letter do
4: Σ′ ← letters in the equation or Σ
5: close Σ′ under involution (Σ← Σ′ ∪ Σ′)
6: choose p: a letter a ∈ Σ′ or aa with a ∈ Σ′ or ab ∈ Σ′2 (here b 6= a 6= a)

. Choose such that p has an implicit or crossing occurrence
7: if p is crossing then
8: uncross p
9: Compress p

12.7. LETTERS 69

However, replacing single letters in substitution by long words contradicts the very idea of the
method, which only shortens the solutions. We need to devise some more precise measure that can
be used instead of length of the solution.

A weight of a solution (s, α) of an an equation (u, v) is

w(s, α) = |U |+ |V |+ 2
∑
X∈X

|UV |X |α(s(X))| , (12.1)

Lemma 12.6. All compression and popping operations decrease the weight (if something changes in
the equation) or keep it constant, when nothing changes. Furthermore, the simplification preserves the
weight.

Weight can be used to show the termination of the algorithm.

Lemma 12.7. For any subprocedure, if it transforms a satisfiable equation (u, v) to a satisfiable
equation (u′, v′) 6= (u, v) then the corresponding full solution of (u′, v′) has a smaller weight than the
full solution of (u, v).

Proof. Note that in (12.1) the parts corresponding to the substitutions for variables do not change.
But if anything changes in the equation, some constants were compressed and so the weight drops.

Lemma 12.8. There is a constant c such that during the run of WordEqInvRegSat given an equation
of size at most cn2 with full solution (s, α) there is a p such that after the uncrossing (when needed)
and compression of p the new equation has a full solution (s′, α′) with less weight than before and size
at most cn2.

This gives the termination argument of our algorithm. We proceed within PSPACE, keeping some
solution, after the compression operation we replace the corresponding solution by its simplification.
The weight decreases after the first operation and does not change after the second. Thus we end up
in a trivial equation.

Exercises

Task 57 An involution · is any operation (defined in a semigroup) such that · is an identity and ab = ba.
In particular, we can define on some letters as an identity, such letters are called self-involuting.

Show that we can reduce a problem of word equations in a free semigroup with involution and
regular constraints to the case in which there is no self-involuting letter.

Task 58 Show that if a homomorphism ρ : M → Bn×n (so: Boolean matrices of size n×n) from a free
monoid with involution M into Boolean matrices does not preserve involution (in particular, the invo-
lution on Bn×n may be undefined), then we can find a different set of Boolean matrices Bm×m for which
we define the involution and there is a homomorphism ρ′ : M → Bm×m from M to Bm×m that pre-
serves the involution and each set regular in Bn×n is regular in Bm×m (but not necessarily vice-versa).

Hint:TakeBn×nandconsiderBn×n×Bn×n.Howtodefinetheinvolution?

Task 59 (2 points) Show that given a word equation over a free monoid with regular constraints
given by ρ we can extend the input alphabet Σ by letters

{aτ : τ ∈ N and there is a word w ∈ Σ∗ such that ρ(w) = τ}.

Show the equisatisfiability of the problem over the original alphabet and over such an extended al-
phabet. Modify the algorithm that tests the satisfiability of word equations so that it works also in
case of regular constraints. Can you implement the algorithm in PSPACE?

70 CHAPTER 12. SOLVING EQUATIONS IN FREE GROUPS

Chapter 13

Linear Monadic Second Order Unification

This Chapter is more or less based on [39], but hopefully much simplified. We present a simplified
variant of linear monadic second order unification, in which we require that the substitutions for a
variable are linear (so each parameter is used at most once) and we work over signature of letters of
arity at most 1. So comparing to word equations, we have letters and one extra nullary symbol that
is always at the end (we shall denote it by “⊥” and ignore it). The variables do not represent words,
but rather λ-functions, in the sense that X is now a function λx.wx, where we require that wx is built
solely of symbols and possibly x used once and at the end, it may be followed by the ⊥, though. The
difference is that X can ignore its argument and simply terminate the hole term.
Example 13.1.

Xa⊥ = Y b⊥

There is a valid solution X = λx.a⊥ and Y = λy.a⊥. Note that there are also other solutions. Note
that the equation Xa = Y b is not satisfiable as a word equation.

Lemma 13.1. If an equation u = v is satisfiable as a word equation then the equation u⊥v⊥ is
satisfiable as linear monadic second order unification problem.

One other difference is that our encoding into one equation no longer works as a substitution may
drop some other substitutions.

Since there are more solutions, intuitively it should be easier to solve such an equation. In some
sense this is the case: this problem is in NP.

Theorem 13.2. Satisfiability of a a linear monadic second order unification is in NP.

Our approach is as previously, i.e. we will apply the local compression rules and keep the size of
the instance small. The additional twist is that whenever possible we shall try to replace the left-most
variables with closed functions, i.e. the ones that ignore their argument.

We begin with stating that our subprocedures for word equations indeed work in this setting. We
need a twist, though: Pop are also allowed to replace a variable by a “⊥”.

Lemma 13.3. Pop, BlockCompNCr, PairCompNCr are sound and complete for the linear monadic
second order unification.

The proof for compression operations is the same as for word equations, for popping operations
some analysis is needed, as we may pop to the right from a variable that should be replaced with
a closed function. Some properties of the algorithm are needed to show that this is sound: if we
remove the variable from the left-hand side then either we substitute it with a word or with word
ended with ‘⊥’ and we know which case this is.

Additionally, the exponential bound on the exponent of periodicity holds also in case of linear
monadic second order unification.

Lemma 13.4. Let s be the length-minimal solution of linear monadic second order unification and
let wk be a substring of s(X). Then k ≤ 2cn for some constant c, where n is the sum of length of the
equations.

71

72 CHAPTER 13. LINEAR MONADIC SECOND ORDER UNIFICATION

A simple reduction to the word equation case is left as an exercise.
Hence, at any point we can ensure, in non-deterministic polynomial time, that the size of the

instance is at most cn2 for a suitable c: if not then we run compression and uncrossing until it is
reduced to cn2.

Simplifying assumptions Without loss of generality we can assume that:

• for each equation at least one of its sides begins with a variable;

• for each equation both of its sides contain a variable.

What may be surprising, is that removing letters from the left-sides of the equations is fine but
removing variables is not. We consider on ly the case of left sides, as we are only interested in that.

Lemma 13.5. The systems {ui = vi}i∈I ∪ {au = av} and {ui = vi}i∈I ∪ {u = v} are equisatisfiable
for a letter a.

The systems {ui = vi}i∈I∪{XU = XV } and {ui = vi}i∈I∪{u = v} are in general not equisatisfiable
for a variable X.

