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Abstract

Some observations on products of primitive words are discussed. By these results, alternative proof is given for the Lyndon—
Schiitzenberger Theorem, which says that every solution of the equation a”b" = ck over T* is trivial.
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1. Introduction

A word is primitive if it is not empty and not a power of another word. A well-known unsolved problem is in
theoretical computer science whether the language of all primitive words over a nontrivial alphabet is context free
[4,5]. Among others, this (in)famous problem motivates the study of combinatorial properties of primitive words. In
addition, they have special importance in studying automatic sequences [1,9]. The Lyndon—Schiitzenberger Theorem
is a well-known classical result in this direction. The aim of this paper is to give alternative proof of this celebrated
theorem.

Some of the known proofs of this famous result is rather involved [2,10-12]. On the other hand, the Lyndon—
Schiitzenberger Theorem also has simple proofs, see [7,9]. We give a proof which is different in the technical details.

We note that the original form of the Lyndon—Schiitzenberger Theorem was proved for free groups in [10].

In our alternative proof of the Lyndon—Schiitzenberger Theorem, we follow the structures of the proofsin [2,7,9,11,12].
For the sake of completeness, we also describe the proof of the “easy” case (Case 2), which is essentially the same as
the corresponding proof in [2,7,9,11,12]. The alternative proof of the “difficult” case (Case 1) is on the basis of new
observations which cannot be found in the cited works.

2. Preliminaries

By an alphabet we mean a finite, nonempty set 2, the elements of which are called letters. 2 is called trivial if it is
a singleton. Otherwise we also say that X' is nontrivial. A word over X is a finite sequence of elements of 2. If there is
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no danger of confusion, sometimes we omit the expression “over 2”. We also define the empty word A consisting of
zero letters. Given a word w = x1, ..., x, with xq, ..., x, € X, we put wk = Xy ..., X1, 1.€. w?® denotes the mirror
image of w. In addition, we put JR = ). The set of all words over X is denoted by 2* as usual. Moreover, we put
Xt = X*\ {/}. Note that *, equipped with the operation catenation, is the free monoid generated by X, while T,
equipped with the same operation, is the free semigroup over X. The catenation is also called product. The length |w|
of a word w is the number of letters in w, where each letter is counted as many times as it occurs. Thus, || = 0. Two
words u, v € X* are said to be conjugates if there exists a word w € X* with uw = wv. In particular, a word z is called
overlapping or bordered if there are u, v, w € X* with z = uw = wv. Otherwise we say that z is nonoverlapping or
unbordered.
The following statement obviously holds.

Proposition 1. Every bordered word can be written in the form uvu for some u € ¥+, v € X*.
Next we recall some results which we will use.

Lemma 2 (Lyndon and Schiitzenberger [10]). The words u,v € X* are conjugates if and only if there are words
p.q € X" withu = pg and v = qp.

By the above result, for all words p, g € 2*, it is also said that pg and gp are conjugates. Given a word u, we define
u® = J, and forn > 0, u" = u"'u. Moreover, we put u* = {u" : n>0} and u™ = {u"* : n>1}. Thus, u" withn>0
are the nth powers of u. The next result concerns words which are conjugates.

Lemma 3 (Lyndon and Schiitzenberger [10]). Let u, v € X7 with uv = vu. There exists w € 2T withu,v € wt.

Lemma 4 (Lyndon and Schiitzenberger [10]). If uv = vq,q,u € >t ve X thenu = wz,v = (wz)kw, q = zw
for some w € X*,z € X and k> 0.

Given alist ¢y, ..., ¢, of integers, let gcd(cy, ..., c¢y) denote the greatest common divisor of ¢y, ..., ¢;.

Theorem S (Fine-Wilf Theorem [6]). Let u,v € X*. There exists a w € XV such that u,v € w™ if and only if there
are i, j >0 so that u' and v’/ have a common prefix (suffix) of length |u| + |v| — ged(|ul, |v]).

A word v € X* is primitive if v # /. and there are no w € X+ and n >2 such that v = w". The set of all primitive
words over X will be denoted by Q(2), or simply by Q if X is understood. A lexicographic ordering ¢ on X* is an
extension of a strict linear ordering 7 on the alphabet 2 in the following way: for every u, v € X*, ugv if and only if
either v € {u} X" or u = raw, v = rbz with ath, a,b € X, r,w, z € X*. Given a lexicographic ordering ¢ on X*, let
w be a primitive word which is minimal among its conjugates with respect to ¢. Then w is called a Lyndon word with
respect to @, or in short, a Lyndon word if ¢ is understood.

