
Algorithmica (2011) 60: 819–828
DOI 10.1007/s00453-009-9375-3

On Word Equations in One Variable

Robert Dąbrowski · Wojciech Plandowski

Received: 3 December 2008 / Accepted: 11 November 2009 / Published online: 2 December 2009
© Springer Science+Business Media, LLC 2009

Abstract For a word equation E of length n in one variable x occurring #x times in
E a resolution algorithm of O(n + #x logn) time complexity is presented here. This
is the best result known and for the equations that feature #x < n

logn
it yields time

complexity of O(n) which is optimal. Additionally it is proven here that the set of
solutions of any one-variable word equation is either of the form F or of the form
F ∪ (uv)+u where F is a set of O(logn) words and u, v are some words such that
uv is a primitive word.

Keywords Word equation · Equation in free semigroup · Algorithm analysis and
design · Computational complexity

1 Introduction

In 1977 Makanin proved that solvability of word equations is decidable in general
case. Makanin’s algorithm [8] has remained one of the most famous and complicated
algorithms in theoretical computer science. The algorithm takes as an input a word
equation and decides whether the equation has a solution or not. It has been improved
several times and its best version [5] works in EXPSPACE.

Recently new algorithms that decide solvability of word equations in general case
have been found by Plandowski and Rytter [12, 13]. The first one works nondeter-
ministically in polynomial time in respect to the length of the input equation and the
logarithm of the length of its minimal solution. Since the currently best upper bound

R. Dąbrowski (�) · W. Plandowski
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
e-mail: r.dabrowski@mimuw.edu.pl

W. Plandowski
e-mail: wojtekpl@mimuw.edu.pl

mailto:r.dabrowski@mimuw.edu.pl
mailto:wojtekpl@mimuw.edu.pl

820 Algorithmica (2011) 60: 819–828

for the length of the minimal solution is double exponential [11], with this bound the
algorithm in [13] works in NEXPTIME. The algorithm in [12] works in PSPACE.

Obviously the algorithms solving the problem of satisfiability of word equations
in general case cannot be called efficient. Actually we cannot even expect efficiency
since the problem is known to be NP-hard [1, 7].

However, if we concentrate on some selected classes of word equations then there
do exist polynomial time algorithms that either decide solvability (decide if a given
word equation has any solutions) or actually solve word equations (find a polynomial
description of all solutions of a given word equation); the latter is clearly a more
general problem.

In case of two-variable word equations there exist two polynomial time algo-
rithms [2, 6] that decide solvability. The best one [6] works in time O(n6), where
n is the length of the input equation. Although the algorithm is of polynomial time
complexity, it cannot be called efficient. In case of one-variable word equations there
exists an efficient algorithm [10] which works in time O(n logn), where n is the
length of the input equation. There exists also an efficient O(n log2 n) time algorithm
for a certain class of special equations with two variables [9].

In this paper we deepen the analysis of Goralcik et al. [10] and present an algo-
rithm that works in time O(n + #x logn) where n is the length of the input equation
and #x is the number of occurrences of the variable x in the input equation. Our al-
gorithm consists of two phases: in the first phase it selects O(logn) candidates for
a solution, in the second phase it verifies in time O(#x) if a candidate is a solution.
The second phase assumes that the alphabet � is of constant size (or that it is a set of
numbers {1, . . . , |�|}).

Additionally we prove that the set of solutions of any one-variable word equation
is either of the form F or of the form F ∪ (uv)+u where F is a set of O(logn) words
and u, v are some words such that word uv is primitive.

2 Preliminaries

A word equation over an alphabet � in one variable x �∈ � is a pair E = (L,R) of
words L,R ∈ (� ∪ {x})� and is usually written as E : L = R. A solution of E is a
homomorphism ϕ : (� ∪ {x})� → �� leaving the letters of � invariant (i.e. ϕ(a) = a

for all a ∈ �) and such that ϕ(L) = ϕ(R). Each solution is uniquely identified by a
mapping of x into �� for which the homomorphism is the canonical extension. By
Sol(E) we denote the solution set of the equation E. The length of the equation E,
denoted by |E|, is the number |LR|.

The prefix, proper prefix, suffix and proper suffix relations on words are denoted
respectively by �, �, � and �. For a word B , Bω denotes an infinite word which is
an infinite repetition of the word B .