A simple proof is left as an exercise.
Our algorithm shall eliminate one variable using polynomially many steps, each of those steps

increases the size of the instance by O(n). This guarantees that the whole algorithm runs in NP: after
the removal the instance is of polynomial size. In polynomially many steps we reduce it to size O(n2)
and then iterate again, with less variables.
Example 13.2. Suppose that we have only one equation u = v. If after applying Lemma 13.5 we end
up with an equation X . . . = Y . . . then we can substitute s(X) = s(Y) = ⊥; similarly, if the equation
is X . . . = wY . . . where X 6= Y and w is a word then we can take s(X) = w⊥ and s(Y) = ⊥ So the
only remaining case is X . . . = wX But in this case s(X) is periodic with a period that is shorter
than w. We can guess it, guess the exponent and make the substitution.

The situation becomes more complex when there are more equations involved, also we need to
keep the instance small and this is the main result presented here.

Dependency Graph
Definition 13.6. For a system of linear second order unification define a dependence graph. Its
vertices are labelled with variables that have at least one occurrence in the equations and there is an
edge X w−→ Y for each equation XU = wY V , where w is a (perhaps empty) word.

Note that if there is an equation XU = Y V then we add edges X ε−→ Y and Y ε−→ X.

Lemma 13.7. If there is an edge from X
w−→ Y then for each solution s of this system either

• s(X) = w′ where w′ is a prefix of w or

• s(X) has a prefix w (this includes s(X) = w⊥).

In particular, if X w−→ Y and X w′−→ Y ′ then either

• w is a prefix of w′ or

• w′ is a prefix of w or

• s(X) is a prefix of w′ and w.

A simple proof is left as an exercise.

Corollary 13.8. If there are two edges from X labelled with nonempty words then they have the same
first letter or s(X) = ⊥ or s(X) = ε for each solution s.

73

Define a relation on the variables: X < Y if there is a path from X to Y whose labels concatenate
to a non-empty word. Also, define the relation of equivalence: X ∼ Y if there is a path from X to Y
whose all edges are labelled with ε. As such edges are bi-directional, this is an equivalence relation.

Lemma 13.9. If X is a minimal element of <, so are all its equivalent variables.

Lemma 13.10. Let X1, . . . , Xm be the equivalence class of ∼. Then in each solution either one of
them is ε or they all begin with the same letter (which may be ⊥).

The proof is obvious.

Lemma 13.11. Let s be a solution, X = X1 be a minimal element according to < (in particular there
is no self-loop from X to X with non-empty label on it) and let X1, . . . , Xm be all variables equivalent
to X1, assume that s(Xi) /∈ {ε,⊥} and let a be the first letter of s(X). Then after left-popping a from
all X1, . . . , Xm either one variable is removed

• all X1, . . . , Xm are still equivalent

• each edge Xi
w−→ Y for w 6= ε is replaced with Xi

a−1w−−−→ Y .

Proof. For every edge Xi
w−→ Y we change the label to X a−1w−−−→ Y and for every edge Y w−→ Xi we

change the label to wa (in particular, for ε edges we are left with ε).
Note that for the second claim it cannot be that X ∼ Y as then there would be a loop from X to

X with label w on it.

The algorithm
We can now move to the algorithm. A phase ends when one variable is removed. At the beginning of
the phase the equation is reduced to size O(n2) using Pop, BlockCompNCr, PairCompNCr appropriate
amount of times (each application reduces the size by at least 1, till appropriate size is reached).

We then look at the dependence graph. If there is no edge labelled with non-empty word then
we set s(X) = ⊥ for each variable, this is a solution. If < is acyclic and there is an edge then we
find a minimal element (say X) which has an out-going edge labeled with a non-empty word (we go
back by edges to find it). Say a as the first letter on this label, we left-pop a from each Y ∼ X. By
Lemma 13.11 the ε edges are preserved (as we either pop from both their ends or from none), and so
the variables that were equivalent to X stay equivalent. We change the < order and the ∼ in this
way, as new ε edges may have been introduced: for instance, when X aw−−→ Y and X a−→ Z then after
left-popping a from X we have X ε−→ Z. In particular, we may have introduce new cycles in < relation:
in the example above it could be that there is an edge from Y to Z, so after popping there is a cycle
from Z to Z with a non-empty label.

Since X is minimal, there are no incoming edges and so by Lemma 13.11 the total sum of length
of labels decreases. Initially it was O(n2), as each label occurs somewhere in the equations, so we end
up after at most quadratic number of steps. We could also end up with one variable removed, which
simply ends the phase.

When we finish with popping, either there is no edge with nonempty label, so all variables are
equivalent and the equation

If there is a cycle in the dependency graph from X to X that defines a nonempty label then we
take the shortest (in terms of number of edges) such a cycle, let it be from X to X and let the word
on it be wX . Note that |wX | = O(n2): the cycle cannot have repeating nodes, so also there are no
repeating edges, so each label is used at most once and their concatenation is not longer than the
current equation

We apply O(n2) pair compressions which reduce wX to a sequence of the form ak. This is always
possible: unless wX is of desired form, it has two different consecutive labels, say ab. Then we make
that ab compression and we proceed; there are quadratically many such compressions. We need to
ensure, though, that indeed making the compression affects the label on the path in the appropriate
way.

74 CHAPTER 13. LINEAR MONADIC SECOND ORDER UNIFICATION

We consider the effect of popping and pair compression on the dependency graph and our chosen
cycle from X to X; if somewhere during the procedure some variable is removed then we are done.

We use a variant in which we left-pop b from each variable that begins with b. We claim that in
this way after the uncrossing each ab that is on the cycle is on one label on the cycle: suppose that
an edge ends with a and there is a sequence of ε edges and an edge that begins with b. But then all
those variables are connected with ε edges have the same first letter: b. So we should have popped
from them all and a should not be the last label (note that we use a 6= b here), contradiction. Hence
the compression is performed on the ab in the labels.

Thus after the compression we have a cycle from X to X such that each of its edges is labelled
with a power of a (perhaps ε). We claim that in each solution of this system of equations there is at
least one variable Y on this cycle which has a substitution s(Y) = a`(•) (in particular, it does not
forget the argument): if some of those variables Y has s(Y) = ε then we are done. For any variable
with non-trivial outgoing edge on this cycle it begins with a; for other variables this we have that one
of them is linked via ε-edges to a variable whose first letter is a, so all of them begin with a. Now
imagine that we left-pop a from all variable on the cycle. Then the cycle is preserved, in particular, all
variables still begin with a. This can terminate only when for one of them we have that it is s(Y) = ε,
so originally s(Y) = a`(•) for some `.

So we can choose one variable, which has a substitution a`. Guess the exponent `, which is at most
exponential, replace Y with a` and make the blocks compression (for this compression we disregard
the dependence graph, which is now not needed at all).

