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Preface

Combinatorics on words is a field that has grown separately within several
branches of mathematics, such as number theory, group theory or probabil-
ities, and appears frequently in problems of theoretical computer science, as
dealing with automata and formal languages.

A unified treatment of the theory appeared in Lothaire’s ‘Combinatorics of
Words”. Since then, the field has grown rapidly. This book presents new topics
of combinatorics on words.

Several of them were not yet ripe for exposition, or even not yet explored
twenty years ago. The spirit of the book is the same, namely an introduc-
tory exposition of a field, with full proofs and numerous examples, and further
developments deferred to problems, or mentioned in Notes.

This book is independent of Lothaire’s first book, in the sense that no knowl-
edge of the first volume is assumed. In order to avoid repetitions, some results
of the first book, when needed here, are explicitly quoted, and are only referred
for the proof to the first volume.

This volume presents, compared to the previous one, two important new
features. It is first of all a complement in the sense that it goes deeper in the
same direction. For example, the theory of unavoidable patterns (Chapter 3) is
a generalization of the theory of square-free words and morphisms. In the same
way, the chapters on statistics on words and permutations (Chapters 10 and 11)
are a continuation of the chapter on transformations on words of the previous
volume. But this volume is also a complement in the sense that it presents
aspects of Combinatorics on Words that had not been treated in the previous
one. For example, the plactic monoid is presented here although it had not
been mentioned at all in the previous volume. The same holds for several topics
connected with symbolic dynamics, namely Sturmian words or beta-expansions.

Let us now describe more in detail the content of this volume. Most of the
basic facts needed are given in Chapter 1 “Finite and Infinite Words”, written by
Jean Berstel and Dominique Perrin. This chapter also contains basic concepts
on symbolic dynamical systems. Unavoidable sets of words are studied at the
end of this chapter. They are considered again in Chapter 3.

Chapter 2 “Sturmian Words”, written by Jean Berstel and Patrice Séébold,
is a systematic exposition of a family of infinite words that have minimal com-
plexity. These words share a number of extremal properties and can be defined
in several quite different ways. After a treatment of these properties, mor-
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phisms preserving Sturmian words are characterized. A strong relationship to
the continued fraction expansion of irrational numbers is established.

Chapter 3 “Unavoidable Patterns”, is written by Julien Cassaigne. A pattern
is unavoidable if there exist infinitely many words that do not encounter this
pattern. This is the generalization of square-free words (covered in Lothaire’s
first book). The algorithm of Zimin for testing whether a pattern is unavoidable
is given. When the alphabet is fixed, one gets a hierarchy of avoidability (squares
are 3-avoidable but not 2-avoidable). Some results concerning this hierarchy are
derived.

Chapter 4 “Sesquipowers” is written by Aldo De Luca and Stefano Varric-
chio. Sesquipowers can be defined by bi-ideal sequences. These sequences have
interesting combinatorial properties, with links to recurrence and n-divisions.
From these an improvement of an important theorem by Shirshov is obtained.
Regularities of Coudrain and Schiitzenberger, and of Shirshov, can be presented
in a unified way. Applications to finiteness conditions in semigroups are given.

Chapter 5 “The Plactic Monoid” is written by Alain Lascoux, Bernard
Leclerc and Jean-Yves Thibon. The plactic monoid is an algebraic structure
that takes into account most of the combinatorial properties of Young tableaus.
The starting point of the theory is Schensted’s algorithm. The defining relations
of the plactic monoid were determined by D. Knuth. Applications include the
Littlewood-Richardson rule, a combinatorial description of the Kostka-Foulkes
polynomials, a noncommutative version of the Demazure character formula, and
of the Schubert polynomials. Quite recently, combinatorics of Young tableaus
were related to quantum groups.

Chapter 6 “Codes”, written by Véronique Bruyere, is concerned with several
kinds of codes, in relation to the so called defect theorem. The defect effect still
holds if the set is not an w-code. A remarkable phenomenon appears when, for
a finite code X, neither X nor its reversal X is an w-code. In this case, the n
elements of X can be expressed as a product of n — 2 words. The chapter ends
with a short and elementary proof of a result of Schiitzenberger stating that a
finite maximal code X that is also an w-code is prefix.

Chapter 7 “Numeration Systems”, written by Christiane Frougny, deals with
the various ways to write integers, reals, and complex numbers in positional
number systems. Finite automata may exist to perform arithmetic operations,
such as addition, and also to compute some standard representation. A special
class of representations, called S-expansions, has several interesting properties
related to symbolic dynamical systems. Generalizing the notion of base leads to
number systems with respect to a sequence of numbers, such as the Fibonacci
numbers. Numeration systems for complex numbers, without sign, and without
separating real and imaginary parts, are considered at the end of the chapter.

Chapter 8 “Periodicity”, written by Filippo Mignosi and Antonio Restivo,
considers periods of various kinds in finite and infinite words. Repetitions may
be of rational (not only integer) order. The golden ration appears to be an
extremal value for periodicity in words. An important topic is the relation
between local and global periodicity. Criteria for infinite words to be periodic
are given next. Again, the golden ratio plays a central role.
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The aim of Chapter 9 “Centralizers of Noncommutative Series and Polyno-
mials”, written by Christophe Reutenauer, is to give a self contained proof of
Cohn and Bergman'’s centralizer theorems. These are analogues, in polynomials
and series, of the well-known fact that two commuting words are powers of a
third word. The proofs use noncommutative Euclidean division, the result that
the centralizer of a noncommutative polynomial is integrally closed in its field
of fractions, its embeddability in a one variable polynomial ring, and a charac-
terization of free subalgebras of a one variable polynomial algebra. In addition,
a defect theorem is shown to hold for two noncommutative polynomials.

Chapter 10 “Transformations on Words and ¢-Calculus”, written by Do-
minique Foata and Guo-Niu Han, deals with statistics on words. There are
several relevant statistics, such as the number of descents, of excedances, the
major index, and the Denert statistics. MacMahon had already calculated the
distributions of the early statistics. All calculations are presented here in a
unified way. The second part is devoted to the derivation of an algorithm,
that involves the introduction of commutation rules on biwords, and serve to
the construction of two bijections. The chapter concludes with the proof of
equidistribution properties.

Chapter 11 “Statistics on Permutations and Words” is written by Jacques
Désarménien. It starts with the so called shape of a word, computes a statistics
on shapes, considers inversion of permutations with a given shape. Lyndon
words are related to cycles of permutations.

Chapter 12 “Makanin’s Algorithm”, written by Volker Diekert, is a self-
contained exposition of the famous theorem of Makanin stating that it is decid-
able whether a set of equations in words has a solution. The first step towards
Makanin’s result is to bound the exponent of periodicity. Next, the problem is
transformed to systems of boundary equations. This leads to a geometric re-
flection of the problem. An upper bound for the exponent of periodicity yields
an upper bound on the length of convex chains. This in turn leads to an up-
per bound on the number of boundary equations. Then transformation rules
are defined which either lead to a solution, or introduce additional boundary
equations. Since their number is bounded, this procedure eventually stops.

Chapter 13 “Independent Systems of Equations” written by Tero Harju,
Juhani Karhumaki and Wojciech Plandowski, is concerned with the existence
of a notion of dimension for a set of words. A good example is the defect
theorem already considered earlier. Another result is the compactness property
(also known as Ehrenfeucht’s conjecture) stating that every independent set
of equations in words is finite. Existence of independent system of equations,
together with bounds on their size, are given. Although the problem generalizes
in a natural way to all semigroups, the compactness property does not hold in
all semigroups. Varieties of semigroups with that property are characterized in
terms of ascending chains of congruences.

Each chapter of this book can be read independently of the others, in the
sense that there is no logical dependency of the results of one chapter with those
of another one. The introductory chapter (Chapter 1) is an exception, however.
It contains definitions and results used in the rest of the volume and it has been
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designed as a reference for the other ones. Each of the chapters can be used for a
separate graduate course or seminar. The necessary mathematical background
does not exceed a general undergraduate level.

A word about the process which gave rise to this volume. The authors of
the previous volume have accepted to serve as a steering committee. The set of
authors is to a large extent different from the previous one. On several occasions,
the whole content of the book has been presented in seminars. This includes a
special session of the Lotharingian seminar held in Bellagio in October 1996.

Finally, a third volume of combinatorics on words is in preparation. It is
focused on applications. This includes natural language processing, text algo-
rithms, fractals and tilings and bioinformatics.

The authors acknowledge helpful discussions and comments with a great
number of colleagues. Among them are Laurence Bartz, Paul Cohn, Clelia de
Felice, Jeanne Devolder, Georges Hansel, Jacques Justin, Michel Koskas, Michel
Latteux, Jean Mairesse, Yuri V. Matiyasevich, Anca Muscholl, Bruno Pettazoni,
Gwénagl Richomme, Klaus U. Schulz, Stephanie van Willigenbourg.

Jean Berstel
Dominique Perrin

Marne-la-Vallée, May 30, 2001



CHAPTER 1

Finite and Infinite Words

1.0. Introduction

The aim of this chapter is to provide an introduction to several concepts used
elsewhere in the book. It fixes the general notation on words used elsewhere. It
also introduces more specialized notions of general interest. For instance, the
notion of a uniformly recurrent word used in several other chapters is introduced
here.

We start with the notation concerning finite and infinite words. We also
describe the Cantor space topology on the space of infinite words.

We provide a basic introduction to the theory of automata. It covers the
determinisation algorithm, part of Kleene’s theorem, syntactic monoids and
basic facts about transducers. These concepts are illustrated on the classical
combinatorial examples of the de Bruijn graph, and the Morse-Hedlund theorem.

We also consider the relationship with generating series, as a useful tool for
the enumeration of words.

We introduce some basic concepts of symbolic dynamical systems, in relation
with automata. We prove the equivalence between the notions of minimality
and uniform recurrence. Entropy is considered, and we show how to compute
it for a sofic system.

We also present a more specialized subject, namely unavoidable sets. This
notion is easy to define but leads to interesting and significant results. In this
sense, the last section of this chapter is an avant-goit of the rest of the book.

1.1. Semigroups

Asusual, N) Z, Q, R, C denote the sets of nonegative integers, integers, rational,
real and complex numbers respectively. We denote by Card X the cardinality
of the set X.

A semigroup is a set equipped with a binary associative operation. The
set of words over a given alphabet has an obvious semigroup structure for the
concatenation of words. A subsemigroup is a subset closed under the operation.
A semigroup morphism from a semigroup S into a semigroup 7' is a mapping
f:S — T such that f(uv) = f(u)f(v) for all u,v € S.
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A monoid M is a semigroup with a neutral element, i.e. an element £ such
that me = em = m for all m € M. A submonoid of a monoid M is a subset
of M closed under the operation and containing the neutral element of M. A
monoid morphism f: M — N is a semigroup morphism such that f(ey) = en.

Given two semigroups S and T', the set S x T is canonically equipped with
a semigroup operation by setting (s, t)(s’,t') = (ss',¢t'). The semigroup S x T'
is the direct product of S and T'. A subset of S x T is called a relations between
(or over) S and T.

Let X and Y be two subsets of a semigroup S. The product of X and Y is
the set

XY ={zy|lzeX,yel}

Given a set X C S, we denote by X+ the subsemigroup generated by X,
that is
Xt ={a; -z, |n>1, z; € X}

The operation X + X7 is called the plus operation. This unary operation
should not be confused with the (binary) disjoint union. If S is a monoid, we
also define

X*=X"TU{e} (1.1.1)

which is the submonoid generated by X. The operation X — X* is called the
star operation.

A subset X of a semigroup S is rational if it can be obtained from the finite
subsets of S by a finite number of the operations of union, product, and plus.

In a monoid M, the family of rational sets is closed under the star oper-
ation because of Formula 1.1.1. Actually, this family is also generated by the
operations of union, product and star, because X+ = X X*.

A special case deserves a mention. A rational subset of a product semigroup
is called a rational relation.

ExAMPLE 1.1.1. For any set @, the set 2¢*% of binary relations on Q is a
monoid for the composition of relations. The identity relation is the neutral
element. The set of partial functions from @ into ) is a submonoid of 2¢*€,
The set of permutations of ) is a submonoid of the latter.

EXAMPLE 1.1.2. For any finitely generated semigroup S, the set D = {(s, s) |
s € S} is a rational relation called the diagonal.

1.2. Words

In this section, we first describe the (ordinary) finite words, before going to
infinite one-sided and then two-sided words.
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1.2.1. Finite words

We briefly introduce the basic terminology on words. A more detailed presenta-
tion can be found in Lothaire 1983. Let A be a set usually called the alphabet.
We denote as usual by A* the set of words over A and by ¢ the empty word. For
a word w, we denote by |w| the length of w. We use the notation AT = A*—{e}.

The set A* is a monoid. Indeed, the concatenation of words is associative,
and the empty word is a neutral element for concatenation. The set AT is
usually called the free semigroup over A, while A* is usually called the free
monoid.

A word w is called a factor (resp. a prefiz, resp. a suffiz) of a word u if
there exist words z,y such that v = zwy (resp. u = wy, resp. u = zw). The
factor (resp. the prefix, resp. the suffix) is proper if xy # € (resp. y # €, resp.
x # €). The set of words over a finite alphabet A can be conveniently seen as a

N
NN
AACRCA

aaa aab aba abb baa bab bba bbb

a

Figure 1.1. The tree of the free monoid.

tree. Figure 1.1 represents {a, b} as a binary tree. The vertices are the elements
of A*. The root is the empty word €. The sons of a node = are the words za
for a € A. Every word x can also be viewed as the path from leading from the
root to the node z. A word x is a prefix of a word y of it is an ancestor in the
tree. We denote by alphw the set of letters having at least one occurrence in
the word w.

The set of factors of a word z is denoted F(z). We denote by F(X) the set
of factors of words in X C A*. The reversal of a word w = aias - --ap, where
ai,---,a, are letters, is the word @ = apa,—1 - --ay. Similarly, for X C A*, we
denote X = {# | # € X}. A palindrome word is a word w such that w = .
If |w]| is even, then w is a palindrome if and only if w = zZ for some word z.
Otherwise w is a palindrome if and only if w = zaZ for some word x and some
letter a.

An integer p > 1 is a period of a word w = ajay---a, where a; € A if
a; = ajyp for i =1,...,n — p. The smallest period of w is called the period of
w.
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A word w € AT is primitive if w = u™ for u € AT implies n = 1.

Two words z,y are conjugate if there exist words u, v such that x = uv and
y = vu. Thus conjugate words are just cyclic shifts of one another. Conjugacy
is thus an equivalence relation. The conjugacy class of a word of length n
and period p has p elements if p divides n and has n elements otherwise. In
particular, a primitive word of length n has n distinct conjugates.

There are three order relations frequently used on words. We give the defi-
nition of each of them.

The prefix order is the partial order defined by = < y if z is a prefix of y.

Two other orders, the radiz order and the are refinements of the prefix order
which are defined for words over an ordered alphabet A. Both are total orders.

The radiz order is defined by z < y if |z| < |y| or |z| = |y| and = = waz’ and
y = uby’ with a,b letters and a < b. If integers are represented in base k without

1
10/ \11
VRN /
100 101 110 111
/NN
1000 1001 1010 1011 1100 1101 1110 1111

N

Figure 1.2. The tree of integers in binary notation.

leading zeroes, then the radix order on their representations corresponds to the
natural ordering of the integers. If we allow leading zeroes, the same holds
provided the words have the same length (which always can be achieved by
padding).

For k = 2, the tree of words without leading zeroes is given in Figure 1.2.
The radix order corresponds to the order in which the vertices are met in a
breadth-first traversal. The index of a word in the radix order is equal to the
number represented by the word in base 2.

The lexicographic order, also called alphabetic order, is defined as follows.
Given two words z,y, we have x < y if = is a proper prefix of y or if there exist
factorizations = wax’ and y = uby’ with a,b letters and a < b. This is the
usual order in a dictionary. Note that < y in the radix order if |z| < |y| or
|z| = |y| and z < y in the lexicographic order.

A Lyndon word is a primitive word which is minimal for the lexicographic
order in its conjugacy class. Thus, each nonempty word is a conjugate of a
power of some Lyndon word.

The following result is known as Fine and Wilf’s Theorem (see Proposi-
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tion 1.3.5 in Lothaire 1983 and Theorem 8.1.4). As usual, gcd(n,m) denotes
the greatest common divisor of n and m.

PRrOPOSITION 1.2.1 (Fine and Wilf). Let x,y be words, let n = |z|, m = |y|,
d = ged(n,m). If two powers xP and y? of x and y have a common prefix of
length at least n +m — d, then x and y are powers of the same word.

For XY C A*, we say that the union of X and Y is unambiguous if XNY =
(. In this case, we write X + Y as a notation equivalent to X UY".

The product of X and Y is, as in any semigroup, the set XY = {ay | z €
X,y € Y}. The product is said to be unambiguous if for each z € XY there is
exactly one pair (z,y) € X x Y such that z = zy. In particular, we define

X%={e}, X"T'=X"X (n>0).
Given a set X C A*, the star of X is, as in any monoid, the set

X*={z1- x| n>0, wiEX}:UX”

n>0

PRrROPOSITION 1.2.2. Any submonoid M of A* has a unique minimal generat-
ing set
X=(M-¢e)—(M—¢).

Proof. First, we show that X generates M. Let w € M —e. If w ¢ (M —¢)?, then
w € X. Otherwise, w = w'w", with w’, w" € M —e. By induction, w',w" € X*,
and thus w € X*. This shows that M C X*. The converse inclusion is clear
since X C M.

Let Y be a set of generators of M. Clearly, X C Y*. Since no word of X is
a product of two nonempty words of M, we have actually X C Y. This shows
that X is minimal. m

We say that a subset X of AT is a code if there is no relation among the
elements of X, i.e.
xl...xn :yl...ym

with z1,..., %0, ¥1,...,Ym € X impliessn =m and z; = y; fori =1,...,n. In
this case, one has

Xt=> Xxn (1.2.1)

n>0

since the sets X" are pairwise disjoint. We say that the star operation is un-
ambiguous on the set X if X is a code.

A prefix code is a set X of words such that none of its elements is a prefix
of another one. A prefix code is clearly a code.

A set of words is prefiz-closed if it contains the prefixes of all its elements.
A set of words is factor-closed or factorial if it contains the factors of all its
elements.
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A function f : A* — B* is a morphism (also called a substitution) if f(zy) =
f(z)f(y) for all z,y € A*. A morphism is uniquely determined by its value on
the alphabet. A morphism is literal if the image of a letter is a letter. It is
nonerasing if the image of a letter is always a nonempty word.

A morphism f: A* — B* is injective if and only if f is injective on A and
if f(A) is a code (see Proposition 6.1.3 for a proof).

1.2.2. Infinite words

We denote by AN the set of (right) infinite words. It is the set of sequences of
symbols in A indexed by nonnegative integers. We also denote

A = A*u AN

the set of finite or infinite words.

For z € A* and y € AV, the product zy is well-defined. This defines a left
action of the semigroup A* on the set AN since x(yz) = (zy)z for all z,y € A*
and z € AN,

A finite word w is a factor of an infinite word z if x = wwy. The set of
factors of x is denoted by F(z) and the set of factors of length n is denoted by
F,(z). For a subset X of AN, we denote by F(X) the set of factors of words in
X. An infinite word s € AV is a suffiz of z € AV if there is a word p in A* such
that z = ps. The suffix is called proper if p # €.

The lexicographic order has a simple expression for infinite words over an
ordered alphabet, since < y if and only if x = uwaz’, y = uby’ for some word
u € A*, some letters a,b € A with a < b and z',y’ € AV.

For a set X C A*, we denote by X% the set of all x = zgzixs- - with
z; € X —e. In particular, A is the same as AN and we use both notations
indistinctly. We also use the notation

X =X"uxv

The shift function is the function o : AN — AN defined by o(zoz;--+) =
T1T2 " .

Consider a finite or infinite word z over the alphabet A. The complexity
function of z is the function that counts, for each integer n > 0, the number
P(z,n) of factors of length n in z:

P(z,n) = Card(F,(z)) .

Clearly, P(x,0) =1 and P(z,1) is the number of letters appearing in x. If z is
infinite, every factor can be extended to the right, whence P(z,n) < P(z,n+1).
Moreover,

P(z,n+m) < P(z,n)P(x,m)

since indeed Fp4m(z) C Fy () Fp(z).
The set AN is equipped with a distance defined as follows. For z,y € A“,
we have d(z,y) = 27" with

n=min{k > 0| 2 # yr}
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and the convention that n = co and thus d(z,y) =0 if z = y.

With respect to this distance, the set A“ becomes a topological space, often
called the Cantor space. A sequence z(™ of infinite words converges to y in this
topology

y = lim z(™
n— 00

if, for each index ¢ € N, one has asgn) = y; for large enough n.

For example, the sequence z(™ = a™b* converges to y = a¥.

A consequence of the definitions is that if a word w is a factor of lim,,_,~ (™),
then w is a factor of all but a finite number of the z(").

A set of infinite words is (topologically) closed if it contains the limits of
each convergent sequence of its elements.

The open sets are the complements of the closed sets. They happen to be
also the sets of the form X A% for X C A* (Problem 1.2.3).

The following result is known as Konig’s Lemma.

ProPOSITION 1.2.3 (K6nig’s Lemma). If X is an infinite prefix-closed set of
words over a finite alphabet A, there is an infinite word x having all its prefixes
in X.

Proof. There is a letter a; which is a prefix of an infinite number of elements of
X. Similarly, there is a letter as such that ajas is a prefix of an infinite number
of elements of X. Continuing this way, one obtains an infinite word ajas - - -
having all its prefixes in X. ]

A set of words is compact if any sequence z(™ of infinite words of the set
has a convergent subsequence.

PROPOSITION 1.2.4. For a finite alphabet A, the space A“ is compact.

Proof. Consider a sequence z(™ of infinite words. Let X be the set of all prefixes
of the words (™. By Kénig’s Lemma, there is an infinite word 2 which has all
its prefixes in X.

For each ¢ > 0, let u; be the prefix of length ¢ of . Since u; € X, there is an
integer n; such that u; is a prefix of (). Clearly, the sequence z(™!) converges
to x. ]

A closed subset of AN is also compact, as one may check, provided A is finite
as above.

If Xy, >Xy,D: DX, D is a decreasing sequence of nonempty closed
subsets of AN where A is finite, then their intersection X is nonempty. Consider
indeed, for each n, a word z, in X,. By compactness, there is a subsequence
converging to an infinite word z. Since the X, are closed, z is in all of them,
thus z is in X.

For any set X C A, we denote

X, = XNA*, X, =XnA“
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A binoid over A is a subset M of A* such that
M.McCM, (M)“CcM

Observe that in particular M, is a submonoid of A*. It is convenient to denote,
for every set X C A*®

X® = X®U(X,)*X, = X*UX¥YU(X,)*X,

With this notation, a set M C A% is a binoid if and only if M = M. For any
set X C A, the set X is a binoid called the binoid generated by X. It is also
the intersection of all binoids containing X. A binoid M such that M = X
for some X C A* is called finitary.

EXAMPLE 1.2.5. Set X = aUb¥. Then X*° = q¢*° U a*b¥. This binoid is not
finitary.

PROPOSITION 1.2.6. Any binoid M has a unique minimal generating set X =
(M —¢)— (M, —¢e)(M —¢).

Proof. Observe first that X, is the minimal generating set of M, by Proposi-
tion 1.2.2.

To prove that X also generates M,, let y € M. If y ¢ (M, —e)M, then
y € X. Otherwise, y = x1y; for some z; € X, —e and y; € M,. Again, if
y1 ¢ (Mx—e)M, then y; € X and thus y € X°°. Otherwise, y; = z2y»> for some
9 € Xy —e and y2 € M,,. Thus y = z125y> is in X*°. Continuing in this way,
either we eventually obtain y = z1x2---zpy, € X®, 0r y = 1T2 -+ xp--- €
(X,)¥. This proves that X generates M.

Let Y be a generating set of M. We know that X, C Y,.. Let z € X,,.
Since Y>*° =Y, YUY, one has z = yy' for some y € Y, Ue and y' € Y. By the
definition of X, we have y = ¢ and thus z € Y. Thus X C Y. n

COROLLARY 1.2.7. The minimal generating set of a finitary binoid M is the
minimal generating set of the monoid M,. m

A word z € A¥ is periodic if it is of the form z = 2% for some z € AT,
A word z € A¥ is eventually periodic or ultimately periodic if it is of the form
x = yz* for some y,z € AT. A word x € AY is aperiodic if it is not eventually
periodic.

A word z is periodic if and only if it is a proper suffix of itself or equivalently
if z = oP(z) for some p > 0.

A nonerasing morphism f : A* — B* defines a function, also called a mor-
phism, from AN to BN by f(apai - -an---) = flao)f(ai)--- f(an)---

A sequence (upn)p>o of finite words over an alphabet A converges to an
infinite word z if every prefix of z is a prefix of all but a finite number of the
words u,. This word «x is unique and is denoted by

z = lim u,
n— 00
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This definition can be related to the topology considered above (Problem 1.2.4).

As an example, the sequence a™b™ converges to a¥. An important special
case arises when every u, is a prefix of u,4+1. Then the sequence converges,
provided the lengths of the words u, is unbounded. A special case of this is
described in the following statement.

PROPOSITION 1.2.8. Let h be a nonerasing morphism from A* into itself, and
let a be a letter such that h(a) = as for some nonempty word s. Set for n > 0,

un, = h""(a), v, =h"(s)

Then
1. Upy1 = unvy,, and in particular, u,, is a prefix of u,, for all n > 0.
2. Upy1 = aVQUIV2 * - Uy
3. The infinite word
z = ash(s)h*(s)---h"(s) - - (1.2.2)

is the limit of the words u,, and x is a fixed point of h. Moreover, it is the
unique fixed point of h starting with the letter a.

Proof. (1) upy1 = " (a) = h*(h(a)) = h™(as) = upv,.
(2) holds for n = 0, and by induction u,11 = upv, = aVEVIV2 - - - Vy—1 V.
(3) It is clear that z is the limit. Moreover,

h(z) = h(a)h(s)h?(s)--- = z. "
The word z of the proposition is also denoted by
x = h(a)

A word z obtained in this way is a morphic word.
We now develop two examples which will occur throughout the book.

EXAMPLE 1.2.9. The Thue-Morse infinite word ¢ over the alphabet A = {0,1}
is defined as the limit
t= lim u,
n—oo
where the sequences of words (un)n>0 and (vn)n>0 are defined by

Ug = 0 Vo = 1
Un+1 = UnUn Un+1 = UnlUn n>0

The first letters of ¢ are
t =011010011001011010010110011010011001011001101001011010011001 - - -
The word ¢ is actually a morphic word since u,, = ™ (0) where u is the morphism

. 0—01
1—10

The decomposition of z corresponding to Equation (1.2.2) is

t=0110 1001 10010110 1001011001101001 - - -
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ExaMPLE 1.2.10. Let A = {a,b}. Let ¢ be the morphism defined by

_arab
Y ha

The Fibonacci word is the infinite word f = ¢*(a). The first letters of f are
f = abaababaabaababaababaabaababaabaab - - -

One has also f = lim,,_,, f, where the sequence of words f,, = ¢"(a) can also
be defined by

f():(l, flzdb) fn+2:fn+1fn

The sequence of lengths of the words f, is the traditional sequence of Fibonacci
numbers (see Example 1.4.2).

1.2.3. Two-sided infinite words

We denote by A% the set of two-sided infinite words on A, which is the set of
sequences of symbols of A indexed by integers. For x € A%, the shift function
is the function o : A% — A” defined by o(z) = y with y,, = z,,_; for n € 7Z.
Observe that, contrary to the one-sided case, the shift is a one-to-one trans-
formation on A%. The period of x € A% is the greatest common divisor of the
integers n such that o™(z) = x. It is an integer or co. The terminology used
for words or one-sided infinite words carries over. In particular, F'(z) denotes
the set of (finite) factors of a word z € A%, and if X C A%, we denote by F(X)
the set of factors of words in X.

The set AZ is also equipped with a distance defined in a way quite analogous
to the distance of A¥. We define d(z,y) = 27" where

n=min{k>0|z, Zyr or T_p # Yy_r}

with the convention that d(z,y) = 0 when z = y.
This distance defines a topology on the set A% as in the one-sided case.
There exists a two-sided version of Konig’s lemma.

PropoOsSITION 1.2.11. For any infinite factorial set X of words over a finite
alphabet, there exists a two-sided infinite word having all its factors in X .

Proof. Tt is similar to the one-sided case. L]

Again, the space A% is compact when A is finite.
For a set X C AT, we denote by X¢ the closure under the shift of the set of
all w = (an)nez € A% such that

cerQ_10G9 = " T_1X0, aiag -+ = T1To """

with z,, € X for all n € Z. Observe that AS coincides with AZ. For a single
word © = aias ...a, € AT, the set ¢ is composed of the sequences of the form
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--~ap(ayay - -ay)aias - --. Each word in ¢ has a period which divides n. The
period is n if and only if the word x is primitive.

A literal morphism f : A* — B* defines a function, also called a literal
morphism, from A% to B”. It maps the word z € A” to the word y = f(x) € B”
defined by y; = f(x;).

1.3. Automata

1.3.1. Definitions

An automaton over the alphabet A is composed of a set @) of states, a set
E C Q x Ax @ of edges or transitions and two sets 1,7 C @ of initial and
terminal states. For an edge e = (p, a, q), the state p is the origin, a is the label,
and q is the end.

The automaton is often denoted A = (Q, E,I,T), or also (Q,I,T) when E
is understood, or even A = (Q,E) if Q =1 =T.

A path in the automaton A is a sequence

(Po,a1ap1)a (p1,027p2)7 S (pn—l:an:pn)

of consecutive edges. Its label is the word & = ajas - --a,. The path starts at
po and ends at p,. The path is often denoted

Po i>pn

A path is successful if it starts in an initial state and ends in a terminal state.
The set recognized by the automaton is the set of labels of its successful paths.

A state p is accessible if there is a path starting in an initial state and ending
in p. It is coaccessible if there is a path starting in p and ending in a terminal
state. An automaton is trim if every state is accessible and coaccessible.

An automaton is unambiguous if, for each pair of states p,q, and for each
word w, there is at most one path from p to ¢ labeled with w.

An automaton is deterministic if, for each state p and each letter a, there is
at most one edge which starts at p and is labeled by a. This state is denoted
by p - a. Clearly, a deterministic automaton is unambiguous.

Given an automaton A and a state ¢ of A, the set of first returns to ¢ is the
set of labels of paths from ¢ to ¢ which do not pass another time through ¢. If
A is unambiguous, then the set of first returns to a state ¢ is a code. If A is
deterministic, it is a prefix code.

ExampLE 1.3.1. Let A be the automaton given in Figure 1.3. The set of first
returns to state 1 is the prefix code X = {b, ab} of Example 1.4.2.

An automaton is finite if its set of states is finite. Since the alphabet is
usually assumed to be finite, this means that the set of edges is finite.

A set of words X over A is recognizable if it can be recognized by a finite
automaton.



12 Finite and Infinite Words 1.3

a

(O

b

Figure 1.3. Golden mean automaton.

PropPoOSITION 1.3.2. Every recognizable set can be recognized by a finite trim
deterministic automaton having a unique initial state.

Proof. Let A = (Q,E,I,T) be a finite automaton over A recognizing a set X.
Let B = (R, F,{I},T) be the automaton defined as follows. Its states are the
subsets

Qu)={geQ|i — qforsomeic I}

for all w in A*. Since @ is finite, there is a finite number of subsets @ (u). The
edges of B are all triples

(Q(u),a,Q(ua)) .

The set of terminal states is
T={UeR|UNT #0}.
It is easy to verify that B is trim, deterministic, and recognizes X . m
Let X be a subset of A*. For w € A*, we define the left quotient
w''X ={ucA |wueX}, Xw'={uecA |uweX}
The following relations hold for words v, w and a letter a
(vw) ' X =w v 'X), o« '(XY)=(a'X)YU(XNe)a 'Y
The notation is extended as usual to sets by

X~y = U 'Y
reX

To every set X C A* is associated a deterministic automaton A(X) as follows.
Its set of states Q(X) is

QX)={w X |we A*}

Its initial state is X, its set of final states is T(X) = {S € Q(X) | € € S}. Its
transitions are defined for S € Q(X) and a € A by S-a = a~'S. The automaton
A(X) is called the minimal automaton of X. It recognizes X because indeed

X-weT(X) < ccw'X < z€X.

An equivalence relation on A* is right regular if u = v implies ux = vz for
all u,v,z € A*.
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PRrROPOSITION 1.3.3. Let X be a subset of A*. The following conditions are
equivalent.
(i) X is recognizable,
(ii) the automaton A(X) is finite,
(iii) there exists a right regular equivalence relation of finite index on A* for
which X is a union of equivalence classes.

Proof (i) < (ii) First A(X) recognizes X. Conversely, let A = (Q,E,i,T) be
a finite trim deterministic automaton recognizing X . For each state ¢ € @, let
X, ={u€ A* | ¢-u € T}. The set Q(X) is equal to the set of the X, for ¢ € Q.
Indeed, for w € A*, we have w™' X = Xj.,p.

(ii) < (ii7) The equivalence relation defined by u = v if and only if u™1 X =
v !X satisfies the conditions. Conversely, if (i) is satisfied, the set Q(X) is
finite. Indeed, u = v implies v ' X = v~1 X, and thus the elements of Q(X) are
unions of equivalence classes. [

It can be shown (Problem 1.3.1) that A(X) is the (unique) smallest deter-
ministic automaton recognizing X,

PRrROPOSITION 1.3.4. A set of words X over the alphabet A is recognizable if

and only if there exists a morphism f : A* — S from A* into a finite semigroup
S such that X = f=1(f(X)).

Proof. Let A = (Q,E,I,T) be a finite automaton over A recognizing a set X.
The set S of all binary relations over ) is a semigroup for the composition of
relations. Define for each word w the relation f(w) by

fw)={p.q) €Q xQ|p = ¢}

It is easy to check that f is a semigroup morphism and that X = f~(U), where
U={seS|sNIxT#0}. Thus X = f71(f(X)).

Conversely, let f : A* — S be a semigroup morphism satisfying the con-
ditions of the statement. Define an automaton A4 = (S, E, f(¢), f(X)) where
E ={p,a,q) € S x Ax S |pf(a) =q}. It can be verified that this automaton
recognizes the set X. m

A semigroup S is said to recognize a set X if there exists a morphism f :
A* — S such that X = f~1(f(X)).
Let X be a set of words. The set of contexts of a word w is the set

Cw) ={(z,y) € A" x A" | zwy € X}

The syntactic equivalence of X is defined by u = v if and only if C'(u) = C(v).
The syntactic equivalence is compatible with concatenation of words, and thus
the quotient A*/ = is a semigroup. It is called the syntactic semigroup of X. It
can be shown (Problem 1.3.2) that the syntactic semigroup of X is the smallest
semigroup recognizing X. In particular, X is recognizable if and only if its
syntactic semigroup is finite.
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A subset X of A* is rational if it can be obtained from the finite subsets of
A by a finite number of the operations of union, product, and star.

A subset X of A* is unambiguously rational if it can be obtained from the
finite subsets of A by a finite number of the operations of unambiguous union,
product, and star.

A well-known theorem of Kleene (see Notes) asserts that, over a finite al-
phabet, a set is rational if and only if it is recognizable. We prove here one
direction of the equivalence in a slightly stronger form.

PRroOPOSITION 1.3.5. Any recognizable set is unambiguously rational.

Proof. Let A = (Q,i,T) be a finite deterministic automaton recognizing a set X
with a unique initial state. For p,q € @, let X, ; be the set of nonempty words
recognized by the automaton (@, p,q). Then

X = ZXi,t + AT
ter

where A; p = {e} if i € T, and A; 7 = () otherwise. It is therefore enough to
prove that each X; ; is unambiguously rational.

For P C @ and p,q € @, we denote by X, p, the set of nonempty words
that are labels of paths from p to ¢ and which only pass through states in P
(except perhaps at the beginning and the end). We prove that each X, p, is
unambiguously rational by induction on the size of P. If P = (), then X, p, is
a subset of the alphabet A. Set Y, , = X, p, and Z, ; = X, pu(r},q for some
state r ¢ P. We have the formula

Zpq=Ypq+Ypr (err)Yr,q

The operations used in this formula are unambiguous. This proves the property
by induction. n

1.3.2. Automata on infinite words

In this section, we introduce acceptance of infinite words by finite automata in
Biichi’s sense.

Let A = (Q,E,I,T) be a finite automaton over A. An infinite path is an
infinite sequence

(po;Clo;pl); (p1>a1>p2)> s

of consecutive edges. Its label is the infinite word z = agay ---. The path is
successful if pg € I and if p, € T for infinitely many indices n.

The set of infinite words recognized by the automaton is the set of labels of
successful infinite paths. An automaton used to recognize infinite words in this
sense is frequently called a Bichi automaton.
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a b
a
a
b
Figure 1.4. Biichi automata.

ExAaMPLE 1.3.6. Consider first the automaton given in the left part of Fig-
ure 1.4 with I = {1} and T = {2}. It recognizes the set X of words having an
infinite number of occurrences of a. The second automaton, given on the right,
again with I = {1} and T = {2}, recognizes the complement of X, namely the
set of words with a finite number of occurrences of a.

Observe that the complement of X is not obtained by simply complementing
the set of terminal states in the first automaton.

1.3.3. Transducers

A transducer over the monoid A* x B* is composed of a set @) of states, a set
E C @ x A* x B* x ) of edges and two sets I,T C @ of initial and terminal
states. For an edge e = (p, z,y, q), the state p is the origin, = is the input label,
y is the output label, and ¢ is the end. Thus, a transducer is the same object as
an automaton, except that the labels of the edges are pairs of words instead of
letters.

A transducer is often denoted A = (Q, E,I,T), or also (Q,I,T) when E is
understood, or even A = (Q,E)ifQ=1=T.

A path in the transducer A is a sequence

(poamlayhpl)) (p1,1'2,y2,p2, sy (pnflymn;yn;pn)

of consecutive edges. Its input label is the word = z1xs - - - x,, its output label
is the word y = y1y2 - - -y». The path starts at po and ends at p,. The path is
often denoted

/
Po 2j)pn

A path is successful if it starts in an initial state and ends in a terminal state.
The set recognized by the transducer is the set of labels of its successful paths,
which is actually a relation R C A* x B*. The function computed by the
transducer is the function f from A* into the set of subsets of B* associated to
the relation R:

f(@)={y e B"|(z,y) € R}

Thus a transducer can be seen as a machine computing nondeterministically
output words from input words.
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A transducer is finite if its set of states is finite. It can be shown that a
subset of A* x B* is a rational relation if and only if it is the set recognized by
a finite transducer.

ExaMpPLE 1.3.7. The automaton of Figure 1.5 computes the identity function

on {a,b}*.

Figure 1.5. The transducer for the diagonal over {a,b} x {a,b}.

EXAMPLE 1.3.8. The subset R of a* x {b,c}* defined as
R = (a®,0*)" U (a’,¢*)*(a,c)

is a rational relation. Its elements have the form (a”,d"), with d = b if n is
even, and d = ¢ otherwise. The automaton of Figure 1.6 recognizes the relation
R.

alc

afc
alc
a/b a/b
a/b

Figure 1.6. A transducer for the relation (a”,b%)* U (a®,c*)"(a,c).

Let A be a transducer such that its edges are labeled by elements of A x B*.
The underlying input automaton of A is obtained by omitting the output label
of each edge.

The transducer A is sequential if the following conditions are satisfied.

(i) it has a unique initial state,
(ii) the underlying input automaton is deterministic,
(iii) every state is final.
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These conditions ensure that for each word = € A*, there is at most one word
y € B* such that (z,y) is recognized by A. Thus, the function computed by .4
is a partial function from A* into B*.

ExAMPLE 1.3.9. The transducer of Example 1.3.7 is sequential. On the con-
trary, the transducer of Example 1.3.8 is not sequential. Actually, the function
computed by this transducer is not computable by a sequential transducer. In-
deed, one may verify that if f is a function computable by some sequential
transducer, and if f(zy) is defined, then f(z) is a prefix of f(zy).

A function f is left sequential (or sequential for short) if there is a sequential
transducer which computes f. A function f is right sequential if the function
f defined by y = f(:r) if § = f(Z) is left sequential. Thus, a right sequential
function is a function computed by a sequential transducer operating from right
to left.

A subsequential transducer (A,w) over A* x B* is a pair composed of a
sequential transducer A over A* x B* with set of states @, and of a function
w : @ — B*. The function f computed by (A,w) is defined as follows. Let
xz be a word in A*. The value f(z) is defined if and only if there is a path
i 2% ¢in A with input label z and starting in the initial state ¢. In this case,
f(z) = yw(q). Thus, the function w is used to append a word to the output at
the end of the computation.

A function computed by a subsequential transducer is a left subsequential
function. Right subsequential functions are obtained by reversal. The following
example shows that the successor of an integer in base 2 is a right subsequential
function.

ExAMPLE 1.3.10. Let A = {0,1}. For every word z in A*, let f(z) be the
binary expansion of the successor of the integer represented by x in base 2,
(most significant bit first). The pair (A,w), with A given in Figure 1.7, and

0/0

1/0

1/1

Figure 1.7. A transducer adding 1 in binary.

w(i) = 1, w(t) = € computes the function f. Since A is sequential, f is right
subsequential.
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Any sequential transducer A over A* x B* defines actually a function from
A to B*. Indeed, for each x in A, there is at most one y in B> such
that there is an infinite path starting in the initial state and labeled (z,y). A
function f: A® — B> is left sequential if it can be computed by a sequential
transducer.

1.3.4. Factor graphs

We now present a special family of automata which allows one to identify the
occurrences of elements of a set X of words as factors of a given word.

For each n > 1, we define the de Bruijn graph of order n as the following
labelled graph. The set of vertices is A™ and the set of edges is

E = {(bs,a,sa) | a,be A,s € A" '}

A word zx is the label of a path from w to v if and only if v is the suffix of
length n of uz. The de Bruijn graph of order 2 is given in Figure 1.8. For each
two-sided infinite word z , there is a unique infinite path labelled by x. The set
of vertices occurring in the path is the set F,(z) of factors of length n of z. The
set of edges occurring in the path corresponds to the set Fj,11(z).

Figure 1.8. De Bruijn graph of order n = 2.

More generally, consider an infinite word z. The factor graph G, (z) of order
n is the labelled graph with vertex set Fj,(z) and edge set

E = {(bs,a,sa) | a,be A,bsa € Fpi1(x)}

A word y is the label of a path from u to v in G, (z) if and only if Fj,11 (uy) C
Fp41(z) and v is the suffix of length n of uy. The de Bruijn graph is a particular
case of a factor graph corresponding to a word z such that F, i (z) = A",

A factor p is called conservative if there is exactly one edge leaving p, it is
right special otherwise.

ExampLE 1.3.11. Let ¢ be the infinite Thue-Morse word (see Example 1.2.9).
It is easily checked that 000 and 111 are not factors of ¢. The factor graph G5(t)
is given in Figure 1.9.
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Figure 1.9. Factor graph of order 3 for the Thue-Morse word.

PropoSITION 1.3.12. A word y is the label of an infinite path starting at
vertex p in Gy (x) if and only if F,11(py) C F(x). n

Recall that the complexity function P(x,n) of an infinite word x is defined
by P(z,n) = Card(F,(z)). The following result is a gap theorem. It shows that
the complexity is either bounded or more than linear.

THEOREM 1.3.13. Let x be an infinite word. The following are equivalent:
(i) z is eventually periodic,
(i) P(xz,n) = P(z,n + 1) for some n,
(iii) P(z,n) < n+ k — 1 for some n > 1, where k is the number of letters
appearing in x.
(iv) P(z,n) is bounded.

Proof. (i)=>(iv). Observe that if © = uy®, then P(z,n) < |uy|.

(iv)=-(iii) is clear.

(iii)=(ii). Assume P(z,m — 1) < P(z,m) for m =0,...,n, then P(z,n) >
n—1+ P(z,1) = n — 1+ k, a contradiction since P(z,n) is a non decreasing
function of n..

(ii)=(i). Consider the factor graph G,(z). Since every factor of length n
is a prefix of a factor of length n + 1, there is at least one edge starting at
each vertex. Since P(z,n) = P(xz,n + 1), there is exactly one edge leaving each
vertex. This implies that the strongly connected components of the graph are
simple circuits. Thus any infinite path will loop through a fixed circuit after a
while, and consequently its label is eventually periodic. Since z is the label of
a path, the claim is proved. [

There is a slightly stronger result that is sometimes useful to show that an
infinite word is eventually periodic.

PRrROPOSITION 1.3.14. Let x be an infinite word, let n > 1 and let ¢ be the
number of conservative factors of length n in x. If x has a factor of length n + ¢
whose factors of length n are all conservative, then z is eventually periodic.
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Proof. Let w = ayaz - - - ap4. be a factor of length n + ¢ whose factors of length
n are all conservative, and set p; = a;--- @41 for i = 0,...,c. In the factor
graph G, (x), the path # = (po,...,p.) is part of the path of z. Since there
are only ¢ conservative vertices, the path 7 contains a circuit, and since each
vertex p; has a unique outgoing edge, the path of x must stay in this circuit
indefinitely. Thus z is eventually periodic. [

1.4. Generating series

For any set X C A*, the generating function or generating series of X is the

formal series
fx(z) = Z Up2™

n>0

where
u, = Card(X N A")

PrOPOSITION 1.4.1. If X is a code, then fx- =1/(1 — fx).

Proof. If X is a code, every word in X * has a unique decomposition as a product
of words in X. This implies that

fxn = (fx)"

and thus, by Equation 1.2.1,
fx«=1+fx+ -+ fxrn+---=1/(1- fx). n

ExAMPLE 1.4.2. The set X = {b,ab} is a prefix code. The series fx« is

_ 1
Tl 22

fx(2)

Let (Fy)n>0 be the sequence of Fibonacci numbers defined by Fp =0, F1 =1,
and Fp o = Fy41 + F,. It follows from the recurrence relation that

z
—Z—Zz
n>0

Consequently, fx«(2) =), Fntr12™. It can also be proved by a combinatorial
argument that the number of words of length n in X* is Fj, 1.

For any set X C A*, we denote by px the radius of convergence of fx. Since
the coefficients u, of fx are bounded by Card(A)™, one has px > 1/ Card(A).

PRrOPOSITION 1.4.3. For any rational set X, the generating function fx(z) is
a rational fraction.
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Proof. Let X,Y C A*. If the union of X and Y is unambiguous, then fxi,y =
fx + fy. Similarly, if the product of X and Y is unambiguous, then fxy =
fx fy. Finally, if X is a code, then fx. = 1/(1— fx) by Proposition 1.4.1. "

The following lemma gives a method to compute the radius of convergence
of an unambiguous star.

LEMMA 1.4.4. Let X C At be a code. If there is a real number a with
0 < a < px such that fx(a) = 1, then px- = a and fx- is unbounded on
10, af.

Proof. The function r — fx(r) is continuous and increasing on [0, «]. Thus
fx(r) takes all values in [0,1] for 0 < r < a. Thus fx«(r) = > (fx(r)"
converges for 0 < r < « and diverges for r = a. In particular, px+ = o and fx-
is unbounded on |0, af. n

The next lemma shows that the hypothesis of Lemma 1.4.4 is satisfied when
the code is rational.

LEMMA 1.4.5. Let X C AT be a nonempty rational set. For each real number
a > 0, there exist an real number 8 with 0 < 8 < px such that fx(8) = a.

Proof. It suffices to prove that fx is unbounded on the interval ]0, px[. Indeed,
the function 8 — fx(B) is a continuous increasing function on the interval
10, px[. By Proposition 1.3.5, any recognizable set is unambiguously rational.
The proof is by induction on an unambiguous rational expression for X. The
conclusion is clear if X is finite, i.e. if fx is a polynomial. Assume that fx is
unbounded on ]0, px[ and similarly fy is unbounded on ]0, py[. If the product
XY is unambiguous, then pxy = min(px,py). Thus fxy is unbounded on
10, pxy[. Similarly, if the sum X +Y is unambiguous, then px4y = min(px, py).
Thus fx4y is unbounded on ]0, px+v|[.

Finally, let X be a code such that fx is unbounded on ]0,px[. Let 0 <
B < px be a real number such that fx(8) = 1. The conclusion follows by
Lemma 1.4.4. m

The following example shows that for a code X which is not rational, there

may not exist any solution of the equation fx(r) = 1.

EXAMPLE 1.4.6. The set of words on A = {a,b} having an equal number of
occurrences of a and b is a submonoid of A* generated by a prefix code D. Since
any word of D* of length 2n is obtained by choosing n positions among 2n, we

have
foe(2) =Y (i’;) 2,

n>0

By a simple application of the binomial formula, we obtain

fo-(z) = (1 - 42%) "%,
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This follows indeed, using the simple identity

()= (3)
We have fp(z) = 1 — 1/ fp-(z) and thus

fo(z) =1—/1—4z2.

Let D, be the set of words of D which start with a and let Dy be the set of
those which start with b. Then D = D, + Dy and fp, = fp,. Thus the prefix

code X = D, satisfies
1—+v1—422
Ix=—5—
Since z = 1/2 is a singularity of fx(z), we have px = 1/2. However fx(1/2) =
1/2. Thus, fx ([0, px[) = [0, 5.

The following result that the set of factors of a rational set X is not much
“larger” than X itself.

PROPOSITION 1.4.7. Let X be a rational set. Then

PX = PF(X)

Proof. Let
fx(2) =Y anz",  frx)(z) =) bp2"
n>0 n>0

Since X C F(X), we have a,, < by,.

Let A be a finite automaton recognizing X with set of states ). For each
state g, there are words u, and v, and an initial state ¢, and a terminal state ¢,
and a path i, SN N ty. Let w be a word of length n in F(X). There exist
two words u, and v, such that v wv, belongs to X. Thus

F(X)c |J u,'Xv,*
PR
It follows that
Ap S bn San+an+l +"'+an+k+l
where k is the maximal length of the words u, and ¢ is the maximal length of

the words v,. This shows that the series fx(z) and fp(x)(2) have the same
radius of convergence. n

The following example shows that Proposition 1.4.7 may be false when X is
not rational.

EXAMPLE 1.4.8. Let A = {a,b} and let X = {a"bw | |w| = n}. Thisis a
prefix code and fx(z) = 3,5, 2"2?"*! = =% Thus px = V2/2. However,
F(X) = A* and thus pp(x) = 1/2 < px.
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1.5. Symbolic dynamical systems

In this section, we present some basic concepts of symbolic dynamics. The
alphabets considered in this section are finite.

1.5.1. Definitions

A two sided-infinite word z € A% awvoids a set of words X C A* if no factor of z
is in X. We denote by Sx the set of all y € AZ which avoid X.

A symbolic dynamical system is a subset S of A% of the form Sy for some
X C A*.

A symbolic dynamical system S is defined by the set X of words that it
avoids. Since F'(S) is, by definition, the complement of X in A*, the set S is
also determined by the set F'(S) of its factors. In particular, if S and T are two
dynamical systems such that F(S) = F(T), then S =T.

PROPOSITION 1.5.1. A subset of A” is a symbolic dynamical system if and
only if it is closed for the topology and invariant under the shift.

Proof. 1t is clear that a symbolic dynamical system is both closed and invariant.
Conversely, let S C A% be a closed and invariant set. Let X = A — F(S) be
the set of words that do not appear as a factor in any of the words of S. We
prove that S = Sx. It follows from the definition of X that y € Sx if and
only if F(y) C F(S). This shows that S C Sx. Conversely, let y € Sx. For
each integer n, let wy, = Yy_n " Yn—1yn. Since w, € F(y), there is a word
y™ € S such that w, € F(y(")). Since S is shift-invariant, we can suppose that
Wy = y(_nrz - -yé”). This implies that the sequence y(™ converges to y. Since S
is closed, we obtain y € S and this concludes the proof. n

The system is denoted S or (S,0) to emphasize the role of the shift o and
it is also called a subshift.

For example, (A%, o) itself is a symbolic dynamical system, often called the
full shift .

As a less trivial example, let us consider the following subshift.

EXAMPLE 1.5.2. Let S be the set of two-sided infinite words on A = {a, b}
such that a symbol a is always followed by a symbol b. Since S = Sy4q3, it is a
subshift often called the golden mean subshift.

Let h : AZ — B” be a literal morphism, with A finite. For any subshift S
of A%, the set T = h(S) is a subshift of B%. Indeed, T is clearly shift-invariant.
It is also closed: Consider a sequence (y,) of elements of T' converging to some
y € B”. Let (z,) be a sequence of elements of S such that y,, = h(z,). Since S
is compact, there is a subsequence (z,,) of the (x,) which converges to some x
in S. Then y = h(z) and thus y is in T'.

Conversely, if T' is a subshift of BZ, then it is easy to see that h=!(T) is a
subshift of A%, even if A is infinite.
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A subshift S C A% is of finite type if S = Sx for some finite set X C AT,
As an example, the golden mean subshift is of finite type.

Let S be a subshift, and let I(S) = AT — F(S) be the set of words avoided
by S. Let X(S) be the set of elements of I(S) which are minimal for the factor
ordering (i.e. which have no proper factor in I(S)). Then S = Sx(g) and S is
of finite type if and only if X (S) is finite.

ExaMPLE 1.5.3. Let G = (Q, E) be a finite graph. The set of two-sided infinite
paths in G is a subshift of finite type. Indeed, the set X (S) consists of the set
of pairs of non consecutive edges. This subshift is called the edge-shift of G.

A subshift S is soficif S = Sx for some rational set X C AT. As above, a
subshift S is sofic if and only if X (S) is a rational set.

It is clear that a subshift of finite type is sofic. The converse is not true, as
shown by the following examples.

ExAMPLE 1.5.4. Let S C AZ be the set of two-sided infinite words on 4 =
{a, b} that contain at most one b. Then X(S) = ba*b. Thus S is sofic. Since
X (S) is infinite, S is not a subshift of finite type.

ExaMPLE 1.5.5. Let S C AZ be the set of two-sided infinite words on A =
{a, b} such that the number of occurrences of a between two consecutive b is
even. S is called the even subshift. This system is sofic, since S = Sx for
X = ba(aa)*b. Since every proper factor of an element of X is in F'(S), we have
X = X(S5). Since X is infinite, S is not a subshift of finite type.

Let A = (@, E) be a finite automaton. Let S C A% be the set of labels of
all two-sided infinite paths in A. We say that it is the subshift recognized by A.
Any sofic subshift is obtained in this way:

PROPOSITION 1.5.6. Let S be a subshift. The following conditions are equiv-
alent:
(i) S is sofic;
(ii) S is recognizable by a finite automaton;
(iii) F(S) is recognizable.

Proof. (i) = (i7). Let X be a rational set such that S = Sx. Let A be a finite
trim automaton recognizing the rational set A* — A* X A*. Let S’ be the subshift
recognized by A. We claim that F(S") = F(S). Indeed, a word w € F(S') is
the label of some path in A. Since A is trim, there exist words u,v such that
uwv is recognized by A. Thus, w € F(S). Conversely, by compactness, any
label of a path in A is a factor of the label of a two-sided infinite path. Thus
S = S’. The implications (ii) = (#i%) and (iii) = (i) are clear. "

ExXAMPLE 1.5.7. The golden mean subshift of Example 1.5.2 is recognized by
the golden mean automaton given in Figure 1.3. The subshift of Example 1.5.4
is recognized by the automaton given in Figure 1.10.
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Figure 1.10. One b automaton.

The subshift of Example 1.5.5 is recognized by the even a automaton given
in Figure 1.11.

a

(00

a

Figure 1.11. Even a automaton.

A consequence of Proposition 1.5.6 is that a subshift S is sofic if and only if
the set F'(S) of its factors is rational. Indeed, if S is sofic, F'(S) is recognized
by any automaton recognizing S.

The class of sofic subshifts is closed under image and inverse image by a
literal morphism k. Indeed, if S is a sofic system and if 7' = h(S), then F(T) =
h(F(S)), and thus F(T) is a rational set. Conversely, if T is a sofic system, then
S = h~Y(T), then F(S) = h='(F(T)). Thus again, F(S) is a rational set.

As an example, let S be a sofic subshift recognized by an automaton A. The
set S is the image of the edge-shift of A under the literal morphism that maps
each edge to its label.

A subshift S is irreducible if for all u,v € F(S), there is a word w € F(S)
such that wwo is in F(S).

The subshift of Example 1.5.4 is not irreducible since b appears at most once
in a word. On the contrary, the subshift of Example 1.5.5 and the golden mean
system are irreducible, as a consequence of the following result.

PROPOSITION 1.5.8. A sofic subshift is irreducible if and only if it can be
recognized by a strongly connected automaton.

Proof. To prove that the condition is sufficient, let A be a strongly connected
automaton recognizing S. Let u,v be words in F(S), and consider two paths
p — gand r — sin A. Since A is strongly connected, there is a path from
q to r labeled by some word w. Thus, uwv is the label of some path in A and
uwv € F(S).

Conversely, we consider a trim deterministic automaton recognizing the set
F(S). Let A" be an automaton that is a strongly connected component of A
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without edges leaving this component. We prove that A’ recognizes S. It suffices
to prove that any word in F'(S) is the label of some path in A’. Let w € F(S).
Let u be the label of a path from the initial state ¢ of A to some state p of
A'. Since S is irreducible, there is a word v such that uwvw € F(S). Since A is
deterministic, there is a path starting from p labeled with vw. This path is in
A’. Thus, w is the label of a path in A4’. n

The notions introduced above can also be formulated in the context of one-
sided infinite words. A one-sided symbolic system, or one-sided subshift, is a
set S C AN which is both closed and invariant. Equivalently, it is the set of
right infinite sequences that appear in a subshift. We shall usually work with
two-sided subshifts because two-sided shifts take into account both the past and
the future. An exception will be made in Section 1.5.2 concerning the notion of
recurrence.

1.5.2. Recurrence and minimality

In this section, we concentrate on a special kind of symbolic dynamical systems:
the smallest system containing a given infinite word. It is more appropriate to
present it in the one-sided case. We define S(z) = {y € AN | F(y) C F(z)}
where F'(x) denotes the set of factors of x. The set S(z) is the smallest subshift
containing z. Indeed, S(x) = Sp«_p(;). This shows that S(z) is a subshift.
Moreover, if z € Sx for some X C AT, then X C A* — F(x) and thus Sx D
SA*—F(m) = S(:L’)

A one-sided infinite word 2 € AV is said to be recurrent if any factor occurring
in x has an infinite number of occurrences. It obviously suffices for = to be
recurrent, that any prefix of z has a second occurrence in z.

It is easy to verify that x is recurrent if and only if the subshift S(z) is
irreducible. Indeed, if S(z) is irreducible, then for any prefix u of z there is a v
such that uvu € F(z) and thus u has a second occurrence. Conversely, if z is
recurrent then for any u,v € F(z), v has an occurrence following any occurrence
of u and thus there is a word w such that wwv € F(z).

A word z € AN is said to be uniformly recurrent if every block of  appears
infinitely often at bounded distance, in other terms if, for every word w € F(x),
there exists an integer r such that w is a factor of every word in F,.(z).

A periodic word is obviously uniformly recurrent. We shall see another
example below (Example 1.5.10).

These notions are strongly related to that of a minimal subshift, i.e. a
subshift S C AN such that 7' C S implies T =0 or T = S.

The following result is one of the earliest in symbolic dynamics.

THEOREM 1.5.9. Let x € AN be a one-sided infinite word. The following
conditions are equivalent.

1. x is uniformly recurrent.

2. S(x) is minimal.
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Proof. 1 = 2. Let S C S(z) be a subshift and let y € S. Then S(y) C S. Since
y € S(x), we have F(y) C F(z) by the definition of S(z). Let w € F(x). Since
z is uniformly recurrent, w must appear in every long enough factor of z. If v
is a factor of y of this length, then since it is also a factor of z, it admits w as
a factor. Hence w € F(y). This shows that F(z) = F(y) and this implies that
S(y) =5 = S(x).

2 = 1. For every y € S(z), one has F(z) = F(y), since S(z) is minimal. For
a given block w of x, we define i, (y) to be the function assigning to y € S(x)
the least integer ¢ such that y = wwz with |u| = 4. Since i, is continuous
and S(z) is compact, i, is bounded. Let w be a block of z = wwy. Since
y € S(z), w € F(y) and thus w has a second occurrence in z at a distance equal
to |w| + i, (y), hence bounded. "

ExaMpLE 1.5.10. The word of Thue-Morse ¢ = p*(0) is uniformly recurrent.
Indeed, 000 or 111 are not in F'(t). Thus successive occurrences of 0 or 1 are
separated by at most two symbols. It follows that any block of ¢ appears at
bounded distance since it has to appear in some p*(0) or *(1), and successive
occurrences of blocks are again separated by at most two blocks. The system
S(t) is known as the Morse minimal set.

We used in the proof of Theorem 1.5.9 a possible variant of the definition of
a uniformly recurrent word: for all n > 0 there is an m > n such that any factor
of length n appears in any factor of length m. This condition can be used as a
definition for a uniformly recurrent two-sided infinite word. It also leads to the
definition of a function r,(n) called the recurrence index of xz. We let r,(n) =m
if m is the smallest possible integer such that any factor of length n appears in
any factor of length m. It is well defined for all integers n if and only if z is
uniformly recurrent.

THEOREM 1.5.11. Every nonempty subshift contains a uniformly recurrent
word.

Proof. Let S be a nonempty subshift. We define a decreasing sequence (H},) of
subshifts of S as follows. Let Hy = S. Suppose that H,,_; is already defined.
Let H,, be the set of elements of H,,_; which have a minimal number of factors
of length n. FEach H, is a subshift. Let H be the intersection of the H,.
Since A" is compact, any decreasing sequence of closed subsets has a nonempty
intersection. Thus H is nonempty. Let 2 be an infinite word in H and let S(z)
be the smallest subshift containing x. Then S(z) is clearly minimal and thus,
x is uniformly recurrent. L]

As an application of this result, we mention

PROPOSITION 1.5.12. For any infinite set L of words over a finite alphabet,
there is a uniformly recurrent infinite word x such that F(z) C F(L).
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Proof. Let S be the subshift avoiding A* — F(L). Then F(S) C F(L) and F(S)
is not empty by Koénig’s Lemma. Any uniformly recurrent word z in S satisfies
F(z) C F(L). n

1.5.3. Entropy

Let S be a nonempty subshift, and let F' = F'(S) be the set of factors of S. The
entropy of S is the number

h(S) = — log(pr)

Clearly, 0 < h(S) < logk, where k = Card A. Tt is also clear that, for any
subshifts S, T, if S C T, then h(S) < h(T).

A subshift S is said to be coded if there is a prefix code X such that F'(S) =
F(X*). In this case, we say that X is a code for S. Any sofic system is coded.
Indeed, if A is a deterministic strongly connected automaton recognizing S, the
code of first returns to some state of A is a code for S. The following example
shows that the notion of a coded subshift is more general than the notion of a
sofic system.

EXAMPLE 1.5.13. Let X = {a™" | n > 1}. The system S coded by X is
not sofic. Let us indeed suppose the contrary and let A4 be a finite automaton
recognizing S. For each n > 1, since (a"b™)¢ is included in S , there is in A a
cycle labeled by some power of a”b™. These cycles cannot be all disjoint since
the automaton is finite. This gives clearly infinite words which are not in S.

The following theorem gives a method to compute the entropy of a sofic
system.

THEOREM 1.5.14. Let S be a sofic subshift and let X be a rational code for
S. Then
h(S) = —logr

where r is the unique positive solution of the equation fx(z) = 1.
Proof. By Proposition 1.4.7, we have px« = pp(x-. By Proposition 1.4.4,
px= =T. |

An alternative method to compute r is to use the fact that 1/r is the maximal
eigenvalue of the matrix associated to any unambiguous automaton recognizing
S. Let in fact, M be a matrix with real coefficients. The spectral radius p of
M is the maximal modulus of its eigenvalues. One has (see Gantmacher 1960

for example)
p = limsup {/||M"|

where ||M]| is any norm of the matrix M.
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Let now S be a sofic system, and let .4 = (@, E) be an unambiguous au-
tomaton recognizing S. Let M be the @) x @Q-matrix with integer coefficients
defined by

My, = Card{a € A| (p,a,q) € E}

Let us choose the particular norm equal to the sum of modulus of all coefficients.
Then the number s,, of factors of length n appearing in S ratifies s, < ||M"|| <
¢ - sp, for some constant c. Thus the entropy of S is log p.

ExaMpPLE 1.5.15. Let S be the even subshift recognized by the automaton of
Figure 1.11. We have X = {aa,b} and fx(z) = z + 2%. Thus r = 1/7 where 7
is the golden mean. Accordingly, the maximal eigenvalue of the matrix

11
v=(10)
is 7 and the entropy of S is h(S) = logT.

EXAMPLE 1.5.16. Let X = {a™b" | n > 1} and let S be the subshift coded
by X, as in Example 1.5.13. We have F(X*) = QX*P where P (Q) is the
set of proper left (right) factors of words of X. Actually P = atX U € since
the nonempty words of P have the form a™b™ for 0 < m < n. Similarly,
Q = Xb+Ue. Thus pp(x-) = min(pg, px+, pp) = px+. Since fx(z) = 3,5, z2n
we have fx(z) = 1f;. The equation fx(r) = 1 has the solution r = \/5/2
Hence

h(S) = log V2.

1.6. Unavoidable sets

Unavoidable sets are sets of words X such that any infinite word has a factor in
X. The purpose of this section is to present several properties of unavoidable
sets. The main result is that, for each integer k, there is an explicit description
of the unavoidable sets of cardinality k.

We start with several equivalent definitions of unavoidable sets and some
elementary properties.

In this section, all alphabets are supposed to be finite and to contain at least
two letters.

1.6.1. Definitions and elementary properties

Recall from Section 1.5 that a two-sided infinite word z € A% avoids a set of
words X C A* if no factor of z is in X. The set of all y € A% which avoid X is
denoted by Sx.

A set X of words over an alphabet A is called unavoidable (over A) if the
set Sx is empty.

EXAMPLE 1.6.1. The set A™ is unavoidable for all n > 0.
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EXAMPLE 1.6.2. The set X = {a,bb} is unavoidable over {a,b}. Indeed, any
two-sided infinite word over {a,b} either contains an a or is reduced to b¢.

PROPOSITION 1.6.3. A set X of words over A is unavoidable if and only if the
set A* — A*X A* is finite.

Proof. Assume first that X is unavoidable. Arguing by contradiction, suppose
that ¥ = A* — A*X A* is infinite. By Konig’s Lemma, there is a two-sided
infinite word y with all its factors in Y. Consequently, y isin Sx, a contradiction.

Conversely, if Y is finite, any two-sided infinite word has a factor in X. m

PrOPOSITION 1.6.4. Any unavoidable set X contains a finite unavoidable set.

Proof. Let d be the maximal length of the words in the finite set ¥ = A* —

A*X A*. Let Z be the set of words in X of length at most d 4+ 1. Every word of

length d + 1 has a factor in X which actually is in Z. Thus Z is unavoidable.
]

A set containing an unavoidable set is again unavoidable. It is therefore
natural to consider minimal unavoidable sets.

Minimal unavoidable sets contained in a given unavoidable set are not nec-
essarily unique. Indeed the set {aa,ab,ba,bb} contains both {aa,ab,bb} and
{aa, ba, bb}, which both are easily seen to be unavoidable and minimal.

The following example shows the existence of minimal unavoidable sets of
arbitrary size n > k on an alphabet with & > 2 letters.

EXAMPLE 1.6.5. Let first A = {a,b}. For each n > 2, the set
X = {aa,aba, abba, . ..,ab" *a,b" '}

is a minimal unavoidable set with n elements. Indeed, any infinite word avoiding
b"~! has a block of the form abla with i < n — 1. This shows that X is
unavoidable. For each 0 < i < n, the infinite word (ab?)* has only one factor
in X, namely ab’a for i < n — 1 and b"~! for i = n — 1. This shows that X is
minimal.

Let now A be an alphabet with k& > 3 letters. We use two symbols a,b € A
to build as above a minimal unavoidable set X having size n — k + 2. The set
X UA — {a,b} is a minimal unavoidable set of size n.

It is worth observing that if X is a finite unavoidable set over A, then A
has to be finite. Indeed, for each letter a € A, some a” is in X and thus
Card(X) > Card(A).

The following result gives an equivalent formulation of the definition of finite
unavoidable sets which will be used in the sequel.

PROPOSITION 1.6.6. A finite set X of words is unavoidable if and only if every
periodic two-sided infinite word has a factor in X.
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Proof. The condition is clearly necessary. For the converse, we argue by contra-
diction. Let z be a two-sided infinite word avoiding X. Let n be the maximal
length of the words in X. Consider two disjoint occurrences of a factor u of
length n in z. Then there is a factor y = uzu of x for some word z. Each word
in (uz)¢ is a periodic two-sided infinite word avoiding X. "

It is worth observing that the proposition becomes false when X is infinite.
Indeed, the set of squares over a three-letter alphabet is a counter-example
because it is avoidable, but every periodic word contains a square.

To check in practice that a given finite set X is unavoidable, there are two
possible algorithms.

The first one consists in computing a graph G = (P, E), where P is the set
of prefixes of X and E is the set of pairs (p, s) for which there is a letter a € A
such that s is the longest suffix of pa which is in P.

PRrROPOSITION 1.6.7. A finite set X is unavoidable if and only if every cycle in
G contains a vertex in X. Proof. For each integer n > 0, and vertices u,v € P,
there is a path of length n from u to v if and only if there exists a word y of
length n such that v is the longest suffix of uy in P. This can be proved by
induction on n. It follows that there is a path of length n from e to a vertex
x € X if and only if AX N A™ # . "

Figure 1.12. The graph for X = {a,bb}.

EXAMPLE 1.6.8. For X = {a,bb}, the word graph is given in Figure 1.12. By
inspection, the set X is unavoidable.

The second algorithm is sometimes easier to write down by hand. Say that
a set Y of words is obtained from a finite set of words X by an elementary
derivation if

(i) either there exist words u,v € X such that w is a proper factor of v, and

Y=X—v
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(ii) or there exists a word z = ya € X with a € A such that, for each letter
b € A there is a suffix z of y such that zb € X, and

Y=X-z+y

A derivation is a sequence of elementary derivations. We say that Y is
derived from X if Y is obtained from X by a derivation.

EXAMPLE 1.6.9. Let X = {aaa,b}. Then we have the derivations
X — {aa,b} = {a,b} — {g,b} — {e}
where the first three arrows follow case (ii) and the last one case (i).

The following result shows in particular that if Y is derived from X, then
X is unavoidable if and only if Y is unavoidable.

PROPOSITION 1.6.10. IfY is derived from X, then Sx = Sy.

Proof. It is enough to consider the case of an elementary derivation. In the first
case where Y = X — v, where v has a factor in X, then clearly Sx = Sy. In
the second case, we clearly have Sy C Sx since Y is obtained by replacing an
element of X by one of its factors. Conversely, assume by contradiction the
existence of some s € Sx — Sy. The only possible factor of s in YV is y. Let b
be the letter following y in s. Then s has a factor in X, namely zb where z is
the suffix of y such that zb € X whose existence is granted by the definition of
a derivation. This is a contradiction. [

The notion of a derivation gives a practical method to check whether a set
is unavoidable. We have indeed the following result.

PRrOPOSITION 1.6.11. A finite set X is unavoidable if and only if there is a
derivation from X to the set {e}.

Proof. Let X # {€} be unavoidable. We prove the existence of a derivation to
{e} by induction on the sum [(X) of the lengths of words in X. If ¢ € X, we
may derive {¢} from X. Thus assume € ¢ X, and let w be a word of maximal
length avoiding X. For each b € A there is a word x;, = zb € X which is a
suffix of wb. Let x, = ya be the longest of the words z,. Then the hypotheses
of case (ii) are satisfied and thus there is a derivation from X to a set Y with
I(Y) < I(X). The converse is clear by Proposition 1.6.10. "

In practice, there is a shortcut which is useful to perform derivations. It is
described in the following transformation from X to Y.

(iii) there is a word y such that ya € X for each a € A and

Y:X—Zya+y
a€A
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It is clear that such a set Y can be derived from X and thus, we do not change
the definition of derivations by adding case (iii) to the definition of elementary
derivations. We use this new definition in the following example.

EXAMPLE 1.6.12. Let X = {aaa,aba,abb,bbb}. We have the following se-
quence of derivations (with the symbol a in the word = ya underlined at each

step)

{aaa, aba, abb, bbb} — {aaa, ab, bbb}
— {aga, ab, bbb} — {a, bbb} — {a,bb}
— {a,b} = {¢}

Derivations could of course be performed on the left rather than on the right
(see Problem 1.5.3).

1.6.2. The structure theorem

We will now see how one can describe the unavoidable sets with a fixed number
of elements. Our aim is to give a description of this family in a parametric form
{x'l“, .o, xkm} for some words zy, ..., T, and integers ki, ..., kny.

To avoid confusions, we call a family any set of subsets of A*. We will thus
speak of the family of unavoidable sets. An n-subset is a set with n elements.

An n-section of a family F = {X1,...,X,n} is a set X of n words of A*
containing at least one element of each F(X;), for i = 1,...,m. We denote by
secp(X1,...,X,,) the family of n-sections of F.

EXAMPLE 1.6.13. The family of 2-sections of the family F = {{a}, b*} is com-
posed of the sets {e,w} for w € AT, and of the sets {a,b"} for n > 1.

A subset X of A* is simple if it is of the form X = {u} or X = u* for some
word u. A family F is simple if it is composed of simple subsets of A*.

A family X of n-subsets of A* has finite dimension if it is the union of the
n-sections of a finite number of simple families, i.e.

k
X =Jsecn(Xin, s Xim(s) (1.6.1)

i=1

where the X; ; are simple sets. The dimension of X" is the minimum value of
the maximum of the m(¢) for all representations of X" in the form (1.6.1).

EXAMPLE 1.6.14. The family F = {{a},b*} of Example 1.6.13 is simple.
Thus, the family of its 2-sections has dimension 2.

EXAMPLE 1.6.15. The family of one element sets has infinite dimension. In-
deed otherwise there would exist a finite number of words such that every word
is a factor of a power of one of these words.
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THEOREM 1.6.16. For each integer n > 0, the family of unavoidable sets hav-
ing n elements has dimension n.

Proof. Let Y be a subset of A*. Let R, (Y") be the family of n-subsets X of A*
such that X UY is unavoidable. We prove by induction on n that, for every Y,
the family R, (Y") has dimension at most n.

The claim holds for n = 0 since the family Ro(Y") is formed of the empty
set, and thus has dimension 0.

Let us suppose that the result holds for R,,—1(Y") for any set Y. Let now Y
be any set, and consider R, (Y). We distinguish two cases.

Case 1. There exist n+1 words uy, . . ., u,+1 such that the sets uf are disjoint
and all their elements avoid Y. Let T be the set of words which are factor of
at least two ug. The set T is finite. Indeed, if v and v are any two primitive
words which are not conjugate, then by Fine and Wilf’s Theorem, any word in
F(u®) N F(v°) has length at most |u| + |v| — 2.

Any set X € R, (Y) contains an element of 7. Indeed, each element of ug
has a factor in X and since there are n+ 1 words u;, two of them have a common
factor in X. If ¢t € X, we may write X UY as ZU (Y U {¢t}) with Z = X — {¢}.
This shows that

Ru(V) = J{Z+t]| Z € Rua (Y + 1)}
teT

By the induction hypothesis, each family R,,_1 (Y + ¢) has dimension at most
n — 1. Since T is finite, this implies that R, (Y") has dimension at most n.

