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A b s t r a c t .  A word equation in n variables z x , . . . , z n  over an alpha- 
bet C is a pair E = (~(x l , . . . ,x ,~) , r  of words over the 
alphabet C U {x l , . . . ,  z,,}. A solution of E is any n-tuple (X1,..., Xn) 
of words over C such that ~ ( X 1 , . . . , X , )  = r  The exis- 
tence of a solution for any given equation E is decidable, as shown by 
Yu. I. Khmelevskit [3] for up to four variables and by G. S. Makanin 
[6] for any number of variables. However, as shown by A. Kow 
and L. Pacholskl [4], these impressive decidability results can unfortu- 
nately not be matched by efficient algorithms of resolution, except for 
some restricted classes of equations. In this vein, W. Charatonik and 
L. Pacholski [1] give a polynomial algorithm, in terms of the equation 
length IE] - I~1 + Ir for the equations in two variables and very roughly 
estimate at O(IE] 5) the time complexity for solving those in one vari- 
able. For the latter, using rather fine combinatorial methods, we give an 
O(IE I log IE]) algorithm, the best one so far known. 

1 I n t r o d u c t i o n  

A word equation in one variable is a very simple object. In order to construct it, 
we need a set C, called alphabet of constants, and just  one another  letter x, not 
belonging to C, called variable. The words over C, including the empty word 
~, constitute the free monoid C* of constant words, while the words over the 
extended alphabet  C U {x} can rather  be seen as functions ~(x)  of argument x; 
for each particular value X E C* received by the argument  x, the function takes 
as the value the constant word T(X) .  Now, a word equation in one variable is a 
pair  E = (ta(x), r  of words over C (J {x),  and, any constant word X E C* 
such tha t  ~ (X)  - r  is a solution of the equation E.  We denote by Sol(E) 
the set of all solutions of the equation E.  Needless to say, it is this set which 
interests us here. 

A very first theoretical question one is natural ly brought  to ask is whether or 
not the existence of a solution for a word equation in one variable is decidable. As 
we know, the solvability of equations in words was one of the chief preoccupations 
of the Russian logical school in the sixties and their effort has been crowned with 
success by the famous paper  by G. S. Makanin [6], considered by many as one of 
the most  beautiful results of theoretical computer  science. Against  expectation, 
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and in contrast to the situation with the Diophantine equations, he has proved 
the question of solvability of a general equation in words decidable. 

The case of equations in one variable had been settled before by Khmelevskil 
[3]. The cornerstone of his little theory is the existence of a constant X pro- 
portional to the length IEI of the equation, [E I = [~(x)l + Ir such that 
Sol(E) # 0 if and only if there is a solution X E Sol(E) of length IX I < X. 
For all practical pourposes we can take X to be equal to 41E I. Therefore, the 
problem of solvability of the equation E in one variable has been reduced to the 
search of a solution in a finite set of candidates for solution, all the words over 
C of length < 41E I. Nobody cared too much, in the sixties, about the procedure 
of decision being of exponential time complexity. 

In fact it is an another key observation due to Khmelevskii which permits to 
reduce drastically the number of candidates for solution, namely, the periodic 
form of any solution, determined by the coefficients of the equation. An obvious 
necessary condition of solvability of E is that it can be brought by cancellation 
to the following form: 

AoZAlX... :cAr = xBtx . . ,  xB,, (1) 

with A0, . . . ,  At, B1, . . . ,  B, E C*, A0 r ~, This cancelled form (1) of the equa- 
tion makes it obvious that the leading coefficient A0 must be a period of any 
solution, that is to say, any solution X of E must be a prefix of some long 
enough power of A0. Taking the least integer k with IA0kl > 41El, we know now 
that E is solvable if and only if one of the prefixes of A~ is a solution. We have 
to test a linear number, in terms of the length of the equation, of candidates 
X E Prefix(A~o). The length of all these candidates also being linear, a single 
test carried out naively takes O(IEI 2) comparisons to check whether or not ~(X) 
is equal to r In this way, the decision procedure for solvability becomes cubic 
a t  practically no cost. 

Further improvement of the procedure comes from a simple observation that 
when testing the equality ~o(X) = r we need not compare the occurrences of 
X in ~o(X) against the occurrences of X in r if we precalculate all possible 
overlaps of X with itself. Such a precalculation can be done in o(Ixl) by the 
algorithm of Morris and Pratt. The test based on this precalculation only com- 
pares coefficients against coefficients, which makes the number of comparisons 
linear in the length of the equation. For a candidate X of linear length, therefore, 
the test is linear, hence the solvability decision becomes quadratic [7]. 

It should be said that the solutions of E which are prefixes of A0 k determine, 
in a very straightforward way, all the solutions Sol(E), so the above quadratic 
procedure is also an algorithm of resolution. 