All of that can make the equation of size at most O(n3), as each of quadratically many uncrossings
introduce up to O(n) letters.

Exercises

Task 60 Show that the variant of monadic second order unification considered here is NP-hard.

Task 61 Prove Lemma 13.4.

Task 62 Prove Lemma 13.5.

Task 63 Prove Lemma 13.7.

Chapter 14

Compressed pattern matching:
Combinatorial approach

In this section, a position is between two consecutive letters in a word, a cut in a rule A → BC is
a position corresponding to the end of val(B) and beginning of val(C). Touching a position/cut is
defined as earlier.

The presented algorithm computes occurrences of a pattern given by an SLP P within the text
given by the SLP P. This is based on [41].

The nonterminals of the P and T are P1, . . . , Pm and T1, . . . , Tn. The size of the problem is n+m.
The lengths of val(P) and val(T) are M,N respectively.

14.1 AP table
Lemma 14.1 (Basic Lemma). For any pattern p and a position α in a string t all occurrences of p
in t touching α form a single arithmetical progression.

Proof. If there are at most 2 occurrences then we are done. Otherwise take any three occurrences, let
the second be offsetted by n from the first and the third by n′ from the second, then n, n′ are periods
of p. As they touch a single position in t, we have that n + n′ ≤ |t| and so by Periodicity Lemma
gcd(n, n′) is also a period and so there are occurrences offsetted by a multiplicity of gcd(n, n′) from
the first occurrence; they form an arithmetic progression. If there is an occurrence outside of this
arithmetic progression then we can take the first and second occurrence in this progression and this
occurrence outside. By the reasoning as above they all are in a single arithmetic progression; it is easy
to see that this progression contains the whole previous arithmetic progression, thus this procedure
terminates.

The AP-table (table of arithmetical progressions) is defined as follows: AP [i, j], where 1 ≤ i ≤
m, 1 ≤ j ≤ n, encodes the arithmetic progression of occurrences of val(Pi) in val(Tj) that touch
the cut of val(Tj). Such encoding uses three numbers: the starting position (with respect to the
beginning of val(Tj)), the step of the arithmetic progression and the number of elements in this
arithmetic progression. Note that this arithmetic progression can be empty, in which case we represent
it appropriately.

Note that AP can be used to calculate all occurrences of val(P) in val(T): fix such an occurrence.
By going down the derivation tree we see that we will find Tj such val(P) occurs in val(Tj) touching
a cut. Moreover, for a fixed occurrence this can happen for at most three different Tjs, which can be
easily identified: this happens only when in a rule Tj → Tj′Tj′′ the occurrence overlaps a cut but is
wholly within one of Tj′ , Tj′′ in which case it can also touch a cut in it, but this cannot continue.

Filling AP [1, j] and AP [i, 1] is easy: the former tells whether one/two letter that touch the cut
in val(Ti) are equal to val(P1) ∈ Σ and the latter tells whether val(Pi) = val(T1) ∈ Σ. Then we fill
AP [i, j] in lexicographic order on [i, j].

Let Pi = PrPs, we consider the case, when | val(Pr)| ≥ val(Ps), the other one is symmetric. Let γ
be the cut between Pr and Ps in Pi.

75

76 CHAPTER 14. COMPRESSED PATTERN MATCHING: COMBINATORIAL APPROACH

We shall use a local search procedure LSP (i, j, [α . . β]), which gives the positions of occurrences of
Pi in Tj that are fully contained in val(Tj)[α . . β].

• It can use AP [i′, j′] for (i′, j′) ≤ (i, j), so in particular, AP [i, j].

• Assumes that |β − α| ≤ 3| val(Pi)|

• Runs in time O(j)

• gives at most two arithmetic progressions as an output, all positions in one are strictly before
positions in the other. Both claims require some proof.

We shall use O(1) local searches.

14.1.1 Filling AP using LSP

We first find occurrences of Pr (which is a bigger part), to this end we use LSP (r, j, [γ−| val(Pi)| . . γ+
| val(Pr)|]). Note that as | val(Pr)| ≥ | val(Ps)| we have that | val(Pi)| ≤ 2| val(Pr)|, so the assumption
of LSP is satisfied.

We shall now look for occurrences of Ps that extend those of Pr. As the latter are given by at
most two arithmetic progressions, we focus on one only.

We look at endings of occurrences of Pr. They are continental, if they end at most |Ps| from the
last ending in this arithmetic progression and seaside otherwise.

For the continental endings note that the corresponding occurrences of Ps are all within shifted
occurrences of Pr, so due to periodicity either all continental occurrences of Pr extend by Ps or none.
Thus we check one, using one local search. Note that this can be done easier, but we do not care.

For the seaside endings, let δ be the last ending of the Pr in the sequence. Then we can use the
LSP (s, j, [δ − | val(Ps)|, δ + | val(Ps)|]). Thus we obtain 2 arithmetic progressions representing the
occurrences of Ps. We can intersect them with the arithmetic progression representing endings of Pr
in constant time (Task 65), which is again an arithmetic progression.

As a last step we merge the obtained arithmetic progressions. Note that we know that they form
an arithmetic progression by Lemma 14.1.

For the running time: note that filling A[i, j] takes O(j) ≤ O(n) time, so the total time is O(mn2).

14.2 Local search procedure

We proceed in almost naive manner. For LSP (i, j, [α . . β]): If |α − β| < | val(Pi)|, then we return
empty set. Then we look at AP [i, j] and intersect the obtained arithmetic progression with [α . . β].
Let Tj = TrTs, then we make the recursive calls, making appropriate offsets; note that we simply store
the list of obtained arithmetic progressions, offsetted to the original positions.

It is easy to check, that the total recursion time is O(j): for an interval [α . . β] there are two
recursive calls, correspondign to the intervals [α . . γ] and [γ . . β], where γ is the cut. If one of them is
empty then we are done, and otherwise the lengths of those intervals is the same as the original one;
bue we assume that |β − α| ≤ 3| val(Pi)| and termiante immediately when the interval is shorter than
| val(Pi)|; thus there are at most three paths in the recursive calls.

Lastly, we merge the resulting arithmetic progressions. It is easy to check that two such arithmetic
progressions either are disjoint or have at most the first/last element in common. Thus we can merge
them in constant time per item.

Concerning the bound on two arithmetic progressions, fix two positions in [β . . α]: α + | val(Pi)|
and β − | val(Pi)|. As β − α ≤ 3| val(Pi)|, each occurrence touches at least one of those two positions.
And Lemma 14.1 gives that those touching a fixed of those positions form an arithmetic progression.
This proof also shows that if we merge the 5 arithmetic progressions obtained from the recursive calls
then we can divide those into two groups (that touch a fixed of those positions) and in each groups
we can merge the arithmetic progressions.