The following statement is obvious.

Lemma 6. Let ¢ be a lexicographic ordering on X*. For every u, v, w, z € 2* we have the following properties.
(1) uov if and only if wuowv;
(i) if u is not a prefix of v, then ugv implies uwovz.

Lemma 7 (Shyr and Thierrin [13]). Letu,v,w € X*,i>1. Ifwi = uv, then there are p,q € X* with w = pq and
(gp)' = vu. Furthermore, uv € Q for some u, v € X* if and only if vu € Q.

Lemma 8 (Lyndon and Schiitzenberger [10]). If u # A, then there exists a unique primitive word f and a unique
integer k> 1 such thatu = f*.

Let u # / and let f be a primitive word with an integer k> 1 having u = f*. We let ./u = f and call f the primitive
root of the word u. Let a”b" = c¥ be an equation over 2* such that m, n, k >2. A solution a, b, ¢ € X* of the above
equation is called trivial if there is a w € X* such that a, b, ¢ € w*.
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The next result was shown for free groups in [10]. Since every free monoid can be embedded in a free group, the
result is true on a free monoid too.

k

Theorem 9 (Lyndon—Schiitzenberger Theorem [10]). Every solution of the equation a™b" = c¢* over X* is trivial.

3. Main results
To the completeness of the paper, we recall the proof of the next statement given in [8].
Proposition 10. Lyndon words are unbordered.

Proof. If there exists a bordered Lyndon word then, by Proposition 1, it can be written in the form uvu, u, v € X7,
u # v. With respect to the lexicographic order “<” then uvu <uuv and so vu <uv, when the common prefix is
removed. This yields that vuu <uvu, a contradiction. [

Now we show a short proof of the next result stated in [7] without proof.

Proposition 11. Let v € X be an arbitrary word. There are u € X, k>2 with |u| < |v| so that v is a subword of
uk, if and only if, v is bordered.

Proof. (1) If v is bordered then v = pgp, and u = pq, k = 2 are appropriate.
(2) If v is a subword of uk then u = wjuousz, uy,uz € 2, ur € 2t and v = wpuzu*uur or v = usutu; =
uzuy (uauszur) ususzuy or v = wouzutuy = wouz(wiuruz)Tuy. O

Lemma 12. Letu,v € Q, such that u™ = vkwfar some k,m>2, and w € X* with |w| < |v|. Then exactly one of the
following conditions holds:

1) u=vandw € {u, A};

(i) m =k = 2 and there are p,q € X%, s >1 with JPFE = (p)* ' p2q, v = (pg)* ' p,w = qp’q.

Proof. The conditions u = v and u™ = vkw imply w = v"~*_ Therefore, by |lw|<|v|and u = v, w € {u, A}. Thus,
it remains to prove that exactly one of the conditions # = v and (ii) holds.

Then v¥ is a prefix of u” and v¥w with m, k >2. Therefore, by Theorem 5, we have (i) whenever |u| + [v|<|v
Thus, we may assume |u| + |v| > [vX|. By k>2, this implies |v| < |u|. Then, by |w|<|v| < |ul, (m — Du| <
lu™| — |w| = |v*| < |u|+ |v| < 2|u|. Therefore, m < 3 (with m >2),i.e. m = 2. In this case, 2|u| = |v¥| + |w| which,
using [v¥| < |u| + |v|, leads to |u| — |w| < |v], or in another form, |u| < |v| + |w].

Thus, we reached u? = v¥w with |w|<|v| < |u| < |v| + |w|. Therefore, taking into consideration |w| < |u],
u = vlvy = vt 1w for some vy, vy € X*, £>0 with v = vvp and v2 # A. Therefore, by |u| < |v] 4+ |w]|, we get
k—¢—1=0.Hence, u = v* 1v; = vyw.

Observe that vy = Aimpliesu = v¥~! whichis impossible. Therefore, by |va|+|w| <2|v| and k >2, we obtaink = 2.
Byu = v¥ 1y = vow, this means u = vv; = vjvav] = vawv; with w = wjv;. Hence, viv2 = vaw. Applying
Lemma 4, there are p,q € X*, 5>0 having v| = pg,v2 = (pq)*p, w1 = gp. Hence, u = (pq)*t'p*q.v =
(pq)”‘lp, w = qp2q. On the other hand, by |w|<|v|, s >1. In addition, u, v € Q implies ,/p # ,/q and also
A& {p,q}. Thenu # v and w ¢ {u, A} are also obvious. Therefore, (i) does not hold whenever (ii) holds and vice
versa. [

k]

Theorem 13. Letu, v € Q, such that u™ = v*w for some prefix w of v and k, m >2. Then u = v and w € {u, A}.