Case 2. The set of two-sided infinite periodic words avoiding Y is contained
in a union u$ U---U ui with & < n. Then R, (Y) is the family of n-sections of
the family {u,..., u}}.

This proves that the family of unavoidable set of cardinality n has dimension
at most n. This results indeed from the case Y = ) in the above argument.

The proof that the dimension is exactly n relies on the existence of minimal
unavoidable sets of arbitrary size (see Example 1.6.5).

We argue by contradiction and suppose that the family of unavoidable sets
with n elements has dimension less than n. Let X be a minimal unavoidable
set with n elements. By assumption, X is an m-section of some simple family
F with less than n elements, and all n-sections of F are unavoidable. There
is some z € X such that Y = X — z in an n — 1-section of F. Then, for any
z' € A* — X, the set Y + 2’ is an n-section of F, and thus it is unavoidable. It
is clear that this implies that Y itself is unavoidable, a contradiction. m

ExXAMPLE 1.6.17. Let U,, denote the family of unavoidable sets with n ele-
ments on A = {a,b}. We give below a list of finite sets F,, of simple families for
n < 4 such that U, is the set of n-sections of the elements of F; for ¢ < n.

Let first F;1 be reduced to {e} (we identify in this example {w} with w).
Next, F» is composed of the two families

{a,b*}, {a",b}.
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The family F3 is composed of the simple families
{aa,bb, (ab)*}, {aa,b”,badb}, {a”,b*,ab}

and the two additional ones obtained by exchanging a and b.
The family Fy is composed of the simple families

{aa, bbb, babbab, (ab)*}, {aa, bbb, babab, (abb)*}, {aa, b*, babab, bbabb},
{aaa, b*, bab, baab}, {a*,b*, bad, baa}, {a*,b*, bab, aab}

and the six additional ones obtained by exchanging a and b.

Problems

Section 1.1

1.1.1 Consider a binary operation on the set N x N defined by

(i+k—y5,0) ifj<k
(i,j —k+{) otherwise.

0.3)0k0 = {

Show that this operation is associative, with neutral element (0,0). The
set N x N equipped with this operation is called the bicyclic monoid.

Section 1.2

1.2.1 Show that w is primitive if and only if its period is not a proper divisor
of its length.

1.2.2 Let A be an alphabet with k elements. Let X be a subset of A* such
that F(X) # A*. Show that px > 1/k. Hint: Take w ¢ F(X). If w is a
letter, then X C (A—w)* and thus px > 1/(k—1). In the general case,
show that the result holds for each set X; = {z € X | || = i mod |w|}.

1.2.3 Show that a set of infinite words is open for the topology if it is of the
form X A¥ for some X C A*

1.2.4 Let A be an alphabet, and let $ be a letter not in A. Any word w over
A can be viewed as the infinite word w$* € (A U $)N. Show that a
sequence (u,) of words over A converges to an infinite word z if and
only if it is not ultimately constant and if the sequence u,,$“ converges
to z in the topological space (A U $)N.

1.2.5 Consider a closed curve in the plane which is normal, i.e. has only
finitely many self-intersections and these are transverse double points.
Label the intersections with distinct symbols from an alphabet A. The
Gauss code of the curve is the word obtained as the successive intersec-
tion points met by proceeding along the curve and noting each crossing
point label as it is traversed. The word obtained is really a conjugacy
class.
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Section

1.3.1

1.3.2

1.3.3

Finite and Infinite Words

Figure 1.13. A closed curve

For example, the Gauss code of the curve of Figure 1.13 is abba.

Prove that every symbol appears exactly twice in a Gauss code. For
each symbol a € A, let A(a) be the set of symbols occurring exactly
once between two occurrences of a. Prove that in a Gauss code, the
cardinality of A(a) is even for each a € A. Show that this condition is
not sufficient for a word with two occurrences of each symbol to be a
Gauss code. (Hint: consider the word abcadcedbe).

1.3

Let A = (Q,E,i,T) be a finite trim deterministic automaton with a
unique initial state recognizing a set X. Show that there is a function
f from @ onto Q(X) such that f(i) = X and f(q-a) = f(q) - a for all
g € Qand a € A. Derive from this that .4(X) is the unique deterministic
automaton recognizing X having a minimal number of states.

Show that the syntactic semigroup of X is the smallest semigroup recog-
nizing X in the sense that, for every semigroup S recognizing X, there
exists a morphism from S onto the syntactic semigroup of X. Show
that X is recognizable if and only if its syntactic semigroup is finite.
Let A(X) be the minimal automaton of X. Define a semigroup mor-
phism f from A% into Q(X)?X) by f(w) : ¢ — ¢ -w. Show that the
semigroup f(AT) is isomorphic to the syntactic semigroup of X.
Set A = {1,2,3}, and consider the following function f: A* — A*. A
word x € A* can be written as

r=a"a? - -al
with ¢; > 1 and a; # a1 for 1 <4 < n. Let X be the set of words x
for which ¢; <3 for j =1,...,n. Define a function f on X by

f(Zl?) = i1a1i2a2 e inan .
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1.3.4

Section

1.4.1

1.4.2

1.4.3

Section

1.5.1

1.5.2

1.5.3

The iterates of f on the letter 1 are

1
11
21
1211
111221
312211

1. Show that f(z) € X.

2. Show that f is both left subsequential and right subsequential.

Use the de Bruijn graph of order n over a ¢ letter alphabet to prove the
existence of an infinite word of period ¢™*! having all words of length
n + 1 as its factors. (Hint: use the fact that in the de Bruijn graph,
there exists a circuit using exactly once each edge (such a circuit is
called Eulerian).)

1.4

Let f : A* — A* be a morphism such that for any two letters a,b € A
there is at least an occurrence of b in f(a). Then any infinite word x
such that f(x) = x is uniformly recurrent (Martin 1971).

Show that a recurrent one-sided infinite word x over a finite alphabet is
uniformly recurrent if and only if any infinite set of factors of « contains
two elements which are factors one of the other.

Let (u,) be a sequence of positive real numbers such that w4, <
Up + U, Show that lim,, . u,/n exists and is equal to inf,, o u,/n.

1.5

Let X be a finite unavoidable set over A. Let n be the maximal length
of the elements of X and let ¥ = Card(A). Show that any word of
length £™ + n — 1 has a factor in X.

For a given set X C A1, we define an order on A* by requiring that for
all u,v € A* and z € X, we have

uv < urv

Prove the following generalization of Higman’s theorem: the above de-
fined order is a well quasi order if and only if the set X is unavoidable.
A two-sided derivation is obtained by adding in the definition of a deriva-
tion the following case.

(ii') there exists a word = ay € X with a € A such that, for each
letter b € A there is a prefix z of y such that bz € X, and

Y=X—-z+y
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Show that for any finite set X there is a two-sided derivation from X
to the set Y of words avoided by Sx which are minimal for the factor
ordering.

1.5.4 A set X C AT is called separable if for every x € X there is a periodic
two-sided infinite word s such that F(s) N X = {z}. Show that a
finite set X is a subset of a minimal unavoidable set if and only if it is
separable.

To prove that the condition is sufficient, choose for each r € X a peri-
odic infinite word s, such that F(s,)NX = {z}. Let S(x) be the closure
of s, under the shift. Since

is a subshift of finite type, there is a finite set I such that S = S;. Then
X + I is unavoidable and there is a minimal unavoidable set Y such
that X CY C X + 1.

1.5.5 An unavoidable set X C A7 is called irreducible if it is minimal and if,
for z in X and for every proper factor y of x the set X — z + y is not
minimal.

1. Show that there is, up to symmetries (exchange of a and b and
reversal), only one irreducible unavoidable set with four elements,
namely {aa, aba, abb, bbb}.

2. Show that for each integer n, there are only finitely many irre-
ducible sets with n elements on a given alphabet.

Use Theorem 1.6.16 and Dickson’s Lemma (see e.g. Problem 6.1.2 in
Lothaire 1983)

1.5.6 Let X = {aaa, bbbb, abbbab, abbab, abab, bbaabb, baabaab}. Verify that X
is unavoidable.

Show that for any word z in X and any letter a in A, the sets

Y=X-2z+4+2a and Y =X-z+ax

are avoidable.

Notes

There are numerous references concerning automata and formal languages, see
e.g. Hopcroft and Ullman 1979, Eilenberg 1974. The original reference to de
Bruijn graphs is de Bruijn 1946. See also Problem 1.3.4 and van Lint and Wilson
1992 for a reference to Eulerian circuits. Theorem 1.3.13 is due to Coven and
Hedlund 1973.

A good reference on symbolic dynamics is the book of Lind and Marcus
1995. Our presentation here follows closely the survey by Béal and Perrin 1997.
Theorems 1.5.9,1.5.12 are classical results due to Morse and Hedlund (Morse
and Hedlund 1938).

Unavoidable sets seem to appear for the first time in Schiitzenberger 1964. In
this paper, he proves an asymptotic estimate of the minimal cardinality c(k,n)
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of an unavoidable set of words of fixed length n on a k-letter alphabet (see
Lothaire 1983 p. 99). No exact formula is known for ¢(k, n).

Further papers on unavoidable sets appeared later (see Choffrut and Culik
1984, Crochemore, Lerest, and Wender 1983)

Theorem 1.6.16 is due to Rosaz 1998. Laurent Rosaz has also obtained many
other interesting results. Problem 1.5.5 appears in Rosaz 1998. The example
of Problem 1.5.6 is due to Rosaz (Rosaz 1998). It answers by the negative a
conjecture which had been formulated by Ehrenfeucht and asking whether for
any unavoidable set X there is a word  in X and a letter a in A such that
X + za — x is still unavoidable. Problem 1.5.4 is a result again due to Rosaz
1995.

The Gauss codes of Problem 1.2.5 have been introduced by Gauss in Gauss
1900. Several characterizations of Gauss codes has been given (see Treybig
1968, Marx 1969, Lovasz and Marx 1976, Rosenstiehl 1976). For a history of
the subject, see Griinbaum 1972 or Rosenstiehl 1999.

Problem 1.3.3 describes a transformation studied by J. H. Conway under
the name of “audioactive decay” (Conway 1987). A number of amazing results
were obtained by Conway (see also Vardi (1991), Ekhad and Zeilberger (1997))

Problem 1.5.2 is due to Ehrenfeucht, Hausler, and Rozenberg 1983a. It is a
generalization of the famous Higman Theorem (see Lothaire 1983).



CHAPTER 2

Sturmian Words

2.0. Introduction

Sturmian words are infinite words over a binary alphabet that have exactly
n + 1 factors of length n for each n > 0. It appears that these words admit
several equivalent definitions, and can even be described explicitly in arithmetic
form. This arithmetic description is a bridge between combinatorics and number
theory. Moreover, the definition by factors makes that Sturmian words define
symbolic dynamical systems. The first detailed investigations of these words
were done from this point of view. Their numerous properties and equivalent
definitions, and also the fact that the Fibonacci word is Sturmian, has lead to
a great development, under various terminologies, of the research.

The aim of this chapter is to present basic properties of Sturmian words and
of their transformation by morphisms. The style of exposition relies basically
on combinatorial arguments.

The first section is devoted to the proof of the Morse-Hedlund theorem
stating the equivalence of Sturmian words with the set of balanced aperiodic
word and the set of mechanical words of irrational slope. We also mention several
other formulations of mechanical words, such as rotations and cutting sequences.
We next give properties of the set of factors of one Sturmian word, such as
closure under reversal, the minimality of the associated dynamical system, the
fact that the set depends only on the slope, and we give the description of special
words.

In the second section, we give a systematic exposition of standard pairs
and standard words. We prove the characterization by the double palindrome
property, describe the connection with Fine and Wilf’s theorem. Then, standard
sequences are introduced to connect standard words to characteristic Sturmian
words. The relation to Beatty sequences is in the exercises. This section also
contains the enumeration formula for finite Sturmian words. It ends with a
short description of frequencies.

The third section starts by proving that the monoid of Sturmian morphisms
is generated by three well-known morphisms. Then, standard morphisms are
investigated. A description of all Sturmian morphisms in terms of standard
morphisms is given next. The section ends with the characterization of those
algebraic numbers that yield fixed points by standard morphisms.

40
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Some problems are just exercises, but most contain additional properties of
Sturmian words, with appropriate references. It is difficult to trace back many of
the properties of Sturmian words, because of the scattered origins, terminology
and notation. When we quote a reference in the Notes section, we are only
relatively certain that it is the source of the result.

In this chapter, words will be over a binary alphabet A = {0,1}.

2.1. Equivalent definitions

This section is devoted to the proof of a theorem (Theorem 2.1.13) stating the
equivalence of three properties, all defining what we call Sturmian words. We
start by defining Sturmian words to have minimal complexity among aperiodic
infinite words. We first prove that Sturmian words are exactly the aperiodic
balanced words. We then introduce so called mechanical words and prove that
these yield another characterization of Sturmian words. Other formulations of
the mechanical definition, by rotation and cutting sequences, are given in the
second paragraph. The third paragraph contains several properties concerning
the set of factors of a Sturmian word.

2.1.1. Complexity and balance

The complexity function of an infinite word = over some alphabet A was defined
in Chapter 1. It is the function that counts, for each integer n > 0, the number
P(z,n) of factors of length n in z:

P(z,n) = Card(F,(x)).

A Sturmian word is an infinite word s such that P(s,n) =n + 1 for any integer
n > 0. According to Theorem 1.3.13, Sturmian words are aperiodic infinite
words of minimal complexity. Since P(s, 1) = 2, any Sturmian word is over two
letters. A right special factor of a word z is a word w such that u0 and ul are
factors of z. Thus, s is a Sturmian word if and only if it has exactly one right
special factor of each length.

A suffix of a Sturmian word is a Sturmian word.

ExAMPLE 2.1.1. We show that the Fibonacci word
f=0100101001001010010100100101001001 - - -

defined in Chapter 1 is Sturmian. It will be convenient, in this chapter, to start
the numeration of finite Fibonacci words differently, and to set f_1 =1, fo = 0.

Since f = ¢(f), it is a product of words 01 and 0. Thus, the word 11 is not
a factor of f and consequently P(f,2) = 3. The word 000 is not a factor of
©(f), since otherwise it is a prefix of some (z) for a factor = of f, and z has
to start with 11.

To show that f is Sturmian, we prove that f has exactly one right special
factor of each length.
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We start by showing that, for no word z, both 0z0 and 1z1 are factors of
f. This is clear if z is the empty word and if z is a single letter. Arguing by
induction on the length, assume that 0x0 and 1z1 are in F(f). Then z starts
and ends with 0, and z = 0y0 for some y. Since 00y00 and 10y01 have to be
factors of ¢(f), there exists a factor z of f such that ¢(z) = O0y. Moreover,
00y0 = ¢(1z1) and 010y01 = ¢(020), showing that 1z1 and 020 are factors of
f. This is a contradiction because |z| < |p(2)] < |z|.

We show now that f has at most one right special factor of each length.
Assume indeed that v and v are right special factors of the same length, and
let x be the longest common suffix of u and v. Then the four words 0z0, Oz1,
120, 121 are factors of f, which contradicts our previous observation.

To show that f has at least one right special factor of each length, we use
the relation

fate = gnfnfntn (n>2) (2.1.1)

where g» = ¢ and for n > 3

01 if n is odd,
10 otherwise.

= Fosfifor tn= {

Observe that the first letter of f,, is the opposite of the first letter of ¢,. This
proves that f, is a right special factor for each n > 2. Since a suffix of a right
special factor is itself a right special factor, this proves that right special factors
of any length exist.

Equation (2.1.1) is proved by induction. Indeed, fy = £(010)(010)10 and
fs = 0(10010)(10010)01. Next, is it easily checked by induction that

p(@)0 = 0(p(u))™ (2.1.2)

for any word u. It follows that o(ftn) = 0fns1tnsr and since ©(gn)0 = gni1s
one gets (2.1.1).

We now start to give another description of Sturmian words, namely as
balanced words. The height of a word z is the number h(x) of letters equal to
1in z. Given two words x and y of the same length, their balance 6(x,y) is the
number

5(z,y) = |h(x) — h(y)|
A set of words X is balanced if
z,y € X, |z| =yl = d(z,y) <1

A finite or infinite word is itself balanced if the set of its factors is balanced.

PROPOSITION 2.1.2. Let X be a factorial set of words. If X is balanced, then
for all n > 0,
Card(X NA™) <n+1.
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Proof. The conclusion is clear for n = 0,1, and it holds for n = 2 because
X cannot contain both 00 and 11. Arguing by contradiction, let n > 3 be
the smallest integer for which the statement is false. Set Y = X N A"~ and
Z = X N A" Then Card(Y) < n and Card(Z) > n + 2. For each z € Z,
its suffix of length n — 1 is in Y. By the pigeon-hole principle, there exist two
distinct words y,y" € Y such that all four words Oy, 1y, 0y’, 1y are in Z. Since
y # y' there exists a word x such that £0 and x1 are prefixes of y and y'. But
then, both 0x0 and 1zl are words in X, showing that X is unbalanced. [

The argument used in the proof can be refined as follows.

ProPoOSITION 2.1.3. Let X be a factorial set of words. The set X is unbal-
anced if and only if there exists a palindrome word w such that Qw0 and 1wl
arein X.

Proof. The condition is clearly sufficient. Conversely, assume that X is unbal-
anced. Consider two words u,v € X of the same length n such that §(u,v) > 2,
and take them of minimal length. The first letters of w and v are distinct, and
so are the last letters. Assuming that u starts with 0 and v with 1, there are
factorizations v = Owau' and v = lwbv' for some words w,u',v’ and letters
a #b. In fact a = 0 and b = 1 since otherwise d(u',v') = d(u,v), contradicting
the minimality of n. Thus, again by minimality, © = Ow0 and v = 1wl.
Assume next that w is not a palindrome. Then there is a prefix z of w and
a letter a such that za is a prefix of w, Z is a suffix of w but aZ is not a suffix
of w. Then of course bZ is a suffix of w, where b is the other letter. This gives
a proper prefix 0za of u and a proper suffix bZ1 of v. If a = 0 and b = 1,
then 6(020,121) = 2, contradicting the minimality of n. But then u = 0z1u"
and v = v""120 for two words with é(u",v") = §(u,v), contradicting again the
minimality. Thus w is a palindrome. L]

REMARK 2.1.4. In the proof that the Fibonacci word f is Sturmian given in
Example 2.1.1, we actually started by showing that f is balanced.

THEOREM 2.1.5. Let x be an infinite word. The following conditions are equiv-
alent.

(i) = is Sturmian,

(ii) z is balanced and aperiodic.

Proof. If z is aperiodic, then P(z,n) > n + 1 for all n by Theorem 1.3.13. If
x is balanced, then by Proposition 2.1.2, P(z,n) < n + 1 for all n. Thus z is
Sturmian.

To prove the converse, we assume z is Sturmian and unbalanced, and show
that z is eventually periodic. Since z is unbalanced, there is a palindrome word
w such that Ow0, 1wl are factors of x. This shows that w is right special. Set
n = |w| + 1. Since z is Sturmian, there is a unique right special factor of length
n, which is either Ow or 1w. We suppose that Ow is right special, so 1w is not,
and Owl is a factor of z and 1w0 is not.
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Any occurrence of 1w in z is followed by the letter 1. Let v be a word of
length n—1 such that v = lwlv isin F(z). The word u has length 2n. We prove
that all factors of length n of u are conservative. In view of Proposition 1.3.14,
x is eventually periodic.

To show the claim, it suffices to prove that the only right special factor of
length n, that is Ow, is not a factor of u. Assume the contrary. Then there exist
factorizations w = s0t,v = yz,w = tly.

Since w is a palindrome, the first factorization implies w = 03, and the letter
following the prefix ¢ in w is both a 0 and a 1. m

The slope of a nonempty word z is the number 7 (z) = %

ExAMPLE 2.1.6. The height of z = 0100101 is 3, and its slope is 3/7. The
word z can be drawn on a grid by representing a 0 (resp. a 1) as a horizontal
(resp. a diagonal) unit segment. This gives a polygonal line from the origin to
the point (|z|, h(x)), and the line from the origin to this point has slope 7 (z).
See Figure 2.1.

(7,3)

0o 1 0 O 1 0 1
Figure 2.1. Height and slope of the word 0100101.

It is easily checked that

wley) = (@) + ()

|lzy|

PROPOSITION 2.1.7. A factorial set of words X is balanced if and only if, for
allz,y e X, x,y # ¢,

h@—mﬂ<r+—. (2.1.3)
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Proof. Assume first that (2.1.3) holds. For z,y € X of the same length, the
equation gives
|h(a:) — h(y)| <2
showing that X is balanced.
Conversely, assume that X is balanced, and let x,y be in X. If |z| = |y|,
then (2.1.3) holds. Assume |z| > |y|, and set & = zt, with |z| = |y|. Arguing by
induction on |z| + |y|, we have

1 1
|7r(t) — 7r(y)| < m + m

and since X is factorial, |h(z) — h(y)| < 1, whence |7r(z) - 7r(y)| < |;1| Next,

aa) = ) = 27 + w(0) = 7o)
2| 2|
= (7@ = 1®) + 15 (70 - 7))
ths o1 1y 11
|W($)—F(y)|<m+m(m+m):m+m. [

COROLLARY 2.1.8. Let = be an infinite balanced word, and for each n > 1,
let z,, be the prefix of length n of x. The sequence (m(xy))n>1 converges for
n — co.

Proof. Indeed, (2.1.3) shows that (7(zy,))n>1 is a Cauchy sequence. "

The limit

o= 0, mien)

is the slope of the infinite word z.

ExaMPLE 2.1.9. To compute the slope of an infinite balanced word, it suffices
to compute the limit of the slopes of an increasing sequence of prefixes (or even
factors, as shown by the next proposition). For the Fibonacci infinite word, the
slopes of the finite Fibonacci words f,, are easily computed. Indeed, |f,| = F,,
and h(f,) = F,—2, whence

w(f) = lim T2 o 2

n— o0 n T

where 7 = (1 ++/5)/2.

ProproSITION 2.1.10. Let x be an infinite balanced word with slope «. For
every nonempty factor u of x, one has

|m(u) —a| < — . (2.1.4)
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More precisely, one of the following holds: either
alu] —1 < h(u) < alu| +1 for all u € F(x) (2.1.5)

or
alu] —1 < h(u) < au| +1 for all u € F(x) (2.1.6)

Of course, the inequalities in (2.1.5) and (2.1.6) are strict if « is irrational.

Proof. Let x, be the prefix of length n of x. Given some ¢, consider ng such
that for all n > ny,
|7r(a:n) - a| <e.

Then, using (2.1.3),

[ru) — a] < ) — wwn)] + |(en) —a] < o+ +e

|ul
For n — oo and then € — 0, the inequality follows. Equation (2.1.4) means that
alul =1 < h(u) < ajul+1

If the second claim were wrong, there would exist u,v in F(z) such that o|u| —
1 = h(u) and ajv| + 1 = h(v). But then |7(u) — 7(v)] = 1/|u| + 1/|v|, in
contradiction with (2.1.3). n

PropPOSITION 2.1.11. Let x be an infinite balanced word. The slope « of x is
a rational number if and only if © is eventually periodic.

Proof. If © = uy®, then

h(u) + nh(y)
lul + nly|

m(uy") = ™(y)
for n — oo, showing that the slope is rational.

For the converse, we suppose that (2.1.5) holds. The other case is symmetric.
The slope of z is a rational number a = ¢/p with ¢ and p relatively prime. By
(2.1.5), any factor u of z of length p has height g or ¢+ 1. There are only finitely
many occurrences of factors of length p and height ¢ + 1, since otherwise there
is a factor w = uzv of x with |u| = |v| = p and h(u) = h(v) = ¢+ 1. In view of
(2.1.5)

24 2q+ h(z) =h(uzv) <14+ ap+alz| +ap =1+ 2q + a|z|

whence h(z) < a|z| — 1, in contradiction with (2.1.5).

By the preceding observation, there is a factorization z = ty such that every
word in F,(y) has the same height. Consider now an occurrence azb of a factor
in y of length p + 1, with a and b letters. Since h(az) = h(zb), one has a = b.
This means that y is periodic with period p. Consequently, x is eventually
periodic. [
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2.1.2. Mechanical words, rotations

Given two real numbers « and p with 0 < a < 1, we define two infinite words
Sap N—=A, s, N A

by
$a,p(n) = [a(n +1) + p] — an + p]

(n > 0)
S0,p(n) = [a(n +1) + p] = [an + p]

It is easy to check that s, ,(n) and s;, ,(n) indeed are in {0,1}. The word s, ,

is the lower mechanical word and Sloz,p is the upper mechanical word with slope

a and intercept p. (This slope will be shown in a moment to be the same as the
slope of a balanced word.) It is clear that if p—p' is an integer, then sq,, = Sq,p
and s, , = s;, . Thus we may assume 0 < p < 1or 0 < p <1 (both will be
useful).

P! " y=az+yp

/
L P,

/

0 1.0 O 1 0 O

Figure 2.2. Mechanical words associated with the line y = ax + p.

The terminology stems from the following graphical interpretation (see Fig-
ure 2.2). Consider the straight line with equation y = ax + p. The points with
integer coordinates just below this line are P, = (n, [an + p|). Two consecutive
points P, and P, are joined by a straight line segment that is horizontal if
Sa,p(n) = 0 and diagonal if sy ,(n) = 1.

The same observation holds for the points P/, = (n, [an + p]) located just
above the line.

Step 0i0i1io0 y=ar+p
"
/
Sa,p o010 to
n

Figure 2.3. Mechanical words with an integral point.
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Clearly,
— ol _Nnw ol _qw
30,0—5070—0 , 31,0—51’0—1

Let 0 < @ < 1. Since 1 + |an+ p| = [an + p| whenever an + p is not an
integer, one has s, , = sfl’p excepted when an + p is an integer for some n > 0.
In this case (see Figure 2.3),

Sa,p(n) =0, s, ,(n)=1

a,p

and, if n > 0,
Sap(n—1) =1, s'am(n -1)=0
Thus, if « is irrational, s,,, and s, , differ by at most one factor of length 2.
A mechanical word is irrational or rational according to its slope is rational or
irrational.
A special case deserves consideration, namely when 0 < o < 1 and p = 0.
In this case, 54,0(0) = [a] =0, s, 0(0) = [a] =1, and if « is irrational

Sa,0 = 0cy, s'a70 = lec,
where the infinite word ¢, is called the characteristic word of «a.

REMARK 2.1.12. The condition 0 < a < 1 in the definition of mechanical
words is not a restriction, but a simplification. One could indeed use the same
definition of s, , without any condition on a. Since |a]| < sq4,(n) <1+ |af,
the numbers sq4 ,(n) then can have the two values k and k + 1 where k = |«a].
Thus the words s,,, and s, , are over the two letter alphabet {k,k + 1}. This

a,p

alphabet can be transformed back into {0,1} by using the formula
Sap(n) = la(n+1) +p] - lan+ p] — ]

Mechanical words can be interpreted in several other ways. Consider again
a straight line y = Sz + p, for some S > 0 not restricted to be less than 1,
and p not restricted to be positive. Consider the intersections of this line with
the lines of the grid with nonnegative integer coordinates. We get a sequence
Qo,Q1,. .. of intersection points. We call Q,, = (zn,y,) horizontal if y,, is an
integer, and vertical if x,, is an integer. If both are integers, we insert before @,
a sibling @,,—1 of @, with the same coordinates, and we agree that the first is
horizontal and the second is vertical (or vice-versa, but we do always the same
choice). In Figure 2.4 below, Qg is vertical, because p is positive.

Writing a 0 for each vertical point and a 1 for each horizontal point, we
obtain an infinite word Kg , that is called the (lower) cutting sequence (with
the other choice for labeling siblings, one gets an upper cutting sequence K [’3 p).

To each @, = (zn,yn), wWe associate a point I, = (uy,v,) with integer
coordinates. The point I,, is the point below (below and to the right of) @,, if
@, is vertical (horizontal). Formally,

([z],yn — 1) if @, is horizontal,
(Zn, lyn]) if Q,, is vertical

(i) = {
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y=poto y=ripo+ i3

J2| Qo Iy

Ji / NN
Jo 2 /@1 I / I
Y,

I L oo

011 0111 O1--- o 1 1 o 1 1 1 0

Figure 2.4. Cutting sequence and corresponding mechanical sequence.

Similar points .J,, are defined above the line (see Figure 2.4). It is easy to check
that u,, + v, = n for n > 0, and that

Kgp(n) =vng1 —vp =1+ un — untr

In the special case p = 0 and f irrational, we again get the same infinite word
up to the first letter. There is a word Cjg such that

Kz =0C3s, Kjo=1Cp
Observe that @), is horizontal if and only if
14+v, <upf+p<l+p+u, (2.1.7)
and @, is vertical if and only if
vp <upfB+p<l+o, (2.1.8)

We now check that
K0 = 53/(148).0/(1+8)

Indeed, the transformation (x,y) — (xz + y, ) of the plane maps the line y =
Bx+ptoy=pB/(1+ )z +p/(1+ ), and a point I, = (up, vy) to I}, = (n,vy).
It remains to show that

U = {Ln + LJ (2.1.9)
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Using u,, + v, = n, we get from (2.1.7) that

vn +1/(1+5) <B/(1+B)n+p/(1+5) <1+wvy
and from (2.1.8) that

vn B[+ B+ p/(1+B) <vn+1/(1+5)

Thus, (2.1.9) holds for horizontal and for vertical steps. Thus, cutting sequences
are just another formulation of mechanical words.

Mechanical words can also be generated by rotations. Let 0 < a < 1. The
rotation of angle « is the mapping R = R, from [0, 1] into itself defined by

R(z) = {z +a}
where {2z} = z — | 2] is the fractional part of z. Iterating R, one gets
R"(p) = {na + p}
Moreover, a straightforward computation shows that
[n+1)a+p] =1+ |na+p| <= {na+p}>1l-a
Thus, defining a partition of [0, 1] by
Iy=[0,1-¢af, L=[1-a,1],
one gets

Sap(n) = {0 H E"(p) € o (2.1.10)

1 if R"(p) e

It will be convenient to identify [0, 1] with the torus (or the unit circle). For 0 <
b < a <1, the set [a,1]U[0,b] is considered as an interval denoted [a,b]. Then,
for any subinterval I of [0,1[, the sets R(I) and R~'(I) are always intervals
(even when overlapping the point 0).

As an example of the use of rotations, consider a word w = bgoby ++ b1,
with bg, by, ... letters. We want to know whether w is a factor of some s,,, =
apay - - -, with ag, a, ... letters. By (2.1.10), a4 = b; if and only if R"*¥(p) €
I,, or equivalently, if and only if R"(p) € R~%(I,). Thus, for n > 0,

W = Qpln+1 - Angm—1 < R"(p) € I, (2.1.11)
where I, is the interval
I,=I), NR™Y(L,))N---n R (T, )

The interval I, is non empty if and only if w is a factor of s, ,. Observe that
this property is independent of p, and thus words s, , and s, have the same
set of factors. A combinatorial proof will be given later (Proposition 2.1.18).

Mechanical words are quite naturally defined as two-sided infinite words.
However, it appears that several properties, such as Theorem 2.1.13 below, only
hold with some restrictions (see Problem 2.1.1).
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THEOREM 2.1.13. Let s be an infinite word. The following are equivalent:
(i) s is Sturmian;
(ii) s is balanced and aperiodic;
(iii) s is irrational mechanical.

The proof will be a simple consequence of two lemmas. In the proofs, we
will use several times the formula

T —r—-1<|2] - |z] <2 —z+1.

LEMMA 2.1.14. Let s be a mechanical word with slope .. Then s is balanced
of slope a. If « is rational, then s is purely periodic. If « is irrational, then s is
aperiodic.

Proof. Let s = 54, be a lower mechanical word. The proof is similar for upper
mechanical words. The height of a factor u = s(n) - -+ s(n+p—1) is the number
h(u) = la(n +p) + p] — lan + p|, thus

alu] —1 < h(u) < aju| +1 (2.1.12)

This implies |aju|] < h(u) < 14 |aju|], and shows that h(u) takes only two
consecutive values, when u ranges over the factors of a fixed length of s. Thus,
s is balanced. Moreover, by (2.1.12)

m(u) —al < —
[mw) —af < o)
Thus 7(u) — a for |u| — oo and « is the slope of s as it was defined for balanced
words. This proves the first statement.

If « is irrational, the word s is aperiodic by Proposition 2.1.11. If @« = ¢/p is
rational, then |a(n + p) + p| = g+ |an + p|, for alln > 0. Thus s(n+p) = s(n)
for all n, showing that s is purely periodic. [

LEMMA 2.1.15. Let s be a balanced infinite word. If s is aperiodic, then s is
irrational mechanical. If s is purely periodic, then s is rational mechanical.

Proof. In view of Corollary 2.1.8, s has a slope, say a. Denote by h,, the height
of the prefix of length n of s.
For every real number 7, one at least of the following holds:
— hyp, < |an + 7] for all n;
— hy, > |an + 7] for all n.
Indeed, on the contrary there exist a real number 7 and two integers n, n+k such
that hy, < |[an + 7] and hptr > |a(n+ k) + 7| (or the symmetric relation).
This implies that hpir — hy > 2+ |a(n+ k) +7] — [an+ 7] > 1+ ak, in
contradiction with (2.1.4).
Set
p=inf{r | h, < |an + 7| for all n}
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By Proposition 2.1.10, one has p < 1, and p < 1 if « is irrational. Observe that
foralln >0
hn <an+p<h,+1 (2.1.13)

since otherwise there is an integer n such that h, + 1 < an + p, and setting
o0 =h,+1—an,one has 0 < pand an+ o0 = h, +1 > h,, in contradiction
with the definition of p.

If s is aperiodic, then « is irrational by Proposition 2.1.11, and an + p is an
integer for at most one n. By (2.1.13), either h, = |an + p| for all n, and then
$ = Sa,p, O hy, = |an + p] for all but one ng, and hy,, +1 = ang + p. In this
case, one has h, = [an + p — 1] for all n and s = s, , ;.

If s = ¥ is purely periodic with period |u| = p, then @ = ¢/p with ¢ =
h(u) = hp. Again h,, = |an + p] if an + p is never an integer (this depends on
p)-

If h,, = an + p for some n, we claim that h,, = |an + p| for all n. Assume
the contrary. Then by (2.1.13), 1 + h,, = am + p, for some m and we may
assume n < m < n + p. Consider the words y = s(n +1)---s(m) and z =
s(m+1)---s(n+p). Then w(y) = (hm — hy)/(m —n) =a —1/|y| and 7(z) =
(hntp — hin)/(n + p—m) = a + 1/|z|, whence |x(y) — 7(2)| = 1/|y| + 1/|2|, in
contradiction with Proposition 2.1.7. Similarly, if 1 + h,, = an + p for some n,
then h,, = [an + p] for all n. "

Proof of theorem 2.1.13. We know already by Theorem 2.1.5 that () and (i)
are equivalent. Assume that s is irrational mechanical. Then s is balanced
aperiodic by Lemma 2.1.14. Conversely, if s is balanced and aperiodic, then by
the Lemma 2.1.15 s is irrational mechanical. [

EXAMPLE 2.1.16. To show that a balanced infinite word is not always me-
chanical when the slope is rational (so the converse is false in Lemma 2.1.14),
consider the infinite balanced word 01¢. It is not a mechanical word. Indeed,
it has slope 1, and all mechanical words s; , are equal to 1.

Let us consider mechanical words with rational slope in some more detail.
For a rational number a = p/q with 0 < @ < 1 and p, ¢ relatively prime, the
infinite words s4,0 and s}, o are purely periodic. Define finite words

= .. ! = ! .. /
tpg =G0 ag—1, g =Gy agy

a; = {(H 1)§J - {ZSJ , al= [(H—l)lﬂ - [zﬂ

Clearly, t, , and t;, , have height p. They are primitive words because (p, q) = 1.
In particular, tp; = 0 and ¢;; = 1. These words are called Christoffel words.
In any case, s,/,0 = ty, and s,/ o = tr, 4" Moreover, if 0 < p/q < 1, the
word ¢, , starts with 0 and ends with 1 (and ¢, , starts with 1 and ends with
0). There is a word 2, 4 such that

tPJI = Ozp,qla t;,q = lzp,qo (2114)
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The word z, 4 is easily seen to be a palindrome. Later, we will see that these
words, called central words, have remarkable combinatorial properties.
The following result deals with finite words.

PROPOSITION 2.1.17. A finite word w is a factor of some Sturmian word if
and only if it is balanced.

Proof. Clearly a factor of a Sturmian word is balanced. For the converse,
consider a balanced word w, and define

a' = max(m(u) — 1/|ul), a" = min(r(u) + 1/|u|)

where the maximum and the minimum is taken over all non empty factors u of
w. Since w is balanced, one gets from Proposition 2.1.10 that

m(u) = 1/fu] <= (v) +1/]v|

for all nonempty factors u and v of w. Thus o' < a'.
Take any irrational number o with o/ < a < . Then by construction, for
every nonempty factor u of w,

|m(u) —a| <1 (2.1.15)

Let wy be the prefix of length n of w. By (2.1.15), there exists a real p,

such that
h(wn) = na+ pn,  |pn| <1
Moreover, for n > m, setting w, = wy,u, one gets h(w,) — h(wy) = h(u) =
(n —m)a + (pn, — pm), showing that |p, — pm| < 1. Set
= B
Then
na+p > h(wp) =na+p+(pn—p) >na+p-1

whence h(wy) = [na + p|. This proves that w is a prefix of the Sturmian word
Sa,p' n

2.1.3. The factors of one Sturmian word

The aim of this paragraph is to give properties of the set of factors of a single
Sturmian word.

ProrosITION 2.1.18. Let s and t be Sturmian words.
1. If s and t have same slope, then F(s) = F(t).
2. If s and t have distinct slopes, then F(s) N F(t) is finite.
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Proof. Let a be the common slope of s and t. By Proposition 2.1.10, every
factor u of s verifies
[w(u) —al < —
|ul
(indeed, equality is impossible because « is irrational). Next, for every factor v

of t,

1
[m(v) —af < =
vl

Let X = F(s)U F(t). The set X is factorial. It is also balanced since

Im(w) = 7(v)| < |7(u) - af + [7(v) — ] < %' + ﬁ

In view of Proposition 2.1.2
Card( X NA™") <n+1

for every n. Thus F(s) = X = F(¢).

Let now «a be the slope of s and 8 be the slope of . We may suppose that
[ > «. For any factor u of s such that (8—«) > 2/|ul, one has 7(u) —a > —1/]u|
by Proposition 2.1.10 whence 7(u) — 8 = (7(u) — @) + (8 — &) > 1/|u| showing
that u is not a factor of ¢. L]

PROPOSITION 2.1.19. The set F(s) of factors of a Sturmian word s is closed
under reversal.

Proof. Set F(s) = {# | + € F(s)}. The set X = F(s) U F(s) is balanced.
In view of Proposition 2.1.2, Card(X N A") < n + 1, for each n, and since
Card(F(s)NA™) =n + 1, one has X = F(s). Thus F(s) = F(s). "

We now compare Sturmian words, with respect to their slope and intercept.
The lexicographic order defined in Chapter 1 extends to infinite words as follows,

with the assumption that 0 < 1. Given two infinite words £ = ag - - - a,, - - - and

y = bg---by---, we say that x is lexicographically less than y, and we write
x < y if there is an integer n such that a; = b; fori =0,...,n —1 and a,, = 0,
b, = 1.

ProprosITION 2.1.20. Let 0 < a < 1 be an irrational number and let p, p' be
real numbers with 0 < p,p' < 1. Then

Sayp < Sap = p<p.

Proof. Since « is irrational, the set of fractional parts {an} for n > 0 is dense in
the interval [0, 1[. Thus p < p' if and only if there exists an integer n > 1 such
that 1 — p’ < {an} < 1— p, and this is equivalent to |an + p'| =1+ |an + p].
If n is the smallest integer for which this equality holds, then sq ,(n —1) =0
and sq,,r(n —1) =1 and sq,p (k) = Sa,,(k) for k <n —1. "

Observe that this proposition does not hold for rational slopes, since indeed
50, = 0¥ for all p.
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LEMMA 2.1.21. Let 0 < a,a’ < 1 be irrational numbers and let p,p' be real
numbers. Any of the equalities 8o, = Sar,p1; Sa,p = Su y OF Sy, = S, implies
a=a' and p = p’ mod 1.

N P

Proof. Any of the equalities implies that o = o' because equal words have the
same slope. Next, sq., = Sq,, implies p = p’ mod 1 by the previous proposition.
Finally, consider the equality sq, = s;, ,. If an + p’ is not an integer for all
n > 1, then s’am, = 54, and the conclusion holds. Otherwise, let n be the
unique integer such that an+p' is an integer. Then s, ,4 (14n)a = 5, ' +(14n)a
showing again that p = p’ mod 1. m

Sturmian words with intercept 0 have many interesting properties. We ob-
served already that, for an irrational number 0 < a < 1, the words s, and
Su,0 differ only by their first letter, and that

_ ro_
8,0 = Ocq, Sa0 = lec,
where ¢, is the characteristic word of slope a. Equivalently,
_ —
Ca = Sa,a = Sq,a

The following proposition states a combinatorial characterization of character-
istic words among Sturmian words.

PROPOSITION 2.1.22. For every Sturmian word s, either 0s or 1s is Sturmian.
A Sturmian word s is characteristic if and only if Os and 1s are both Sturmian.

Proof. The first claim follows from the fact that s, ,—« = aSa,,, for some
a € {0,1}.

If s =s50,0 = s’aﬂ is the characteristic word of slope «, then Os = 5,9 and
s = s, o are Sturmian.

Conversely, the Sturmian words 0s and 1s have same slope, say a. Denote
by p and p' their intercept. Then their common shift s has intercept p + a =
p' + a, and by Lemma 2.1.21, p = p' mod 1 and we may take 0 < p = p' < 1.
Thus 0s = sa,, and 1s = s;, ,. Assume p > 0. The first letter of Os is gives
0= |a+p]—|p] =|a+ p| and the first letter of 1s is 1 = [a + p| — [p]. Then
2 = [a + p], a contradiction. Thus p = 0. "

We are now able to describe right special factors.

PROPOSITION 2.1.23. The set of right special factors of a Sturmian word is
the set of reversals of the prefixes of the characteristic word of same slope.

Call a factor w of a Sturmian word s left special if both Ow and 1w are factors of
s. Clearly, w is left special if and only if @ is right special. Thus the proposition
states that the set of left special factors of a Sturmian word is the set of prefixes
of the characteristic word of same slope.
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Proof. Let s be a Sturmian word of slope a. By Proposition 2.1.22, the infinite
words Oc, and le, are Sturmian and clearly have slope a. Thus

F(s) = F(ca) = F(0co) = F(1ley)

by Proposition 2.1.18. Consequently, for each prefix p of ¢y, Op and 1p are
factors of s. Since F(s) is closed under reversal, this shows that p is right
special. Thus p is the unique right special factor of length |p|. [

ExXAMPLE 2.1.24. Consider again the Fibonacci word f. We have seen in
Example 2.1.1 that its right special factors are the reversals of its prefixes.
Thus each prefix of f is left special. This shows that F/(f) = F(0f) = F(1f).
Consequently, f is characteristic of slope 1/72.

PROPOSITION 2.1.25. The dynamical system generated by a Sturmian word
is minimal.

Proof. Let s be a Sturmian word, and let 2 be an infinite word such that F(x) C
F(s). Clearly, = is balanced. Also, z has the same irrational slope as s. Thus x
is aperiodic and therefore is Sturmian. By Proposition 2.1.18(1), F(z) = F(s).
This shows that s and x generate the same dynamical system. [

Observe that Proposition 2.1.18(2) is a consequence of Proposition 2.1.25.
Indeed, the intersection of two distinct minimal dynamical systems is the trivial
system.

2.2. Standard words

This section is concerned with a family of finite words that are basic bricks for
constructing characteristic Sturmian words, in the sense that every character-
istic Sturmian word is the limit of a sequence of standard words. This will be
shown in Section 2.2.2.

2.2.1. Standard words and palindrome words

After basic definitions, we give two characterizations of standard words. The
first is by a special decomposition into palindrome words (Theorem 2.2.4), the
second (Theorem 2.2.11) by an extremal property on the periods of the word
that is closely related to Fine and Wilf’s theorem. We give then a “mechanical”
characterization of central and standard words (Proposition 2.2.15). We end
with an enumeration formula for standard words.

Consider two functions I and A from {0,1}* x {0,1}* into itself defined by

D(u,0) = (w,uv),  Alu,v) = (vu,v)

The set of standard pairs is the smallest set of pairs of words containing the
pair (0,1) and closed under I' and A. A standard word is any component of a
standard pair.
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(0,01) (10,1)
(0,001) (010,01) (10,101) (110, 1)
VAN VAN e
(0,0001) (0010,001)(010,01001)(01010,01) (10, 10101)

N

(01001010, 01001)

Figure 2.5. The tree of standard pairs.

ExAMPLE 2.2.1. Figure 2.5 shows the beginning of the tree of standard pairs.
Considering the leftmost and rightmost paths, one gets the pairs

(0,0"1), (1"0,1) (n>1)
Next to them are the pairs
(0(10)",01), (10,(10)"1) (n > 1)

These are the pairs with one component of length 1 or 2.
Finite Fibonacci words are standard, since (fo, f—1) = (0,1), and for n > 1,
(f2n+2; f2n+1) = AF(on; f2n71)-

Every standard word which is not a letter is a product of two standard words
which are the components of some standard pair. The next proposition states
some elementary facts.

PROPOSITION 2.2.2. Let r = (z,y) be a standard pair.
1. If r # (0,1) then one of = or y is a proper prefix of the other.
2. If x (resp. y) is not a letter, then x ends with 10 (resp. y ends with 01).
3. Only the last two letters of zy and yx are different.

Proof. We prove the last claim by induction on |zy|. Assume indeed that zy =
p01 and yz = pl0. Then ['(r) = (z, zy) and zxy = xp01, (zy)z = x(yx) = zpl0,
so the claim is true for I'(r). The same holds for A(r). "

Every standard pair is obtained in a unique way from (0, 1) by iterated use
of I and A. Indeed, if (z,y) is a standard pair, then it is an image through
I (resp. A) if and only if |z| < |y| (vesp. |z| > |y|). Thus, there is a unique
product W = Ay o0...0A,, with A; € {T', A} such that

(z,y) = W(0,1)
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Consider two matrices

(1) =3 )

and define a morphism p from the monoid generated by I' and A into the set
of 2 x 2 matrices by
w(T) =L, pu(A) =R,

and p(Ajo...0A,) = p(Ay) - - p(Ay). If (z,y) = W(0, 1), then a straightforward

induction shows that I
) T|1

W) = 2.2.1

www) <|y|o |y|1> (2.2.1)

Observe that every matrix (W) has determinant 1. Thus if (z,y) is a standard
pair,

|zlolylr — |zlilylo =1 (2.2.2)
showing that the entries in the same row (column) of p (1) are relatively prime.
From (2.2.2), one gets

h(y)lz| = h(z)ly| = 1. (2.2.3)
(recall that h(w) = |w|; is the height of w). This shows also that |z| and |y| are
relatively prime. A simple consequence is the following property.

PROPOSITION 2.2.3. A standard word is primitive.

Proof. Let w be a standard word which is not a letter. Then w = xz or w = y
for some standard pair (z,y). From (2.2.3), one gets that h(w) and |w| are
relatively prime. This implies that w is primitive. L]

The operations I" and A can be explained through three morphisms E, G,
D on {0,1}* which we introduce now. These will be used also in the sequel. Let

0=1 G_O»—>0 D_O»—>10

E'l»—>0’ "1—01" 11

It is easily checked that Eo D = G o E = ¢. We observe that, for every
morphism f,

L'(f(0), £(1)) = (fG(0), fG(1)), A(f(0),f(1)) = (fD(0), fD(1))
For W =Aj0...0A,, with A; € {T', A}, define W =A,o...0A;, withT =G,
A = D. Then

w(0,1) = (W(0), W(1)). (2.2.4)
Standard words have the following description.

THEOREM 2.2.4. A word w Is standard if and only if it is a letter or there exist
palindrome words p, q and r such that

w = pab = qr (2.2.5)

where {a,b} = {0, 1}. Moreover, the factorization w = gr is unique if ¢ # €.
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EXAMPLE 2.2.5. The word 01001010 is standard (see Figure 2.5) and
01001010 = (010010)10 = (010)(01010) .

We start the proof with a lemma of independent interest.

LEMMA 2.2.6. If a primitive word is a product of two nonempty palindrome
words, then this factorization is unique.

Proof. Let w be a primitive word and assume w = pg = p'q’ for palindrome
words p,q,p’,q'. We suppose |p| > |p'|, so that p = p's(= 3p'), s¢ = ¢'(= ¢3)
for some nonempty word s. Thus 5p'q = pq = p'q' = p'q5, showing that p’'q and
§ are powers of some word z. But then w = pg = §p’'q = 2™ for some n > 2,
contradicting primitivity. [

Observe that (2.2.5) implies the following relations.

LEMMA 2.2.7. Ifw = pab = qr for palindrome words p, q, r, and letters a # b,
then one of the following holds
(i) 7 =&, p= (ba)"b, ¢ = (ba)""1b = w for some n > 0;
(i) r=0b,p=a", q=a", w = a"*'b for some n > 0;
(iii) r = bab, p =", ¢ = b, w = b"*tab for some n > 0;
(iv) r = basab, p = gbas, w = gbasab for some palindrome word s. n

We need another lemma.

LEMMA 2.2.8. Let z,y be words with |z|,|y| > 2. The pair (x,y) is a standard
pair if and only if there exist palindrome words p, q, r such that

x=pl0=¢qr and y=q01 (2.2.6)

or
x=¢ql0 and y=p0l=qr. (2.2.7)

Proof. Assume that (2.2.6) holds (the other case is symmetric). If r is the empty
word, then by the previous lemma

(z,y) = ((01)"*'0, (01)"*001) = T((01)"*'0,01)

showing that the pair (z,y) is standard.

If r =0, then (z,y) = (10,1™01) = I'(1"0, 1), and if r = 010, then (z,y) =
(0™10,0™1) = A(0,0™1).

Thus, we may assume that » = 01510 for some palindrome word s. By
(2.2.6), if follows that y is a prefix of z, so z = yz for some word z. We show
that (z,y) is standard. From p = ¢01s = s10gq it follows that ¢ # s. Assume
lg] < |s| (the other case is symmetric). Then s = gt for some word ¢, and the
equation p = ¢qt10q shows that the word ' = ¢10 is a palindrome. Thus

y =q01, z = qr' = 510
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and (z,y) satisfies (2.2.6).
Conversely, let (z,y) be a standard pair, and assume (z,y) = I'(z, 2), that
is y = xzz. If 2z is a letter, then (z,z) = (170, 1) for some n > 1 and

xz =ql0, y =p01 = qr
for g =1""% p=17,r = 101
Thus we may assume that for some palindrome words p, g, r, either
r=pl0=gqr, z=4q01
or
z=ql0, z=p0l=qr.
In the first case,
x=pl0, y==zz= (qrq)01 = p(10¢01)
In the second case,
x =ql0, y==xz=q(10p01) = (grq)01
because 10p = rq. Thus (2.2.7) holds. "

Proof of Theorem 2.2.4. Let w be a standard word, |w| > 2. Then there exists
a standard pair (z,y) such that w = zy (or symmetrically w = yz). If z = 0,
then y = 0”1 for some n > 0, and 2y = 0""'1 has the desired factorization.
A similar argument holds for y = 1. Otherwise, either (2.2.6) or (2.2.7) of
Lemma 2.2.8 holds. In the first case, zy = p(10¢g01) = ¢rq01 and in the second
case, xy = q(10p01) = ¢rq01 because 10p = rq. The factorization is unique by
Lemma, 2.2.6 because a standard word is primitive.

Conversely, if w = pl0 = gr (or w = p01 = gr) for palindrome words p, ¢, r,
then by Lemma 2.2.8, the word w is a component of some standard pair, and
thus is a standard word. m

A word w is central if w01 (or equivalently w10) is a standard word. As we
shall see, central words play indeed a central role.

COROLLARY 2.2.9. A word is central if and only if it is in the set
0*uUl*uU(PnPl0P)

where P is the set of palindrome words. The factorization of a central word w
as w = pl0q with p, q palindrome words is unique.

Observe that PN P10P = PN PO1P.

Proof. Let w € 0* U 1* U (P N P10P). By the previous characterization, w01
is a standard word, so w is central. Conversely, if w01 is standard, then w
is a palindrome and w0l = ¢r for some palindrome words ¢ and r. Either
w € 0* U1* or by Lemma 2.2.7, r = ¢ and w = (10)™1 for some n > 1, or
w = q10s for some palindrome s, as required. [

As a simple consequence, we obtain.
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COROLLARY 2.2.10. A palindrome prefix (suffix) of a central word is central.

Proof. We consider the case of a prefix. Let p be a central word. If p € 0*U1*, the
result is clear. Let 2 be a standard word such that @ = pab, with {a,b} = {0,1}.
Then x = yz for a standard pair (y, z) or (z,y). Set y = gba and z = rab, where
q,r are central words. Then p = gbar = rabg and by symmetry we may assume
that |r| < |g]-

Let w be a palindrome prefix of p. If |w| < |q|, the result holds by induction.
If w = gb then w is a power of b. Thus set w = gbat where t is a prefix of r.
Since r is a prefix of ¢, the word ¢ is a prefix of ¢, and since w = fabg, one has
t = t. Thus, by Corollary 2.2.9, w = gbat is central. [

The next characterization relates central words to periods in words. Recall
from Chapter 1 that given a word w = ay ---a,, where ay,...,a, are letters,
an integer k is a period of w if kK > 1 and a; = a;4 for all 1 <i <n — k. Any
integer k > n is a period with this definition.

An integer k with 1 < k < |w| is a period of w if and only if there exist
words z, y, and z such that

w =2y = 2z, lyl =1z] = k.

Fine and Wilf’s theorem states that if a word w has two periods k£ and ¢, and
|lw| > k + £ — ged(k, £), then ged(k, £) is also a period of w. In particular, if &
and ¢ are relatively prime, and |w| > k + £ — 1, then w is the power of a single
letter. The bound is sharp, and the question arises to describe the words w of
length |w| = k 4+ ¢ — 2 having periods k and £. This is the object of the next
theorem.

THEOREM 2.2.11. A word w is central if and only if it has two periods k and
£ such that ged(k,f) = 1 and |w| = k + ¢ — 2. Moreover, if w ¢ 0* U 1*, and
w = pl0q with p, q palindrome words, then {k,£} = {|p| + 2, |q| + 2} and the
pair {k, {} is unique.

The proof will show that any word w having two periods k£ and ¢ such that
ged(k,€) =1 and |w| = k + £ — 2 is over an alphabet with at most two letters.

Proof. Let w be a central word. Then w01 is a standard word, and there is
a standard pair (z,y) such that w0l = zy. If = 0 or y = 1, then w is a
power of 0 resp. of 1, and w has periods £ = 1 and ¢ = |w| + 1. Otherwise,
x = pl0 and y = ¢01 for some palindrome words p, ¢, and w = pl0g = q01p
has two periods k = |z| and £ = |y| which are relatively prime by Equation
(2.2.3). Assume that w has also periods {k',¢'}, with k' +¢' — 2 = |w|. We
may suppose k < k' < €' < L. Since k+ ¢' — 1 < |w|, Fine and Wilf’s theorem
applies. So w has also the period d = ged(k, ¢'). Similarly, w has also the period
d' = ged(k, k). So it has the period ged(d,d’) = 1. This proves that the pair
{k, ¢} is unique.

Conversely, if w is a power of a letter, the result is trivial. Thus we assume
that w contains two distinct letters. Since k, £ # 1, we assume 2 < k < £.
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Since w has period k, there is a word = of length |z| = £ — 2 that is both a
prefix and a suffix of w. Similarly, there is a word y of length |y| = k — 2 that is
both a prefix and a suffix of w. Consequently, there exist words u and v, both
of length 2, such that

w = yur = Ty
We prove by induction on |w| that z, y, w are palindrome words, that v and
v are composed of distinct letters, and that no other letters than those of u
appear in w (that is w is over an alphabet of two letters).

If £ = 2, then y is the empty word. Thus uz = zv, and £ is odd. Therefore
u = ab, v = ba, r = (ab)"a, w = (ab)"*'a for letters a # b and some n > 0.
The result holds in this case.

If k=/¢—-1, then x = ya = by for letters a and b. But then ¢ = b and w is
a power of a letter, a case that we have excluded.

Thus we assume k < £ — 2. Then yu is a prefix of . Define z by yuz = z.
Then

T =yuz = 2vy
showing that x has periods |yu| = k and |uz| = £ — k. Since ged(k, ¢ — k) =1
and |z| = k+ (£ — k) — 2, we get by induction that x is a palindrome, and that
its prefix of length k — 2, that is y, and its suffix of length ¢ — k — 2, that is z
also are palindromes. Moreover, u = ab for letters a # b, and @ = v because
yuz = zuy = zvy. Also, the word z (and y, and therefore also w) is composed
only of a’s and b’s. Thus w is central. [

Theorem 2.2.11 associates, to every central word of length m, a pair {k, ¢}
of relatively prime integers such that k + ¢ —2 = m. We now show that, for
each pair {k, ¢} of relatively prime integers, there exists indeed a central word
of length k + ¢ — 2 and periods k£ and .

Let h, m be relatively prime integers with 1 < h < m. Define a word

Zhom = A1G3 " Q2 (an, € {0,1})

iy = {(n+l)%J _ V%J .

These words have already been mentioned in our discussion of rational mechan-
ical words (Equation 2.1.14). Each word zp ,, has length m — 2 and height
h—1.

by

PROPOSITION 2.2.12. For every couple 1 < h < m of relatively prime integers,
the word 2., is central. It has the periods k and { where k + { = m and
kh =1 mod m.

Proof . Define k by 1 < k <m — 1, and set kh = 1 + Am. Observe that k exists
because h and m are relatively prime. Let £ = m — k. Then ¢h = —1 mod m,
and £ is the unique integer in the interval [0. .., m — 1] with this property. Next

{(n-l—k:)%J — A+ {”h“J
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Since nh Z —1 mod m for 1 < n < /¢ —1, it follows that

{nh—li:{n_hJ L<n<to1)

m m

Consequently, a, 1 = a, for 1 <n < £ —2. A similar argument holds when &
is replaced by £ and —1 is changed into 1.

Assume that some integer d divides k and £. Then d divides also m. But
k and £ are relatively prime to m, so d = 1 and gcd(k,¢) = 1. This proves, by
Theorem 2.2.11, that zj_,, is central. n

EXAMPLE 2.2.13. The words 21, = 0™ 2 and 2,1, = 1™ 2 are central.
In particular, z; » = €.

EXAMPLE 2.2.14. For h = 5, m = 18, one gets 25,15 = 0010001001000100, a
word of length 16. By inspection, one finds the periods 7 and 11. The previous
proposition allows to compute them, since 11 -5 = 1 mod 18.

PRroOPOSITION 2.2.15. Let h,m be relatively prime integers with 1 < h < m.
There exist exactly two standard words of height h and length m, namely zj, , 10
and zp,,m01. These words are balanced.

Proof. By Proposition 2.2.12, the words zj,,10 and zj,,01 are standard words
of height h and length m. They are factors of the Sturmian words sy, o and
s}, m.0 and therefore are balanced. We prove that there exists only one standard
word of height h and length m ending in 10. Assume there are two, say w and
w'. Then

w=uzy, w =2z'y

for some standard pairs (z,y), (z',y"). By formula (2.2.3),
h@)lyl = hwlal = 1, h(z)ly| - Ayl = 1
Since m = |z| + |y| and h = h(z) + h(y), this gives
h(zym — |zlh =1, h(z"ym —|z'|h =1

whence

(h(z) = h(z"))m = (|2'| - |=[)h
Since ged(m, h) = 1, m divides |z'| — |z|. Thus |z| = |z'|, that is z = 2’ and
y=1y' "

Recall that Euler’s totient function ¢ is defined for m > 1 as the number
¢(m) of positive integers less than m and relatively prime to m

COROLLARY 2.2.16. The number of standard words of length m is 2¢(m), the
number of central words of length m is ¢(m + 2), where ¢ is Euler’s totient
function. m
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2.2.2. Standard sequences and characteristic words

In this section, we use particular morphisms that will also be considered in the
next section. Three of them, namely E, G, and D, were already introduced
earlier. Here, these morphisms are used to relate standard words to charac-
teristic words, and both to the continued fraction expansion of the slope of a
characteristic word. Consider the morphisms

01 0~ 01 . 0m-10

Eiyor %150 0 Piieo

From these, we get other morphisms, denoted G, G, D, D and defined by

0—0 ~ - 0—0
G=wpob:y o1 G=¢°F:y g
0~ 10 ~ . 0—01
D=FEey:y 1 » D=FEegi

Of course, p=GoE=FEoDand p=GoE =FEoD.

LEMMA 2.2.17. For any real number p, the following relations hold: E(sq. ,) =
Sll—a,l—p and E(s'mp) = S1—q,1—p-
Proof . For n > 0,

S p(m) =1 =)+ 1) +1—p] = [(L—a)n+1—p]
1— ([—an — pl = [—a(n+1) = p]) = 1 - s4,(n)

because — [—r| = |r] for every real number r. This proves the first equality,
and the second is symmetric. [

LEMMA 2.2.18. Let0<a <1 For0<p<1,

Cloap) = Sprntr Gloan) =5 g pper #la0) =81 1

and for 0 < p <1,

G(sl, ) =58 a o

a,p Tra THa G(‘S’mp) =5 o pta, ‘p(slomp) =Slza 1.

1+a’l+a 2—a’2—a

Proof . Let s = agay - - - a, - - - be an infinite word, the a; being letters. An integer
n is the index of the k-th occurrence of the letter 1 in s if ag - - - a,, contains k
letters 1 and ag - - - a,,—1 contains k — 1 letters 1. If s = 54, and 0 < p < 1, this
means that

la(n+1)+p| =k, |an+pl=k-1

which implies an + p < k < a(n + 1) + p, that is

=[]
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Similarly, if s = s;, , and 0 < p < 1, then
[a(n+1)+pl=k+1, [an+p]=k

and n = {%J

Set G(Sa,p) = bob1 ---b; - -+, with b; € {0,1}. Since every letter 1 in s, , is
mapped to 01 in G(sa,,), the prefix ag---a, of 54, (where n is the index of
the k-th letter 1) is mapped onto the prefix bob; - - - bpix of G(8qa,,). Thus the
index of the k-th letter 1 in G(sq,,) is

k— 2
n+k: ’V%—l-‘

This proves the first formula.
Next, we observe that, for any infinite word z, one has

G(z) = 0G(x)

Indeed, the formula G(w)0 = 0G(w) is easily shown to hold for finite words w
by induction. Furthermore, if a Sturmian word s, , starts with 0 and setting
Sa,p = Ot, one gets ¢ = Sq,a+p. Altogether G’(smp) = Sa/(14a),(p+a)/(1+a) fOT
0 < p < 1. The proof of the other formula is similar. Finally, since ¢ = G o F,

QO(SCV:P) = G(sll—a,l—p) = sl(l—a)/(Q—a),(l—p)/@—a)' m

COROLLARY 2.2.19. For any Sturmian word s, the infinite words E(s), G(s)
G(s), p(s), ¢(s), D(s) D(s) are Sturmian. "

Formulas similar to those of Lemma 2.2.18 hold for ¢, D, D (Problem 2.2.6).
Recall that the characteristic word of irrational slope « is defined by

Ca = Saa = Sp.q -
The previous lemmas imply
COROLLARY 2.2.20. For any irrational a with 0 < a < 1, one has
E(ca) = ci—a; G(ca) = Caj(i+a) "
For m > 1, define a morphism 6,,, by

0 0ml

O 1 0m7110

It is easily checked that
b, =G" loEoG.

COROLLARY 2.2.21. Form > 1, one has 0p,(ca) = ¢1/(m+a)-
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Proof. Since E o G(ca) = €i/(14a), the formula holds for m = 1. Next,
G(C1/(k+a)) = C1/(1+k+a)> SO the claim is true by induction. n

We use this corollary for connecting continued fractions to characteristic
words. Recall that every irrational number v admits a unique expansion as a
continued fraction

1
y=mo+ ——— (2.2.8)
my +
mo + —
where mg,m1, ... are integers, mo > 0, m; > 0 for ¢ > 1. If (2.2.8) holds, we

write

v = [mg, my, ma,...].
The integers m; are called the partial quotients of v. If the sequence (m;) is
eventually periodic, and m; = my4; for ¢ > h, this is reported by overlining the
purely periodic part, as in

Y= [mo,ml,mQ,...,mh_l,mh,...,mh_,_k_lj.

Let a = [0,m1,ma2,...] be the continued fraction expansion of an irrational «
with 0 < a < 1. If, for some # with 0 < 8 < 1,

/B = [07 M1, Mit2, .. ]

we agree to write

a=1[0,my,ma,...,m; + f].
COROLLARY 2.2.22. If o = [0,my,ma,...,m; + ] for some irrational a and
0<a,B <1, then

ca:6m100m20"'00mi(cﬁ) u

Let (dy,ds,...,dy,,-..) be a sequence of integers, with d; > 0 and d,, > 0 for
n > 1. To such a sequence, we associate a sequence (s,)p>—1 of words by

s.1=1, s=0, $p =5 sp_0 (n>1) (2.2.9)

The sequence (s,)n>—1 is a standard sequence, and the sequence (dy,d>, .. .) is
its directive sequence. Observe that if d; > 0, then any s, (n > 0) starts with
0; on the contrary, if d; = 0, then sy =s_; = 1, and s, starts with 1 for n # 0.
Every s,, ends with 0, every s;,41 ends with 1.

ExaMpLE 2.2.23. The directive sequence (1,1, ...) gives the standard sequen-
ce defined by s, = sp—15p—2, that is the sequence of finite Fibonacci words.
Observe that the directive sequence (0, 1,1, ...) results in the sequence of words
obtained from Fibonacci words by exchanging 0 and 1.
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Every standard word occurs in some standard sequence, and every word
occurring in a standard sequence is a standard word. This results by induction
from the fact that, for s, = siilsn_g, one has

(sny Snfl) - Adn (5n72> Snfl)a (Snfla Sn) - Fdn (snfla 5n72)

Thus
(52n> 32n71) = A% g d2n-1 o ... 0 (0, 1)
(32m 52n+1) — Dd2n+1 g Ad2n o [92n-1 o ...0 % (0’ 1)

By Equation 2.2.4, this gives the expressions

S3p =G oD% o0 D (0) =Gh o0 D¥2n o Gd2n+1(0)
Sopt+1 = Gl opDd2o...0 Ddzn+z(1) =G% o...0 Dd2n o Gd2"+1(1)

PROPOSITION 2.2.24. Let a =[0,1+ dy,d>,...] be the continued fraction ex-
pansion of some irrational o with 0 < « < 1, and let (s,) be the standard
sequence associated to (dy,ds,...). Then every s, is a prefix of ¢, and

Co = lim s, .
n—oo

Proof. By definition, s, = siilsn,g for n > 1. Define morphisms h, by

hyp = 0144, 004, 0+ 08q

_—

We claim that
Sn = hn(0), Spsp—1 =hp(l), n>1

This holds for n = 1 since hy(0) = 041 = s; and hy(1) = 09110 = s150. Next,
forn > 2,

hn(O) = hn_l(edn (0)) = hn_l(Od"_ll) = SZ"_ElSn_lsn_Q = Sp,

and
hn(1) = hp 1 (0%7110) = 5,8, 1

For any infinite word x, the infinite word h,(z) starts with s, because both

hn(0) and h, (1) start with s,. Thus, setting 5, = [0,dp+1,dn+2, -], one has
¢a = hn(cs,) by Corollary 2.2.22 and thus ¢, starts with s,. This proves the
first claim. The second is an immediate consequence. [

It is easily checked that

01149, 004,000, =Gl oFEoG®2oEo---0GoEoG
_{GdloDd2o---oDd"oG if r is even,
GhoD%o---0oD% oDoE otherwise.
ExaMPLE 2.2.25. The directive sequence for the Fibonacci word is (1,1, ...).

The corresponding irrational is 1/72 = [0,2,1,1,...], and indeed the infinite
Fibonacci word is the characteristic word of slope 1/72.
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EXAMPLE 2.2.26. Since 1/7 = [0,1,1,1,...], the corresponding standard se-
quence is s; = 1, s = 10, s3 = 101,.... The sequence is obtained from the Fi-
bonacci sequence by exchanging 0’s and 1’s, in concordance with Lemma 2.2.17,
since indeed 1/7 +1/7% = 1.

EXAMPLE 2.2.27. Consider a = (/3 —1)/2 = [0,2,1,2,1,...]. The directive
sequence is (1,1,2,1,2,1,...), and the standard sequence starts with s; = 01,
s9 = 010, s3 = 01001001, ..., whence

C(v3-1)/2 = 010010010100100100101001001001 - - -

Due to the periodicity of the development, we get for n > 2 that s,12 = 2 115n
if n is odd, and s,42 = Spt15, if 1 is even.

COROLLARY 2.2.28. Every standard word is a prefix of some characteristic
word. ]

Thus, every standard word is left special.

COROLLARY 2.2.29. A word is central if and only if it is a palindrome prefix
of some characteristic word.

Proof. A central word is a prefix of some standard word, so also of some charac-
teristic word. Conversely, a palindrome prefix of a characteristic word is a prefix
of any sufficiently long word in its standard sequence, so also of some sufficiently
long central word. Thus the result follows from Proposition 2.2.10. m

Proposition 2.2.24 has several interesting consequences. The relation to fix-
points is left to section 2.3.6. We focus on two properties, first the powers that
may appear in a Sturmian word, and then the computation of the number of
factors of Sturmian words.

Let z be an infinite word. For w € F(x), the index of w in x is the greatest
integer d such that w? € F(x), if such an integer exists. Otherwise, w is said to
have infinite index.

PROPOSITION 2.2.30. Every nonempty factor of a Sturmian word s has finite
index in s.

Proof. Assume the contrary. There exist a Sturmian word s and a nonempty
factor u of s such that u™ is a factor of s for every n > 1. Consequently, the
periodic word u¥ is in the dynamical system generated by s. Since this system
is minimal, F'(s) = F(u%), a contradiction. "

An infinite word z has bounded index if there exists an integer d such that
every nonempty factor of z has an index less than or equal to d.

THEOREM 2.2.31. A Sturmian word has bounded index if and only if the con-
tinued fraction expansion of its slope has bounded partial quotients.
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We start with a lemma.

LEMMA 2.2.32. Let (sp)n>—1 be the standard sequence of the characteristic

word co, with a =[0,14 dy,ds,...]. For n > 3, the word shTdntt js g prefix of
Ca, and s2T%"* js not a prefix. If d; > 1, this holds also for n = 2.

ExampPLE 2.2.33. For the Fibonacci word f = 0100101001001 ---, we have
$p = fn and d,, = 1 for all n. The lemma claims that for n > 2, the word f2 is
a prefix of the infinite word f, and that f2 is not. As an example, f7 = 010010
is a prefix and f3 = 010010010 is not. Observe also that fZ = 0101 is not a
prefix of f.

Proof. We show that for n > 3 (and for n > 2 if d; > 1), one has

. dn—1
Sn—18n = Sntn_1, with ¢, = Spt 1 Sn—28n—1
Indeed p
d d -1
Sp—18n = Sn—18,"1Sn—2 = S, 18,5 Sn—3Sn—2

dn dn,l—l _
= St 15n—28,— 0 Sn—3Sp—2 = Splp-1
provided d,,_; > 1. Observe that t,_; is not a prefix of s,, since otherwise
$p = tp—1u for some word u, and s,_1s,u = s> and s, is not primitive.
Clearly, sp415y is a prefix of the characteristic word ¢,. Since

e _ Atdn
Spt18p = 8T s, 18, = s, I,y
Ttdngr - . .
the word s, “**" is a prefix of c,, and since t,_ is not a prefix of s,, the word
2dntr .
sotdnt1 i not a prefix of cq. -

Proof of Theorem 2.2.31. Since a Sturmian word has the same factors as the
characteristic word of same slope, it suffices to prove the result for characteristic
words. Let ¢ be the characteristic word of slope @ = [0,1 + dy,ds,...]. Let

(8n)n>—1 be the associated standard sequence.

To prove that the condition is necessary, observe that sz"“ is a prefix of

¢ for each n > 1. Consequently, if the sequence (d,) of partial quotients is
unbounded, the infinite word c has factors of arbitrarily great exponent.
Conversely, assume that the partial quotients (d,,) are bounded by some D
and arguing by contradiction, suppose that ¢ has unbounded index. Let r be
some integer such that F'(c) contains a primitive word of length 7 with index
greater than D +4. Among those words, let w be a word of length r of maximal
index. Let d+ 1 be the index of w. Then d > D + 3. The proof is in three steps.
(1) The characteristic word ¢ has prefixes of the form w?, with d > D + 3.
Indeed, if w?t! is a prefix of ¢, we are done. Otherwise, consider an occurrence
of wi*!, Set w = za with a a letter, and let b be the letter preceding the
occurrence of w?!. If b = a, replace w by az and proceed. The process will
stop after at most |w|—1 steps because either a prefix of ¢ is obtained, or because
otherwise w would occur in ¢ at the power d + 2. Thus, we may assume b # a.
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Thus b(za)?*! is a factor of c. This implies that a(za)? and b(za)? are factors,
so w? is a right special factor, and therefore it is a prefix of c.

(2) If w? is a prefix of the characteristic word ¢, then w is one of the standard
words s,. Indeed, set e = d— 2, so that e > D + 1. Let n be the greatest integer
such that s,, is a prefix of w®t!'. Then w®*! is a prefix of 5,41 = shrtig 1

thus also of sh %+, This shows that

(1+ D)|w| < (1 +e)|w| < (1+dnt1)lsn] < (1+ D)|snl

. 14d,
whence |w| < |s,|- Now, since both w2 and s, “"** are prefixes of ¢, one
is a prefix of the other. If w®*? is the shorter one, then |wt?| = |wet!| +

|lw| > |sn| + |w|. Thus, w**? and siT9+1 ghare a common prefix of length
> |sn| + |w|. Consequently, w and s,, are powers of the same word, and since
they are primitive, they are equal.

If 55"+ is the shorter one then, since (I1+e)|w| < (1+dpt1)|snl,

dn+1

|S;L+d"+1| = |3n| +dn+1|3n| > |Sn| + 1+d
n+1

(1 +e)|w] = |sn| + |w|
and the same conclusion holds.
(3) If follows that sL*¢ is a prefix of ¢ and, since e > D +1 > d,,41 + 1, also

s?frd"“ is a prefix of ¢, contradicting Lemma 2.2.32. n

We conclude this section with the computation of the number of factors of
Sturmian words. Another characterization of central words will help. Recall
that a finite word is balanced if and only if it is a factor of some Sturmian
word. Moreover, every balanced word w, as a factor of some uniformly recurrent
infinite word, can be extended to the right and to the left, that is wa and bw
are balanced for some letters a, b.

PROPOSITION 2.2.34. For any word w, the following are equivalent:
(i) the word w is central;
(ii) the words Ow0, Owl, 1w0, 1wl are balanced;
(iii) the words Owl and 1w0 are balanced.