We start by recalling basic facts. Words A,B ∈ �� are conjugate iff there exist
two words u,v ∈ �� such that A = uv and B = vu. A non-empty word w ∈ �� is
primitive iff it has exactly |w| distinct conjugations or, equivalently, if it is not a power
of a different word. For arbitrary words A and w we define A/w = max{k : wk � A}.
Every non-empty word A ∈ �� is a power of a unique primitive word w ∈ �� called
its primitive root, that is A = wA/w .

Algorithmica (2011) 60: 819–828 821

Proposition 1 (See [3]) For an arbitrary word A let u,v,w � A be distinct primitive
words such that u2 � v2 � w2 � A. Then |u| + |v| ≤ |w|.

By Rpp(A) we denote the sequence of all repetitive primitive prefixes of A, that is
all primitive w � A such that w2 � A. As an immediate consequence of Proposition 1
we have the following proposition.

Proposition 2 (See [3]) Let Rpp(A) = {w1,w2, . . . ,wk} and w1 � w2 � · · · � wk .
Then |wi+2| ≥ 2|wi |. Moreover k ≤ 2 log |A| and

∑k
i=1 |wi | ≤ 2|A|.

For given u,v we define

(uv)�u = {(uv)ku : k ≥ 0},
(uv)+u = {(uv)ku : k ≥ 1}.

A word A is called periodic with a period uv iff A ∈ (uv)+u.

Proposition 3 (Periodicity lemma) Let integers p,q be some periods of a given
word w. If p + q ≤ |w| + 1 then gcd(p, q) is also a period of w.

In a few places we shall refer to the algorithm in [10] that consists of two phases. In
the first one it finds O(logn) pairs of words (ui, vi) such that Sol(E) ⊆ ⋃

i (uivi)
�ui .

In the second phase it finds Sol(E) ∩ (uivi)
�ui for all i. The latter phase contains a

procedure finding (for given u,v) the set Sol(E) ∩ (uv)�u in time O(n), which we
will utilize by the following proposition.

Proposition 4 (See [10]) Given two words u, v of length O(n) and an equation E

of length n it is possible to find the set (uv)+u ∩ Sol(E) in time O(n). The problem
of finding all k ≥ 1 such that (uv)ku ∈ Sol(E) reduces to solving a system of linear
diophantine equations in k.

A word equation with one variable in generic form can be denoted as

E : A0xA1x · · · xAs = B0xB1x · · ·xBt

where Ai,Bi ∈ ��. If the equation E has a solution then (by canceling the same
leftmost and rightmost symbols from the left-hand side and right-hand side of E

respectively) we can reduce the equation to the form

E : A0xA1x · · ·xAs = xB1x · · ·xBt

where A0 is a nonempty word and either As is a nonempty word and Bt is the empty
word or vice versa. This form of equation implies that any solution x of E is a prefix
of Aω

0 .
If s �= t , then by analyzing lengths of both sides of the equation we can reduce the

number of possible solutions of E to at most one. By Proposition 4 the verification
whether this word is a solution or not can be done in time O(|E|). If s = t = 1, then

822 Algorithmica (2011) 60: 819–828

E is of the form A0x = xB1 which is well known in combinatorics of words. This
equation has a solution only if there exist two words p,q such that pq is a primitive
word and A0 = (pq)i and B1 = (qp)i for some i (which can be decided in time
O(|A0| + |B1|) using standard text algorithms), and then the set of all solutions is
(pq)�p. In our further analysis we assume s = t ≥ 2. Let #x denote the number of
occurrences of the variable x in E, that is #x = s + t = 2s.

3 Solution Candidates

Lemma 1 Let E be an equation and let u, v be two words such that uv is primitive.
Then

Sol(E) ∩ (uv)+u =
⎧
⎨

⎩

∅ (0)

{(uv)ku} for certain k ≥ 1 (1)

(uv)+u (∞)

Proof By Proposition 4 the problem of computing all integers k ≥ 1 such that
(uv)ku ∈ Sol(E) can be reduced to solving a system of diophantine equations in k.
Since the system may only have: (0) no solutions at all; (1) exactly one solution for
certain k ≥ 1; and (∞) infinitely many solutions for all {k : k ≥ 1}, this completes the
proof. �

To simplify the notation, for given u,v ∈ �∗ and k ≥ 0 we will call (uv)ku a finite
solution and (uv)+u an infinite solution. We show first that for a given equation there
is at most one infinite solution and it can be found in linear time.