Note that in the meanwhile our preoccupation has completely changed: it is 
no longer the decision 'in principle' of solvability but the actual resolution of 
the equation, and at as little a cost as possible. We subscribe, so to say, to the 
research project announced by W. Charatonik and L. Pacholski [1] aiming 'to 
describe classes of word equations for which fast algorithms, deciding solvability 
or giving actual solutions, exist'. By 'fast' they mean 'deterministic polynomial 
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time'.  And they add that  'of course, for many actual applications it would be 
bet ter  to consider more restricted classes like linear time or DTIME(IE I log IEI)'. 

In the present note we establish that  the word equations in one variable 
constitute a complexity class they call for. Innocently as they may look, these 
equation provide a nice testing ground for subtle methods developed for string 
matching. Of course, it would be even nicer if we could announce that  our 
O(IEI  log IEI) algorithm of resolution is optimal; which we cannot. We leave 
it as a challenging problem whose precise formulation is given at the end. 

2 S o l u t i o n s  o f  a G i v e n  F o r m  

In this section we show how to find, for a given word equation E in one variable, 
all the solutions of the form X n  = (uv)'*u, n > O, with uv a primitive word 
over C. This particular form of solution is called a skew power  of uv and is 
determined by the factorization of uv into the pair (u, v). The  task now consists 
in determining the set of values of the integer parameter n for which the word 
X,~ = (uv )nu  is a solution of E.  Before showing how to go about it let us recall 
some basic facts about primitive words and conjugacy which can be found in 
[2,5]: 

1. Two words A and B are conjugate if A - uv  and B = vu  for some pair of 
words u, v. A non void word P is pr imi t i ve  if it has IPI distinct conjugates. 
Pu t  otherwise, a primitive word P has exactly two occurrences in its square 
P P :  one as a prefix and the other one as a suffix. This is a very useful 
'synchronizing' property: a power of P can occur in an another power of P 
only at certain positions, necessarily prefixed by a power of P.  

2. Every non void word A is a power of a unique primitive word P,  the pr imi t i ve  
root of A. Two words A and B are conjugate if and only if their primitive 
roots are conjugate. If two primitive words P and Q are conjugate then the 
pair of words u, v with P = uv and Q = vu  is unique. 

3. Let u, v, w be distinct primitive words such that  u 2 is a prefix of v 2 and 
v 2 is a prefix of w 2. Then lul + Ivl < Iwl. Consequently, a word of length 
n can have at most log n distinct prefixes which are squares of primitive 
words, because the lengths of such primitive words will grow at least as fast 
as the Fibonacci numbers, that  is to say, exponentially, with the golden ratio 
(1 + x/5)/2 for base. We say briefly that  the number of repetitive primitive 
prefixes is at most logarithmic. 

As for the equation E, we will deal only with the cancelled form (1) of it and, 
moreover, we will suppose it to be balanced, r = s 5.0.  Because if not then only 
a prefix X of a suitable power of A0 whose length satisfies 

I A o X A 1 X . . . X A r [  = I X B 1 X . . . X B ,  I 

can possibly be a solution. The choice would thus be immediately narrowed to 
at most one candidate X of length IX[ <_ [E I. 
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Proposition 1 Let u,v  E C* be such that uv is primitive, of length luvl < 
IAoBal. Then it is possible to determine in an O(IEI) time all integers n > 0 
such that X = (uv)"u is a solution orE.  

Proof: For an arbitrary word w E C*, let us define the integer 

w / . v  = max(k; e Prefi=(w)} 

I t  is not difficult to calculate ta(Xn)/uv and r  for n > 1. Indeed, if 
uv is not the primitive root of A0 then to(Xn)/uv = Aouv/uv,  because of the 
synchronizing property of uv. In the opposite case, if AoXnA1Xn . . .  AkXn  with 
k > 1 is a prefix of a power of uv then each occurrence of Xn in the above word 
must be prefixed by a power of uv, because of the synchronizing property of the 
prefix uv of Xn (recall that  n > 1). This leaves us with the following form of the 
coefficients in the left-hand term to(x) of our equation E: 

Ao = (uv) '~ A1 = (vu)t 'v,  . . . ,  Ap-1 = ( v u ) " - ' v ,  Ap = ( v u ) " X  e 

with A~ r v and vu f~ PreSi=(A'v). 
Then we have 

p 

~(Xn)  = c~(p) + p(n + 1) + E ti 
i = 0  

where 
0 i fp  r r and vu E Pre f i x (Apuv )  

a(p) = - 1  otherwise 

Similarly, if we have 

B 1 : ( V ~ ) ' l v ,  * . . ,  Bq__ l = (UU)$q--lv, Bq : (V~)'qBIq 

' Prefix(B'q),  with Bq ~ v and vu q[ then 

q 

r  = + q(n + 1) + st 
j = l  

where 
Oif q # r and vu E Pre f i x (B~uv )  

fl(q) = - 1  otherwise 

The calculation of ~(X n ) /u v  and r  thus consists in successive linear 
time examination of the coefficients until the first one is found which is not of 
the desired skew power form (except for A0 whose t reatment  is slightly different 
from the rest of the coefficients), therefore the time it takes is proportional  to 
IAoA1 . . .  ApB1 . . .  Bq ]. 

