
Efficient Solving of the Word Equations
in One Variable

S. Eyono Obono, P. Goralcik, and M. Maksimenko

LIR, LITP, Institut Blaise Pascal, France
Universit~ de Rouen, 76134 Mont Saint Aignan Cedex

INSA de Rouen, BP 08, 76131 Mont Saint Aignan Cedex
e-maih goralcik~litp.ibp.fr

A b s t r a c t . A word equation in n variables z x , . . . , z n over an alpha-
bet C is a pair E = (~(x l , . . . ,x ,~) , r of words over the
alphabet C U {x l , . . . , z,,}. A solution of E is any n-tuple (X1,..., Xn)
of words over C such that ~ (X 1 , . . . , X ,) = r The exis-
tence of a solution for any given equation E is decidable, as shown by
Yu. I. Khmelevskit [3] for up to four variables and by G. S. Makanin
[6] for any number of variables. However, as shown by A. Kow
and L. Pacholskl [4], these impressive decidability results can unfortu-
nately not be matched by efficient algorithms of resolution, except for
some restricted classes of equations. In this vein, W. Charatonik and
L. Pacholski [1] give a polynomial algorithm, in terms of the equation
length IE] - I~1 + Ir for the equations in two variables and very roughly
estimate at O(IE] 5) the time complexity for solving those in one vari-
able. For the latter, using rather fine combinatorial methods, we give an
O(IE I log IE]) algorithm, the best one so far known.

1 I n t r o d u c t i o n

A word equation in one variable is a very simple object. In order to construct it,
we need a set C, called alphabet of constants, and just one another letter x, not
belonging to C, called variable. The words over C, including the empty word
~, constitute the free monoid C* of constant words, while the words over the
extended alphabet C U {x} can rather be seen as functions ~(x) of argument x;
for each particular value X E C* received by the argument x, the function takes
as the value the constant word T(X) . Now, a word equation in one variable is a
pair E = (ta(x), r of words over C (J {x), and, any constant word X E C*
such tha t ~ (X) - r is a solution of the equation E. We denote by Sol(E)
the set of all solutions of the equation E. Needless to say, it is this set which
interests us here.

A very first theoretical question one is natural ly brought to ask is whether or
not the existence of a solution for a word equation in one variable is decidable. As
we know, the solvability of equations in words was one of the chief preoccupations
of the Russian logical school in the sixties and their effort has been crowned with
success by the famous paper by G. S. Makanin [6], considered by many as one of
the most beautiful results of theoretical computer science. Against expectation,

337

and in contrast to the situation with the Diophantine equations, he has proved
the question of solvability of a general equation in words decidable.

The case of equations in one variable had been settled before by Khmelevskil
[3]. The cornerstone of his little theory is the existence of a constant X pro-
portional to the length IEI of the equation, [E I = [~(x)l + Ir such that
Sol(E) # 0 if and only if there is a solution X E Sol(E) of length IX I < X.
For all practical pourposes we can take X to be equal to 41E I. Therefore, the
problem of solvability of the equation E in one variable has been reduced to the
search of a solution in a finite set of candidates for solution, all the words over
C of length < 41E I. Nobody cared too much, in the sixties, about the procedure
of decision being of exponential time complexity.

In fact it is an another key observation due to Khmelevskii which permits to
reduce drastically the number of candidates for solution, namely, the periodic
form of any solution, determined by the coefficients of the equation. An obvious
necessary condition of solvability of E is that it can be brought by cancellation
to the following form:

AoZAlX... :cAr = xBtx . . , xB,, (1)

with A0, . . . , At, B1, . . . , B, E C*, A0 r ~, This cancelled form (1) of the equa-
tion makes it obvious that the leading coefficient A0 must be a period of any
solution, that is to say, any solution X of E must be a prefix of some long
enough power of A0. Taking the least integer k with IA0kl > 41El, we know now
that E is solvable if and only if one of the prefixes of A~ is a solution. We have
to test a linear number, in terms of the length of the equation, of candidates
X E Prefix(A~o). The length of all these candidates also being linear, a single
test carried out naively takes O(IEI 2) comparisons to check whether or not ~(X)
is equal to r In this way, the decision procedure for solvability becomes cubic
a t practically no cost.

Further improvement of the procedure comes from a simple observation that
when testing the equality ~o(X) = r we need not compare the occurrences of
X in ~o(X) against the occurrences of X in r if we precalculate all possible
overlaps of X with itself. Such a precalculation can be done in o(Ixl) by the
algorithm of Morris and Pratt. The test based on this precalculation only com-
pares coefficients against coefficients, which makes the number of comparisons
linear in the length of the equation. For a candidate X of linear length, therefore,
the test is linear, hence the solvability decision becomes quadratic [7].

It should be said that the solutions of E which are prefixes of A0 k determine,
in a very straightforward way, all the solutions Sol(E), so the above quadratic
procedure is also an algorithm of resolution.