Theorem 1 For a given equation E there exists at most one infinite solution and in
time O(|E|) it is possible to find the solution or decide it does not exist.

Proof The proof falls naturally into two parts.

(1) Assume |A0| ≤ |B1|. Denote by B ′ the prefix of B1 of length |B ′| = |A0|. Fix
any X ∈ Sol(E). Then A0X is the prefix of the left-hand side of the equation and
XB ′ is the prefix of the right-hand of the equation. By the definition of B ′ the
lengths of A0X and XB ′ are the same, therefore A0X = XB ′ and consequently
A0 and B ′ are conjugate. Therefore the primitive roots of A0 and B ′ are also
conjugate and thus respectively equal to uv and vu for some u,v ∈ ��. Therefore
Sol(E) ⊆ (uv)�u and by Proposition 4 we can find Sol(E) in time O(|E|). Since
Sol(E) ⊆ (uv)�u it follows from Lemma 1 that there can be at most one infinite
solution namely (uv)+u.

(2) Assume |A0| > |B1|. Denote by A′ the prefix of A0 of length |A′| = |A0| − |B1|.
Fix any X ∈ Sol(E) of length|X| ≥ |A′|. Then A′ being a prefix of A0 is also a
prefix of X. Now A0X is a prefix of the left-hand side of the equation and XB1X

is a prefix of the right-hand side of the equation. Moreover, since A′ is a prefix of
X, the word XB1A

′ is a prefix of the right-hand side of the equation. The length
of XB1A

′ is |A0X|. Hence A0X = XB1A
′ and consequently A0 and B1A

′ are
conjugate. Therefore X ∈ (uv)∗u for some u,v ∈ �∗, uv being the primitive root

Algorithmica (2011) 60: 819–828 823

Fig. 1 The pair (u, v) is the generator for w

of A0. Analogically to the previous case we conclude that there is at most one
infinite solution and that it can be found in time O(|E|). �

We follow to show that for the set of finite solutions it is possible to find in linear
time its logarithmically bounded superset.

Theorem 2 For a given equation E let S be the set of finite solutions of E. It is
possible to find in time O(|E|) a set Ŝ of finite solution candidates of size |Ŝ| =
O(log |E|) and such that S ⊆ Ŝ.

Proof An immediate conclusion from the proof of Theorem 1 is that for the equations
that feature |A0| ≤ |B1| all the solutions can be detected in time O(|E|), and for the
equations that feature |A0| > |B1| the solutions not shorter than |A0| − |B1| can be
detected in time O(|E|). In both cases the respective solution sets contribute to the
magnitude of Ŝ in only a constant factor. Thus without loss of generality it suffices
to focus on the equations that feature |A0| > |B1| and search for solutions candidates
shorter than |A0| − |B1|.

Let |A0| > |B1|. Fix X ∈ S of length |X| < |A0| − |B1|. Then XB1X � A0X �
A0A0 and consequently (B1X)2 is a proper prefix of B1A0A0. Let w denote the
primitive root of B1X. Therefore w2 � B1A0A0 and our aim is to search for finite
solution candidates with respect to the elements of Rpp(B1A0A0). Then B1X = wk

for some k ≥ 1. Hence there is a unique pair of words (u, v) such that word u is non-
empty and there are numbers i, j such that w = vu and B1 = (vu)iv and X = (uv)ju,
see Fig. 1. We say that (u, v) is the unique generator for w. We put all u = (uv)0u

into Ŝ. We prove next that for each w ∈ Rpp(B1A0A0) we shall put into Ŝ at most
one word of the form (uv)ju where (u, v) is the generator for w and j > 0 in total
time O(|E|).

We start by showing that the set Rpp(B1A0A0) can be computed in time O(|E|).
Following Knuth, Morris and Pratt [4] let

P [j] = max{0 ≤ k < j : B1A0A0[1 . . . k] � B1A0A0[1 . . . j]}.
The failure table P can be calculated [4] in time O(|B1A0A0|). The property of P

that j − P [j] is the length of the shortest period of B1A0A0[1 . . . j] allows us to
calculate Rpp(B1A0A0) in total time O(|B1A0A0|). More precisely

w ∈ Rpp(B1A0A0) ⇐⇒ 2|w| − P [2|w|] = |w|.

