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Abstract. A word equation in n variables z,,...,z, over an alpha-
bet C is a pair E = (p(%1,...,2n),¥(z1,...,2n)) of words over the
alphabet C U {z1,...,2n}. A solution of E is any n-tuple (X3,...,X5)
of words over C such that ¢(Xi,...,Xn) = ¥(X1,...,Xn). The exis-
tence of a solution for any given equation E is decidable, as shown by
Yu. I. Khmelevskif [3] for up to four variables and by G. S. Makanin
[6] for any number of variables. However, as shown by A. Koscielski
and L. Pacholski [4], these impressive decidability results can unfortu-
nately not be matched by efficient algorithms of resolution, except for
some restricted classes of equations. In this vein, W. Charatonik and
L. Pacholski {1] give a polynomial algorithm, in terms of the equation
length |E| = || + |4}, for the equations in two variables and very roughly
estimate at O(|E|®) the time complexity for solving those in one vari-
able. For the latter, using rather fine combinatorial methods, we give an
O(|E|log |E|) algorithm, the best one so far known.

1 Introduction

A word equation in one variable is a very simple object. In order to construct it,
we need a set C, called alphabet of constants, and just one another letter z, not
belonging to C, called variable. The words over C, including the empty word
¢, constitute the free monoid C* of constant words, while the words over the
extended alphabet C'U {z} can rather be seen as functions ¢(z) of argument z;
for each particular value X € C* received by the argument z, the function takes
as the value the constant word ¢(X). Now, a word equation in one variable is a
pair E = (¢(z), ¥(z)) of words over C' U {z}, and, any constant word X € C*
such that ¢(X) = ¢¥(X) is a solution of the equation E. We denote by Sol(E)
the set of all solutions of the equation E. Needless to say, it is this set which
interests us here.

A very first theoretical question one is naturally brought to ask is whether or
not the existence of a solution for a word equation in one variable is decidable. As
we know, the solvability of equations in words was one of the chief preoccupations
of the Russian logical school in the sixties and their effort has been crowned with
success by the famous paper by G. S. Makanin [6], considered by many as one of
the most beautiful results of theoretical computer science. Against expectation,
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and in contrast to the situation with the Diophantine equations, he has proved
the question of solvability of a general equation in words decidable.

The case of equations in one variable had been settled before by Khmelevskii
[3]. The cornerstone of his little theory is the existence of a constant x pro-
portional to the length |E| of the equation, |E| = |¢(z)| + |¥(=)|, such that
Sol(E) # 0 if and only if there is a solution X € Sol(E) of length |X| < x.
For all practical pourposes we can take x to be equal to 4|E|. Therefore, the
problem of solvability of the equation E in one variable has been reduced to the
search of a solution in a finite set of candidates for solution, all the words over
C of length < 4|E|. Nobody cared too much, in the sixties, about the procedure
of decision being of exponential time complexity.

In fact it is an another key observation due to Khmelevskii which permits to
reduce drastically the number of candidates for solution, namely, the periodic
form of any solution, determined by the coefficients of the equation. An obvious
necessary condition of solvability of E is that it can be brought by cancellation
to the following form:

AgzAixz...zA, =zByr...zB,, (1)

with Aq,...,Ar,B1,...,B, € C*, Ay # ¢, This cancelled form (1) of the equa-
tion makes it obvious that the leading coefficient 4y must be a period of any
solution, that is to say, any solution X of £ must be a prefix of some long
enough power of Aq. Taking the least integer k with |A%| > 4]|E|, we know now
that E is solvable if and only if one of the prefixes of Af is a solution. We have
to test a linear number, in terms of the length of the equation, of candidates
X € Prefiz(AE). The length of all these candidates also being linear, a single
test carried out naively takes O(|E|?) comparisons to check whether or not ¢(X)
is equal to ¥(X). In this way, the decision procedure for solvability becomes cubic
at practically no cost.

" Further improvement of the procedure comes from a simple observation that
when testing the equality ¢(X) = (X)) we need not compare the occurrences of
X in ¢(X) against the occurrences of X in ¢(X) if we precalculate all possible
overlaps of X with itself. Such a precalculation can be done in O(]X]) by the
algorithm of Morris and Pratt. The test based on this precalculation only com-
pares coefficients against coefficients, which makes the number of comparisons
linear in the length of the equation. For a candidate X of linear length, therefore,
the test is linear, hence the solvability decision becomes guadratic [7].