14.2. LOCAL SEARCH PROCEDURE 77

Exercises

Task 64 Prove the basic lemma: All occurrences of val(P) in val(T) overlapping any given position
form a single arithmetical progression.

Task 65 Give a procedure for intersecting two arithmetic progressions represented as triples (first,
step, end), i.e. the first element, the step of the arithmetic progression and the last element.

Task 66 Show that the recursion in the LSP (i, j, [α, β]) has at most 3 active branches (so one that do
not terminate immediately). Deduce from this that the running time of LSP (i, j, [α, β]) indeed takes
O(j) time.

Task 67 Show that the result of the Local Search Procedure is always a collection of at most two
arithmetic progressions.

Hint:BasicLemma

78 CHAPTER 14. COMPRESSED PATTERN MATCHING: COMBINATORIAL APPROACH

Chapter 15

Equality testing for dynamic strings

An approach that somehow paved the way to recompression was introduced by Mehlhorn, Sundar,
and Uhrig [47] in their work on data structures for equality testing of dynamic strings, see also [20]
for a different presentation and [20] for a simpler randomised variant.

In this setting, we want to create a data structure that allows the following operations.

Makesequence(s, a) Creates a sequence consisting of one letter a

Equal(s1, s2) tests the equality of strings s1 and s2

Concatenate(s1, s2) creates a new sequence, the concatenation of s1 and s2, and inserts it into the
structure;

Split(s, i) Splits the sequence s at position i and inserts two resulting sequences into the data structure

All operations preserve previous strings, i.e. Concatenate and Split do not remove the original se-
quences from the data structure (so the operations are persistent).

Note that the SLP equivalence can be easily tested using such a data structure; in fact, this works
for equivalence of composition systems.

Using their data structure (with a modified approach by Alstrup, Brodal, and Rauhe [2]) we obtain
the following running times

Theorem 15.1. There exists an implementation of the data structure that supports the above opera-
tions in times:

(Where: n is the length of the strings on which we operate, k is the number of so-far performed
operations, N is the bound on the size of the numbers on which we operate)

Makesequence O(log min(N, k))

Equal O(1)

Concatenate, Split O(logn log k log∗N)

With appropriate implementation, this data structure also supports the calculation of the LCP of
two given strings in O(logn) time. This is not covered in the lecture.

The main idea is to create a signature for each string in the data structure. The signatures are
build in phases, and the i-th signature is used to produce the i + 1st. Thus we can see the whole
process as building an SLP for the sequences, with the additional assumption, that we want the SLPs
to be equal for the same strings, even they are obtained in different ways.

The signature is built using two alternating operations:

• block encoding: the first one replaces each block a` with (a, `) (treated as one symbol)

• the second groups the letters into segments of length between 2 and 12 and then replaces the
segments with new symbols

79

80 CHAPTER 15. EQUALITY TESTING FOR DYNAMIC STRINGS

In this way signature building can be seen as iterative deterministic hashing. The important property
is that a signatures are different for different texts.

Another property is the locality whether a letter begins or ends a fragments depends only on
O(log∗N) neighbours. In this way the update algorithms for concatenate and split need to perform
only local changes on each of O(logn) levels. Furthermore, they have to handle O(log∗N) elements
on each level.

This is based on the following marking algorithm

Lemma 15.2. For any string of numbers (whose two consecutive elements are different) with values
in {0, . . . , N} there is a function that assigns to each element 0 or 1 such that

• the assignment depends only on ∆ = log∗N + 11 neighbouring elements in the sequence;

• no two consecutive elements are assigned 1

• there is at least one 1 assigned to each three consecutive elements.

Clearly such an assignment can be used for denoting fragments: we end each fragment at first 1.

15.1 How to calculate assignment
This is based on [7, 21].

Informally it is done as follows. We first compute a valid logN -coloring. Afterwards we replace
the elements in the list by their colors, consider the set of colors to be the new universe, and iterate
the coloring procedure. After O(log∗N) iterations we get a valid six-coloring which we then reduce
by a different procedure to a three-coloring which is then used to generate the assignment.

Identify each ai (and its color) with its binary representation (which has O(logN) bits). The bits
are numbered from zero and the 0-th element is always assigned 0. In each iteration every element
ai is assigned a new color by concatenating the number of the bit, where the old color of ai−1 and ai
differ and the value of this bit. (For the a0 we always assign 0.)

Lemma 15.3. This procedure produces a valid 6-coloring and has O(log∗N) many iterations.

It is easy to check that indeed this produces a valid coloring and that finally we end up with a
6-coloring. (Exercise)

For the number of phases note that in each phase colors are reduced from k to 2 log k + 1, so the
process terminates after O(log∗ n) many phases.

In particular, the final colour of the node depends only on its O(log∗N) many neighbours.
Then we make the assignment of 0 and 1 by assigning 1 to the nodes whose colours are local

maxima. It is easy to check that it has the desired properties.

15.2 Storing
The signatures are stored in an SLP-like structure. Conceptually, for a string s we store its signature
and treat each letter in the signature as a nonterminal of an SLP, in particular, we put appropriate
rule for generation of the text. We then store higher and higher signatures, until a single symbol is
obtained.

Comparison of two texts is done by comparing the top symbols of their signatures (and the height
of the signatures). For convenience, for each nonterminal of the signature we store also the length of
the represented text.

15.3 Update
Makesequence is easy. We consider the Split, Concatenation is done similarly.

To split a signature, we go in the SLP to appropriate position, we store O(log∗N) elements from
each side of the path on each level, when this is the assignment, or the length of the a-prefix/suffix,

15.4. COMMENTS 81

when the level calculates the blocks compression. Since the signatures are computed locally, this is
enough to recalculate the signature. (Exercise)

We need some additional structure (say, a dictionary), to search for existing signatures. One such
operation takes O(logm) time, as there are at most m log∗N signatures on each level (exercise).

15.4 Comments
This can be improved in a non-trivial way to pattern searching. Furthermore, we can ensure that
we store the texts in alphabetic order and can compute the LCP for two elements in the sequence in
O(logn) time.

Exercises

Task 68 Show how to implement the split operation in the data structure for equality testing of
dynamic texts. In particular show that it is enough to modify only O(log∗N) elements per level,
where N is the bound on the maximal size of the numbers occurring in the signature.

Task 69 Show that log∗N = O(log∗(max(m, |Σ|))), where Σ is the input alphabet and m is the
number of performed operations.

Hint:Youcanusetheboundcalculatedintheprevioustask,assumingthatitalsoappliestoconcate-
nation.