Proof. (i) = (ii). The words w0l and wl0 are standard, and therefore are
prefixes of some characteristic words ¢ and ¢. By Proposition 2.1.22 the four
infinite words Oc, 1c, Oc’ and 1¢’ are Sturmian, and consequently their prefixes
Ow0, Owl, 1w0, 1wl are balanced. (i7) = (i4i) is trivial.

(#9i) = (7). We prove first that w is a palindrome word. Assume the contrary.
Then there are words u,v, v’ and letters a # b such that w = uav = v'ba. But
then awb = auavb = av’'bub has factors aua and bab with height satisfying
|h(aua) — h(bab)| = 2, contradiction.

Let ¢ be a characteristic word such that Owl € F(c). Since F(c) is closed
under reversal (Proposition 2.1.19), and w is a palindrome, 1w0 € F(c), showing
that w is a right special factor of c¢. Thus its reversal (that is w itself) is a prefix
of ¢. In view of Corollary 2.2.29, the word w is central. m
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Words satisfying condition (ii) are sometimes called strictly bispecial.
We now want to count the number of balanced words of length n. We need
a lemma.

LEMMA 2.2.35. Let w be a word. If w0 and w1 are balanced, then there is a
letter a such that aw0 and awl are balanced.

Before giving the proof, let us observe that there seems to be a difference, for a
word w, to be right special or have both extensions w0 and w1l balanced. Indeed,
a word w can only be right special with respect to some Sturmian word s that
contains both factors w0 and wl. On the contrary, if w0 and w1 are balanced,
then there exist Sturmian words z an y such that w0 € F(z) and wl € F(y),
but z and y need not be the same. In fact, one can show (Problem 2.2.7) that
both notions coincide.

Proof of Lemma, 2.2.35. Since w0 and w1 are factors of Sturmian words, there
exist letters a and b such that aw0 and bwl are balanced. If a = b, we get
the claim. If @ = 1 and b = 0, then w is central by Proposition 2.2.34, and
therefore is balanced. Thus suppose a = 0, b = 1. Then Ow0 and 1wl are
balanced, but neither 1w0 nor Owl are. According to Proposition 2.1.3, there
exists a palindrome word u such that 1ul and 0u0 are factors of 1w0. However,
since 1w and w0 are balanced, 1ul is a prefix of 1w0 and Ou0 is a suffix of
1w0. Thus there exist words p, s such that 1w0 = 1luls0 = 1p0u0, whence w =
uls = pOu. Similarly, there exist words u’,p’, s’ such that w = u'0s’ = p'1u/.
We may assume |u| < |[u'| and set v’ = ulz = yOu for some words z,y. Then
w = y0uls' = p'lulz, showing that w is unbalanced, a contradiction. n

THEOREM 2.2.36. The number of balanced words of length n is
n
L+ (n+1—1i)¢(i)
i=1

where ¢ is Euler’s totient function.

Proof. Let R(n) be the set of words w of length n such that Ow and lw are
balanced, and set r(n) = Card R(n). Then r(0) =1 = ¢(1) and

r(n+1) =r(n) + é(n +2)

Indeed, for each w € R(n), one has Ow € R(n + 1) or lw € R(n + 1) by
Lemma 2.2.35, and both Ow,lw € R(n + 1) if and only if w € R(n) and 0wl
and 1w0 are balanced, that is if and only if w is central, by Proposition 2.2.34.
Thus r(n + 1) — r(n) is the number of central words of length n, which in turn
is ¢(n + 2) by Corollary 2.2.16. It follows that

n+1

r(n) = Y o(n).
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Let g(n) be the number of balanced words of length n. Then
g(n+1) = g(n) +r(n)

since for each balanced word w, the word w0 or wl is balanced, and both are
balanced if and only if w € R(n). Since ¢g(0) = 1, it follows that

n—1 n—1k+1 n k n
gn) =1+ r(k) =1+> > ¢(@) =1+ > ¢() =1+ _(n+1—i)¢(i)
k=0 k=0 i=1 k=1 i=1 i=1

as required. [

2.2.3. Frequencies

Let = be an infinite word. Recall from Chapter 1 that the factor graph G, (x)
of order n is the graph with vertex set F,,(z) and domain F,i(z). A triple
(p,a,s) is an edge if and only if pa = bs € Fj,11(x) for some letter b.

101
00100
0100—1001——=0010 01001— 10010
1010 0101 10100 00101
01010

Figure 2.6. Factor graphs for the Fibonacci word.

If x is a Sturmian word, then there is exactly one vertex in G,,(z) with out-
degree 2. This is the right special factor d,, of length n. The edges leaving d,,
are (dy,0,d,—10) and (d,,1,d,_11), because d,,_; is a suffix of d,. Similarly,
there is exactly one vertex with in-degree 2. This is the left special factor g, of
length n. Let a be the letter such that g, = g,—1a. Then the edges entering g,
are (0gn—1,a,9,) and (1g,—1,a,gn). Observe that d,, = g, if and only if d,, is a
palindrome word. See Figure 2.6 for the word graphs of the Fibonacci word.

The factor graph of order n of a Sturmian word z is composed of three
paths: the first is from g, to d,, both vertices included. This path is never
empty. There are two other paths, from d,, to g,, one through vertex d,_10 the
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other through d,,_;1. We consider that the endpoints d,, and g, are not part
of these paths. Then such a path may be empty. This happens if and only if
dp—10 = gy, or d,—11 = g,, which in turn is the case if and only if d,,—1 = gn—1
because g,_1 is a prefix of g,.

Let s = s4,, be a Sturmian word of slope a. We have seen how to associate
to s a rotation R on the unit circle. Also (Equation 2.1.11), a word w is a factor
of s if and only if the interval I,, of the unit circle is non empty. Moreover,
an integer n > 0 is the starting index of an occurrence of w in s if and only if
R"(p) € I,.

Let un(w) be the number of occurrences of w in the prefix of length N +
|w| —1 of s. This is exactly the number of integers n, with 0 < n < N, such that
R"(p) € I,. It is known from number theory that the numbers R"(p), (n > 1)
are uniformly distributed in the interval [0,1]. As a consequence, the limit

plw) = lim py(w)

always exists and is equal to the length of the interval I,,. The number p(w) is
the frequency of w in s. Of course, u(w) = 0 if and only if w ¢ F(s). It is easily
seen that, for any word w, one has p(0w) + p(lw) = p(w) and symmetrically

p(w) = p(wo) + p(wl).

THEOREM 2.2.37. Let s be a Sturmian word. For each n, the frequencies of
the factors of length n take at most three values. If they take three values, then
one is the sum of the two others.

LEMMA 2.2.38. Let s be a Sturmian word. Let (p,a,q) be an edge in G(s).
If p is not right special and q is not left special, then u(p) = p(q).

Proof. There exists a letter b such that pa = bq € F,,11(s). Since pb, aq ¢ Fp11,
one has u(p) = p(pa) = p(bg) = u(q). =

Proof of Theorem 2.2.37. By the lemma, the frequencies are constant on each
of the three paths in the factor graph G, (s). Thus there are at most three
frequencies. Assume that none of the three paths in the factor graph is empty.
According to our discussion, this happens if and only if d,,_1 # g,—1. Moreover,
the frequencies are those of any set of vertices taken in the paths, e.g. u(d,),
w(dy—10), and p(d,—11). Set d,, = 0d,,_1. Since d,,_; is not left special, 1d,,_
is not a factor of s. Thus

p(dn) = p(0dn—1) = p(dn—1) = p(dn-10) + p(dn—11)

showing the second part of the theorem. m

2.3. Sturmian morphisms

All morphisms will be endomorphisms of {0,1}*. The identity morphism Id
and the morphism E that exchanges the letters 0 and 1 will be called trivial
morphisms.
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A morphism f is Sturmian if f(s) is a Sturmian word for every Sturmian
word s. Since an erasing morphism can never be Sturmian, all morphisms
considered here are assumed to be nonerasing. The trivial morphisms Id and
E are Sturmian. The set of Sturmian morphisms is closed under composition,
and consequently is a submonoid of the monoid of endomorphisms of {0,1}*.

2.3.1. A set of generators

The main result of this section is the characterization of Sturmian morphisms
(Theorem 2.3.7). Consider the morphisms

0~ 01 _ 0~ 10
Y150 Y150

Recall from Chapter 1 that the morphism ¢ generates the infinite Fibonacci
word f = ¢(f) =010010100100101001010 - - -.

PROPOSITION 2.3.1. The morphisms E, ¢ and ¢ are Sturmian.

Proof. This follows from Corollary 2.2.19. ]

We shall see below that every Sturmian morphism is a composition of these
three morphisms. The following property gives a converse of Proposition 2.3.1.

PROPOSITION 2.3.2. Let x be an infinite word.
(i) If o(x) is Sturmian then z is Sturmian.
(ii) If ¢(x) is Sturmian and x starts with the letter 0, then x is Sturmian.

Proof . Let x be an infinite word. If p(z) or @¢(x) is Sturmian, then x is clearly
aperiodic. Arguing by contradiction, let us suppose that z is not balanced and
suppose that Ov0 and 1vl are both factors of x.

Clearly, ¢(0v0) = 01p(v)01, ¢©(lvl) = 0p(v)0 and every occurrence of
¢(1lvl) in p(z) is followed by the letter 0. Consequently 1¢(v)01 and Ogp(v)00
are both factors of ¢(x) which is not balanced.

Next, if  does not start with 1, then either Olvl or 11v1 is a factor of x.
But ¢(0v0) contains the factor 10¢(v)1, and $(01vl) and @(11v1) both contain
the factor 00p(v)0. Consequently, ¢(z) is not balanced. "

COROLLARY 2.3.3. Let x be an infinite word and let f be a morphism that is
a composition of E and . If f(x) is Sturmian then z is Sturmian. L]

ExaMPLE 2.3.4. We give an example of a non Sturmian word x starting with 1
and such that ¢(z) is Sturmian. Let f be the Fibonacci word. The infinite word
11f is not Sturmian because it contains both 00 and 11 as factors. However,
since f is a characteristic word, the infinite word 0f is Sturmian. Consequently
P(p(0f)) = @(01f) = 1004(f) is Sturmian. Thus 004(f) also is Sturmian and,
since 00 = @¢(11), $(11f) is Sturmian.
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Let us denote St the submonoid of the monoid of endomorphisms obtained
by composition of E, ¢ and ¢ in any number and order. St is called the monoid
of Sturm and by Proposition 2.3.1 all its elements are Sturmian. A first step to
the converse is the following.

LEMMA 2.3.5. Let f and g be two morphisms and let x a Sturmian word. If
f € St and f o g(z) is a Sturmian word, then g(z) is a Sturmian word.

Proof. Let x be a Sturmian word and g a morphism. It suffices to prove the
conclusion for f = E, f = ¢ and f = ¢.

Set y = g(x). If E(y) is a Sturmian word then y is also a Sturmian word too
and, by Proposition 2.3.2, this also holds if ¢(y) is a Sturmian word. It remains
to prove that if ¢(y) is a Sturmian word then so is y.

Suppose that y is not a Sturmian word. Observe that y is aperiodic, since
otherwise ¢(y) is eventually periodic thus it is not Sturmian. Thus y = g(z) is
not balanced and contains two factors Ov0 and 1v1 which are factors of images of
some factors of . The Sturmian word z is recurrent, thus 1v1 occurs infinitely
often in y, which implies that 0lvl or 11vl is a factor of y. Since ¢(0v0) =
10¢(v)10 and @(1vl) = 04(v)0, both 10p(v)1 and 00p(v)0 are factors of H(y)
and thus ¢(y) is not balanced. A contradiction. "

COROLLARY 2.3.6. Let f € St and g be a morphism. The morphism f o g is
Sturmian if and only if g is Sturmian.

Proof. Assume first that ¢ is Sturmian. Since f is a composition of F, ¢ and ¢,
the morphism f o g is Sturmian by Proposition 2.3.1.

Conversely, if f o g is Sturmian, then for every Sturmian word z, the infinite
word f o g(x) is Sturmian and, by Lemma 2.3.5, the infinite word g(z) is Stur-
mian. This means that ¢ is Sturmian. L]

A morphism f is locally Sturmian if there exists at least one Sturmian word
z such that f(z) is a Sturmian word.

THEOREM 2.3.7. Let f be a morphism. The following three conditions are
equivalent:

(i) f €St

(ii) f is Sturmian;

(iii) f is locally Sturmian.

The equivalence of (i) and (ii) means that the monoid of Sturm is exactly the
monoid of Sturmian morphisms.

The length of a morphism f is the number || f|| = |f(0)| + |f(1)|. The proof
of Theorem 2.3.7 is based on the following fundamental lemma.

LEMMA 2.3.8. Let f be a non trivial morphism. If f is locally Sturmian then
f(0) and f(1) both start or end with the same letter.
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Proof. Let f be a non trivial morphism and suppose that f(0) and f(1) do not
start nor end with the same letter.

Suppose f(0) starts with the letter 0. Then f(1) starts with the letter 1.
If £(0) ends with 1 then f(1) ends with 0. But in this case f(01) contains a
factor 11 and f(10) contains a factor 00. Thus the image of any Sturmian word
contains the two factors 00 and 11 which means that f is not locally Sturmian.

Otherwise f(0) € 0A*0U{0} and f(1) € 1A*1U{1}, and we prove the result
by induction on ||f]|.

If || f]| = 3, then f(a) = cc and f(b) = d for letters a, b, ¢, d, a # b, and since
any Sturmian word z contains the two factors a”*! and ba™b for some integer
n, f(z) contains (cc)"*! and d(cc)™d and thus is not Sturmian.

Arguing by contradiction, suppose that ||f|| > 4 and f is locally Sturmian.
Let = be a Sturmian word such that f(z) is Sturmian (such a word exists
because f is locally Sturmian) and suppose that x contains the factor 00 (the
case where z contains 11 is clearly the same). Since f(0) starts and ends with
0, f(x) contains also 00. Consequently, since the infinite word f(z) is balanced,
neither f(0) nor f(1) contains the factor 11.

Since z is Sturmian,  does not contain 11 and there is an integer m > 1
such that every block of 0 between two consecutive occurrences of 1 is either 0™
or 0m+1L,

The word f(0) does not contain the factor 00. Indeed, otherwise f(0) = u00v
and f(1) = r1 = 1s for some words u,v,r,s. Since 0™*! and 10™1 are factors
of w, the words f(0™*!) and f(10™1) are factors of f(z). But

£ = w00 f(0™ 1 u00v = uwyv,  f(10™1) = r1£(0™ "u00vls = rwys

for suitable wy,ws, and one has |w;| = |ws| and é(w;,ws) = 2, a contradiction.

Consequently f(0) = (01)"0 for some integer n > 0.

Since 10™1 and 10™*11 are factors of z, the infinite word f(z) contains the
two factors 10™1 and 10™+!'1 if n = 0, and the two factors 101 and 1001 if
n#0. Set p=mifn=0,and p=1if n # 0. Then in both cases, f(x)
contains the factors 1071 and 10P*'1, and in both cases 1 < p < m.

Since f(1) does not contain the factor 11, there exist an integer k¥ > 0, and
integers my, ..., mg € {0,1} such that

f(1) = 1Qptmi1gptmay ... 10Ptme ]
Consider a new alphabet B = {a, b} and two morphisms p,n : B* — A*

a0 ~a~ (01)"0
Prbisorr T pes or1

We show that there exists a word u over B such that f(p(b)) = n(bub).

(i) If n = 0, set u = a™ba™2b...ba™*. Since f(1) # 1, one has f(1) =
1n(u)0P1. Thus f(p(b)) = f(0P1) = n(bub).

(ii) If n # 0 and my = ... = my = 0, set u = bFT~1. Since f(1) = (10)*1,
one gets n(u) = (01)**"~1 and f(p(b)) = £(01) = n(bub).
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(iii) Otherwise n # 0 and m; = 1 for at least one integer 4,1 < i < k. Thus
there exist integers ¢ > 2, ny,...,n; such that

F(1) = 1(01)™0(01)"20..... (01)™~10(01)™

Since f(01) starts with (01)"*!, one has ny > 0, n; > n for 2 <i <t —1 and
ng > 1. Set u = b™ab™ "a...b" -1 "ab™ L. Then, again, f(p(b)) = f(01) =
n(bub).

Define a morphism g : B* — B* by

a—a
9" b bub

Then fop =mnog. Since m > p, by deleting if necessary some letters at the
beginning of x, one may suppose that x starts with 0P1. It follows that there
exists a (unique) infinite word z’ over B such that p(z') = x.

Thus there exists a (unique) infinite word y' over B such that

p

r ~—

fl@) «—— ¥
n

Identifying a with 0 and b with 1, one has p = (p o E)P. If n = 0 then
n=p.lfn#0thenp=1,s0n=poFEo(Eop)" Thussince z and f(z) are
Sturmian, the words z' and ' are Sturmian by Corollary 2.3.3. Consequently
the morphism g is locally Sturmian.

However, the words ¢(0) and g(1) do not start nor end with the same letter
and 3 < ||g|| < ||fl]- By induction, g is not locally Sturmian, a contradiction.
The lemma is proved. m

Proof of Theorem 2.3.7. It is easily seen that (i) = (i¢) and (i) = (iii).

So let us suppose that f is a locally Sturmian morphism. The property is
straightforward if f = Id or f = E. Thus we assume || f|| > 3.

Let x be a Sturmian word such that f(z) is also a Sturmian word. Since
f(z) is balanced, it contains only one of the two words 00 or 11.

Suppose that f(z) contains 00. From Lemma 2.3.8, the words f(0) and f(1)
both start or end with 0. Consider first the case where f(0) and f(1) both
start with 0. Then f(0), f(1) € {0,01}" and there exists two words u and v
such that f(0) = ¢(u) and f(1) = ¢(v). Define g a morphism by ¢(0) = u and
g(1) =v. Then f = pog and, by Lemma 2.3.5, g(z) is a Sturmian word. Next,
IFIl = llgll + Juv]o and |uv]p > 0. Otherwise, f(0) = ¢(u) and f(1) = p(v)
would contain only 0 and f(z) = 04 would not be Sturmian. Thus ||g]| < || f]|
and the result follows by induction.
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If £(0) and f(1) both end with 0, the same argument holds with ¢ instead of
¢, and if f(z) contains 11 then Eo f is of the same height and contains 00. m

We give here only one property of the monoid St which shows how decide
whether a morphism is Sturmian by trying to decompose it over {E, ¢, @}.
Other properties will be seen in section 2.3.3 and in the problem section.

COROLLARY 2.3.9. The monoid of Sturm is left and right unitary, i.e. for all
morphisms f and g:

1. If fog € St and f € St then g € St.

2. If foge St and g € St then f € St.

Proof . Let f and g be two morphisms such that fog € St. Let  be a Sturmian
word. Then f o g(z) is a Sturmian word.

1. If f € St then by Lemma 2.3.5, g(z) is a Sturmian word. Consequently ¢
is locally Sturmian and, by Theorem 2.3.7, g € St.

2. If g € St then g(z) is a Sturmian word. Thus f is locally Sturmian and
by Theorem 2.3.7, f € St. n

From this property we deduce an algorithm to decide whether a morphism is
Sturmian. Indeed, if f is a non trivial Sturmian morphism then f decomposes
as f = g oo, where g is Sturmian by Corollary 2.3.9 and where ¢ is one of
the eight morphisms in {¢,po0 E,Eop,EopoE,p,poE Eo @, EopoE}.
According to o, one gets the following factorizations of f(0) and f(1).

9(0) = £(1) and £(0) = f(L)u with u = g(1) if o = ¢

9(0) = £(1) and £(0) = uf (1) with u = g(1) if o =
g(1) = f(1) and f(0) = f(1)u with u = g(0) if 0 = E o y;
g(1) = f(1) and f(0) = uf(1) with u = g(0) if 0 = E o p;
9(0) = f(0) and f(1) = f(0)u with u = g(1) if 0 = p o E;
g(0) = f(0) and f(1) = uf(0) with u = g(1) if 0 = P o E;
g(1) = f(0) and f(1) = f(0)u with u = ¢g(0) if c = Eo p o E;
g(1) = f(0) and f(1) = uf(0) with u = g(0) if c =Eo@o E.

PROPOSITION 2.3.10. A morphism f is Sturmian if and only if, with f as
input, the algorithm below ends with g = Id or E. In this case, the output h is

a decomposition of f over {E, p,p}. n
Algorithm:
input:  f morphism;
output: h morphism;
local: g morphism;
begin
g I
h <+ Id;

while one of the two words ¢g(0) and g(1) is a proper prefix
or a proper suffix of the other
do if ¢(1) = g(0)u then
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g(1) <~ u; h<poEoh
else if g(1) = ug(0) then

g(l) < u; h< @oEoh
else if ¢g(0) = g(1)u then

g(0) < u; h< Eopoh
else {9(0) = ug(1)}

9(0) <~ u; h+ Eopoh;

if g=FE then h< Eoh

end.

Observe that f(0) may be both a proper prefix and a proper suffix of f(1)
(or vice versa). In this case, there are two decompositions of f over {E, p, ¢}.
These are obtained in the algorithm by inverting the order in the tests. We
shall see in Section 2.3.3, that these are all decompositions (not containing E?)
of a given Sturmian morphism over {E, ¢, $}.

2.3.2. Standard morphisms

In this section it will be convenient to consider unordered standard pairs. An
unordered standard pair is a set {z,y} such that either (z,y) or (y,z) is a
standard pair.

In particular, if {z,y} is a unordered standard pair then {E(z), E(y)} is a
unordered standard pair. On the contrary, {¢(x), #(y)} is never a unordered
standard pair because ¢(z) and $(y) both end with the same letter (Proposi-
tion 2.2.2).

Consequently, Sturmian morphisms that are compositions of E and ¢ are
an interesting special case. Because of the following proposition, a morphism is
called standard if it is a composition of E and ¢.

PROPOSITION 2.3.11. A morphism f is standard if and only if {f(0), f(1)} is
an unordered standard pair.

Proof . Assume first that f is standard and, arguing by induction on || f||, suppose
that {£(0), f(1)} is an unordered standard pair. If g = fo E, then {¢(0),g(1)} =
{f(0), f(1)} is an unordered standard pair. If g = f o, then {g(0),9(1)} =
{f(0)f(1), f(0)} is also an unordered standard pair.

Conversely, assume that {f(0), f(1)} is an unordered standard pair, and
that |£(0)] > |f(1)]. Then f(0) = f(1)v for some word v, and {v, f(1)} is an
unordered standard pair. By induction, there is a standard morphism ¢ such
that {g(0),g(1)} = {v, f(1)}. If g(0) = f(1) and g(1) = v then f = gop, in the
other case f = go Eoy. Thus f is standard. m

The set of standard morphisms is interesting because these morphisms are
closely related to characteristic words (recall that an infinite word x is char-
acteristic if and only if Oz and 1z are Sturmian words), as it will appear in a
moment.
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A morphism f is characteristic if f(z) is a characteristic word for every char-
acteristic word z, and it is locally characteristic if there exists a characteristic
word x such that f(z) is a characteristic word.

The following theorem is an analogue of Theorem 2.3.7 for standard mor-
phisms.

THEOREM 2.3.12. Let f be a morphism. The following conditions are equiv-
alent:

(i) f is standard;

(ii) f is characteristic;

(iii) f is locally characteristic.

To prove this result we need the following lemma.

LEMMA 2.3.13. Let x be an infinite word.
1. x is characteristic if and only if E(x) is characteristic.
2. x is characteristic if and only if ¢(x) is characteristic.

Proof. This is a consequence of Corollary 2.2.20 and Proposition 2.3.2. m

Proof of Theorem 2.3.12. The implication (ii) = (i4i) is obvious and the impli-
cation (7) = (¢i) is an immediate consequence of Lemma 2.3.13.

Let f be a locally characteristic morphism. Then f is locally Sturmian and
by Theorem 2.3.7, it is a composition of E, ¢ and . We show that no occurrence
of ¢ appears in the decomposition of f, by induction on ||f]|.

If | f]| = 2 then f = Id or f = E and the result holds.

Assume ||f]] > 3 and let = be a characteristic word such that f(z) is char-
acteristic.

If z contains 11 as a factor then we can replace z by E(z) which is also
a characteristic word (Lemma 2.3.13) and consider f o E instead of f, and if
f(z) contains 11 as a factor then we can consider E o f instead of f. Since
|fll = IIf o E|| = ||E o f||, we may suppose that = and f(z) both contain the
factor 00 (and thus none contains the factor 11).

Since x and f(x) are characteristic, both 1z and 1f(z) are Sturmian, and
thus both z and f(z) start with the letter 0, and thus f(0) also starts with 0.

If f(1) starts with 1 then, by Lemma 2.3.8, f(0) and f(1) both end with the
same letter. If this letter is a 1 then 11 is a factor of f(01) and thus of f(z)
which is impossible. So f(0) and f(1) both end with the letter 0. Let » > 1 be
such that x starts with 0"1. Since Oz is Sturmian, z contains 0"*11 and then
10"+ as a factor. Consequently 1£(07)1 is a prefix of 1f(z) and 0£(0")0 is a
factor of f(x). A contradiction.

Thus, f(1) starts with 0 and since f(0) and f(1) do not contain 11 as a factor,
f(0) € {01,0}" and f(1) € {01,0}F. Consequently there exists a morphism g
such that f = ¢ o g with ||g]] < ||f|]. But ¢ o g(z) is characteristic thus g(x) is
characteristic (Lemma 2.3.13) and, by induction, g € {E, p}*. So f is standard.

]
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2.3.3. A presentation of the monoid of Sturm

In this section, it will be convenient to write the composition of morphisms as
a concatenation (so we will write fg instead of f o g).

Let G = ¢F and G = @E. Clearly, the monoid of Sturm St is also generated
by E, G and G.

THEOREM 2.3.14. The monoid of Sturm has the presentation

E? = Id, (2.3.1)
GEG*EG = GEG*EG, k>0. (2.3.2)

Formula (2.3.2) can be rewritten, in terms of the generators ¢ and @, as
0(0B) B¢ = $(9E) Ep, k>0.

Proof. We consider words over the alphabet {E, G, C:’} For each word W over
{E,G,G}, denote by fw the Sturmian morphism defined by composing the
letters of W. Two words W and W' are equivalent if fyv = fw:. The words
W and W' are congruent (W ~ W') if one can obtain one from the other by a
repeated application of (2.3.1) and (2.3.2) viewed as rewriting rules (i.e. if W
and W' are in the same equivalence class of the congruence generated by (2.3.1)
and (2.3.2)).

We prove that equivalent words are congruent (the converse is clear). Let
W, W' be equivalent words. The proof is by induction on [WW'|. We may
assume that W and W' do not contain E2. Since F, G, @ are injective, we may
also assume that W and W' do not start with the same letter. Observe that if
W starts with ¢ or @, then |fw (01)]1 < |fw(01)|o and if W starts with E o or
E o @, then |fw(01)]y > |fw(01)|o. Consequently W starts with E if and only
if W’ starts with E, so we suppose that none does. Finally, since GG ~ GG, we
may assume that one of W and W' starts with G"E and the other with GPE
with n # 0 and p # 0 . Thus

W = GEG"G*E - EG":G*
W' = GNEG™G:E .- EG"v G*

with r1,8] > 1, ri, 84,7
2<j<q.

Observe first that fy/(0) and fy (1) both start with the letter 0 (because
G does).

Next, s = 0. Indeed, otherwise W is congruent to a word starting with
G EG, and since G™ EG(0) and G™ EG(1) both start with the letter 1, W' is
not equivalent to W.

If s; = 0for i = 3,...,q, then W = GMEG™E-.-EG", and fy(0) or
fw (1) starts with the letter 1, according to whether ¢ is even or odd. Thus,
there is a smallest ¢ > 3 such that s; > 1. Then W is congruent to a word
starting with

i»s; > 0,and r; +s; > 1 for 2 < i < g, ) +s; > 1for

[ 2E

U=G"EG™E.--EG"—2EG"—EG
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If i is even, then fy(0) and fy(1) start with the letter 1. Thus ¢ is odd, and
using (2.3.2), U is congruent to

U'=G"EG™E---EG"—>"'GEG"-'EG
and eventually U is congruent to
GG 'EG™EG™E-- EG"-EG"-'EG

Thus W' and some word congruent to W start with the same letter. By induc-
tion, they are congruent. m

As a corollary, we obtain a presentation of the monoid of standard mor-
phisms.

COROLLARY 2.3.15. The only nontrivial identity in the monoid of standard
morphisms generated by E and ¢ is E* = Id. m

2.3.4. Conjugate morphisms

In this section, we characterize Sturmian morphisms by standard morphisms.
The main notion is a special kind of conjugacy relation for morphisms.

Let f and g be morphisms. The morphism g is a right conjugate of f, in
symbols f « g if there is a word w such that

f(@)w = wg(z), for all words x € A* (2.3.3)

This implies that the words f(x) and g(x) are conjugate, and moreover all pairs
(f(z),g(x)) share the same “sandwich” word w. It suffices, for (2.3.3) to hold,
that

fla)w = wg(a), for all lettersa € A (2.3.4)

since by induction f(za)w = f(z)f(a)w = f(z)wg(a) = wg(xa). Observe that if
(2.3.4) holds for a nonempty word w, then all words f(a) for a € A start with the
same letter. Right conjugacy is a preorder over the set of all morphisms over A.
Indeed, if f(z)w = wg(z) and g(x)v = vh(x), then f(x)wv = wg(x)v = woh(x).

EXAMPLE 2.3.16. The morphism ¢ is a right conjugate of ¢ since ¢(0)0 =
010 = 04(0) and ¢(1) = $(1) = 0. Observe that ¢ is not a right conjugate of ¢
since $(0) and $(1) do not start with the same letter.

This example shows that right conjugacy is not a symmetric relation. However,
one has the following formulas.

LEMMA 2.3.17. Let f,g,f',g" be morphisms.
(i) If f<g and f'<g, then faf or f'«f,
(ii) If f<ag and f<g', then g<g' or g’ «g,

(iii) If f«g and f'<g', then fo f'<agog'.
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Proof. We start with the first implication. If f(z)w = wg(z) and f'(z)v = vg(z),
then for convenient z, the word g(z) is longer than v and w. Thus w is a suffix
of v or vice-versa. Assume v = zw. Then zf(z) = f'(x)z. The second is
symmetric.

For the third, assume f(z)w = wg(z) for all words x. For any morphism h,
h(f(z)w) = h(f(z))h(w) = h(w)h(g(z)), and consequently ho fahog. Also
f(h(z))w = wg(h(z)), showing that foh<goh. Thus, if f<g and f'<g’, then
fof'ageflageyg. =

The next result states that the monoid of Sturm is the closure under right
conjugacy of the monoid of standard morphisms.

PROPOSITION 2.3.18. A morphism is Sturmian if and only if it is a right con-
jugate of some standard morphism.

Proof. We show first that a Sturmian morphism is a right conjugate of some
standard morphism. Let g be a Sturmian morphism, and consider a decompo-
sition
g=hiohyo---oh,

with hy,..., h, € {E,p,p}. If none of the h; is equal to @, then g is standard.
Otherwise, consider the smallest ¢ such that h; = @. Then g = g’ o p o g",
for ¢ = hyo---oh;—1 and g"” = hjrq 0 -+ o h,. By induction, g" is a right
conjugate of some standard morphism f”, and since p <@ and by Lemma 2.3.17,
g opo f"ag, with g opo f" a standard morphism.

Conversely, let f be a standard morphism, and let g be a right conjugate
of f. Then there is a word w such that f(z)w = wg(z) for every word z. It
follows that, for any infinite word s, one has f(s) = wg(s). If s is a Sturmian
word, then g(s) is a Sturmian word, and g is a Sturmian morphism. "

We start an explicit description of the right conjugates of a standard mor-
phism by the following observation.

ProrosiTION 2.3.19. Right conjugate standard morphisms are equal.

Proof. Let f and f’ be two standard morphisms, and assume f < f'. There is a
word w such that

FO)w = wf'(0), F(1)w = wf'(1) (2.3.5)

Set & = £(0), y = f(1), and 2’ = £(0), y' = f'(1). Then |z| = |o/| and |y| =
|y'|. Next, by Proposition 2.3.11, {z,y} and {z',y'} are unordered standard
pairs. If {z,y} = {0,1}, then {z,y} = {2/,y'} and f = f'. Otherwise, the
words xy, yz, 'y’ and y'z’ are standard words with same height and length
by (2.3.5), and moreover zy # yz, 'y’ # y'z’ by Proposition 2.2.2. In view
of Proposition 2.2.15, there exist exactly two standard words of this height and
length. Thus zy = z'y’ or (zy = y'z’ and yz = z'y’). In the first case, f = f'.
In the second case, assume |z| < |y|. Then z is a prefix of y, and the equation
yr = z'y’ shows that x = 2’. Thus f = f' in this case also. n
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We now show a way to construct all Sturmian morphisms from standard
morphisms.

As in Lothaire (1983) Section 1.3, we use the permutation v over AT defined
by vy(ax) = za, a € A, x € A*. Two words z,y are conjugate if and only if
y = 7! (x) for some 0 < i < |z|.

Let f be a standard morphism. For 0 < i < ||f|| — 1, define a morphism f;
by £i(01) = ¥(£(01)) and |;(0)| = |£(0)]

ExaMPLE 2.3.20. Let f be the morphism defined by f(0) = 01010, f(1) = 01.
The corresponding 7 morphisms are

fo:0— 01010, 1+ 01
f1:0— 10100, 1+ 10
f>:0 01001, 1~ 01
f5:0 10010, 1+~ 10
£1:0— 00101, 1+ 01
f5:0— 01010, 1+ 10
f6:0— 10101, 1+ 00

It is easily checked that all morphisms except fg are Sturmian and are right
conjugates of f.

PROPOSITION 2.3.21. Let f be a non trivial standard morphism. The right
conjugates of f are the morphisms f;, for 0 < i < ||f]| — 2.

This means that the morphism f ¢, is never Sturmian (in the example above,
this was fg).

Proof. Let g be a right conjugate of f. Then f(01)w = wg(01) for some word
w, so g = f; for some i.

For the converse, we show first that f;(0) and f;(1) start with the same letter
if and only if 0 < i < ||f|| — 3. Indeed, set © = f(0), y = f(1), ' = f;(0) and
y" = fi(1), and set n = |z| = |2'|. The word z'y’ is a factor of zyzy, thus
there exists a non empty word ¢ of length i such that zyxy starts with tz'y’.
The first letter of ' is the (i + 1)th letter of zy. The first letter of y' is the
(n + i + 1)th letter of zyz, i.e. the (i + 1)th letter of yz. Since {z,y} is an
unordered standard pair, only the last two letters of the words xy and yz are
different by Proposition 2.2.2. Consequently the first letter of z’ is equal to the
first letter of y' if and only if i +1 < ||f|| — 2.

For any i with 0 <4 < ||f]| — 3, set fi(0) = au, fi(1) = av for a letter a
and words u,v. Then f;11(0) = ua, fiy1(1) = va. Thus f;(0)a = afi+1(0),
fi(l)a = afi+1(1), showing that f; < f;11, whence f < fi11. n

PROPOSITION 2.3.22. Let g be a Sturmian morphism. There exists a unique
standard morphism f such that f<g. This standard morphism is obtained from
any decomposition of g in elements of {E, , p} by replacing all the occurrences

of ¢ by .
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Proof. Let g be a Sturmian morphism, and let f be obtained from a decompo-
sition of g in elements of {E, ¢, p} by replacing all the occurrences of ¢ by .
Since f is a composition of E and ¢, f is standard. Moreover, since ¢ <@, one
has f < g by repeated application of Lemma 2.3.17(iii).

Moreover if there exists a standard morphism f’ such that f’ < g then by
Lemma 2.3.17, one has f' < f or f < f'. By Proposition 2.3.19, f = f’ which
proves that f is unique. n

2.3.5. Automorphisms of the free group

Consider two letters 0,1 not in A = {0,1}. The free monoid 4* = {0,1,0,1}*
is equipped with an involution by defining @ = a for a € A, and wv = va. The
free group F(A) over A = {0, 1} is the quotient of the free monoid A® under the
congruence relation generated by 00 = 00 = 11 = 11 = &. A word in A® without
factors of the form 00,00, 11,11 is reduced. Every word in A® is equivalent to a
unique reduced word. If w is reduced, so is w. The free group can be viewed as
the set of reduced words. The product of two elements in F'(A) is the reduced
word equivalent to the concatenation of the reduced words corresponding to the
group elements, and the inverse of an element in F'(A) represented by w is .
An element in F(A) has a length. Tt is the length of its corresponding reduced
word.

In this section, we give a characterization of Sturmian morphisms in terms
of automorphisms of the free group F'(A).

Any morphism f on A is extended in a natural way to an endomorphism

on F(A), by defining f(0) = f(0), f(1I) = f(1). It follows that f(w) = f(w)
for any w € F(A). Conversely, consider an endomorphism f of F(A4). It is
called positive if the (reduced) words f(0) and f(1) are words over A, that is
do not contain any barred letter. An endomorphism f that is a bijection is an
automorphism. Its inverse is denoted f—1.

The morphisms F, ¢ and ¢ are extended to F'(A) by

0 1 0 01 0+ 10
g. 170 =0 5. 1= 0
01 Y010 Yool
1—0 1—0 1—0

They are automorphisms, and their inverses are given by

0—1 0—1

-1 _ —1. -1,

EX=E v 1,10 % ‘1ol

It follows that every Sturmian morphism is a (positive) automorphism of F(A).
The converse also holds.

THEOREM 2.3.23. The positive automorphisms of F'(A) are exactly the Stur-
mian morphisms.
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The theorem states that the three morphisms E, ¢, ¢ are a set of generators
of the monoid of positive automorphisms. The full automorphism group of a
free group is a well-known object (see Notes). In particular, sets of generators
can be expressed in terms of so-called Nielsen transformations. In the present
case, the morphisms

00 0—0 0~ 01 0—0
1—1 1—1 11 110

generate the automorphism group of F(A). The two last morphisms are E o ¢
and po E.
We first prove a special case of the theorem.

PROPOSITION 2.3.24. Let f be a positive automorphism of F(A). If the words
f(0) and f(1) do not end with the same letter, then f is a standard Sturmian
morphism.

Proof. Let f be a positive automorphism of F(A). We may assume |f(0)] <
|£(1)]. We suppose first that f(0) is not a prefix of f(1). There exist words u,
vg, v1 over A such that vy and vy start with different letters and f(0) = uwg
and f(1) = wwvy. Since f(0) and f(1) do not end with the same letter, the
words vg and v; also end with different letters. The images of reduced words
of length 2 under f are wv,uvy, UvVpU, VoUp, U, ulpw. Fach of these words is
reduced because vy and v; start and end with different letters. It follows that
for any reduced word w of length at least 2, the reduced word f(w) has length
at least 2. Consider now any letter a € A. Since |f(f~!(a))| = 1, it follows that
|f~1(a)| =1, that is f is either the identity or E. Thus f is Sturmian.

Next, if f(0) is a prefix of f(1), there exists a word u such that f(1) = f(0)u.
Define a morphism g by ¢g(0) = f(0) and g(1) = u. Then f = go p o E. Since
f is a bijection, g is also a bijection. By induction on ||g||, the morphism g is a
standard Sturmian morphism, and so is f. n

Proof of Theorem 2.3.23. Let g be a positive automorphism. The words g(01)
and ¢(10) are different because g is a bijection. They have same length. Let u
be their longest common suffix. There exist words vg,v; over A of same length
such that g(01) = vou, g(10) = viu and vg, v; do not end with the same letter.
Since for letters a # b, g(aba) = v,ug(a) = g(a)vpyu, the words ug(a) end with
u. Define a morphism f by f(a) = ug(a)a for a € {0,1}. Then f(w) = ug(w)a
for all w in F(A). Since ug(a) ends with u for a € {0,1}, the morphism f is
positive.

Since g is a bijection, f is also a bijection. Moreover f(01) = uvy and
f(10) = wv; end with different letters and since f is positive, also f(0) and
f(1) end with different letters. By Proposition 2.3.24, f is a standard Sturmian
morphism. Now f(0)u = ug(0) and f(1)u = ug(1) which means that g is a right
conjugate of f. Consequently, by Proposition 2.3.18, g is a Sturmian morphism.

|
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2.3.6. Fixpoints

In this section, we make use of Theorem 2.3.12 to describe those characteristic
words that are fixpoints of standard morphisms. As an example, we know from
Chapter 1 that the morphism ¢ fixes the infinite Fibonacci word f.

We say that a morphism A fizes an infinite word z if h(z) = z. In this case,
x is a fizpoint of h. Every infinite word is fixed by the identity, and no infinite
word is fixed by FE.

For the description of characteristic words which are fixpoints of morphisms,
we introduce a special set of irrational numbers. A Sturm number is a number
« that has a continued fraction expansion of one of the following kinds:

(1) a = [07 ]-)a();m]; with ag Z ao,

(i) a=1[0,1+ ao,ar,---,ax), with ax > ap > 1.
Observer that (i) implies o > 1/2, and (ii) implies & < 1/2. More precisely, a
has an expansion of type (i) if and only if 1 — a has an expansion of type (ii).
Consequently,  is a Sturm number if and only 1 — « is a Sturm number.

As an example, 1/7 = [0,1] is covered by the first case (for k¥ = 1 and
ar = ap = 1), and 1/72 = [0,2,1] is covered by the second case.

We shall give later (Theorem 2.3.26) a simple algebraic description of Sturm
numbers. There is also a simple combinatoric characterization of these numbers
(Problem 2.3.4).

THEOREM 2.3.25. Let 0 < a < 1 be an irrational number. The characteristic
word ¢, is a fixpoint of some non trivial morphism if and only if a is a Sturm
number.

Proof. Let
a=1[0,my,ma,...]

be the continued fraction expansion of a, and suppose that f(c,) = ¢, for some
morphism f. In view of Theorem 2.3.12, the morphism f is standard. Thus, f
is a product of E and G, and is not a power of E. Also, f is not a proper power
of G, because a morphism G™ with n > 1 fixes only the infinite word 0. Thus
(we write composition as concatenation), f has the form

f=GmMEG" ... EG" EG"+

for some k > 1, ni,ngs1 > 0, and na,...,n, > 1. We use the morphisms
0m = G™ LEG for m > 1 and the fact (Corollary 2.2.21) that

Om(ca) = C1/(mta) -

There are three cases.
(a) Suppose first that ng41 > 0. Then

f= 0n1+19n2 .. .gnkG”kH*l
Since f fixes ¢, this implies

[O,ml,mQ,...] = [0,1+n1,n2,...,nk,nk+1 —1+m1,m2,...]
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which in turn gives my = 14n1, my = no, ..., Mk = N, Mpyp1 = N1 —1+my =
Ng+1 + N1, and m; = mjyy, for j > 2. Thus

a=1[0,1+ny,n9,...,nk41 +n1], withny; >0,n9,...,np41 >1 (2.3.6)

(b) Suppose now that ng11 = 0, and consider the morphism f' = EfE. From
ca = f(ca), it follows that f'(Ecy) = Ecq, that is f'(cg) = ¢z for 8 =1 — a.
Now

f'=EG™EG™ ---EG™

where n; > 0 and ns,...,n; > 1. There are two sub-cases.
(b.1) If ny =0, then k£ > 3 and

fl =G™...EG"* = 9n2+1 o ‘0nk—1Gnk71

whence, as above, = [0,1+ n2,ng,...,ng_1,n2 + ng| and since ny > 1,

a=1-p=[0,1,n2,n3,...,nk_1,n2 + ng| withng,...,ng>1 (2.3.7)
(b.2) If ny > 1, then
f'=EG™.--EG™ =6,0,, ---0,,_,G™ !

whence as above § = [0,1,71,...,g_1, %] and

a=1-p=[0,14ny,na,n3,..., 0,11 withng,...,ng>1 (2.3.8)

To show that Equations (2.3.6)—(2.3.8) describe exactly Sturm numbers, observe
that Equation (2.3.6) with n; = 0 corresponds, in the definition of Sturm num-
bers, to case (i) with ay = ao, that Equation (2.3.6) with n; > 0 corresponds
to case (ii) with ar > ao, that Equation (2.3.7) is equivalent to case (i) with
ay, > ap and that Equation (2.3.8) is case (ii) with ay = ao.

The proof that a Sturm number indeed yields a fixpoint is exactly the reverse
of the previous one. [

Sturm numbers have a simple algebraic description. Clearly, a Sturm number
a is quadratic irrational, that is solution of some equation

22 +pr4+q=0

with rational coefficients p, g. The other solution of this equation is the conjugate
of a, denoted by @&, and satisfies a@ = ¢. It is easy to prove that the conjugate
of 1 —ais 1 — @, and that the conjugate of 1/ is 1/a.

THEOREM 2.3.26. A quadratic irrational o with 0 < «a < 1 is a Sturm number
if and only if 1/a& < 1.

We need some facts from number theory. A quadratic irrational number v
is said to be reduced if v > 1 and —1 < ¥ < 0. This is equivalent to 1 > 1/y > 0
and 1/ < —1. It is known that
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1. the continued fraction of a quadratic irrational v is purely periodic if and
only if v is reduced.
2. if v is reduced and v = [a1,- .-, ap), then —1/7 = [an, -, a1].

Proof of Theorem 2.3.26. The condition 1/a < 1 is equivalent to @ ¢ [0, 1].
This in turn is equivalent to 1 — & ¢ [0,1]. Thus & verifies the condition if
and only if 1 — @ does. Consequently, it suffices to prove the equivalence for
0 < a < 1/2. We have to prove that 1/a < 1 if and only if

a:[0,1+a0,a1,...,ak], with ar > a9 >1.
Let first @ be a Sturm number with 0 < o < 1/2. Then

1
o= ———7, with y=[@5 a5, a >a>1 (2.3.9)

1+a0+—
Y

Thus v is reduced, and since —1/5 = [ag, ..., a1] > ay, it follows from (2.3.9)
that
l/ja=14ay+1/y<1l4ap—ap<1.
Conversely, let 0 < a < 1/2 be a quadratic irrational with 1/a < 1. Since
2 < 1/a, write
l/a=14+ao+1/y (2.3.10)
where g = |[1/a—1] > 1and 1 < 1/y < 1. From 1/& < 1 and the conjugate
of (2.3.10), one gets
1/ < —ap < -1

Thus 7 is reduced, and writing v = [a1, .-, ax], one gets

ap < —1/’7: [ak,...,al] <ap+1

whence ap > ag > 1 and

1 .
o= ————=[0,1+ao,ar, ;. .

14+ap+ -
v

Problems

Section 2.1

2.1.1 We consider two-sided infinite words over {0, 1} of complexity n + 1.

1. Show that the word z defined by z(k) =1 for £ > 0, and z(k) =0
for k < 0 has n + 1 factors of length n for each n > 0.

2. Let z ¢ 0* U 1* be a central word with period k£ and ¢, and set
w = pl0g where p and ¢ are palindrome words with k& = |p|, £ = |q].
Define two (onesided) infinite words z = (10¢)“ and y = (01p)“. Then
the two-sided infinite word §zz has n + 1 factors of length n for each
n > 1. (These are the only two-sided infinite words with complexity
n + 1, see Coven and Hedlund 1973.)
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2.1.2

2.1.3

214

Section

221

2.2.2

2.2.3

Sturmian Words

Let = be an infinite word which contains infinitely many occurrences of
0 and of 1. The cell-condition for z is the following: for any words w, w’
such that |wlo = |w'|o and 0w0,0w'0 € F(z), one has ||w| — |w'|| < 1,
and the same condition with 0 and 1 exchanged. Show that x is balanced
if and only if z satisfies the cell-condition. (Morse and Hedlund 1940.
A proof consists in considering the word y such that z = G(y).)

Let = be an infinite word. For n > 1, let X,, be the set of factors of x
starting with 0, ending with 0, and containing exactly n occurrences of
the letter 0. Define similarly Y;,, replacing 0 by 1. Show that z is Stur-
mian if and only if Card(X,,) = Card(Y,,) = n for every n (Richomme
1999a).

Show that a word w is unbalanced if and only if it admits a factor-
ization w = xauaybubz for words u,x,y,z and letters a # b. Use this
characterization to prove that the set of unbalanced words is a context-
free language. (Dulucq and Gouyou-Beauchamps 1990, see also Mignosi
1991, 1990)

2.2

Show that for any standard word w # 0, 1, there is only one standard
pair (z,y) such that w = zy or w = yz.
Define sequences of words (A, )n,>0 and (By,)n>0 by

AO = a, BO =b
and

An—i—l = A,
Bn+1 = Aan

An+1 = BnAn
Bn+1 = Bn

The R;’s are called Rauzy’s rules (see Rauzy 1985).

1. Show that, provided each of the rules R; is applied infinitely many
often, the sequences A, and B, converge to the same infinite word
which is characteristic.

2. Show that conversely every characteristic word is obtained in this
way.

Let 0 < h < m be integers with (h,m) = 1. The lower and upper
Chrzstoﬁel words tp , and t}, hom ar€ defined by o1 = t0 1=0,%, =
1 1 =1, and tp 4, = 024 1, th m = lzpm0if m > 2. These are exactly
the WOI‘dS defined in Section 2.1.2.

1. Show that if A'm — m'h = 1, then

R1 : and R2 :

! ! !
thomtht;m! = thth! mtm’s Ept it = Chp b ety

2. For 1 < h <mand (h,m) =1, show that there exist integers m', h'
with 0 < ' <m/ <m, k' < h such that m'h — h'm =1, and

th,m = th’,m’th—h’,m—m’
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224

2.2.5

2.2.6

2.2.7

3. Define o, = 25,m,m 10, O’;l’m = zp,m01. Show that

! ! !
Uh,mo-h'7m' = Uh+h’,m+m’aa-h,mo-h’,m’ = Uh+h’,m+m’ .

Show that the pairs of standard words are (0,1) and all the pairs
(Uh,ma U;L,m)’ for h'm — hml =1.

Consider a function A’ from {0,1}* into itself defined by A’(u,v) =
(uv,v). The family of Christoffel pairs is the smallest set of pairs of
words containing (0,1) and closed under I" and A’. A standard pair
and a Christoffel pair are corresponding if they are obtained by the
same sequence of I" and A (resp. I and A").

1. Let (u,v) be a standard pair and let (u',v') be the corresponding
Christoffel pair. Show that if u = pl10, then ' = Opl and if v = ¢01,
the " = 0q1.

2. Show that the components of Christoffel pairs are exactly the lower
Christoffel words. (see Borel and Laubie 1993.)

Christoffel words and Lyndon words.

1. Show that every lower Christoffel word is a Lyndon word.

2. Show that a balanced word is a Lyndon word if and only if it is a
Christoffel word (Berstel and De Luca 1997).

3. Any lower Christoffel word w which is not a letter admits a unique
factorization w = xy, where (z,y) is a Christoffel pair. Show that this
factorization is the standard Lyndon factorization (Borel and Laubie
1993).

Show that, for 0 < p < 1,

P(5a,p) = 8120 2-ap, D(Sa,p) =5 _1_ 1-ate, D(Sa,) =51 o .

2—a’ 2—« 2—a’ 2—« 2—a’2—a

Show that for 0 < p < 1,

‘ﬁ(sla,p) = S1-a 2-a—p, D(Sla,p) =5, l—a+tp, D(Sla,p) =51 .

2—a’ 2—a 2-a’' 2—a 2—a’2—a

(see Parvaix 1997)

The aim of this problem is to prove that if w is a word such that w0

and wl are balanced, then w is a right special factor of some Sturmian

word.

Let w be a word such that w0 and w1l are balanced.

1. Show that if w is a palindrome, then w is central.

2. Show that if w = uap, with a a letter and p a palindrome, then pa
is a prefix of some characteristic word.

3. Show that w is always a suffix of a central word.

4. Show that w is a right special factor of some Sturmian word.

(see De Luca 1997c)
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2.2.8

2.2.9

2.2.10

2.2.11

Sturmian Words

Let « = [0,1 + dy,d>,...] be the continued fraction expansion of the
irrational a, let (s,) be the associated standard sequence, and define

(tn)nZ—l by
t=1, to=0, t,=t"Ttty ot 1, (n>1).

1. Show that tgty ---t, = S, - - - 8150.

2. Show the follow product formula: ¢, = toty - -ty - -.(Brown 1993)
Let « = [0,1 + dy,d>,...] be the continued fraction expansion of the
irrational «, let (s,) be the associated standard sequence. Let w be a
standard word that is a prefix of the characteristic word ¢,. Show that

there is an integer n such that w = sflsn,l for some 1 <k <dp41.

Let @ = [0,1 + dy,ds,...] be the continued fraction expansion of the
irrational a, let (s,) be the associated standard sequence. Define three
sequences of words by (¢n)n>—1, (Vn)n>—1 and (wp)n>—1

U_1:U_1:’w_1:1, u0:v0:w0:0

and
Usp = Unp—2(Usp—1)P"  (n>1)
Uspt1 = (Uzp) P2 uzp—y (0> 0)
Von = (Vzn—1)® V2 (n > 1)
Vang1 = Vap—1(v2n) %"+ (n >0)
Wy = Wy _2(w, 1) (n>1)
1. Show that
Ocq = limy, 00 Up, leg = limy oo Un
0lcy = lim,, o0 wap 10cq = limp—y 00 wop 41 -
2. Define a sequence (p,)n>—1 by p—-1 = 07!, pp = 17! and

Pon = pan—2(10map_1)%» 0> 1
Pant1 = (P2n10)™7 4Py, 1 0 >0

Show that the words p,,, for n > 1 are palindromes, and

Soan = p2n10; Up = Opn]-> Wop = 01p2n7
S2n41 = P2n+101, v, = 1p,0,  wanr1 = 10p2p41.

A number system associated with a directive sequence.
Let a = [0,1 4+ dy,ds,...] be the continued fraction of the irrational a,
and (s,) be the associated standard sequence. Define integers by

g1=1, q=1, Gn = dpngn_1 + gn—2, (n > 1) .

Then of course |sp| = ¢p.-
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2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

1. Show that any integer m > 0 can be written in the form
m = zpqp + - - + 20qo, (0<z <diy1) (2.4.1)

2. Show that every integer 0 < m < g¢p4+1 — 1 admits a unique such
representation provided

Zi:di+1:>2'i71:0 (].SZSh)

3. Show that if m = zpqn+- - -+20qo is as in eq. (2.4.1), then the prefix of
cq of length m has the form s} - - s3° (see Fraenkel 1985, 1982, Brown
1993 and the references cited there).

A Beatty sequence is a set B = {|rn] |n > 1} for some irrational number
r > 1 (it is a spectrum).

1. Let @« = 1/r, and let ¢, = ayas - - - be the characteristic word of slope
a. Show that B = {k | a, = 1}.

2. Two Beatty sequences B and B’ are complementary if B and B’
form a partition of {1,2,...}. Show that the sets {|rn]|n > 1} and
{lr'n] |n > 1} are complementary if and only if 1/r 4+ 1/r' = 1. (Use
1., see Beatty 1926)

Write ¢ < y if = is lexicographically less that y. Show that for any
irrational characteristic word ¢, the word Oc is lexicographically smaller
than all its proper suffixes, and 1c¢ is lexicographically greater than all
its proper suffixes. (Borel and Laubie 1993)

Define a mapping C : {0,1}* — {0,1}* by C(e) = ¢ and C(az) = za for
a € {0,1}. This is just a cyclic permutation. Let a = [0,1 4 dy,d>, .. ]
be the continued fraction of the irrational «, and (s,,) be the associated
standard sequence.

1. Show that for n > 0, the words C~'(sy,) and Cl*2»~tl(sy,,,) are
Lyndon words. (Borel and Laubie 1993, Melancon 1996)

2. Set £, = Cl1922=U(s5,,1). Show that ¢, = (22604 ... ¢+ ... and
that the sequence Z,, is a lexicographically strictly decreasing sequence.
Let @« =[0,1 + di,do,...] be the continued fraction of the irrational a,
and (s,) be the associated standard sequence.

1. Show that s2 is a factor of ¢, for every n > 1.

Since s, is primitive, every factor of ¢, of length |s,| excepted one is
a conjugate of s,. This is the singular word, denoted w,. For the
Fibonacci word, the singular words are 00, 101, 00100, 10100101, .. ..
2. Let p,, be the palindrome prefix of s,, of length |s,| — 2. Show that
Wy = GpPrGn, where a, = 0 if n is odd, and a, = 1 if n is even.

3. Show that the Fibonacci word is the product of 01 and its singular
words: f = 01(00)(101)(00100) - - -. (see Wen and Wen 1994b)

To compute all conjugates of s,, define sequences (wp,)o<n<n of words
parameterized by sequences of integers zg, ..., 2,—1 With 0 < zp, < dp 41
by w_1 =1, wp =0 and wpy1 = wzh“_zhwh_lwzh 0< h<n.

1. Show that w,, = C*(s,,), where k = Zz;é qhZh.

2. Show that one gets all conjugates exactly once. (see Chuan 1997)
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2.2.17

2.2.18

Section

23.1

Sturmian Words

Sturmian words and palindromes.

1. Let s be a Sturmian word. Show that F'(s) contains exactly one palin-
drome word of even length, and two palindrome words of odd length for
each nonnegative integer.

2. Show that conversely, if F'(s) contains exactly one palindrome word
of even length, and two palindrome words of odd length for each non-
negative integer, then s is Sturmian (Droubay and Pirillo 1999).
Sturmian words and decimation.

Let 1 < k < m be integers with m > 2. Let x be an infinite word with
infinitely many 0’s and 1’s. The transformation My, ,, deletes in x every
0 excepted those occurring at position congruent to £ modulo m. The
transformation Dy, ,,, operates in the same way on 1’s. For example,
M3 4, applies to

0100101001001010010100100101001001 - - -
keeps only the italicized letter 0, and gives the word
101110110111011011 - - -

1. Give a geometric argument (by cutting sequences) showing that
My, (s) and Dy (s) are Sturmian for Sturmian words.

2. Give explicit formulas for My, ,,,(Sq,p) and Dy (Sq,p) similar to those
of Problem 2.2.6.

3. Show that My, m © Dyom(c) = ¢ for every characteristic word ec.
4. Show that conversely, if M, . © Dp,m(s) = s for every m, then
the infinite word s is balanced. (Justin and Pirillo 1997, the explicit
formulas are in Parvaix 1998)

2.3

For integers m > 1,7 > 1, set

Wy = 0m711(0m+1 1)r+10m1(0m+11)r0m1
wl, = 0™1(0™1) 1™+ (0™ 1) 0™ 1L

In particular, w; ; = 1021021010%101 is a word of length 14. Any Stur-
mian word contains one and only one word from the set

Q= {wm,raw;n,raE(wm,r)aE(w;n,r) |m>1,r>1}.

1. Prove that a morphism f is Sturmian if and only if f is acyclic
and there exists a word w € Q such that f(w) is a balanced word (in
particular, an acyclic morphism f is Sturmian if and only if f(w; 1) is
a balanced word) (Berstel and Séébold 1994a).

2. Prove that no word of length less or equal to 13 has the above prop-
erty. (Richomme 1999b)
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2.3.2 Let C be the set of morphic Sturmian characteristic words. Prove that,
for any ¢ € C, the words Oc, 1¢,01c and 10c are morphic (Berstel and
Séébold 1994a).

2.3.3 Prove that a morphism f is standard if and only if f(0), f(1) and f(01)
are standard words (De Luca 1997b).

2.3.4 Let a = [0,1 + dj,ds,...] be the continued fraction of an irrational
number a. Define an infinite word d, over {0,1} by

0q = 0411203744 ...

Show that « is a Sturm number if and only if d, is purely periodic
(Droubay, Justin, and Pirillo 2001).

Notes

The history of Sturmian words goes back to the astronomer J. Bernoulli 11T
(Bernoulli 1772). The book of Venkov (1970) describes early work by Christoffel
(1875) and Markoff (1882). The first in depth study is by Morse and Hedlund
(1940). They also introduce the term “Sturmian”, more precisely Sturmian
trajectories, named after the mathematician Charles Frangois Sturm (1803-
1855), born in Geneva, and who taught at the Ecole Polytechnique in Paris
since 1840. He is famous for his rule to compute the roots of an algebraic
equation. As described by Hedlund and Morse, Sturmian words are obtained
in considering the zeroes of solutions u(x) of linear homogeneous second order
differential equations
y'+o(z)y =0,

where ¢(z) is continuous of period 1. If k,, is the number of zeros of u in the in-
terval [n,n + 1[, then the infinite word 01%00*10*z2 . .- is Sturmian (or eventually
periodic). The papers by Coven and Hedlund (1973) and Coven (1974) contain
many combinatorial properties (in particular the description of two-sided infi-
nite words of minimal complexity), and the paper by Stolarsky (1976) shows
the relation with continued fractions, fixpoints, and Beatty sequences. The last
twenty years have seen large developments, from the point of view of arithmetics,
dynamical systems and combinatorics on words. Surveys are by T. C. Brown
(1993), Berstel (1996), Ziccardi (1995), partly De Luca (1997a) and for finite
factors of Sturmian words Bender, Patashnik, and Rumsey (1994). Sturmian
words are known under many other names. Each reflects the emphasis on a par-
ticular property. Thus, they are called two-distance sequences (see e.g. Lunnon
and Pleasants 1992), Beatty sequences (de Bruijn 1989, 1981), characteristic se-
quences (Christoffel 1875), spectra (Boshernitzan and Fraenkel 1981, 1984, the
spectrum of a number « is the multiset {|[na| | n > 1} in the book Graham,
Knuth, and Patashnik 1989), digitized straight lines, cutting sequences and even
musical sequence in a special case (Series 1985).

Sturmian words are of lowest possible complexity. For an overview on com-
plexity of infinite words, see Allouche (1994). Two-sided infinite words of com-
plexity P(n) = n + 1 include strictly mechanical words (Problem 2.1.1, Coven
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and Hedlund 1973). There is a large literature on infinite words with slightly
more than minimal complexity (Coven 1974, Alessandri 1996, Cassaigne 1996,
Ferenczi 1995, Rote 1994, Hubert 1995, 1996, Rauzy 1988). An extension to 3
letters has been initiated by Arnoux and Rauzy (1991), Arnoux, Mauduit, Sh-
iokawa, and Tamura (1994), Castelli, Mignosi, and Restivo (1999) (the last paper
relates Arnoux-Rauzy words to central words over 3 letters). Several properties
have been extended to larger alphabets by Droubay et al. (2001). The property
of balance and Theorem 2.1.5 are due to Morse and Hedlund (1940), our expo-
sition benefits from Coven and Hedlund (1973). In particular, Proposition 2.1.3
is there. Theorem 2.1.13 is also from Morse and Hedlund (1940). The argument
of the proof of Lemma 2.1.15 is from Tijdeman (1996). Christoffel words were
investigated in Christoffel (1875). A systematic geometric study is in Borel and
Laubie (1991, 1993). Several propositions of Section 2.1.3 Propositions 2.1.18,
2.1.19, 2.1.23 are from Mignosi (1989). He uses rotations (in a slightly different
setting).

Mechanical words are also known as digitized straight lines. They have
been considered for a long time in pattern recognition, where the problem is
to compute the slope and the intercept of a finite Sturmian word as fast as
possible, to test whether a word is a finite Sturmian word and, if not, to get the
polygonal decomposition (see Bruckstein 1991, Dorst and Smeulders 1991 and
the literature quoted there, also Berstel and Pocchiola 1996). Words generated
by rotations are in fact more general than Sturmian words when the partition
of [0, 1] is defined independently from the angle of rotation (see Alessandri 1996,
Gambaudo, Lanford, and Tresser 1984, Iwanik 1994, Rauzy 1988, Sidorov and
Vershik 1993). Interval exchange is even more general, because the exchange
functions are piecewise rotations (see e.g. Rauzy 1979, Didier 1997).

Standard pairs were introduced in a slightly different form in Rauzy (1985).
His construction is known as Rauzy’s rules (see also Problem 2.2.2).

Theorem 2.2.4 and its corollaries are from De Luca and Mignosi (1994).
Theorem 2.2.11 is from De Luca and Mignosi (1994). It appears in a similar
form in Coven and Hedlund (1973), see also Pedersen 1988.

Lemmas 2.2.17 and 2.2.18 are from Parvaix (1997). Proposition 2.2.24 has
been proved by Fraenkel, Mushkin, and Tassa (1978), see also Brown (1993).
Theorem 2.2.31 is from Mignosi (1991), although the present proof is different.
The proof of Theorem 2.2.36 given here is from De Luca and Mignosi (1994).
There are several other proofs, in Mignosi (1991), Berstel and Pocchiola (1993).
The formula also appeared in Koplowitz, Lindenbaum, and Bruckstein (1990).

The proof of Theorem 2.2.37 by the factor graphs is from Berthé (1996). The
result is also known as the three distance theorem. There is a large literature
on this subject (see Berthé 1996 and the survey paper Alessandri and Berthé
1998).

Sturmian morphisms were investigated in Séébold (1991). The equivalence
(i) and (ii) of Theorem 2.3.7 is due to Mignosi and Séébold (1993), the third is
adapted from Berstel and Séébold (1994a). Proposition 2.3.11 is from Berstel
and Séébold (1994b). Theorem 2.3.12 appears in De Luca (1997¢). The results
of Section 2.3.4 are from Séébold (1998). The relation to automorphisms of
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free groups is from Wen and Wen 1994a. The proof given here is simpler than
the original one. For results on free groups and their automorphisms, see e.g.
Magnus, Karrass, and Solitar 1966 or Lyndon and Schupp 1977. Theorem 2.3.25
is from Crisp, Moran, Pollington, and Shiue (1993). Several weak versions of
this theorem were known earlier (see Brown 1993 for a discussion). Our proof
is adapted from Berstel and Séébold (1994a). A self-contained proof exists by
Komatsu and van der Poorten (1996). The characterization of Sturm numbers
is from Allauzen (1998). Several generalizations to non characteristic Sturmian
words were proposed (see e.g. Komatsu 1996, Arnoux, Ferenczi, and Hubert
2000).



CHAPTER 3

Unavoidable patterns

3.0. Introduction

In Chapter 1, avoidable and unavoidable sets of words have been defined. The
focus was then on the case of finite sets of words. In the present chapter, we turn
to particular infinite sets of words, defined as pattern languages. A pattern is a
word that contains special symbols called variables, and the associated pattern
language is obtained by replacing the variables with arbitrary non-empty words,
with the condition that two occurrences of the same variable have to be replaced
with the same word.

The archetype of a pattern is the square, aa. The associated pattern lan-
guage is L = {uu|u € AT}, and it is now a classical result that L is an avoidable
set of words if A has at least three elements, whereas it is an unavoidable set of
words if A has only one or two elements. Indeed, an infinite square-free word
on three letters can be constructed, and it is easy to check that every binary
word of length 4 contains a square. For short, we will say that the pattern aa
is 3-avoidable and 2-unavoidable.

General patterns can contain more than just one variable. For instance, afSa
represents words of the form wvu, with u,v € A% (this pattern is unavoidable
whatever the size of the alphabet, see Proposition 3.1.2). They could also be
allowed to contain constant letters, that unlike variables are never replaced with
arbitrary words, but this is not very useful in the context of avoidability, so we
will consider here only “pure” patterns, constituted only of variables.

There are in fact two separate notions of avoidability for patterns. The dif-
ference is in how the alphabet is specified. This may seem a minor point, but
it results in completely different problems. In Section 3.2, we study “absolute”
avoidability, where a pattern is said to be avoidable when there exists one alpha-
bet for which the corresponding pattern language is avoidable, and unavoidable
if the language is unavoidable whatever the size of the alphabet. This part of
the theory is well advanced, the main result being the existence of an algorithm
deciding whether a given pattern is avoidable or not.

In Section 3.3, on the contrary, the alphabet is fixed. This gives a hierarchy
of avoidability notions, depending on the size of this alphabet, and which is
nicely expressed by associating an avoidability indez to every pattern. Here, no
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general decidability theorem is known, but some bounds can be given, and an
exhaustive classification is possible in certain simple cases.

3.1. Definitions and basic properties

3.1.1. Patterns and avoidability

Let us first fix notation and give some formal definitions. Throughout the
chapter, we will mainly make use of two distinct alphabets. The first one, A,
which is always assumed to be finite, is the usual alphabet on which ordinary
words are constructed, and its elements, denoted a, b, ¢, etc., are just called
letters. The second alphabet, F, is used in patterns. Its elements are denoted
a, B, v, etc. and are called variables, and words in E* are called patterns.
This distinction is meant to help the understanding of the roles of the different
words used, but in some occasions it may be necessary to treat a pattern as an
ordinary word, which amounts to taking A = F.

The pattern language associated to a pattern p € E* is the language on
A containing all the words h(p), where h is a non-erasing morphism from E*
to A* that substitutes an arbitrary non-empty word to every variable. It is
denoted p(A1). A word w € A* is said to encounter the pattern p if it contains
an element of the pattern language as a factor, i.e. if Fact(w) N p(AT) # 0.
Equivalently, we say that p occurs or appears in w, otherwise w is said to avoid
p. These definitions also apply to infinite words w € A“.

For example, consider the pattern p = aaffa. The pattern language as-
sociated to p on the alphabet A is p(A") = {uwvvu | u,v € AT}. The word
1011011000111 contains p (through h:a — 011,38 +— 0), whereas the word
0000100010111 avoids p.

Given two patterns p and p', we can treat p’ as a word and check whether
it encounters p. If it is the case, we denote this by p|p’ (which can also be read
as “p divides p'”). The relation on E* defined in this way is clearly reflexive
and transitive, so it is a preorder on E*. When p|p’ and p'|p hold together, the
patterns p and p' are said to be equivalent, and this occurs if and only if they
differ by a permutation of E.

A pattern p is avoidable on A if there are infinitely many words in A* that
avoid p, i.e. if p(A") is an avoidable set of words in A*. This is equivalent,
by Koénig’s lemma (Lemma 1.2.3) to the existence of one infinite word in A“
avoiding p. If on the contrary every long enough word in A* encounters p, then
p is unavoidable on A.

If the cardinality of A is k& and p is avoidable on A, then p is said to be
k-avoidable. Obviously, changing the name of the letters has no influence on
the patterns that can be avoided (the situation would be different if we were
considering more general patterns where constants are allowed), therefore a
pattern is k-avoidable if and only if it is avoidable on any k-letter alphabet. A
pattern which is not k-avoidable is k-unavoidable.

In the above example, an infinite word avoiding p = aaffa can be con-
structed, as we shall see in Lemma 3.3.2. We then say that p is 2-avoidable. On
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the other hand, p is 1-unavoidable, as are all other patterns (every unary word
longer than p trivially contains p).

Finally, a pattern which is avoidable on A for some A will simply be called
avoidable, and a pattern which is unavoidable on A for every A will be called
unavoidable.

On several occasions we will need to delete certain variables from a pattern.
If V is a subset of E, we will denote by dy the morphism from E* to (E\ V)*
that maps a variable in V' to the empty word, and a variable in E \ V to itself.
In general, there is no link between the avoidability of p and that of dy (p).

3.1.2. Powers

The simplest class of patterns is certainly the class of powers of a single variable,
a™. The first two, a® = g, a! = «, are trivially unavoidable as they are
encountered by any non-empty word. The situation changes radically for n > 2,
with a® = aa being 3-avoidable, and o™ for n > 3 being 2-avoidable, as shown
by the next proposition.

Recall that the Thue-Morse infinite word ¢t = abbabaab. .. is the fixed point
of the binary morphism 8:a — ab,b — ba (see Example 1.2.9 in Chapter 1).
Moreover, let u = abcacbabcbac . . . be the fixed point of the ternary morphism
w:a = abe,b — ac,c— 0.

ProrosITION 3.1.1.

(i) The Thue-Morse infinite word t avoids the patterns aaa and afafa.
(ii) The infinite word u = abcacbabcbac. .. avoids the pattern aa

Proof. Property (ii) can be reduced to (i) using the following observation. Let
m:{a,b,c}* = {a,b}* be the morphism defined by n(a) = abb, 7(b) = ab, and
7(c) = a. Then n(u) = t. Indeed, it is easy to check that 7 o u = 6 o 7, hence
O(m(u)) = w(w(u)) = 7(u). By Proposition 1.2.8, 6 has a unique fixed point
beginning with a, so that w(u) = t. Now, if a square is found in u, i.e. if vv
occurs for some word v € {a,b}", then 7(vv) occurs in t. Moreover, the first
letter of w(v) is a, as well as the letter following m(vv) in ¢. But then we have
found an occurrence of afafa or of aaa (if 7(v) = a) in t.

Let us now prove (i). We proceed by contradiction, assuming that there is
an occurrence of aaa or affjaffa in t. Consider the shortest such occurrence,
wvuvw with u € AT and v € A*. It occurs for the first time in ¢ at position n.

Since aaa and bbb are not factors of ¢, [uvuvu| > 5. All factors of length 5
of t contain either aa or bb as a factor, hence uvuvu and therefore uvu contain
aa or bb. These words occur only at odd positions in ¢, hence the position of all
occurrences of uvu, among which n and n + |uv|, have the same parity. Thus
|uv| is even.

Let now u’ be the word formed by letters of 4 that have an even position in ¢,
and v similarly from v. Then u'v'u’v'u’ occurs in ¢, and |u'v'u'v'v'| < |Juvuvul.
If u' # &, this contradicts the minimality of wvuvu. If u’' = ¢, letters at odd
positions should be considered instead. [
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Since the infinite word u avoids squares, it is said to be square-free. Similarly,
since two overlapping occurrences of the same word contain one of the patterns
aaa or afafa, and the Thue-Morse infinite word ¢ avoids them, it is said to
be overlap-free.

Many other patterns are avoided by the Thue-Morse infinite word. This
can usually be proved with arguments similar to those used in the proof of
Proposition 3.1.1. One of these arguments is the presence of synchronizing
words, here aa and bb. It is fairly general and is used in most avoidability
proofs (see Section 3.3.2), as well as the general structure of the proof (consider
an occurrence with minimal length, then construct a shorter one to reach a
contradiction). The other argument, the use of parity, is specific to the Thue-
Morse word, or at least of infinite words generated by uniform morphisms, and
has to be replaced for other kinds of infinite words.

3.1.3. Sesquipowers

The only unavoidable patterns we have seen for the moment are the empty
pattern € and the pattern a. To construct other unavoidable patterns, we need
new variables.

With two variables a and (3, we can construct the pattern «f which is
obviously unavoidable (any word of length at least 2, regardless of the alphabet,
contains an occurrence of a3). More interesting is the pattern afa:

PROPOSITION 3.1.2. The pattern afa is unavoidable. More precisely, if the
cardinality of A is k, any word of length at least 2k + 1 contains an occurrence
of afa, and this bound is tight.

Proof. Let w € A* be a word of length at least 2k + 1. Then one of the letters
in A, say a, occurs at least three times in w. Write w = woawawsaws, and let
h(a) = a and h(f) = wiawsz. Then h:{a, f}* — A* is a non-erasing morphism
and h(afa) is a factor of w. If A = {ay,as,...,ar}, then ajajazas...agay is a
word of length 2k avoiding afa. ]

The above construction applies in fact to any pattern (although it is not so
easy to get a tight bound then).

ProOPOSITION 3.1.3. Let p be a pattern unavoidable on A, and ( a variable
that does not occur in p. Then the pattern p(p is unavoidable on A.