It should be said that the solutions of E which are prefixes of A% determine,
in a very straightforward way, all the solutions Sol(E), so the above quadratic
procedure is also an algorithm of resolution.

Note that in the meanwhile our preoccupation has completely changed: it is
no longer the decision ‘in principle’ of solvability but the actual resolution of
the equation, and at as little a cost as possible. We subscribe, so to say, to the
research project announced by W. Charatonik and L. Pacholski [1] aiming ‘to
describe classes of word equations for which fast algorithms, deciding solvability
or giving actual solutions, exist’. By ‘fast’ they mean ‘deterministic polynomial
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time’. And they add that ‘of course, for many actual applications it would be
better to consider more restricted classes like linear time or DTIME(|E|log |E|)’.

In the present note we establish that the word equations in one variable
constitute a complexity class they call for. Innocently as they may look, these
equation provide a nice testing ground for subtle methods developed for string
matching. Of course, it would be even nicer if we could announce that our
O(|E|log |E|) algorithm of resolution is optimal; which we cannot. We leave
it as a challenging problem whose precise formulation is given at the end.

2 Solutions of a Given Form

In this section we show how to find, for a given word equation E in one variable,
all the solutions of the form X, = (uv)*u, n > 0, with uv a primitive word
over C. This particular form of solution is called a skew power of uv and is
determined by the factorization of uv into the pair (u,v). The task now consists
in determining the set of values of the integer parameter n for which the word
X, = (uv)"u is a solution of E. Before showing how to go about it let us recall
some basic facts about primitive words and conjugacy which can be found in

[2,5]:

1. Two words A and B are conjugate if A = uv and B = vu for some pair of
words u,v. A non void word P is primitive if it has |P| distinct conjugates.
Put otherwise, a primitive word P has exactly two occurrences in its square
PP: one as a prefix and the other one as a suffix. This is a very useful
‘synchronizing’ property: a power of P can occur in an another power of P
only at certain positions, necessarily prefixed by a power of P.

2. Every non void word A is a power of a unique primitive word P, the primitive
root of A. Two words A and B are conjugate if and only if their primitive
roots are conjugate. If two primitive words P and @) are conjugate then the
pair of words u,v with P = uv and Q = vu is unique.

3. Let u, v, w be distinct primitive words such that u? is a prefix of v2 and
v? is a prefix of w?. Then |u| + |v| < |w|. Consequently, a word of length
n can have at most logn distinct prefixes which are squares of primitive
words, because the lengths of such primitive words will grow at least as fast
as the Fibonacci numbers, that is to say, exponentially, with the golden ratio
(14 +/5)/2 for base. We say briefly that the number of repetitive primitive
prefixes is at most logarithmic.

As for the equation E, we will deal only with the cancelled form (1) of it and,
moreover, we will suppose it to be balanced, r = s #.0. Because if not then only
a prefix X of a suitable power of Ay whose length satisfies

|AoXA1X ... XA = |XB1X...XB,|

can possibly be a solution. The choice would thus be immediately narrowed to
at most one candidate X of length |X| < |E|.
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Proposition 1 Let u,v € C* be such that uv is primitive, of length |uv| <
|AoBi|. Then it is possible to determine in an O(|E|) time all integers n > 0
such that X = (uv)"u ts a solution of E.

Proof: For an arbitrary word w € C*, let us define the integer
w/uv = maz{k; (uv)*u € Prefiz(w)}

It is not difficult to calculate (X, )/uv and ¥(X,)/uv for n > 1. Indeed, if
uv is not the primitive root of Ay then ¢(X,)/uv = Agquv/uv, because of the
synchronizing property of uv. In the opposite case, if A X, 41X, ... Ap X, with
k > 1is a prefix of a power of uv then each occurrence of X,, in the above word
must be prefixed by a power of uv, because of the synchronizing property of the
prefix uv of X,, (recall that n > 1). This leaves us with the following form of the
coefficients in the left-hand term ¢(z) of our equation E:

Ao = (uv)to’ A = (vU)hv, RN Ap-—l = (’Uu)tf"l'u’ Ap - (vu)"’A;

with Ay, # v and vu € Prefiz(4,).
Then we have .
P(Xn) = a(p) +p(n+1)+ Y _t;
i=0

where

() = 0if p # r and vu € Prefiz(A,uv)
P} =\ ~1 otherwise

Similarly, if we have
By = (vu)’tv, ..., Bi_y = (vu)’*tv, By = (vu)’* B,

with B} # v and vu € Prefiz(By), then

Y(Xn) = B@) +an+1)+ D _s;

j=1

where
0if ¢ # r and vu € Prefiz(Byuv)
~1 otherwise

Ble) = {

The calculation of ¢(X,)/uv and ¥ (X, )/uv thus consists in successive linear
time examination of the coefficients until the first one is found which is not of
the desired skew power form (except for Ay whose treatment is slightly different
from the rest of the coefficients), therefore the time it takes is proportional to
|AoAy ... Ay By ... Byl

If p # q then the resulting Diophantine equation ¢(X,)/uv = ¥(X,)/uv has
at most one integer solution n > 0. If such a solution exists, then it determines a
single candidate X, of length | X, | < |E| for which a linear time test will decide
whether or not it is a solution of E.
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If p = ¢q then the unknown n disappears from the Diophantine equation. If
the latter is not contradictory, then for every n > 0, X,, = (uv)"u is a solution
of E if and only if X, is a solution of the reduced equation E’:

AjzAp 1z ...zA, = Bjz...zB,

with the coefficients Ay and B, determined according to the following three
cases:

Al = A} and B! = vuB, if a(p) = 0 and 8(p) = -1,
p = fp P P
Ay = Aj and B, = B, if a(p) = B(p),

AY = vudl and B} = B, if a(p) = —1 and B(p) = 0.

Reasoning by induction on the number of occurrences of z, we can suppose that
all the solutions of the prescribed form of the reduced equation E’ can be found
in O(|E’|) time. The time of solving E is thus the time of the reduction plus the
time of solving the reduced equation, which makes O(|E|).

Finally, we must not forget about the solitary candidate Xy = u, which must
also be put to a test for solution of E. O

3 Determining the Forms of Solution

Proposition 2 There is O(log |E|) pairs (u,v) of words over C such that uv is
primitive of length |uv| < |AgB1| and every solution of E is of the form (uv)*u,
n > 0, for one of these pairs. Moreover, all these pairs (u,v) can be found in an
O(|E|log |E|) time.

Proof: Assume that |Ag] < |Bji| and denote by Bg the prefix of By of length
|Bo| = |Ag|. Then any solution X € Sol(E) must conjugate Ao and Bg. There-
fore, the primitive roots of Ag and By are conjugate and equal, respectively, to
uv and vu for a unique pair of words (u,v). All solutions of E are of the form
(uv)"u for this unique pair (u,v) and thus can be determined in an O(|E|) time.

Assume next that |Ag] > |Bi|. Then any solution X of length |X| > |Aq| —
|B1| will conjugate Ag to B P, where P is the prefix of Ag of length |P| =
| Ao|—|B1l, hence the conclusion about the form of such solutions and the time for
finding them is the same as above. On the other hand, any solution X of length
|X| < |Ao| — |B1| determines a square prefix By X B1 X of By AgAg. The square
PP of the primitive root P of B, X appears as a prefix of By AgAg. Moreover,
P determines uniquely the form of X, because there is a unique factorization
P = vu such that By = (vu)™v and X = (uv)*u for some m,n > 0. As
we know, the number of such primitive repetitive prefixes P is logarithmic in
l = |ByApAp]. M. Crochemore [2] gives us a method permitting to find all of
them in an O(llogl) time. D
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4 Conclusion

The two propositions we have proved serve in an obvious way as a theoretical
basis of an algorithm which puts a logarithmic number of solution forms through
a linear procedure of selection of candidates, and, the selected candidates to a
final linear test for solution. It is not our aim here to write down a concrete
implementation of this algorithm. Instead, we would like to formulate a problem
whose solution may pave the way towards either a proof of optimality of the
given algorithm or plainly to a linear algorithm:

Does there really erist a class of equations of unbounded length such that each
equation E in the class has O(log |E|) solutions of distinct solution forms?

In conclusion, we would like to express our thanks to J. Néraud who kindly
explained to us his method of matching one variable patterns [8], thereby putting
us on the right way. Finally, the credit for converting us to word equations goes
to H. Abdulrab and J.-P. Pécuchet. Also, the recent four months stay of G. S.
Makanin in the INSA of Rouen was a powerful spell of inspiration for all of us.
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