824 Algorithmica (2011) 60: 819–828

Fix w ∈ Rpp(|B1A0A0|) and let (u, v) be the generator for w. By Lemma 1 there is
at most one j > 0 such that X = (uv)ju is a solution of E. We show how to eliminate
all but one j > 0 so that X = (uv)ju remains the respective solution candidate for
E. For this purpose we analyze the sequence of consecutive occurrences of w in both
sides of the equation.

First we calculate the number of consecutive occurrences of w in B1A0A0. Since
ww � B1A0A0 it follows from the periodicity lemma and primitivity of w that there
is at most one w for which the sequence of its consecutive occurrences does not end
inside B1A0A0 and such w can be found in time O(|B1A0A0|). To find its respective
solution candidate we run in time O(|E|) the algorithm described in [10]. Therefore
without loss of generality we may assume the sequence ends inside B1A0A0. We can
use now the failure table P to find for each w the maximum number of its consecutive
occurrences in B1A0A0 in total time O(|B1A0A0|). Consider a sequence of w start-
ing in the right-hand side of equation E. All such w that their sequence ends inside
B1 can be discarded, since they could never be primitive roots of B1X. Thus let (u, v)

be the unique generator for w = vu. Since B1 must equal (vu)iv for some i ≥ 0 we
use the failure table for B1 to determine for all w in total time O(|B1|) which of the
cases takes place.

Case i ≥ 2. It follows from the periodicity lemma and primitivity of w that there
is at most one such w. To find a candidate corresponding to w we run the algorithm
described in [10].

Case i = 1. There are at most two such w. Indeed, for the set Rpp(B1A0A0) =
{w1, . . . ,wk} of repetitive primitive prefixes we have 2|wi | ≤ |wi+2|. Since |w| ≤
|B1| < |ww| at most two consecutive words wi,wi+1 meet the conditions. Therefore
for a constant number of words w we run the algorithm described in [10].

Case i = 0. Then B1 = v and let t be the first index such that Bt �= B1. If
Bt = (vu)j v, j ≥ 1 then again for a constant number of words w we run the al-
gorithm described in [10]. Otherwise Bt �= (vu)j v for any j ≥ 0 and for each w

we find the place its sequence ends inside Btuv (note that Btuv is a prefix of BtX)
in total time O(|Bt |) using a failure table for BtA0. Suppose that s = Btuv/w and
r = B1A0A0/w. Then (B1X)tBtX/w = B1A0A0/w so j t + t +s = r has at most one
solution with respect to j . If such a solution exists then we put X = (uv)ju into Ŝ. �

As an immediate consequence of Theorem 1 and Theorem 2 we have

Theorem 3 Let E be a one-variable word equation. Then Sol(E) = F or Sol(E) =
F ∪ (uv)+u for some u,v ∈ �∗ and a set F of words in �∗ where |F | = O(log |E|).

4 Verification of Solution Candidates

Throughout this section we assume that the alphabet � is of constant size or � =
{1, . . . , |�|}.

Lemma 2 Given a finite set � of words over an alphabet � and of total length
n = ∑

u∈� |u|, after an O(n)-time preprocessing it is possible to answer in time
O(1) if for given a, b being some prefixes of words in � it is true that a � b.

Algorithmica (2011) 60: 819–828 825

Proof The preprocessing phase goes as follows. First we build a trie tree to represent
all words in set �. Additionally we keep a link from every letter in every word in
� to its respective node in the tree. Then we traverse the trie tree from the root in
prefix order and assign the nodes consecutive numbers. Then we traverse the trie tree
in suffix order and assign every node the range of numbers in the subtree rooted at the
node, including the node’s own number. Thus every node is additionally assigned its
subtree’s minimum number and maximum number. This can be done in time O(n).
We follow now the links from the last letters of a and b to check if the respective
nodes are in a child-parent relation in trie tree, that is if one of the nodes is within the
range of the other node. This can be done in time O(1), which completes the proof. �

Let � be a set of words and T be the trie tree for the set �. Recall that for a given
vertex v in T its label is the word Label(v) consisting of letters on consecutive edges
of the path from the root of T to v. By definition (of a trie tree) the label for a vertex
v in T is a prefix of some word in �. Lets enrich the trie tree by maintaining an array
Vertex of links from prefixes of words in � to their respective vertices of T , so that
for any a being a prefix of a word in � we have Label(Vertex(a)) = a.