Proof. If m = n = 2 does not hold then this statement is a direct consequence of Lemma 12. Suppose m = n = 2 and
u = v. Then u? = v>w = u?w implies w = A. Otherwise we should consider m = n = 2 with u # v. Then, by (ii) of

Lemma 12, w is not a prefix of v. [

Theorem 14. Let u, v € Q, such that u™ = kafor some suffix w of vand k,m >2. Thenu = v and w € {u, 1}.
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Proof. If u, v € Q, such that u™ = wv* for some suffix w of v and k, m >2, then u®, v® € Q, such that (u®)" =
B®*wR for some prefix wX of vR. Applying Theorem 13, we have u® = v® and w® e {u*, A}. Therefore, u = v
andw € {u, A}. O

Now we are ready to give an alternative proof of Lyndon—Schiitzenberger Theorem:

Proof of Theorem 9. If . € {a, b, ¢}, then our statement is trivial. Thus we can assume a,b,c € Xt. Clearly,
then we may also assume a, b, c € Q without any restriction. In addition, it is clear that our statement holds either
b=+vb=c=cora=.la=./c=c. Thus,leth=+b# . /c=canda =./a # Jc=c.

Let a™ = c’cy, b" = coc* >V withcf,cr € 21, ¢ = cjom. Suppose s > 1. Then, applying Theorem 13, a = ¢
which leads to a = b = c, a contradiction. Suppose k —s — 1 > 1. Hence, by Theorem 14, b = cleadingtoa = b = ¢
again. It remains to study the case 0<s <1, 0<k — s — 1 < 1. Using this assumption, by k >2, we obtain k € {2, 3}
so that k = 3 implies s = 1. We distinguish the following two cases.

Case 1: k = 3 withs = 1.

Then a™ = cicacy and b = cacico, Where ¢ = cjca, ¢, ¢ € . Observe that for every c3, c4 € X* with ¢ = c3c4,
there are two possibilities: if |c3|<|cq| (with |c2] <|ca|), then there are cs, cg € 2* (with ¢5 = ¢3) having cjcp =
c5¢4, €1 = ¢3C6, and thus (cicac; =) a™ = cscac3c6. If |c4| < |ca| (with |c1] < |c3]), then there are ¢s5, cg € 2™ (with
c6 = c4) having ¢y = c5c4, c1¢3 = ¢3¢, and thus (cacicr =) b" = cscaczce. Clearly, then |al, |b| < |c|. Therefore,
applying Proposition 11, c4c3 is bordered. Using Theorem 2.6, (¢ =)c3c4 € Q implies c4c3 € Q. Hence, because of
¢ € Q, for a suitable pair c3, c4 with ¢ = c3c¢4, it holds that c4c3 is a Lyndon word. Then, by Proposition 10, cac3 is
unbordered, a contradiction.

Case 2: k = 2, with m, n>2, where a™b" = ¥, a, b, c € Q is assumed as before.

Let ¢ € Q be a word with a minimal length satisfying this equality for some a,b € Q. If [a™| = |b"|, then
a™ = b" = c contradicting ¢ € Q. Therefore, we may suppose |a™| # |b"|.

Let, say, |a™| > |b"|. Then a™ = ccy, b" = ¢; for some pair ¢y, ¢ of nonempty words with ¢ = ¢jcy. Thus,
c%b” = c|c, obviously. Therefore, using c%b” = cic and cc; = @™, by Lemma 7 we obtain (gp)™ = c%b" for some
p,q € X* witha = pq,qp € Q.

If m >3, then we have already proved before that this equality implies gp = b = ,/c1. Using c%b” = c]c, this leads
to (gp)**" = (gp)tc for some £>1, ie. c = (gp)*t" contrary to ¢ € Q. Therefore, m = 2 should hold.

Then (gp)* = c%b” so that |gp| < |c|. This contradicts the assumption that c is a word with a minimal length having
a’b" = % forsome a, b € 0.

Suppose |a”| < |b"|. Then @™ = c1,b" = cpc for some pair c¢i, ¢y of nonempty words with ¢ = cjcp.
Thus, amc% = ccy, obviously. Therefore, using b" = cc and a’”c% = ccy, by Lemma 7 we obtain (gp)" = a'"c% for
some p,q € X* with b = pq, gp € Q, which leads to contradictions as before. [
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