Proof. Let k = Card A. Since p is unavoidable on A, there is an integer [ such
that any word in A' contains p. This is a finite set with k! elements. Let now
N = k!'(I +1) + 1, and consider any word w € AY. The word w can be viewed
as the concatenation of k! + 1 words of length [, separated by individual letters.
Among these k! + 1 factors of length [, at least two are equal, say w = wovw; vws
with |v| = [ and |wy| > 1. There is a non-erasing morphism h: (alph p)* — A*
such that v = voh(p)vy, and letting h({) = viwivg, we find that h(p(p) is a
factor of w. ]
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If we apply recursively Proposition 3.1.3 starting with the empty word, we
can construct an infinite family of unavoidable patterns. Let oy, for n € N, be
different variables in E. Let Zy = ¢, and for all n € N, Z,,41 = Z,apZ,. The
patterns Z,, are called Zimin words, or sesquipowers.

ProprosITION 3.1.4. The Zimin patterns Z,, are all unavoidable.

Proof. Let A be a finite alphabet. We have seen that Zy = ¢, Z; = ayp,
and Z, = apaiag are unavoidable on A. If Z,, is unavoidable on A, then by
Proposition 3.1.3, Z,+1 = Z,a,Z, is also unavoidable on A (note that we are
allowed to apply Proposition 3.1.3 since «;, does not occur in Z,). Since all
sesquipowers Z, are unavoidable on any A, they are unavoidable. [

3.2. Deciding avoidability: the Zimin algorithm

3.2.1. Reduction of patterns

To show that avoidability is decidable, we shall prove that it is equivalent to a
property of irreducibility, defined below, which can itself be checked through a
recursive algorithm.

THEOREM 3.2.1. A pattern is avoidable if and only if it is irreducible

The proof will be carried out in the following two subsections. Let us first
define the reduction process.

Let p € E* be a pattern. The adjacency graph of p is the bipartite graph
AG(p) with two copies of E as vertices, denoted by EX and EF, and with an
edge between ¢ and npf if and only if ¢n is a factor of p. For instance, the
adjacency graph of afavyfBa, shown on Figure 3.1, has 6 vertices and 4 edges.

aL OéR
pL B
~E 7R

Figure 3.1. The adjacency graph of afSayfa

A non-empty subset F' of alphp is called a free set (for p) if there exists
no path in AG(p) linking a left-side vertex ¢ to a right-side vertex nf with ¢
and n in F'. To find all the free sets, one should first determine the connected
components of AG(p). In the example above, the adjacency graph has two
connected components, and two free sets, {a} and {3}.

Given a pattern p and a free set F for p, we say that p reduces in one step
to g by the deletion of F' if ¢ = dp(p) is the pattern obtained by deleting from

p all occurrences of letters in F'. We shall denote this fact as p EN q. We say
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that p reduces to q if there is a sequence of one-step reductions leading from p
to ¢, and denote this as p — ¢. Finally, a pattern p is reducible if it reduces to
the empty pattern, p — ¢, and p is irreducible otherwise.

In the above example, p = afayBa reduces to SvS by deletion of the free
set {a}, and B/ itself reduces to 7, which in turns reduces to e. The pattern
p is therefore reducible. However, if we had begun with the deletion of the free
set {#}, we would have obtained the irreducible pattern aaya. To prove that a
pattern is irreducible, it is therefore necessary to recursively explore all possible
sequences of one-step reductions and make sure that none of them leads to the
empty pattern. (Since the exploration of a potentially large tree is needed, one
should not expect this algorithm to be very efficient in practice.) This recursive
algorithm will be called the Zimin algorithm.

It should be noted that it is sometimes necessary to delete free sets having
more than one element, for instance for the pattern p = afaya’fadafa’va' fa’
where all deletions of a free singleton lead to an irreducible pattern, while p can
be reduced to the empty pattern starting with the deletion of the free set {c, a'}.

We shall need some additional notation concerning adjacency graphs. Given
a pattern p and a set X of vertices of AG(p), we denote by C(X,p) the set
of vertices of AG(p) that are in the same connected component as an element
of X, by Cr(X,p) the set of variables ¢ € E such that ¢ € C(X,p), and by
Cr(X,p) the set of variables ¢ € E such that ¢ € C(X,p). If F is a free set
and we apply these definitions to the set F'X of left-side vertices associated to
F, then we obtain the two sets C(F¥,p) and Cr(F¥,p). The fact that F is a
free set can then be expressed as F' C Cr(FE,p)\ Cr(FE,p).

3.2.2. Reducible patterns are unavoidable

Let us first prove the easier direction of Theorem 3.2.1: if a pattern is reducible,
then it is unavoidable. This is a particular case of the following lemma, taking
q = €, the empty pattern being obviously unavoidable.

LEMMA 3.2.2. Ifp = ¢ and q is unavoidable, then p is also unavoidable.

Proof. 1t suffices to prove Lemma 3.2.2 in the case where p reduces to ¢ in
one step by deletion of a free set F', the general case being then deduced by
induction on the number of steps.

We shall prove that p is unavoidable on any alphabet A by induction on the
size of A. For Card A = 1 the assertion is obviously true. Assume now that
A = A'U {a} and that p is unavoidable on A’. Let L = A'" \ A"*p(4'T)4""
be the set of non-empty words on A’ avoiding p, which is finite by assumption,
and M = aA* \ A*p(AT)A* be the set of words on A avoiding p and starting
with a. Each word of M which is not a power of a can be represented as a
non-empty product of words in N = {a*wa’ |w € L,0 < i < |p/,0 < j < |p|},
which is obviously finite. In other terms, if we view N as a new alphabet,
M C i(N*)Ua", where i is the morphism from the free monoid N* to A*
mapping an element of N (viewed as a letter) to itself (viewed as a word).
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Let ¢ be a variable that does not occur in p, and E' = E U {(}. Then ¢(
is an unavoidable pattern and every sufficiently long word on N contains an
occurrence of this pattern. Consequently, for any w € N* long enough, there is
a non-erasing morphism f from E'* to N* such that f(q() is a factor of w. For
a variable &, f(£) € N hence i(f(£)) € aA™. We now define a new morphism
g from E* to A* as follows:

L. g(&) =i(f(&) if £ € E\ (CL(F¥,p) UCR(F*,p)),
2. (&) = a7 'i(f(€)) if £ € Cr(F,p) \ CL(F",p),

3. 9(&) =i(f(©)aif £ € CL(F*,p) \ (Cr(F*,p) UF),
4. g(&) = a ti(f(§))aif & € CL(F*,p) N Cr(F*,p),
5. g(§)=aif € F.

Note that the five cases are indeed exclusive of each other, and that this defines
a non-erasing morphism. Moreover, as we shall see below, g(p) is a factor of
i(f(q¢)). Consequently, i(w) encounters p and cannot be in M, which means
that M is finite and that p is unavoidable on A.

It remains to show that g(p) is a factor of i(f(q¢)). We shall prove by

induction on k, 1 < k < |p|, that if py, is the prefix of length k of p and py, EN k.,
where g, is a prefix of ¢, then rg(px) is equal to i(f(qr))sk, where r is a or &
(depending on whether the first letter of p is in Cr(F*, p) or not) and sy, is a or
¢ (depending on whether the last letter of py is in Cz(F*,p) or not). For k =1,
this is obvious from the definition of g. Assume that rg(pr) = i(f(qx))sk, and
let pr+1 = prn. The last letter of py is denoted by &, so that there is an edge
from ¢F to ¥ in AG(p). We have to show that rg(prr1) = i(f(qre1))Sket,
with sg11 = a if n € CL(FL,p), spp1 = € otherwise. Writing rg(prr1) =
rg(oi)g(n) = i( (@))skg(n), it reduces to seg(n) = i(f())ssr if 1 & F, o to
skg(n) = sk41 if n € F. This is again obvious from the definition of g, observing
that s; = a occurs if and only if € Cr(F*,p), since this is equivalent to
ey (FL,p). ]

3.2.3. Irreducible patterns are avoidable

We now turn to the other direction of Theorem 3.2.1: if a pattern is unavoidable,
then it is reducible. This part of the proof relies on several lemmas.

LeEMMA 3.2.3. Suppose that f(q) is a factor of p for some non-erasing mor-
phism f of E* (so that q divides p), and that F is a free set for p. Let F' be the
set of variables € such that f(§) € F*. Then F' is a free set for q. Moreover, if

P LN p' and q LN q', then f'(q') is a factor of p', where f' = dp 0f|E\F, is the
non-erasing morphism from (E \ F')* to (E \ F)* mapping a variable £ to the
pattern obtained by deleting the elements of F from f(§).
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Proof. Given a variable £ € E, we denote by f;(§) the first letter of f(§) and
by f2(&) the last letter of f(&). If &n occurs in g, then f2(&)f1(n) occurs in p.
Mapping &F to fo(€) and &% to f1(€)F, we see that AG(q) is mapped to a
subgraph of AG(p). If there were a path from ¢¥ to n® in AG(q), with ¢ and
n in F', then there would be a path from fo(&)” to fi(n)f in AG(p), which is
not the case since f»(£) and fi(n) are elements of the free set F'. Therefore F'
is a free set for ¢, and the rest of the lemma is obvious. n

Observe that if £ € F' occurs in ¢, then f(£) must have length 1, since two
variables of F' cannot occur consecutively in p.

LEMMA 3.2.4. Suppose that p, p', q are patterns such that p = p' and f(q)
is a factor of p for some non-erasing morphism f. Then there exists a pattern
¢' and a non-erasing morphism f' such that ¢ = ¢' and f'(¢') is a factor of p/,
with the additional condition that f(alphq \ alphq’) C (alphp \ alphp')* (if a
variable £ is deleted from q, then f(§) contains only variables deleted from p).

Proof. This is just the iteration of Lemma 3.2.3, and can be proved by induction
on the number of reduction steps from p to p'. If p = p’, then the result is
obvious, with ¢/ = ¢ and f' = f. Assume now that p = p" LN p' and that
we have constructed ¢” and f" such that ¢ = ¢", f"(¢") is a factor of p", and
f(alphq \ alphg¢) C (alphp \ alphp”)*. Then apply Lemma 3.2.3 to p" and
q", to construct a free set F' for ¢", a pattern ¢ such that ¢" i ¢ and a
non-erasing morphism f' such that f'(¢') is a factor of p’ and f"(F') C FT.

* " F ’

p — b — b

1 fr frr

* 1" F' '

q — q — q
The additional condition also holds, since alph ¢\ alph ¢’ = (alph ¢\ alph¢")U
F', with f(alphq \ alphq”) C (alphp \ alphp”)* C (alphp \ alphp’)* and
Sr(f"(F")) C dp(FT) C {e}, hence f(F') C (alphp \ alphp')*. n

LeEmMA 3.2.5. Let ¢ = dy(p) be a pattern obtained from another pattern p
by deleting the variables in a set V' (not necessarily a free set), Suppose that
there is a pattern r and a non-erasing morphism f such that r = q and f(p)
is a factor of r, and that £ € V if and only if f(§) € (alphr \ alphgq)*. Then
p—q

Proof. Apply Lemma 3.2.4, with r and ¢ playing respectively the roles of p and
p'. There exist a pattern ¢’ and a non-erasing morphism f' such that p = ¢/
and f'(¢') is a factor of ¢, with f(alphp \ alphq’) C (alphr \ alphg)*. Then
alphp \ alph¢’ C V, and dyv(q¢') = dv(p) = g, hence |¢'| > |g|- On the other
hand, since f'(¢') is a factor of ¢, |¢'| < |g|. We therefore have |¢| = |¢|, and
this is only possible if ¢ = ¢’. We thus have p = ¢. L]
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Let us define, for any positive integer k, a morphism ¢ on the 4k-letter
alphabet Ay = {ag,a1,...,025-1,b0,b1,...,b2p—1}. For 0 < i < 2k — 1, set
or(a;) = aobjarbiti - .. ap—1bipr—1 and @i (b;) = arbiari1biv1 - .- a2p—1bipr—1,
where indices are taken modulo 2k. The morphism ¢, is uniform with length
2k. Using the morphism ¢y, we can construct an infinite word w®) = % (ap),
the fixed point of ;. We shall now prove that any irreducible pattern is avoided
by w®) for some k.

LEMMA 3.2.6. Let v be a factor of length at least 2 of w¥). Then there is an
integer i, 0 < i < 4k — 1, and a letter x € Ay such that, whenever v occurs at
position n > 0 in w*), one has
(i) n =14 (mod 4k),
n

(ii) the letter at position n' = [ %] in w® is w

® g
Proof. Let us assume that |v| = 2, the general case follows trivially.

Observe that the a’s and b’s alternate in the images under ¢y, hence in w(®).
Consequently, the letter following an occurrence of ¢y (a;) is ag, and the letter
following an occurrence of ¢y (b;) is ag, so that the letters at even positions in
w® cycle periodically in the set {ag,ay,...,as 1}, i.e. w;];) = a;, where the
index in a; is taken modulo 2k. In other terms, the letters a; are synchronizing
letters that indicate the position in w*) modulo 4k. Since any factor of length
2 contains at least one letter a;, the position of an occurrence of such a factor
is unique modulo 4k.

If v occurs at position n, then it starts within the image of z = wgf). It is
either a factor of ¢ (z), or is formed with the last letter of ¢ (z) followed by
the first letter of the image of the next letter, that is az or ag. There are exactly
8k? such words of length 2, all different. Therefore  is uniquely defined by v,
and can be computed using the following rules, where all indices are modulo
2k:

o if v =a;b; with 0 <¢ <k —1, then z =a;_,,

e if v =bja;41 with 0 <¢ <k —1, then z = a;_;,

o if v =q;b; with k <7 <2k —1, then = bj 4,

e if v =bja;41 with £ <4 <2k —1, then x = bj ;.

In other terms, the letters b; are recognizing letters that, together with a neigh-
boring a;, allow to reconstruct the word one particular factor of w®) comes
from under the action of ¢y. ]

LEMMA 3.2.7. Let p be a pattern, k an integer such that 2k > Card alphp,
and v a factor of w*) such that vk (v) encounters p. Then there is a pattern q

such that p = q and v encounters .

Proof. Let h be a non-erasing morphism such that h(p) is a factor of yg(v).
According to Lemma 3.2.6, to each letter x € A are associated 2k words of
length 2 that recognize ¢ (x). Since 2k > Card alph p and these 2k words end
with different letters, at least one of these words ends with a letter which is not
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the first letter of any h(§) with £ occurring in p. Let us choose one such word

d, and call it the decisive word for x. By construction, whenever d, occurs in

h(p) it occurs within some h(§).

Let V be the set of variables ¢ such that h(£) contains no decisive word,
and ¢ = dy(p). We define a non-erasing morphism A’ from (E \ V)* to A* by
W(§) = z122 ... 2y, where d,,, dy,, ..., d,,, are the decisive words occurring in
h(§), in the order in which they occur. Since each decisive word corresponds to
exactly one letter in v, and consecutive decisive words correspond to consecutive
letters, the word h'(q) is a factor of v, i.e. v encounters g.

Note that V' is not necessarily a free set, so we have not yet proved that
p = q. For this we shall define a morphism f such that f(p) = ¢ and apply
Lemma 3.2.5. The morphism f, from E* to (E U A)* (elements of A being
treated as additional variables), is defined as follows:

(i) if £ € V, then we set f(&) = h(§),

(ii) if h(&) does not contain ag or ag, but contains a decisive word d, (only
one decisive word may occur in this case), then ¢y (z) = a;v1h(€)ve, with
i € {0,k} and vy,v € A*, and we set f(&) = h(&)vaévr h(E),

(ii) if &€ ¢ V and h(§) = vigr(w)ajvs with j € {0,k} and vi,v0,w € A%,
with w of maximal length, then let a; be the first letter of ¢i(w)a;, z1
be the first letter of h'(£), and x2 be the last letter of h'(£). We set
F(&) = viv]&vhva, where v] = € if the first decisive word d,, of h(§) occurs
in v1a;, v] = pr(z1) otherwise, and similarly vl = € if the last decisive
word d., of h(€) occurs in ajve, vh = (aj4x) *¢r(22)a; otherwise.

Deleting the elements of A from the pattern f(p), one obtains exactly ¢, since
f(€) € A* when £ € V and f(&) € A*¢A* otherwise: d4(f(p)) = dv(p) = q.
Moreover, two variables £; and & consecutive in g are separated in f(p) by the
word vy a;vs € A*, where a;14v; is the image by ¢y, of the last letter in A'(&;) and
a;vs is the image by ¢y of the first letter in A'(£;). This allows to reduce f(p)
as follows. First, let Fo = {bo,b1,...,bax—1}. This is a free set for f(p), since
an element of Fy can only be followed by an element of E U {ag,a1,...,a2-1},

which in turn can only be preceded by an element of Fy. Thus f(p) B Po,
where the pattern py contains only variables in E and letters a;, occurring
in sequences a1az ...a—10g0k41 - .. A2—1 O Q41042 ... A2—10007 ... Ap—1 be-
tween two variables in E. Then F; = {a1, a1} is a free set for pp, allowing the
reduction po 53 p1. We continue deleting F; = {a;, a4, } for i from 2 to k — 1,
until we get a pattern py_1 € (E U {ag,ar})*, in which the elements of E and
F}, = {ao,ar} alternate, so that F}, is again a free set and pj_1 By q.
Consequently, f(p) = ¢ and the pattern r = f(p) satisfies the hypotheses
of Lemma 3.2.5, so that p = q. m

LEMMA 3.2.8. If the infinite word w'*) encounters a pattern p containing less
than 2k distinct variables, then p is reducible.

Proof. There is a positive integer m such that ¢}*(ao) encounters p. Applying
Lemma 3.2.7, we obtain a pattern p; such that p - p; and cpZ“l (ap) encounters
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p1. This process can be repeated since the condition 2k > Cardalphp; still
holds (the number of variables involved cannot increase), yielding patterns p;
for 1 < i < m such that p = p; and ¢}" “(ag) encounters p;. But then ag
encounters p,,, which means that p,, is either a single variable or the empty
pattern, hence p is reducible. [

Proof of Theorem 3.2.1. By Lemma 3.2.2, if p is reducible, then p is unavoidable.
Conversely, assume that p is unavoidable. Then for all k, in particular for

k= [M], w®) encounters p. By Lemma 3.2.8, p is reducible. n

COROLLARY 3.2.9. The infinite word w®) avoids all avoidable patterns with
at most 2k — 1 variables.

Proof. If w®) encounters a pattern p with at most 2k — 1 variables, then by
Lemma 3.2.8 p is reducible, hence by Lemma 3.2.2 p is unavoidable. [

COROLLARY 3.2.10. If all variables that occur in a pattern p occur at least
twice, then p is avoidable.

Proof. If p is unavoidable, then it reduces to a single variable «. But then « is
a variable that occurs only once in p. [

COROLLARY 3.2.11. Let p be a pattern with n variables. If |p| > 2™, then p is
avoidable.

Proof. We prove by induction on n that if p is unavoidable, then |p| < 2", For
n = 1, the result holds according to Proposition 3.1.1. Assume that it holds for
n, and consider an unavoidable pattern p with n + 1 variables. According to
Corollary 3.2.10, there is a variable a that occurs only once in p. Then p can
be written as p = p;aps2, where p; and p, are patterns with at most n variables,
which are both unavoidable since they divide p. By the induction hypothesis,
p1 and py have length at most 2 — 1, hence p has length at most 27! — 1. [

3.3. Avoidability on a fixed alphabet

3.3.1. The avoidability index

As shown by the case of the square aa, an avoidable pattern need not be avoid-
able on a 2-letter alphabet, in other terms the same pattern can be 2-unavoidable
but k-avoidable for some larger k. This leads to define the avoidability index of
a pattern p € E*, u(p). It is the smallest integer k such that p is k-avoidable,
or oo if p is unavoidable. Clearly, 2 < u(p) < oo since no pattern is 1-avoidable.
In some sense, the avoidability index of a pattern measures how easy it is to
avoid this pattern. With the preorder on E* defined by divisibility, the function
p: E* — N U {oo} is non-increasing: if p|q, then u(p) > u(q).
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Contrary to the situation of Section 3.2 where the size of the alphabet did not
matter, there is no known algorithm to determine the status of a given pattern,
that is to compute its avoidability index. Even for very short patterns the value
of u(p) may be unknown. For instance, it is not known at the time of writing
whether u(aaB8v7) is equal to 2 or 3, although there is some experimental
evidence that the index is 2.

Therefore, the results that we shall present here are only partial. They are
of two kinds: computations in a simple case where patterns can be completely
classified according to their avoidability index, and bounds in the general case.

3.3.2. The binary case

We will now restrict to a particular class of patterns, namely binary patterns, i.e.
patterns with at most two different variables. In this section, we set E = {«, £}.

Let us first review the unary case, studied in Section 3.1.2. The empty
pattern and the pattern reduced to one variable are unavoidable: u(e) = p(a) =
0o. Squares are 3-avoidable but 2-unavoidable, hence p(a«) = 3. Finally, cubes
and larger powers are 2-avoidable, hence u(a*) = 2 for k > 3.

The fact that aa is a 3-avoidable 2-unavoidable pattern gives us readily some
information about binary patterns. Only a finite number of binary patterns are
3-unavoidable. Indeed, a pattern which is divisible by aa must be 3-avoidable,
and since aa is 2-unavoidable, there are only finitely many binary patterns
which are not divisible by aa, namely €, a, 8, a8, pfa, afa, and faf. All
of these are in fact unavoidable, which implies that the avoidability index of a
binary pattern can only be 2, 3, or oco.

The remaining question is to distinguish patterns that have avoidability
index 3 from patterns that have avoidability index 2.

LEMMA 3.3.1. The binary patterns aa, aafl, aafa, affa, aaff, afaf,
aafaa, and aafaf have avoidability index 3.

Proof. Since all these patterns are divisible by aa, they are 3-avoidable. A
simple backtracking algorithm is sufficient to check that they are 2-unavoidable.
The results are summarized in the following table, where w is an example of a
binary word avoiding p of maximal length, and [V is the total number of binary
words avoiding p, including the empty word and unary words.

D w |w] N
aq aba 3 7
aafl  |abab 4 13
aafa |abababaaa 9 91
afpfa |aabbbaaabdb 10 93
aaff |abaaabaaaba 11) 147
afaf |abaabbaaabbbaabbab 18| 477
aafaa|abaaaabbbbabababab 18| 1699
aafaf ababababaabbaaabbbaaaabbbbaaabbbaabbab| 38(26241
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LEMMA 3.3.2. The binary patterns aaa, afafa, afaffa, aaBaBf, afaas,
and aafBa have avoidability index 2.

Proof. According to Proposition 3.1.1, aaa and afafa are avoided by the
Thue-Morse infinite word, and therefore 2-avoidable.

The two patterns afafBfa and aafBaff are avoided by the infinite word
u = v¥(a), where v is the uniform morphism that maps a to aab and b to bba.
The proof is similar to that of Proposition 3.1.1, so we will only summarize it.
Assume that the pattern p is not avoided by the infinite word wu, and consider
an element h(p) of Fact(u) N p(A™) of minimal length and the position n of its
first occurrence in w. Then discuss on the value of n, |h(a)|, and |h(3)| modulo
3. In each of the 27 cases, either a contradiction is immediately reached, or an
earlier or shorter occurrence of p in u can be constructed. Some preliminary
observations on the structure of u, such as the fact that all squares that occur in
u have a length multiple of 3, except aa and bb, can greatly reduce the number
of cases that actually need to be considered.

The pattern afaaf is avoided by the infinite word v = ¥(u*(a)), where
e is the ternary morphism defined in Proposition 3.1.1 (u(a) = abe, u(b) =
ac, p(c) = b) and ¢ maps a to aaa, b to bbb, and ¢ to ababab. We know
by Proposition 3.1.1 that u“(a) is square free. The first step is to prove a
synchronization lemma for ¢ applied on p*(a) : if z is a factor of v of length 7
or more, then there exist a unique triple (s, y,p) and two letters (not necessarily
unique) d and e such that dye is a factor of u“(a), s is a proper suffix of ¥(d),
p is a proper prefix of 1(e), and x = s¢(y)p. Then this synchronization lemma
can be used to prove that the only squares that occur in v are a2, b%, (aa)?,
(ab)?, (ba)?, (bb)?, and (baba)?. Now, assume that h(aBaaf3) occurs in v (there
is no need to consider a minimal occurrence here). Then h(«a) is one of a, b,
aa, ab, ba, bb, or baba. If h(af) has length 7 or more, then the synchronization
lemma can be applied to it and it can be written as si(y)p, leaving finitely many
possibilities for s, p and h(a). Otherwise, there are finitely many possibilities
for h(a) and h(f5). In each of the cases, either the word h(afaaf) contains a
small factor that obviously cannot occur in v, or unapplying v yields a square
in p¥(a).

The pattern aaffa is avoided by the infinite word v = x(u“(a)), where u
is as above and y maps a to aa, b to aba, and ¢ to abbb. The proof is similar.
Here the synchronization lemma applies to words of length 5 or more, and the
length of squares is not bounded. m

THEOREM 3.3.3. Binary patterns fall in three categories:

e The 7 binary patterns €, «a, 8, af3, fa, afa, and faf are unavoidable
(their avoidability index is 00).
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e The 22 binary patterns aa, B3, aaf, aBf, Baa, BBa, aafa, aaB,

afaa, aaB, affa, faaf, faba, faBB, Blac, BBaB, aafac, aafaf,
afafB, fabaa, fBafa, and BBaBf have avoidability index 3.

e All other binary patterns, and in particular all binary patterns of length
6 or more, have avoidability index 2.

Proof. All binary patterns of length 6 are divisible by a pattern mentioned in
Lemma 3.3.2, or by its mirror image: they are therefore 2-avoidable, and have
avoidability index 2. Consequently, all larger patterns also have avoidability
index 2. There remains a list of 29 patterns, 7 of which are unavoidable. The
other 22 patterns are the patterns mentioned in Lemma 3.3.1, or their mirror
images, up to a renaming of the variables. They all have avoidability index
3. [

3.3.3. A bound on the avoidability index

In our proof of Theorem 3.2.1, we constructed an infinite word that avoids a
given irreducible pattern p. The construction uses a number of different letters
that depend only of the number of variables in p. Thus, we have a bound
(probably far from optimal) on u(p) as a function of Card(alph p).

THEOREM 3.3.4. If p is an avoidable pattern, then u(p) < 4 [
2 Cardalphp + 4.

Card alph p+1
Cordaphpit] <

Proof. Let k = [%] so that 2k > Cardalphp. By Corollary 3.2.9,

the infinite word w®) avoids p. Since w® is defined over an alphabet of 4k
letters, p is 4k-avoidable. [

The proof is so short because all of the work has already been done in
Section 3.2.3.

3.3.4. A bound on the length of 2-unavoidable patterns

We have seen in Theorem 3.3.3 that there are only finitely many 2-unavoidable
binary patterns, namely that all binary patterns of length 6 or more are 2-
avoidable. We shall now try to generalize this to a bound for patterns with
more variables.

For n,k > 1, let us denote by £, the smallest integer [ (or oo if no such
integer exists) such that every pattern of length [ with n variables is k-avoidable.
We extend the notation to £ = oo with the convention that “co-avoidable”
means “avoidable”. Clearly, £, < £ if n <n' and k > K'.

We know already that £,; = oo since no pattern is l-avoidable. Theo-
rem 3.3.3 implies that £ = 6 and ¢ = 4 for k > 3, and Proposition 3.1.1
implies that ¢1o> = 3 and ¢y = 2 for £k > 3. The value of £, is given by
Corollary 3.2.11: £, = 2™.
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If we are able to prove that all avoidable patterns on n variables are IN,-
avoidable, then we can deduce that £,;, = 2" for all & > N,. According to
Theorem 3.3.4, this holds for N,, =4 ["T'H]

We shall now prove that £, is finite for all £ > 2. Obviously, it is sufficient
for this to bound £,5 for all n.

THEOREM 3.3.5. For alln > 1, £,> < 200.5™.

To prove Theorem 3.3.5, we have to construct a binary infinite word that
avoids long enough patterns. We shall do so by starting with an infinite word
wy, € A¥ on a N,-letter alphabet A = {ag, a1, ...,an,_1} avoiding all avoidable
patterns on n variables, then recoding it on the binary alphabet A" = {a, b} with
a morphism g: A* — A"".

Such words w,, have been constructed in Section 3.2.3, where we called them
w® | with k = % = ["T“] However, the construction of g is independent of
the choice of w,,, so any other definition could be used instead for w,,.

Let n > 1, and E = {a;,a9,...,a,}. Assume that By, Bs, ..., B,_; are
n — 1 fixed integers greater than 1. Let

M =T, +2Bn-1 + Y iBuji-i
=2

where T, = 1(N, — 1)(n + 1)(n + 2) + n® + 2n + 4, and let P be the set of

patterns p € E* of length at least M such that, for all ¢ between 1 and n — 1,

every factor ¢ of p of length B; contains at least i 4+ 1 distinct variables.
Consider the morphism

g: A* — A"
a; — aBr-1tlpntiz pisobi 2, obiz,_blab? TV tig

where z; = (ab?)Br—i—1gpntilNn,

Agsume that p is a pattern in P that is not avoided by the infinite word
g(wy). Then there is a prefix y of w,, a non-erasing morphism ¢: E* — A'"
and words t1,t, € A" such that g(y) = t10(p)t2.

Let E' be the set of variables & € E such that ¢(¢) contains aa. The
value of M has been chosen so that M = max(|g(a;)|) + Bn-1 + 1. Since
lo(p)| > |p| > M, the word ¢(p) contains at least one occurrence of aP»-112 at
the boundary between two images of letters under g. Then either the set E' is
non-empty, or there are B, 1 consecutive variables in p that are mapped to a by
. In the latter case, since any variable in F occurs at least once in any factor
of length B,_; of p, the morphism ¢ maps all variables to a and ¢(p) = al?l,
which is obviously impossible since a is not a factor of g(w,).

Let us now define a new function h: £ — {0,1,...,n+ (n+ 1)N,, — 1}* in
the following way. For any £ € E, ¢(£) can be written in the form ¢(§) =
boabiia. .. ab’m, with 0 < j; <n+ (n + 1)N,, and we set h(£) = jijo ... jm_1,
leaving out jo and j,,. Note that h(£) can be the empty word if m < 1, but
that h(&) is never the empty word when & € E'.
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A cut of g is a pair of words (uy,uz) in A" such that ujus = g(a;) for some
i and there exist p1,p2 € E* and s1, 52 € A* with p1p2 = p, t1(p1) = g(s1)ur
and @(p2)ta = uag(s2). A cut is called an initial cut when h(§) = e for any
variable £ in p;.

If w is a factor occurring only once in all g(a;), we say that u is cut if there
exists a non-initial cut (viu1,usvs) where u; and us are non-empty words such
that ujus = u.

LEMMA 3.3.6. There exists an integer v with 0 < r < n such that for all
0 < i< Ny, ab"tNetig is not cut.

Proof. Let r be the smallest non-negative integer such that the word h(¢) does
not end in r for any variable £ € E. Since E has n elements, r < n. We shall
prove that ab”t™™»*tig is never cut when 0 < i < N,,.

Note first that the word ab"t"V»*igq occurs exactly once in g(a;) and not in
any g(a;) with j # i. Indeed, it occurs as a factor of aB»-111p"+iz; if r = 0, of
zpbizp g if 1 <7 <n—1,oras asuffix if r = n.

Suppose that for some i, ab"*"N»*iq is cut. Then there is a non-initial cut
(viug, usvs) with uy = ab?, upy = b"*"Noti"ia, viugusvs = g(a;), pip2 = p,
tip(p1) = g(s1)viug and @(p2)ta = u2v2g(s2). Since this cut is non-initial,
there exist variables &, &1, ..., &y such that p; ends in && ... &, h(&) # €
and h(§) = ¢ for 1 <1 < m. In particular, for 1 <1 < m, p(§) contains at
most one occurrence of a.

Assume first that » = 0. Then ¢(&&...&yn) is a suffix of t1p(p1) =
g(s1)aB—1H1pi. If m > B, 1, then the factor & ..., of p must contain n
different variables, which contradicts the fact that E’ is non-empty (and of
course, h(§) # ¢ when € € E'). Therefore m < B,—1, and ¢(&; ... &) can take
at most B,_; — 1 of the a’s in a®»~1*1. Consequently ¢(&) ends in aa or aab’’,
and h(&) ends in 0, a contradiction with the definition of r.

Assume now that r = n. Then for all £ in E, h({) is non-empty and ends
in an integer between 0 and n — 1. Necessarily m = 0 and t;¢(p1) ends in
ab?t(n=DNatighi hence h(£) ends in n+ (n — 1) N, +i, which is not an integer
between 0 and n — 1.

Finally, assume that 1 < r < n — 1. Then ¢1¢(p1) = g(s1)viu; ends in the
word ab™t(r=DNn (gh")Br—r=1qhi, Let F be the set of variables ¢ such that h(€)
is either empty or ends in a value larger than or equal to n. The cardinal of F'
is at most n — r, hence p does not contain more than B,,_,._; — 1 consecutive
variables in F. In particular, m < B,_,_1. If m < B,,_._1 — 1, one finds that
©(&) ends in ab”ab’’, hence h(&) ends in r, a contradiction with the definition
ofr. f m = B,,_,_1 — 1, then either ¢({) ends in ab"ab’’ as above, or it ends
in ab"t(r—UNagpi" and & € F, so that we have B,, ,._; consecutive variables
in F', which is again excluded. m

LEMMA 3.3.7. The infinite word g(w,,) avoids all patterns p € P.
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Proof. Assume that p is a pattern in P that is not avoided by g(w,). Let r
be as given by Lemma 3.3.6, and ¢ be the morphism from E* to A* defined
by ¢ = m o h, where m(n + rNy, + i) = a; and 7(j) = € otherwise, and h is
naturally extended to a morphism. Then ¢ (p) is a factor of y (recall that p(p)
is a factor of g(y)). Indeed, let first p’ be the suffix of p starting with the first
occurrence of a variable £ such that h(§) # €. Obviously ¥(p') = ¢¥(p). Any
occurrence of a letter a; in y such that g(a;) falls inside ¢(p') is marked by the
word ab”t"N=tig which is not cut (not even by an initial cut, thanks to the
definition of p’). This word corresponds therefore to exactly one occurrence of
a; in ¢ (p"). Conversely, each letter in ¢ (p') corresponds to one occurrence of a
marker ab"t"Nntig in o(p'), hence to a letter a; in y.

Let ¢ = dv(p), where V is the set of variables that are mapped to € by
1. The pattern ¢ is not empty. Indeed, cut p into three approximately equal
parts, p = pip2ps. Since |p| > M > 4B,,_1, one can take |p;| > B,_ for each
J =1,2,3,i.e. p; must contain at least one occurrence of each letter in F. In
particular, there is a letter in E' in p;, which implies that [p’| > |paps|. There
is also a letter in E' in ps. Since |@(p)| > |p| > Bn—1 + 2, there is at least one
variable & such that ¢(§) contains at least one b, and this variable occurs at
least once in py. Consequently, p; and ps overlap two different blocks aPr-112,
and between them there is some g(a;), which occurs completely within ¢(p'),
except maybe for some power of a at the beginning, and which contains one
marker ab"t"Ntiq so that ¢ (p') = 1(q) is not empty.

Since |p| > M > 4B,,_1, p contains at least four occurrences of each variable
in F, so that ¢ contains at least four occurrences of each variable that occurs in
it, and is therefore avoidable according to Corollary 3.2.10. The infinite word
g(wy) contains 1 (q) as a factor, in contradiction with the fact that g(w,) avoids
all avoidable patterns on at most n variables. [

Proof of Theorem 3.3.5. Assume that we have proved that for i < n, every
pattern of length S; with ¢ variables is 2-avoidable. Let By = Si, By = 53,
..y, Bh—1 = Sp—1 and apply Lemma 3.3.7. Then a pattern p of length M with
n variables is either in P, in which case it is avoided by g(w;,) according to
Lemma 3.3.7, or for some ¢ < n it contains a factor ¢ of length B; with at most
i variables, which is itself 2-avoidable by the induction hypothesis.
We just have proved by induction that every pattern of length S,, with n
variables is 2-avoidable, where (S;,) is the numeric sequence starting with S; = 3
and satisfying the recurrence relation

Sp =T +25,_1 + Z iSrH—l—i .

=2

Let A > (1 —2*%)71, so that K = (1 — %)72 +2-1<1,and

o 3 1 T,
TN TR R O

Then S,, < CA* foralln > 1,since 3 =5; < Chand, if S; < CAiforl1 <i<mn,
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then

T, 2 o .
< n n “ -y1—1¢
S < CA (cm AJr;m )

n
with 2+ > iMN™ < K and J5 <1- K.

=2

Since (1 —27%)7" ~ 4.847, we can take A = 5. Then, with N, = 4 [2:L],
we find that C' < 200. Note that the actual value of N, influences only the

constant C, as long as N,, = o(n™2\"). "
Problems

Section 3.1

3.1.1 A set of patterns P C E* is said to be avoidable on A* if there exists

3.1.2

*3.1.3

an infinite word in A“ that avoids all elements of P. P is said to be
k-avoidable if it is avoidable on a k-letter alphabet, and avoidable if it
is k-avoidable for some k. Show that if P is finite, then P is avoidable if
and only if all its elements are avoidable. Does this equivalence still hold
if P is infinite? What if avoidability is replaced with k-avoidability?

A simple formula is a finite set of patterns, and is denoted

f=pi-p2-.. Dm ,

the order being unimportant. A word u is said to encounter the sim-
ple formula f if there exists a non-erasing morphism h: E* — A* such
that all the words h(p1), h(p2), ..., h(pm) are factors of u. Avoidability
and k-avoidability of simple formulas is then defined as for patterns.
(Note that it is a different notion from the avoidability of sets in Prob-
lem 3.1.1.) Show that f is avoidable on A if and only if the pattern
p1Cip2Co ... Pm—1Cm—_1Pm is avoidable on A, where (i, ..., (1 are dis-
tinct variables that do not occur in f. How can this fact be used for
practical checking of unavoidability? (Compare the number of binary
words avoiding aafySafa to the number of binary words avoiding the
equivalent simple formula aaf - fafa.)

Definitions of Problems 3.1.1 and 3.1.2 can be combined to construct
the algebra of formulas F(E): a formula is a set of simple formulas,
denoted fi; + fo+ -+ fi. (F(E),+,-) is a commutative algebra, the
neutral elements being 0 (the formula containing no simple formula)
and 1 (the simple formula containing no pattern). A word v is said
to encounter the formula f if it encounters one of its elements f;. All
words encounter 1, and no word encounters 0. Design an equivalence
relation ~ on F (&) such that f ~ f’ implies that p(f) = u(f'), and
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that allows rewriting sequences such as

aafayafdfaa + affaf ~ aafa - af - faa + affaf
~ aafa - faa + affaf
~ aafa - faa + faafa
~ aafa - faa
~ aafa - faa + aafaa
~ aafa- faa + aa - aa
~ aafa - faa + aa

~ ax .

Two patterns equivalent in the sense of Section 3.1.1 should be also
equivalent for this relation.

3.1.4 A pattern p is said to be DOL-avoidable on A if there exist a morphism
f:A* — A* and a letter a € A such that the morphic infinite word
f¥(a) is properly defined (see Proposition 1.2.8) and avoids p. Let here
A = {a,b}.

1. Show that the patterns affvyafB8vy and afayafay are avoidable
on A but DOL-unavoidable on A. Hint: a binary morphic word
contains arbitrarily long squares.

2. Show that the pattern afSaaf«a is DOL-unavoidable on A. Hint:
a binary morphic word is either cube-free or contains arbitrarily
long cubes.

3. More generally, show that for all n > 2, the pattern Z,Z2,, i.e.
the square of the sesquipower of order n, is avoidable on A but is
DOL-unavoidable on A.

**3.1.5 Prove or disprove that, if p is avoidable on A, there exist an alphabet B
(possibly larger than A), two morphisms f: B* — B* and g: B* — A*,
and a letter a € B such that the infinite word g(f“(a)) is well-defined
and avoids p.

Section 3.2

3.2.1 Show that a pattern is unavoidable if and only if it divides some sesqui-
power Z,. Hint: if p reduces to ¢ in one step, and ¢ divides Z,,, then p
divides Z,, 1.
*3.2.2 A pattern p such that AG(p) is a connected graph is called a locked
pattern. Show that all locked patterns are 4-avoidable. Hint: modify
Lemma 3.2.7 to prove that w(!) avoids locked patterns, using the fact
that a variable £ of p such that |h(£)| is odd would constitute a free
set, and that consequently only two different letters can occur at the
beginning of all h(£), so that decisive words can be found.
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3.2.3 Given a pattern p = £, & ... &y and k < m, the k-chop if p is the pattern
(&6 &)Ci (&8s - - - &hr1)C2 - Cmei (Em—kt1&m—tt2 - - - Em)

where (1, ..., (m— are new variables, or equivalently the simple formula
(see Problem 3.1.2)

§1&2 - &k &8 Ckt1 oo Em—kt1€m—kt2 - - - Em

formed of all factors of length k of p. Show that the 2-chop of a pat-
tern is either 4-avoidable or unavoidable. Hint: if the 2-chop of p is
irreducible, then the reduction algorithm stops on a locked 2-chop (see
Problem 3.2.2), which is 4-avoidable and divides the 2-chop of p. What
prevents this proof from extending to k-chops with arbitrary k?

Section 3.3

3.3.1 Construct a family of 2-unavoidable patterns R,, on n variables, similar
to sesquipowers, such that |R,| = 3.2"! — 1. Conclude that Vn >
1,0, > 3.27°1,

*¥3.3.2  Show that Vn > 1,0, = 3.2" ! and Vn > 1,Vk > 3,0, = 2™,

3.3.3 Given a positive integer [, we say that a word w contains an [-occurrence
of p if it contains a factor h(p) where |h(§)| > [ for all £ € E. The
pattern p is said to be weakly k-avoidable if there exist an integer [ and
an infinite word on k letters without l-occurrences of p. Show that every
avoidable pattern is weakly 2-avoidable.

3.3.4 Show that the pattern af(1 fy(ya(zfalyay has avoidability index 4.
Hint: this pattern is locked (see Problems 3.2.2 and 3.2.3) and the
equivalent simple formula af - 87 - ya - Ba - ay (see Problem 3.1.2) is
3-unavoidable.

**3.3.5 Prove or disprove that all avoidable patterns have avoidability index at
most 4.

Notes

Finding infinite words that avoid repetitions (mainly squares or cubes) is an old
problem, that can be traced back to Thue (1906, 1912), and was rediscovered or
studied by many authors, including Adian (1979), Arson (1937), Berstel (1979a,
1984), Dean (1965), Dekking (1976), Entringer, Jackson, and Schatz (1974),
Evdokimov (1968), Hawkins and Mientka (1956), Istrail (1977), Leech (1957),
Morse and Hedlund (1944), Pleasants (1970), Salomaa (1981), Shyr (1977), Zech
(1958).

The present notion of pattern was introduced independently by Bean, Ehren-
feucht, and McNulty (1979) and Zimin (1979, 1982). We adopt here the vocab-
ulary of Bean et al. Zimin calls blocking term what we call unavoidable pattern,
and o-deletion of variables what we call deletion of a free set. Theorem 3.2.1
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and most lemmas in its proof are taken from Zimin (Lemmas 3.2.2, 3.2.3, 3.2.4,
and 3.2.5 are Zimin’s Lemmas 4, 6, 7 and 8). Zimin also introduced sesquipowers
as a family of unavoidable patterns.

Baker, McNulty, and Taylor (1989) introduced the adjacency graph and free
sets, that allow a nice presentation of pattern reduction. They defined locked
patterns (see Problem 3.2.2) and gave the first example of an avoidable pattern
which is not avoidable on a ternary alphabet (see Problem 3.3.4). They also gave
a first linear bound on the avoidability index of patterns with a given number
of variables (non-linear bounds can be derived from the proofs of Zimin and
Bean et al., but they did not make them explicit). The bound we give here in
Theorem 3.3.4 was found by Mel’ni¢uk (an unpublished paper communicated by
P. Goralcik). We adapted Zimin’s proof to make use of Mel’ni¢uk’s construction,
slightly modified, with the help of notes from lectures of Goral¢ik given at LITP,
Paris in 1992 and Volkov in a talk given at Marquette University, Milwaukee in
1991.

The classification of binary patterns presented in Section 3.3.2 was started
by Schmidt (1986, 1989), who proved that binary patterns of length 13 are 2-
avoidable. The bound was reduced to the optimal value 6 by Roth (1992) and
the classification completed by Cassaigne (1993b, 1994b). Vanicek (1989) in-
dependently established the classification (see also Goral¢ik and Vanicek 1991).
A similar classification for ternary patterns was started by Nilgens (1991) and
continued (with semi-automatized proofs of avoidability) by Cassaigne (1994b),
but is not yet complete.

The bound in Theorem 3.3.5 was found by Cassaigne and Roth (see Cas-
saigne 1994b).

Formulas (see Problems 3.1.2 and 3.1.3) were defined by Cassaigne (1993b).
Their study has not been carried very far. For instance, there is no classification
of binary formulas. Avoidability by DOL and HDOL words (see Problems 3.1.4
and 3.1.5) was also studied by Cassaigne (1993b, 1994a). The notion of I-
occurrences of patterns (see Problem 3.3.3) was studied by Roth (1991).

A list of open problems on patterns was published by Currie (1993), who
offers prizes for the resolution of some of them. None of them seems to have
been solved yet. Problems 3.1.5 and 3.3.5 are in that list.

One question we did not include here is the study of the set of words (finite
or infinite) avoiding a given pattern : its growth, its topological structure, etc.
For references, see e.g. Cassaigne (1993a) and Currie (1993).



CHAPTER 4

Sesquipowers

4.0. Introduction

In this chapter we shall be concerned with sesquipowers. Any nonempty word
is a sesquipower of order 1. A word w is a sesquipower of order n if w = uvu,
where u is a sesquipower of order n — 1. Sesquipowers have many interesting
combinatorial properties which have applications in various domains. They can
be defined by using bi-ideal sequences.

A finite or infinite sequence of words fi,..., fn,-.. is called a bi-ideal se-
quence if for all ¢ > 0, f; is both a prefix and a suffix of f;11 and, moreover,
2|fil < |fi+1|- A sesquipower of order n is then the mth term of a bi-ideal
sequence. Bi-ideal sequences have been considered, with different names, by
several authors in algebra and combinatorics (see Notes).

In Sections 4.2 and 4.3 we analyze some interesting combinatorial properties
of bi-ideal sequences and the links existing between bi-ideal sequences, recur-
rence and n-divisions. From these results we will obtain in Section 4.4 an im-
provement (Theorem 4.4.5) of an important combinatorial theorem of Shirshov.
We recall (see Lothaire 1983) that Shirshov’s theorem states that for all positive
integers p and n any sufficiently large word over a finite totally ordered alphabet
will have a factor f which is a pth power or is n-divided, i.e., f can be factorized
in nonempty blocks as f = z; -z, with the property that all the words that
one obtains by a nontrivial rearrangement of the blocks are lexicographically
less than f.

In Theorem 4.4.5, we link bi-ideal sequences and the Shirshov property.
Indeed, in this case the n-divided factor f is the nth term of a bi-ideal se-
quence whose canonical factorization (x1,...,z,) is an n-division of f. More-
over, x1,...,%, are Lyndon words such that z; > x5 > --- > z,,.

In Section 4.5 some applications of bi-ideal sequences to finiteness conditions
for finitely generated semigroups will be given. These conditions are based
on different concepts such as permutation properties, iteration conditions, and
minimal conditions on principal bi-ideals.

119
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4.1. Bi-ideal sequences

A sequence fi,..., fn,... of words of A* is called a bi-ideal sequence if f; € AT
and for all i > 0

fir1 € fiA" fi.

If the sequence is of finite length n, then (f1, ..., f) is called a bi-ideal sequence

of order n. If fi,..., fn,... s a bi-ideal sequence, then there exists a unique
sequence of words g1, 92,...,9n,... such that for all i > 0

fiv1 = figifi.
Thus a bi-ideal sequence is any sequence of words fi,..., fn,-.. satisfying the

following requirements: for all i > 0
(i) fiis both a prefix and a suffix of f;y1,
(i) 2fi| <|[fissl-

If (fi,...,fn) is a bi-ideal sequence of order n, then the last term f = f,
will be called a sesquipower of order n. Obviously, any sesquipower of order n
is also a sesquipower of order k for all k = 1,...,n — 1. Thus with any word
f € AT one can associate a positive integer, called degree of f, defined as the
maximal order of any bi-ideal sequence having f as last term. However, in
general, for a given word f € A" there can exist different bi-ideal sequences
of order equal to the degree of f and having f as last term. For instance, the
word f = abababababa of degree 3 is the last term of the two bi-ideal sequences
(a, aba, f) and (a, ababa, f).

ExaMPLE 4.1.1. Recall that the Fibonacci word (see Chapter 1 and Chap-
ter 8)
f = abaababaabaababaababaabaababaabaab - - -

is the limit of the sequence of words ( f,)n>0, inductively defined by fo = b, fi =

a, foy1 = fofu-1, for all n > 0. The sequences (fax)r>1 and (fort1)r>o0 of
the terms of even and odd index, respectively, are infinite bi-ideal sequences
(converging to f). Indeed, one has

fao=aband for = for—afor—3for—2, k> 1,

and
fi=aand fort1 = for—1for—2for—1, k> 1.

Bi-ideal sequences are closely related to Zimin’s words, as defined in Chap-
ter 3. Let X = {x1,...,%,,...} be a possibly infinite alphabet, called pattern
alphabet and Z,,, n > 0, be the sequence of words, inductively defined as:

Zl =, Zn+1 = ann+1Zn for n > 0.

Thus one has
Zy = T1X2T1, L3 = T1T2T1T3T1T2T1,
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Let ¢ : X* — A* be any nonerasing morphism from X* to A*. One easily verifies
that the sequence (¢(Z,,))n>0 is a bi-ideal sequence. Conversely, if fi,..., fn,. ..
is a bi-ideal sequence with f,11 = fognfn, and ¢ : X* — A* is the morphism
defined as:

¢($1) = f17 ¢($n+1) = 9n, fOI' n > 07
then

for all n > 0. The following theorem, which shows that for all n > 0 the pattern
Z, is unavoidable is Proposition 3.1.4.

THEOREM 4.1.2. Let A be a k-letter alphabet. For any n > 0, there exists a
positive integer M (k,n), such that any word of A* of length at least M (k,n)
contains as a factor a sesquipower of order n. n

4.2. Canonical factorizations

In this section we investigate some interesting combinatorial properties of bi-
ideal sequences which will be useful later in order to prove some extensions of
a theorem of Shirshov.

Let n be a positive integer and (w1, . .., w,) be a sequence of n words of AT.
The sequence (wy,...,w,) is called an n-sequence if for any i = 1,...,n —1

w; € Wig1 -+ Wy A",
The sequence (wy,...,w,) is called inverse n-sequence if
*
Wit € A wy - - Wy,

foranyi=1,...,n—1.

We analyze now an important relationship between bi-ideal sequences of or-
der n and n-sequences (inverse n-sequences). From this one derives two canon-
ical factorizations of the last term of any bi-ideal sequence of order n.

Let (fi)i=1,...n be a bi-ideal sequence of order n with f; € AT and set
fix1 = figifi, with g; € A* fori =1,...,n — 1. Let w, = fi and

Wy = figi, 1<i<n-—1.
One has fi11 = figifi = w,—if; for 1 <i < n —1, so that, by iteration, one has
firi=wp_i--w,, 0<i<n-—1. (4.2.1)
Moreover, since w; = f,,—ign—; for 1 <i <n —1, Eq.(4.2.1) implies
Wi = Wil * WnGn—i € Wity -+ - W A”. (4.2.2)

It follows from Eq.(4.2.1) that f,, = wyws - --w,. The n-tuple (wy,ws,...,w,)
is called the canonical factorization of f,.
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One can also introduce the inverse canonical factorization of f,, by setting
wy = f1 and
w;+1 =gifi, 1<i<n-1.

One easily derives that forall i =1,...,n

wy-wp = i (4.2.3)

K3

where

Wiy, = giwy - wp € Awp-wp, 1<i<n—1. (4.2.4)

77

It follows from Eq.(4.2.3) that f, = w]---w,. The n-tuple (wi,...,w}) is
called the inverse canonical factorization of f,.

By Eqgs (4.2.2) and (4.2.4), the canonical (inverse canonical) factorization
of the last term of a bi-ideal sequence of order n is an n-sequence (inverse n-
sequence).

Conversely, one easily verifies that if (wq,ws2,...,wy,) is an n-sequence (in-
verse n-sequence), then the sequence of words f; = wp—jr1 - wy (fi = wy -
w;), 1 <i < n, is a bi-ideal sequence of order n whose last term has a canonical
(inverse canonical) factorization given by (wy,wa, ..., wy).

ExaMPLE 4.2.1. Consider the bi-ideal sequence of order 3, fi = a, fo = aba
and f3 = ababaaba. In this case gy = b and g» = ba. The canonical factorization
of f3 is the 3-sequence (ababa,ab, a). The inverse canonical factorization is the
inverse 3-sequence (a, ba, baaba).

Let us remark that although a sesquipower f of order n may have several
canonical factorizations, these are uniquely determined by the bi-ideal sequences
of order n having f as last term. As an example, the word f = abababababa is
the last term of the two bi-ideal sequences of order 3

(a,aba, f) and (a,ababa, f).
Thus f has the two canonical factorizations
(abababab, ab,a) and (ababab,abab,a)

which uniquely correspond to the preceding bi-ideal sequences.

The following proposition, called reciprocity law, summarizes the links ex-
isting between the two canonical factorizations of the last term of a bi-ideal
sequence of order n, expressed by Eqs (4.2.1) and (4.2.3).

PROPOSITION 4.2.2. Let (wy,...,wy,) and (wy,...,w),) be the canonical fac-
torizations of the nth term f, of a bi-ideal sequence. For any i =0...,n — 1
one has

! ! — —
wl...wi+1_fi+1_wn_i...wn_ ]
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We denote by S,, the symmetric group on {1,...,n}. Let < be a total order
in A*. A sequence (ug,uz, ..., u,) of n words of A% is called an n-division (with
respect to the order <) if for any nontrivial permutation o of S,, one has

Ug(1)Ug(2) """ Ug(n) < ULUD - " - Up.

A word u is called n-divided (with respect to the order <) if there exists an
n-division (u,us,...,u,) such that u = ujus - - - up.

An n-division (u1,us,...,u,) with respect to the relation >, which is the
inverse of <, is also called inverse n-division with respect to the order <. A
word which is n-divided with respect to > is also called inversely n-divided with
respect to <.

In the following we shall consider n-divisions (inverse n-divisions) and n-
divided (inversely n-divided) words only with respect to the lexicographic order,
so that the above terms will be used without specifying the total order. We shall
denote, when there are no ambiguities, the lexicographic order on A* simply by
<apor <.

EXAMPLE 4.2.3. Let the alphabet A = {a, b} be ordered by a < b. The word
w = ababbaba is 3-divided by the sequence (ababb, ab,a) and inversely 3-divided
by (a,ba,bbaba). Moreover, one can easily verify that (ababb,ab,a) is the only
3-division of w and that w does not admits 4-divisions.

We recall the two following basic properties of the lexicographic order (Lo-
thaire 1983).

ProprosITION 4.2.4. For all u,v,w,w’ in A*
1. u < v wu < wv,
2. ifv g uA*, then u < v = uw < vw'. n

The following proposition characterizes n-divisions.

PROPOSITION 4.2.5. An n-sequence (w1, ..., w,) is an n-division (inverse n-
division) if and only if for all i = 1,...,n — 1, one has wir1w; < wW;w;t1
(Wit1w; > wiw;iyq).

Proof. (=) Suppose that the n-sequence (wy,...,w,) is an n-division and let
us prove that w;riw; < wyw;+q for 1 < i < n — 1. Assume, by contradiction,
that wi41w; > wi;w;41 for some integer i, 1 < ¢ < n — 1. This implies, by
Proposition 424(1), that w1 Wi—1W;Wi41 S w1 Wi—1 Wi W; - If WiWi41 =
Wi Wy, then

W1 - Wi—1WiWi41Wit2 ~ - Wp = W1 * - Wi—1 Wi+ 1 WWiy2 ~* " Wn,

which is a contradiction. Let us then suppose w;w;+1 < witiw;. Since |w;w;41]
= |w;1w;], it follows by property 4.2.4(2) of the lexicographic order that

W1 " Wi— 1 Wi Wi 1 Wit 2 " Wp < W1 Wi— 1 Wit 1 WiWi42 * - Wn
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which is again a contradiction.
(<) We begin by proving that wjw; < wyw; for any 4, j with 1 <i < j <n.
If i = j — 1 the result follows from the hypotheses. Then let us suppose that
i < j—1. We can write
W; € Wj—1Wj -+ -+ wyp A*

and
w;w; = wj_1w;p, for some p € A*.

By assumption, one has
Wjwj—1 < Wj—1Wj .

Since 7 < j — 2, we can write
w; = w1\, for some A € A*.

Since |wjw;_1| = |wj—1w;| and wjwj—; < wj_jwj, in view of the property
4.2.4(2) of the lexicographic ordering, one has

wiw; = wiwj_1 A < Wj_1 Wi = Ww;j.

Any permutation can be obtained by a sequence of exchanges of adjacent el-
ements. Thus, the above property shows that for any nontrivial permutation
o € 8, one has wy(1)W,(2) "+ We(n) < wiwz - - wy,. The proof in the case of the
inverse n-division is perfectly symmetric. m

By an argument similar to that of the preceding proposition, one can prove
the following

PROPOSITION 4.2.6. An inverse n-sequence (wy, ..., wy) is an n-division (in-
verse n-division) if and only if for all i, 1 < i < n — 1, wipiw; < wywir1
(wi_,_lwi > win_l).

4.3. Sesquipowers and recurrence

Let fi,..., fn,... be an infinite bi-ideal sequence, where f;11 = fig;f; for all
i > 0. Since for all i > 0, f; is prefix of the next term f;;1 the sequence (f,)
converges to the infinite word

T = fl(glfl)(92f2) e (gnfn) T
Let us observe that one can rewrite x as
x:w1w2...wn...,

where wy = fi, wiy1 = gifi, ¢ > 0. For all n > 0, (wy,...,w,) is the inverse
canonical factorization of f,.
A word z € AY is a sesquipower if it is the limit of a bi-ideal sequence.
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ProPoOSITION 4.3.1. A word z € A% is recurrent if and only if it is a sesqui-
power.

Proof. Let © € A¥ be recurrent. We construct, inductively, a bi-ideal sequence
(fn)n>o0 such that f, is a prefix of z, for any n > 0. We set f; = z;. Suppose,
by induction, that we have constructed the bi-ideal sequence up to the ith
element f;, with ¢ > 0. Since f; is a prefix of  and x is recurrent, f; will occur
in z infinitely many times, so that there will exist a word g € A* such that
fix1 = figfi is still a prefix of x. Thus there exists a bi-ideal sequence (f5,)n>0
whose elements are prefixes of . This implies that x = lim,_ .~ fn, i.€., £ is a
sesquipower.

Conversely, let € A“ be a sesquipower, i.e., z = lim,,_oo fn, where (f,) is
a bi-ideal sequence. Let w € F(z). There exists A € A* such that Aw is a prefix
of . Thus w € F(f}) for a suitable positive integer k. Now for any p > 0, f%
will occur at least 27 times in fiy,. This shows that the number of occurrences
of w in z has not an upper bound. [

Recall from Chapter 1, that a word w € A¥ is eventually periodic if there
exist words u € A* and v € A" such that w = uv*. The following proposition
is straightforward and is left as an exercise (see Problem 4.3.1).

PROPOSITION 4.3.2. Let w € A“ be an eventually periodic word. If w is
recurrent, then w is periodic.

Uniformly recurrent words are sesquipowers which have a special interest
since any factor of them occurs an infinite number of times but with bounded
gaps (cf. Section 1.5.2). Moreover, as shown in Proposition 1.5.12, for any
infinite set L C A* there exists a uniformly recurrent word = € A¢ such that
F(z) C F(L).

For a uniformly recurrent word w, we denote by ry, the recurrence index of
w. We recall that for any n > 0 each factor u of w of length n will occur in any
factor of w of length r,(n).

When a word is uniformly recurrent one can ‘localize’ in any sufficiently large
factor of it (whose length depends on the recurrence index) the occurrence of a
sesquipower of any order.

PRrROPOSITION 4.3.3. Lett € A¥ be a uniformly recurrent word. For any n > 0
there exists a positive integer D(n) such that for any w € A*, a € A, with
wa € F(t) and |w| > D(n) one has that

w = /\fn;

where \ € A*, and f, is the nth term of a bi-ideal sequence f;11 = f;g;fi, with
gi€ad* i=1,....n—1, fi €ad* and |f;| < D(i) fori=1,...,n.

Proof. The proof is by induction on n. For n = 1 we set D(1) = r(1), where r;
is the recurrence index of the word ¢. Let w € A*, |[w| > D(1) and wa € F(t).
Then in w the letter a has to occur, so that we can factorize w as w = zay
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with z,y € A* and |ay| < D(1). The statement follows if we set f; = ay. Now
let n > 1. By induction we may suppose that there exists an integer D(n — 1)
satisfying the statement for n — 1. Then we set

D(n) =r(D(n—-1)+1)+D(n —1).

Let w € A*, a € A such that |w| > D(n) and wa € F(t). We can write w = zv,
with |z| > r¢(D(n—1)+1) and |v| = D(n—1). Since va € F(t), by the induction
hypothesis one has

v = Alfn—la

with \' € A* and f,,—1 is the (n—1)th term of a bi-ideal sequence f; 11 = figifi,
with fi € aA*, g; € aA*,i € {1,...,n—2}and |f;| < D(i) fori € {1,...,n—1}.
By the properties of the recurrence index r;, one has that x contains va as a
factor and then also f,,_ia. Hence one can write x = Af,,_j1au, with A\, u € A*,
so that

W= Afn_1ap\ fo_1 .

Therefore, if we set g, 1 = apX’, one has f, = fn_19n_1fn_1 With g,_1 € aA*.
Since |fn—1ap| < r(D(n — 1) + 1) and [N f,—1] = D(n — 1) it follows that
|fa] < D(n). =

Let p be a positive integer. A finite or infinite word w is called p-power-free
if it does not have a factor of the form u? with u # . An infinite word w is
called w-power-free if for any u € F(w), u # €, there exists an integer p such
that u? ¢ F(w).

It is clear that a finite word which is 2-power-free (i.e., square-free) is prim-
itive, whereas the converse is not, generally, true. If a word is p-power-free,
then it is also w-power-free. However, there exist infinite words which are w-
power-free even though for any p > 1 they have a factor which is a p-power (see
Problem 4.3.2). The following lemma shows that a uniformly recurrent word
w € A¥ is w-power-free if and only if it is not periodic.

LEMMA 4.3.4. A uniformly recurrent word w € A% is either periodic or w-
power-free.

Proof. Suppose by contradiction that w € A“ is a uniformly recurrent word
which is neither periodic nor w-power-free. Hence, there exists a word u € AT,
that one can always take to be primitive, such that for alln > 0, u™ € F(w). Let
us now consider an occurrence of v in w. This is determined by a word A € A*
such that Au is a prefix of w. Since, by Proposition 4.3.2, w is not eventually
periodic, there exists n > 0 and v € AT such that |v| = |u|, v # v and A\u™v is
still a prefix of w. Let m > 0 be such that [u™| > r,((n + 1)|ul|), where ry, is
the recurrence index of w. Hence, 4™ has as a factor the word u"v. Since u is
primitive and |u| = |v], one easily derives u = v which is a contradiction. "
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4.4. Extensions of a theorem of Shirshov

In this section we prove (Theorem 4.4.4) that an w-power-free one-sided infinite
word has a factor which is the last term of a bi-ideal sequence of any order n
whose canonical factorization is an n-division. We need to recall some properties
and prove some lemmas on Lyndon words.

The set of all Lyndon words on the alphabet A will be denoted by L4, or
simply £ when there is no confusion. For A = {a,b} and a < b, a list of Lyndon
words of increasing length is

a,b,ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabab, . . ..

The following proposition (Lothaire 1983) gives an equivalent definition of Lyn-
don words.

PROPOSITION 4.4.1. A nonempty word w is a Lyndon word if and only if it is
strictly less than any of its proper nonempty suffixes.

Let A be a finite totally ordered alphabet, let ¢ = min(A) and denote by
< 4 the lexicographic order on A*. The set

Y =a®(A\{a})"

is a code on the alphabet A (see Chapter 1). Let X be a finite subset of ¥ and
B be an alphabet such that Card(B) = Card(X). If § is a bijection of B and
X, then it can be extended to a injective morphism § : B* — Y*. We can then
totally order B by setting for z,y € B

x<py<=d(x) <ad(y). (4.4.1)
The total order of B can be extended to the lexicographic order <p of B*.

LEMMA 4.4.2. For u,v € B*, one has u <g v = §(u) <a 6(v).

Proof. Suppose first that u is a left factor of v, i.e., v = u& with £ € B*. One
has then §(v) = §(u)d(€), i.e., 6(u) is a prefix of §(v), so that §(u) <4 §(v). Let
us then suppose that

u = hx&, v = hyn,

with h,&,n € B*, z,y € B and z <p y. From Eq.(44.1), z <p y = d(z) <a
d(y). We have to consider two cases:

Case 1. 6(x) = rbs, 6(y) = rct with r,s,t € A*, b,c € A and b < ¢. One has
then §(u) = §(h)rbsd (&), §(v) = §(h)rctd(n) and d(u) <4 6(v).

Case 2. §(z) is a proper prefix of §(y), i.e., §(y) = 6(z)¢ with ( € A*. Since
§(x),0(y) € X, one has §(z) = a"f, d(y) = a*g with h,k > 0 and f,g €
(A\ {a})T. Tt follows that ¢ begins with a letter b > a. Hence, we can write
¢ =b¢’". One has then 6(u) = d(h)d(z)d(€) and §(v) = d6(h)d(x)bC'd(n). Hence,
if §(¢) = € then §(u) is a prefix of §(v) so that §(u) <4 d(v). If, on the contrary,
0(€) # € then 6(&) € aA* and again 0(u) <4 §(v). "
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LeEmMA 4.4.3. Ifw € Lp, then §(w) € L4.

Proof. Let w = z1---x,, € Lp with z; € B (i = 1,...,n). From Proposi-
tion 4.4.1 one has:
wl...mn <B:L'i...xn

for all ¢ > 2. This implies by Lemma 4.4.2
0(z1) - 8(xn) <a 0(zi)- - 6(xy). (4.4.2)

To prove that §(w) € Lp we have to show that for any factorization é(w) = uw
with u # €, v € AT one has §(w) <4 v. This is the case by Eq.(4.4.2) when
v =20(x;) - 0(xy,) for a suitable 7 > 2. Let us then suppose that there exist an
integer ¢ and words ¢’ € AT, §" € A* such that 0 < i < n and

§(x;) =6"8", v="206"5(wiz1) - 8(xn),

(in the case i = n, v = §"). By definition &(z;) = 6’6" = a*f with k > 0 and
fe(A\{a}))*. If |§'| > k, then §" begins with a letter b > a, i.e., 6" = bC.
Thus

v ="006(xit1) - 0(xy).

Since §(w) begins with the letter a the result in this case trivially follows. Let
us then suppose that |§'| < k so that

v=a""Pfo(wig1) - (@),
with p > 0. Now a* f <4 a*~Pf, so that by (L2) one derives:
S(xzi)---0(xy) = a¥ fo(xig1) - 6(zn) <a a* P fO(2ig1) - (2n) = 0.
Therefore,
0(xy)---0(xn) <a d(zi) - 0(zy) <a v,

which concludes the proof. [

THEOREM 4.4.4. Let x be an w-power-free one-sided infinite word over a finite
and totally ordered alphabet A. For any n > 1, x has a factor s which is the
nth term of a bi-ideal sequence whose canonical factorization (wy,...,w,) is an
n-division of s such that the words w; are Lyndon words with

Wy > Wy > -+ > Wy

Proof. We shall prove the theorem in the case of uniformly recurrent w-power-
free bi-infinite words. Indeed, by Proposition 1.5.12, one derives that for any
one-sided infinite w-power-free word x there exists a uniformly recurrent w-
power-free two-sided infinite word z' such that F(z') C F(z). Thus if the
assertion of the theorem holds for 2, then it will hold also for . We give now a
procedure in order to find for any positive integer n a sequence of totally ordered
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finite alphabets ¥; (i = 1,...,n + 1) and a sequence of bi-infinite uniformly
recurrent and w-power-free words x; € Zg, with ¥; = alph z;, such that z; =z
and for any ¢, 2 < i < n+ 1, there exists a injective morphism

0; : E: — 22:1)

with the property
0i(x;) = i1,

The construction is given inductively. We totally order ¥; = alphz C A and
extend this order to the lexicographic order of ¥. Let us suppose that we
have constructed the sequence until the ith step. Then let z; € Eg, where
¥; = alphx; is supposed to be totally ordered. This order can be extended to
the lexicographic order <y, of ¥7. Let b; = min(¥;). One can then construct
the sets

X = b (8 \ {b:})*

and
Ai+1 = F(:L’l) N X;.

By induction z; is uniformly recurrent and w-power-free. Hence, there are not
enough long subwords in x; which are either a power of b; or do not contain b;
as a factor, so that A;41 is finite.

The set A;41 is a code having a synchronization delay equal to 1, i.e., for
any pair (y1,¥y2) € Ait1 X Ay and o, f € ¥7 one has:

ay1y2B € Ajy = ay, Y28 € Ay,

One can then consider an alphabet ¥, with Card(¥;41) = Card(A;4+1) and
a bijection ;11 : ¥jp1 — Ajp1. Let 641 @ X7, — X} be the morphism which
extends y;41. Since A;;1 is a code then ;47 is injective. Moreover, from the
bounded synchronization delay (equal to 1) one has that z; can be uniquely
factorized in terms of the elements of A;11. Then there exists a bi-infinite word
Tiy1 € EgH such that
Oir1(Tit1) =z

Since, by the inductive hypothesis, z; is uniformly recurrent and w-power-free,
then one derives that so will be z;;. Indeed, it is trivial that z;;; is not
w-power-free. Let us prove that ;1 is recurrent. In fact let u € F(z;41).
One has that 0;41(u) € F(x;). Moreover, there exists a letter z € X; \ {b;}
such that zd;41(u)b; € F(x;). The factor xd;11(u)b; is recurrent in the unique
factorization of z; in terms of the elements of A;;;. This implies that u will
be recurrent in x;;1. Moreover, z;1 is uniformly recurrent. In fact one easily
derives that for any n an upper bound to 7,,,,(n) is given by 7,,((n + 2)in)
where {3 = max{|y| | y € Ait1}.
Now we define in ¥;;; a total ordering by setting for z,y € ¥;41:

T <z, Y = 0ir1(7) <y; i1 (y).
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This total order of ¥;;; can be extended to the lexicographic order <y of

*

¥, 1. Moreover, for any u,v € ¥j,; one has by Lemma 4.4.2

i+1

U <s.y, v=0i11(u) <s; 6it1(v)-
Let wo,wy,ws, ..., w, € X} C A* be defined as:
wy, = by = min(%;),
and fori=2,...,n+1
Wn—it1 = 02(d5(- - 6i(bs) - - -))

with bl = mln(El)

We prove that s = wyws---w, € F(z). Moreover, s is the nth term of
a bi-ideal sequence whose canonical factorization is (w,ws,...,w,). By con-
struction for any ¢ > 1 and for any b € X; one has

8;(b) = bi—1uy, with u; € X7 |,
thus, applying the same relation to the first letter of u;, we obtain
8i—1(0i(b)) = 0i—1(bi—1)bi—2u2, with uy € Z7,.
Iterating this procedure one has
Go(+ 811 (6:(D)) -+ ) = 8o (- - =1 (bi1) -+ ) - - - G2 (ba)brui—1,
with u; ; € &7 C A*. Thus, for b = b;, we obtain for any i, 2 <i <n+1,
Wp—it1 = Wp—it2 " Wpli—1- (4.4.3)
Thus, in particular, one has:
Wo = Wy *** Wplhy.

Since wg € F(z) then s = wy - - -wy, € F(z). Moreover, Eq.(4.4.3) implies that
(w1, ws,...,wy,) is an n-sequence, so that s = w; ---w, is the last term of a
bi-ideal sequence of order n whose canonical factorization is (wy,...,wy).

Let us denote by L; the set of the Lyndon words on the alphabet ;. For
each i = 2,...,n the word b; = min(X;) is a Lyndon word on the alphabet ¥;.
Moreover, by Lemma 4.4.3 the injective morphism §; preserves Lyndon words.
Thus, d;(b;) € L;—1 and

Wp—it1 = O (53( o (51(1)@) o )) € L.

All the words w;, (i = 1,...,n) are then Lyndon on the alphabet A. Moreover,
since from Eq.(4.4.3) wy,—;12 is a proper prefix of wy,_;11, one has:

Wy > Wy > -+ > Wy

From this one easily derives (see Problem 4.4.1) that (wi,...,wy) is an n-
division and this concludes the proof. [

As a consequence of the preceding proposition we give the following theorem.
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THEOREM 4.4.5. For all k,p,n positive integers there exists a positive integer
N (k,p,n) such that for any totally ordered alphabet A of cardinality k any word
w € A* whose length is at least N (k,p,n) is such that
(i) there exists u # € such that uP € F(w) or
(ii) there exists s € F(w) which is the nth term of a bi-ideal sequence whose
canonical factorization (wy, ..., wy) Is an n-division of s. Moreover, the
words w;, © = 1,...,n, are Lyndon words such that

Wy > Wy > - > Whp.

Proof. Let A be a totally ordered alphabet of cardinality k. The set of all words
of A* which satisfy either (i) or (ii) is a two-sided ideal Jj p p, or simply J, of
A*. Let C = A*\ J. The set C is closed by factors, so that if we suppose that
C is infinite, then by K6nig’s lemma (Proposition 1.2.3) there exists a one-sided
infinite word z € A“ such that F(z) C C. Now either z has a factor which is
a p-power and then F(z) N J # 0 or = is p-power-free. In this cas,e it follows
from Theorem 4.4.4 that again F'(z)N.J # (). Hence, in both the cases we reach
a contradiction. Thus C is finite and this proves the assertion. [

4.5. Finiteness conditions for semigroups

Let S be a semigroup. One can naturally embed S in a monoid S' as follows.
If S is a monoid, then S' = S. If S has no identity, then S' is obtained from
S by adjoining an extra element 1 satisfying the property s1 = 1s = s for all
se St

If s,t € S we say that s is a factor of t if t € S'sSt. If t € sS* (t € Sts)
then s is called left factor (right factor) of t. For any ¢ € S we denote by F'(t)
the set of the factors of ¢. For any subset X of S, F(X) = Uiex F(t). One says
that X is factorial or closed by factors if FI(X) = X.

A semigroup (group) S is finitely generated if there exists a finite subset X
of S such that the subsemigroup (subgroup) (X) generated by X is S. A semi-
group (group) S is called locally finite if every finitely generated subsemigroup
(subgroup) of S is finite.

When a semigroup S is finitely generated by a set X, one can introduce an
alphabet A having the same cardinality of X. As is well known any bijection
6 : A — X can be extended in a unique surjective morphism

p: AT = S.

When § is the identity map, then ¢ is usually called the canonical epimorphism.
Moreover, one has S = At /¢gp~!.

Let us suppose that A is totally ordered. Recall from Chapter 1 that the
radiz order <, on AT is defined for u,v in AT by

u <q v <= (Ju|l < |v]) or (Ju] =|v] and u < v),
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where < is the lexicographic order. From the definition it follows that <, is a
well-order.