Note that in the meanwhile our preoccupation has completely changed: it is
no longer the decision 'in principle' of solvability but the actual resolution of
the equation, and at as little a cost as possible. We subscribe, so to say, to the
research project announced by W. Charatonik and L. Pacholski [1] aiming 'to
describe classes of word equations for which fast algorithms, deciding solvability
or giving actual solutions, exist'. By 'fast' they mean 'deterministic polynomial

338

time'. And they add that 'of course, for many actual applications it would be
bet ter to consider more restricted classes like linear time or DTIME(IE I log IEI)'.

In the present note we establish that the word equations in one variable
constitute a complexity class they call for. Innocently as they may look, these
equation provide a nice testing ground for subtle methods developed for string
matching. Of course, it would be even nicer if we could announce that our
O(IEI log IEI) algorithm of resolution is optimal; which we cannot. We leave
it as a challenging problem whose precise formulation is given at the end.

2 S o l u t i o n s o f a G i v e n F o r m

In this section we show how to find, for a given word equation E in one variable,
all the solutions of the form X n = (uv)'*u, n > O, with uv a primitive word
over C. This particular form of solution is called a skew power of uv and is
determined by the factorization of uv into the pair (u, v). The task now consists
in determining the set of values of the integer parameter n for which the word
X,~ = (uv)nu is a solution of E. Before showing how to go about it let us recall
some basic facts about primitive words and conjugacy which can be found in
[2,5]:

1. Two words A and B are conjugate if A - uv and B = vu for some pair of
words u, v. A non void word P is pr imi t i ve if it has IPI distinct conjugates.
Pu t otherwise, a primitive word P has exactly two occurrences in its square
P P : one as a prefix and the other one as a suffix. This is a very useful
'synchronizing' property: a power of P can occur in an another power of P
only at certain positions, necessarily prefixed by a power of P.

2. Every non void word A is a power of a unique primitive word P, the pr imi t i ve
root of A. Two words A and B are conjugate if and only if their primitive
roots are conjugate. If two primitive words P and Q are conjugate then the
pair of words u, v with P = uv and Q = vu is unique.

3. Let u, v, w be distinct primitive words such that u 2 is a prefix of v 2 and
v 2 is a prefix of w 2. Then lul + Ivl < Iwl. Consequently, a word of length
n can have at most log n distinct prefixes which are squares of primitive
words, because the lengths of such primitive words will grow at least as fast
as the Fibonacci numbers, that is to say, exponentially, with the golden ratio
(1 + x/5)/2 for base. We say briefly that the number of repetitive primitive
prefixes is at most logarithmic.

As for the equation E, we will deal only with the cancelled form (1) of it and,
moreover, we will suppose it to be balanced, r = s 5.0. Because if not then only
a prefix X of a suitable power of A0 whose length satisfies

I A o X A 1 X . . . X A r [= I X B 1 X . . . X B , I

can possibly be a solution. The choice would thus be immediately narrowed to
at most one candidate X of length IX[<_ [E I.

339

Proposition 1 Let u,v E C* be such that uv is primitive, of length luvl <
IAoBal. Then it is possible to determine in an O(IEI) time all integers n > 0
such that X = (uv)"u is a solution orE.

Proof: For an arbitrary word w E C*, let us define the integer

w / . v = max(k; e Prefi=(w)}

I t is not difficult to calculate ta(Xn)/uv and r for n > 1. Indeed, if
uv is not the primitive root of A0 then to(Xn)/uv = Aouv/uv, because of the
synchronizing property of uv. In the opposite case, if AoXnA1Xn . . . AkXn with
k > 1 is a prefix of a power of uv then each occurrence of Xn in the above word
must be prefixed by a power of uv, because of the synchronizing property of the
prefix uv of Xn (recall that n > 1). This leaves us with the following form of the
coefficients in the left-hand term to(x) of our equation E:

Ao = (uv) '~ A1 = (vu)t 'v, . . . , Ap-1 = (v u) " - ' v , Ap = (v u) " X e

with A~ r v and vu f~ PreSi=(A'v).
Then we have

p

~(Xn) = c~(p) + p(n + 1) + E ti
i = 0

where
0 i fp r r and vu E Pre f i x (Apuv)

a(p) = - 1 otherwise

Similarly, if we have

B 1 : (V ~) ' l v , * . . , Bq__ l = (UU)$q--lv, Bq : (V~)'qBIq

' Prefix(B'q), with Bq ~ v and vu q[then

q

r = + q(n + 1) + st
j = l

where
Oif q # r and vu E Pre f i x (B~uv)

fl(q) = - 1 otherwise

The calculation of ~(X n) /u v and r thus consists in successive linear
time examination of the coefficients until the first one is found which is not of
the desired skew power form (except for A0 whose t reatment is slightly different
from the rest of the coefficients), therefore the time it takes is proportional to
IAoA1 . . . ApB1 . . . Bq].

I f p r q then the resulting Diophantine equation ~ (X ,) / u v = r has
at most one integer solution n > 0. If such a solution exists, then it determines a
single candidate X,~ of length [X~[_< [E[for which a linear time test will decide
whether or not it is a solution of E.