Task 70 Can you apply the signature-building algorithm from the data structure for equality of
dynamic texts to word equations? What assumptions do you need? What is the size of the equation?

82 CHAPTER 15. EQUALITY TESTING FOR DYNAMIC STRINGS

Bibliography

[1] Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopylova, William F. Smyth, Ger-
man Tischler, and Munina Yusufu. A comparison of index-based Lempel-Ziv LZ77 factorization
algorithms. ACM Comput. Surv., 45(1):5, 2012.

[2] Stephen Alstrup, Gerth S. Brodal, and Theis Rauhe. Pattern matching in dynamic texts.
In David B. Shmoys, editor, SODA, pages 819–828. ACM/SIAM, 2000. ISBN 0-89871-453-2.
doi:doi.acm.org/10.1145/338219.338645. URL http://dl.acm.org/citation.cfm?id=338219.
338645.

[3] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993. doi:10.1137/0222017.

[4] Witold Charatonik and Leszek Pacholski. Word equations with two variables. In Habib Abdulrab
and Jean-Pierre Pécuchet, editors, IWWERT, volume 677 of LNCS, pages 43–56. Springer, 1991.
ISBN 3-540-56730-5. doi:10.1007/3-540-56730-5_30.

[5] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and
Abhi Shelat. The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):
2554–2576, 2005. doi:10.1109/TIT.2005.850116.

[6] Gang Chen, Simon J. Puglisi, and William F. Smyth. Fast and practical algorithms for computing
all the runs in a string. In Bin Ma and Kaizhong Zhang, editors, CPM, volume 4580 of LNCS,
pages 307–315. Springer, 2007.

[7] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.
URL http://dx.doi.org/10.1016/S0019-9958(86)80023-7.

[8] Hubert Comon. Completion of rewrite systems with membership constraints. Part I: Deduction
rules. J. Symb. Comput., 25(4):397–419, 1998. doi:10.1006/jsco.1997.0185. URL http://dx.
doi.org/10.1006/jsco.1997.0185.

[9] Hubert Comon. Completion of rewrite systems with membership constraints. Part II: Constraint
solving. J. Symb. Comput., 25(4):421–453, 1998. doi:10.1006/jsco.1997.0186. URL http://dx.
doi.org/10.1006/jsco.1997.0186.

[10] Maxime Crochemore, Lucian Ilie, and William F. Smyth. A simple algorithm for computing the
Lempel Ziv factorization. In DCC, pages 482–488. IEEE Computer Society, 2008.

[11] Volker Diekert and Markus Lohrey. Existential and positive theories of equations in graph
products. Theory Comput. Syst., 37(1):133–156, 2004. doi:10.1007/s00224-003-1110-x. URL
http://dx.doi.org/10.1007/s00224-003-1110-x.

[12] Volker Diekert, Claudio Gutiérrez, and Christian Hagenah. The existential theory of equations
with rational constraints in free groups is PSPACE-complete. Inf. Comput., 202(2):105–140, 2005.
URL http://dx.doi.org/10.1016/j.ic.2005.04.002.

83

http://dx.doi.org/doi.acm.org/10.1145/338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
http://dx.doi.org/10.1137/0222017
http://dx.doi.org/10.1007/3-540-56730-5_30
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1006/jsco.1997.0185
http://dx.doi.org/10.1006/jsco.1997.0185
http://dx.doi.org/10.1006/jsco.1997.0185
http://dx.doi.org/10.1006/jsco.1997.0186
http://dx.doi.org/10.1006/jsco.1997.0186
http://dx.doi.org/10.1006/jsco.1997.0186
http://dx.doi.org/10.1007/s00224-003-1110-x
http://dx.doi.org/10.1007/s00224-003-1110-x
http://dx.doi.org/10.1016/j.ic.2005.04.002

84 BIBLIOGRAPHY

[13] Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equa-
tions in free groups and monoids with involution. Inf. Comput., 251:263–286, 2016.
doi:10.1016/j.ic.2016.09.009. URL http://dx.doi.org/10.1016/j.ic.2016.09.009.

[14] Robert Dąbrowski and Wojciech Plandowski. Solving two-variable word equations. In Josep Díaz,
Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, ICALP, volume 3142 of LNCS,
pages 408–419. Springer, 2004. ISBN 3-540-22849-7. doi:10.1007/978-3-540-27836-8_36.

[15] Robert Dąbrowski and Wojciech Plandowski. On word equations in one variable. Algorithmica,
60(4):819–828, 2011. doi:10.1007/s00453-009-9375-3.

[16] Pál Dömösi and Géza Horváth. Alternative proof of the lyndon-schützenberger theorem. The-
oretical Computer Science, 366(3):194–198, 2006. doi:10.1016/j.tcs.2006.08.023. URL https:
//doi.org/10.1016/j.tcs.2006.08.023.

[17] William M. Farmer. Simple second-order languages for which unification is undecidable. Theor.
Comput. Sci., 87(1):25–41, 1991. doi:10.1016/S0304-3975(06)80003-4. URL http://dx.doi.org/
10.1016/S0304-3975(06)80003-4.

[18] Adria Gascón, Guillem Godoy, Manfred Schmidt-Schauß, and Ashish Tiwari. Context unification
with one context variable. J. Symb. Comput., 45(2):173–193, 2010. doi:10.1016/j.jsc.2008.10.005.
URL http://dx.doi.org/10.1016/j.jsc.2008.10.005.

[19] Adria Gascón, Ashish Tiwari, and Manfred Schmidt-Schauß. One context unification problems
solvable in polynomial time. In LICS, pages 499–510. IEEE, 2015. ISBN 978-1-4799-8875-4.
doi:10.1109/LICS.2015.53. URL http://dx.doi.org/10.1109/LICS.2015.53.

[20] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr Sankowski.
Optimal dynamic strings. In Artur Czumaj, editor, SODA, pages 1509–1528. SIAM, 2018.
ISBN 978-1-61197-503-1. doi:10.1137/1.9781611975031.99. URL https://doi.org/10.1137/
1.9781611975031.99.

[21] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel symmetry-breaking
in sparse graphs. SIAM J. Discrete Math., 1(4):434–446, 1988. doi:10.1137/0401044. URL
http://dx.doi.org/10.1137/0401044.

[22] Warren D. Goldfarb. The undecidability of the second-order unification problem. Theor. Comput.
Sci., 13:225–230, 1981. doi:10.1016/0304-3975(81)90040-2. URL http://dx.doi.org/10.1016/
0304-3975(81)90040-2.

[23] Keisuke Goto and Hideo Bannai. Simpler and faster Lempel Ziv factorization. In Ali Bilgin,
Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, DCC, pages 133–142.
IEEE, 2013. ISBN 978-1-4673-6037-1.