A word w is said reducible with respect to the morphism ¢ and to the order
<4, or simply reducible, if there exists u € AT such that

u<,w and ¢(u) = p(w).

A word which is not reducible will be called irreducible. Let s € S. In the set
¢~ (s) there is a unique minimal element with respect to <, usually called the
canonical representative of s. Hence, the set of all canonical representatives of
the elements of S is the set of all irreducible elements of S. For any set T C S,
we denote by C the set of the canonical representatives of the elements of T'.

An infinite (bi-infinite) word x is reducible, relative to the morphism ¢ :
AT — S and to the order <,, if there exists w € F(z) which is reducible. An
infinite word z which is not reducible, i.e., any w € F(z) is irreducible, is called
1rreducible.

We recall now some lemmas and propositions on canonical representatives.

LEMMA 4.5.1. Let S be a finitely generated semigroup and T be any subset
of S closed by factors. Then the set C'p is closed by factors.

Proof. Let x € Cp and u be a factor of z, i.e., x = Aup, with A\, u € A*. Since
o(x) = ¢(N)p(u)p(p) and T is closed by factors one has ¢(u) € T and then
u € ¢ Y(T). Suppose now that u' € AT exists such that u' <, u and ¢(u') =
d(u). If |u'| < |ul, then ' = Au'p is such that |2'| < |z| and @(z') = ¢(x)

which is a contradiction. Let us then suppose |u'| = |u| and v’ < u. Thus
' = M'p < dup and ¢(z') = ¢(x) which is again a contradiction. Hence,
u € Cr which concludes the proof. n

LEMMA 4.5.2. Let S be a finitely generated semigroup. If T is an infinite
subset of S closed by factors, then there exists a uniformly recurrent irreducible
word x such that F(z) C Cr.

Proof. Since Cr is closed by factors then by Proposition 1.5.12 there exists a
uniformly recurrent word x € A% such that F(x) C Cr, so that z is irreducible.
]

As in the case of free monoids one can introduce for any semigroup S the
notions of bi-ideal sequence and n-sequence. A sequence

SlyevesySnyees
of elements of a semigroup S is a bi-ideal sequence if for any i > 0
Si+1 € slesl

When the sequence is finite and of length n, then (sq,...,s,) is called a bi-ideal
sequence of order n.
From Lemma 4.5.2 one easily derives the following
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PROPOSITION 4.5.3. Let S be a finitely generated semigroup. IfT is an infinite
subset of S closed by factors, then there exists a bi-ideal sequence (sy)n>0 Such
that for all n > 0, s, € T and for all positive integers i,j, ¢ # j, s; # s;.

Proof. By Lemma 4.5.2 there exists an irreducible uniformly recurrent word
x € A¥ such that F'(z) C Cr. By Proposition 4.3.1, the word z is a sesquipower,
so that there exists a bi-ideal sequence (f,)n>0, such that = lim,,, fn. Since
for every n > 0, f, € F(z) C Cp then ¢(f,) € T, where ¢ is the canonical
epimorphism. Moreover, since z is irreducible it follows that for all positive
integers i,5,1 # j, ¢(fi) # ¢(f;)- The image by ¢ of the bi-ideal sequence
(fn)n>o0 is then a bi-ideal sequence (s,,)n>0, With s, = ¢(f,) € T for all n > 0,
such that s; # s; for @ # j. n

A sequence tq,...,t, of n elements of a semigroup S is called n-sequence if
foralli=1,...,n—1,
t; € tiy1--- tnSI. (4.5.1)

As in the case of free monoids the notions of bi-ideal sequence of order n
and of n-sequence are related. In fact, let s1,..., s, be a bi-ideal sequence of S
where

Si+1 = SigiSi
with g; € S',i=1,...,n — 1. As one easily verifies setting ¢, = s; and t,_; =
sigi, 1 = 1,...,n — 1, the sequence (t,...,t,) is an n-sequence. Conversely, if
(t1,...,t,) is an n-sequence, then the sequence s; = t,,_j11 - tn, i =1,...,n,
is a bi-ideal sequence of order n.

Let us, finally, observe that in the case of a group G any sequence g1, ..., gn
of n elements of GG is an n-sequence.

4.5.1. Permutation property

Let S be a finitely generated semigroup and ¢ : AT — S be the canonical
epimorphism. For any s € S the order of s is the order (cardinality) of the
subsemigroup (s) generated by {s}. The order of s is finite if and only if there
exist positive integers ¢ and j, ¢ < j, depending on the element s, such that

st =g, (4.5.2)

Let j be the minimal integer for which the above relation is satisfied. The
integer ¢, which is unique, is called the index and p = j — i the period of s. The
order of (s) is then given by i+p—1. In the case of a group, due to cancellativity,
condition (4.5.2) simply becomes s? = 1, where 1 denotes the identity of the
group and the period p depends on the element s.

A semigroup (group) S is periodic (or torsion) if any element s € S generates
a subsemigroup (subgroup) of finite order.

The problem of whether a finitely generated and periodic group is finite
was posed by W. Burnside in 1902 and, subsequently, extended to the case of
semigroups. However, the condition of a finite generation and the periodicity
are not sufficient to assure the finiteness of a semigroup or a group (cf. Notes).
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A finitely generated, torsion and commutative semigroup is obviously finite.
A. Restivo and C. Reutenauer introduced in 1984 a property of semigroups,
called permutation property, which generalizes commutativity and is such that
a finitely generated and torsion semigroup is finite if and only if it is permutable.
Let us give the following:

Let S be a semigroup and n be an integer > 1. A sequence si,...,s, of
n elements of S is called permutable if the product s; - - - s, remains invariant
under some nontrivial permutation of its factors, i.e., there exists a permutation
o € Sy, different from the identity, such that

8152 Sn = S5(1)S0(2) """ Sa(n)-

We say that a semigroup S is n-permutable if any sequence of n elements
of S is permutable. Obviously, 2-permutability is equivalent to commutativity.
We say that S is permutable if there exists an integer n > 1 such that S is
n-permutable.

THEOREM 4.5.4. Let S be a finitely generated and periodic semigroup. S is
finite if and only if it is permutable.

The original proof of the theorem is based on the theorem of Shirshov. We
prove here a slight more general version of Theorem 4.5.4 by considering a weak
notion of permutability of a semigroup S. One requires that for some integer
n > 1, not all the sequences of n elements are permutable, but only the n-
sequences of S.

THEOREM 4.5.5. Let S be a finitely generated and periodic semigroup. S is
finite if and only if there exists an integer n > 2 such that any n-sequence of S
is permutable.

Proof. The ‘only if’ part is trivial, then we prove the ‘if’ part. Let n > 2 be
an integer such that any m-sequence of S is permutable. Let ¢ : At — S be
the canonical epimorphism and suppose by contradiction that S is infinite. By
Lemma 4.5.2 there exists an irreducible and uniformly recurrent word ¢. Since
S is periodic, t is w-power-free. Indeed, otherwise, by Lemma, 4.3.4, t is periodic
so that it contains a factor uP, such that

¢(u”) = o(u)? = p(u)? = d(u?),

with 1 < ¢ < p, and this contradicts the irreducibility of t. By Theorem
4.4.4, t contains a factor x which is the nth term of a bi-ideal sequence whose
canonical factorization is an n-division. We can write = wiws - - - w,, where
(w1, ws,...,wy,) is the canonical factorization of x which is an n-sequence. Let
us set s; = ¢p(w;), for i = 1,...,n. Since (s1,82,...,5,) is an n-sequence of S,
it is permutable. Then, for a nontrivial permutation ¢ € S,, one has

o(x) = 81898, = S0(1)5a(2) " Sa(n)-

On the other hand one has = > w,(1)wg(2) - W,s(n) and this contradicts the
irreducibility of ¢. n
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4.5.2. Iteration property

In this section we consider some finiteness conditions for semigroups based on
iteration properties. These properties, are very important in formal language
theory, since they are related to the ‘pumping properties’ of regular languages.

Let S be a semigroup and m and n two integers such that m > 0 and n > 0.
We say that the sequence sy, Sa, . .., S;, of m elements of S is n-iterable if there
exist 4,7 such that 1 <i < j <m and

S1*Sm =81 si_l(si e Sj)n8j+1 Sm- (453)
We say that S is (m, n)-iterable, or satisfies the property C'(n,m) if all sequences
of m elements of S are n-iterable.

Let us observe that property C(1,m) is always trivially true. Moreover,
property C'(0,m) is actually a cancellation property (m-cancellation property)
which obviously implies the finiteness of any finitely generated semigroup sat-
isfying it, so that a semigroup satisfies properly the iteration property C(n,m)
only if n > 1.

PRrOPOSITION 4.5.6. If S is a finite semigroup, then S satisfies C'(n,m) with
m = Card(S) + 1 and any n > 0. If S satisfies C(n,m), with n # 1, then S is
periodic.

Proof. Let s1,...,sm be a sequence of m elements of S, with m = Card(S) + 1.
We consider then the sequence

S1, S182y..., 81582 "Sm.
Since m > Card(S) there exist integers 7, j such that 1 <i < j <m and
81---Si :Sl---si(sz+1---sj) :Sl---si(si+1---8j)n’

fOI“ all n > 0 lhllS
31"'3i3j+1"'3m—31"'3i(3i+1"'3j) Sj4+1 " Sm,

so that C(n,m) holds for all n > 0.
If S satisfies C'(n,m), then for any s € S, consider the sequence s; = so =
- = S = 5. One has that there exist integers i,j such that 1 < i <j <m
and

§™m — Sm—i—(n—l)(j—i—i—l) :

so that, since n # 1, S is periodic. m
Let us consider in a semigroup S the following equivalence relations R and
L defined, for s,t € S, by
s Rt sS'=tS', s L1+ S's =St

Moreover we set H = RN L and D =RV L, where RV L denotes the smallest
equivalence relation on S containing R and £. From the definition one has that
R and L are left invariant and right invariant, respectively.
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LEMMA 4.5.7. Let S be a finitely generated semigroup satisfying C'(n, m), with
n > 1, and ¢ : At — S be the canonical epimorphism. For any uniformly
recurrent word w there exists a positive integer M such that for any u,v € F(w)
with |u| > M

wv € F(w) = ¢(u) R ¢(uv).

Proof. 1t is sufficient to prove that there exists a positive integer M such that for
eachu € F(w) anda € Aifua € F(w), then ¢(u) R ¢(ua). By Proposition 4.3.3
there exists a positive integer M = D(m) such that for any u € A*, a € A, with
ua € F(w) and |u| > M one has that

u = Afm;

where A € A*, and f,, is the mth term of a bi-ideal sequence f;11 = fig; fi, with
fi €aA* and g; € aA*,i=1,...,m — 1. Let us write f,, as

fm = w1 wm
where (wq, ..., wy,) is the canonical factorization of f,,. As S satisfies C'(n,m)
there exist integers i, j such that 1 <i < j <m and
Wy Wy = W1 " wi_l(wi v wj)"le W, (454)

where = denotes the congruence relation ¢¢—!. One can rewrite the preceding
equation as
Wi Wy =W Wi » - WiW;0, (4.5.5)

with v € A*. Let us first suppose j < m. By Eq.(4.2.2) one derives, by iteration,
Wi = Wjt1 " Wi Gm—jU,
with v € A*. Hence, since g,,—; € aA* one has
W Wy = WL~ WjWi1 - WinGmjC = WY - WjWjg1 - - - Wi QL.
with (, & € A*. This implies

¢(fm) R ¢(fma).

Since the relation R is left invariant it follows ¢(u) R ¢(ua). In the case
j = m since w; € aA* for all i = 1,...,m, from Eq.(4.5.5) one has again
&(fm) R &(fma) which implies ¢(u) R ¢(ua). "

THEOREM 4.5.8. Let S be a finitely generated semigroup. S is finite if and
only if it satisfies C'(2,m) for a suitable m > 0.

Proof. The ‘only if’ part follows from Proposition 4.5.6. Let us then prove the
‘if” part. Let S be a finitely generated semigroup satisfying C'(2,m) for a suit-
able m > 0 and suppose, by contradiction, that S is infinite. From Lemma 4.5.2
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there exists a uniformly recurrent word w which is irreducible with respect to the
canonical epimorphism ¢ : At — S. By Lemma 4.5.7 there exists a positive inte-
ger M such that for any u,v € F(w) with |u| > M, uv € F(w) = ¢(u) R ¢(uv).
Let now u be any factor of w such that |u| > M. Since w is uniformly recurrent
we can consider m + 1 consecutive non-overlapping occurrences of v and then
the factor v of w

U= UTIUT - - - UL,

with @; € A* for (i = 1,...,m). From condition C(2,m) there exist 7, j such
that 1 <i < j <m and:

v=uxy - uxi— (uz; - -ua:j)2ua:j+1 C UL U (4.5.6)
Moreover, from Lemma 4.5.7 one has that

¢(u) R d(uw; - - urmu),

for all ¢ = 1,...,m. This implies that for any ¢« = 1,...,m, there exists a word
t € A* depending on %, such that

U= UT; - - - UL ut.
One has then
V= UTIUT2 - UT U = UTy - - Ui (um; - ua:j)2ua:j+1 o uxputl,
having set ( = 41 -+ - urpu. By Eq.(4.5.6), it follows
V= UTL UL 1 UL - - UTpUt( =

U1 - - UL UL jq1 - - UL U,
Hence, v is reducible that is a contradiction. [

A special form of iteration property is the iteration on the right. A semigroup
S satisfies the condition D(n,m), m > 0,n > 0, if for any sequence s1, s2,. .., Sm
of m elements of S there exist integers i, j such that 1 <i < j <m and

S1ove8j =81 Si1 (s 5;)"

It is clear that if a semigroup satisfies D(n,m), then it satisfies C(n,m).
Thus from Theorem 4.5.8, D(2,m) is a finiteness condition for finitely generated
semigroups. Moreover, it is straightforward to derive that any finite semigroup
S satisfies D(n, m) for a suitable m, depending on the cardinality of S, and for
all n > 0.

Another important property, strictly related to the iteration property, is the
strong periodicity. Let S be a semigroup. We denote by E(S) the set of its
idempotent elements.

Let m be a positive integer. A semigroup S is strongly m-periodic if for any
sequence Sy, ..., S, of m elements of S there exist integers i and j such that
1<i<j<mands; --s; € E(S).
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A semigroup S is strongly periodic if there exists a positive integer m such
that S is strongly m-periodic. The origin of the term strongly m-periodic is due
to the fact that if S is strongly m-periodic, then S is certainly periodic and,
moreover, the index and the period of any element are less than or equal to m.
It is clear from the definition that if a semigroup S is strongly m-periodic, then
S satisfies C'(2,m) and D(2,m).

The following interesting theorem holds

THEOREM 4.5.9. Let S be a finitely generated semigroup. The following con-
ditions are equivalent:
(i) S is finite.

(ii) S\E(S) is finite.

(iii) S is strongly periodic.
Proof. The implication (i)=>(ii) is trivial. For the implication (ii)=-(iii) one uses
the theorem of Ramsey (Lothaire 1983, Chapter 4). Let F' = S\E(S) and be
p = Card(F'). We prove that S is strongly m-periodic with m = R(2,3,p+1)—1
where R denotes the function of Ramsey’s theorem. Let s1, ..., s, be a sequence
of m elements of S. We define:

By ={{i,j} |1 <i<j<m+1ands;sit1---sj-1 € E(S)},
and for any f € F,
By ={{i,j}|1<i<j<m+1and s;jsiz1---sj—1 = f}.

By Ramsey’s theorem there exist 1 < i3 < iy < i3 < m + 1 such that
{i1,i2},{i2,i3} and {i1,i3} are all in the same class. This class is certainly
By because, otherwise, there will exist f € F' such that:

f=si 81 = (80, 8ip1)(Siy - Sip—1) = f°

which is a contradiction.
(iii)=(i). If a semigroup S is strongly m-periodic, then it satisfies condition
C(2,m). Then, by Theorem 4.5.8, S is finite. ]

4.5.3. Minimal conditions on principal bi-ideals
We recall that a bi-ideal B of S is a subsemigroup of S such that
BSB C B.

A bi-ideal is called principal if it is of the form sS's, where s is any element of
S.

A semigroup S satisfies the minimal condition on principal bi-ideals if any
strictly descending chain

5151 D 828 sy D - D spSts, D -,

with s1,82,...,8n,-.- € S, has a finite length.
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THEOREM 4.5.10. Let S be a finitely generated semigroup. If S satisfies the
minimal condition on principal bi-ideals and if all subgroups of S are finite, then
S is finite.

Proof. Let S be a semigroup satisfying the hypotheses of the statement and let
¢ : At — S be the canonical epimorphism. Suppose by contradiction that S
is infinite. Then, by Proposition 4.5.3, there exists a bi-ideal sequence (sy)n>0
such that for all positive integers 4,7, with ¢ # j, one has s; # s;. Since
Spt1 € 8,5's,, for n > 1, it follows

52918, D 8py18 S0t
Thus we have a descending chain
515 s1 D528t sy D - D5, Sts, D

By the minimal condition on principal bi-ideals, there exists an integer k& such
that szS's; = s,S's,, for any n > k. Let n be any integer > k. One has
5,8 8, = 5,415 8011 = Sp125' 8,42, and, moreover, 5,411 € 5,5's,. Thus we
have

Sna1 = SntSp = Spie1hSpt1 = SptorsSnia, (4.5.7)

for some t,h,r € S'. Moreover, since $,12 € S,4+15" 841, One has

Sn+2 = Spt12Sn41, (4.5.8)

for some z € S'. From Eq.s (4.5.7) and (4.5.8) one derives that for any n > k
Sn+1 R Snt2, Snt1 L Sp42 and, therefore, sp11 H sp42. In conclusion, for any
n > k all the elements s, lie in the same #H-class H. From Eq. (4.5.7) one has
that s,y is a regular element (cf. Problem 4.5.5) for any n > k. The H-class
H is in a regular D-class D, hence it is finite since it has the same cardinality
of a maximal subgroup contained in D (cf. Problem 4.5.5), and, by hypothesis,
all subgroups of S are finite. Then there exist two integers i, j, with k < ¢ < j

such that s; = s; which is a contradiction. "

Problems

Section 4.1

4.1.1 A sequence fi, fo, ..., fn of n words on the alphabet A is called a quasi-
ideal sequence of order n if f{ € AT and for alli = 1,2,...,n — 1 one
has:

fir1 € fiA" N A" f;.

Thus a bi-ideal sequence of order n is also a quasi-ideal sequence of
order n. Give an example of a quasi-ideal sequence which is not a bi-
ideal sequence.
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4.1.2

4.1.3

Section

4.2.1

4.2.2

Section

4.3.1

4.3.2

Sesquipowers

Any word w € AT is a quasi-power of order 1. For any n > 0 a word w
is called a quasi-power of order n + 1 if there exists a quasi-power u of
order n such that

w € uAt NAtu.

The quasi-power degree of w is the maximal order of w as a quasi-power.
Show that if w is a quasi-power of degree n, then there exists a unique
quasi-ideal sequence (f1, ..., fn) such that f,, = w.

A word w has a bord u € AT, if w € uA* N ATu. As is well known a
word w has the proper period p (0 < p < |w|) if and only if there exists
a bord w such that p = |w| — |u|. Show that if w is a quasi-power of
degree n and (f1,-.-, fn) is the unique quasi-ideal sequence such that
fn =w, then (f1,..., fn_1) is the sequence of all the bords of w. Thus
n — 1 is the number of all proper periods of w.

4.2

Let (w1, ...,wy) and (w},...,w),) be the canonical factorizations of the
nth term of a bi-ideal sequence. Prove that
e for each i, 1 <i<n—1,one has: wjw;,, <wj w;if and only if
Wp—i+1Wn—i < Wp—iWp—i+1-

e (wy,...,wy,) is an n-division (inverse n-division) if and only if
(wf,...,w)) is an inverse n-division (n-division).

Let (wi,...,w,,) be a sequence of words. We say that (uj,...,u,) is

a derived sequence of (wy,...,wy) if there exist n + 1 integers ji, jo,

<oy Jnt1 such that 1 < j; < jo <+ < Jpy1 <m—+1, and
Uy = Wiy =" Wiy —1y -+, Up = Wy, "~ Wj, 1 ,—1-

Prove that a derived sequence (u1,...,u,) of an m-sequence (w1, ...,
wy,) (inverse m-sequence) is an n-sequence (inverse n-sequence).

4.3

Prove that if an eventually periodic word w € A% is recurrent, then w
is periodic.

Let A = {a,b,c,d} and m be the Thue-Morse word on the alphabet
{a,b,c} which can be generated iterating on the letter a the morphism
¢ defined by ¢(a) = abe, ¢(b) = ac, ¢(c) = b (cf. Lothaire 1983). Let
us denote by p; the prefix of m of length i and construct the word:

w = dp: (dp2)* (dp3)® - - (dpn)" - -

Show that for any p > 1, w has a factor which is a p-power. However,
w is w-power-free.
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Section

44.1

Section

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

44

Let I1,l5,...,l, be n Lyndon words with I; > Iy > --- > [,. Let w; =
lfi, with k; > 1, 1 < ¢ < n. Prove that the word w = wyws - - - w,, is n-
divided and (w1, ws,...,wy,) is an n-division. (Hint. Use the property,
cf. Lothaire 1983, that if  and y are Lyndon words and z < y, then xy
is a Lyndon word and z < zy < y).

4.5

The notion of finite, as well as infinite, irreducible word can be given
with respect to any partial order < in At. A partial order in At is a well
partial order, if any subset X of AT has at least one and at most a finite
number of minimal elements in X. In such a case if ¢ : AT — Sis a
morphism of At onto the semigroup S, then for any s € S the set ¢~ (s)
of the representatives of s has a finite > 0 number of representatives.
Prove that if a well partial order < in A™ is monotone (i.e., invari-
ant with respect to concatenation), then the set Cp of all irreducible
representatives of any factorial set T' C S is closed by factors.

Prove that if H is an abelian subgroup of a group G such that the index
m of H in G is finite, then G is n-permutable with n = 2m.

A semigroup S is called weakly permutable, if there exists an integer
n > 1 such that for any sequence s1, sa, .. ., s, of of n elements of S there
exist two permutations o,7 € Sy, o # 7 such that s,(1)8,(2) "+ So(n) =
Sr(1)Sr(2) """ Sr(n)-

It is obvious that if a semigroup S is permutable, then it is weakly
permutable. Show that the converse is not, in general, true.

A semigroup S is called a band if all its elements are idempotents, i.e.,
for any s € S, s = s2. Show that a finitely generated band is finite.
Let S be a semigroup. The relations R, £ and D satisfy the following
properties:

1. The relations R and £ commute, and so D = RL = LR.
2.  Any two H-classes in the same D-class have the same cardinality.

3. An H-class H, containing an idempotent e is equal to the maximal
subgroup of S having e as identity.

An element s of a semigroup S is called regular if there exists x € S
such that s = szs. A D-class D of a semigroup is called regular if all
its elements are regular. Let D be a D-class of a semigroup S. The
following holds:

i. D is regular if and only if contains a regular element.
ii. D is regular if and only if contains an idempotent.
iii. Any two maximal subgroups in D are isomorphic.
(cf. Clifford and Preston 1961, Chapter 2)



142 Sesquipowers

4.5.6 Define in a semigroup S the quasi-order relation <p as: for s,t € S
s<pt<=s=torsectS't.

A semigroup satisfies the condition minp if any strictly descending chain
S1>pB S2 >B - >pB Sy >p - of elements of S has a finite length.
Prove that if a semigroup S satisfies the minimal condition on principal
bi-ideals, then it satisfies ming.

4.5.7 A nonempty subset @ of a semigroup S is called a quasi-ideal of S if

RSNSQ C Q.
Show that

e every quasi-ideal of S is a bi-ideal of S.

e a subset of a semigroup S is a quasi-ideal if and only if it is the
intersection of a right ideal of S and a left ideal of S.

e A semigroup S is a group if and only if it contains no proper quasi-
ideal (bi-ideal).

Notes

The name of bi-ideal sequence appears in Coudrain and Schiitzenberger 1966
who introduced these sequences in the frame of semigroup theory. Actually,
these sequences were considered ten years earlier by Jacobson 1964 in his book
on ring theory. A bi-ideal sequence of order n was called by Jacobson n-sequence.
Zimin’s words Z,, were introduced by Zimin 1982. A word which is the nth term
of a bi-ideal sequence was also called sesquipower of order n by Simon 1988 and
quasi-power of order n by Berstel and Reutenauer 1988. Theorem 4.1.2 was first
proved in Coudrain and Schiitzenberger 1966.

Shirshov’s theorem appears in Shirshov 1957 (cf. also Lothaire 1983, Chapter
7). A different proof of Shirshov’s theorem based on an unavoidable regularity
related to Lyndon words was given by Reutenauer 1986. A proof which uses
the uniform recurrence is given by Justin and Pirillo 1991. An improvement of
Shirshov’s theorem in which the n-divided factor is the nth term of a bi-ideal
sequence was given in De Luca and Varricchio 1991a. Theorem 4.4.5, whose
proof is in De Luca and Varricchio 1999, is a further generalization since the
n-division is a strictly decreasing sequence of Lyndon words.

The problem of whether a finitely generated and periodic group is finite was
posed by W. Burnside in 1902 and, subsequently, extended to the case of semi-
groups. A negative answer to the Burnside problem was given by Golod 1964.
This author by means of a technique of proof discovered with I. R. Shafarevich,
based on the non-finiteness of a dimension of a suitable algebra associated with
a field, was able to show the existence of an infinite 3-generated p-group.

The permutation property of semigroups was introduced in Restivo and
Reutenauer 1984, where the proof of Theorem 4.5.4, based on Shirshov’s the-
orem, was given. A characterization of permutable groups is given in Curzio
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et al. 1985. Curzio et al. 1983 give an algebraic proof that a finitely generated
and torsion group is finite if and only if it is permutable. An extension of The-
orem 4.5.4 based on the weaker notion of w-permutability appears in De Luca
and Varricchio 1990.

The notion of strong periodicity and Theorem 4.5.9 are due to Simon 1980.
The proof of Simon makes use of a finiteness condition due to Hotzel 1979.
The proof that condition D(n,m) is a finiteness condition for finitely generated
semigroups appears in De Luca and Restivo 1984 for n = 2 and in De Luca and
Varricchio 1991b for n = 3. A more constructive proof of the result in the case
of D(2,m), as well as an upper bound to the cardinality of the semigroup, was
given by Hashiguchi 1986.

The proof that condition C(n,m) is a finiteness condition for finitely gen-
erated semigroups in the cases n = 2 and n = 3 appears in De Luca and
Varricchio 1991a. The proof makes use of a deep structure theorem on finitely
generated semigroups (the J-depth decomposition theorem) (De Luca and Var-
ricchio 1999).

Theorem 4.5.10 is due to Coudrain and Schiitzenberger 1966. An extension
of this result under the weaker hypothesis that the subgroups of the given finitely
generated semigroup are locally finite appears in De Luca and Varricchio 1994.



CHAPTER 5

The Plactic Monoid

5.0. Introduction

Young tableaux have had a long history since their introduction by A. Young at
the turn of the century. It is only in the sixties that came to the fore a monoid
structure on them, a structure taking into account most of their combinato-
rial properties, and having applications to the different fields in which Young
tableaux were used.

Summarizing what had been his motivation to spend so much time on the
plactic monoid, M.P. Schiitzenberger detached three reasons: (1) it allows to
embed the ring of symmetric polynomials into a noncommutative ring; (2) it is
the syntactic monoid of a function on words generalizing the maximal length
of a nonincreasing subword; (3) it is a natural generalization to alphabets with
more than two letters of the monoid of parentheses.

The starting point of the theory is an algorithm, due to C. Schensted, for
the determination of the maximal length of a nondecreasing subword of a given
word. The output of this algorithm is a tableau, and if one decides to identify
the words leading to the same tableau, one arrives at the plactic monoid, whose
defining relations were determined by D. Knuth.

The first significant application of the plactic monoid was to provide a com-
plete proof of the Littlewood-Richardson rule, a combinatorial algorithm for
multiplying Schur functions (or equivalently, to decompose tensor products of
representations of unitary groups, a fundamental issue in many applications,
e.g., in particle physics), which had been in use for almost 50 years before being
fully understood. In fact, as will be shown in Section 5.4, the algebra of Schur
functions can be lifted to the plactic algebra, and even to the free associative
algebra. Once this crucial step is realized, all the proofs become straightforward.

Subsequent applications, also connected with group theory, physics and ge-
ometry, include a combinatorial description of the Kostka-Foulkes polynomials,
which arise as entries of the character table of the finite linear groups GL,, (F,),
as Poincaré polynomials of certain algebraic varieties, or in the solution of cer-
tain lattice models in statistical mechanics. One can also mention a noncom-
mutative version of the Demazure character formula, and the construction of
keys, leading to a better understanding of the standard bases of Lakshmibai
and Seshadri, and to a combinatorial description of the Schubert polynomials.

144
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Quite recently, the combinatorics of Young tableaux has been illuminated by
the theory of quantum groups, and especially by Kashiwara’s theory of crystal
bases. Roughly speaking, quantum groups are deformations depending on a
parameter ¢ of certain algebras classically associated with a Lie group G, which
give back the classical object for ¢ = 1. With some care, it is possible to take the
limit ¢ — 0 in certain formulas, and to recover in this way classical bijections
such as the Robinson-Schensted correspondence.

From a group-theoretic point of view, the combinatorics of Young tableaux
is associated with root systems of type A. By means of quantum groups, it is
now possible to define plactic monoids for other root systems, and to use them
for describing the corresponding Littlewood-Richardson rules. There is also a
similar construction taking into account the combinatorics of quasi-symmetric
functions (the hypoplactic monoid).

Conventions. In this chapter, A will denote a totally ordered alphabet of
n letters a; < ay < ... < a,. In the examples, we shall usually take A =
{1,2,...,n}.

5.1. Schensted’s algorithm

Consider the following problem: given a word w € A* on the totally ordered
alphabet A, find the length of the longest nondecreasing subwords of w.

C. Schensted has given an elegant algorithmic solution, which does not
require the actual determination of a maximal nondecreasing subword. His
method relies on the notion of Young tableau, a combinatorial structure issued
from group theory.

A nondecreasing word v € A* is called a row. Let u = xy---x, and v =
y1---Ys be two rows (z;,y; € A). We say that u dominates v (upwv) if r <s
and for i = 1,...,r, x; > y;. Clearly, every word w has a unique factorization
w = up -+ -ug as a product of rows of maximal length. A tableau is a word w
such that uy >us>...>ug. It is customary to think of tableaux as planar objects
and to represent w as the left justified superposition of its rows. For instance,
taking A={1<2<...},

t = 68 4556 223357 1112444

is a tableau whose planar representation is

6|8
41556
2|2 3|57
111]1(2]4]4/4

Similarly, a strictly decreasing word is called a column. Reading from bottom to
top the lengths of the rows of a tableau ¢, one obtains a nonincreasing sequence
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A= (A > Xy >...> )\;) which is called the shape of t. Such a sequence is called
a partition of the integer |A| = Ay +--- + Ax. On our example, A = (7,6,4,2).
The graphical representation of a partition by a planar diagram of boxes is
called its Ferrers (or Young) diagram. Thus, the Ferrers diagram of (7,6,4,2)
is

The conjugate partition X' of A is obtained by reading the heights of the columns
of the diagram of X. For example, the conjugate partition of (7,6,4,2) is
(4,4,3,3,2,2,1).

Schensted’s algorithm associates to each w € A* a tableau ¢ = P(w). The
elementary step of the algorithm consists in the insertion of a letter into a row.
Given a row v = y; - - - ys and a letter x, the insertion of z into v is P(vz) = vz
if vz is a row, and P(vz) = y;v’ otherwise, where y; is the leftmost letter of v
which is strictly greater that z, and v’ is obtained from v through replacing y;
by x. To insert a letter x into a tableau ¢t = vy -- - vy, one first inserts x into
the bottom row vy. Then, if vz is not a row, P(viyx) = yv, and one inserts y
into v;_1, and so on. The process terminates when one reaches the top row vy,
or when a letter has been inserted at the right end of a row. For example, the
insertion of 3 in the tableau ¢ above goes through the following steps:

P(1112444 - 3) = 4- 1112344,
P(223357-4) = 5 - 223347,
P(4556 - 5) = 6 - 4555,
P(68-6) = 8- 66,

and the result is
P(t-3) =8-66-4555- 223347 - 1112344
In a more formal way, the map P is defined recursively by

B tx if vpx is a row
Pliz) = {P(m gy I Ploge) = yop

for a tableau ¢ with row decomposition ¢t = v; - - - vg, and for an arbitrary word
w € A*, P(wz) = P(P(w)x).

As an example of the general case, the successive steps of the calculation of
P(132541) are

w

w

ot
»—\ww‘

3
[1]3] [1]2 1[2]5] [1]2]4
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THEOREM 5.1.1. The maximal length of a nondecreasing subword of w is equal
to the length of the bottom row of P(w).

Similarly, the maximal length of a decreasing subword of w is equal to the
height of the first column of P(w).

For example, the maximal nondecreasing subwords of w = 132541 are 125,
124, 135 and 134. Note that 114, the bottom row of P(w) is not a subword of
w.

Schensted’s theorem will be proved in the forthcoming section. Actually, we
will prove a more general result due to C. Greene, which gives an interpretation
of the lengths of all rows and the heights of all columns of P(w).

5.2. Greene’s invariants and the plactic monoid

For w € A*, let Ix(w) be the maximum of the sum of the lengths of &k disjoint
nondecreasing subwords of w. Similarly, let [} (w) be the maximum of the sum
of the lengths of k decreasing subwords of w.

Let A = (\1,..., ;) be the shape of P(w), and let ' = (\|,...,A}) be the
conjugate partition.

—lp—1(w), and fork =1,...,s,

)
0).

THEOREM 5.2.1. Fork=1,...,7, Ay = l,(w
A =1 (w) =1, _, (w) (where lp(w) = lj(w) =

To prove this theorem, it is natural to investigate the relationship between
two words having the same Schensted tableau. Therefore, we introduce an
equivalence relation ~ on A* defined by

u~v <= P(u) = P(v).

For words of length < 2, one has u ~ v & u = v, since each such word is either
a row or a column. The first nontrivial relations occur in length 3, and come
from the tableaux of shape (2,1). With three letters z < y < z we have four
non monotonic words whose P-symbols are

z Yy
P(zzy) = P(zay) =2 1Y |, P(yzz) = P(yzz) =212 |, (5.2.1)

and similarly, with two distinct letters x < y

) Y
P(zyz) = P(yzz) =% 17|, P(yay) = P(yyz) =7 1Y | (5.2.2)

We will prove in the sequel that ~ is in fact the congruence on A* generated by
the relations implied by (5.2.1), (5.2.2). It is the quotient of the free monoid by
these relations that will be the main object of this chapter.
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DEFINITION 5.2.2. The plactic monoid on the alphabet A is the quotient
P1(A) = A*/ =, where = is the congruence generated by the Knuth relations

zzy=zzy (x<y<z)),

N DN
- W
~— ~—

yrz=yzr (x<y<z).
The first step in proving Greene’s theorem is

PRrROPOSITION 5.2.3. Every word is congruent to its Schensted tableau, that
is,

w = P(w).

Proof. By definition of =, the proposition is true for |w| < 3. We proceed by
induction on |w|. Assume that for a word w we have P(w) = w, and let = be a
letter. We have to show that P(wz) = wz, or equivalently P(wz) = P(w) - .
The definition of the map P allows us to reduce this verification to the case
where w is a row. Assuming this, if wz is a row then P(wz) = wz, and
otherwise, P(wz) = yw' where y is the leftmost letter in w which is > z, and
w' is obtained from w by replacing y by z. Then, writing w = uyv, we have
wx = uyrv by a sequence of applications of (5.2.4), and uyzv = yuxv by a
sequence of applications of (5.2.3). n

Next, we show that

PROPOSITION 5.2.4. Ifw = w', then lx(w) = I (w') for all k.

Proof. We can assume that w' is obtained from w by a single Knuth transfor-
mation. Let us write, for instance,

w = urzZYv , w' = uzzyv (z<y<2).

Clearly, all nondecreasing subwords of w’ are also subwords of w. Hence,
Ig(w) > lp(w'). Conversely, let (wy,...,wg) be a k-tuple of disjoint nonde-
creasing subwords of w. Then, w; is also a subword of w’, unless w; = u'zzv’,
where ¢’ and v’ are subwords of u and v. If y does not occur in any of the
remaining w;, then w; can be replaced by w} = u'zyv’, which is a nondecreas-
ing subword of w'. Otherwise, if some w; = u"yv", then, one replaces the pair
(ws, wj) by w; = v'zyv" and w’; = u"zv'. The case of a Knuth transformation

J
of type (5.2.4) is similar. Therefore, we have I (w) <l (w'). "

Thus the integers I, (w) are not modified by Knuth’s transformations (5.2.3)

(5.2.4). They are called Greene’s plactic invariants. Two other important plac-
tic invariants, the charge and cocharge, will be studied in Section 5.6.

Proof of Theorem 5.2.1. Using Propositions 5.2.3 and 5.2.4, the only thing
to prove is that for a tableau ¢ of shape A, lx(t) = Ay + --- + Ax. Taking for
wi, - .., wy the k longest rows of ¢, we see that I (t) > A1 + -+ + Ag. Conversely,
a nondecreasing subword w of ¢ uses at most one letter from each column of the
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planar representation of ¢, therefore k disjoint nondecreasing subwords can use
at most Ay + -+ - + A\, letters of ¢. n

We are now in a position to prove the cross-section theorem:

THEOREM 5.2.5. The equivalence ~ coincides with the plactic congruence. In
particular, each plactic class contains exactly one tableau.

Proof. Let us assume that w ~ w’. Then, by Proposition 5.2.3,
w = Pw) =Pw')=w'.

Conversely, suppose that w = w’. Then, from Proposition 5.2.4 and Theo-
rem 5.2.1 we see that P(w) and P(w') have the same shape. Now, let z be
the greatest letter of w and w’, and write w = uzv, w' = u'zv’, where z does
not occur neither in v nor in v'. Then, we claim that uv = u/v’. Indeed, we
can assume that w and w' differ by a single Knuth transformation. If z is not
involved in this transformation, then either u = v’ and v = v', or v = v’ and
v =v'. And if z is involved, erasing z in (5.2.3) or (5.2.4) leaves us with zy = zy
or yr = yx, so that uv = u'v’.

By induction on the length of w, we can assume that P(uv) = P(u'v').
From the description of Schensted’s algorithm, since z is the greatest letter, it
is clear that after erasing z in P(uzv), one is left with P(uv). Therefore, P(w)
is obtained from P(uv) by adding a box z at a place imposed by the shape of
P(w), and since the same is true for w’, we conclude that P(w) = P(w’). "

5.3. The Robinson-Schensted-Knuth correspondence

We have seen in the preceding section that the set Tab (A) of all tableaux over
the alphabet A is a cross-section of the canonical projection w: A* — P1(A) =
A*/ =. Tt is now a natural question to investigate the structure of the plactic
classes m71(t), t € Tab(A). As we will see, the elements of 7~!(t) are also
parametrized by certain tableaux.

Let us say that a tableau is standard if its entries are the integers 1,2,...,n,
each of them occurring exactly once. The set of standard tableaux is denoted
by STab . For a partition A, we denote by Tab (A, A) (resp. STab ()\)) the set of
tableaux over A (resp. of standard tableaux) of shape A.

By keeping track of the successive steps of the insertion algorithm, one can
define a map @ : A* — STab such that w — (P(w), Q(w)) is one-to-one. More
precisely, let w = y1 - - y,,. Observe that a standard tableau ¢ is nothing but
a chain of partitions A" ¢ X® < ... ¢ A" such that the diagram of \(i+1)
is obtained from that of A(¥ by adding one box, which is the one labelled i + 1
in t. Now, Q(w) is by definition the standard tableau encoding the chain of
shapes of P(y1), P(y1y2), ..., P(w). For example, the chain of insertions seen



150 The Plactic Monoid 5.3

above gives

I—leD|
ut

Q(132541) =
Clearly, Q(w) has the same shape as P(w).

THEOREM 5.3.1. The map

p:A* — [1, Tab (X, A) x STab (\)
w — (P(w), Qw))

is a bijection, called the Robinson-Schensted correspondence.

Proof. The inverse map p~! can be explicitly constructed. The idea is that,

given a row v and a letter y, there exists a unique row v’ and letter x such
that yv = v'z. This shows that the insertion process described in Section 5.1
can be reversed, provided that one specifies the box to be erased. Given a
pair (¢,t') € Tab (), A) x STab (\), one constructs w = p~1(t,t') by deleting
successively in ¢ the boxes labelled n,n —1,...,1 in t'. [

COROLLARY 5.3.2. (@ induces a bijection between the plactic class of each
tableau t and STab (\), where X is the shape of t. In particular, the cardinality
of the class of t is equal to

f 1= |STab (M)].

Restricting p to the set of standard words on A = {1,2,...,n}, which can
be identified with the symmetric group &,,, one obtains a bijection

& +— [[STab (A) x STab ()). (5.3.1)
A
It provides in particular a bijective proof of an identity of Frobenius:
nl= > fi,
IAl=n

a special case of the fact that the cardinality of a finite group is equal to the
sum of the squares of the dimensions of its irreducible representations (over C).

As shown by the next theorem, there is some compatibility between the
Robinson-Schensted map and the group structure of &,,.

THEOREM 5.3.3. Foro € &, Q(o) = P(c™!).
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The original proof of Schiitzenberger proceeded by induction on n. We give
below a simple derivation based on Greene’s theorem.

To this aim, it will be convenient to represent a permutation o by a biword
(or word in biletters, that is, pairs of letters (a,b) € A x B in the product of

two alphabets, denoted here for convenience by z ).

PN |:’L.1 PN ’L.n :|
Ju oo n
where each j; = o(ix). Among the biwords representing o, we have two distin-
. id ot
guished ones [a] and [ d

the lexicographic order on biletters with priority on the top or bottom row.

, which are obtained by sorting one of them using

More generally, for a biword {Z] where u,v € A* are not necessarily stan-
!
dard, we denote by [Z,] the nondecreasing rearrangement of {Z] for the lex-

n
icographic order with priority on the top row, and by Z,, the nondecreasing

rearrangement for the lexicographic order with priority on the bottom row.
Thus, for

v 13652414

u'| 12233445 d u"| 22514433
o' | T | 31156442 *MC |0 | T | 11234456 |

The crucial property is the following:

- [

we have

LEMMA 5.3.4. For any biword [Z}, the tableaux P(v') and P(u") have the

same shape.

Uy =~ Um,
V1" Um

Proof. Let {Z] = [

} and consider a nondecreasing subword =

!
" u . .
v, -+ - v, of v'. Then, by definition of o | Wi, 18 also nondecreasing,

{““] <... < [“’]
Vi, - - | Vi,

for both lexicographic orders. Therefore, @ is also a nondecreasing subword of
u”. From this remark, we see that there is a bijection between the k-tuples of
disjoint nondecreasing subwords of v’ and those of u. By Theorem 5.2.1 the
conclusion follows. n

and
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! : " —1
Proof of Theorem 5.3.3. Let 0 € G,, and z,] = {lj}, {Z,,} = {Uid ] The

left factors of o are encoded by the biwords
uk)'| _[1 2 - k
vk) | |og o2 - o

7]

v(k)" ] [(o1--on) T

where (o1 ---0)) 1 is the increasing rearrangement of the left factor oy - - - oy,
and for a word w € A* and a subset B of A, w|p denotes the subword of w
obtained by erasing the letters which are not in B. From Lemma 5.3.4, at each
step of the insertion algorithm, we have that P(oy --- o) and P(o |y ) have
the same shape. So at the end, P(c™!) = Q(0). n

for which we have

In fact, Theorem 5.3.3 can be readily generalized to give a similar result for
the insertion tableau Q(w) of an arbitrary word w € A*. To do this, we need
the notion of standardization.

Let 7 < z2 < ... < x, be the letters occurring in w, with respective
multiplicities mq,...,m,. By labelling from 1 to m; the occurrences of x,
reading from left to right, then from m; 4+ 1 to m; + msy the occurrences of x,,
and so on, we get a standard word, denoted by std (w). For example

std (31156442) = 41278563 .

This defines in particular the standardization of a tableau. It is immediate to
check from Knuth’s relations that

LEMMA 5.3.5. If w = w', then std (w) = std (w'). In particular, P(std (w)) =
std (P(w)). "

It is also clear from the description of the Robinson-Schensted algorithm
that

LEMMA 5.3.6. Q(w) = Q(std (w)). "

We can now state:

COROLLARY 5.3.7. For any w € A*, Q(w) = P(std (w)™1).

Proof. By Theorem 5.3.3, P(std (w)~!) = Q(std (w)), which is equal to Q(w)
by Lemma 5.3.6. -

In the Robinson-Schensted correspondence for non standard words, there is a
dissymmetry between the left tableau P(w) and the right tableau Q(w). Lemma
5.3.4 shows the way to restore the symmetry, by extending the correspondence
to commutative classes of biwords, i.e. monomials in commutative biletters



5.3. The Robinson-Schensted-Knuth correspondence 153

. Given two words 4 = w1 ... Uy, and v = vy ...v,, of the same length, we

denote by (Z) = <Zl> (Zm> the associated monomial in commutative
1 m

biletters (not to be confused with the biword [;ﬂ ).

"

!
DEFINITION 5.3.8. Let (Z) be a monomial, and [g,], [z,,} be the two

biwords associated as above to the biword :j . The Knuth correspondence

is defined by

By corollary 5.3.7, we recover the Robinson-Schensted correspondence by

m > By Lemma 5.3.4,
Ym

we know that P(v') and P(u") have the same shape. It will follow from the
alternative description given below that x is a bijection between monomials in
biletters and pairs of tableaux of the same shape. Recall that the evaluation of

a word is the vector ev (w) = (|w|ay, | W]ass- - -» |W]a, ), where A = {as,...,an}.

encoding w = y; - - - Y, as the monomial (yl ) (
1

PROPOSITION 5.3.9. P(u'") is the unique tableau of evaluation ev (u'") such
that std (P(u")) = Q(v").

o Em we have (std (v)")~1 = std (u)".

Since lexicographic sorting obviously commutes with standardization, it follows
that (std (v'))~! = std (u"). Hence,

Proof. By lexicographic sorting of [

Q') = P((std (v')"') (Corollary 5.3.7)
P(std (u"))
=std (P(u")) (Lemma 5.3.5).

Therefore, to compute the inverse image of a pair of tableaux (¢,¢') under
the Knuth correspondence, we can apply the inverse Robinson-Schensted map

!
to (t,std (#')) to get v' = p~1(¢,std (¢')). Then, s 1(t, ') = <tv,T>.
Note that the symmetry

K (:j‘) = (tt) = & (Z) = (1),

which generalizes Theorem 5.3.3 is incorporated in the definition of . In par-
ticular, taking t' = ¢, x establishes a bijection between Tab (A) and the set of
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symmetric monomials in biletters, i.e. those such that (Z) = (Z) (which

amounts to say that for any z,y € A, (;) and (Z) occur with the same mul-

tiplicity). As an immediate consequence of this observation, we can compute
the generating series of the numbers

do = |{t € Tab(4) | ev (t) = a}| (a € N4)

which are the cardinalities of the multihomogeneous components of the plactic
monoid.

THEOREM 5.3.10. Let &1,&s, ... be commuting indeterminates. Then,

" 1 1
2 dat _Hl_figl_fifj-

aENA i

Proof. The commutative image ¢ of a tableau ¢t under a; — §; is obtained
from (Z) = k1(t,t) by mapping each biletter (;) to (&&;)Y/2. Now, the

generating series of all symmetric monomials in biletters is clearly
M 11—
S0 0)
i J i

COROLLARY 5.3.11. For |A| = n, the cardinality of the homogeneous compo-
nent of degree k of P1(A) is equal to the coefficient of z* in

1 1

(]_ _ Z)n (1 _ ZQ)n(n—l)/2 '

5.4. Schur functions and the Littlewood-Richardson rule

Let &1,&, ..., &, be commuting indeterminates as in the preceding section, and
retain the notation w — w for the commutative image a; — §; of a word w € A*.

DEFINITION 5.4.1. Let A be a partition. The generating function

S)\(fl,...,fn): Z z

teTab (A, A)

is called a Schur function.
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Although not obvious from this definition, sy is a symmetric polynomial in
&, -, &y (this will be proved in Section 5.6). Most of the combinatorial con-
structions of Section 5.3 imply interesting and classical Schur function identities.
For example, Schur’s identity 5.3.10 can be rewritten as

1 1
z)‘:sx(fly---afn):gl_gigl—&fj'

From Theorem 5.3.1 we get

T =2 A,

Indeed, the left-hand side is clearly the generating function of A*.

Finally, from the bijectivity of Knuth’s correspondence, we obtain a classical
and fundamental identity which can be tracked back to Cauchy. To state it, we
need a second set 71, . .., 7, of commuting variables. Sending the biletter <Z’: >

J
onto &mn; and the pair (¢,t') to the product of the commutative image of ¢ in
the variables £ and of ¢’ in the variables n, we get

THEOREM 5.4.2.

H 1- 5177] Z 8)\ 8)\

i,

Group theoretical arguments show that a product of Schur functions is equal
to a positive sum of Schur functions:

=3 &0 (5.4.1)

where ¢§,, € N. The calculation of the coefficients X, 18 of interest in many
fields. A combinatorial interpretation of these numbers implying an efficient
algorithm for their computation has been given without proof by Littlewood
and Richardson.

The most illuminating proof of this rule proceeds by lifting the calculus of
Schur functions to the algebra Z[P1(A)] of the plactic monoid, introducing the

plactic Schur function
S\ =Y ot

teTab (X, A)

where tableaux are evaluated in the plactic monoid. This plactic Schur function
can be seen as the projection in Z[P1(A)] of anyone of the free Schur functions

ZwEZ

indexed by t € STab (A). In fact the Littlewood-Richardson rule will be deduced
from a statement in the free algebra Z(A).
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THEOREM 5.4.3. Let A’ and A" be two subalphabets such that o' < o', for
alla € A', o' € A". Fort' € Tab (A') and t" € Tab (A") we have

Y wjul ¥ el ¥ oy
P(w')=t' Plw'")=t" teSh (¢ ') P(w)=t
where Sh (t',t") is the set of all tableaux t such that t|4» =t' and P(t|ar) =1t",

that is, of all tableaux t occurring in the shuffle product of t' and a word in the
plactic class of t"'.

Thus the shuffle of a plactic class of A’ and a plactic class of A” is a union
of plactic classes of A (identifying a class and the sum of its elements). It is in
fact a direct consequence of the following

LEMMA 5.4.4. Let I be an interval of A. Then
w=w = wl =w;

Proof. Tt is enough to check the lemma in the case when w' differs from w by a
single Knuth transformation, and this amounts to the observation that erasing
x or z in 5.2.3 or 5.2.4, we are left with zy = zy or yz = yz. L]

Proof of Theorem 5.4.3. The words occurring in the shuffle are exactly those
w such that w|ar = t' and w|a» = ¢'. By Lemma 5.4.4 , this set of words is
saturated with respect to the plactic congruence, hence is a union of plactic
classes. ]

We can now state the plactic version of the Littlewood-Richardson rule.

THEOREM 5.4.5. The plactic Schur functions span a commutative subalgebra
of Z[P1(A)] and we have

SA(A)Su(A) = Y X,Su(4)

where the ¥, are the same as in (5.4.1). In particular cX,. 1 equal to the number
of factorizations in P1(A) of any tableau t € Tab (v, A) as a product t't" with
t' € Tab (X, A) and t" € Tab (u, A).

Proof. We first work in the free associative algebra Z(A) and consider a product
St (A)Sy(A) where t',t" are arbitrary standard tableaux of respective shapes
A and p, with p = |A|, ¢ = |u|. We identify as above a word w' of length p with
a monomial in commutative biletters:

o — (1..I.p> .
w

Then, by reordering biletters, we can write in view of Proposition 5.3.9

o X ()5 0)

Q(w')=t' P(u)=t'
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where the notation means that the second sum is over all words u and r’ such

that the biword :f, is increasing for the lexicographic order with bottom

priority, and that P(u) = t'. Similarly, using for w" of length ¢ the identification

W' — <(p+1)---(p+q)>

wll

we can express Sy as
—
v
S¢r = § (7””) )
P(v)=t"[p]

where t"[p] denotes the tableau obtained from ¢’ by adding p to all its en-
tries. Now sorting lexicographically (with bottom priority) any of the biwords

[:,] [ﬁ,}, one gets a biword [Q:} such that w occurs in u W v. Conversely,

all increasing biwords , such that w occurs in v arise in this way from

the sorting of a unique product [:,] [:,} of increasing biwords. Thus, by
Theorem 5.4.5,
— w
Sy Sy :Z Z <r> ,
t P(w)=t

where the outer sum is over all standard tableaux ¢ which occur in the shuffle
of ¢ and a of a word congruent to ¢"'[p]. Hence

SyS = Z S,, (5.4.2)
t

sum over the same tableaux ¢, and taking the plactic image we obtain

SaSu =Y X, (5.4.3)

where ¢f, is the number of standard tableaux of shape v which occur in the
shuffle of ¢’ and of a word in the class of ¢'[p]. Taking the commutative image
of (5.4.3), we see that the c}, are the same as in (5.4.1), which implies that
the plactic Schur functions span a subalgebra of Z[Pl(A)] isomorphic to the
commutative algebra spanned by the ordinary Schur functions. Finally the
interpretation of ¢, in terms of factorizations in P1(A) follows directly from
the definition of plactic Schur functions. m

As an illustration of (5.4.2), one can check that for

3
= = 112




158 The Plactic Monoid 5.4

the product Sy Sy~ is equal to Et S; where t ranges over the following tableaux:

6| (4]
6 1]6 3 36
1]2]4]5] [1]2]s 1[2]4]5] [1]2]s
6| 6|
6| 4le6] [4] 4|
3[4 5] [3] 3[5
1[2]5] [1]2 1[2]5] [1]2

COROLLARY 5.4.6. Let R(\, k) (resp. C(\,k)) be the set of partitions whose
diagram is obtained by adding k boxes to the diagram of \, no two of them
being added in the same column (resp. in the same row). Then,

HSw = D S

vER(\k)

SxSary = Y. S,.

veC(\k)

Proof. Let m = |A|. To calculate S; - S12...k, we have to look for the standard
tableaux in the shuffle of the plactic class of ¢ with the one element class

(m+1)(m+2)---(m+k).

Clearly, these tableaux can only be obtained by dispatching at the periphery
of t the letters (m + 1),...,(m + k) from left to right and in this order, and
the resulting shapes are exactly those of R(\, k). The second formula is proved
similarly. m

To recover the classical formulation of Littlewood and Richardson, we need
the notion of a Yamanouchi word. We say that w is a Yamanouchi word on
A={1,2,...,n} if any right factor v of w satisfies |[v|; > |v|]2 > ... > |v],.

LEMMA 5.4.7. The Yamanouchi words of a given evaluation p = (p1, - - -, iin)
form a single plactic class whose representative tableau is the Yamanouchi
tableau

Y

that is, the unique tableau with shape and evaluation .

Proof. Tt is immediate to check that if w is a Yamanouchi word, and if w' is
obtained from w by a single Knuth transformation, then w' is also a Yamanouchi
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word. Therefore, a plactic class which contains a Yamanouchi word contains
only Yamanouchi words. Now, a tableau is a Yamanouchi word if and only if its
bottom row contains only 1’s, the next row contains only 2’s, and so on. Hence
there is a unique Yamanouchi tableau, namely, the unique tableau of shape u
and evaluation u, and the lemma follows from Theorem 5.2.5. m

We can now see that the classical version of the Littlewood -Richardson rule
is a direct consequence of (5.4.2). Indeed, to calculate x> We can choose for
t' and t" the standard tableaux of respective shapes A and g in which each
row consists of consecutive integers. These tableaux are the standardized of the
Yamanouchi tableaux of the same shapes, so that the words w" in the plactic
class of ¢''[p] are precisely the shifted standardized of the Yamanouchi words y"’
of evaluation p. Hence, if one erases in the tableaux ¢ the entries of ', which
are irrelevant, and replaces the word w” by the unique Yamanouchi word y”
of which it is the standardized, one obtains the classical Littewood-Richardson
tableaux, i.e., the skew Yamanouchi tableaux of shape v/\ and evaluation u.
Continuing the preceding example, one would obtain

<]
-

1]1] 1 [1]1] 1

~[v]

- 2]
1]

L [ 1]

Another useful formulation of the rule is the following;:

COROLLARY 5.4.8. Let y, denote the unique Yamanouchi tableau of shape p.
Then cf, is equal to the number of tableaux t of shape A such that t -y, is a
Yamanouchi word of evaluation v.

Proof. By Theorem 5.4.5, cf, is the number of factorizations y, = t-t'in P1(A),
with ¢ € Tab (A, A) and t' € Tab (u, A). Equivalently, by Lemma 5.4.7, X, is
the number of Yamanouchi words w of weight v such that w = ¢ -¢' in A*, for
some t € Tab (A, 4) and ¢ € Tab(u, A). Then the right factor ¢ must be a
Yamanouchi tableau, that is ¢’ = y,,. "

(4,3,1)

For example, the coefficient C(39),(2,1)

following two tableaux t:

is equal to 2, corresponding to the
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5.5. Coplactic operations

The set of words w having a given insertion tableau t = Q(w) is called a coplactic
class. In the preceding section we have seen that the sum S; of the elements
of a coplactic class is a pertinent lifting of a Schur function to the free algebra
Z(A). In this section, we show that coplactic classes can be endowed with a
structure of colored graph.

We introduce linear operators e;, fi,0i, @ = 1,...,n — 1, acting on Z(A)
in the following way. Consider first the case of the two-letters subalphabet
A; ={a;,ai41}. Let w = 1 - -z, be a word on A;. Bracket every factor a;+1a;
of w. The letters which are not bracketed constitute a subword w; of w. Then
bracket every factor a;1a; of wi. There remains a subword ws. Continue this
procedure until it stops, giving a word wy, of type wy = ajaf,, = xj - -z .
The image of wy, under e;, f; or o; is given by

aitlaiy  (s21)
0 (s =0)

ei(aja,) =

7"—1 §+1

1
filaiai,) = {al Oal+1 E: i 0;

r_s __ 8,8
Ui(aiai+1) =Q;0;44

Let wy, = a7}, -~ denote the image of wi. The image of the initial word w

is then w' = yy -+ - ym, where y; = 2} if i € {j1,...,jr+s} and y; = x; otherwise.
For example, if w = (a2a1)a1a1a2(aza)arararasz, we have

w1 = ara1(azar)ararias  and  we = ara1a1a1as -

Thus,
e1(w) = a2a1 4,4, A2a20101 A10,0,

fi(w) = azay a0, asazaia; a;aya,
o1 (W) = a201 414y A2020101 AxQya5

where the underlined letters are those of the subword w). Finally, the general
action of the operators e;, f;, o; on w is defined by the previous rules applied to
the subword w]a:, the other letters remaining unchanged.

THEOREM 5.5.1. Let h be anyone of the operators e;, f;, 0;.
(i) Let w € A* and suppose that h(w) # 0. Then Q(h(w)) = Q(w).
(ii) Let w' be congruent to w. Then h(w) = h(w").

Proof (i) Suppose first that A = {a;,a2}, and let us give the proof in the case
h = fi. Let w € A* be such that fiw # 0. This means that w = ua,v where
u = (aza1)*al™" (r > 1), v = a§(aza;)" and that we have f; (w) = uayv. Clearly,

Q(uas) = Q(uay). Next, the insertion of v into P(uas) will produce the same
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sequence of shapes as the insertion of v into P(uay). Indeed, write v = vy - - - vy,
and assume by induction that P(uayv; - -v,—1) and P(uasv; - - - v,_1) have the
same shape. If v, = ao, then clearly P(uajvy---v.) and P(uasvy -+ v) will
also have the same shape. If v, = a;, then since v = a3(aza;)’, we see that
r > 2 and that the tableau P(uaqv; ---v,.—1) has at least one as in its bottom
row. Thus the insertion of a; in both tableaux will produce again two tableaux
of the same shape.

The proof is similar in the case h = e, and this also implies the case h = oy
since oy w is either of the form ffw or efw.

Consider now the general case A = {a,...,a,}, and suppose that h =
fiyei or o;. By Corollary 5.3.7, we have to prove that P(std (h(w))™!) =
P(std (w)™1). Recall that std (w)~! is the word u" obtained from the repre-

sentation of w as the biword [H = [15] (see Section 5.3). Set wy = h(w) and

u id .
[vl] = [w ] Then, we can write v" = aajaj, 3 where a; and a;y; do not
1 1

occur in o and 3, v} = aa;"’af;l,b’ (r+s=r"+s"), u" =~ed where |a| = |y| and
|B] = 19|, and finally u{ = ~ye;4. By the above proof for a two letter alphabet,
g1 = €. Therefore, u} = u" as required.

(ii) Suppose that w' differs from w by a single Knuth transformation, and
let us take for example h = f;. Write w = azzyf and w' = azzryfS, where we
assume that < y < z. Let a (resp. a') be the letter a; of w which is changed
into a;+1 by f;. We claim that if a is a letter of « (resp. ), then a' is the letter
occupying the same position in w’. This is clear because the transformation
xzy — zxy does not modify the relative positions of consecutive letters a; and
ai+1. Therefore, f;(w) = f;(w') trivially if a is a letter of a or of 5. Otherwise, a
is one of the letters z,y, z of w and a’ is the same letter in w’. Hence, according
to a = z,y or z, we have

aa;+12yp azai1yps
filw) =< azzai 1B = fi(w') =< azra; 18 .
araip1yf aaipzyf

Note that in the case a = y, we must have z > a;;2, because if z = a;yq,
y = a;, then zy would be put between brackets. In the case w = azyxf and
w' = ayzz, the reasoning given above remains unchanged, except when x = a;,
Yy = a;+1, and a does not belong to « or . In this case, we have

filw) = fi(aaiairiaifB) = aaiprai10:0,
and
fi(w") = filaai1a:0:8) = aaipra:0i416 = fi(w) .

The case of a Knuth transformation yzz = yzz (z < u < 2) is treated similarly.
|

We shall now make use of the operators e;, f; to define a graph T" on A*.
The vertices of this graph are all the words w € A*, and we put labelled arrows
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between words according to the following rule:
(w -5 w) = (fiw=u).

Note that if fyw = w' # 0, then e;w’ = w, hence at each vertex w there is at
most one incident arrow of color i (and also, by definition, at most one outgoing
arrow of color 7). Hence the subgraph obtained by erasing all arrows of color
j # i is extremely simple: it is just a collection of disjoint i-strings

wl—l>w2—>---—l>wk

of various lengths k > 0. However, when all the colors are considered simulta-
neously, a rich combinatorial structure emerges. Let us call “connected com-
ponents of I'” the connected components of the underlying non-oriented non-
labelled graph.

PROPOSITION 5.5.2. (i) The connected components of ' are the coplactic
classes.

(ii) Two coplactic classes are isomorphic as subgraphs of I' if and only if
they are indexed by two standard tableaux of the same shape.

Proof. (i) By Theorem 5.5.1 (i), any connected component of ' is contained in
a coplactic class. Conversely, let w be a a non-Yamanouchi word. Then there
exists an index ¢ such that e;w # 0. If w' = e;w is not a Yamanouchi word,
we can again find j such that ejw’ = w" # 0. Iterating this procedure, we
construct a chain of arrows connecting w to the unique Yamanouchi word in its
coplactic class. Hence any two words of the same coplactic class are connected
by a sequence of arrows going through the same Yamanouchi word.

(ii) Tt follows from Theorem 5.5.1 (ii) that two coplactic classes indexed by
standard tableaux of the same shape are isomorphic as subgraphs. Conversely, if
two coplactic classes C, C’ correspond to two standard tableaux ¢, ¢’ of respective
shapes A # X, then the Yamanouchi words of these classes have evaluation A
and \'. It is easy to check from the definition of f; that for a Yamanouchi word
of evaluation A = (A1,...,Ax), one has

max{p | f{y # 0} = Xi — Aiy1 -

Hence the unique vertices of C' and C' with no incident arrows have outgoing
strings of different lengths, and C' and C" are not isomorphic. m

As an illustration Figure 5.1 shows the graph structure of the coplactic class
of t = 2211 for A = {1,2,3,4}. These graphs are examples of crystal graphs in
the sense of Kashiwara.

5.6. Cyclage and canonical embeddings

In this section we investigate the behavior of the previous constructions under
circular permutations on words. We denote by ( the bijection on A* defined by
(w122 Ty) = T2 -+ - Tpwy (x; € A).
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Figure 5.1. The graph structure of the coplactic class of t = 2211.

PROPOSITION 5.6.1. The cyclic shift ( commutes with the maps o;.

Proof. We have to prove that (o;(w) = 0;((w), w € A*. If the first letter
x1 of w is different from a; and a;y1 there is nothing to prove. Otherwise we
distinguish 4 cases. Let us say that a letter z of w is free if it does not occur
inside a pair of mutually closing brackets at the end of the bracketing procedure
described in Section 5.5. We then have the following cases: (i) 1 = a; and no
ait1 18 free; (i4) x1 = a; and at least one a;11 is free; (#4) 1 = a;41 is free; (i)
21 = a;41 is not free. In each case, the verification is immediate. n

LEMMA 5.6.2. Lett € A* be a tableau and o be any product of ;. Then the
following conditions are equivalent:

(i) oft) =t

(i) o(P(C(1))) = P(C(2)).
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Proof. Since ( is bijective,

o(t) =t & ((o(t)) = (D).

By Proposition 5.6.1, {(o(t)) = ({(t)), which has the same Q-symbol as ((t)
by Theorem 5.5.1 (i). Thus

o(t) =t P(o(((t)) = P(C(#))

because of Theorem 5.3.1. Now, again by Theorem 5.5.1, P(o(w)) = o(P(w))
for any w € A* and the statement follows. n

THEOREM 5.6.3. The operators o; satisfy the Moore-Coxeter relations

o} =1, (5.6.1)
0i0j = 0;0; (|Z —j| > 1), (562)
0i0i+10; = 041040441 - (563)

In other words, the map p sending the elementary transposition (i,i + 1) onto
o; is a linear representation of the symmetric group &,, in Z(A).

Proof. Relations (5.6.1) and (5.6.2) are obviously satisfied. To prove (5.6.3), we
have to show that (0;0;11)%(w) = w for any w € A*. From Theorem 5.5.1, it is
enough to check this when w =t is a tableau. Let t = uv where v is the bottom
row of t. By Lemma 5.6.2, it is equivalent to show that (0;0;41)3P(uv) = P(vu).
Now, in the tableau ¢ = P(vu) all the letters aq, a2 lie in the bottom row.
Writing ¢ = v’ and t" = P(v'u'), and iterating, we construct a sequence t(¥)
of tableaux such that all the letters a1, ..., ag41 of t*) are in its first row, and
such that
(0i0i41)°(t) = t <= (03001 (t®)) =)

But t(»~Y is a row, and (o30441)%(t®~Y)) has to be a row with the same evalu-
ation, hence (0;0;41)% (") = t(n=1), .

COROLLARY 5.6.4. The free Schur functions S; are invariant under the above
action of G,,. As a consequence, the commutative Schur functions sy (§) are
symmetric in the usual sense.

We next investigate which transformations on tableaux arise when the map
P is applied to circular permutations of words. Let Row (A4) denote the subset
of Tab (A) consisting of rows.

DEFINITION 5.6.5. Let t be a tableau which is not a row. We put

The map C : Tab (A) \ Row (4) — Tab (A) is called cyclage.



5.6. Cyclage and canonical embeddings 165
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Figure 5.2. The calculation of the cocharge of w = 23141213142 (labels
are written in small type)

To describe properties of the cyclage map, we need to use a plactic invariant on
words called cocharge. Let w be a word. Let o be any permutation such that
v = o(w) has a dominant evaluation, that is

[V]ay > [V]ay > > |V]a,, -

Write v on a circle, adding a “point at infinity” * (see Figure 5.2). Then label
each letter of v according to the following algorithm, reading the word clockwise.

1. start at * and label the first unlabelled a; with 0.

2. after labelling an a; with the number ¢, label the first unlabelled a;y;
with ¢+ 1 if it is obtained without crossing %, and with ¢ otherwise. If
there is no unlabelled a;41, go to the first step again, while there are still
unlabelled letters.

The sum of all labels is called the cocharge of w, and is denoted by coch (w).
The complementary statistic ch (w) = max{coch (v) | ev (v) = ev (w)} —coch (w)
is called the charge of w. For example, the cocharge of w = 23141213142 (whose
evaluation is dominant) is equal to 9, as shown in Figure 5.2.

LEMMA 5.6.6. (i) IfC(t) = t', then for any o € &(A), C(a(t)) = a(t').
(ii) If w = w' then coch (w) = coch (w').
(iii) For t € Tab (A) \ Row (A), we have coch (C(t)) = coch (t) — 1.
(iv) IfFC(t) = C(t') and t # t', then t and t' must have different shapes.

Proof. (i) results clearly from Theorem 5.5.1 and Proposition 5.6.1.
As to (ii), we note that by definition coch (o(w)) = coch (w) for o € G(A),
hence using Theorem 5.5.1 (ii) we can assume that w and w' have a dominant
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evaluation. For such words, the above calculation of the charge proceeds by
extracting from w a sequence of standard subwords w(? such that

coch (w) = Z coch (w;) .

Now, it is clear that replacing a factor a;a; by aja; when |i — j| # 1, does not
change these subwords, and thus does not change the cocharge. Similarly, one
checks that replacing a factor a;yia;a; (resp. aiyiair16;) by a;a;11a; (resp.
ai+10;a;+1) does not modify these standard subwords. Hence, cocharge is in-
variant under plactic relations.

Let now t = 2w, ¢ € A, be a tableau of dominant evaluation, which is not
arow. Then z # a1, and the order in which letters are labelled in the word zw
is the same as in wz. Thus, all labels are preserved except the label of x which
is decreased by 1, and

coch (P(wz)) = coch (wz) = coch (zw) — 1

which proves (iii).

To prove (iv), assume that ¢ and ¢ are two different tableaux of the same
shape, and write t = zw, t' = z'w’ with z,2’ € A. Then w and w’ also are two
tableaux of the same shape, say A\. By Corollary 5.4.6, Sx S(1) is a multiplicity-
free sum of tableaux in Z[P1(A)], hence wz # w'a’, that is, C(t) # C(t'). "

We shall now use the map C to define a graph structure on the set Tab (A4).
Namely, consider the oriented graph with set of vertices Tab (A) and edges
defined by:

t—t = Cit)y=t".

Since the cyclage map does not change the evaluation of tableaux this graph de-
composes into the disjoint union of the subgraphs with sets of vertices Tab (-, u)
for all evaluations pu. The following theorem describes these subgraphs and
shows how they can all be naturally embedded into the subgraph of standard
tableaux.

THEOREM 5.6.7. (i) The subgraph Tab (-, u) is a rooted-tree with root the
unique row-tableau of evaluation pu. Two evaluations which differ by a permu-
tation give rise to isomorphic trees.

(ii) Let p and v be two evaluations such that

wr = v fork #1i,7,

i > g,
Vi:,u’i_la
Vj:,U,j—Fl.

Then there exists a unique embedding Z,,,, of Tab (-, u) into Tab (-, v) commuting
with C and such that Z,,(t) has the same shape as t for all t.

(ili) Similarly, for any evaluation . there exists a unique embedding I, of
Tab (-, 1) into STab preserving shapes and commuting with C.
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Figure 5.3. The tree structure of Tab (-, (2,2,1))

Proof By Lemma 5.6.6 (iii), the map C decreases cocharge by 1. Hence, the
cyclage graph has no cycle and is a union of trees. It is clear from the definition
of cocharge that row-tableaux are the only words with cocharge 0. Therefore,
the subgraph Tab (-, u) is a rooted-tree with root the unique row of evaluation
. If v = o(p) for some o € &(A), then, by Lemma 5.6.6 (i), Tab (-, x) and
Tab (-,v) are isomorphic as trees, which proves (i).

Let 0 € 6(A) be any permutation such that o(a;) = a1 and o(a;) = as.
Let p' = o(pn) and v' = o(v). Given ¢t = zw in Tab (-, ') its image under f;
is non-zero and is the tableau in Tab (-, ') obtained by changing the rightmost
a1 into as. This operation clearly commutes with C, since the letter z which is
cycled does not interfere, in the computation of P(wz), with the subtableau of
w consisting of the occurrences of a; and as. Therefore, the image of Tab (-, ')
under f; is a subtree of Tab (-,2'). Moreover, if two tableaux of the same
shape have the same image under cyclage, then they are identical according to
Lemma 5.6.6 (iv). Hence there can be only one map from Tab (-, u') to Tab (-,v")
preserving shape and commuting with C. Finally, using o', one obtains from
this embedding of Tab (-, u’) in Tab (-,»') an embedding of Tab (-, u) in Tab (-, v)
with the same properties, and (ii) is proved.

Composing the preceding embeddings, one obtains for each evaluation p at
least one embedding of Tab (-, ) into Tab (-, (1,...,1)) preserving shapes and
commuting with C. The unicity of such an embedding is again ensured by
Lemma 5.6.6 (iv). n
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Figure 5.4. The embedding of Tab (-, (3,1,2)) in Tab (-, (2,2, 2))

Figure 5.3 and Figure 5.4 illustrate Theorem 5.6.7 by displaying the tree
structure of Tab (-, (2,2,1)) and the canonical embedding of Tab (+,(3,1,2)) in

Tab (-,

(2,2,2)).

The main motivation for studying cyclage and the related plactic invariants
given by charge and cocharge is to develop a combinatorial approach to the
Kostka-Foulkes polynomials Ky, (¢q) which arise in many contexts, ranging from
the character theory of the finite linear groups GLy,(F,) to the geometry of flag

varieties or the solution of certain models in statistical mechanics. Actually, one
has the following important result:

THEOREM 5.6.8.

The Kostka polynomial is equal to the generating function

of the charge on the set Tab (\, u) of tableaux of shape \ and weight p:

>

teTab (\,p)

¢ =K\,(q).

The proof of this theorem is out the scope of this chapter.
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Problems

Section 5.1

5.1.1 (The Erdos-Szekeres theorem). Prove that any permutation of n? + 1
elements contains a monotonic subsequence of length n + 1. Show that
there exist permutations of n? elements with no monotonic subsequence
with length greater than n.

Section 5.2

5.2.1 Let w denote the mirror image of a word w. Let w be a standard word,
and t = P(w). Show that P(w) = tT, the transposed tableau of .

5.2.2 Let w be a standard word. Show that the sequence w™ stabilizes in
P1(A), in the following sense: for n sufficiently large, w"*! = ¢ - w",
where ¢ is the column such that ev (c) = ev (w).

5.2.3 Let w be a standard word. Let V(w) be the set of words v such that
wv = vr, where r is a row. Show that the set of words of minimal length
in V(w) is a plactic class.

5.2.4  The column reading C(t) of a tableau ¢ is the word obtained by reading
the planar representation of ¢ column-wise, from left to right and from
top to bottom. Show that for any tableau, C(t) = t¢.