Recall that for a given word u a prefix table is the array Pref[1 . . . |u|] such that
Pref[j] is the length of the longest word starting at j in u which is a prefix of u. More
precisely Pref[j] = max{0 < k ≤ |u| − j + 1 : u[j . . . j + k − 1] � u} ∪ {0}.

We generalize now the notion of a prefix table to a set of words �.

Definition 1 For a given set � of words a prefix table is defined as

Pref[u, i] = v

where u ∈ �, 1 ≤ i ≤ |u| and v is a vertex in the trie tree for � such that Label(v) is
the longest prefix of a word in � which occurs at position i in u.

Lemma 3 Given a finite set � of words over an alphabet � and of total length
n = ∑

u∈� |u| it is possible to construct the prefix table for � in time O(n).

Proof Let A be the Aho-Corasick automaton for �, that is a deterministic finite
automaton accepting the set of all words containing a word from � as a suffix. Re-
call [4] that the Aho-Corasick automaton is in fact a trie tree for the set of words
� with additional edges s → t labeled by symbols b ∈ � such that Label(t)b is the
longest proper suffix of Label(s) which is a prefix of a word in �. If the automaton
goes through such an edge we say it backtracks. Let T denote the trie tree being the
skeleton of A. Recall [4] that construction of A takes time proportional to n|�| and
since � is of constant size then it is possible to construct A in time O(n).

Fix a word u ∈ �. We fill the table Pref for u iteratively. Clearly Pref[u,1] =
Vertex(u). We run A on u starting from position i = 2 in u. If A goes down T
then we do nothing. Assume that A reached symbol at position j in u going down
T and in the next step (reaching symbol at position j + 1 in u) backtracked in T
from state v to state w, see Fig. 2. Hence by definition of A (as recalled above) we
have Pref[u, i] = v. Before we resume the iteration from state w and position l in

826 Algorithmica (2011) 60: 819–828

Fig. 2 Left: The Aho-Corasick algorithm backtracked at position j + 1 from v to w, corresponding labels
depicted. Right: The dependency graph

u we have to fill the missing values for Pref[u, i + 1 . . . l − 1] where l = (j + 1) −
|Label(w)| + 1.

Fix k ∈ (i, l). Let r be the length of the longest prefix of a word in � which starts
at position k in u, that is

r = min{|Label(Pref[Word(v), k − i + 1])|, j − k + 1}
where Word(v) denotes any word in � such that Label(v) is its prefix (i.e. it is the
first word that caused vertex v to be inserted into T while building A). Then

Pref[u, k] = Vertex(Label(Pref[Word(v), k − i + 1])[1 . . . r]). (1)

Since naive recurrent computation of missing values of the array Pref could yield
multiple calculation of certain prefix table values, we resolve the problem dynam-
ically. We say that Pref[u, k] depends on Pref[Word(v), k − i + 1] and build a de-
pendency graph, see Fig. 2. The dependency graph is in fact a forest of trees since
the outdegree of each node in the graph is at most one and there are no cycles in
the graph. Indeed, every edge leads to a vertex representing a value of Pref with a
smaller label. Using the dependency graph we compute the values in the trees in a
root-to-leaves order using (1). It is possible since every tree must be rooted at a node
that has already been calculated. Therefore the total computation takes time O(n). �

Observe that having computed the prefix table for � it is possible to calcu-
late in constant time Pref[u, i] for any u being a prefix of a word in � and
1 ≤ i ≤ |u|. More precisely if u is a prefix of a word w ∈ � then Pref[u, i] =
Vertex(Label(Pref[w, i])[1 . . . r]) where r = min{|Label(Pref[w, i])|, |u| − i + 1}.

Theorem 4 Given an equation E : L = R over an alphabet � and in one variable
x /∈ �, after an O(|E|)-time preprocessing it is possible to answer in time O(#x) if a
given candidate X̂ � A0 is a solution of E.