[24] Keisuke Goto and Hideo Bannai. Space efficient linear time Lempel-Ziv factorization for small
alphabets. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors,
DCC 2014, pages 163–172. IEEE, 2014. doi:10.1109/DCC.2014.62. URL http://dx.doi.org/
10.1109/DCC.2014.62.

[25] Artur Jeż. Approximation of grammar-based compression via recompression. Theoretical Com-
puter Science, 592:115–134, 2015. doi:10.1016/j.tcs.2015.05.027. URL http://dx.doi.org/10.
1016/j.tcs.2015.05.027.

[26] Artur Jeż. Recompression: a simple and powerful technique for word equations. J. ACM, 63(1):
4:1–4:51, Mar 2016. ISSN 0004-5411/2015. doi:10.1145/2743014. URL http://dx.doi.org/10.
1145/2743014.

[27] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

http://dx.doi.org/10.1016/j.ic.2016.09.009
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://dx.doi.org/10.1007/978-3-540-27836-8_36
http://dx.doi.org/10.1007/s00453-009-9375-3
http://dx.doi.org/10.1016/j.tcs.2006.08.023
https://doi.org/10.1016/j.tcs.2006.08.023
https://doi.org/10.1016/j.tcs.2006.08.023
http://dx.doi.org/10.1016/S0304-3975(06)80003-4
http://dx.doi.org/10.1016/S0304-3975(06)80003-4
http://dx.doi.org/10.1016/S0304-3975(06)80003-4
http://dx.doi.org/10.1016/j.jsc.2008.10.005
http://dx.doi.org/10.1016/j.jsc.2008.10.005
http://dx.doi.org/10.1109/LICS.2015.53
http://dx.doi.org/10.1109/LICS.2015.53
http://dx.doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1016/0304-3975(81)90040-2
http://dx.doi.org/10.1016/0304-3975(81)90040-2
http://dx.doi.org/10.1016/0304-3975(81)90040-2
http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/1217856.1217858

BIBLIOGRAPHY 85

[28] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factorization:
Simple, fast, small. In Johannes Fischer and Peter Sanders, editors, CPM, volume 7922 of LNCS,
pages 189–200. Springer, 2013. ISBN 978-3-642-38904-7, 978-3-642-38905-4.

[29] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Amihood Amir and Gad M.
Landau, editors, CPM, volume 2089 of LNCS, pages 181–192. Springer, 2001. ISBN 3-540-42271-
4. doi:10.1007/3-540-48194-X_17.

[30] Olga Kharlampovich, I. G. Lysënok, Alexei G. Myasnikov, and Nicholas W. M. Touikan. The
solvability problem for quadratic equations over free groups is np-complete. Theory of Computing
Systems, 47(1):250–258, 2010. doi:10.1007/s00224-008-9153-7. URL https://doi.org/10.1007/
s00224-008-9153-7.

[31] Antoni Kościelski and Leszek Pacholski. Complexity of Makanin’s algorithm. J. ACM, 43(4):670–
684, 1996. doi:10.1145/234533.234543. URL http://doi.acm.org/10.1145/234533.234543.

[32] Markku Laine and Wojciech Plandowski. Word equations with one unknown. Int. J. Found.
Comput. Sci., 22(2):345–375, 2011. doi:10.1142/S0129054111008088.

[33] J. L. Lambert. Une borne pour les générateurs des solutions entières positives d’une équation
diophantienne linéaire. Compte-rendu de L’Académie des Sciences de Paris, 305(1):39–40, 1987.

[34] Jordi Levy. Linear second-order unification. In Harald Ganzinger, editor, RTA, volume 1103 of
LNCS, pages 332–346. Springer, 1996. ISBN 3-540-61464-8. doi:10.1007/3-540-61464-8_63. URL
http://dx.doi.org/10.1007/3-540-61464-8_63.

[35] Jordi Levy and Jaume Agustí-Cullell. Bi-rewrite systems. J. Symb. Comput., 22(3):279–314,
1996. doi:10.1006/jsco.1996.0053. URL http://dx.doi.org/10.1006/jsco.1996.0053.

[36] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf. Comput.,
159(1–2):125–150, 2000. doi:10.1006/inco.2000.2877. URL http://dx.doi.org/10.1006/inco.
2000.2877.

[37] Jordi Levy and Mateu Villaret. Linear second-order unification and context unification with
tree-regular constraints. In Leo Bachmair, editor, RTA, volume 1833 of LNCS, pages 156–171.
Springer, 2000. ISBN 3-540-67778-X. doi:10.1007/10721975_11. URL http://dx.doi.org/10.
1007/10721975_11.

[38] Jordi Levy and Mateu Villaret. Currying second-order unification problems. In Sophie Ti-
son, editor, RTA, volume 2378 of LNCS, pages 326–339. Springer, 2002. ISBN 3-540-43916-1.
doi:10.1007/3-540-45610-4_23. URL http://dx.doi.org/10.1007/3-540-45610-4_23.

[39] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. The complexity of monadic second-
order unification. SIAM J. Comput., 38(3):1113–1140, 2008. doi:10.1137/050645403. URL http:
//dx.doi.org/10.1137/050645403.

[40] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. On the complexity of bounded second-
order unification and stratified context unification. Logic Journal of the IGPL, 19(6):763–789,
2011. doi:10.1093/jigpal/jzq010. URL http://dx.doi.org/10.1093/jigpal/jzq010.

[41] Yury Lifshits. Processing compressed texts: A tractability border. In Bin Ma and
Kaizhong Zhang, editors, CPM, volume 4580 of LNCS, pages 228–240. Springer, 2007. ISBN
978-3-540-73436-9. doi:10.1007/978-3-540-73437-6_24. URL http://dx.doi.org/10.1007/
978-3-540-73437-6_24.

[42] Roger C. Lyndon and Marcel-Paul Schützenberger. The equation aM = bNcP in a free group.
Michigan Mathematical Journal, 9(4):289–298, 1962.

http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1007/s00224-008-9153-7
https://doi.org/10.1007/s00224-008-9153-7
https://doi.org/10.1007/s00224-008-9153-7
http://dx.doi.org/10.1145/234533.234543
http://doi.acm.org/10.1145/234533.234543
http://dx.doi.org/10.1142/S0129054111008088
http://dx.doi.org/10.1007/3-540-61464-8_63
http://dx.doi.org/10.1007/3-540-61464-8_63
http://dx.doi.org/10.1006/jsco.1996.0053
http://dx.doi.org/10.1006/jsco.1996.0053
http://dx.doi.org/10.1006/inco.2000.2877
http://dx.doi.org/10.1006/inco.2000.2877
http://dx.doi.org/10.1006/inco.2000.2877
http://dx.doi.org/10.1007/10721975_11
http://dx.doi.org/10.1007/10721975_11
http://dx.doi.org/10.1007/10721975_11
http://dx.doi.org/10.1007/3-540-45610-4_23
http://dx.doi.org/10.1007/3-540-45610-4_23
http://dx.doi.org/10.1137/050645403
http://dx.doi.org/10.1137/050645403
http://dx.doi.org/10.1137/050645403
http://dx.doi.org/10.1093/jigpal/jzq010
http://dx.doi.org/10.1093/jigpal/jzq010
http://dx.doi.org/10.1007/978-3-540-73437-6_24
http://dx.doi.org/10.1007/978-3-540-73437-6_24
http://dx.doi.org/10.1007/978-3-540-73437-6_24

86 BIBLIOGRAPHY

[43] Gennadií Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik, 2(103):147–236, 1977. (in Russian).