5.2.5 (Plactic monoid and quantum matrices). Let A be the associative unital

Qlg, ¢ !]-algebra generated by elements 11, ¥12, T21, T22 subject to the
relations:

L1211 = qT11T12

T21T11 = qT11721

T22T21 = qT21T22

T22T12 = qT12T22

T12T21 = T21T12

ToaT11 = T11T22 + (¢ — ¢ )T12T01
1) Show that D = x11299 — g T2 commutes with the z;5, hence is
central in A.
2) Introduce the Z[g]-lattice £ in A spanned by the elements Dz}, z
(k,I,m € N).
(i) Show that every diagonal monomial x;,;, - - ®iip, (4,7 € {1,2}) be-
longs to £. (Hint: prove that z2s71; = (1 — ¢*)D + ¢*11722.)
(ii) Let w =4y ---ig, w' = j1---jr € {1,2}*. Prove that

o _
W =W <= Tiiy " Tigie = Tjrjy " Tpji HlOqu
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Section

5.3.1

Section

5.4.1

5.4.2

5.4.3

Section

5.5.1

The Plactic Monoid

5.8

Show that the number a,, of involutions in &,, is equal to the number
of standard tableaux of weight n. Show that

2

n
4 z2
E an_' :ez+2 .
n.

n>0

5.4

Show that if A = (k') and pu = (r®) are partitions of rectangular shapes,
all the coefficients 3, are 0 or 1, and give a simple graphical description
of the partitions v such that 5, =1

For an integer k, let hy = s(;) be the Schur function indexed by the
one-part partition (k), and for a partition pu = (p1,-..,pr), set by, =
hy by - hy,.. The Kostka numbers K, are defined as the coefficients
of the expansion h, = >, Ky,sx. Show that Ky, is equal to the
number of tableaux of shape A and evaluation pu.

Let X = {z1,22,...,2,} be a set of commuting indeterminates, and
let E(t) = [[,(1+tx;) = >, enth, Ht) = [[,(1 — ta;) ' = 3, hyt*
be the generating functions of the elementary and complete symmetric
functions of X. Let pp, = >, mf be the power sums symmetric functions.

1) Show that Y-, pit"~" = H'(t)E(—t).
2) Deduce from 1) that p,, = zn;[)l(—l)ks(m_k,lk).

3) The character table of the symmetric group &,, is a square matrix Xfi
indexed by pairs of partitions of n, in which Xﬁ is equal to the coefficient
of sy in the product of power sums p,, = py, Py, - - - Ppu,.- Using 2) and the
Littlewood-Richardson rule, compute the character tables of the groups
6, for n <6.

5.9

Let w = x1 - - -z, € A*. One says that the integer i < m is a descent of
w if z; > x;41. The major index maj (w) of w is the sum of its descents.
We denote by Des (w) the descent set of w.

A recoil of a standard tableau t is an entry i of ¢ such that i + 1 occurs
in a higher row. Let Rec (¢) be the set of recoils of ¢t. The indez of a
tableau is ind (¢) 3_;cpec (1) -

It is customary to encode a subset E = {ey,...,e,—1} C {1,2,...,m—1}
by a composition of m, i.e. a vector I = (iy,...,1,) of positive integers
with sum |I| = m. The encoding I = C(E) of E is specified by e, =
i1 +i2+ -+ ik. The composition I = C'(Des (w)) is called the descent
composition of w. Conversely, the set E defined in this way from a
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composition I is called the descent set of I and denoted by Des (I). As
above, on sets maj (I) = >, ex.

1) Show that for any word, Des (w) = Rec Q(w).
2) For a composition I, define the noncommutative ribbon Schur func-

tion Ry € Z(A) by
R[ = Z w .

Des (w)=Des (I)

a) Show that Rr =3 gec(t)=pes (1) St-

b) Show that w — Q(w) defines a bijection between the set of Ya-
manouchi words of evaluation A and STab ()).

c) Let r; be the commutative image of Ry, and r; = >, c{\sA its ex-
pansion in the Schur basis. Show that r; is equal to the number of
Yamanouchi words of evaluation A with descent composition I.

3) Prove the identity between formal series

[TI10 - e =3 o 2, i,

k>0i>1 m>0 \w\

where (¢)m = (1 —¢)(1 - ¢*) - (1 —¢™).

4) By taking the commutative image of the above identity, and applying
Cauchy’s identity to the alphabets @ = {1,q,¢%, ...} and X, show that
2 ltj=m chgm@ ) = (g),,5,(Q) and obtain the generating function of
the major index on the set of standard tableaux of a given shape:

> g™ = (@)msa(Q).

teSTab ())

This is equal to the Kostka polynomial K 1m (g).

Section 5.6

5.6.1 (Catabolism). Let k& : Tab — Tab be the map t = t'v — ot
where v is the bottom row of t. Let ¢(t) be the sequence of shapes
of t,k(t), k>(t),.. ..

1) Show that the restriction of ¢ to STab is one-to-one.

2) Show that ¢ is invariant under the action of &(A) (i.e., p(o(t)) =
o (1)),

3) Show that ¢ is invariant under the canonical embeddings Tab () <
Tab (1) = STab.

Notes

The name plactic monoid was coined by Schiitzenberger with reference to the
tectonique des plaques. The basic theory of the plactic monoid was systemati-
cally developed in Lascoux and Schiitzenberger 1981.
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Schensted’s algorithm appeared in Schensted 1961. It was realized later that
Robinson, in an attempt to prove the Littlewood-Richardson rule, had already
formulated in Robinson 1938 the correspondence (5.3.1), which is essentially
equivalent to Schensted’s result (Theorem 5.3.1).

Theorem 5.2.5 is due to Knuth 1970. Greene’s invariants were introduced
in Greene 1974. Theorem 5.3.3 appears in Schiitzenberger 1963. It was already
stated, without proof, in Robinson 1938.

The left-hand side of 5.3.10 can be interpreted as the sum of the characters of
all irreducible polynomial representations of GL,,(C). Using this interpretation,
Theorem 5.3.10 is a classical identity of Schur (see Littlewood 1950).

For an account of the theory of symmetric functions see Littlewood 1950
or Macdonald 1995. The proof of the Littlewood-Richardson rule given in Sec-
tion 5.4 first appeared in Schiitzenberger 1977. Corollary 5.4.6 is known by
geometers as the Pieri rule.

Lascoux and Schiitzenberger 1988 is the basic reference for the material of
Section 5.5, with emphasis on the operators ;. Our exposition here, which
stresses the role played by the operators e; and f;, is strongly influenced by
Kashiwara’s theory of crystal bases (see Kashiwara 1991, Kashiwara 1994, Las-
coux, Leclerc, and Thibon 1995, Leclerc and Thibon 1996). The connection
between Robinson-Schensted correspondence and quantum groups was first ob-
served in Date, Jimbo, and Miwa 1990.

Concerning the statistics charge and cocharge, the cyclage, and their appli-
cations to Kostka-Foulkes polynomials, see Schiitzenberger 1978, Lascoux and
Schiitzenberger 1980, Lascoux 1991. Another combinatorial description of the
Kostka-Foulkes polynomials in terms of the geometry of crystal graphs was given
in Lascoux et al. 1995.

The Littlewood-Richardson rule and the plactic monoid have been gener-
alized to other root systems by Littelmann (see Littelmann 1994, Littelmann
1996). A monoid associated in a similar way to Gessel’s quasi-symmetric func-
tions has been introduced in Krob and Thibon 1997.

Problem 5.1.1 is a classical result that appears for instance in Knuth 1973.
Problem 5.2.5 is from Leclerc and Thibon 1996. More on character tables (Prob-
lem 5.4.3) can be found in Macdonald 1995. Problem 5.5.1 is from Gelfand,
Krob, Lascoux, Leclerc, Retakh, and Thibon 1995.



CHAPTER 6

Codes

6.0. Introduction

The theory of codes provides some jewels of combinatorics on words that we
want to describe in this chapter.

A basic result is the defect theorem (Theorem 6.2.1), which states that if a
set X of n words satisfies a nontrivial relation, then these words can be expressed
simultaneously as products of at most n —1 words. It is the starting point of the
chapter. In Chapters 9 and 13, other defect properties are studied in different
contexts.

A nontrivial relation is simply a finite word w which ambiguously factorizes
over X. This means that X is not a code. The defect effect still holds if X
is not an w-code, i.e., if the nontrivial relation is an infinite, instead of a finite
word (Theorem 6.2.4).

The defect theorem implies several well-known properties on words that are
recalled in this chapter. For instance, the fact that two words which commute
are powers of the same word is a consequence. Another consequence is that a
two-element code or more generally an elementary set is an w-code. The latter
property appears to be a crucial step in one of the proofs of the DOL equivalence
problem.

A remarkable phenomenon appears when, for a finite code X, neither the set
X nor its reversal X is an w-code. In this case the defect property is stronger:
the n elements of X can be expressed as products of at most n — 2 words
(Theorem 6.3.4). It follows that for codes X with three elements, either X or X
is an w-code. The proof of this property is rather long. It uses in a very elegant
and subtle way techniques of combinatorics on words.

In this chapter, we also present a deep result by Schiitzenberger about fi-
nite maximal codes. It states that if a finite maximal code X is an w-code, or
equivalently if X has bounded decoding delay, then X is a prefix code (Theo-
rem 6.4.1). The original proof is complex. The proof given here is short and
elementary.

173



174 Codes 6.1

6.1. X-factorizations

6.1.1. Codes

Let X C AT. A sequence (z1,x2,...,2,) of n words of X is an X -factorization
ofawordw € A* if w = z122 -+ - Ty

X1 X2 Xn

w

Figure 6.1. An X-factorization of the word w.

A set X C AT is a code if any word w € A* has at most one X-factorization.
This definition is equivalent to the one given in Chapter 1.

The simplest codes are prefiz codes X C At. Recall that they are sets
such that no word of X is a proper prefix of another word of X. Suffix codes
are defined symmetrically as sets such that no word of X is a proper suffix of
another word of X.

EXAMPLE 6.1.1. Let A = {a,b}. The set X = {a, ab,ba} is not a code because
w = aba has two distinct X-factorizations, namely (a, ba), (ab, a).

EXAMPLE 6.1.2. The set X = {a,ab,bb} over the alphabet {a,b} is a suffix
code.

The name of “code” is motivated by the next proposition. Roughly speaking,
if the letters of a source alphabet B are put in 1-to-1 correspondence with the
words of a code X over a target alphabet A, then a source message r € B*
is encoded into a coded message w € A* by replacing any letter of r by the
corresponding word of X. Unique decipherability is insured by the fact that w
has exactly one X-factorization.

PROPOSITION 6.1.3. A set X C AT is a code if and only if any morphism
@ : B* — A* induced by a bijection from B onto X is injective.

With the notation of the proposition, we say that ¢ is a coding morphism for X.

Proof. Let ¢ : B* — A* be a morphism induced by a bijection from B onto X.
Let r,s € B* such that ¢(r) = ¢(s). Let us prove that r = s. Set r = a; - - - aup,
s=p1-- PBm with a;,6; € B and n,m > 0. Since ¢(r) = ¢(s), this word has
the two X -factorizations (¢(ay),...,¢(a,)) and (p(B1), ..., 0(Bm)). But X is
a code, hence n = m and ¢(a;) = p(B;) for all i. As ¢ is injective on B, one
has a; = f3; for all i, and r = s.

For the converse, let X be a subset of A and ¢ : B* — A* be an injective
morphism induced by a bijection from B onto X. Let w € A* be a word with X-
factorizations (1, ...,y), (y1,---ym). Through the bijection ¢, let x; = ¢(a;),
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y; = p(B;) for letters a;, ;. Thus w = p(a1---an) = @(B1---Fm). As ¢ is
injective, one has ay -+ -ay, = 81 - - Bm, that is, n = m and «; = f; for all i. It
follows that the two X-factorizations are equal. Thus X is a code. [

EXAMPLE 6.1.1 (continued). Let ¢ : B* = {a,f,7}* — A* be defined by
p(a) = a, p(B) = ab and ¢(y) = ba. It is not injective since p(ay) = ¢(fa).

PROPOSITION 6.1.4. Let ¢ : B* — A* be an injective morphism. If Z C BT
is a code, then p(Z) is a code. If X C A¥ is a code, then ¢ (X)) is a code.

Proof. Suppose that Z is a code. Consider a word w € A* with the p(Z)-
factorizations (21,...,%n), (y1,...,Yym) such that z; = ¢(2), y; = ¢(t;) and
zi,tj € Z. Then p(z1---2n) = @(t1---ty) and 21 -+ -2, = t1 -ty since ¢ is
injective. As Z isa code, n = m and z; = t; for all i. It follows that p(z;) = p(¢;)
for any i, showing that ¢(Z) is a code. A similar argument shows that o= (X)
is a code if X is a code. ]

ExXAMPLE 6.1.5. The set Z = {aa,af,av,5,7} is a code over the alphabet
B = {a,B,v}. Let ¢ : B* — A* be the morphism induced by ¢(a) = a,
»(B) = ab and () = bb. The set p(Z) = {aa, aab,abb, ab,bb} is a code.

We end this section with a characterization of codes by a property on the
monoid that they generate.

We recall that a submonoid M of A* has a unique minimal generating set
(M —¢) — (M —¢)? (see Chapter 1). For convenience, we call it the base of M.

Let M = X* be the submonoid of A* generated by a set X C A*. If X is
a code, then X is necessarily the base of M. Otherwise, X contains a word w
which belongs to (M — €)%, This word has thus two X -factorizations: (w) itself
and (z1,...,Ty,), with n > 2, a contradiction.

However, it may happen that the base of a submonoid M is not a code.
We have seen such a base in Example 6.1.1: the monoid M = {a,ab,ba}* is
generated by the set X = {a,ab,ba} which is also the base of M, but X is not
a code.

When the base X of a submonoid M is a code, we say that M is free.

A submonoid M of A* is stable if for any u,w,v € A*,

u, wv,uw,v € M = w € M.

Figure 6.2 gives a pictorial representation of the stability condition.

u W Vv

~_ N/

Figure 6.2. The stability condition.
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PROPOSITION 6.1.6. Let M be a submonoid of A*. Then M is free if and only
if M is stable.

Proof. Suppose that M is free, i.e., the base X of M is a code. Take u, wv, uw,
v € M = X*. Consider the X-factorizations

(331,---,l“k),($k+1,---,l“n),(y1,---,yz),(yz+1,---,ym)

of u, wv,uw,v respectively. Since X is a code, the X-factorizations

(T15 s Tk Thg 15+ - Tn)s (Y155 Yo Y1, - - Ym)

of u(wv) = (uw)v are equal. Moreover, £ > k since |uw| > |u|, showing that
UW =T TLg+1 "Ly = ULf41 """ Ty

Hence, w = zp41 -z € M, and M is stable.

For the converse, assume that M is stable but its base X is not a code. There
exists a word z € M with X-factorizations (x1,...,%,), (Y1,.-.,Ym) such that
x1 # y1. We can suppose that y; = 3w with w a nonempty word. Hence

U=T1, W0 =T2 T, UW = Y1,V =Y Ym € M.

But M is stable, thus w € M. Consequently, y; = z;w € X N(M —¢)?, showing
that X is not the base of M. This leads to the contradiction. [

COROLLARY 6.1.7. The intersection of an arbitrary family of free submonoids
of A* is a free submonoid of A*.

Proof. Take a family of free submonoids M; of A*, indexed by a set I. Denote
by M the set N;cyM;. It is a submonoid of A*. Let u,w,v € A* be such that
u,wv,uw,v € M. As any M; is free and then stable, the word w belongs to
M; C M. It follows that M is stable and thus free. m

6.1.2. w-codes

In this section, infinite instead of finite X -factorizations are studied.
Let X C A*. An X-factorization of a word w € AY is an infinite se-

quence (x1,T2,...,Ty,...) of elements of X such that w = x1x2 -+ 2, - (see
Figure 6.3).
X X2 X3
i .

Figure 6.3. An X-factorization of the infinite word w.
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A set X C AT is an w-code if any word of A¥ has at most one X -factorization.
Any w-code is a code as two distinct X-factorizations (z1,...,%n), (Y1,---,Ym)
of a word w € AT lead to two distinct X-factorizations of the word w* € A¥:
(T1,- oy Ty T1ye ey Ty o)y (Y1ye ey Yms>Y1s--->Ym,---). The converse is false,
as shown in Example 6.1.2.

EXAMPLE 6.1.2 (continued). The code X = {a, ab, bb} is not an w-code because
(a,bb,bb,...) and (ab,bb,bb,...) are two distinct X -factorizations of the word
ab”.

Let u,v € A* be two words. We write u < v when u is prefix of v.

A code X C AT has a bounded decoding delay if there is an integer d > 0
such that for any z,z’,y1,...y4 € X and z € X*,

zy - yg <rz=>x=2a.

In other words, the knowledge of a prefix zy; - - - yq € X! of a word 2’z € 2/ X*
does not allow the situation depicted in Figure 6.4. The smallest integer d in

X Y1 Yo Yd

C Y N N YN
N ANAAAL

X z

Figure 6.4. An impossible situation for a decoding delay d.

the previous definition is called the decoding delay of the code.
This notion extends in a natural way the concept of prefix code, since prefix
codes have a decoding delay d = 0.

ExXAMPLE 6.1.8. The code X = {a,ab} is not prefix, but it has a decoding
delay d = 1. More generally, the code X = {a,a%b} has a decoding delay d.

EXAMPLE 6.1.2 (continued). The suffix code X = {a,ab,bb} does not have a
bounded decoding delay, because for any d > 0, a(bb)? is prefix of ab(bb)?.

The next proposition shows the relationship between w-codes and codes with
bounded decoding delay (see also Problem 6.1.3).

PROPOSITION 6.1.9. Any code with bounded decoding delay is an w-code.
Conversely, any finite w-code has a bounded decoding delay.

Proof. Let X C At be a code with decoding delay d > 0. Assume that
X is not an w-code. Then, there exists w € A% with two X-factorizations
(T, y1,Y2, s Ymy---), (&', 21,22, .., %n,...) such that x # x'. This is impossi-
ble since zy; ---yq < 2'x1 - - - 2, for some n > 0.
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For the converse, assume that X does not have a bounded decoding delay.
Then for any d > 0, there exist n > 0 and z,2’, y1,...,¥4, T1,...,Zn € X such
that

oy ya < a1z, and z #z'.

As X is finite, for a large enough d, there exists a suffix w of a word of X which
is repeated as follows (see Figure 6.5):

! ! ! !
U = T vw, rTuUY =T VW

withu =91 ye, ' = Yer1- Yo, V=212, v =Tpp1 - T, L <m < m. It

<
E
<
=

Figure 6.5. The suffix w is repeated.

follows that the word zuu = x'vv’ has two distinct X-factorizations, showing
that X is not an w-code. L]

The concepts of coding morphism, free and stable submonoid carry over to
w-codes as follows. The related propositions remain true, with similar proofs.

PROPOSITION 6.1.10. A set X C A" is an w-code if and only if any morphism
¢ : B*® — A induced by a bijection from B onto X is injective on B%. n

We say that ¢ is a coding morphism for X.

PrOPOSITION 6.1.11. Let ¢ : B*® — A* be a morphism injective on B¥. If
Z C Bt is an w-code, then p(Z) is an w-code. If X C A" is an w-code, then
@ 1(X) is an w-code. .

We recall that a binoid M C A is finitary if its minimal generating set X
is a subset of AT, In particular M = X*° (see Chapter 1). For convenience we
call X the base of M.

If the base X of a finitary binoid M C A is an w-code, we say that M is
free.

Freeness for a submonoid M of A* means that its base X does not satisfy
any nontrivial relation over finite words. Freeness for a finitary binoid of A
means that its base does not satisfy any nontrivial relation over infinite words.
A nontrivial relation on finite words implies a nontrivial relation on infinite
words because any w-code is a code.

A binoid M of A is stable if for any u,w € A* and v € AY,

u,wv,uw,v € M =>weM

(see Figure 6.6).
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m w v

Figure 6.6. The stability condition for infinite words.

PRrROPOSITION 6.1.12. Let M be a finitary binoid of A>°. Then M is free if
and only if M is stable. n

EXAMPLE 6.1.2 (continued). Let M = X be the finitary binoid generated by
X = {a,ab,bb}. It is not free since its base X is not an w-code. It is not stable
because the words v = a, wv = b(bb)*, uw = ab, v = (bb)¥ belong to M, but
w = b does not belong to M. Nevertheless the submonoid X* generated by X
is free because X is a code. It is stable by Proposition 6.1.6.

6.2. Defect

This section is devoted to the defect theorem which is a basic result on sets
of words. It states that if a set X of n words satisfies a nontrivial relation,
then these words can be expressed simultaneously as products of at most n — 1
words. Originally the defect theorem relies on a nontrivial relation over A*. It
still works with a nontrivial relation over A®. We also show that the n — 1
words can be taken in a code associated to X, which is “minimal” in a certain
sense.

6.2.1. Defect theorem

Given a set X C At we consider the family F of all the free submonoids of A*
containing X. It is not empty since A* belongs to F. It is closed for arbitrary
intersection by Corollary 6.1.7. It follows that the smallest free submonoid of
A* containing X exists: it is equal to Nyse M. This set is called the free hull
of X. In particular, the base Y of the free hull of X is a code and X C Y*.

Let X C Y*, with Y a code over the alphabet A. As any word of X has
a unique Y -factorization, Y can be viewed as an alphabet for X. We denote
by Alphy (X) the set of words of ¥ appearing in the Y-factorization of the
elements of X. We define Firsty (X) as the set of all y; such that there exists
an Y-factorization (y1,...,y,) of some z € X. We define Lasty (X) similarly.
This notation is much used below in Section 6.3.2. We simply write Alph(X),
First(X) and Last(X) when Y = A.

THEOREM 6.2.1 (Defect theorem). Let Y C A" be the base of the free hull of
a finite set X C A*. If X is not a code, then

Card(Y) < Card(X) — 1.
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Proof. Suppose that Y is the base of the free hull of X. Then Y is a code
such that X C Y™*. Any element x of X has thus a unique Y -factorization
(y1,---,yn). Hence the function « : X — Y such that a(z) = y1 = Firsty ()
is well-defined. It is not injective. Indeed, there exists a word w € A* with
two X-factorizations (z1,...,2x), (21,...,2}) such that z1 # =z}, because X
is not a code. But w has only one Y-factorization over the code Y. This
implies that a(z1) = a(z}]). If « is not surjective, then there is a word y in
Y — a(X). Consider the set Z = (Y —y)y*. Clearly X C Z* ¢ Y*. Moreover
it is not difficult to check that Z is a code (see also Example 6.2.9 below and
Section 6.2.4). This is impossible because Y* is the smallest free submonoid

which contains X. Consequently, a : X — Y is surjective, not injective, and
Card(Y) < Card(X) — 1. "

The proof of Theorem 6.2.1 is based on the following property of the free
hull.

PROPOSITION 6.2.2. Let X C A" and Y be the base of the free hull of X.
Then
Firsty (X) =Y. "

We end this section with a nice link between the free hull of X and its
dependency graph. The dependency graph Gx of a finite set X C AT is an
undirected graph with X as set of vertices and edges (z,z') € X x X whenever
there exist 2,2’ € X* such that zz = 2’2"

PROPOSITION 6.2.3. Let Y C At be the base of the free hull of a finite set
X C At. If X is not a code, then

Card(Y) < ¢(X) < Card(X) — 1

where ¢(X) is the number of connected components of the dependency graph
GX of X.

Proof. The inequality ¢(X) < Card(X) — 1 holds because X is not a code.
To show the first inequality, we define a function « from the set of connected
components of Gx into Y as follows. Let C' be a connected component and
z € X which belongs to C. Then a(C) = y such that Firsty(z) = y. This
function is well-defined because if (z,z') is an edge of Gx, then zz = 2’2’ for
some z,z' € X*. Hence zz = 2’2" has a unique Y-factorization beginning with
y. By Proposition 6.2.2, a is surjective, showing that Card(Y") < ¢(X). ]

EXAMPLE 6.1.1 (continued). The set X = {a, ab,ba} is not a code. The small-
est free submonoid M containing X is equal to {a,b}*. Indeed M is stable by
Proposition 6.1.6. Since u = a,wv = ba,uw = ab,v = a € M, then b € M. This
shows that a,b € M. Hence the base of the free hull of X is Y = {a,b} and
Firsty (X) = Y. The dependency graph Gx of X has two connected compo-
nents, namely {a,ab} and {ba}.
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6.2.2. Infinite words

All the arguments of Section 6.2.1 can be repeated in the context of infinite
words.

Given a set X C AT, the smallest free finitary binoid of A* containing X
is called the w-free hull of X. This binoid always exists. Indeed let M be the
intersection of all free finitary binoids of A* containing X. Then M is a stable
binoid because the intersection of stable binoids is again a stable binoid. If M
is not finitary, then M' = (M N A*)* is a stable (and thus free) finitary binoid
which is strictly included in M and contains X. This is impossible. Note that
the base Y of the w-free hull of X is an w-code and X C Y'*.

The defect theorem remains true. The proof is similar.

THEOREM 6.2.4 (Defect theorem). Let Y C A" be the base of the w-free hull
of a set X C AT. Then Firsty (X) = Y. If X is a finite set which is not an

w-code, then
Card(Y) < Card(X) — 1.

Proof. Clearly Firsty (X) C Y. As in the proof of Theorem 6.2.1, we define
a : X — Y such that a(z) = Firsty (z), that is, a(z) is the first element y;
in the Y-factorization (yi,...,yn) of x. This function is surjective. Otherwise
considering y € Y — a(X), we get a set Z = (Y — y)y* which is an w-code (see
Example 6.2.9 and Proposition 6.2.10) and such that X C Z*° ¢ Y*°. This is
impossible. It follows that Firsty (X) = Y. If X is a finite set which is not an
w-code, then « is not injective and Card(}) < Card(X) — 1. n

EXAMPLE 6.1.1 (continued). Recall that the set X = {a, ab,bb} is a code but
not an w-code. The base of its free hull is X itself because X* is a free sub-
monoid. The w-free hull M of X is the free finitary binoid M = {a,b}*.
Indeed M is stable by Proposition 6.1.12. Since v = a,wv = b(bb)¥,uw =
ab,v = (bb)¥ € X*° C M, then b € M.

Propositions 6.2.3 also holds in the context of infinite words. The definition
of the graph Gy is slightly different. There is an edge (z,z') € X x X if and
only if there exist z,2" € X¥ (instead of X*) with zz = 2’2’

6.2.3. Consequences
We state three corollaries of the defect theorem.
COROLLARY 6.2.5. If two words commute, or more generally satisfy a non-

trivial relation on finite or infinite words, then they are powers of the same
word.

Proof. Let x,y € A" satisfying a nontrivial relation. Then X = {z,y} is either
not a code or not an w-code, depending on whether the relation is on finite or
infinite words. By the defect theorem (Theorems 6.2.1 or 6.2.4), the base of the
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free or w-free hull of X is a one-element set {2z} C AT such that {z,y} C 2*.
]

Recall that any w-code is a code. The converse is true for codes with two
elements as shown in the next corollary. This property is false for larger codes
(see Example 6.1.2).

COROLLARY 6.2.6. Any two-element code is an w-code.

Proof. Let X = {z,y} be a code. If X is not an w-code, then X C z* where {2}
is the base of the w-free hull of X (Theorem 6.2.4). This is impossible because
X is a code. L]

The last corollary deals with elementary sets. A finite set X is simplifiable
if X C Y™ with Card(Y) < Card(X) — 1. Otherwise it is elementary.

COROLLARY 6.2.7. Any elementary set is an w-code.

Proof. By the defect theorem, if X is not an w-code, then X C Y™ with YV
an w-code such that Card(Y) < Card(X) — 1. Hence X is not an elementary
set. u

The converse of this corollary is false, as shown by the next example.

EXAMPLE 6.2.8. The set X = {a,abc, abcbc} is an w-code. However X is
simplifiable because X C {a, bc}*.

6.2.4. Composition of codes

This section is devoted to the operation of composition of codes. It clarifies the
construction of the code (Y — y)y* in the proof of Theorems 6.2.1 and 6.2.4.
Take two sets Y C AT, Z C Bt with

B = Alph(Z2).

We say that Y, Z are composable if there exists a bijection ¢ from B onto Y.
The set
X=p(z)CY"

is obtained by replacing the letters of Z by the corresponding (through ¢) words
of Y. The set X resulting of the composition of Y and Z is denoted by
X=Yo,Z,

or more simply by
X=YoZ

EXAMPLE 6.1.5 (continued). The sets Y = {a,ab,bb}, Z = {aa,afB,ay, 5,7}
are composable, thanks to the bijection ¢ such that p(a) = a, p(8) = ab and
() = bb. The set X =Y o, Z is equal to {aa, aab, abb, ab, bb}.
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EXAMPLE 6.2.9. Let Y be a set over A and Z = (B — b)b* over B, with b is
a particular letter of B. Let ¢ be a bijection from B onto Y. Denote by y the
word of Y equal to ¢(b). Then X =Y o, Z is the set (Y — y)y*.

The operation of composition conserves the code or the w-code property.

PROPOSITION 6.2.10. LetY C AT, Z C BT be two composable sets. If Y, Z
are codes (resp. w-codes), then X =Y o Z is a code (resp. w-code).

Proof. Let ¢ : B = Alph(Z) — Y be the function used for the composition
of Y and Z. Suppose that Y, Z are codes. The function ¢ extends into a
morphism injective on B* by Proposition 6.1.3. It follows by Proposition 6.1.4
that X = ¢(Z) is a code. The case of w-codes is solved similarly thanks to
Propositions 6.1.10 and 6.1.11. [

Example 6.1.5 illustrates this proposition for codes.

EXAMPLE 6.2.9 (continued). The Z = (B —b)b* is a code and an w-code. If YV’
is a code (resp. w-code), then X is also a code (resp. w-code). This property is
used in the proof of Theorems 6.2.1 and 6.2.4.

Given a finite set X, the length > |z| of X is denoted by Lg(X).
The composition of codes is an associative operation, that is

Xo(YoZ)=(XoY)oZ (6.2.1)
Note also that if X =Y o Z, then
Card(Z) = Card(X) and Lg(Z) < Lg(X) (6.2.2)

with Lg(Z) = Lg(X) if and only if Y = Alph(X).
The next proposition gives conditions such that a set X C AT is written as
Y o Z for a given code Y C AT.

PROPOSITION 6.2.11. Let X,Y C A™ such that Y is a code. If
X C Y™ and Alphy(X) =Y,
then X =Y o Z for some Z C Bt. Moreover, if X is a code, then Z is a code.

Informally, as Y is a code such that X C Y* and Alphy (X) =Y, the set X
can be viewed as written over the alphabet Y, instead of the alphabet A. This
is the definition of the set Z.

Proof. Set Z = ¢ 1(X) where ¢ : B® — A% is a coding morphism for Y. By
definition, ¢ induces a bijection from B onto Y. As Alphy(X) =Y, we get
Alph(Z) = B. Thus, X =Y o, Z. If X is a code, then Z = ¢~(X) is also a
code by Proposition 6.1.4. n
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6.3. More defect

6.3.1. ¢&-codes

In this section, we study sets X C AT such that both X and its reversal X
are w-codes. These sets are called £-codes. Roughly speaking, no right-infinite
word and no left-infinite word is “ambiguously” factorized by words of X (see
Figure 6.7).

LN NN
NN\

Y YT TN
ANANAL

Figure 6.7. The two forbidden situations for £-codes.

Given a set X C AT, in the same way we have defined the free hull of X
and its w-free hull, we can define the {-free hull of X. It is the smallest finitary
binoid M of A* containing X such that M and M are free. This binoid always
exists. Its base Y is a &-code such that X C Y™,

We get the next two properties as a consequence of Theorem 6.2.4.

PROPOSITION 6.3.1. Let X C AT and Y be the base of the {-free hull of X.
Then
Firsty (X) =Y and Lasty(X) =Y. n

THEOREM 6.3.2. Let Y C AT be the base of the é-free hull of a finite subset
X of AT. If X is not a ¢-code, then

Card(Y) < Card(X) — 1. "

EXAMPLE 6.3.3. The set X = {ab, ababbb, badb} is a {-code. Thus it is equal
to the base of its ¢-free hull. The set Y = {ab, ababbb,bbbb} is not a &-
code since (ab, ab, bbbb, bbbb, . ..) and (ababbb, bbbb, bbbb, . ..) are two distinct X-
factorizations of the word abab(bb)¥. The base of its &-free hull is the set {ab, bb}
which is also the base of its w-free hull.

Theorem 6.3.2 leads to a refinement of Corollaries 6.2.6 and 6.2.7. Namely,
any two-element code is a £-code; any elementary set is a £-code.

If in Theorem 6.3.2, the hypothesis that “X is not a {-code” is replaced by
“X is a code, but neither X nor X is an w-code”, we get a stronger defect. This
defect effect is remarkable.

THEOREM 6.3.4. Let Y C AT be the base of the {-free hull of a finite set
X C A*. If X is a code, but neither X nor X is an w-code, then

Card(Y) < Card(X) — 2.
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ExXAMPLE 6.3.5. Theset X = {a, ab, bbab, bbbb} is a code, but neither X nor X
is an w-code. Indeed, (a, bbbb, bbb, . ..), (ab, bbbb, bbbb, . ..) are X -factorization of

the word ab”, and (ba, bbbb, bbbb, . ..), (babb, bbbb, bbbb, . ..) are X -factorizations
of the word bab”. The base Y = {a,b} of the ¢-free hull of X has cardinality
Card(Y) = Card(X) — 2.

The proof of Theorem 6.3.4 is based on Proposition 6.3.6. The proof of this
proposition needs several steps. Section 6.3.2 below is completely dedicated to
it.

PROPOSITION 6.3.6. If X is a finite code satisfying
Card(Alph(X)) = Card(X) — 1

and
Alph(X) = First(X) = Last(X),

then either X or X is an w-code.

EXAMPLE 6.1.2 (continued). The code X = {a,ab,bb} satisfies the condition
of Proposition 6.3.6 since Alph(X) = {a,b} = First(X) = Last(X). It is not an
w-code, but its reversal X = {a, ba, bb} is an w-code.

Proof of Theorem 6.3.4. Assume the contrary: let X C A" be a code with a
minimal Lg(X) such that X, X are not w-codes and the base Y of the &-free
hull of X has cardinality

Card(Y) > Card(X) — 1.

We will show that X is a code satisfying the hypotheses of Proposition 6.3.6
but not the thesis. The main tool is the operation of composition of codes, in
particular Propositions 6.2.10, 6.2.11 and Properties (6.2.1), (6.2.2).

By Theorem 6.3.2, Card(Y") < Card(X) — 1. Hence

Card(Y) = Card(X) — 1. (6.3.1)
Let us prove that
Y = Alph(X). (6.3.2)

As Y is the &-free hull of X, one has X C Y*. By Proposition 6.3.1,
Alphy (X) =Y. It follows by Proposition 6.2.11 that

X=YoX (6.3.3)

for some finite code X'. Neither X’ nor X' is an w-code (as X and X are not;
see Proposition 6.2.10). By (6.3.3), Lg(X') < Lg(X). Suppose that Lg(X') <
Lg(X). Thus by definition of X, the base Y’ of the ¢-free hull of X' satisfies

Card(Y") < Card(X') — 2. (6.3.4)
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As for X, write X' as the composition
X'=Y'oZ.

Considering X =YoX' =Y o(Y'0Z') = (YoY')oZ' weget X C (YoV')* CY*
and then

(YoYH>® CY™.
Being the composition of two &-codes, Y oY is also a &-code. Hence, since Y
is the &-free hull of X, we have Y = (Y 0 Y")*, and then

Y=YoVY' (6.3.5)
So

(6.3.4)
Card(X) — 102 Card(Y)(G'Bz'S) Card(Y') < Card(X') — o(0:2) Card(X) — 2

which is impossible. It follows that Lg(X) = Lg(X') and by (6.3.3) Y =
Alph(X).

We end the proof. By (6.3.1) and (6.3.2), Card(X) — 1 = Card(Alph(X)).
By Proposition 6.3.1, First(X) = Alph(X) = Last(X). Consequently, either X
or X is an w-code by Proposition 6.3.6. This brings the contradiction. L]

6.3.2. A particular class of codes

The proof of Proposition 6.3.6 is rather long. It uses in an elegant way techniques
of combinatorics on words.

Let u,v € A®°. We use the notation v < v when u is prefix of v, and u < v
when w is a proper prefix of v. The longest common prefix of u and v is denoted
by w A v. The words u,v are called incomparable if neither v < v nor v < u.
The set of prefixes of words in X is denoted by Pref(X). For suffixes, we use
the notation Suff(X).

In a first step, we study the following particular class of codes X C A*:

HyprOTHESIS 6.3.7. X C AT is a finite code, it is not an w-code and
Card(First(X)) = Card(X) — 1.

In this hypothesis, since X is not an w-code, there is an infinite word w with
two distinct X-factorizations. Hence all words of X begin with distinct letters,
except for two words x,y € X such that

T <y.
We denote by Ambx the set of words ambiguously covered, i.e.,
Ambyx = Pref(zX*) N Pref(yX*).

Note that Ambx contains w and all its prefixes.
We now prove several lemmas (6.3.8-6.3.11) under Hypothesis 6.3.7. We
begin with a technical one.
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LEMMA 6.3.8. Let u,v € A" be a pair of incomparable words.
1. If u,v € Pref(zX¥) (resp. u,v € Pref(yX¥)), then u Av € xX* (resp.
ulv € yX*).
2. If u € Pref(xX¥) and v € Pref(yX*), or the contrary, then u Av € X*.

Proof. Define A as the set of pairs (u,v) of incomparable words such that either
u,v € Pref(zX%) and u Av & zX*, or u,v € Pref(yX¥) and u Av ¢ yX*.
Define also B as the set of pairs (u,v) of incomparable words such that either
u € Pref(zX¥), v € Pref(yX¥) and u Av ¢ X*, or u € Pref(yX¥), v €
Pref(zX%) and u Av € X*. Let us prove that both 4 and B are empty.

(a) Let us show that if (u,v) € A, then there exists (u',v") € B with |u' Av'| <
lu Avl.

Suppose that u,v € Pref(zX%¥) and u Av ¢ xX*. There exist z1,...,Zn,
Yi,---,Ym € X, n,m > 1, such that

TT1 - Tp—1 <UL TTY - Ty,
Y1 Ym-1 < U S XY Yme

Let ¢ maximum such that z; = y;, for all j € {1,...,i}. Let z = zz1 --- ;.
Then z < uAv. AsuAv € xX*, z is a proper prefix of u A v. Consider
Zi+1 # Yi+1- By Hypothesis 6.3.7, {x;11,yi+1} = {z,y}. Hence the thesis holds
for the pair (u',v") such that v’ = z~'u and v' = 27 !v. See Figure 6.8.

v
NN .
z 3 \%

Figure 6.8. (u,v) € A and (uv',v") € B.

(b) Let us show that if (u,v) € B, then there exists (u',v") € A with |u' Av'| <
lu Avl.

By Hypothesis 6.3.7, there exists an infinite word w € Amby. Either w A (u A
v) <uAvoruAv<w (see Figure 6.9).

Figure 6.9. The two possible cases for w.
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In the first case, let ' < uAv and v’ < w such that ', v' are incomparable.
Then u',v" € Ambx. The word u' A v’ cannot belong to zX* NyX* because X
is a code. One then checks that the pair (u’,v") belongs to A.

In the second case, as u,v are incomparable, uAv=uAw or uAv=wAv
(see Figure 6.9). We only consider the first case, the second one is handled
similarly. Define ' = v and v' < w such that u', v' are incomparable. Since
v' € Amby, it follows that (u’,v') € A.

(c) We conclude the proof. If A is not empty, there exists a pair (u,v) € A
with minimal |u A v|. Apply (a) and then (b) to this pair. We get a new pair
(u',v") € A such that |u’ Av'| < |uAv|. This is impossible. A similar argument
shows that B is empty. m

As X is not an w-code, we know that there exists an infinite word in Ambyx .
The proposition below states that this word is unique. It constitutes a nice
combinatorial property of finite codes X which are not w-codes and such that
Card(First(X)) = Card(X) — 1.

PROPOSITION 6.3.9. There exists a unique word ox € A“ such that
Ambx = Pref(ox).

Proof. Assume the contrary: there exist two incomparable words u,v € Ambx.
These words both belong to Pref(zX“) and Pref(yX“). Since X is a code,
uAv € zX* or u Av € yX*. In both cases, we get a contradiction with
Lemma 6.3.8, part 1. L]

The next result is also interesting.

LEMMA 6.3.10. Ifu,v € X*, thenuAv € X*.

Proof. Suppose the contrary and take two words u,v € X* such that uAv € X*
and |u A v| is minimal. It follows that u,v are incomparable words, and by
minimality of |u A v|, u € Pref(xX¥), v € Pref(yX*), or the contrary. This is
impossible in view of Lemma 6.3.8, part 2. m

The following lemma shows that ox has two distinct X-factorizations which
are eventually periodic.

LEMMA 6.3.11. There exist r,s,r',s' € X* such that

ox =rs¥ =r's"

and Firstx (rs) # Firstx (r's"). Moreover, for any t € X*,
ox 75 tw.

Proof. By hypothesis, ox has two X-factorizations, one beginning with z and
the other with y

(m7m17m27"')7 (yay17y27"‘)'
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As X is a finite set, there exists a word w € Suff(X) which is repeated in
the following way, for some v = z1---z;, € X*, v/ = 23412, € X, v =
Y1 Y EX*’ ,UI = Yi+1 " Ym EX"F

zu = yow, zuu' = yvv'w

(see Figure 6.10). It follows that zuu'” = yvv'™” = ox by unicity of ox (Propo-

5.

Figure 6.10. The suffix w appears twice.

sition 6.3.9). The first part of the lemma is proved.

Assume now that ox = t* for some t € XT. Either Firstx (t) # Firstx (rs)
or Firstx (t) # Firstx (r's"). Suppose that we are in the first case. By replacing
t and s by adequate powers, say t', s/ € X*, we can make the assumption that
[t| = |s| and |t| > |r|. Looking at Figure 6.11, one sees that rs = tr with

r S S

C N N7 N

t t t

Figure 6.11. ox =rs* =t“.

Firstx (rs) # Firstx (¢r). But X is a code: contradiction. "

The next lemma is the last step before proving Proposition 6.3.6. There
is no contradiction between this lemma and the previous one: Lemma 6.3.12
states that ox = p“ for some p € A*; Lemma 6.3.11 states that p € X .

LEMMA 6.3.12. If X and X both satisfy Hypothesis 6.3.7, then ox and o3
are periodic.

Proof. By Proposition 6.3.9,
Ambx = Pref(ox).
By Lemma 6.3.11,

ox =rs¥ =r's"v 6.3.6
X

where r,s,r',s' € XT and Firstx(r) # Firstx(r'). With adequate powers of
s,s', one can suppose that |s| = |s'| and |r|, || < |s].
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Since X is a code and Firstx (r) # Firstx(r'), one gets r # r'; let us say
that r'w = r for some w # €. Again because X is a code, w ¢ X*. Consider

uUu=1rANSs.

Hence w is suffix of u (see Figure 6.12). By Lemma 6.3.10 applied to )?, ue Xt
showing that w # u. Let
' =7 AT,

We have v'w = u and v’ € X+ by Lemma 6.3.10 again (see Figure 6.12).

X

Figure 6.12. v'w = u with u,v’ € X1, w g X*.

Let us factorize u,u’ as u = try, v’ = tr] with t,r1,r] € X* and t of
maximal length. As w & X*, r{ # e. It follows that Firstx (r1) # Firstx (r}).
Therefore 715 = r{s'” € Ambx (see Figure 6.13). This word is equal to ox

oX

Figure 6.13. ox is a proper suffix of itself.

by Proposition 6.3.9. Thus observe on Figure 6.13 that ox is a proper suffix of
ox. It follows that ox is periodic. B
The same argument applied to X instead of X shows that o is periodic.
|

REMARK 6.3.13. In the previous proof, if r,r’ are chosen with minimal length
in (6.3.6), then » = 1, ' = r] and r is suffix of s, ' is suffix of s’ (see
Figure 6.14).

We are now ready to prove Proposition 6.3.6. The proof is ad absurdum.
In particular, X, X both satisfy Hypothesis 6.3.7. The key results to get the
contradiction are Proposition 6.3.9 and Lemmas 6.3.10-6.3.12. The proof goes
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oX

Figure 6.14. The words r,r’' are chosen with minimal length.

back and forth between X and X . To avoid any confusion, we systematically
use the reversal notation, e.g. v € X*, whenever we work with X.

Proof of Proposition 6.3.6. Assume that X and X are not w-codes. As in the
beginning of the previous proof, take

ox =rs¥ =r's"

with r,s,7', s’ € X and |s| = |s'| > |r|,|r’|. Recall that r'w = r with
w¢g X*.

We also choose r,7" with minimal length as in Remark 6.3.13. Consequently,
Lastx (r) # Lastx(s) and Lastx (r") # Lastx(s"). By Remark 6.3.13, 7 < § and
7 <3.

Define v € Pref(X*) of maximal length such that (see Figure 6.15)

u =

N
N
mé vmg

N
ININ

~I

u =

(6.3.7)

~ o~

As Lastx (r) # Lastx(s), Lastx (r') # Lastx (s'), it follows that @, 4’ € Ambg,
hence
w,u’ € Pref(og).

If 4 is an infinite word, then u = o = 5, with 5 € )Z”r, a contradiction with
Lemma 6.3.11. Thus @ is a finite word. In the same way, @' is a finite word.
This situation is summarized in Figure 6.15.

Let us go further. By Lemma 6.3.10, as & = s¥ Ao g and u' = 5 Ao g, then

a,u € XT.
However _
vE X"
Otherwise, let a € Alph(X) such that 7oa < 5 (see Figure 6.15). As First(X) =
Alph(X), there exists z € X with First(2) = a. Therefore va is a word longer

than ¥ such that va € Pref(X*) and 7oa < 5%, a contradiction with the defini-
tion (6.3.7) of v.
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=]

m
ml
m

. P

<1

— X
poar : :
Wi S 5 s

T 5

= X
u

Figure 6.15. 4,7 € XT but o ¢ X*.

Now, by Lemma 6.3.12, there exist primitive words p,§ € A" such that
ox = p“, og = ¢°. We can suppose that [p| > |g]. By Fine and Wilf’s

Theorem (Proposition 1.2.1), as ox = p¥ = rs¥ =r's", we have

sepl,s €pf

where p1,p2 and p are conjugate words.
Observe that the word @ cannot be too long

|ul < |pl+ lql- (6.3.8)

Indeed, if [u| > |p| + |q|, as & € Pref(3*) N Pref(oz) = Pref(p1”) N Pref(g+),
we get p1 = ¢ by Fine and Wilf’s Theorem. In particular, 5 € g*. This implies
that o = 5 with § € X*. This is impossible by Lemma 6.3.11.

To get the final contradiction, we show that Inequality (6.3.8) never holds.
For this, we come back to ox in the following way. Decompose u,u’ € X+ as

w=try,u =tr]

where t,r1,r] € X* and ¢ is of maximal length (see Figure 6.16). We have
ry # ¢ because w ¢ X*, and r] # r' because v ¢ X*. By definition of ¢,
Firstx (r1) # Firstx(r]) and then r1s¥ = r{s" = ox (Proposition 6.3.9). We
have |r'| < |r{| by minimality of |r'| and because ' # r{. So r' is a proper
suffix of | as depicted in Figure 6.16. Hence ox is a proper suffix of ox, that
is ox = tiox with v = tt;. Thus ox = p¥ = t{. As p is primitive, it follows
that
v > |p

(see Figure 6.16). Now let us look again at Figure 6.15. The words &' and
u = wu' are prefix of ¢* because o = ¢“. Since |@'|,|u| > |v| > |p| > |¢| and
q is primitive, we deduce that |w| > |g]. Hence |u| > |@| + [0] > |g] + |p]. This
ends the proof. n
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(N - Vo

Figure 6.16. Back to ox.

6.3.3. Three-element codes

Theorem 6.3.4 leads to the following nice property of codes with three elements.
This property is no longer true for larger codes (see Example 6.3.5).
COROLLARY 6.3.14. Let X = {z,y,2} be a code. Then X or X is an w-code.

Proof. If not, by Theorem 6.3.4, X C t* where t* is the &-free hull of X. This
is impossible since X is a code. [

Another property which is characteristic of three-element codes, but does
not hold for arbitrary ones, is given in the next proposition.

PROPOSITION 6.3.15. For a three-element code X = {z,y,z}, there exists at
most one infinite word o with two X -factorizations (x,x2,...), (y1, Y2, ...) such
that z1 # y1 .

Proof. If X is an w-code, such an infinite word o cannot exist. Suppose that X
is not an w-code. If Card(First(X)) = Card(X) — 1, we have done by Proposi-
tion 6.3.9. Otherwise let

u=z" ANy’ ANz¥ #£e.
By Fine and Wilf’s Theorem (Proposition 1.2.1)
|u| < min{|z| + |y[, |y] + |2], 2| + |}
Indeed, if |u| > |z| + |y| for instance, then z¢ = yJ with i,5 > 1. This is
impossible because X is a code.

We show that for any v € Pref(X*)

lu] < o] = u < w. (6.3.9)
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Let v’ be the prefix of v such that |u| = [v'|. If ' € Pref(z¥), then u = v'
by definition of u. If v' = 2"y’ with y’ € Pref(y) —e and n > 1, then v' = u
because y' < u < z¥. The other cases are proved similarly.

By (6.3.9), u is prefix of each word zu, yu, zu. We define a new three-
element code X' = {z',y,2'} such that 2’ = ulau, y' = v tyu, 2’ = u 'z2u.
By (6.3.9), w € A“ has an X-factorization (z1,s,...) if and only if u~tw has
an X'-factorization (u™'xiu,u 'zau,...). So X' is not an w-code. Moreover
the condition Card(First(X')) = Card(X') — 1 is now satisfied. Consequently,
there exists exactly one infinite word ox: with two distinct X'-factorizations

(Proposition 6.3.9). The conclusion follows for X with o = uox. "

EXAMPLE 6.3.16. The code X = {ba, bab, bb} is such that Card(First(X)) <
Card(X)—1. Asin the previous proof, we construct the new code X’ = b1 Xb =
{ab, abb, bb}, with ox, = ab®. Thus there is a unique infinite word o = bab* with
two X-factorizations (ba, bb,bb, . ..) and (bab, bb, bb, . ..) that begin with distinct
words of X.

The situation is much more complex for larger codes.

EXAMPLE 6.3.17. We associate with the code X = {ba, bab, abaa, aabaab} the
graph of Figure 6.17. An edge u — v means that there exists © € X such that

/KS?’&"‘*’
ba—» D aa
\\/

ab—~ aa— baab
~_
Figure 6.17. Graph of infinite words with two X-factorizations.

u = zv or uwv = x. The infinite paths beginning with ba thus describe words of
A¥ with two distinct X-factorizations. For instance the infinite path

ba - b— a— baa — a — abaab — b — a — baa — a — ...

describes the overlappings of Figure 6.18.

(ba/ba/ba aabaab.abaa.
N T NN

Figure 6.18. From a path to the associated pair of Y-factorizations.

6.4. A theorem of Schiitzenberger

In this last section, we want to describe a remarkable property of finite maximal
codes. A code X C AT is mazimal if it cannot be strictly included in a code
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Y over the same alphabet A. The next theorem states two extremal behaviors
of finite codes X C At which are maximal: either X is not an w-code or X
is a prefix code. If one recalls that finite w-codes are exactly finite codes with
bounded decoding delay (Proposition 6.1.9), another interpretation of this result
is: the decoding delay of a finite maximal code is either null or not bounded.

THEOREM 6.4.1 (Schiitzenberger’s Theorem). Let X C A" be a finite maxi-
mal code. If X is an w-code, then X is a prefix code.

EXAMPLE 6.4.2. The set X = {a,ab,bb} is a maximal code for the following
reasons. One can easily prove (by induction on |w|) that any w € {a,b}*
belongs to X* U bX*. Assume that ¥ = X U {w} is a code for some word
w ¢ X. Then aw € X*. This shows that aw has two distinct Y-factorizations:
one X-factorization and the Y-factorization (a,w). Contradiction. Hence X is
a maximal code. The set X is not a prefix code, and thus not an w-code by
Theorem 6.4.1. The reversal code X is prefix.

The next two examples show that the hypotheses of Theorem 6.4.1 are nec-
essary.

EXAMPLE 6.4.3. The infinite code X = ab* is a maximal code. It is an w-code
which is not prefix.

EXAMPLE 6.4.4. The set X = {a,aba} is a code which is not maximal. For
instance, X U {bb} is still a code. Both X and X are w-codes without being
prefix codes.

Proof of Theorem 6.4.1. (1) We first show that if X C A is a maximal code,
then X is complete, i.e.,

Vw € A*, X*wA*NX* £ 0 (6.4.1)

(see also Problem 6.4.1). This is trivially true for any alphabet A = {a}.
Suppose that Card(A4) > 2 and some w € A* satisfies

X*wA* N X* = (6.4.2)

In this equality, we can suppose that w is unbordered, i.e., if w € uAT N Atu,
then u = e. Indeed, if First(w) = a, replace w by the unbordered word wab!®!
such that b € A, b # a.

The set Y = X U {w} is not a code by hypothesis. So there exists a word
z € Y* with two Y-factorizations (z1,...,Zn), (Y1,...,Ym) such that 1 # y;.
As X is a code and by (6.4.2), w must appear among the z;’s and the y;’s.
Consider the first occurrences of w

T1,...,%i—1 € X, T; =w,
Yi,---5Yj5-1 €X> Yj = w.
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Again by (6.4.2), ; and y; must overlap and thus coincide since w is unbordered.
Therefore, as 1 # y1, we have i,j > 2 and the word z; - - - ;1 has two distinct
X-factorizations (z1,...,%i—1), (Y1,-..,yj—1)- This is impossible because X is
a code.

(2) We now make the assumption that X is an w-code which is not prefix. By
Proposition 6.1.9, X has a decoding delay d > 0. Hence, define ¢ € Pref(X*) of
maximal length such that

rtA*NyX* £0, withz,y e X,z £y (6.4.3)

(see Figure 6.19). Note that ¢ is well defined since 0 < d < oo and X is finite.

t u

X

NN AAAL

Figure 6.19. X is an w-code which is not prefix.

Let u € A* such that ztu € yX*. We can suppose that v # . Indeed, if
u = ¢, replace u by any element of X. We denote by a the first letter of u.

Let w = zta such that z is a word of X of maximal length (recall that X is
finite). By (6.4.1), there exist x1,...,Zn,Y1,---,ym € X and v € A* such that

ml...xnwv:yl...ym

(see Figure 6.20). As |t| is maximal for property (6.4.3), , = ys, for all k €

t av

yl Ym

Figure 6.20. X is a maximal code.

{1,...,n}. By definition of z, we have y,4+1 < z. Assume that y,+1 < z. Define
t' € Pref(ypao -+ - ym) such that y,11t" = 2t (see Figure 6.21). It follows that ¢’
satisfies (6.4.3) with [¢'| > |¢|. This is impossible. Hence y,+1 = z showing that
ta belongs to Pref(ypto - ym) C Pref(X*). We have again a contradiction (see
Figure 6.19): ta satisfies (6.4.3) since a is the first letter of u and |ta| is longer
than |t|. The conclusion is that X is necessarily a prefix code. L]
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4

Yot1 | Ym
v

Figure 6.21. y,:1 is a proper prefix of z.

Problems

Section 6.1

6.1.1 Show that a subset X of AT is a code if and only if for any z € X1, 2v
has only one X-factorization.

6.1.2 Show that a submonoid M of A* is stable if and only if for any u,v € M

wv,u,ou € M = v e M.

6.1.3 a. Show that for a rational code X C AT, X has a bounded decoding
delay if and only if X is an w-code and X¥ N X* Adh(X) = 0,
where

Adh(X) = {w € A¥ | Pref(w) C Pref(X)}
(see Proposition 6.1.9).
b. Give an example of a rational w-code which has not a bounded
decoding delay.

6.1.4 Find an example of a family (X, )nen of codes with bounded decoding
delay such that the base of N,en X is a code which has not a bounded
decoding delay. Compare with Corollary 6.1.7.

6.1.5 Let A% be the set of two-sided infinite words over A and A° the set

of the equivalence classes on A% under the shift (observe the difference
between AS and AS as defined in Chapter 1). We denote by X¢ the
subset of AS equal to

ng{--.x_1m0x1w2... |:L-n EX’nez}

Given X C At an X -decomposition of w € A” is a strictly increasing
sequence (i, )nez Of integers such that 49 > 0,4_1 < 0 and wy;, ;,,,[ €
X. An X-factorization of w € AS is a sequence (z,)nez of words of X
such that

W= --"T_1X9L1T2-"".

A set X C At is called a Z-code (resp. s-code) if any element of A% (resp.

A°) has at most one X-decomposition (resp. X-factorization).

a. Show that any Z-code is a ¢-code. Give an example of a ¢-code
which is not a Z-code.
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b. Let ¢ be a bijection between B and X C AT. Prove that ¢ is
injective on B¢ if and only if X is a ¢-code. Prove that ¢ is injective
on B¢ and for any r € Bt

r primitive = ¢(r) primitive

if and only if X is a Z-code.

Section 6.2

*6.2.1 Let X be a subset of A*. Define a sequence (M,),en of submonoids of
A* by
My = X*Myy1 = (M, ' M, N M,M;*)".
Set M = UpenM,.
a. Show that M is the free hull of X.
b. Prove that M is rational if X is rational.
6.2.2 Find a method for constructing the w-free hull of a subset X of AT.

6.2.3 a. Find a definition for the Z-free hull of a finite set X.
b. IfY is the base of the Z-free hull of X, prove that

Card(Y) < Card(X)

and that no better upper bound exists.
c. Prove that
Card(Y) < Card(X) —1

if there exists a not periodic word w € A” with two X-decompo-
sitions.
(See Problem 6.1.5).
6.2.4 A submonoid M of A* is right-unitary if

u,uw € M = w € M.

a. Show that X C AT is a prefix code if and only if it is the base of
a right-unitary submonoid M of A*.

b. Given a finite subset X of AT, let Y be the base of the smallest
right-unitary submonoid which contains X. Prove that Y exists
and that

Card(Y) < Card(X),

showing that there is no defect.
c. Give an example where the previous inequality becomes an equal-
ity.

6.2.5 Given a finite set X C AT, we define four different ranks: the free rank
rr(X) equal to Card(Y') with Y the base of the free hull of X, similarly
the w-free rank r,(X), the right-unitary rank r,(X), and finally the
combinatorial rank r(X) equal to min{Card(Y) | X CY*}.
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a. Show that r(X) < r,(X) <r,(X) <rp(X) < Card(X).
Find an example with strict inequalities.
6.2.6 a. Give a direct proof that any two-element code is an w-code, i.e.,
without using the defect theorem.
b. Show that the constant d of the decoding delay can be arbitrarily
large.
6.2.7 A morphism ¢ : B® — A is simplifiable if ¢ = ¢ o ¢ with ¢ : B® —
C>®, 1 : C*® — A% two morphisms such that Card(C) < Card(B) — 1.
If no such alphabet C' exists, ¢ is called elementary. Show that a finite
set X C AT is elementary if and only if there exists an elementary
morphism ¢ : B® — A* such that X = ¢(B).
*6.2.8 Let X C A" be an elementary set. Show that the decoding delay of the
w-code X is bounded by

Z |z| — Card(X)
zeX
(use Problem 6.2.9).
6.2.9 Show that if X = YoZ with Y and Z two codes with decoding delay dy,
dz respectively, then X is a code with decoding delay dx < dy + dz.
*6.2.10 A code X is called prefiz-suffix composed if

X:XloXQO...OXk

with each X, being a prefix or a suffix code.
a. Show that any two-element code is prefix-suffix composed.
b. Verify that the three-element code X = {a,aba,babaab} is not
prefix-suffix composed.
c. Find a finite maximal code which contains X (see Section 6.4 for
the definition of a maximal code).
**6.2.11 a. Prove that every prefix-suffix composed code with n elements, n >
3, uses at most 2n — 3 prefix and suffix codes.
b. Show that this upper bound is tight.

Section 6.3

6.3.1 Show that any ¢-code is a &-code (see Problem 6.1.5 for the definition
of a ¢-code).

6.3.2 Let X be a subset of AT and Y be the base of its {-free hull.
a. Find an example of a set X which is not a code and such that

Card(Y) < Card(X) — 3.

b. Find another example such that Card(Y) = Card(X) — 2.
c. Compare with Theorem 6.3.4 and Example 6.3.3.

6.3.3 Lemma 6.3.11 states that there are two pairs (r,s), (r',s") of words
r,s,r',s" € X* such that Firstx(rs) # Firstx(r's’) and ox = rs¥ =
r's". Take the words r,s,r', s’ with minimal length. Show that there
exists no other such pair.
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*6.3.4 A variant of Theorem 6.3.4 is: If X is a code, but X and X are not w-
codes, then there exists Y such that X C Y* and Card(Y") < Card(X)—
2 (Y is not assumed to be the base of the ¢-free hull of X). Give a proof
of this result, using Proposition 6.3.6 and elementary morphisms (see
Problem 6.2.7 for the definition of an elementary morphism).

6.3.5 Prove that if X = {z,y} is a code with two elements, then Ambx =

Pref(zy A yx).

*6.3.6 Let X be a three-element code which is not an w-code. Prove that there
exists no w-code Y C X* such that X« =Y.

Section 6./

**6.4.1 Prove that a rational code is maximal if and only if it is complete.

*6.4.2 An elementary set X C AT is mazimal elementary if X is not strictly
included in any elementary set over A. Prove that an elementary set
X C AT is maximal elementary if and only if Card(X) = Card(A4).

Notes

The theory of codes is a well-developed branch of Theoretical Computer Sci-
ence. We refer the reader to the books of Berstel and Perrin 1985, Shyr 1991,
Jirgensen and Konstantinidis 1997.

Codes are investigated in depth for the first time in Schitzenberger 1956,
which contains Proposition 6.1.6. The notion of w-code appears in Staiger 1986
under the name of ifl-codes. Codes for two-sided infinite words are introduced
in Devolder and Timmerman 1992 (see Problem 6.1.5). It is also possible to
consider codes composed with finite and infinite words (see Do Long Van 1982).
This approach is not considered here.

The defect theorem stating that if a set X with n elements is not a code,
then there exists Y with at most n — 1 words such that X C Y™, is folklore. It
has been proved under various forms (Skordev and Sendov 1961, Lentin 1972,
Makanin 1976, Ehrenfeucht and Rozenberg 1978). A defect theorem for sets
X which are not w-codes appears in Linna 1977. The proof given here for
Theorems 6.2.1 and 6.2.4 is from Berstel, Perrin, Perrot, and Restivo 1979.
Proposition 6.2.3 appears in Harju and Karhumiki 1986. See the chapter Com-
binatorics on words in the Handbook of Formal Languages for a presentation of
the defect theorem and related material, Choffrut and Karhumaki 1997. Defect
properties for other structures like two-sided infinite words or trees are studied
in Karhumaki, Manuch, and Plandowski 1998b, Mantaci and Restivo 1999 and
Mantaci and Karhuméaki 1999.

Elementary sets are related to elementary morphisms, a notion used in an
elegant way for one of the proofs of the DOL equivalence problem given in
Ehrenfeucht and Rozenberg 1978 (see also Rozenberg and Salomaa 1980).

A measure of the defect can be evaluated thanks to the combinatorial rank
of a finite set X defined by r(X) = min{Card(}") | X C Y*}. Other notions
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of rank can be defined such as the cardinality of the base of the free hull of X.
See Harju and Karhumiki 1986 for a comparison of different kinds of ranks (see
also Problem 6.2.5).

Algorithmic questions related to the defect effect are treated in several pa-
pers. The computation of the free hull of X is given in Spehner 1975 when X
is finite and in Berstel et al. 1979 when X is rational (see Problem 6.2.1). The
complexity results for the rank r(X) are due to Néraud 1990a, Néraud 1993.
It is there proved that deciding for a given finite set X and a given number k,
whether (X)) < k is a NP-complete problem. The choice k = 2 makes the prob-
lem computationally easy as it can be solved in time O(n In? m) with n = Lg(X)
and m = max{|z| | z € X}.

Theorem 6.3.4 is a variant of a result by Honkala 1988 (where Y is not nec-
essarily equal to the base of the ¢-free hull of X; see Problem 6.3.4). The proofs
given in Section 6.3 to get Theorem 6.3.4 are strongly based on the material
developed in Karhumaki 1985a, Karhumaki 1985b. It would be nice to have a
shorter proof of this remarkable result. Corollary 6.3.14 and Proposition 6.3.15
about three-element codes are due to Karhumaéki 1985a, Karhumaéki 1985b.

Theorem 6.4.1 is due to Schiitzenberger 1966, solving a conjecture of Gilbert
and Moore 1959. The original proof is tricky and in a certain way magic. The
proof given in this chapter comes from Bruyere 1992, where another simple
proof is also given which is based on properties of automata. The fact that for
rational sets, complete codes are equivalent to maximal codes is a basic result
in the theory of codes (see Schiitzenberger 1956, Berstel and Perrin 1985).

Let us mention some open problems.

Well-known algorithms exist to decide whether a given rational submonoid
of A* is generated by a code (see Berstel and Perrin 1985). Deciding whether
a rational subset X of A“ is equal to Y* with ¥ an (finite) w-code is still an
open question. This problem is solved in Litovsky 1991 with the condition that
Y is an w-code replaced by the condition that Y is a prefix code. Other partial
interesting results can be found in Devolder 1999. See also Problem 6.3.6.

Some questions on three-element codes still remain open. One is the exis-
tence of a code X = {z,y,2} which cannot be included in any finite maximal
code. It is conjectured in Restivo, Salemi, and Sportelli 1989 that any three-
element code is prefix-suffix composed, which implies that such an example X
does not exist. In Derencourt 1996 a family of counter-examples to the conjec-
ture of Restivo et al. 1989 is given, among which the not prefix-suffix composed
code {a,aba,babaab} of Problem 6.2.10. However all these examples can be
included in a finite maximal code.

Another conjecture on three-element codes is proposed in Devolder 1993: a
code X = {x,y, 2z} such that

wreX " =>weX”

is a m-code, that is, any periodic word has at most one X-factorization.
Problem 6.1.1 is from Devolder, Latteux, Litovsky, and Staiger 1994. Prob-
lem 6.1.3 is from Devolder et al. 1994. Exercises 6.1.4 and 6.2.1 appear in Berstel
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et al. 1979. Problem 6.2.3 c. is from Karhuméki et al. 1998b. Problem 6.2.5
is solved in Harju and Karhumé&ki 1986. Exercise 6.2.8 comes from Rozenberg
and Salomaa 1980. Problem 6.2.11 is solved in Derencourt 1996. Problem
6.3.3 comes from Karhumiki 1985a. Problem 6.3.4 is solved in Honkala 1988.
Problem 6.3.6 appears in Julia 1996. Problem 6.4.2 is from Néraud 1990b.



CHAPTER 7

Numeration systems

7.0. Introduction

This chapter deals with positional numeration systems. Numbers are seen as
finite or infinite words over an alphabet of digits. A numeration system is defined
by a couple composed of a base or a sequence of numbers, and of an alphabet
of digits. In this chapter we study the representation of natural numbers, of
real numbers and of complex numbers. We will present several generalizations
of the usual notion of numeration system, which lead to interesting problems.

Properties of words representing numbers are well studied in number theory:
the concepts of period, digit frequency, normality give way to important results.
Cantor sets can be defined by digital expansions.

In computer arithmetic, it is recognized that algorithmic possibilities depend
on the representation of numbers. For instance, addition of two integers repre-
sented in the usual binary system, with digits 0 and 1, takes a time proportional
to the size of the data. But if these numbers are represented with signed digits
0, 1, and —1, then addition can be realized in parallel in a time independent of
the size of the data.

Since numbers are words, finite state automata are relevant tools to describe
sets of number representations, and also to characterize the complexity of arith-
metic operations. For instance, addition in the usual binary system is a function
computable by a finite automaton, but multiplication is not.

Usual numeration systems, such that the binary and the decimal ones, are
described in the first section. In fact, these systems are a particular case of all
the various generalizations that will be presented in the next sections.

The second section is devoted to the study of the so-called beta-expansions,
introduced by Rényi, see Notes. It consists in taking for base a real number
B > 1. When £ is actually an integer, we get the standard representation. When
B is not an integer, a number may have several different S-representations. A
particular S-representation, playing an important role, is obtained by a greedy
algorithm, and is called the B-expansion; it is the greatest in the lexicographic
order. The set of S-expansions of numbers of [0, 1] is shift-invariant, and its
closure, called the S-shift, is a symbolic dynamical system. We give several
results on these topics. We do not cover the whole field, which is very lively and

203
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still growing. It has interesting connections with number theory and symbolic
dynamics.

In the third section we consider the representation of integers with respect
to a sequence of integers, which can be seen as a generalization of the notion
of base. The most popular example is the one of Fibonacci numbers. Every
positive integer can be represented in such a system with digits 0 and 1. This
field is closely related to the theory of beta-expansions.

The last section is devoted to complex numbers. Representing complex num-
bers as strings of digits allows to handle them without separating real and imag-
inary part. We show that every complex number has a representation in base
—n + 4, where n is an integer > 1, with digits in {0,...,n?}. This numeration
system enjoys properties similar to those of the standard S-ary system.

For notations concerning automata and words the reader may want to con-
sult Chapter 1.

7.1. Standard representation of numbers

In this section we will study standard numeration systems, where the base is
a natural number. We will represent first the natural numbers, and then the
nonnegative real numbers. The notation introduced in this section will be used
in the other sections.

7.1.1. Representation of integers

Let 8 > 2 be an integer called the base. The (usual) S-ary representation of an
integer N > 0is a finite word dy, - - - dp over the digit alphabet A = {0,...,5—-1},

and such that \
N = Z d; 8.
i=0

Such a representation is unique, with the condition that dj # 0. This represen-
tation is called normal, and is denoted by

<N>B:dk"'d0

most significant digit first.
The set of all the representations of the positive integers is equal to A*.

Let us consider the addition of two integers represented in the S-ary system.
Let dy ---dy and cg---co be two S-ary representations of respectively N and
M. Tt is not a restriction to suppose that the two representations have the
same length, since the shortest one can be padded to the left by enough zeroes.
Let us form a new word ay - - - ag, with a; = d; + ¢; for 0 < i < k. Obviously,
Ef:o a;3* = N + M, but the a;’s belong to the set {0,...,2(3 —1)}. So the
word ay, - --ap has to be transformed into an equivalent one (i.e. having the
same numerical value) belonging to A*.
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More generally, let C' be a finite alphabet of integers, which can be positive
or negative. The numerical value in base # on C* is the function

w3 :C*" — Z

which maps a word w = ¢, -+ ¢o of C* onto E?:o ¢;B3. The normalization on
C™* is the partial function

| Lol c* — A*
that maps a word w = ¢, - - - ¢g of C* such that N = mg(w) is nonnegative onto
its normal representation (N)z. Our aim is to prove that the normalization is
computable by a finite transducer. We first prove a lemma.

LEMMA 7.1.1. Let C be an alphabet containing A. There exists a right sub-
sequential transducer that maps a word w of C* such that N = wg(w) > 0 onto
a word v belonging to A* and such that m3(v) = N.

Proof. Let m = max{|c—a| | c € C,a € A}, and let v = m/(f —1). First
observe that, for s € Z and ¢ € C, by the Euclidean division there exist unique
a € A and s’ € Z such that s + ¢ = fs' + a. Furthermore, if |s| < «, then
15'] < (15| + e — al)/B < (v +m)/8 = 1.

Consider the subsequential finite transducer (A,w) over C* x A* where
A =(Q,E,0) is defined as follows. The set Q = {s € Z | |s| < v} is the set of
possible carries, the set of edges is

E:{sﬂs'|s+czﬁs'+a}.

Observe that the edges are “letter-to-letter”. The terminal function is defined
by w(s) = (s)g for s € @ such that m5(s) > 0.

Now let w = ¢, -cg € C* and N = Y1 ¢;3°. Setting so = 0, there is a
unique path

co/ap c1/ay co/as Cn—1/@n-1 Cn/an
So —» S1 —> S —>» - — Sp — Sp+1-

By construction N = ag + a13 + -+ + a,B" + 5,11 8™, hence the word v =
W(Sp+41)ay - - - ap has the same numerical value in base 8 as w.

Remark that v is equal to the normal representation of N if and only if it
does not begin with zeroes. m

EXAMPLE 7.1.2. Figure 7.1 gives the right subsequential transducer realizing
the conversion in base 2 from the alphabet {—1,0,1} onto {0,1}. The signed
digit (—1) is denoted by 1.

The two following results are a direct consequence of Lemma 7.1.1.
PRrROPOSITION 7.1.3. In base 3, for every alphabet C' of positive integers con-

taining A, the normalization restricted to the domain C* \ 0C™* is a right sub-
sequential function.
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1/0,0/1 0/0, 1/1

SEX®

Figure 7.1. Right subsequential transducer realizing the conversion in
base 2 from {1,0,1} onto {0,1}

Removing the zeroes at the beginning of a word can be realized by a left
sequential transducer, so the following property holds true for any alphabet.

PROPOSITION 7.1.4. In base (3, for every alphabet C' containing A, the nor-
malization on C* is computable by a finite transducer.

COROLLARY 7.1.5. In base [, addition and subtraction (with possibly zeroes
ahead) are right subsequential functions.

Proof. Take in Lemma 7.1.1 C' = {0,...,2(8 — 1)} for addition, and C =
{=(B—1),...,8 — 1} for subtraction. "

One proves easily that multiplication by a fixed integer is a right subsequen-
tial function, and that division by a fixed integer is a left subsequential function,
see the Problems Section. On the other hand, the following result shows that
the power of functions computable by finite transducers is quite reduced.

PROPOSITION 7.1.6. In base 8, multiplication is not computable by a finite
transducer.

Proof. Tt is enough to show that the squaring function ¢ : A* — A* which
maps (N)sz onto (N?)z is not computable by a finite transducer. Take for
instance 3 = 2, and consider (2" — 1), = 17, Then (17) = (22" — 2"+ 4+ 1), =
1"=10"1. Thus the image by v of the set {1 | n > 1} which is recognizable by
a finite automaton, is the set {17=10"1 | n > 1} which is not recognizable, thus
1 cannot be computed by a finite transducer. m

7.1.2. Representation of real numbers

Let 8 > 2 be an integer and set A = {0,...,8 — 1}. A B-ary representation of
a nonnegative real number  is an infinite sequence (z;);<j of AN such that

T = Zmzﬂl

i<k
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This representation is unique, and said to be mormal if it does not end by
(8 —1)¥, and if zy # 0 when = > 1. It is traditionally denoted by

<x>B:xk...m0.m_1x_2...

If z < 1, then there exists some i > 0 such that 2 < 1/8°. We then put
Z_1, ..., ;41 = 0. The set of S-ary expansions of numbers > 1 is equal to
(A\ 0)(AY\ A*(B8 — 1)), the one of numbers of [0,1] is AN\ A*(3 — 1)“. The
set AN is the set of all S-ary representations (not necessarily normal).

The word xy, - - - Tg is the integer part of x and the infinite word x_1x_o - - is
the fractional part of z. Note that the natural numbers are exactly those having
a zero fractional part (compare with the representation of complex numbers in
7.4.1).