Proof Let � = {A0, . . . ,As , B1, . . . ,Bs}, that is � be the set of equation constants.
First we follow the proof of Lemma 2 and build a trie tree to represent the words in �.
Next we build the prefix table for �. Since X̂ � A0, X̂ is represented both in the trie

Algorithmica (2011) 60: 819–828 827

Fig. 3 Top: Slices correspond
to arches. Bottom: Two possible
situations where a slice occurs
between positions i in u and j

in v

tree and the prefix table. It follows from Lemmas 2 and 3 that the preprocessing can be
done in time O(|E|). Let the homomorphism ϕ be the canonical extension to domain
� ∪ {x} of a mapping x → X̂. We slice both ϕ(L) and ϕ(R) at the positions where
any of the words � ∪ {X̂} begin/end, see Fig. 3. Thus we get �(#x) pairs of slices.
We shall compare the respective slices iteratively from left to right. In any case if we
get a mismatch, we end with a “not a solution” answer. It suffices to prove a single
comparison takes O(1) steps. It is easy to note that the equation constants the slices
origin from can be in at most two distinct configurations, see Fig. 3. Let u be the word
that does not start in a given slice or any of the words otherwise. Let v be the other
word. We use the prefix table for � and find Pref[u, i] = w. It follows from Lemma 3
that it can be done in time O(1). Now we check if v[1 . . . j] � Label(w)[1 . . . k]. It
follows from Lemma 2 that it can be done in time O(1). If the comparison results true,
then we cancel the slice and iterate the algorithm. Since every iteration takes time
O(1) and the number of iterations equals O(#x), verification time for one solution
candidate is O(#x). This completes the proof. �

As an immediate consequence of Theorems 1, 2 and 4 we obtain

Theorem 5 Let � be of constant size or � = {1, . . . , |�|}. There is an algorithm
finding all solutions of any word equation E over � with one variable x /∈ � in time

O(|E| + #x log |E|).

References

1. Angluin, D.: Finding pattern common to a set of string. In: Proceedings of Symposium on the Theory
of Computing, STOC’79, pp. 130–141. ACM, New York (1979)

2. Charatonik, W., Pacholski, L.: Word equations in two variables. In: Proceedings of the International
Workshop on Word Equations and Related Topics, IWWERT’91. Lecture Notes in Computer Science,
vol. 677, pp. 43–57. Springer, Berlin (1991)

3. Crochemore, M., Rytter, W.: Periodic prefixes in texts. In: Capocelli, R., De Santis, A., Vaccaro, U.
(eds) Sequences II, Positano, 1991, pp. 153–165. Springer, New York (1993)

4. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, London (1994)
5. Gutierrez, C.: Satisfiability of word equations with constants is in exponential space. In: Proceed-

ings of the Annual Symposium on Foundations of Computer Science, FOCS’98, pp. 112–119. IEEE
Comput. Soc. Press, Los Alamitos (1998)

828 Algorithmica (2011) 60: 819–828

6. Ilie, L., Plandowski, W.: Two-variable word equations. Theor. Inform. Appl. 34, 467–501 (2000)
7. Kościelski, A., Pacholski, L.: Complexity of Makanin’s algorithm. J. Assoc. Comput. Math. 43(4),

670–684 (1996)
8. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mat. Sb. 103(2), 147–236

(1977) (in Russian). English translation in: Math. USSR Sb. 32, 129–198 (1977)
9. Neraud, J.: Equations in words: an algorithmic contribution. Bull. Belg. Math. Soc. 1, 253–283 (1994)

10. Eyono Obono, S., Goralcik, P., Maksimenko, M.N.: Efficient solving of the word equations in one
variable. In: Mathematical Foundations of Computer Science 1994, 19th International Symposium,
MFCS’94. Lecture Notes in Computer Science, vol. 841, pp. 336–341. Springer, Berlin (1994)

11. Plandowski, W.: Satisfiability of word equations is in NEXPTIME. In: Proceedings of the Symposium
on the Theory of Computing, STOC’99, pp. 721–725. ACM, New York (1999)

12. Plandowski, W.: Satisfiability of word equations is in PSPACE. In: Proceedings of the Annual Sympo-
sium on Foundations of Computer Science, FOCS’99, pp. 495–500. IEEE Comput. Soc., Los Alami-
tos (1999)

13. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution of word equa-
tions. In: Proceedings of the International Colloquium on Automata, Languages and Programming,
ICALP’98. Lecture Notes in Computer Science, vol. 1443, pp. 731–742. Springer, Berlin (1998)

	On Word Equations in One Variable
	Abstract
	Introduction
	Preliminaries
	Solution Candidates
	Verification of Solution Candidates
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