I f p  r q then the resulting Diophantine equation ~ ( X , ) / u v  = r  has 
at most one integer solution n > 0. If such a solution exists, then it determines a 
single candidate X,~ of length [X~[ _< [E[ for which a linear time test will decide 
whether or not it is a solution of E.  
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If p = q then the unknown n disappears from the Diophantine equation. If 
the latter is not contradictory, then for every n > O, Xn = (uv)nu is a solution 
of E if and only if Xn is a solution of the reduced equation El: 

A~l xAp+lx. .  . zAr = B~l z .  .. xBr 

with the coefficients A~ and B~ I determined according to the following three 
c a s e s :  

A~ ~ = A~ and B~ I = vuB~ if a(p) = 0 and j3(p) = -1 ,  

11 1 11 1 A, = A, and B~ = B;  if a(p) = ~(p), 

11 11 I Ap = vuA~ and B~ = B~ if a(p) = - 1  and B(p) = 0. 

Reasoning by induction on the number of occurrences of z, we can suppose that  
all the solutions of the prescribed form of the reduced equation E I can be found 
in O(IEID time. The time of solving E is thus the time of the reduction plus the 
time of solving the reduced equation, which makes O(iE[). 

Finally, we must not forget about the solitary candidate X0 = u, which must 
Mso be put to a test for solution of E. [] 

3 D e t e r m i n i n g  t h e  F o r m s  o f  S o l u t i o n  

P r o p o s i t i o n  2 There is O(log lED pairs (u, v) of words over C such that uv is 
primitive of length luvl _< IAoBxl and every solution of E is of the form (uv)nu, 
n >__ O, for one of these pairs. Moreover, all these pairs (u, v) can be found in an 
O(IEllog IEI) time. 

Proof: Assume that  [A0[ < [Bll and denote by B0 the prefix of B1 of length 
IB0[ = IA0[. Then any solution X E Sol(E) must conjugate A0 and B0. There- 
fore, the primitive roots of A0 and B0 are conjugate and equal, respectively, to 
uv and vu for a unique pair of words (u, v). All solutions of E are of the form 
(uv)"u for this unique pair (u, v) and thus can be determined in an O([E[) time. 

Assume next that  [A0[ > IBll. Then any solution X of length IX[ > ]A01 - 
IBll will conjugate A0 to B1P, where P is the prefix of A0 of length IPI = 
IA0]- IBll, hence the conclusion about the form of such solutions and the time for 
finding them is the same as above. On the other hand, any solution X of length 
IXI < ]A01 - IBll determines a square prefix B1XB1X of B1AoAo. The square 
P P  of the primitive root P of B1X appears as a prefix of B1AoAo. Moreover, 
P determines uniquely the form of X, because there is a unique factorization 
P = vu such that  B1 = (vu)mv and X = (uv)nu for some m , n  >_ 0. As 
we know, the number of such primitive repetitive prefixes P is logarithmic in 
I = IBIAoAo[. M. Crochemore [2] gives us a method permitting to find all of 
them in an 0(1 log l) time. [] 
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4 C o n c l u s i o n  

The two propositions we have proved serve in an obvious way as a theoretical 
basis of an algorithm which puts a logarithmic number  of solution forms through 
a linear procedure of selection of candidates, and, the selected candidates to a 
final linear test for solution. I t  is not our a im here to write down a concrete 
implementat ion of this algorithm. Instead,  we would like to formulate  a problem 
whose solution may  pave the way towards either a proof  of opt imal i ty  of the 
given algorithm or plainly to a linear algorithm: 
Does there really exist a class of equations of unbounded length such that each 
equation E in the class has O(log IEI) solutions of distinct solution forms? 
In conclusion, we would like to express our thanks to J. N~raud who kindly 
explained to us his method of matching one variable pat terns  [8], thereby put t ing  
us on the right way. Finally, the credit for converting us to word equations goes 
to H. Abdulrab and J.-P. P~cuchet. Also, the recent four months s tay of G. S. 
Makanin in the INSA of Rouen was a powerful spell of inspiration for all of us. 
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