If ()5 = - "o - T—1T—2 - -, then z/BF1 < 1, and by shifting we obtain
that

(»’U/ﬂkH)B = Tp LT 1T -

thus from now on we consider only numbers from the interval [0,1]. When
z € [0,1], we will change our notation for indices and denote (z)g = (;)i>1-

Let C be a finite alphabet of integers, which can be positive or negative.
The numerical value in base 3 on CV is the function

FBZCN—)]R

which maps a word w = (¢;);>1 of C™ onto Yois1 ¢;3~*. The normalization on
CN is the partial function
| Lol CN — AN

that maps a word w = (¢;);>1 such that = mg(w) belongs to [0, 1] onto its
B-ary expansion (z)5 € AN\ A*(3 —1)~.

PROPOSITION 7.1.7. For every alphabet C containing A, the normalization on
C"N is computable by a finite transducer.

Proof. First we construct a finite transducer B where edges are the reverse
of the edges of the transducer A defined in the proof of Lemma 7.1.1. Let
B=(Q,F,0,Q) with set of edges

F={tLs|s LS tem.
Every state is terminal.
Let
c1/a1 Cz/a2 C3/a3 Cn/a’n
So —» S1 —» S — ++ — Sp

be a path in B starting in sop = 0. Then

B pr B g g
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0/0, 1/1 1/0, 2/1

() o ()
oWl o

2/0

Figure 7.2. Finite transducer realizing non normalized addition of real
numbers in base 2

Since A is sequential, the automaton B is unambiguous, that is, given an input
word (¢;);>1 € CV, there is a unique infinite path in B starting in 0 and labelled
by (¢;,a;);>1 in (C x A)N, and such that Y, ¢;8° = 3.5, a;3%, because for
each n, |sp| <. - B

To end the proof it remains to show that the function which, given a word in
AN, transforms it into an equivalent word not ending by (5 —1)“, is computable
by a finite transducer, and this is clear from the fact that AN x (AN\ A*(3—1)¥)
is a rational subset of AN x AN (see Chapter 1). "

COROLLARY 7.1.8. Addition/subtraction, multiplication/division by a fixed
integer of real numbers in base 8 are computable by a finite transducer.

EXAMPLE 7.1.9. Figure 7.2 gives the finite transducer realizing non normal-
ized addition (meaning that the result can end by the improper suffix 1¢) of
real numbers on the interval [0,1] in base 2.

7.2. Beta-expansions

We now consider numeration systems where the base is a real number 8 >
1. Representations of real numbers in such systems were introduced by Rényi
under the name of [-expansions. They arise from the orbits of a piecewise-
monotone transformation of the unit interval Tz : z — Sz (mod 1), see below.
Such transformations were extensively studied in ergodic theory and symbolic
dynamics.

7.2.1. Definitions

Let the base > 1 be a real number. Let z be a real number in the interval
[0,1]. A representation in base B (or a B-representation) of z is an infinite word

(mi)iZI such that
T = inﬁ_i.

i>1
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A particular S-representation — called the B-expansion — can be computed
by the “greedy algorithm” : denote by |y| and {y} the integer part and the
fractional part of a number y. Set ro = x and let for i« > 1, x; = |Bri—1],
r; = {67“1'_1}. Then z = 2121 xlﬁ_’

The S-expansion of z will be denoted by dg(z).

An equivalent definition is obtained by using the [-transformation of the
unit interval which is the mapping

Ts : x — [z (mod 1).

Then dg(z) = (2;);>1 if and only if z; = LBTB“I(:E)J

Let = be any real number greater than 1. There exists £ € N such that
BF < x < gL Hence 0 < /B! < 1, thus it is enough to represent numbers
from the interval [0, 1], since by shifting we will get the representation of any
positive real number.

EXAMPLE 7.2.1. Let 8 = (1++/5)/2 be the golden ratio. For x = 3 — /5 we
have dg(z) = 10010.

If # is not an integer, the digits x; obtained by the greedy algorithm are
elements of the alphabet A = {0,---,|3]}, called the canonical alphabet.

When f is an integer, the [-expansion of a number z of [0,1] is exactly
the standard B-ary expansion, i.e. dg(z) = (), and the digits z; belong to
{0,---,8—1}. However, for z = 1 there is a difference: (1)s = 1-but dg(1) = -5
As we shall see later, the 8-expansion of 1 plays a key role in this theory.

Another characterization of a S-expansion is the following one.

LEMMA 7.2.2. An infinite sequence of nonnegative integers (x;);>1 is the (-
expansion of a real number z of [0, 1] (resp. of 1) if and only if for every i > 1
(resp. i > 2), &  + xS 4o < BT

Proof. Let 0 < 2 < 1 and let dg(x) = (z;)i>1. By construction, for i > 1,
ri1 =z;/B+mi_1/B%+ - <1, thus the result follows. n

A real number may have several (-representations. However, the S-expan-
sion, obtained by the greedy algorithm, is characterized by the following prop-
erty.

PROPOSITION 7.2.3. The -expansion of a real number x of [0, 1] is the greatest
of all the -representations of © with respect to the lexicographic order.

Proof. Let dg(xz) = (x;)i>1 and let (s;);>1 be another [-representation of
x. Suppose that (z;);>1 < (s;)i>1, then there exists & > 1 such that z; <
s and 1 Tp—1 = S1---Sg—1. From Y .o, x;87" = > ,5, 887" one gets
D ikt ;B> gk +D ikt 5;37%, which is impossible since by Lemma 7.2.2
Diskp1 LB < Bk, u
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EXAMPLE 7.2.1 (continued). Let 8 be the golden ratio. The S-expansion of
z =3 — /5 is equal to 10010¢. Different, S-representations of z are 01110%, or
100(01)¥ for instance.

As in the usual numeration systems, the order between real numbers is given
by the lexicographic order on -expansions.

PROPOSITION 7.2.4. Let z and y be two real numbers from [0,1]. Then z < y
if and only if dg(z) < da(y).

Proof. Let dg(x) = (;);>1 and let dg(y) = (yi)i>1, and suppose that dg(z) <
ds(y). There exists k > 1 such that & < yy and @1 -+ - Tg—1 = y1 - Yr—1. Hence
<y B+ Y B  (ye = )8 e B e f 24 <y
since 2118 F 1 + 2287 %2 + .- < B7F. The converse is immediate. n

If a representation ends in infinitely many zeros, like v0%, the ending zeros
are omitted and the representation is said to be finite. Remark that the [-
expansion of z € [0,1] is finite if and only if Té(a:) = 0 for some ¢, and it is
eventually periodic if and only if the set {TB’(JJ) | # > 1} is finite. Numbers g
such that dg(1) is eventually periodic are called f-numbers and those such that
ds(1) is finite are called simple f-numbers.

REMARK 7.2.5. The f-expansion of 1 is never purely periodic.

Indeed, suppose that dg(l) is purely periodic, dg(1) = (a1 ---apn)¥, with n
minimal, a; € A. Then 1 = @187 ! +--- 4+ a,87 ™ + 7", which means that
ay - --ap—1(an + 1) is a B-representation of 1, and ay - --an—1(an, + 1) > ds(1),
which is impossible.

EXAMPLE 7.2.6. 1. Let 8 be the golden ratio (1 ++/5)/2. The expansion of 1
is finite, equal to dg(1) = 11.

2. Let 8 = (34 v/5)/2. The expansion of 1 is eventually periodic, equal to
ds(1) = 21°.

3. Let § = 3/2. Then dg(1) = 101000001 ---. We shall see later that it is
aperiodic.

7.2.2. The p-shift

Recall that the set A" is endowed with the lexicographic order, the product
topology, and the (one-sided) shift o, defined by o((;)i>1) = (2i41)i>1. Denote
by Dg the set of S-expansions of numbers of [0, 1[. It is a shift-invariant subset
of AN. The B-shift Ss is the closure of Dg and it is a subshift of AN. When 3
is an integer, Sp is the full B-shift AN.

The greedy algorithm computing the -expansion can be rephrased as fol-
lows.
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LEMMA 7.2.7. The identity
dg o TB =00 dﬁ
holds on the interval [0, 1].

Proof. Let z € [0,1], and let dg(x) = (x;);>1. Then Ts(z) = Y ,5, z:;87%, and
the result follows. B "

In the case where the [-expansion of 1 is finite, there is a special repre-
sentation playing an important role. Let us introduce the following notation.
Let dg(l) = (ti)iZI and set dz;(l) = dg(l) if dg(l) is infinite and dg(l) =
(t1 - tme1(tm — 1))¥ if dg(1) = t1 - - - tip—1tm is finite.

When §3 is an integer, 3-representations ending by the infinite word d3(1)
are the “improper” representations.

EXAMPLE 7.2.8. Let 8 =2, then dg(1) = 2 and dj3(1) = 1¥.
For § = (14 /5)/2, dsg(1) = 11 and dj(1) = (10)~.

The set Dg is characterized by the expansion of 1, as shown by the following
result below. Notice that the sets of finite factors of Dz and of Sg are the same,
and that dj(1) is the supremum of Sg, but that, in case dg(1) is finite, dg(1) is
not an element of Sg.

THEOREM 7.2.9. Let 8 > 1 be a real number, and let s be an infinite sequence
of nonnegative integers. The sequence s belongs to Dg if and only if for all
p>0

a?(s) < dj(1)

and s belongs to Sg if and only if for all p > 0
oP(s) < dj(1).

Proof. First suppose that s = (s;);>1 belongs to Dg, then there exists z in [0, 1]
such that s = dg(z). By Lemma 7.2.7, for every p > 0, 0? o dg(z) = dg o Tf(x).
Since Tj(z) < 1 and dg is a strictly increasing function (Proposition 7.2.4),
oPo dg(a:) = a”(s) < dg(l).
In the case where dg(1) = t1 - - ty, is finite, suppose there exists a p > 0 such
that oP(s) > dj(1). Since o?(s) < dg(1), we get sp41 =t1, .-, Sprm—1 = tm—1,
Sp+m = tm — 1. Iterating this process, we see that o”(s) = dj(1), which does
not belong to Dg, a contradiction.

Conversely, let dj5(1) = (d;);>1 and suppose that for allp > 0, o”(s) < dj(1).
By induction, let us show that for all » > 1, for all ¢ > 0,
Sp4-r diJrl di+r

gr <" T T

Sp+1
Sp+1“'5p+7‘<di+1“'di+7‘:> pﬁ _+_..._|_

This is obviously satisfied for r = 1.
Suppose that Spt1 - Sprr+1 < di+1 v di+r+1-
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First assume that s,41 = djt1, then spp0---sp1r41 < dig2 - digry1. By
induction hypothesis,

Spt2 Sprr+1 _ diyo diri1

2 Tt Br+i < 32 Tt Br+i
and the result follows.
Next, suppose that sp11 < diy1. Since for all p > 0, oP(s) < dj(1) then
Spy2 - Spyrg1 < dy -+ -dy, thus

Sp+1 Sprr+1 _ dig1 —1 dy d, dit1
3 Tt gr+t < 3 +@+"'+Br+1< 3
since dy /3% +--- +d,. /BTt < 1/8.
Thus for all p > 0, for all i > 0,

Z SPH“ﬂ_r < Z di+r/8_r-

r>1 r>1

In particular for i = 1, }° o 8p 87" < > o1 dr1f77 < 1if § is not an
integer, and the result follows by Lemma 7.2.2.

If B is an integer then dj(1) = (8 — 1)¥. If for all p > 0, o?(s) < dj(1),
then every letter of s is smaller than or equal to 8 — 1 and s does not end by
(B — 1)¥, therefore s belongs to Dg.

For the B-shift, we have the following situation. A sequence s belongs to Dg
if and only if for each n > 1 there exists a word v(") of Dg such that sq --- s, is
a prefix of v(™. Hence, s belongs to Sp if and only if for every p > 0, for every
n>1,0P(s1--5,0%) < dj(1), or equivalently if o (s) < dj(1). "

From this result follows the following characterization : a sequence is the
B-expansion of 1 for a certain number § if and only if it is greater than all its
shifted sequences.

COROLLARY 7.2.10. Let s = (s;);>1 be a sequence of nonnegative integers
with sy > 1 and for i > 2, s; < s1, and which is different from 10¥. Then there
exists a unique real number 3 > 0 such that Y., s;8~% = 1. Furthermore, s is
the B-expansion of 1 if and only if for every n > 1, c™(s) < s.

Proof. Let f be the formal series defined by f(z) = Y_,5, siz%, and denote by
p its radius of convergence. Since 0 < s; < s1, we get p > 1/(s; + 1). Since
for 0 < z < p the function f is continuous and increasing, and since f(0) = 0
and f(z) > 1 for z sufficient close to p, it follows that the equation f(z) =1
has a unique solution. If 8 > 1 exists such that f(1/8) = 1, we get that
s1/B < f(1/8) < s1/(B — 1), thus 8 must be between s; and s; + 1. On the
other hand, f(1/(s1 +1)) <s1/s1 =1. If 51 > 2, f(1/s1) > 1. If sy =1 and if
the s;’s are eventually 0, then f(1/s1) > 1, otherwise lim,_,; f(z) = +oc0. Thus
in any case there exists a real 5 € [s1,s1 + 1] such that f(1/8) = 1.

Now we make the following hypothesis (H) : for alln > 1, 0™ (s) < s. Suppose
that the S-expansion of 1is dz(1) =t # s. Since s is a S-representation of 1,
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s < t. Hence, for each n > 1, 0™(s) < s < dg(1). If dg(1) is infinite, by
Theorem 7.2.9, s belongs to Dg, a contradiction.
If dg(1) is finite, say dg(1) = t1---ty, either s < dj(1), and as above we get
that s is in Dg, or dj(1) < s < dg(1). In fact, s cannot be purely periodic
because of hypothesis (H), thus it is different from dj(1). Thus s is necessarily
of the form (t; -+ -ty _1(tm — 1))¥t - - - t,, for some k > 1. S0 Sgmy1 = t1, ...,
Skmim = tm, and o*™(s) > s because s,, = t,, — 1, contradicting hypothesis
(H). Hence the S-expansion of 1 is s.

Conversely, suppose that s = dg(1) for some § > 1. From Theorem 7.2.9,
for every n > 1, 0" (s) < dj(1). If dg(1) is infinite, dg(1) = dj(1). If ds(1) is
finite, d3(1) < dg(1). "

Let us recall some definitions on symbolic dynamical systems or subshifts
(see Chapter 1 Section 1.5). Let S C AN be a subshift, and let 1(S) = AT\ F(S)
be the set of factors avoided by S. Denote by X (S) the set of words of I(S)
which have no proper factor in I(S). The subshift S is of finite type iff the set
X(9) is finite. The subshift S is sofic iff X (S) is a rational set. It is equivalent
to say that F'(S) is recognized by a finite automaton. The subshift S is said
to be coded if there exists a prefix code Y C A* such that F(S) = F(Y*), or
equivalently if S is the closure of Y“.

To the B-shift a prefix code Y = Yj is associated as follows. It is the set
of words which, for each length, are strictly smaller than the prefix of dg(1) of
same length, more precisely: if dz(1) = (¢;);>1 is infinite, set Y = {t; - - - t—1a |
0 < a < ty, n > 1}, with the convention that if n = 1, ¢ty -+-t,—y = e. If
dg(l) =ty -tm,let Y ={t1--th_1a|0<a<t,, 1 <n<m}.

PROPOSITION 7.2.11. The (-shift Sg is coded by the code Y .

Proof. First if dg(1) = (t;);>1 is infinite, let us show that Dg = Y. Let s € Dg.
By Theorem 7.2.9, s < dg(1), thus can be written as s = t1 -ty —1ap, 01,
with an, < tn, and v1 < dg(1). Iterating this process, we see that s €
Y«. Conversely, let s = ujus--- € Y¥, with w; = t1 -+ tp,—1an;, an;, < tn;.
Then s < dg(1). For each p > 0, oP(s) begins with a word of the form
Liplip+1 - ‘tjp+r71bjp+r with bjp+7« <tj,+r, thus Up(s) < Ujp*l(dg(l)) < dﬁ(l).

Next, if dg(1) =t - - - ty,, is finite, we claim that Y = Sg. First, let s € S;.
By Theorem 7.2.9, s < dj(1), thus s = t1 -+ tp, —1ap,v1, With ni <m, ap, < ty,
and vy < dj(1). Iterating the process we get s € Sg. Conversely, let s € Y,
s =ugug - -- with u; = t1 - tp,_1an,;, n; < m. As above, one gets that, for each
p>0,0P(s) <dj(1). "

We now compute the topological entropy of the 3-shift

h(Ss) = — log(PF(Sﬁ))
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(see 1.5.3 for definitions and notations). In the case where the S-shift is sofic,
by Theorem 1.5.14 the entropy h(Sg) can be shown to be equal to logs. We
show below that the same result holds true for any kind of g-shift.

PRroPOSITION 7.2.12. The topological entropy of the 3-shift is equal to log 3.

Proof. For n > 1, the number of words of length n of Y is clearly equal to %,,
thus the generating series of Y is equal to

fr(z) = Z tn2".

n>1

By Corollary 7.2.10, 3! is the unique positive solution of fy(z) = 1. Since
Y is a code, by Lemma 1.4.4 py- = B8~!. It is thus enough to show that

PY= = PF(Sg)-
Let p, be the number of factors of length n of the elements of Sz and let

fr(sy) = anzn-

n>0

Let ¢, be the number of words of length n of Y*, and let

fF(Y*) = Z CnZn.

n>0

Since any word of Y* is in F(Sg), we have ¢, < pp. On the other hand, let
w be a word of length n in F(Sz). By Proposition 7.2.11, w can be uniquely
written as w = u;ty - - - t;, where u; € Y*, |u;| = n — i, and 0 < i < n. Thus
Pn = ¢p + -+ + co. Hence the series fp(s,) and fy- have the same radius of
convergence, and the result is proved. [

We now show that the nature of the subshift as a symbolic dynamical system
is entirely determined by the S-expansion of 1.

THEOREM 7.2.13. The (-shift Sg is sofic if and only if dg(1) is eventually
periodic.

Proof. Suppose that dz(1) is infinite eventually periodic

dg(1) =ty - tn(ENg1 - EN4p)”

with IV and p minimal. We use the classical construction of minimal finite
automata by right congruent classes (see Chapter 1). Let F(Dg) be the set of
finite factors of Dg. We construct an automaton Ag with N + p states ¢, ...,
gN+p, Where g;, i > 2, represents the right class [ty - - - ti,l]F(DB) and ¢; stands
for [5]F(Dﬁ). For each i, 1 < i < N + p, there is an edge labelled ¢; from ¢; to
gi+1. There is an edge labelled ¢y, from gn4p to gny1. For 1 < i < N +p,
there are edges labelled by 0, 1, ..., t;—1 from ¢; to q;. Let g1 be the only initial
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state, and all states be terminal. That F(Dg) is precisely the set recognized
by the automaton Az follows from Theorem 7.2.9. Remark that, when the g-
expansion of 1 happens to be finite, say dz(1) = t1 - - - t,y,, the same construction
applies with N = m, p =0 and all edges from ¢,, (labelled by 0, 1, ..., ¢, — 1)
leading to ¢ .

Suppose now that dg(1) = (¢;);>1 is not eventually periodic nor finite. There
exists an infinite sequence of indexes i; < is < i3 < --- such that the sequences
tixtiz+1tip+2 - -+ be all different for all £ > 1. Thus for all pairs (i;,i.), 7, > 1,
there exists p > 0 such that, for instance, t;,1, < t3,4p and &;; -+ t;, 4,1 =
ti, -+ ti;+p—1 = w (with the convention that, when p = 0, w = ¢). We have
that t1 - -tij,lwtij+p S F(Dﬁ), t1 - -til,lwtieﬂ, S F(DB), tl T til,lwtij+p S
F(Dg), but t; ---t;; ywt;, 1, does not belong to F(Dg). Hence t;---t;; and
t1 - - - t;, are not right congruent modulo F'(Dg). The number of right congruence
classes is thus infinite, and F'(Dg) is not recognizable by a finite automaton.

|

EXAMPLE 7.2.14. For 8 = (3 +/5)/2, d3(1) = 21¢, and the S-shift is sofic.

We have a similar result when the f-expansion of 1 is finite.

THEOREM 7.2.15. The -shift Ss is of finite type if and only if dg(1) is finite.

Proof. Let us suppose that dg(1) =t - - - ¢y, is finite and let

Z= |J {wed |u>ti-t;}U{ucA™ [u>t; - tn}.
2<i<m—1

Clearly Z C AT \ F(Ss). The set X(S3) of words forbidden in Sz which are
minimal for the factor order is a subset of Z. Since Z is finite, X (Sg) is finite,
and thus Sg is of finite type.

Conversely, suppose that the [-shift is of finite type. It is thus sofic, and
by Theorem 7.2.13, dg(1) is eventually periodic. Suppose that dg(1) is not
finite, dg(1) = t1---tn(tn41 - tnsp)® with N > 1 and p > 1 minimal, and
tN+1 . 'tN+p §é 0P. Let

Z:{tl---tjfl(tj-l-hj)|2§jSN, 1§hj§t1—tj}
U{ty - tn(Engr - tngp) tngs - tngj 1 (ENgs + hvey)
| E>0,1<j<p, 1<hni; <ty —tnij}.

Clearly Z C AT\ F(S3).

Case 1. Suppose there exists 1 < j < p such that t; > tyy; and ¢ = tn4a, - .-,
tj1 =tnyj 1. For k>0 fixed, let w¥) =t; - tn(tnys - tnip)Fti--tj € Z.
We have ty -~ tn(ENt1 - tN4p) N1 - ‘tn4j—1 € F(S3). On the other hand,
form >2,t, - tn(tNt1 - -tN+p)k is strictly smaller in the lexicographic order
than the prefix of dz(1) of same length (the inequality is strict, since the ¢;’s
are not all equal for 1 < i < N +p), thus t, - tn(tnp1 - tNgp)F t1 -t €
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F(S5). Hence any strict factor of w®) is in F(Ss). Therefore for any k > 0,
w®) € X(S3), and X (S3) is thus infinite: the B-shift is not of finite type.

Case 2. No such j exists, then dg(1) = (¢1---tn)¥, which is impossible by
Remark 7.2.5. L]

EXAMPLE 7.2.16. For § = (1 + /5)/2, the B-shift is of finite type, it is the
golden mean shift described in Example 1.5.2.

7.2.3. Classes of numbers

Recall that an algebraic integer is a root of a monic polynomial with integral
coeflicients. An algebraic integer 8 > 1 is called a Pisot number if all its Galois
conjugates have modulus less than one. It is a Salem number if all its conjugates
have modulus < 1 and at least one conjugate has modulus one. It is a Perron
number if all its conjugates have modulus less than 3.

EXAMPLE 7.2.17. 1. Every integer is a Pisot number. The golden ratio (1 +
V/5)/2 and its square (3 + v/5)/2 are Pisot numbers, with minimal polynomial
respectively X? — X — 1 and X? —3X + 1.

2. A rational number which is not an integer is never an algebraic integer.

3. (5+/5)/2 is a Perron number which is neither Pisot nor Salem.

The most important result linking 3-shifts and numbers is the following one.

THEOREM 7.2.18. If  is a Pisot number then the (3-shift Ss is sofic.

This result is a consequence of a more general result on S-expansions of
numbers of the field Q(5) when § is a Pisot number. It is a partial generalization
of the well known fact that, when f is an integer, numbers having an eventually
periodic f-expansion are the rational numbers of [0, 1] (see Problems Section).

PROPOSITION 7.2.19. If 8 is a Pisot number then every number of Q(8)NI0, 1]
has an eventually periodic $-expansion.

Proof. Let P(X) = X% —a; X% ! — ... — ag be the minimal polynomial of
B = p1 and denote by S, ..., B4 the conjugates of 5. Let = be arbitrarily fixed
in Q(8) N[0, 1]. It can be expressed as

d—1
z=q! Zpiﬂl
i=0

with ¢ and p; in Z, ¢ > 0 as small as possible in order to have uniqueness.
Let (z1)r>1 be the S-expansion of z, and denote by

n
Th = 7“%1) — T'n(l‘) _ Tn41 + Tni2 4= Bn(m _ Zl’kﬂik) — Tg(l‘) < 1.
k=1
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For 2 <j <d, let
) ) d—1 ) n
i =0 (@) =87 (a Y piBy = ) wkB").
=0 k=1
Let n = maxa<j<q |B;| < 1 since § is a Pisot number. Since z < [3] we get
d—1 n—1
PP < g Ipaln™ + 18]
i=0 k=0

and, since 1 < 1, maxi <j<q sup,, |r§Lj)| < +o00.
We need a technical result. Set R,, = (7"7(11), e ,r%d)) and let B be the matrix

B = (8;")i<i,j<a-
LEMMA 7.2.20. Letz =q! 27;01 piBt. For every n > 0, there exists a unique
d-uple Z,, = (zr(Ll), S z,(Ld)) in Z% such that R, = ¢~'Z,,B.

Proof. By induction on n. First, r; = rgl) = fBx — x1, thus

-1 ) Z(l) Z(d)
ry = qil(zpiﬂurl _ (]371) = q*l(l7 4+t ﬁ)
=0

using the fact that ¢ = a;8%" + --- + ag, aj € Z. Now, rp11 = rf}ll =
Brp — Tpy1, hence

2) (a) W) @)

— gl B Zn _ —1/%nt1 nt1
Tny1 =q (2 +— + ot o —qTag1) =4 ( +--+ )
" " g Bt " B B
since z,(Ll) —qTp41 € 7.

Thus

d

d—1 n
ra =1 =8"q Y pif =D wB ) =q D 2P
=0 k=1 k=1

Since the latter equation has integral coefficients and is satisfied by £, it is also
satisfied by each conjugate 3;, 2 < j <d,

d—1 n
UL ED DL L B U -
=0 k=1

k=1

We resume the proof of Proposition 7.2.19. Let V,, = ¢R,. The (V,)n>1

have bounded norm, since max;<;<qsup, |7“7(1j)| < 4o00. As the matrix B is
invertible, for every n > 1,

1Zall = 140, 20| = max, |29 < +oc
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so there exist p and m > 1 such that Z,,;, = Z,,, hence 7,4+, = ry, and the
B-expansion of x is eventually periodic. n

On the other hand, there is a gap between Pisot and Perron numbers as
shown be the following result.

PROPOSITION 7.2.21. If Sp is sofic then § is a Perron number.

Proof. With the automaton Ag defined in the proof of Theorem 7.2.13 one
associates a matrix M = Mp by taking for M[i, j] the number of edges from
state ¢; to state g;, that is, if dg(1) =t1 - - tn(Eng1 - - tngp)?,

M[i, 1) =t;
M[i,i+1]=1fori#N+p
M[N +p,N+1] =1

and other entries are equal to 0.

Claim 1. The matrix M is primitive: MY+ > 0, since MN*P[i, j] is equal to
the number of paths of length N + p from ¢; to ¢; in the strongly connected
automaton Ag.

Claim 2. The characteristic polynomial of M is equal to

N+p N
K(X)= XN = 3" g xNtpi o XN 4 g x N
i=1 i=1

and J is one of its roots: it can be checked by a straightforward computation.
When dg(1) =ty - - - t,, is finite, the matrix associated with the automaton is
simpler, it is the companion matrix of the polynomial K (X) = X™ —#, X™ 1 —
-+ — ty,, which is primitive, since M™ > 0.
Since # > 1 is an eigenvalue of a primitive matrix, by the theorem of Perron-
Frobenius, g is strictly greater in modulus than its algebraic conjugates. m

Thus when S is a non-integral rational number (for instance 3/2), the [-shift
S cannot be sofic.

ExAMPLE 7.2.22. There are Perron numbers which are neither Pisot nor Sa-
lem numbers and such that the g-shift is of finite type: for instance the root
B~ 3.616 of X* —3X3 —2X? — 3 satisfies dg(1) = 3203, and 3 has a conjugate
v ~ —1.096.

REMARK 7.2.23. 1If 8 is a Perron number with a real conjugate > 1, then dg(1)
cannot be eventually periodic.

In fact, suppose that dg(1) =t1 ---tn(tn41 -+ - tngp)®, and that 4 has a conju-
gate v > 1. Since [ is a zero of the polynomial K (X) of Z[X], 7 is also a zero
of this polynomial. Thus d,(1) = dg(1), and by Corollary 7.2.10, v = §.

For instance the quadratic Perron number 8 = (5 + v/5)/2 has a real conjugate
> 1, and thus Sg is not sofic.
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7.3. U-representations

We now consider another generalization of the notion of numeration system,
which only allow to represent the natural numbers. The base is replaced by an
infinite sequence of integers. The basic example is the well-known Fibonacci
numeration system.

7.3.1. Definitions

Let U = (un)n>0 be a strictly increasing sequence of integers with up = 1. A
representation in the system U — or a U-representation — of a nonnegative
integer N is a finite sequence of integers (d;)r>i>0 such that

k
N = Z dluz
i=0

Such a representation will be written dy, - - - dp, most significant digit first.

Among all possible U-representations of a given nonnegative integer N one
is distinguished and called the normal U -representation of N : it is sometimes
called the greedy representation, since it can be obtained by the following greedy
algorithm : given integers m and p let us denote by ¢(m,p) and r(m,p) the
quotient and the remainder of the Euclidean division of m by p. Let k& > 0 such
that uy < N < ugs1 and let d, = ¢(N, ug) and ry, = r(N, u), and, fori = k—1,
w0y 0,d; = q(rie1,u;) and 7; = 7(rig1, u;). Then N = dgug + - - + douog. The
normal U-representation of N is denoted by (N)y.

By convention the normal representation of 0 is the empty word . Under
the hypothesis that the ratio w,41/u, is bounded by a constant as n tends
to infinity, the integers of the normal U-representation of any integer N are
bounded and contained in a canonical finite alphabet A associated with U.

EXAMPLE 7.3.1. Let U = {2" | n > 0}. The normal U-representation of an
integer is nothing else than its 2-ary standard expansion.

EXAMPLE 7.3.2. Let F' = (Fy,)n>0 be the sequence of Fibonacci numbers (see
Example 1.4.2). The canonical alphabet is equal to A = {0,1}. The normal
F-representation of the number 15 is 100010, another representation is 11010.

An equivalent definition of the notion of normal U-representation is the
following one.

LemMA 7.3.3. The word dy, - - - dy, where each d;, for k > i > 0, is a nonnega-
tive integer and dj, # 0, is the normal U-representation of some integer if and
only if for each i, dju; + - - - + doug < Ujt1.

Proof. If dj, - - - dy is obtained by the greedy algorithm, r;11 = d;u;+- - -+doug <
u;+1 by construction. n
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As for f-expansions, the U-representation obtained by the greedy algorithm
is the greatest one for some order we define now. Let v and w be two words.
We say that v < w if |v| < |w]| or if |v] = |w| and there exist letters a < b such
that v = uav’ and w = ubw'. This order is sometimes called “radix order” or
“genealogic order”, or even “lexicographic order” in the literature, although the
definition is slightly different from the usual definition of lexicographic order on
finite words (see Chapter 1).

PROPOSITION 7.3.4. The normal U-representation of an integer is the greatest
in the radix order of all the U-representations of that integer.

Proof. Let d = dy, ---dy be the normal U-representation of N, and let w =
wj ---wp be another representation. Since up < N < upq1, & > j. If & > j,
then d > w. If £ = j, suppose d < w. Thus there exists i, £ > ¢ > 0
such that d; < w; and dg---d;41 = wg---w;y1. Hence dju; + --- + doug =
wit; + -+ + WolUo, but dluz + -+ d()U,O S (wi — l)uz + di_lui_l + -4+ d()U,O,
SO u; + wi_1uj_q + -+ woug < di_1u;_1 + -+ + doug < u; since d is normal,
which is absurd. [

The order between natural numbers is given by their radix order between
their normal U-representations.

PROPOSITION 7.3.5. Let M and N be two nonnegative integers, then M < N
if and only if (M)y < (N)u.

Proof. Let v = vg---vo = (M)y with up < M < Uy, and w = wj---wy =
(N)u with u; < N < ujq1, and suppose that v < w. Then k < j. If k < j,
Up+1 < uj, and M < N. If k = j, there exists ¢ such that v; < w; and
Uk "' Vi1 = Wg -+ - w;+1. Hence

M =wvpup + -+ - + voug
Swrug + -+ wip1uip + (Wi — Dug +vim1uio1 + -+ volo

< wpug + o F Wir1uir1 Fwiu; <N

since v; _1%;_1 + - - -+ voug < u; by Lemma 7.3.3, thus M < N. [

7.3.2. The set of normal U-representations

The set of normal U-representations of all the nonnegative integers is denoted
by L(U).

EXAMPLE 7.3.2 (continued). Let F be the sequence of Fibonacci numbers. The
set L(F) is the set of words without the factor 11, and not beginning with a 0,

L(F) = 1{0,1}*\ {0,1}*11{0,1}* Ue.

First the analogue of Theorem 7.2.9 is the following result.
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PROPOSITION 7.3.6. The set L(U) is the set of words over A such that each
suffix of length n is less in the radix order than (u, — 1)y.

Proof. Let v = v ---vg be in L(U), and 0 < n < k+ 1. By Lemma 7.3.3
Vp—1Un—1+- - +Upug < uy—1, and by Proposition 7.3.5, v,,—1 - - - v < (u,— 1)y
The converse is immediate. [

An important case is when L(U) is recognizable by a finite automaton, as it
is the case for usual numeration systems. We first give a necessary condition.

Recall that a formal series with coefficients in N is said to be N-rational if it
belongs to the smallest class containing polynomial with coefficients in N, and
closed under addition, multiplication and star operation, where F'™* is the series
1+F+F?>+F'+..-=1/(1 = F), F being a series such that F(0) = 0. A
N-rational series is necessarily Z-rational, and thus can be written P(X)/Q(X),
with P(X) and Q(X) in Z[X], and Q(0) = 1. Therefore the sequence of coeffi-
cients of a N-rational series satisfies a linear recurrent relation with coefficients
in Z. It is classical that, if L is recognizable by a finite automaton, then the
series fr,(X) =", 50 lnX™, where £,, denotes the number of words of length n
in L, is N-rational (see Berstel and Reutenauer 1988).

PROPOSITION 7.3.7. If the set L(U) is recognizable by a finite automaton,
then the series U(X) = ) .,unX" is N-rational, and thus the sequence U
satisfies a linear recurrence with integral coefficients.

Proof. Let £,, be the number of words of length n in L(U). The series f1,)(X) =
Y om0 nX™ is Nerational. We have uy, = £, + - -+ + {o, because the number of
words of length < n in L(U) is equal to the number of naturals smaller than u,,,
whose normal representation has length n+1. Thus U(X) = fr)(X)/(1-X),
and it is N-rational. L]

When the sequence U satisfies a linear recurrence with integral coefficients,
we say that U defines a linear numeration system.

To determine sufficient conditions on the sequence U for the set L(U) to be
recognizable by a finite automaton is a difficult question (see Problem 7.3.1). It
is strongly related to the theory of S-expansions where f is the dominant root of
the characteristic polynomial of the linear recurrence of U. Nevertheless, there
is a case where the set L(U) and the factors of the 8-shift coincide. This means
that the dynamical systems generated by the S-expansions of real numbers and
by normal U-representations of integers are the same.

It is obvious that if a word of the form v0™ belongs to L(U) then v itself is
a word of L(U), but the converse is not true in general. We will say that a set
L C A is right-extendable if the following property holds

veL=wv0¢€L.

THEOREM 7.3.8. LetU = (un)n>o0 be a strictly increasing sequence of integers,
with ug = 1, and such that sup u,4+1/u, < 400, and let A be the canonical
alphabet. There exists a real number § > 1 such that L(U) = F(Dg) if and
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only if L(U) is right-extendable. In that case, if dj3(1) = (d;)i>1, the sequence
U is determined by
Up = diUp_1 + -+ +dpug + 1.

Proof. Clearly, if L(U) = F(Dg) for some g > 1, then L(U) is right-extendable.
Conversely, suppose that L(U) is right-extendable. For each n, denote

(1~ o =),

Since L(U) is right-extendable, for each k < n, dgk) ---d;ck)O”’k € L(U), and
thus dgk) - d,(gk) < dgn) - d;cn). Therefore dgk) - -d,(gk) = dgn) - d,(gn) because
dgk) - -d,(gk) is the greatest word of length k in the radix order.

Let d,, = dgzn); then d,dy+1--- < dids---. Let d = (di)iZI- If there exists m
such that d = ¢™(d) then d is periodic. Let m be the smallest such index. In
that case, put t; = dyi, ..., tm—1 = dm—1, tm = dm + 1, t; =0 for i > m. In
case d is not periodic, put t; = d; for every i. Then the sequence (¢;);>1 satisfies
tptngr -+ < titg--- for all n > 2, and thus by Corollary 7.2.10 there exists a
unique 5 > 1 such that dg(1) = (¢;)i>1.

Let us show that L(U) = F(Dg). Recall that

Dg={s|Vp>0,0"(s) <dj(1) = (di)i>1}
hence
F(DB) :{’U:’Uk""l)o |\V/TL, 0<n<k,vp_1-"1v0 Sdldn:<un_1>U}
=L(U)

by Proposition 7.3.6.
Now, since by definition d; - - - d,, = (u, — 1)u7, we get

Up = diUp_1 + -+ +dpug + 1. [ |

The numeration systems satisfying Theorem 7.3.8 will be called canonical
numeration systems associated with 5, and denoted by Ug. Note that if dz(1)
is eventually periodic, then L(Up) is recognizable by a finite automaton and Up
satisfies a linear recurrent sequence.

EXAMPLE 7.3.2 (continued). The Fibonacci numeration system is the canoni-
cal numeration system associated with the golden ratio.

7.3.3. Normalization in a canonical linear numeration system

We first give general definitions, valid for any linear numeration system defined
by a sequence U. The numerical value in the system U of a representation
w = dg---dp is equal to my(w) = Zf:[) d;u;. Let C be a finite alphabet of
integers. The normalization in the system U on C* is the partial function

vg:C* — A”
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that maps a word w of C* such that 7y (w) is nonnegative onto the normal
U-representation of 7y (w).

In the sequel, we assume that U = Ug is the canonical numeration system
associated with a number [ which is a Pisot number. Thus U satisfies an
equation of the form

Up = G1Up—1 + QUp_2 + -+ + AQplUp—m, @ €7, Gy #0, n>m.

In that case, the canonical alphabet A associated with U is A = {0,...,K}
where K < max(u;y1/u;). The polynomial P(X) = X™ —g; X™ ! —.-. —q,,
will be called the characteristic polynomial of U.

We also make the hypothesis that P is exactly the minimal polynomial of 3
(in general, P is a multiple of the minimal polynomial).

Our aim is to prove the following result.

THEOREM 7.3.9. Let U = Ug be a canonical linear numeration system associ-
ated with a Pisot number 3, and such that the characteristic polynomial of U
is equal to the minimal polynomial of 3. Then, for every alphabet C' of nonneg-
ative integers, the normalization on C* is computable by a finite transducer.

The proof is in several steps. Let C = {0,...,c}, C= {-¢,...,c}, and let
Lk
Z(U,¢) ={dy---do | di € C, Y _ dju; = 0}
i=0
be the set of words on C having numerical value 0 in the system U. We first
prove a general result.

PRrROPOSITION 7.3.10. If Z(U,c) and L(U) are recognizable by a finite automa-
ton then v is a function computable by a finite transducer.

Proof. Let f = fn--- fo and g = gi - - go be two words of C*, with for instance
n > k. We denote by f© g the word of C* equal to fr,« - fee1 (fe —gr) - - (fo —
go). The graph of v¢ is equal to ve = {(f,g9) € C* x A* | g € L(U),fe g €
Z(U,c)}.

Let R be the graph of & :

R = [(Usec((a,€),a))" U (Uacc((€, a), —a))"|[Uapec((a, b), a — D))"
R is a rational subset of (C* x C*) x C*. Let us consider the set
R' = RN ((C* x L(U)) x Z(U,¢)) C (C* x A*) x C*.

Then v¢ is the projection of R’ on C* x A*. As L(U) and Z(U, c¢) are rational by
assumption, (C* x L(U)) x Z(U,¢) is a recognizable subset of (C* x A*) x C* as
a Cartesian product of rational sets (see Berstel 1979b). Since R is rational, R’
is a rational subset of (C* x A*) x C*. So, #&: being the projection of R', vg: is a
rational subset of C* x A*, that is, v¢ is computable by a finite transducer. m

The core of the proof relies in the following result.
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ProprosITION 7.3.11. Let U be a linear numeration system such that its char-
acteristic polynomial is equal to the minimal polynomial of a Pisot number £3.
Then Z (U, ¢) is recognizable by a finite automaton.

Proof. Set Z = Z(U,c¢) for short. We define on the set H of prefixes of Z the
equivalence relation ( as follows (m is the degree of P)

f C g <= [VTL, 0 S n S m — 17 7.‘-U(fon) = ﬂ-U(gOn)]

Let f ¢ g. It is clear that the sequences (7 (f0"))n>0 and (7 (g0™)) >0 satisfy
the same recurrence relation as U. Since they coincide on the first m values,
they are equal. Thus, for any h € C,
fhe Z e ny(fol)y + 7y (h) =0
& 1 (g0 + 7 (h) =0
SgheZ
which means that f and g are right congruent modulo Z. If f and g are not in
H, then f ~; g as well.
It remains to prove that ¢ has finite index. This will be achieved by showing
that there are only finitely many possible values of 7y (f0") for f € H and for
all 0 <n <m — 1. Recall that, if 8 = 81, B2, ..., Bm are the roots of P, since

P is minimal they are all distinct, and there exist complex constants A; > 0,
A2, ..., Ay such that for all n € N

Up = in: )\Zﬁln
i=1

If f=fifo, let ms(f) = fuB* + -+ fiB + fo.
Claim 1. There exists i such that for all f € C

lmo (f) — Mms(F)] <.
We have

Since # is a Pisot number, |3;| < 1 for 2 <i < m and

" 1
o (f) = Mms(f)l <ed IAill_iw,| =1.
=2 ¢
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Claim 2. There exists v such that for all f € H, |m3(f)| < 7.
Since f € H there exists h € C such that fh € Z. Thus

0 = m (fOI") + 7 (h) < Mims(fO'P) + Ay7s(h) + 21
< Mg (H)BM + M (c+ 1) + 25310

thus 753(f) > —c—1—2nA; ", Similarly 75(f) < ¢+ 1+ 2nA; %, hence |75(f)| <
c+14+2p\ 1t =1.
Claim 3. There exists § such that for all f € H, forall0 <n <m —1

|Tu (FO™)] < 6.

We have
| (f0™)] < |mu (f0") — Mmg (f0™)] + [Aima(f0™)]
<n+|Aimg(f)B"
<n+AyB"

hence |7y (fO™)] < d =n+ A\yB8m L
Thus there are only finitely many possible values of 7y (f0™) for f € H and
for all 0 < n <m — 1, therefore ¢ has finite index, and Z(U, ¢) is rational. m

Proofof the theorem. Since U is canonical for a Pisot number, L(U) is recog-
nizable by a finite automaton. The result follows from Proposition 7.3.10 and
Proposition 7.3.11. n

COROLLARY 7.3.12. Under the same hypothesis as in Theorem 7.3.9, addi-
tion of integers represented in the canonical linear numeration system Ug is
computable by a finite transducer.

Proof. The canonical alphabet being A = {0,..., K}, take C ={0,...,2K} in
Theorem 7.3.9. u

EXAMPLE 7.3.2 (continued). Let F be the sequence of Fibonacci numbers. The
characteristic polynomial of F' is X2 — X —1, and it is the minimal polynomial of
the Pisot number 3 = (1 + v/5)/2. Figure 7.3 gives the automaton recognizing
the set Z(F,1) of words on the alphabet {—1,0,1} having numerical value 0 in
the Fibonacci numeration system.

Figure 7.4 shows a finite transducer realizing the normalization on {0, 1} in
the Fibonacci numeration system. For simplicity, we assume that input and
output words have the same length.

The result stated in Theorem 7.3.9 can be extended to the case where U
is not the canonical numeration system associated with a Pisot number 3, but
where the characteristic polynomial of U is still equal to the minimal polynomial
of 5. There is a partial converse to this result, see Notes.
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Figure 7.3. Automaton recognizing the set of words on {—1, 0,1} having
value 0 in the Fibonacci numeration system

o 0/0
0/0

0/0,1/1

Figure 7.4. Normalization on {0,1} in the Fibonacci numeration system

7.4. Representation of complex numbers

The usual method of representing real numbers by their decimal or binary ex-
pansions can be generalized to complex numbers. It is possible (see the Problem
Section) to represent complex numbers with an integral base and complex digits,
but we present here results when the base is some complex number.

7.4.1. Gaussian integers

In this section we focus on representing complex numbers using integral digits.
The set of Gaussian integers, denoted by Z][i], is the set {a+ bi | a,b € Z}. The
base 8 will be chosen as a Gaussian integer. It is quite natural to extend prop-
erties satisfied by integral base for real numbers, namely the fact that integers
coincide with numbers having a zero fractional part. More precisely, given a
base § of modulus > 1 and an alphabet A of digits that are Gaussian integers,
we will say that (8, A) is an integral numeration system for the field of complex
numbers C if every Gaussian integer z has a unique integer representation of
the form dy - --dp such that z = E?:o d;f37, with d; € A. We shall see later
that, in that case, every complex number has a representation.

We first show preliminary results. A set A C Z[i]is a complete residue system
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for Z[i] modulo § if every element of Z[i] is congruent modulo 8 to a unique
element of A. The norm of a Gaussian integer 2 = z + yi is N(z) = 22 + y2.
The following result is well known in elementary number theory.

THEOREM 7.4.1 (Gauss). Let 8 = a+ bi be a non-zero Gaussian integer, and
let N be the norm of 3. If a and b are coprime, then a complete residue system
for Z[i] modulo B is the set

{0,...,N —1}.

If gcd(a,b) = A, a complete residue system for Z[i] modulo 8 is the set
{p+2q|p:071)7(N/>‘) _17 q:():]-)"'>>‘_]‘}‘
We use it in the following circumstances.

PROPOSITION 7.4.2. Suppose that every Gaussian integer has an integer rep-
resentation in (3, A). Then this representation is unique if and only if A is a
complete residue system for Z[i] modulo 3, that contains 0.

Proof. Let us suppose that A is a complete residue system containing 0, and
let dy, - --dp and ¢y - - - ¢p be two representations of z in (5, A). One can suppose
do # co. Then co —dy = B(dpB* L +---+dy — 87t — -+ — 1), thus dp and
¢o are congruent modulo 3, and are elements of A, thus they are equal, which
is absurd.

Conversely, suppose that every Gaussian integer z has a unique representa-
tion of the form d, - - - do, with digits d; in A. Then z is congruent to dyp modulo
B, thus the digit set A must contain a complete residue system.

Now let ¢ and d be two digits of A that are congruent modulo 3. Then
¢ —d = pq with ¢ in Z[i]. Let gy - - qo be the representation of g. Hence ¢ has
two representations, c itself and g, - - - god. [

If we require the digits to be natural numbers, the base must be a Gaussian
integer f = a+ bi with a and b coprime, and the choice is drastically restricted.

THEOREM 7.4.3. Let 8 be a Gaussian integer of norm N, and let A = {0, ...,
N —1}. Then (8, A) is an integral numeration system for the complex numbers
if and only if f = —n % ¢, for somen > 1.

Proof. First let 8 = a + bi, a and b coprime, and let A = {0,...,a% + b* — 1}.
Suppose that @ > 0. We shall show that the Gaussian integer z = (1 — a) + ib
has no representation. Suppose in the contrary that z has a representation
dp-+-do. Let y = z(1— ) = a®> +b*> — 2a + 1. Since a > 0, y belongs to A.
But y = do + (di —do)B + -+ + (dy, — dp_1)B* — dpB**+'. Thus y is congruent
to dp modulo 3, and so y = dy. It follows that d; —dy =0, ..., dp —dg—1 =0,
di, =0,s0for 0 < j<k,dj =0 Thusy=0anda=1,b=0. But §=11is
not the base of a numeration system.

If a =0 and b = £1, then 8 = %i is not a base either. If a = 0 and |b] > 2,
the digit set is {0,---,b> — 1}. If b > 0 then i has no integer representation,
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since (i) = 10 - (b> — b). If b < 0, then —i has no integer representation (see
Exercise 7.4.2.)

Let now a < 0 and b # +1. Suppose that a Gaussian integer z has a
representation dy, - - - dp. Then Imz = dj, ImB* + -+ + d; Imf3. Since ImfS = b is
a divisor of Imp3* for all k, b divides Imz. Take z = 4. Since b # +1, there is a
contradiction.

Let now 3 = —n +14, n > 1, and thus A = {0,...,n?}. It remains to prove
that any z € Z[i] has an integer representation in (3, A). Let z = z + iy, = and
y in Z. We have z = ¢+ df, with d = y and ¢ = = + ny. From the equality
B2 +2nB+n?+1=0, it is possible to write z as z = d33° + d23> + d1 83 + dy
with d; € N.

Let z =dpB* +---+dy, with d; €N, and k >3, and let d = dj, ---dy € N*.
Denote by S the sum-of-digits function

S:CxN— N
(z,d) — S(z,d) =di + -+ do.

In the following we will use the fact that n> + 1 = 83 + (2n — 1)3% + (n — 1)283,
that is, (n® + 1)5 is equal to the word 1(2n — 1)(n — 1)?0, and that the sum
of digits of these two representations is the same and equal to n? + 1. By
the Euclidean division by n? + 1, dy = 79 + go(n? + 1) with 0 < ry < n?, thus
z =710+ (di+q0(n—1)*)B+(d2+0(2n—1))8° +(d3 + o) B° +dap* +- - -+ dp, * =
d + - +dV g, Clearly S(z,d) = S(z,d™), where dV = d{" ...d{V.

Let 21 = d" + - +d" 85=1, then S(z1,dV) < S(z,d), and the inequality
is strict if and only if 7o # 0. Repeating this process, we get z = Sz1 + ro,
z1 =Bz 4711, ..., 2jm1 = Pzj+ 1o, withfor 0 <4< j—1,r; € A, and
S(Z>d) Z S(Zhd(l)) Z T Z S(ijhd(jil))'

Since the sequence (S(z;,d%))); of natural numbers is decreasing, there ex-
ists a p such that, for every m > 0, S(zp,d(p)) = S(zp+m,d(p+m)), thus g™
divides z, for every m, therefore z, = 0. So we get

(2)s = rp—1--70.
Let now 3 = —n —i. Using the result for the conjugate 3 = —n 4 i, we have
(2)g =rp-1---10
for every Gaussian integer zZ. Hence
(2)g =rp-1---T0
for every Gaussian integer z. m

From this result, one can deduce that every complex number is representable
in this system.

THEOREM 7.4.4. If 3 =-n+i,n>1,and A = {0,...,n?}, every complex
number has a representation (not necessarily unique) in the numeration system

(8,A4).
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Proof. Let z = x + iy, x and y in R, be a fixed arbitrary complex number. For
k>0, let f* = up + iv,. Then

_ (x+iy)(ur +ive)  pe+iqr TR+ isk
B B T T
where zup — yvr = pr + K, TUE + Yur = qr + Sk, with p; and ¢ in Z, and
|T‘k| <1, |Sk| < 1. Let
_ pr g TRt is

2k = gk Yk = gk
Since y — 0 when k — 00, limy_, o 2, = 2. Since pi +iqx is a Gaussian integer,
by Theorem 7.4.3.

(D +iqi)s = dyg)) - dy”.
Thus i .
2 = di ' F 5 E
S0 o (k)
. d dl k
d(’” Bt(’f o dP) <z + 2L 4 O
| o | <l g B[F
< Lol + el + 02 (e + s )
¢ FIREEE
2
S|Z|+|yk|+— <c

Bl -1~
where c is a positive constant not depending on k.

Since the representation of a Gaussian integer is unique, and since Z[i] is a
discrete lattice, i.e. is an additive subgroup such that any bounded part contains
only a finite number of elements, ¢(k) — k has an upper bound. Let M be an
integer such that t(k) — k < M. Then we can write z; on the form

a=a B+ al + ¥+ a®) g 4

where agk) € A for M > j. Let byy € A be an integer so that aSV[) = by for

infinitely many k’s. Let Dps be the subset of those k’s such that a =bys. Let
brr—1 € A be an integer so that agw)_l = bps—1 for infinitely many k’s in Dy,
and let Dps—1 be the set of those k’s. Repeating this process a set sequence
(D¢)e>nr such that Dy O Dyr—y D -+ and such that for all k € Dy, a;’ = b;
for each ¢ < j < M is constructed. Let k; < ky < --- be an infinite sequence

such that k; € Dp—j4q1 for j > 1. Since
ij:bMﬂM by J+1,3M ]+1+CL ,BM]—f-aSV[] I/BMJ Ly,

we get 2k, = Doy b3t when j — oo. Since limy_,o 2 = 2, we have

(2)g =bar---bo-b_1b_g--- -
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Figure 7.5. Base —1 + i tile with fractal boundary

EXAMPLE 7.4.5. On Figure 7.5 is shown the set obtained by considering com-
plex numbers having a zero integer part and a fractional part of length less than
a fixed bound in their —1 + i-expansion. This set actually tiles the plane.

Let C be a finite alphabet of Gaussian integers. The normalization on C* is
the function
vo : C* — A*
k .
ckco > (X0 i )8

As for standard representations of integers (see Proposition 7.1.3), normalization
is a right subsequential function, and in particular addition is right subsequen-
tial.

PROPOSITION 7.4.6. For any finite alphabet C' of Gaussian integers, the nor-
malization in base = —n + i restricted to the set C* \ 0C* is a right subse-
quential function.

Proof. Let m = max{lc —a| |c € C,a € A}, and let v = m/(|3] — 1). First
observe that, if s € Z[i] and ¢ € C, there exist unique a € A and s’ € Z[i]
such that s + ¢ = s’ + a, because A is a complete residue system mod f.
Furthermore, if |s| < 7, then |s'| < (|s| + |c —al)/I18] < (v + m)/|B] = 7.

Consider the subsequential finite transducer (A4,w) over C* x A*  where
A =(Q, E,0) is defined as follows. The set of states is Q = {s € Z[i] | |s| < v}
Since Z[i] is a discrete lattice, @ is finite.

E:{sﬂ)s'|s+czﬂs'+a}.

Observe that the edges are “letter-to-letter”. The terminal function is defined
by w(s) = (s)s. The transducer is subsequential because A is a complete residue
system.
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Now let ¢ ---cop € C* and z = E?:o cjB9. Setting so = 0, there is a unique
path
co/ao c1/a1 ca/as Ck—1/Ck—1 cr/ar
Sog —> S1 — S —» - — Sk — Sk+1-

We get 2 = ag + a1+ -- -+ apf* + sp1 ¥, and thus (2)p = w(Sk+1)a - - - ao.
| ]

7.4.2. Representability of the complex plane

In general, the question of deciding whether, given a base # and a set of digits
A, every complex number is representable, is difficult. A sufficient condition is
given by the following result.

THEOREM 7.4.7. Let 8 be a complex number of modulus greater than 1, and
let A be a finite set of complex numbers containing zero. If there exists a
bounded neighborhood V' of zero such that BV C V + A, then every complex
number z has a representation of the form

2= d;p
j<m
with m in Z and digits d; in A.

Proof. Let z be in C. There exists an integer & > 0 such that 3%z € V, thus
it is enough to show that every element of V' is representable. Let z be in V.
A sequence (z;)j>0 of elements of V' is constructed as follows. Let zp = z. As
BV CV + A, if z; is in V, there exist dj;1 in A and 2zj41 in V such that

Zj41 = ﬂZj — dj+1.
Hence the sequence (z;);>0 is such that
z = dlﬁ_l + -+ djﬁ_j + Zjﬁ_j

and since V' is bounded, by letting j tend to infinity,

2= d;B. .

j=0

Problems

Section 7.1

7.1.1 Prove that addition in the standard S-ary system is not left subsequen-
tial.

7.1.2 Give a right subsequential transducer realizing the multiplication by a
fixed integer, and a left subsequential transducer realizing the division
by a fixed integer in the standard S-ary system.
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7.1.3

7.1.4

7.1.5

Section

7.2.1

7.2.2

7.2.3

Numeration systems

Prove the well-known fact that a number is rational if and only if its
[B-expansion in the standard $-ary system is eventually periodic.

Show that any real number can be represented without a sign using
a negative base 3, where § is an integer < —2, and digit alphabet
{0,...,|8]—1}. Integers have a unique integer representation. Addition
of integers is a right subsequential function.

Show that one can represent any real number without a sign using
base 3, and digit alphabet {1,0,1}. Integers have a unique integer
representation. Addition of integers is a right subsequential function.
Generalize this result to integral bases greater than 3.

7.2

Show that the code Y defined in the proof of Proposition 7.2.11 is finite
if and only if dg(1) is finite, resp. is recognizable by a finite automaton
if and only if dg(1) is eventually periodic.

If every rational number of [0, 1] has an eventually periodic S-expansion,
then § must be a Pisot or a Salem number. (See Schmidt 1980).

Normalization in base 8. (See Frougny 1992, Berend and Frougny
1994).

1. Let s = (s;)i>1 and denote by mg(s) the real number Y .o, s;37".
Let C be a finite alphabet of integers. The canonical alphabet is A =
{0,...,B]}. The normalization function on C

ve: CN — AN

is the partial function which maps an infinite word s over C, such that
0 < mg(s) <1, onto the S-expansion of mz(s).

A transducer is said to be letter-to-letter if the edges are labelled by
couples of letters.

Let C'={0,...,c}, where cis an integer > 1. Show that normalization
Ve is a function computable by a finite letter-to-letter transducer if and
only if the set

Z(B,c) ={s= (Si)izo | s; € Z, |si| < ¢, Zslﬂil =0}

i>0

is recognizable by a finite automaton.

2. Prove that the following conditions are equivalent:

(i) normalization v : CN — AN is a function computable by a finite
letter-to-letter transducer on any alphabet C' of nonnegative integers
(ii) var : AN — AN where A’ = {0,..., 8] + 1}, is a function com-
putable by a finite letter-to-letter transducer

(iii) B is a Pisot number.
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Section

*7.3.1

Section

74.1

7.4.2

7.3

(See Hollander 1998) Let U be a linear recurrent sequence of integers
such that lim,,_, oo (tpt1/uy) = B for real § > 1.

1. Prove that if dg(1) is not finite nor eventually periodic then L(U) is
not recognizable by a finite automaton.

2. If ds(1) is eventually periodic, dg(1) =t1 - -tN(Ent1 - tN+p)”, SEb

N+p N
B(X) = XNt = 3" g xNHpmi XN Ny XN
i=1 i=1

Similarly, if dg(1) is finite, dg(1) =ty - - -y, set
m
B(X)=X"-> t;Xx™".
i=1

Note that B(X) is dependent on the choice of N and p (or m). Any
such polynomial is called an ezxtended beta polynomial for 5. Prove that
(i) If dg(1) is eventually periodic, then L(U) is recognizable by a finite
automaton if and only if U satisfies an extended beta polynomial for 5.
(ii) If dg(1) is finite, then
e if U satisfies an extended beta polynomial for § then L(U) is rec-
ognizable by a finite automaton

e if L(U) is recognizable by a finite automaton then U satisfies a
polynomial of the form (X™ —1)B(X) where B(X) is an extended
polynomial for § and m is the length of dg(1).

7.4

1. Show that every Gaussian integer can be uniquely represented using
base 3 and digit set A = {1,0,1} +i{1,0,1} = {0,1,—1,4, —i,1+i,1 —
i,—1414,—1 —i}. If each digit is written in the form

_0 7 _1 _ _0 -
O=g 1=, —1=¢, =7, —i =

(=g
=]

l+i=Ll—i=1 -1+i=1 -1—-i=1
then for any representation the top row represents the real part and
the bottom row is the imaginary part. Every complex number is repre-
sentable.
2. Show that every complex number can be represented using base 2
and the same digit set A, but that the representation of a Gaussian
integer is not unique.
Prove that every Gaussian integer has a unique representation of the
form dj, ---dy - d_1 in base § = £bi, where b is an integer > 2, and the
digits d; are elements of A = {0,...,b* — 1}. Every complex number is
representable. (See Knuth 1988).



234

7.4.3

7.4.4

7.4.5

*7.4.6

Numeration systems

Show that every complex number can be represented using base 2 and
digit set A = {0,1,¢, (2,3}, where ¢ = exp(2im/4). These representa-
tions are called polygonal representations. (See Duprat, Herreros, and
Kla 1993).

Let 8 be a complex number of modulus > 1, and let A be a finite
digit set containing 0. Let W be the set of fractional parts of complex
numbers, W = {3_,5, d;jB~7 | d; € A}.

1. Show that W is the only compact subset of C such that sW = W+ A.
2. Show that if the set W is a neighborhood of zero, then every complex
number has a representation with digits in A.

Let 8 be a complex number of modulus > 1, and let A be a finite
digit set containing 0. An infinite sequence (d;);>1 of AN is a strictly
proper representation of a number z = ) i>1 d;jB77 if it is the greatest
in the lexicographic order of all the representations of z with digits in
A. Tt is weakly proper if each finite truncation is strictly proper. Let
W= {>x djB~7 | d; € A}. Show that, if 3 is a complex Pisot
number, the set of weakly proper representations of elements of W is
recognizable by a finite automaton. (See Thurston 1989, Kenyon 1992,
Petronio 1994).

Representation of algebraic number fields. (See Gilbert 1981, 1994,
Katai and Kovacs 1981).

Let 8 be an algebraic integer of modulus > 1, and let A be a finite set
of elements of Z[3] containing zero. We say that (8, A) is an integral
numeration system for the field Q(5) if every element of Z[3] has a
unique integer representation of the form dj, - - -dy with d; in A.

1. Let P(X) = X™ +pp_1 X™ ! 4+ po be the minimal polynomial
of 8. The norm of 8 is N(8) = |po|. Show that a complete residue
system of elements of Z[5] modulo § is the set {0,...,N(8) —1}.

2. Suppose that every element of Z[3] has a representation in (5, A).
Prove that this representation is unique if and only if A is a complete
residue system for Z[8] modulo /3, that contains zero.

3. Suppose that (8, A4) is an integral numeration system. Show that
every element of the field Q(5) has a representation in (5, A).

4. Show that (3, A) is an integral numeration system if and only if # and
all its conjugates have moduli greater than 1 and there is no positive
integer ¢ for which

dy—1B4™" + - +dp =0 (mod g7 — 1)

with d; in A for 0 < j <gq.

5. Now suppose that 8 is a quadratic algebraic integer, and let A =
{0,...,|po| = 1}. Prove that (3, A) is an integral numeration system for
Q(B) if and only if pg > 2 and —1 < p; < po.
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Notes

Concerning the representation of numbers in classical or less classical numera-
tion systems, there is always something to learn in Knuth 1988. Representation
in integral base with signed digits was popularized in computer arithmetic by
Avizienis (1961) and can be found earlier in a work of Cauchy (1840).

We have not presented here p-adic numeration, nor the representation of
real numbers by their continued fraction expansions (see Chapter 2 for this last
topic).

The notion of beta-expansion is due to Rényi (1957). Its properties were
essentially set up by Parry (1960), in particular Theorem 7.2.9. Coded systems
were introduced by Blanchard and Hansel (1986). The result on the entropy
of the fg-shift is due to Ito and Takahashi (1974). The links between the S-
expansion of 1 and the nature of the -shift are exposed in Ito and Takahashi
1974 and in Bertrand-Mathis 1986. Connections with Pisot numbers are to be
found in Bertrand 1977 and Schmidt 1980. It is also known that normalization
in base f§ is computable by a finite transducer on any alphabet if and only if
B is a Pisot number, see Problem 7.2.3. If 8 is a Salem number of degree 4
then dg(1) is eventually periodic, see Boyd 1989. It is an open problem for
degree > 6. Perron numbers are introduced in Lind 1984. There is a survey
on the relations between beta-expansions and symbolic dynamics by Blanchard
(1989). In Solomyak 1994 and in Flatto, Lagarias, and Poonen 1994 is proved the
following property: if dg(1) is eventually periodic, then the algebraic conjugates
of f have modulus strictly less than the golden ratio. Beta-expansions also
appear in the mathematical description of quasicrystals, see Gazeau 1995.

The representation of integers with respect to a sequence U is introduced
in Fraenkel 1985. The fact that, if L(U) is recognizable by a finite automaton,
then the sequence U is linearly recurrent is due to Shallit (1994). We follow the
proof of Loraud (1995). The converse problem is treated by Hollander 1998,
see Problem 7.3.3. Canonical numeration systems associated with a number 3
come from Bertrand-Mathis (1989). Normalization in linear numeration systems
linked with Pisot numbers is studied in Frougny 1992, Frougny and Solomyak
1996, and with the use of congruential techniques, in Bruyere and Hansel 1997.
Moreover, if the sequence U has a characteristic polynomial which is the minimal
polynomial of a Perron number which is not Pisot, then normalization cannot
be computed by a finite transducer on every alphabet (Frougny and Solomyak
1996).

A famous result on sets of natural numbers recognized by finite automata is
the theorem of Cobham (1969). Let k be an integer > 2. A set X of positive
integers is said to be k-recognizable if the set of k-representations of numbers of
X is recognizable by a finite automaton. Two numbers k and [ are said to be
multiplicatively independent if there exist no positive integers p and ¢ such that
kP =19. Cobham’s Theorem then states: If X is a set of integers which is both
k-recognizable and [-recognizable in two multiplicatively independent bases k
and [, then X is eventually periodic. There is a multidimensional version of
Cobham’s Theorem due to Semenov (1977). Original proofs of these two results
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are difficult, and several other proofs have been given, some of them using logic
(see Michaux and Villemaire 1996). There are many works on generalizations
of Cobham and Semenov theorems (see Fabre 1994, Bruyere and Hansel 1997,
Point and Bruyere 1997, Fagnot 1997, Hansel 1998). In Durand 1998 there is
a version of the Cobham theorem in terms of substitutions. We give now one
result related to the concepts exposed in Section 7.3. Let U be an increasing
sequence of integers. A set X of positive integers is U-recognizable if the set of
normal U-representations of numbers of X is recognizable by a finite automaton.
Let 8 and ' be two multiplicatively independent Pisot numbers, and let U and
U’ be two linear numeration systems whose characteristic polynomial is the
minimal polynomial of 8 and 3’ respectively. For every n > 1,if X C N* is U-
and U'-recognizable then X is definable in (N, +) (Bes 2000). When n = 1, the
result says that X is eventually periodic.

Theorem 7.4.3 on bases of the form —n + i, n integer > 1 is due to Katai
and Szabé (1975). There is a more algorithmic proof, as well as results on the
sum-of-digits function for base f§ = —1414, in Grabner et al. 1998 Normalization
in complex base is studied in Safer 1998. Theorem 7.4.7 appeared in Thurston
1989, as well as the result on complex Pisot bases presented in Problem 7.4.5.
Representation of complex numbers in imaginary quadratic fields is studied in
Katai 1994. We have not discussed here beta-automatic sequences. Results
on these topics can be found in Allouche et al. 1997, particularly for the case
B=—-1+1.

The numeration in complex base is strongly related to fractals and tilings.
Self-similar tilings of the plane in relation with complex Pisot bases are discussed
in Thurston 1989, Kenyon 1992 and Petronio 1994. In Gilbert 1986, the fractal
dimension of tiles obtained in some bases such as —n +i is computed. A general
survey has been written by Bandt (1991).



CHAPTER 8

Periodicity

8.0. Introduction

Periodicity is an important property of words that has applications in various
domains. The first significant results on periodicity are the theorem of Fine and
Wilf and the critical factorization theorem. These two results refer to two kinds
of phenomena concerning periodicity: the theorem of Fine and Wilf considers
the simultaneous occurrence of different periods in one finite word, whereas
the critical factorization theorem relates local and global periodicity of words.
Starting from these basic results the study of periodicity has grown along both
directions. This chapter contains a systematic and self-contained exposition of
this theory, including very recent results.

In section 8.1 we analyze the structure of the set of periods of one finite
word. This section includes a proof of the theorem of Fine and Wilf and also
a generalization of this result to words having three periods. We next give the
characterization of Guibas and Odlyzko concerning those sets of integers that
yield the periods that can simultaneously occur in a single finite word. Another
property is further investigated (similar to the one stated by the theorem of
Fine and Wilf) in which the occurrence of two periods in a word of a certain
length forces the word to have a shorter period only in a prefix (or suffix) of
the word. The golden ratio appears in such a result as an extremal value of
a parameter involved in the property. This section also contains some results
concerning the squares that can appear as factors in a word. This is a prelude
to next section, since squares describe a special kind of local periodicity.

In section 8.2 we investigate the relation between local and global periodicity.
Local periodicity is described in terms of repetitions. A repetition occurring in
a word is not in general a factor of the word, nor it is necessarily a square, but it
may be of rational (not only integer) order. Moreover the repetition is referred
to a "point” of the word and it is important to consider the relative positions of
the repetition and that of the point at which the repetition is detected. Thus
we distinguish between central repetitions and left (or right) repetitions. The
study of central repetitions leads to the critical factorization theorem, of which
we here report a new short proof. In such a result we need repetitions of order
greater than or equal to 2 and the value 2 is proved to be tight. The study of
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left repetitions leads to a similar result, but in this case we need repetitions of
order greater than ¢?, where ¢ denotes the golden ratio, and the value ¢? is
tight for such a result.

The last section is devoted to infinite words. By extending the ideas and
the results of section 8.2, we characterize recurrence, periodicity and eventual
periodicity of infinite words in terms of local periods. In some of these results
the golden ratio again plays a central role.

8.1. Periods in a finite word

8.1.1. Definitions and basic properties

Let w = ajas - - - a, be a word of length n over the alphabet A.

Recall from Section 1.2.1 that a positive integer p < |w| is a period of w if
Gi+p = a; for i =1,...,n —p. The smallest period p of w is called the period of
w and it is denoted by p(w). From the definition it follows that, if v is a factor
of w, then p(v) < p(w).

The positive rational number |w|/p(w) is called the order of w and it is
denoted by ord(w). If u is the prefix of length p(w) of w, we can write w =
u” where p = ord(w), and we say that w is a rational power of u. Notice
that a rational power w” is defined only if |u|p is an integer. For instance,
p(abaaba) = 3, ord(abaaba) = 2 and the word abaaba can be uniquely written
abaaba = (aba)?. As another example, p(ababaaba) = 5, ord(ababaaba) = 1.6
and the word ababaaba can be written in a unique way as ababaaba = (ababa)!-S.

A word v that is both a prefix and a suffix of another word w, with v # w,
is called a border of w. It is easy to see that if v is a border of w, then |w| — |v|
is a period of w and, conversely, if p is a period of w, then the prefix v of w of
length |w| — p is a border of w. The empty string e is a border of any string w.
If there exists a nonempty border v of w then w is called bordered, otherwise it
is called unbordered.

It is easy to verify that a word is unbordered if and only if ord(w) = 1, or,
equivalently, if and only if |w| = p(w).

The following three lemmas will be often used in this chapter. We invite
the reader to spend some time in reading the proof of these lemmas together
with Problem 8.1.1, to get acquainted with the basic tools and ideas used in
this chapter.

LeEMMA 8.1.1. Let w be a word having two periods p and q, with ¢ < p < |w|.
Then the suffix and the prefix of w of length |w| — g have both period p — q.

Proof. We prove only that the prefix of w of length |w| — ¢ has period p — ¢,
the proof for the suffix being analogous. Since |w| — ¢ > p — ¢, we have to prove
that

Qijyp—q = Qg i:l,...,n—p.
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Let i be such that, 1 <i <n—p. Thus 1 <i+p—q < n—gq. Since w has period
D, one has that a; = a;y,. Since w has period g and 1 <i+p—g <n — g, one
has that a;4p—q = Gitp- "

LemMmA 8.1.2. Let u,v,w be words such that uv and vw have period p and
|v| > p. Then the word uvw has period p.

Proof. Let vvw = a1---ap, U =a1---G;, ¥ = Q41 Qj, W = Gj41 - Ap. By
the hypothesis 7 — [ > p. Let ¢ be an integer with 1 <7 < n — p. We have to
prove that a; = a;4p.

If i < j—p, since uv has period p, then a; = a;4p. If i > j—p, since j—1 > p,
then ¢ > 1 + 1. Since vw has period p, then a; = a;4p. [

LEMMA 8.1.3. Suppose that w has period q and that there exists a factor v of
w with |v| > ¢ that has period r, where r divides q. Then w has period r.

Proof. Let w = ay---a, and let v = ap---ag, with 1 < h < k < n and
k—h+1>q. Let us suppose that i = j (mod r), 1 <i,j < n. We have to
prove that a; = a;. Since, by hypothesis k—h+1 > g, for any integers i, j, there
exist 7', 5" with h < ¢',j' < k such that i =4’ (mod ¢) and j = j' (mod q).
Since 1 = j (mod r) and since 7 divides ¢, then i = j' (mod r). But w has
period ¢ and thus a; = ay and a; = aj. Finally, since v has period r, one gets
ay = aj and the lemma is proved. [

8.1.2. The theorem of Fine and Wilf

This section is devoted to the theorem of Fine and Wilf and some generalizations.
It is a classical and basic result on periodicity and one of its proofs is reported
in Lothaire, 1983. The proof we give here can be considered as a first step of
the proof of a more general result that is stated and proved in the next section.

The proof reported here is closely related to Euclid’s algorithm computing
the greatest common divisor of two integers. In particular, we use the fact that,
given two positive integers p, ¢, with ¢ < p, ged(p, ¢) = ged(p — ¢, q)-

THEOREM 8.1.4 (Fine and Wilf). Let w be a word having periods p and ¢,
with ¢ < p. If |lw| > p + q — ged(p, q), then w has also period ged(p, q).

Proof. Set r = gcd(p, q). The proof is by induction on the integer n = (p+q)/r.
For n =2, ¢ = p = r and the statement is trivially verified.

Let us consider the case n > 2. This, in particular implies that ¢ < p.
Suppose that the statement holds for all integers smaller than n. Consider a
word w having periods p and ¢ and such that |w| > p+ ¢ — r. Denote by u the
prefix of w of length ¢ and set w = uw.

By Lemma 8.1.1, v has period p — ¢ and, since v is a factor of w, v has also
period gq. Moreover one has

v|=|w|l—¢>{P-—q) +q—r=(p—q) +q—gcdlp—q,q).
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By the inductive hypothesis, v has also period ged(p — ¢,q) = ged(p,q) = 7.
Since p —q > r, then |v| = |w| —¢ > (p—q) + ¢ —r > ¢q. By Lemma 8.1.3, the
word w also has period r and this concludes the proof. m

REMARK 8.1.5. The bound given in Theorem 8.1.4 is tight, as shown by the
word w = abaababaaba. It has period 5 and period 8, length 5+ 8 —2 = 11 and
it has not period ged(5,8) = 1. An infinite family of words proving that the
bound is tight is the family of central words considered in Chapter 2.

Theorem 8.1.4 can be generalized to words having three periods. As in
the previous case, the statement and the proof are closely related to Euclid’s
algorithm.

Let p = (p1,p2,p3) be a triple of non negative integers. If p; < ps <
p3, we call p an ordered triple. We denote by O the operator which, given
an arbitrary triple, returns the corresponding ordered triple. We define two
additional operators R and S on ordered triples by

(p1,p2 —p1,p3 — 1), if p1r #0,
R = ]
®) { (0,p2,p3 —p2), if p1 =0
and S(p) = O(R(p)).

Given an ordered triple p, let us consider the sequence (p(k))kzo of ordered
triples defined recursively as follows:

P =p, p*tY =5p"), k>0.
The elements of the triple p(¥) are denoted by:

(0 ) )y

®) = (pi", py”, pl

p
Let us denote by |p| = p1 + p2 + p3 the sum of the elements of the triple p. Set

m(p) = min{k | pgk) =0}, M(p) =min{k | pgk) = p;k) = 0}.
With these notations, given the triple p = (p1,p2, p3), one has

ged(pr, p2,ps) = [pM@)].