[44] Gennadií Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46:1199–1273,
1983. English transl. in Math. USSR Izv. 21 (1983).

[45] Gennadií Semyonovich Makanin. Decidability of the universal and positive theories of a free
group. Izv. Akad. Nauk SSSR, Ser. Mat. 48:735–749, 1984. In Russian; English translation in:
Math. USSR Izvestija, 25, 75–88, 1985.

[46] Jerzy Marcinkowski. Undecidability of the first order theory of one-step right ground rewriting. In
Hubert Comon, editor, RTA, volume 1232 of LNCS, pages 241–253. Springer, 1997. doi:10.1007/3-
540-62950-5_75. URL http://dx.doi.org/10.1007/3-540-62950-5_75.

[47] Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences under equality
tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997. doi:10.1007/BF02522825.

[48] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. ISBN 9780521835404.

[49] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uniform approach to underspecification
and parallelism. In Philip R. Cohen and Wolfgang Wahlster, editors, ACL, pages 410–417. Morgan
Kaufmann Publishers / ACL, 1997. doi:10.3115/979617.979670. URL http://dx.doi.org/10.
3115/979617.979670.

[50] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In William McCune, editor, CADE, volume
1249 of LNCS, pages 34–48. Springer, 1997. ISBN 3-540-63104-6. doi:10.1007/3-540-63104-6_4.
URL http://dx.doi.org/10.1007/3-540-63104-6_4.

[51] S. Eyono Obono, Pavel Goralcik, and M. N. Maksimenko. Efficient solving of the word equations
in one variable. In Igor Prívara, Branislav Rovan, and Peter Ruzicka, editors, MFCS, volume 841
of LNCS, pages 336–341. Springer, 1994. ISBN 3-540-58338-6. doi:10.1007/3-540-58338-6_80.

[52] Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Raffaele Giancarlo and
Giovanni Manzini, editors, CPM, volume 6661 of LNCS, pages 15–26. Springer, 2011. ISBN
978-3-642-21457-8.

[53] Wojciech Plandowski. Satisfiability of word equations with constants is in NEXPTIME. In STOC,
pages 721–725. ACM, 1999. doi:10.1145/301250.301443. URL http://doi.acm.org/10.1145/
301250.301443.

[54] Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. J. ACM,
51(3):483–496, 2004. doi:10.1145/990308.990312. URL http://doi.acm.org/10.1145/990308.
990312.

[55] Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the solution
of word equations. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors, ICALP,
volume 1443 of LNCS, pages 731–742. Springer, 1998. doi:10.1007/BFb0055097. URL http:
//dx.doi.org/10.1007/BFb0055097.

[56] RTA problem list. Problem 90. http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html,
1990.

[57] Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/S0304-3975(02)00777-6.

http://dx.doi.org/10.1007/3-540-62950-5_75
http://dx.doi.org/10.1007/3-540-62950-5_75
http://dx.doi.org/10.1007/3-540-62950-5_75
http://dx.doi.org/10.1007/BF02522825
http://dx.doi.org/10.3115/979617.979670
http://dx.doi.org/10.3115/979617.979670
http://dx.doi.org/10.3115/979617.979670
http://dx.doi.org/10.1007/3-540-63104-6_4
http://dx.doi.org/10.1007/3-540-63104-6_4
http://dx.doi.org/10.1007/3-540-58338-6_80
http://dx.doi.org/10.1145/301250.301443
http://doi.acm.org/10.1145/301250.301443
http://doi.acm.org/10.1145/301250.301443
http://dx.doi.org/10.1145/990308.990312
http://doi.acm.org/10.1145/990308.990312
http://doi.acm.org/10.1145/990308.990312
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1007/BFb0055097
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
http://dx.doi.org/10.1016/S0304-3975(02)00777-6

BIBLIOGRAPHY 87

[58] Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three unknown
equations. In Volker Diekert and Dirk Nowotka, editors, Developments in Language Theory,
volume 5583 of LNCS, pages 443–453. Springer, 2009. ISBN 978-3-642-02736-9. doi:10.1007/978-
3-642-02737-6_36.

[59] Aleksi Saarela. Word equations where a power equals a product of powers. In Heribert Vollmer and
Brigitte Vallée, editors, STACS, volume 66 of LIPIcs, pages 55:1–55:9. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017. ISBN 978-3-95977-028-6. doi:10.4230/LIPIcs.STACS.2017.55.
URL https://doi.org/10.4230/LIPIcs.STACS.2017.55.

[60] Hiroshi Sakamoto. A fully linear-time approximation algorithm for grammar-based compression.
J. Discrete Algorithms, 3(2-4):416–430, 2005. doi:10.1016/j.jda.2004.08.016.

[61] Manfred Schmidt-Schauß. Unification of stratified second-order terms. Internal Report 12/94,
Johann-Wolfgang-Goethe-Universität, 1994.

[62] Manfred Schmidt-Schauß. A decision algorithm for distributive unification. Theor. Comput.
Sci., 208(1–2):111–148, 1998. doi:10.1016/S0304-3975(98)00081-4. URL http://dx.doi.org/
10.1016/S0304-3975(98)00081-4.

[63] Manfred Schmidt-Schauß. A decision algorithm for stratified context unification. J. Log. Comput.,
12(6):929–953, 2002. doi:10.1093/logcom/12.6.929. URL http://dx.doi.org/10.1093/logcom/
12.6.929.

[64] Manfred Schmidt-Schauß. Decidability of bounded second order unification. Inf. Comput., 188
(2):143–178, 2004. doi:10.1016/j.ic.2003.08.002. URL http://dx.doi.org/10.1016/j.ic.2003.
08.002.

[65] Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodicity of minimal solu-
tions of context equation. In RTA, volume 1379 of LNCS, pages 61–75. Springer, 1998. ISBN
3-540-64301-X. doi:10.1007/BFb0052361. URL http://dx.doi.org/10.1007/BFb0052361.