340

If p = q then the unknown n disappears from the Diophantine equation. If
the latter is not contradictory, then for every n > O, Xn = (uv)nu is a solution
of E if and only if Xn is a solution of the reduced equation El:

A~l xAp+lx. . . zAr = B~l z . .. xBr

with the coefficients A~ and B~ I determined according to the following three
c a s e s :

A~ ~ = A~ and B~ I = vuB~ if a(p) = 0 and j3(p) = -1 ,

11 1 11 1 A, = A, and B~ = B; if a(p) = ~(p),

11 11 I Ap = vuA~ and B~ = B~ if a(p) = - 1 and B(p) = 0.

Reasoning by induction on the number of occurrences of z, we can suppose that
all the solutions of the prescribed form of the reduced equation E I can be found
in O(IEID time. The time of solving E is thus the time of the reduction plus the
time of solving the reduced equation, which makes O(iE[).

Finally, we must not forget about the solitary candidate X0 = u, which must
Mso be put to a test for solution of E. []

3 D e t e r m i n i n g t h e F o r m s o f S o l u t i o n

P r o p o s i t i o n 2 There is O(log lED pairs (u, v) of words over C such that uv is
primitive of length luvl _< IAoBxl and every solution of E is of the form (uv)nu,
n >__ O, for one of these pairs. Moreover, all these pairs (u, v) can be found in an
O(IEllog IEI) time.

Proof: Assume that [A0[< [Bll and denote by B0 the prefix of B1 of length
IB0[= IA0[. Then any solution X E Sol(E) must conjugate A0 and B0. There-
fore, the primitive roots of A0 and B0 are conjugate and equal, respectively, to
uv and vu for a unique pair of words (u, v). All solutions of E are of the form
(uv)"u for this unique pair (u, v) and thus can be determined in an O([E[) time.

Assume next that [A0[> IBll. Then any solution X of length IX[>]A01 -
IBll will conjugate A0 to B1P, where P is the prefix of A0 of length IPI =
IA0]- IBll, hence the conclusion about the form of such solutions and the time for
finding them is the same as above. On the other hand, any solution X of length
IXI <]A01 - IBll determines a square prefix B1XB1X of B1AoAo. The square
P P of the primitive root P of B1X appears as a prefix of B1AoAo. Moreover,
P determines uniquely the form of X, because there is a unique factorization
P = vu such that B1 = (vu)mv and X = (uv)nu for some m , n >_ 0. As
we know, the number of such primitive repetitive prefixes P is logarithmic in
I = IBIAoAo[. M. Crochemore [2] gives us a method permitting to find all of
them in an 0(1 log l) time. []

341

4 C o n c l u s i o n

The two propositions we have proved serve in an obvious way as a theoretical
basis of an algorithm which puts a logarithmic number of solution forms through
a linear procedure of selection of candidates, and, the selected candidates to a
final linear test for solution. I t is not our a im here to write down a concrete
implementat ion of this algorithm. Instead, we would like to formulate a problem
whose solution may pave the way towards either a proof of opt imal i ty of the
given algorithm or plainly to a linear algorithm:
Does there really exist a class of equations of unbounded length such that each
equation E in the class has O(log IEI) solutions of distinct solution forms?
In conclusion, we would like to express our thanks to J. N~raud who kindly
explained to us his method of matching one variable pat terns [8], thereby put t ing
us on the right way. Finally, the credit for converting us to word equations goes
to H. Abdulrab and J.-P. P~cuchet. Also, the recent four months s tay of G. S.
Makanin in the INSA of Rouen was a powerful spell of inspiration for all of us.

R e f e r e n c e s

1. Charatonik W. and L. Pacholski, Word Equations With Two Variables, Lecture
Notes in Comp. Sci. 677, Springer-Verlag, Proc. of the Second International Work-
shop on Word Equations and Related Topics IWWERT'91, Rouen, France, 1991,
H. Abdulrab and J.P. Pecuchet (Eds.), 43-57.

2. Crochemore M., An optima] algorithm for computing the repetitions in a word,
Information Proc. Letters 12(1981), 244-250.

3. Khmelevskil Yu. I., Equations in a Free Semigroup (in Russian), Trudy Matem. Inst.
Steklova, 107(1971), 1-284.

4. Kogcielski A. and L. Pacholski, Complexity of Makanin's Algorithms, Journal of
A CM, to appear.

5. LothaJre M., Combinatorics on Words, Encyclopedia of Math. and Appl., Addison
Wesley, 1983.

6. Makanin G. S., The Problem of Solvability of Equations in a Free Semigroup (in
Russian), Matematicheski~Sbornik 103(1977), 147-236. English translation in Math.
USSR Sbornik 32(1977), 129-198.

7. Maksimenko M., Algorithme quadratique de calcul de la solution gdn~rale
d'~quations en mots ~ une variable, RAIRO, Submitted.

8. N~raud J., New Algorithms for Detecting Morphic Images of a Word, Lecture Notes
in Comp. Sci. 711, Springer Verlag, Proc. of the 18th International Symposium
MFCS'93, Gdafisk, Poland, A. M. Borzyszkowski and S Sokolowski (Eds.), 588-
597.