[66] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations with two context
variables is decidable. J. Symb. Comput., 33(1):77–122, 2002. doi:10.1006/jsco.2001.0438. URL
http://dx.doi.org/10.1006/jsco.2001.0438.

[67] Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-order unification.
J. Symb. Comput., 40(2):905–954, 2005. doi:10.1016/j.jsc.2005.01.005. URL http://dx.doi.
org/10.1016/j.jsc.2005.01.005.

[68] Klaus U. Schulz. Makanin’s algorithm for word equations—two improvements and a general-
ization. In Klaus U. Schulz, editor, IWWERT, volume 572 of LNCS, pages 85–150. Springer,
1990. ISBN 3-540-55124-7. doi:10.1007/3-540-55124-7_4. URL http://dx.doi.org/10.1007/
3-540-55124-7_4.

[69] James A. Storer and Thomas G. Szymanski. The macro model for data compression. In Richard J.
Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors,
STOC, pages 30–39. ACM, 1978.

[70] Ralf Treinen. The first-order theory of linear one-step rewriting is undecidable. Theor. Comput.
Sci., 208(1–2):179–190, 1998. doi:10.1016/S0304-3975(98)00083-8. URL http://dx.doi.org/
10.1016/S0304-3975(98)00083-8.

[71] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York, NY,
USA, 2001. ISBN 3-540-65367-8.

[72] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer equations
and inequalities. Proceedings of AMS, 72(1):155–158, 1978.

http://dx.doi.org/10.1007/978-3-642-02737-6_36
http://dx.doi.org/10.1007/978-3-642-02737-6_36
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.55
https://doi.org/10.4230/LIPIcs.STACS.2017.55
http://dx.doi.org/10.1016/j.jda.2004.08.016
http://dx.doi.org/10.1016/S0304-3975(98)00081-4
http://dx.doi.org/10.1016/S0304-3975(98)00081-4
http://dx.doi.org/10.1016/S0304-3975(98)00081-4
http://dx.doi.org/10.1093/logcom/12.6.929
http://dx.doi.org/10.1093/logcom/12.6.929
http://dx.doi.org/10.1093/logcom/12.6.929
http://dx.doi.org/10.1016/j.ic.2003.08.002
http://dx.doi.org/10.1016/j.ic.2003.08.002
http://dx.doi.org/10.1016/j.ic.2003.08.002
http://dx.doi.org/10.1007/BFb0052361
http://dx.doi.org/10.1007/BFb0052361
http://dx.doi.org/10.1006/jsco.2001.0438
http://dx.doi.org/10.1006/jsco.2001.0438
http://dx.doi.org/10.1016/j.jsc.2005.01.005
http://dx.doi.org/10.1016/j.jsc.2005.01.005
http://dx.doi.org/10.1016/j.jsc.2005.01.005
http://dx.doi.org/10.1007/3-540-55124-7_4
http://dx.doi.org/10.1007/3-540-55124-7_4
http://dx.doi.org/10.1007/3-540-55124-7_4
http://dx.doi.org/10.1016/S0304-3975(98)00083-8
http://dx.doi.org/10.1016/S0304-3975(98)00083-8
http://dx.doi.org/10.1016/S0304-3975(98)00083-8

88 BIBLIOGRAPHY

[73] Sergei G. Vorobyov. The first-order theory of one step rewriting in linear Noetherian systems is
undecidable. In Hubert Comon, editor, RTA, volume 1232 of LNCS, pages 254–268. Springer,
1997. ISBN 3-540-62950-5. doi:10.1007/3-540-62950-5_76. URL http://dx.doi.org/10.1007/
3-540-62950-5_76.

[74] Sergei G. Vorobyov. ∀∃∗-equational theory of context unification is Π0
1-hard. In Lubos Brim, Jozef

Gruska, and Jirí Zlatuska, editors, MFCS, volume 1450 of LNCS, pages 597–606. Springer, 1998.
ISBN 3-540-64827-5. doi:10.1007/BFb0055810. URL http://dx.doi.org/10.1007/BFb0055810.

http://dx.doi.org/10.1007/3-540-62950-5_76
http://dx.doi.org/10.1007/3-540-62950-5_76
http://dx.doi.org/10.1007/3-540-62950-5_76
http://dx.doi.org/10.1007/BFb0055810
http://dx.doi.org/10.1007/BFb0055810

	Word equations: basic notions and results
	Introduction
	Definitions
	SLPs
	Equivalence of SLPs

	Composition systems
	Satisfiability via SLPs

	Satisfiability of word equations in PSPACE
	Bottom-up costruction of an SLP for a word
	Soundness and completeness
	Crossing and Noncrossing Pairs and Blocks
	Compression of noncrossing pairs and blocks
	Uncrossing
	The algorithm

	Exponent of periodicity: simple case
	Exponent of periodicity
	Touching blocks and their lengths
	Arithmetic expressions and their equations
	Parametrised solutions
	Solutions of system of linear Diophantine equations
	Bound on -exponent of periodicity

	Basic string combinatorics (stringology)
	Periodicity
	Failure function
	Primitive words
	Suffix trees

	Exponent of periodicity: general case
	P-presentations
	System of equations

	Quadratic word equations
	Analysis

	Word equations with one variable
	One variable equations
	One-variable equations: structure
	Via word combinatorics
	| A0 | | B1 |
	| s (X) | | A0 | - | B1 | > 0
	| A0 | - | B1 | > | s (X) | > 0
	Verification of candidate solutions

	Via recompression
	Representation of solutions
	Weight
	Preserving solutions
	Specialisation of procedures
	The algorithm
	Running time

	Word equations with two variables
	Parametrised words
	Canonisation
	Simple systems of equations and their solutions
	S1
	S2
	S3
	S4

	Solving system S1

	Equations without constants and related topics
	General results
	Equivalent subsystems
	Defect Theorem

	An interesting new result/proof
	Lyndon-Schützenberge Theorem

	Free groups
	Free groups
	Free monoids/semigroups with involution
	Reduction: equations in groups to equations in free semigroup with involution and rational constraint

	Positive theory of free groups
	Notation
	Main result
	Main technical Lemma
	Main proof: quantifier elimination

	Solving equations in free groups
	Regular sets
	Regular constraints
	Model
	Main issue
	The algorithm
	Needed modifications
	Constraints
	Involution
	Pair compression
	Blocks and Quasiblocks compression
	Preprocessing

	Letters

	Linear Monadic Second Order Unification
	Compressed pattern matching: Combinatorial approach
	AP table
	Filling AP using LSP

	Local search procedure

	Equality testing for dynamic strings
	How to calculate assignment
	Storing
	Update
	Comments