We also define a function h which plays an important role in the next result by
(m(p)) I

h(py,p2,p3) = |p

By definition, the function A satisfies the condition

h(plyp%p?)) = h(p17p2 — DP1,P3 —Pl)-

ExaMPLE 8.1.6. Consider the triple p = (7,1 ,13) Euclid’s algorithm gives
the following sequence of triples: p(® = (7,11,13), p® = (4,6,7), p® =
(2,3,4), p = (1,2,2), p¥) = (1,1,1), ) = (0,0,1). We get ged(7,11,13) =

h(7,11,13) = 1
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Given an ordered triple p = (p1, p2, p3) of non negative integers, we introduce
the function:

1
f(p1,p2,p3) = 5[;01 + p2 + p3 — 2gcd(p1, p2,p3) + h(p1,p2,p3)]-

Notice that f(p1,p2,ps) is greater than or equal to ged(p1, p2, p3)-

THEOREM 8.1.7. Let w be a word over the alphabet A having three periods
D1, p2 and ps, with p; < ps < ps. If |lw| > f(p1,p2,ps3), then w also has period

ged(p1, p2,p3).

REMARK 8.1.8. The statement of this theorem includes, as a particular case,
the statement of the theorem of Fine and Wilf. Indeed, the condition that a
word w has periods p, ¢, with p < ¢ corresponds to the triple (0, p, ¢). Since, by
definition, h(0,p,q) = p + q, it follows that

1
FO,p,q) = 5lp+a—2gcd(p,q) +p+4al = p+q-gcdp,q).
Proof. We shall prove the theorem by induction on the integer

n =p1(p1 +p2 + p3).

The case n = 0 corresponds to the classical Fine and Wilf theorem (see also
Remark 8.1.8).

Let us now suppose that the statement is true for all ordered triples ¢ =
(q1,2,q3) such that m = qi(q1 + g2 + ¢3) < n and consider an ordered triple
p = (p1,p2,p3) such that pi(p1 + p2 + ps) = n.

Let w be a word having periods p1, p» and ps and length |w| > f(p1,p2,p3).
Let u be the prefix of w of length p; :

w = uv, with |u| = pi, [v| = |w| — p1.

By Lemma 8.1.1, the word v has periods p;, p» — p1, ps — p1 and length |v| =
|w| — pi1. Since [w| > f(p1,p2,p3), one has

|v| = |w| —p1 > f(p1,p2,p3) — P1

2Ip1 + p2 4+ ps — 2ged(p1, p2, p3) + h(p1,p2,p3)] — D1
3Pt + (p2 = p1) + (p3 — p1)

—2ged(p1,p2 —p1,p3 —p1) + h(p1,p2 — p1,ps — p1)]
= f(p1,p2 — p1,p3 —p1) -

By the inductive hypothesis v also has period

ged(pr, p2 — p1,p3 — p1) = ged(p1, P2, p3)-

By Lemma 8.1.3, the word w = uwv has period ged(p1,p2,ps). This concludes
the proof. -
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REMARK 8.1.9. The bound given in Theorem 8.1.7 is tight, as shown by the

following example. An infinite family of words proving the tightness is consid-
ered in Problem 8.1.8 (see also Remark 8.1.5).

ExXAMPLE 8.1.10. Consider the word
w = abacabaabacaba.

The word w has length |w| = 14 and periods 7,11, 13. Since ged(7,11,13) =
h(7,11,13) =1, (see Example 8.1.6) one has:

1
F7,11,13) = S(T+11+13 -2+ 1) =15,

Then w is a word having periods 7,11, 13; its length is |w| = f(7,11,13) — 1 and
w has no period ged(7,11,13).

8.1.3. Structure of the periods of a word

In this section, we give the structure of the set of periods of a single finite word.
As a consequence, we obtain, for any word w, a word w' over a binary alphabet
that has exactly the same set of periods as w.

Let TI(w) denote the set of all periods of w, with 0 included. For in-
stance, if W = abcabeade f gabeabea, then (w) = {0,11,14,17,18} and if w =
agaaaaaacaaacaaaaa, then I(w) = {0,1,...,18}.

Clearly, if p is a period of w then any multiple of p that is smaller than or
equal to the length of w is also a period of w. Indeed, since 1 is a period of w
in the example above, then all positive integers smaller than or equal to |w| are
also periods of w.

If I(w) = {0 =po < p1 < --- < ps = |w|}, we define the sequence of
differences

On =pn —ph-1, 1<h<s

If p is a period of w and ¢ is a period of the suffix of length |w| — p of w
then p + ¢ is also a period of w. Therefore (Problem 8.1.1), for any positive
integer k such that p + kq < |w|, the integer p + kq is a period of w. This fact
and Lemma 8.1.1 imply (Problem 8.1.9) that the sequence of differences ¢y, is
non-increasing.

In the example above, the integers 11 and 14 are periods of w. By Lemma
8.1.1, the integer 14 — 11 = 3 is a period of the suffix of length || — 11 =7 of
w. Therefore 17 = 11 + 6 must also be a period of w.

We know that the sequence of the differences dy, is non-increasing, but some
more conditions must be added in order to characterize the set of periods of a
single word. They appear as conditions 3 and 4 in next theorem.

THEOREM 8.1.11. Let IT = {0 = pp < p1 < --- < ps = n} be a set of
integers and let 0, = pp, — pr—1, 1 < h < s. Then the following conditions are
equivalent:
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1. There exists a word w over a two-letter alphabet with II(w) = II.
There exists a word w with II(w) = II.
3. For each h, such that 6, < n — pp, one has
(a) pn +kdép €T, for k=1,--+,|(n — pn)/6n] and
(b) if §p41 < Op, then 8, + Spe1 > n —pp + gcd(éh,5h+1).
4. For each h, such that §;, < n — py, one has
(a) pn + 0p € I and
(b) if 6p = kdp1, for some integer k then k = 1.

o

Proof. Trivially condition 1 implies condition 2. Let us prove that condition 2
implies condition 3.

Let us now suppose that there exists a word w = a; - - - a,, with II(w) = II
and that §, < n — pp. By Lemma 8.1.1, §;, is a period of the suffix of w of
length n — pp_1. Hence for any k& > 0 and i > pj, such that i + kd;, < n, one has
that a; = ajtrs,. Since py, is a period of w, for any i > py, a;—p, = a;. Setting
j =i — pp, we have that for any j > 0 and for any & such that j + p, + kdp, < n,
one has that a; = aj1p,+ks,, 1-€., P + kop € I, for k = 1,---, [(n — pp)/0n]
and 3.a is proved.

Let us suppose by contradiction that §, < n — py, that dp41 < dp, and that
On +0p+1 < n—pp+ged(dp, Opt1). By Lemma 8.1.1, d, is a period of the suffix
uw of w of length n — pp—1 and dp4+1 is a period of the suffix v of w of length
n — pp. Clearly v is a suffix of u. Hence, both §, and §p41 are periods of v.
Since |v| = n — pp > Opt1 + 0n — ged(On, Opt1), by Theorem 8.1.4 v has also
period r = gcd(dp, Op41). Since |v] =n — pp > §p, and since u has period dp, by
Lemma 8.1.3, v has also period r This fact implies that py_1 + r is a period of
w. But pp_1 +7 < pp_1 + 6, = pp, contradicting the fact that py, is the smallest
period greater than pp_1.

Let us prove that condition 3 implies condition 4. Trivially condition 3.a
implies condition 4.a.

Let us suppose by contradiction that §;, < n — pp and that §;, = kdp41, for
some integer k > 1. Then 0,41 < 05, and also dp4+1 = ged(dn, Ipt1). Therefore,
by condition 3.b, §, + dpt1 > n — pp + ged(0p, Opr1) = n — pp + Opt1 e,
0n > n — py, that is a contradiction.

Let us finally prove that condition 4 implies condition 1. We prove that if
condition 4 holds, then there exists a binary string w, such that II(w) = II.

Let II, = {p—pn | p€ I and p > pr}, 0 < h < s. For instance, if I =
{0,11,14,17,18}, then II, = {0}, II3 = {0,1}, I, = {0, 3,4}, II; = {0,3,6,7}.
Clearly, Iy = 1II.

We prove by induction on h = s,...,0 that there exist binary strings wy,
such that II(wp) = ;. Then, wq is the required string with II(wg) = II. Notice
that |wp| =n — pp.

For the basis of the induction we have that w® = e, since II; = {0}. Assume
now that there exists a string wy,, such that II(wy) = IIj,. There are two cases.

CASE 1. 65 > n—pp. We claim that there exists a sequence ai, . . ., s, _|u,|
of letters in the same binary alphabet of w; such that the word w, | =
Whay - - - A5, _|w, |Wh has no periods of length smaller than 4.
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The proof of this claim is by induction on d;, — |wy|. Suppose §, — |wp| = 1.
Consider the two words wy, zwy, and wpywy, with 2 # y the two different letters in
the binary alphabet of wy,. If, by contradiction, both words wyzwy and wpywy,
have a period smaller than 0, = |wpz| = |wpy| then, by problem 8.1.4, they
must be equal, which is impossible because they differ in the central position.

Inductive step of the claim: Suppose that the binary alphabet is {z,y}.
Suppose that the claim is true for d;, — |wy| = n — 1 and suppose also that,
by contradiction, putting a letter x or a letter y between positions ar,, /o) and
arn/21+1 we get two different words that both have a period smaller than or equal
to |wp |+ [1n/2] + 1. These two periods cannot be equal, because of the different
letter in the same position, and, so, one must be smaller than |wy| + [n/2] + 1.

These words have length 2|wy| +n + 1 and the sum of the two periods is
smaller than or equal to 2|wy| +n + 1. By Problem 8.1.4, they must be equal,
which is impossible because they differ in the central position. This concludes
the proof of the claim.

By the claim one has H(wp_1) = {0n +p | p € I} U {0} = 11,1, and the
inductive step is proved.

CASE 2. If 6, < n — pp, then let wp_1 = a1 ---as, wp, where ay ---as, is
the prefix of length &, of wy . Since pp, + d, € I, we get that §, € II; and, by
inductive hypothesis, d;, is a period for wy. Hence dy, is also a period of wp_.
Consequently, by Problem 8.1.1 and Lemma, 8.1.1, §;, + p is a period of wp_1, for
some integer p > 0 if and only if p is a period of wy. This is equivalent to saying,
by the inductive hypothesis, that IL(wn—1)N{0n, ..., |wa_1|} = {on+p|p € I} }.

Assume, by contradiction, that (wp—1) # II—1 and, consequently, there
exists a period t < d0p, in II(wp—1) \ II—1. We have that both ¢ and d;, — ¢ must
be periods of wy. The first is a period because wy, is a suffix of wp_;. The
second is a period because both ¢, and ¢ are periods of w1 and because, by
Lemma 8.1.1, the suffix of wy_; of length |wp_1| —t > |wp_1]| — 0n = |wp]| has
period d;, — t and contains wy, as factor.

Since by the induction hypothesis, dp.11 is the shortest non-zero period of wy,
Op+1 < tand dp41 < 0p —t, and, consequently, dp+1+t < 0 and dp41 +0p —t <
Op,.

By the theorem of Fine and Wilf and by the minimality of §p41, dpr1 =
ged(0p41,t) and dp41 = ged(Opy1,0n — t), i.e., Opy1 divides ¢t and also divides
0p, — t. Hence d0p41 also divides ¢t + dp, — t = 0, and this contradicts condition
4.b because dp+1 <t < Op. n

Let us now give an example of how to construct a word w’ over a binary
alphabet {a,b} such that ITI(w') = {0,11,14,17,18}.

Notice that the set IT = {0, 11, 14,17, 18} satisfies condition 4 of the previous
theorem. It is indeed the set of periods of the word w = abcabcade f gabcabea.

We have that I, = {0}, IIs; = {0,1}, I, = {0,3,4}, II;, = {0,3,6,7}.
Clearly, always [T = II.

Moreover we know that §4 =18 —-17=1,603 =17—14 = 3,02 = 14—11 = 3,
0 =11-0=11.
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We inductively construct words wy, for h = 4,3,2,1,0, where wy = w' is the
required word. Recall that |wy| = 18 — py,.

Word wy = € and II(wy) = Iy = {0}. Since §4 =1 > 18 —p, =18 =18 =0
we are in the first case of previous proof, and so there exists a sequence of
04 — |wa| =1 =0 = 1 letter(s) ai,...,as,—ju, (in this case just one letter a;)
such that ws = wya;wy. In this case both letters @ and b can be chosen to be a;
in order to have II(ws) = II3 = {0, 1}. Let us choose a; = a, and, so, ws = a.

Since 3 = 3 > 18—p3 = 18—17 = 1, we are in the first case of previous proof,
and so there exists a sequence of d3 — |wz| = 3 — 1 = 2 letters a1, ..., a5,_|u,
(in this case two letters, a1 and az) such that wy = wsaiasws = aajaza has
no period smaller than d3. Letter a; must be chosen such that wsa;ws has no
period smaller than |ws| + 1 = 2. There is only one possibility, which is that
a; = b. Letter as must be chosen such that wsajasws = abasa has no period
smaller than |ws| + 2 = 3. In this case both letters a and b can be chosen in
order to have II(ws) = Il = {0,3,4}. Let us choose a; = b, and so ws = abba.

Notice that the order that we use to choose the letters in the general sequence
a, ..., a5, _|w,| is not the usual order and follows the inductive proof of always
choosing the “central” letter, i.e., a1, as, _jw,|> @2, A5, —|wy|—25 - - + s A[(n—pn)/2] if
(n — pr) is odd, while if it is even the last letter to be chosen is ar(,—p,)/2741-
In previous situation, when there are only two letters, this order coincides with
the usual one.

Since 62 = 3 < 18 —py = 18 — 14 = 4, we are in the first case of the previous
proof and, so, w; = abbws = abbabba, because abb is the prefix of length ds of
wy (whose length is 18 — p2). Indeed (w;) =1I; = {0, 3,6, 7}.

Since §; = 11 > 18 —p; = 18 — 11 = 7, we are in the first case of the
previous proof and, so, there exists a sequence of §; — |wy| =11 — 7 = 4 letters
ai,as,as, as such that wg = wiajasasasw; = aayasa has no period smaller than
d1. For brevity we do not perform the inductive steps for choosing this sequence
of letters, that can be chosen to be a, a, a,a, i.e., w' = wy = abbabbaaaaaabbabba.

It is easy to verify that II(w') = {0,11,14,17,18}.

8.1.4. Golden ratio and periodicity

We present here a result that has some analogies with the theorem of Fine and
Wilf and relates periodicity and the golden ratio. This result plays an important
role in Section 8.2.2.

The theorem of Fine and Wilf states, roughly speaking, that if a word w has
two periods p and ¢ and it is long enough (|w| > p + ¢ — ged(p, q)), then it has
a shorter period (ged(p, q)).

In next result, we start from a weaker hypothesis on the length of the word,
in which the golden ratio appears, and we derive a weaker conclusion.

Indeed, denoting by ¢ the golden ratio, we suppose that |w| > ¢ max{p, ¢}
and we derive that there exists only a suffix (and a prefix) having “shorter”
period.

Let us recall that the golden ratio, denoted by ¢, is the real positive root of
the equation 22 —2 —1 =0, i.e., = (v/5+1)2 = 1.618... .. Since, by definition,
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p? = ¢+ 1, in the sequel of the chapter we shall sometimes interchange ? with
¢ + 1 without mention.

THEOREM 8.1.12. Let x and y be nonempty words and let p and o be positive
rational numbers such that ¢ < p < o. If » = y?, then there exist a nonempty
word z and a rational number T > p + 1 such that z7 is a suffix (a prefix) of
P =y°.

Proof. Set w =z = y?. If 0 > p+ 1, then the statement is trivially satisfied
with z = y and 7 = 0. Let us now suppose that o < p+ 1. Let |z| = p and
ly| = ¢q . Then
lw| =pp=qo < q(p+1).
If p > ¢, then, by the definition of the golden ratio ¢, p+1 < p?. From the
inequality pp < q(p + 1), we derive pp < gp* and then p — pg < 0. By adding
pp — q to both sides of the last inequality one has

P—pg+pp—q<pp—gq
which can be rewritten

r—a)p+1) <pp—gq.

By definition, w has periods p and ¢, with ¢ < p. By Lemma 8.1.1, the suffix
(prefix) v of w of length |w| — ¢ has period p — ¢q. Denoting by 7 the order of v,
we have

7 =ord(v) = i :|w|—q:pp—q.
p—q pP—q pP—q
By the previous inequality, 7 > p+ 1, i.e., v = 27, with 7 > p+ 1. [

REMARK 8.1.13. The number ¢ is tight in Theorem 8.1.12. Recall from Sec-
tion 1.2 that (F,),>1 denotes the sequence of Fibonacci numbers and that the
sequence of Fibonacci words(fn)n>1 is defined by the inductive rules: fi = b,
f2 = a, and fn+1 = fnfnfl-

For any n > 1 consider the word v,,12 defined as the prefix of length | f,, 2| —2
of fn+27 i.e.,

Upt28y = fri2,

where z, y are letters, = # y. It is known that v, 4o has periods F,, and F,4;.
Then v, 42 can be written:

i
Pn

Un42 = frpln = Jn+1
where P 5 P 5
+2 — +2 —
Pn = nT: pln = 7%77
n n+1
and pl, < .

One can prove that there does not exist any prefix (or suffix) of v,,42 having
order > ¢+1 (Problem 8.2.6). The tightness of Theorem 8.1.12 is a consequence
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of the well-known property of Fibonacci numbers stating that, for any e > 0,
there exists an integer m such that for any n > m

P — €< py

Also notice that the statement of Theorem 8.1.12 is sharp in the sense that the
prefix (or suffix) of w of the form z7, with 7 > p+ 1, cannot in general coincide
with the whole word w. Indeed the word

w = a®ba®
has periods 7 and 8 and it can be written
w = (a®b)? = (aba)”,

with 0 = 13/8 = 1.625 and p = 13/7, i.e., ¢ < 0 < p. The word w satisfies
the hypothesis of the lemma and it has as a prefix (and a suffix) the word af
according to the lemma. However w cannot be written as w = 27 with v > o+1.

8.1.5. Squares in a word

In this section we study squares that appear as prefixes or as factors in words.
Recall that a square is a word w of the form w = v2.

The occurrence of a square as a factor in a word can be considered as a
particular kind of local period occurring in the word. A more general notion of
local period will be discussed in Section 8.2. Here we study the squares that
can appear as prefixes or as factors of a word.

The first result we prove states a fundamental inequality on the lengths of
different squares that can occur as prefixes of the same word. It is used in the
second result and also in Chapter 12, Section 12.1.7.

The second result gives a bound on the number of squares occurring as
factors of a word.

In what follows we write w < w’ to denote that the word w is a prefix of
w'. Recall also that a word w is called primitive if it is not a power of another
word, i.e., there exists no word z such that w = z* for some integer k greater
than 1.

LeEmMA 8.1.14. Let u,v,w be words such that w is primitive, v ¢ u*, and
uu < vv < ww. Then |u| + |v| < |w]|.

Proof. By contradiction we assume that |v|] < |w| < |vu|. First assume that
2|u| < |v|. Then we have uu < v < w. Since vv < ww, the (second) word w
has a prefix ru, where 1 < |r| < |u|. Hence wu is a internal factor of uu, which is
impossible since u is a primitive word (cf. Problem 8.1.6).

Therefore we may assume that v < v < wu. Let v = uwz. Then we have
zu = wy for some non-empty word y. Let x be the primitive root of z. Then
we can write z = 2 and u = 2%r for some integers @ > # > 1 and some
non-empty word r < x. Hence we have v = z%rzf < w and sz” < w, where
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s is a proper suffix of z%r. If |s| > |z|, then z < s. Hence |s| > |z| implies
s = z7r for some integer v < a. Therefore z7rz < !, which is impossible
since 1 < |r| < |z|. Thus, s is a proper prefix of z. If |s| < |z*~'r|, then
sz < 2% < z®T!, which again is a contradiction. Therefore we may assume
that = 8 =1 and |r| < |s|. We have u = zr, v = zrz, and w = zrazt for some
t such that ts = zr. In particular, 1 < ¢t < z. Hence, txr < zrz < zrzr and
this means tu < uu, which is impossible since v is primitive. [

REMARK 8.1.15. Notice that the statement of previous lemma is sharp. Let
u = abbab, v = abbababb, and w = abbababbabbab.

The lengths are 5, 8, and 13. The words u, v, w are primitive and uu < vv < ww.
The general scheme for such an example is

u = pr, v = prp, and w = prppr
where p and r are words such that r < p.

We now study how many squares a word can contain.

Let w=a;---a,. Fori=1,...,n, let s;(w) be the number of squares that
are prefixes of a; - - - a,, and never appear as prefixes of a; - - - a,, with i < j <n.
For example in the word w = abaababaababa we have s3(w) = 1 since aababaabab
is a square beginning in position 3 which do not appear later on. The square
aa also begin in position 3 but it also appears in position 8 and, so, it does not
affect the value of s3(w).

THEOREM 8.1.16. For every nonempty word z of length n, s;(x) < 2 for all
ie{l,...,n}.

Proof. Suppose, by contradiction, that there exists a word z of length n such
that s;(z) > 3, for some i € {1,...,n}.

Then x; = a;a;;1 - - a, has three prefixes u?, v2, w?, uu < vv < ww which
do not occur elsewhere in the word z. Let p = |w|,q = |v| and r = |u|. If
p > 2r, then u? occurs again at position i + p, because w occurs there, that
is impossible. Thus p < 2r, and we have that p > ¢ > r > p/2 and also
q<p<2r<q+r<2q. It follows from Lemma 8.1.14 that u is non-primitive.

Therefore there exists a primitive word y such that u = y* for some integer
k > 2. If we set r1 = |y|, then r = kr;. Now we have that yy < uu < vv with
y primitive, so by Lemma 8.1.14 that r; + ¢ < p. Note that r; is also a period
of u? and, since p < 2r, w is a prefix of «? and, so, 1 is a period of w. Since
p < 2q, w is a prefix of v? and, so, ¢ is also a period of w. Since ri +¢ < p
we can apply Theorem 8.1.4 and obtain that ged(p,q) = d is also a period of
w. Since the word y is primitive and d divides r1, we have d = r;. Hence r;
divides ¢. Now r = kr;, and, consequently, ¢ = (k+h)ry for some integer h > 1.
Therefore v? has length 2(¢ + s)r; and u? has length 2tr;. It follows that u?
also appears at position r; + 1, which is a contradiction. [
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Notice that, since there are no squares beginning at the last position, s, (z) =
0 for any word z of length n.

For any word x = a1 - - - a,, let us denote by SQ(z) the cardinality of the set
of squares that are factors of z. It is easy to verify by definition and by previous
Notice that SQ(z) = X0 si(x).

Hence, we have the following corollary of Theorem 8.1.16.

COROLLARY 8.1.17. For any word z of length n, SQ(z) < 2n — 2.

8.2. Local versus global periodicity

In this section we investigate the relationships between local and global period-
icity of words. In section 8.1.5 we have taken into account a particular kind of
local period, i.e., squares occurring as factors in a word. Here we introduce a
very general notion of local period in terms of repetitions. A repetition occurring
in a word w is not in general a factor of w, nor it is necessarily a square, but
its order can be an arbitrary rational number p. Moreover the repetition is here
referred to a “point” of the word w and it is important to consider the relative
positions of the repetitions and that of the point of the word w at which the
repetition is detected.

In order to give the formal definitions, we first introduce the notion of pointed
word. This is the appropriate notion to define local properties of a word.

Let w = ayas - - - a, be a word over the alphabet A. A pointed word is a pair
(a1 ---ai,air1---ay), 1 < i < n. The pointed word is also denoted by (w,i)
and we refer to (w,4) as the word w at the point (or the position) .

Let (z,y) be a pair of words. The pair (z,y) matches the pointed word
(w, 1), or simply matches the word w at the point i, if

A*zNA%--a; #0 and  yA*Najpr---a, A" £ 0.

Notice that the word z = xy is not in general a factor of the word w and that
the pair (z,y) specifies the relative position of the word z and the point i. So
we can distinguish between central repetitions and left (or right) repetitions.

8.2.1. Central repetitions

A word w contains a repetition of order p having as center the point (or position)
i, or shortly a central repetition of order p at the point 4, if there exists a non-
empty word z of order ord(z) = p and a factorization z = xy, with |z| = |y|,
such that the pair (z,y) matches w at the point i. This means that the point
1 is central with respect to the repetition z. The word z is called a central
repetition of (w,%) and must have even length. This central repetition is proper
(or internal) if x is a suffix of a; ---a; and y is a prefix of a; 11 -+ an. It is left
external if ay - - - a; is a proper suffix of z. It is right external if a;41 ---a, is a
proper prefix of y.

Central repetitions of order 2 play an important role in this theory. By
definition, a central repetition of order 2 at the point ¢ of w is a word z of the
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form z = 2 such that the pair (z,7) matches w at the point i. We say that w
has a square having its center in the position i.

ExAMPLE 8.2.1. Given the word
w = abaababaabaaba

the pointed word (w, 8) is the pair
(abaababa, abaaba).

The pair (aba,aba) matches the pointed word (w, 8), and so the word abaaba
is a central repetition of w at the point 8. It has order 2 and period 3. In the
point 8 of w there is another central repetition of order 2, or a square having
its center in it. It is the word aa and it has period 1. Both these repetitions are
proper. The pointed word (w,7) is the pair

(abaabab, aabaaba).

The word aabaababaabaabab is a central repetition of (w, 7) of order 2 and period
8. It is both left and right external. Since the pair (abab, aaba) matches w at
the point 7, the word ababaaba is a proper central repetition of (w,7) of order
1.6 and period 5.

As shown in the previous example, a word can have different central repe-
titions of same order at a given point. We are interested, for a given order, in
detecting the central repetition of minimal period. This leads to the notion of
minimal central repetition and of central local period.

For any real @ > 1, ¢o(w, ) denotes the central local period (of order a) of
the pointed word (w, 1),

co(w,7) = min{p(z) | z is a central repetition of (w, ) of order > «a}.

The central repetition z of (w,7) such that p(z) = cq(w, 1) is called the minimal
central repetition (of order ) of w at the point i.

It is immediate to verify that, if @ < 3, then ¢, (w,i) < cg(w, i) and that for
any o and any i > 1, ¢, (w,1) < p(w).

In the special case a = 2 one has

ca(w, i) = min{|z| | x # € and (z,z) matches w in the position i}.

EXAMPLE 8.2.2. w = abaababaabaaba

w a b a a b a b a a b a a b a
) 1 2 3 45 6 7 8 910111213
co(w, 1) 2

cl_ﬁ(w,i)
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We denote by P,(w) the maximum of the central local periods (of order «)
of w
P, (w) = max{ce(w,?) | 1 <i < |w|}.

A point (or position) i is critical if co(w,7) = Py(w). We denote by Cy(w) the
set of critical points of w

Co(w)={i|1<i<|w| and cq(w,i) = Py(w)}.

We denote further by Z,(w) and So(w) the minimum and the maximum re-
spectively of the critical points:

Zo(w) = min Cy (w), Sa(w) = max Cy(w).

ExAMPLE 8.2.2 (continued). For w = abaababaabaaba, P>(w) = 8, Co(w) =
{7}, ZQ(U)) = SQ(’LU) = 7, Pl,g(w) = 5, C’l,g(w) = {4, 7}, Zl.G(UJ) = 4, Sl.ﬁ(w) =
7.

Notice that the notion of critical point introduced in this chapter slightly
differs from the one used in the literature, where a critical point ¢ usually denotes
a position where the local period of order 2, ¢ (w, %), is equal to the global period
p(w). The difference is motivated by the fact that we here take in account also
repetitions of an arbitrary order o > 1.

It is easy to verify that c,(w,i) < p(w) for « > 1 and i = 1,---,|w| — 1,
i.e., the central local periods are smaller than or equal to the period. On the
other hand, if « is sufficiently large, i.e., @ > 2|w|, it is possible to prove that
co(w,i) = p(w) for all i, as stated in particular in next proposition.

PROPOSITION 8.2.3. Let k = [a/2]. If the period of w is smaller than or equal
to k then in every position of i, one has c¢,(w,i) = p(w). Hence, if a > 2|w|
then every position is critical of order a.

Proof. Let i, 1 <i < |wl|, be a position in |w|. If the central repetition of order
« at the point 7 is both left and right external then ¢, (w, %) is also a period of w
and, consequently, p(w) < ¢, (w, ) and, by previous remark, the thesis follows.

Suppose now that the central repetition of order a at the point i is either
left or right internal or both. Suppose that it is left internal. We claim that
co(w, ) divides p(w). Indeed if ¢, (w,7) = 1 there is nothing to prove. Suppose
that c¢o(w,?) > 1. In this case the part v of the central repetition of order « at
the point i that is at the left of point i has, by hypothesis, length greater than
or equal to 2p(w). Then v has periods p(w) and ¢, (w,7). We can apply the
theorem of Fine and Wilf and obtain that it has period d = ged(p(w), cq (w,17)).
But d cannot properly divide c¢q(w,?) by the minimality of ¢,(w,7). Hence
d = ¢o(w,i) and the claim is proved. We can now apply Lemma 8.1.3 and
obtain that ¢, (w,%) is also a period of w and, consequently, p(w) < cq(w,i)
and, by previous remark, the thesis follows. [

The critical factorization theorem in particular states that for & = 2 there
exists at least a point such that the central local period detected at this point
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coincides with the (global) period of the word, i.e., there exists an integer j, 1 <
J < |w|, such that ¢y j) = p(w).

An important step in the proof of the critical factorization theorem is the
following proposition.

PROPOSITION 8.2.4. Ifz = z? is the square of minimal length having its center
in position j of w, 1 < j < |w|, then z is unbordered.

Proof. If there exists a nonempty border ¢ of x, i.e., ¢ is both prefix and suffix
of x, then ¢? is a square having its center in the position j of w that is shorter
than 22, contradicting the definition of z. ]

THEOREM 8.2.5 (Critical Factorization Theorem). Let w be a word having
length |w| > 2. In every sequence of I > max(1l,p(w) — 1) consecutive posi-
tions there is a critical one and, moreover, Py(w) = p(w).

Proof. The proof is by induction on P>(w). Suppose that Py(w) = 1. Since for
all natural numbers i, 1 < i < |wl, ¢y, = 1, then a; = a;y1. If a = a; and
n = |wl|, then w is of the form w = a”, p(w) = 1 = P»(w) and all positions are
critical.

Let us suppose that the statement of the proposition holds true for all words
w' such that P(w') < k—1, k > 1. Let w be a word having Ps(w) = k. We
prove the following properties:
i) If j is a critical position and j+1,...,j + 1 are not critical then Py(w) >
[+1.
ii) If j is a critical position and j —1I,...,7 — 1 are not critical then P(w) >
[+1.
As an immediate consequence of previous two properties one has that
iii) Every sequence of at least P»(w) — 1 consecutive positions contains a
critical one.
Let us recall that for any position j of w one has c2(w,j) < p(w), and, so,
Py(w) < p(w). Hence property i implies the first part of the theorem.
In order to prove %) let us consider the word v = aj41 - - @j41a;414+1. Since
any central repetition at point j + ¢ of w is a repetition having its center at
point ¢ of u one has

ca(u,i) < co(w,j+14) i=1,...,10
Since no position j+i of w, with i = 1,...,1, is a critical position, one has that
co(u,i) < k i=1,...,10

As a consequence, ¢a(u,i) < k fori =1,...,1, and then P>(u) < k. By inductive
hypothesis p(u) = Py(u) < k.

Let z = 22 be the square of minimal length having its center at position j of
w. Since by hypothesis position j is critical, one has that co(w,j) = Pa(w) = k,
and |z| = k.
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By Proposition 8.2.4 the word z is unbordered. If z is a prefix of the word
U= @1 i1 then p(z) < p(u) < k, that is a contradiction. Hence u
is a proper prefix of z and, consequently, Py(w) = k = |z| > |u| =1 + 1.

The proof of ii) is analogous by taking v = a;j_; - - - aj—1. In order to complete
the proof of the theorem we must prove that

iv) pw) = Ps(w).
As noticed above, we have always that P»(w) < p(w). It remains to prove that
Py(w) > p(w). Let i be a position such that 1 < i < i + Py(w) < |w|. By
property i) there exists a critical position j in the set {i,...,i + Pa(w) — 1}.
There exists then a square 2> having its center at position j with || = P (w).
Note that a;---a;1p,(w) is a factor of z%, and, consequently, a; = iy Py(w)-
Therefore Py(w) is a period of w and then P>(w) > p(w), and this concludes
the proof. n

COROLLARY 8.2.6. Let w be a word of length |w| > 2 and p(w) > 1. We have
that Z>(w) < Pa(w), i.e., the central repetition at point Z(w) is left external.
We have also that |w| — P2(w) < Sz(w), i.e., the central repetition at point
Sa(w) is right external.

COROLLARY 8.2.7. Let w = ay - ay, be a word of length n. Given i,7, 1
i < j<n,ifco(w,h) < co(w,j) for any h such that i < h < j, then cy(w,j)
j—i+1.

<
>

Proof. Let v = a;---aj. On has that c3(v,h) < ca(w,h) < c2(w,j), for i <
h < j. According to Theorem 8.2.5 we have that p(v) < ca(w,j). Let u® be
the square of length 2¢y(w, j) having its center at position j of w. According
to Proposition 8.2.4, u is an unbordered word. Hence u cannot be a suffix of v
longer than p(v). Therefore v is a proper suffix of u and |u| = e2(w, j) > j—i+1.

]

In Example 8.2.2 P»(w) is, according to Theorem 8.2.5, exactly the period
of w. Moreover the unique critical point of w is 7 and it satisfies the conditions
(73¢) and (iv) in the proof of the theorem. The same example shows that the
theorem does not hold true for a = 1.6. Indeed P; g(w) = 5 # p(w) = 8. The
following example shows that the value a = 2 is tight.

EXAMPLE 8.2.8. For any € > 0, consider the word ba™~'ba™b, with m such
that 2m/(m + 1) > 2 — e. The unique critical point of order 2 is the point
m + 1, corresponding to the pair (ba™~'b,a™b). The minimal central repetition
of order 2 at such a point is the word a™ba™ 'ba™ba™ b, which has period
2m + 1, according to the critical factorization theorem. However the minimal
central repetition of order 2 — € at the same point is the word v = a™ 'ba™.
Indeed u has period m + 1 and order 2m/(m + 1) > 2 — €. It is easy to verify
that such a point is also a critical point of order 2 — ¢, and then

Py_ (ba™ 'ba™b) = m + 1 # p(ba™ "ba™b) = 2m + 1.
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Statements (i4), (i%i) and (iv) in the proof of Theorem 8.2.5 as given are
sharp. Indeed the word a™ba™ba™, m > 1, has period m + 1 and exactly
four critical points, m, m + 1, 2m + 1 and 2m + 2, corresponding to the pairs
(@™, ba™ba™), (a™b,a™ba™), (a™ba™, ba™) and (a™ba™b,a™) respectively.

8.2.2. Left repetitions

In the previous section we considered central repetitions, i.e., we required the
repetition occurring at the point i of a word w to be such that this point is the
center of the repetition

In this section we take into account a new notion of repetition, in which we
require that the repetition occurs at a given point “immediately to the left from
that point”. The symmetric case of repetitions occurring “immediately to the
right from a given point” is similar and it is not explicitly considered here.

For technical reasons it is convenient, in the case of left repetitions, to change
a bit the definition of a pointed word (w, i) and to allow that the positive integer
i ranges from 1 to |w| (in the case of central repetitions ¢ ranges from 1 to |w|—1).

A word w = ay---a, contains a left repetition of order p at the point i,
(1 <i < n), if there exists a word z of order ord(z) = p such that

A*znA%ay---a; £ 0.

The word z is called left repetition of (w,4). It is external if a;---a; is a
proper suffix of z. It is proper (or internal) if z is a suffix of a; - - - a;.

ExXAMPLE 8.2.9. Given the word
w = abaababaabaaba,

aabaab is an external left repetition of (w,5). It has order 2 and period 3. The
words aa and baabaa are both proper left repetitions of (w,12) of order 2 and
periods 1 and 3 respectively. The word abab is a proper left repetition of (w,7)
of order 2 and period 2, whereas the word ababaababaabab is an external left
repetition of (w,7) of order 2.8 and period 5.

The previous example shows that a word can have different left repetitions
of the same order at a given point. As in the case of central repetitions, we are
interested, for a given order, to detect the left repetition of minimal period.

For any real o > 1, l,(w,%) denotes the left local period (of order ) of the
pointed word (w,7):

lo(w,i) = min{p(z) | z is a left repetition of (w,i) of order > a}.

The left repetition z of (w,7) such that p(z) = I, (w, ) is called the minimal left
repetition (of order «) of w at the point 1.
It is immediate to verify that, if o < 3, then ly(w, i) < lg(w,1).
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EXAMPLE 8.2.10. w = abaababaabaaba

w a b a ab a b a a b a a b a
i 1 2 3 45 6 7 8 91011 1213 14
KQ('LU,i) 1
62.65(11),2') 1 2 2

We denote by Q,(w) the maximum of the left local periods (of order a) of
w:

Qo (w) = max{ly(w,q) |1 <i < |w|}.

A point (or position) 7 is (left) critical if Io(w,i) = Qq(w). We denote by
Ko (w) the set of (left) critical points of w:

Ko(w)={i|1<i<|w| and lo(w,i) = Qq(w)}.

We denote further by T, (w) and R, (w) the minimum and the maximum of the
(left) critical points:

To(w) =min Ky (w), Ra(w) = max K, (w).

EXAMPLE 8.2.10 (continued). For w = abaababaabaaba, Q2(w) =5, Ky(w) =
{10}, To(w) = Ra(w) = 10, Q265(w) = 8, Kags(w) = {12}, Tre5(w) =

R2_65(w) =12.
It is easy to verify that l,(w,i) < p(ay---a;) < p(w) for @ > 1 and i =
1,...,|w|, i.e., the left local periods are smaller than or equal to the period.

Contrary to the case of central repetitions, it is not possible, for left repe-
titions, to determine a fixed value of the parameter « (not depending on the
length of the word w) such that the period of w coincides with the left local pe-
riod of order a detected at some point ¢ of w. The following example illustrates
this fact and the differences between central local periods and left local periods.

EXAMPLE 8.2.11. Let a > 2 be a real number and let w = ba!, with ¢t > a.

The period of w is p(w) =t + 1. Let k = [«] be the smallest integer greater
than or equal to a. The following table gives the values of ¢, (w, ) and 4 (w, )
respectively

w b a a a - - a a a a - - - a a a

i 1 2 3 -+ - k-1%k k+1- - . -t—1 1t t+1
ca(w,i) t+1 - - - - t+1 1 1 1. .. 1 1
lo(w, i) 1 2 3 - . - k-11 1 1. .. 1 1 1
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In the previous example P,(w) = t + 1 = p(w), according to the critical
factorization theorem, but Q,(w) =k — 1 # p(w).

In spite of this, the main theorem of this section states that, for a suitable
value of the parameter «, Q,(w) is equal to the period of the prefix of w of
length R, (w). For instance, in the previous example, R,(w) = k — 1 and the
prefix of w of length R, (w) is ba* 2. Its period is k — 1 and it coincides with
Qo (w). Notice that @ = 2 does not suffice to establish this relationship. Indeed
consider the word w’ = aw, where w is the word in Example 8.2.2. The values
of the function l>(w',7) are given in the following table.

w' a a b a a b ab a a b a a b a

i 1 23 4 5 6 7 8 9 1011 12 1314 15

ly(w', 1) 123313 32 215 3133

Q2(w") = 5 and the prefix of w' of length Rs(w') = 11 has period 8, as one
can easily verify.

The parameter required for the main theorem of this section is related to
the golden ratio (see Section 8.1.4).

The following theorem states in particular that for « = ¢? = ¢ +1 =
2.618... the maximal values of local periods Q,(w) coincide with the global
period of the prefix of w of length R, (w). For convenience of notation the
subscript ¢? will be often omitted. So by I(w,i), K(w),T (w), R(w) we will
refer to l,2(w, 1), K2 (w), T2 (w), Ry2 (w) respectively. In the same way, in the
sequel, by left repetitions we will refer to left repetitions of order ¢?2.

A fundamental step in the proof of next theorem is given by the following
lemma, which uses Theorem 8.1.12 and explains the role of the golden ratio ¢
in the result.

LEMMA 8.2.12. If the minimal left repetition at the point i is proper, then

Proof. Let z be the minimal repetition at the point ¢ of order > ¢2. Then
z = 27, with |z| = p(z) and v, the order of z, a rational number greater than
©%. By definition, l(w,i) = |z].

Since this repetition is proper, z is a suffix of a; - --a;. Consider the word
ar---aj, with j =i — |z| =i — l(w,i). Since 27 is a suffix of ay ---a;, 277!
is a suffix of aj ---a;. From the inequality v > ¢* = ¢ + 1, it follows that
y—1=p>¢.

Let ¢ be the minimal left repetition at the point j of order > ¢?. By definition

Hw,i—l(w,1)) =1l(w,j) = p(t).

Since z” is a suffix of a; - - - a;, then, either ¢ is a suffix of 2 or z* is a suffix of
t.
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If t is a suffix of z*, then ¢ is a proper suffix of *t! = 27 = 2. Hence t is
also a suffix of a; ---a;, i.e., t is a left repetition at the point i of order > ¢?,
with p(t) < p(z). This contradicts the minimality of z. Then z* is a suffix of ¢.

Assume now that I(w,i — l(w,4)) < l(w,4). Then p(t) < p(z) = |z| and the
word z” can also be written = = y?, for some word y and some rational o,
with |y| = p(t) < |z| and then ¢ > p > ¢. The word z” = y7 satisfies the
conditions of Theorem 8.1.12. It follows that z* has a suffix of the form u”,
with 0 < |u| < |#| and 7 > ?, contradicting the hypothesis that z = 27 = z*!
is the minimal left repetition at the point i of order > 2. [

THEOREM 8.2.13. Let w = ajas - - - a, be a nonempty word. On has:
(i) p(ai---apw)) = Q(w).

(ii) Ifr,s(r < s) are consecutive elements of K (w), then s —r < Q(w).
(iil) T(w) < 9*Q(w).

Proof. Let us first prove (iii), which states that T'(w) < ©?Q(w), i.e., that the
minimal repetition at the point T'(w) is external. Indeed, if we assume that this
repetition is proper, then, by Lemma 8.2.12,

H(w,T(w) = Qw)) > l(w,T(w)) = Q(w),

contradicting the fact that T'(w) is the least critical point.

Let us now prove (ii). Let us consider two consecutive elements r,s of
K(w), with r < s. If the minimal left repetition at the point s is proper, then,
by Lemma 8.2.12, s — Q(w) is also an element of K(w). Since r and s are
consecutive elements of K (w), then r > s — Q(w), i.e., s — r < Q(w).

In the opposite case, i.e., if the minimal left repetition at the point s is left
external, also the minimal left repetition at the point r is left external. One has
that p(a; ---as) = l(w, s) = Q(w). Indeed, by definition, I(w, s) < p(a; - - as).
Moreover, if the minimal left repetition at the position s is external, then [(w, s)
is a period of a; - - as, i.e., p(ay - - - as) < I(w, s). Analogously, one has the same
result for position r, i.e., p(ay ---a,) = l(w,r) = Q(w).

Let us suppose, by contradiction, that s — r > Q(w). Then the word
ap -+ GpyQ(w) is a prefix of a;---as and it has as prefix the word a; ---a,.
Hence Q(w) = p(ai---a;) < plar -+ arpQuw)) < plar---as) = Q(w), ie., the
word aj -+ a,4Q(w) has period Q(w). It follows that a;---a, is a suffix of
ai - r1Q(w) and then I(w,r) < l(w,r + Q(w)). Since l(w,r) = Q(w), then
r+ Q(w) € K(w). This contradicts the hypothesis that r,s are consecutive
elements of K(w) and s —r > Q(w).

Let us finally prove statement (i). The proof is by induction on the integer
m = Card(K(w)). We first prove the statement for n = 1. In this case
T(w) = R(w) and, as a consequence of (7i7), the minimal left repetition at the
point T'(w) is left external, i.e., p(a; - - agp(w)) = Q(w).

We now have to prove the inductive step. Let us suppose that the statement
(i) is true for all words v such that Card(K(v)) = m, and consider a word
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w = ay - - - ay such that Card(K (w)) = m + 1. Let

R(w) = max{i|i € K(w) and i < R(w)}

denote the greatest among the critical points of w smaller than R(w). By the
inductive hypothesis

p(ar - "aR(w)) = Q(w).

By statement (ii), R(w) — R(w) < Q(w). On the other hand, since the minimal
left repetition of order > ¢? at the point R(w) has period Q(w), we have that

Q(w) is a period of @ R(w)—Q(w)+1 """ CR(w)- Set

U1 = 01" CRw)—Q(w)
U2 = CR(w)—Q(w)+1 " PR(w)
U3 = CRwy+1 " CR(w)-

We know that ujus and wsus have period @Q(w) and that |uz| = Q(w). By
Lemma, 8.1.2, ujusus = ay - - - () has period Q(w). This concludes the proof
of the theorem. n

REMARK 8.2.14. Notice that, in the case of central repetitions, the least crit-
ical point Z5(w) is bounded above by P»(w), whereas, for left repetitions, the
least critical point T'(w) is bounded above by Q(w) times ¢?. The following
example shows that )(w) is not an upper bound for T'(w). Consider the word
w = a™ tba™ba™b (m > 3). The least element of K (w) is T(w) = 2m + 1
whereas the maximal local left period is @Q(w) = m + 1. The last two critical
positions of w are 2m + 3 and 3m + 2. Their distance is m — 1 = Q(w) — 2
and this is the best possible. Indeed it is possible to improve statement (i7)
of Theorem 8.2.13 by proving the following tight one. In every sequence of
d > max(1,Q(w) — 2)) consecutive positions between T'(w) and R(w) there is a
left critical one (of order ¢?) (Problem 8.2.10).

REMARK 8.2.15. The constant (? is tight in Theorem 8.2.13. Indeed, for any
€ > 0 it is possible to prove that there exist 7 and a constant D(e) such that
for any n > i the maximum Qu2_.(f,) of the left local periods of order ¢? — €
of the n-th Fibonacci word (defined in Remark 8.1.13) is smaller than D(e).
Moreover, for any €, the sequence of the maximum of left critical points in f,
(Rp2—¢(fn))nen is not bounded. Let w,, be the prefix of f,, of length R,2_.(f5).
The sequence of periods of wy, (p(wy))nen is not bounded (Problem 8.2.11).

8.3. Infinite words

In this section we will consider applications of the results of previous section to
the case of one-sided and two-sided infinite words. In particular characteriza-
tions of recurrent, periodic and eventually periodic infinite words are given.



8.3. Infinite words 259

8.3.1. Recurrence and periodicity

Recall from Section 1.2 that a one-sided infinite word x = zoxy - - - is periodic if
there exists a positive integer p such that x; = x;4,, for all ¢ € N. The smallest
p satisfying previous condition is called the period of x.

A one-sided infinite word = = zox - - -, is eventually periodic if there exist
two positive integers k, p such that z; = z;1,, for all ¢« > k. An infinite word is
aperiodic if it is not eventually periodic.

A one-sided infinite word x is recurrent if any factor occurring in x has an
infinite number of occurrences.

Notice that a one-sided infinite word is periodic if and only if it is recurrent
and eventually periodic.

A two-sided infinite word = ---x_jxgxy - - - is periodic if there exists a
positive integer p such that z; = z;1,, for all ¢ € Z. The smallest p satisfying
previous condition is called the period of x.

As to concerns the notion of local period, the definitions of previous sections
extend to one-sided and to two-sided infinite words but there are some natural
differences.

In the case of a one-sided infinite word z, for any order «, there could exist
integers 7 such that there are no central repetitions of order « at position j. In
this case the value of ¢y (z,7) is +oo.

Notice further that any central repetition cannot be right external. As an
example consider the one-sided word = = zoz1 2223 - - - with x; € {a,b} defined
by xo = a and for any i > 1, x; = b (i.e., x = abbbbbbbb- - -). At position 0 of z,
for any a > 1 there exists no central repetition of order «, and, consequently,
ca(z,0) = +00.

A more sophisticated example is the following one.

ExaMPLE 8.3.1. Let f be the infinite word of Fibonacci (see Section 1.2). For
any position j, ¢a(f,j) is finite and the square of minimal length having its
center in position j is external if and only if j = F,, — 2 for some Fibonacci
number F}, as proved in next proposition.

PROPOSITION 8.3.2. In the infinite word of Fibonacci f, there exists a square
having its center in any position and the square of minimal length having its
center in position j is external if and only if j = F,, — 2 for some Fibonacci
number F,,. Moreover, when j = F,, — 2, the minimal length c2(f, j) of a square
having its center in position j is F},.

Proof. Recall that if F},, n € N, is the sequence of Fibonacci numbers defined
by Fo =1, F; =1, F,y1 = F, + F,_1 for n > 1, one has that |f,| = F), for any
n > 0.

We will prove that for any n > 2 and for any position j < F,, —2 one has that
there exists a square having its center in j and the square of minimal length
having its center in position j is external if and only if j = Fj — 2 for some
Fibonacci number Fj,, k < n. Moreover, when j = Fj, — 2, the value of ca(f, )
is Fk.
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The proof of this is by induction on n. The base of the induction is easily
verified for n = 2,3. Let us suppose previous statement is true for n > 3 and
let us prove it for n + 1. By inductive hypothesis the statement is true for any
Jj up to F, — 2.

We have that f,11fn+1 18 a prefix of f and, moreover, we have that f, 1 =
fofn-1 = fao-1fn—2fn—o2fn—3. Hence (f,_2, fn—2) matches position F, — 1.
Moreover, since f,_» is a prefix of f,,_3fn+1, then in any position j, F,, — 1 <
j < F,, + F,_» one has that there is a repetition of order 2 of length 2F,_»
having its center in position j, i.e., ca(f,7) < Fp—a.

Let us consider now j such that Fj, + Fj,_o < j < F+Fp1—2= Fp41 —2.
These positions belong to the occurrence of f, 1 of the prefix foi+1fnr1 =
fufn—1fn+1 of f. Since f,—1fn_1 is also a prefix of f and f,, f,—1fn—1 a prefix
of fnfn—1fn+1, the inductive hypothesis gives us the information that in any
position j, with Fj,+ Fj,_o < 7 < Fj41—2, there exists an internal square having
its center in j, with the exception of the position j = Fj, + Fj,—1 —2 = Fj41 — 2.
Moreover, again by inductive hypothesis, we know that in both positions there
is “almost” a square centred in it. More precisely there would be a square if the
(j + 1)-th letter of f would be equal to the (j — F,—1 + 1)-th letter of f. And
it is not difficult to prove that it is false. By inductive hypothesis there is no
central square in j of length < 2F;,,_;. If there was an internal central square,
by a classical result, it would have length a Fibonacci number, i.e F),, because
F, 1 > j+ 1. But again it is not difficult to prove that the (j + 1)-th letter of
f is different from the (j — F,, + 1)-th letter of f, and so in j = Fj, 41 — 2 there
are no internal central squares. But, since fy 1 fni1 is a prefix of f, it is easy
to see that ca(f,j) = Fpny1, and this concludes the proof. "

Also in the case of a two-sided infinite word z, “a fortiori” there could exist
integers j such that there are no central repetitions of order « at position j, i.e.,
ca(x,j) = +00. However, in the case of a two-sided infinite word z all the cen-
tral repetitions at every position j such that ¢, (z, ) is finite, are internal. As
an example consider the two-sided infinite word y = - - y_2y_1Y0y1Y2y3 - - - With
yi € {a,b} defined by yo = a and for any i # 0, y; = b (i.e.,y = - - - bbbbabbbb - - -).
At position 0 and position —1 of y, for any a > 1 there exist no central repeti-
tions of order o and for all other positions there exist a square having it for a
center.

The following proposition is an easy consequence of Lemma 8.1.3 and its
proof is left to the reader.

PRrROPOSITION 8.3.3. Suppose that x is an infinite word that has period q and
that there exists a factor v of x with |v| > q that has period d, where d divides
q. Then z has period d.

The periodicity of an infinite word z strongly depends on whether the se-
quence ¢, (z,j) of local periods is bounded or not. Let

Moz(m) = SUP{Ca(m:j) |.7 € N}

The following theorem is a consequence of the critical factorization theorem.
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THEOREM 8.3.4. An infinite word z is periodic if and only if M»(z) is finite.
Moreover the period of z is equal to Ms(z).

Proof. If z is periodic then trivially in any position there exists a square having
it for a center and the sequence of local periods (¢a(z,1));en is bounded by the
period P of z, i.e., Ma(x) < P. If Ms(x) < P then take a factor v of length
2P of x. Clearly P is a period of v and P»(v) < Ma(z) < P. By the critical
factorization theorem P»(v) is a period of v and P>(v) < P. By the theorem of
Fine and Wilf v also has period d = ged(P, P2(v)) < P. Since d divides P, by
Proposition 8.3.3, d is also a period of x, contradicting the minimality of P.

Let us prove the “if” part of the proposition. Let Z be a position where the
sequence (c2(z,1))ien reaches its maximum Ms(z). We have to prove that for
any i € N, ; = 7y, (z). Take the factor v =z, - -z of x where

r =min{i, Z — Ma(x)} and s = max{i + Mz(x),Z + Ma(z)}.

In previous definition if 7 < 0 we consider v defined as v = zg - - - x5.

It is easy to see that position Z is also a critical position for v and its central
local period is again Ms(x). This implies that Ms(z) = P>(v). Hence, by the
critical factorization theorem, p(v) = Py (v) = Ma(z) and, S0, ; = Tij p,(a)-

|

The proof of the following theorem is analogous to the proof of Theorem
8.3.4 and it is left to the reader.

THEOREM 8.3.5. A two-sided infinite word z is periodic if and only if Ms(z)
is finite. Moreover the period of z is equal to My(z).

In both theorems 8.3.4 and 8.3.5 the constant 2 is tight. Indeed, for any
e > 0, we can construct one-sided and two-sided infinite words that are non-
periodic and in any position have a central repetition of order 2 — ¢, as shown
in next example.

ExaMPLE 8.3.6. For any € > 0 let m be a positive integer such that for any
n > m, € > 2/n. Let v, be the finite word defined by v,, = a”2b", and let y,,
the infinite word obtained by concatenating v, Vm41, Umi2, - -

In any position of y,, there is a central repetition of order 2 — e. Indeed,
if the square aa or the square bb are not central in position j then either j is
a position between the concatenation of v, and v,41 for some n or j is the
position between the sequence of a’s and b’s inside a word v,, for some n.

In the first case the pair (a"2’"b”, a”z) matches position 7 and in the second
case the pair (b"~'a™,b"%a" 1) matches position j. Both a® ~"b"a" and
b"~1a"’b"q" 1 have period n? + n. The first has length 2n2 and the second
2n2 +2n — 2 > 2n2. In both cases the order a of this repetition is greater than

or equal to
2n? 2n 2
— = =2—-—>2—¢.
n24+n n+1 n+1 ¢
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One can define a two-sided infinite word z,,, = ---x_12ox; - - - starting from
the previously defined one-sided infinite word ym, = yoyi - - - by the rule z; = y;.
It is easy to check that also in any position of x there is a central repetition of
order 2 — €.

THEOREM 8.3.7. Let x be a one-sided infinite word. If x is recurrent then
in any position there is a central repetition of order «, for any o« such that
1 < a < 2. Conversely, for any o > 2, if in any position there is a central
repetition of order a, then x is recurrent. In particular x is recurrent if and
only if in any position there is a central repetition of order 2.

Proof. Let us suppose that x is recurrent. If we prove that in every position j
there exists a square having it for a center then, “a fortiori”, there is a central
repetition of order a for any a < 2. Let k& > 0 be the position where the
prefix xg - - - x; occurs for the second time, i.e., zo---z; = zp - - - Tp4;. If we set
v = 41 Tpy; then it is not difficult to see that (v,v) matches position j
and, so, z = v? is a square having its center in position j.

Suppose now that in every position of x there exists a central repetition of
order @ > 2. In particular, in every position of x there exists a square having
it for a center. If the sequence of central local periods is bounded then, by
Theorem 8.3.4, z is periodic and, so, recurrent. If the sequence of central local
periods is not bounded then there exists a sequence (j;);en of positions such
that for any 4, ca(x,7;) > ca(x,h) for any h < j;. For any i consider the finite
word v = To - Tj {co(a,j;)- 1t is not difficult to prove that position j; is the
least critical position for v and its central local period is again cx(z,7;), i.e.,
Ji = Z2(v) and ca(x,j;) = c2(v,j;). By Corollary 8.2.6 the minimal square
z = u? having its center in j; is left external in v. This means that the prefix
To -+ -xj; is a suffix of u and then it is also suffix of wo -7, 4 cy(a,j;), i-€., the
prefix g - - - 2, occurs a second time in 2. Since the sequence (j;);en of positions
is an increasing sequence, we find a sequence of prefixes of = of increasing length
that have a second occurrence in z. This fact easily implies that any prefix of
z has a second occurrence, i.e., x is recurrent. [

The value 2 is tight in both directions of previous theorem. For any € > 0 it
is known that there exists a one-sided recurrent infinite word x that is (1 + ¢€)-
power free. For a > 2 + 2¢, the word z has no central repetition of order a in
any position.

Conversely, for fixed m, the word y = a™baaaaa---, i.e., the word y =
Yoy1 -+ with y; = a if ¢ # m and y,, = b has in every position a central
repetition of order 2 — (1/m) and it is not recurrent.

For two-way infinite words there are no similar characterizations. Any
square-free recurrent two-sided infinite word obviously fails to have a square
having its center in any position. Notice that in a square-free recurrent one-
sided infinite word, in any position the minimal central repetition of order 2
exists (according to Theorem 8.3.7) and it must be left external.
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In the following characterizations of periodic infinite words, the local prop-
erty here considered is related to unbordered words.

Let = be an infinite word (one or two sided). Denote by U(z) the maximal
length of unbordered factors of z if such length exists, infinite otherwise:

U(z) = sup{|v| | v is an unbordered factor of z}.

PROPOSITION 8.3.8. Let x be a one-sided infinite word. If U(z) is finite then
x is recurrent.

Proof. Let f be a finite prefix of z. We prove, by induction on |f|, that if f has
no second occurrence in x then U(z) = oo.

If |f] =1, ie., if f = a with a € A, then all the prefixes of = are unbordered
and, consequently, U(z) = oc.

Let us suppose that the statement holds for |f| = n > 1 and consider the
case |f| = n+1. The prefix f can be written as f = av, with @ € A and |v| = n.
Let W be the set of prefixes of # having v as suffix. We distinguish two cases.

CASE 1. W is finite. Let w be an element of W of maximal length and let
w' be such that w = w'v. Let y be the infinite word defined by the relation
x = w'y. The prefix of y of length n is v and v has no second occurrence in
y. By the inductive hypothesis U(y) = oo. Since U(y) < U(z), the statement
follows.

CASE 2. W is infinite. Let w be an arbitrary element of W having length
greater than 2n + 2. By definition we can write

w = avw'v.

Let au be the longest unbordered prefix of av. The word au is not a suffix of
the word g = avw'u, since the last letter of w' is different from a (otherwise
f = av would have a second occurrence in w and hence in z). Let s(g) denote
the shortest border of g. It is easy to verify that s(g) is unbordered.

s(g) cannot be a proper prefix of au. Indeed, in this case, s(g) is also a suffix
of u, contradicting the hypothesis that au is unbordered.

s(g) is not equal to au, since au is not a suffix of g. Moreover it is not
possible that s(g) is a prefix of av and that has as prefix au, since au is the
longest unbordered prefix of av.

It follows that av is a prefix of s(g).

Since av has not a second occurrence in g, we have that s(g) = g, i.e., g is
unbordered. We conclude that there exist unbordered factors of x of increasing
length, i.e., U(z) = oo. n

THEOREM 8.3.9. Let x be a one-sided infinite word. Then x is periodic if and
only if U(x) is finite. Moreover the period of x is U(z).

Proof. Suppose that U(z) is finite. By Proposition 8.3.8 z is recurrent. By
Proposition 8.3.7 in every position of = there exists a square having its center
in it. Let 2; = u? be the square of minimal length having its center in position
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i. By Proposition 8.2.4 applied to the finite prefix w of  having length i + |u;],
we know that wu; is unbordered. By hypothesis, it follows that |u;| < U(z) < oo,
i.e., the sequence of central local periods is bounded by U(z). Therefore, by
Theorem 8.3.4, z is periodic and the period is smaller than or equal to U(x).
The period P of  cannot be smaller than U(x) otherwise, if v is an unbordered
factor of x of length |v| = U(x), v has period P < |v| and hence it is bordered,
a contradiction.

If  is periodic with period P then, by Theorem 8.3.4, P = Ms(x), i.e.,
there exists a position j such that the minimal square z = uu having its center
in position j is such that |u| = My (xz) = P. By Proposition 8.2.4, the word u is
unbordered. Since z is right internal, u is a factor of z, i.e., U(z) > P. But, as
proved above, the period P of z cannot be smaller than U (z) and, consequently,
P =U(z). L]

COROLLARY 8.3.10. Letx = ---a_iapa: - -+ be a two-sided infinite word. One
has that x is periodic if and only if U(z) is finite. Moreover the period of z is
Ul(x).

Proof. Suppose that U(z) is finite. Let ¢ be an integer. We have to prove
that a; = a;;y(y)- Pick an unbordered factor v = a;---a; y(z)—1 of = hav-
ing length U(z) and define m = min{i,j}. The one-sided infinite word z' =
Gy Gmt1Amao - - 18 such that U(z') = U(x) because it has v as a factor, and,
by Theorem 8.3.9 it has period U(z). Since i > m, one has a; = a; 1y (e)-
Suppose that z is periodic with period P and let 2’ = agajas--- be the
one-sided infinite word that is the right suffix of 2 starting from position 0.
The word ' has also period P (see also Problem 8.3.1) and, by Theorem 8.3.9,
P =U(a"). Since z is periodic any unbordered word v that is a factor of z is
also a factor of z'. It follows that U(z) = U(z') = P. "

The following theorem summarizes some of the results presented in this
section.

THEOREM 8.3.11. Let « be a (one-sided or two-sided) infinite word. The fol-
lowing conditions are equivalent.

1. z is periodic and P is its minimal period.

3. U(z) = P.

8.3.2. Characterizations of eventually periodic words

We now give a characterization of one-sided infinite eventually periodic words.
This characterization property is similar to the property characterizing one-
sided recurrent infinite words as described in Theorem 8.3.7. Now we require
something less (for all “large enough” positions j there is a square having j for
a center) and something more (the minimal central repetition at position j is
internal if j is “large enough”).
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Notice further that here we do not explicitly require, as in Theorem 8.3.4,
that the sequence (c2(2,j));en, is bounded. This condition is actually obtained
(see Lemma 8.3.13 below) as a consequence of the existence of an internal rep-
etition for any large enough position j.

THEOREM 8.3.12. A one-sided infinite word x = xgx1xs - - Is eventually peri-
odic if and only if there exists a number k such that for any j > k there exists
a suffix of xg - - - x; that is also a prefix zj 1242 -, i.e., at any position j > k
there exists a proper central repetition of order 2.

The proof of this theorem is based on the following lemma.

LEMMA 8.3.13. If there exists a number k such that in any position j > k
there exists a proper central repetition of order 2, then the sequence of local
periods (cz(z, j))j>k is bounded.

Proof. The proof is by contradiction. Let us suppose that the sequence of central
local periods at positions j > k is not bounded. By hypothesis (j — ca(x, j)) > 0
for any j > k.

Let ji be such that (j; — ca(x, 1)) assumes the minimal value between all
j > k and let jo be the least position greater than j; such that co(z,j2) >
ca(x, j1).

Consider the word v = ), _cy(a,j1)+1Tj1 —co(x—j1)+2 * " Tjotco(z—ja)-

In the sequel of this proof, for simplicity, with abuse of notation, we will
denote by t the position t — (j1 — ca(x,71)) of v. It is easy to verify that
CZ(majl) = CQ(”:jl)-

Also notice that the minimal square having its center in position j of v is
not right external. This square cannot be left external by the minimality of j;
and the fact that, for any position t of v, ca(x,t) > c2(v,t). Since this square is
not left external then c2(v, j2) = ca(x, j2) > ca(x,j1) > c2(v, j1)-

Since for any position t of v, ca(z,t) > ca2(v,t), and since js is the least
position greater than j; such that ca(z, j2) > ca(z, 1) = c2(v, j1), one has that
for any position ¢ of v with j; <t < ja, ca(v,t) < co(v,41). If j1 —co(z,j1)+1 <
t < j1, we also have, by construction of v, that ca(v,t) < c2(v, j1)-

By Corollary 8.2.7, ca(v, j2) > jo— (j1 —ca(x, j1)+1)+1, i.e., jo—c2(v,J2) <
Jj1 — c2(x, j1), contradicting the minimality of j;. "

Proof of Theorem 8.3.12. If x is eventually periodic then we can write z = wy,
where y is a one-sided infinite word that is periodic with period P. Hence, if we
set k = |w| + P, it is easy to check that at any position j > k of z there exists
a central repetition of order 2 that is internal.

Let us prove the “if” part. Let us write £ = uy, where |u| = k. Let us
consider a position i of y and the corresponding position i + &k of . Since y is
a suffix of x one has that in any position ¢ > 0 there exists a central repetition
of order 2 and ¢ (y, i) < ¢ca(x,% + k). Hence, by Lemma 8.3.13 the sequence of
local periods (¢2(y,17))ien is bounded and, by Theorem 8.3.4, y is periodic. n
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By the fact that an infinite word is periodic if and only if it is recurrent and
eventually periodic, and by Theorem 8.3.7, one has

COROLLARY 8.3.14. A one-sided infinite word x is periodic if and only if at
any position there is a central repetition of order 2 and this repetition is external
only for finitely many positions.

REMARK 8.3.15. Notice that, in previous theorem, one cannot bound the
period of y as function of k, as shown by the one-sided infinite word y, =
ba™ba™ba™ - - - where n is any positive natural number. In this word the number
k is 2 and this word has period n.

EXAMPLE 8.3.6 (continued). The word y; previously defined with m = 1 shows
that the number 2 is tight in Lemma 8.3.13. Indeed for any € it is easy to see
that there exists a constant k(e) such that at any position j > k(e) there exists
a central repetition of order 2 — €, but the sequence of local periods at positions
J > k(e) is not bounded.

The same word y; also shows that the constant 2 is tight in Theorem 8.3.12,
because y; is not eventually periodic.

A more sophisticated example, showing that the constant 2 is tight in The-
orem 8.3.12, is given by the infinite word of Fibonacci f defined in Example
8.3.1. The word f is not eventually periodic but it is possible to prove that
for any e there exists a constant k(e) such that at any position j > k(e) there
exists a central repetition of order 2 — ¢, and that the sequence of local periods
at positions j > k(e) is bounded (Problem 8.3.3).

An analogy of Theorem 8.3.12 does not hold for two-sided infinite words, as
shown by next example.

ExXAMPLE 8.3.16. For any a > 1 one can construct a non-periodic two-sided

infinite word ¢, = - -+ x_1xox1 - - - such that at any position there exists a central
repetition of order a.
Consider the sequence of all integers 0,—1,1,—2,2,-3,3,---—i,i,---. Our

construction inductively fixes letters in the word z, in order to have a cen-
tral repetition at position nj, where n; = (=1)7[(j/2)] is the j-th element of
previous sequence.

First, let £ = [(«/2)] be the smallest integer greater than or equal to a/2
andset x_p =2 _py1 =---=T9g=21 =--- =21 =a and x = b.

By construction at position 0 there is a central repetition of order a. Suppose
that we have fixed letters from position s; up to position ¢; such that at all
positions ng, - --n; there exists a central repetition of order o that is internal
to the word zg; - - - xy;. Since position n;i; is adjacent to position nj_; then
$j <njy1 < .

Let us denote u = T, Ts; 11T,y and v = Ty, 417 Ty Suppose that
w = uv has period P and that a is the letter such that wa has period greater than
P. Set x4; 41 = a. Now assign letters from the position s; 11 = nji1 — klvau| to
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the position tj41 = nj41 + 1 + k|vau| so that
k _ d k _
(vau)® = x5, T 41 Tnyyy and (vaw)® = Ty 410 Ty, -

Notice that this assignment is compatible with previous assignment and that at
position n;;1 there exists a central repetition of order a. Notice further that,
since Ts; ., Ts; 1 +1 " Tt;,, has wa as factor, its period is strictly greater than
the period P of w. Using this property it is not difficult to prove that the infinite
word x, is non-periodic.

As regards left repetitions, in the case of one-sided infinite words z, for
any order «, the minimal left repetition of order « is defined at any position
J, ie, lo(z,7) is defined for any o > 1 and for any j € N. In the case of
two-sided infinite words z, there could exist integers j such that there are no
left repetitions of order « at position j and, consequently, [, is not defined in
position j. We can define, analogously to the central case,

Lo(z) = sup{la(z,j) | j € N}.

THEOREM 8.3.17. Let x = ajay--- be a one-sided infinite word. L2(x) is
finite if and only if the word x is eventually periodic, i.e., x = wy, with y
periodic. Moreover, if P is the period of y then P < L2 (x).

Proof. If z is eventually periodic then we can write * = wy where y is a one-
sided infinite word that is periodic with period P. Hence, if we set k = |w|+3P,
it is easy to check that at any position j > k of = there exists a left repetition
of order 3 > ¢? that is internal and that l,2(z,j) < P. Hence L,2(z) <
max{P, Q,2(w)}, where Q,2(w) is the maximum of the left local periods of
order ¢? of the prefix w of z of length k.

Let us prove the “only if” part. The proof is by induction on @ = L2 (x).

If @ =1 then for any j > 3, a1 ---a; ends with a cube of period 1, i.e., it
ends with a® where a is a letter. Trivially the infinite word z is periodic with
period 1.

Let us suppose the statement is true for any Q', 1 < Q' < Q. Two cases are
possible.

CASE 1. There are infinitely many positions j such that l,2(z,7) = Q. We
want to prove that x has period (). Let us consider position 7, 1 < i. We have to
prove that a; = a;q. Take j such that j > i+Q and [,2(z,j) = Q. By Theorem
8.2.13 (i), the word a4 - - - a; has period () and, consequently a; = a;4+¢.

CASE 2. There are finitely many number j such that [ 2(z,7) = Q. Let
s be the greatest of these numbers and let 2’ = asyiasyz -+ be the suffix of z
that starts at position s 4+ 1. Since the maximum of the sequence (I,2(z,17))ien
is a number Q' < @ then z' satisfies the inductive hypothesis and consequently
it is eventually periodic with period P < Q' < ). Since z’ is a suffix of z, also
x is eventually periodic with period P < Q. n

We now give another characterization of one-sided infinite eventually peri-
odic words that is very similar to the characterization given in Theorem 8.3.12.
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THEOREM 8.3.18. A one-sided infinite word x = agas - - - is eventually periodic
if and only if there exists a number k such that for any j > k there exists a
suffix of ag - - - a; of order greater than .

Proof. If the one-sided infinite word x = agas - - - is eventually periodic then
there exist natural numbers M > 0, Q > 0, such that the infinite word z’' =
ayap - - - has period Q. Since p? < 3, in any position j, j > M + 3Q, there
exists a left repetition of order (? that is internal.

Let us suppose now that there exists a number k£ such that in any position
j > k there exists a left repetition of order (? that is internal. If the sequence
(Ip2(x,17))ien is not bounded then there exists an increasing subsequence of
positions (j;);en such that for any ¢ € N and any position s < j; one has that
lp2(x, ji) > l,2(x,s). By Theorem 8.2.13 (iii) applied to the words a1 ---aj,,
the minimal left repetition of order ¢? at position j; is external, a contradiction
whenever j; > k. Therefore the sequence (l,2(z,7))ien is bounded and by
applying Theorem 8.3.17 z is eventually periodic. [

REMARK 8.3.19. By the statement of Theorem 8.3.17 one has that any suffix
y of x that is periodic has period P where P is bounded by L,2(z). But one
cannot bound the length of the shortest prefix w of z such that z = wy with y
periodic, as shown by the one-sided infinite word z,, = (aaab)™aaaaaaaaaaaa - - -
where n is any positive natural number. In this word L2 (z,) = 4 and the word
w = (aaab)™ has length 4n.

By the proof of Theorem 8.3.18 one can see that any suffix y of = that
is periodic has period P where P is bounded by k where k is the number in
the statement of the theorem but one cannot bound the length of the shortest
prefix w such that x = wy with y periodic. Indeed in the same previous example
z, = (aaab)"aaaaaaaaaaaaa - - - where n is any positive natural number, one
can take k = 14 and the word w = (aaab)™ has length 4n.

The following example shows that in Theorem 8.3.18 the number ¢? is tight.

EXAMPLE 8.3.1 (continued). Let f be the infinite word of Fibonacci. For any
€ > 0 there exists a constant 7 such that for any n > @ there exists a left
repetition of order p? — € at position n and f is not eventually periodic (Prob-
lem 8.3.4).

An analogous of Theorem 8.3.18 does not hold for two-sided infinite words,
as shown by next example.

ExAMPLE 8.3.16 (continued). For any 8 > 1, take « = 23. The word z, has,
by construction, at any position a left repetition of order 3, that is obviously
internal.

The following theorem summarizes some of the results presented in this
section.

THEOREM 8.3.20. Let z = agay - - - be a one-sided infinite word. The following
conditions are equivalent.
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1. z is eventually periodic.

2.

There exists an integer k such that, for any j > k there exists a suffix of
ap - - - a; that is equal to a prefix of aj1aj42 - -

. There exists an integer h such that for any j > h there exists a suffix of
ao -+ - a; of order greater than ©*.

Problems

Section 8.1

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

A word w = ay - - a, has period p < n if and only if for any integers
h,j, 1 <i,j<n
i=j (modp)=a;=aj;.

If ¢ is a period of w then for any positive integer k£ such that kg < n,
kq is a period of w. If p is a period of w and ¢ is a period of the suffix
of length n — p of w then p + ¢ is also a period of w. Therefore for any
positive integer k such that p + kg < n, p + kq is a period of w.
Consider the non directed graph G = (Ip44, E), where the set of vertices
Ipig ={1,2,3,---,p+q—1,p+q} is the set of positive integers smaller
than or equal to p + g where p,q are integers such that ged(p,q) = 1.
The arc {i,j} € E if and only if | — j| € {p,q}.

Prove that graph G is a cycle. Deduce that, if G; is the graph obtained
by G by eliminating vertex ¢ and all arcs containing ¢, then G; is a
connected graph.

Let w = ajaz - - - ap4q—1 be a word that has period p and period ¢ with
ged(p,q) = 1.

Use graph G; with i = p + ¢ defined in previous problem to give a new
proof of Theorem 8.1.4 that works for the case where ged(p,q) = 1.
(Hint. If there is an arc (4, 7) in Gp4q then a; = a;).

Let w =a;---a, and v = by - - - b, be two words having same length n,
such that v has period p and w has period ¢ with p # g and p+ ¢ < n.
Suppose that there exists a position ¢, 1 < ¢t < n such that for any
position i # t, 1 < i < n one has that a; = b; (i.e., the two words w
and v coincide except, maybe, in position ¢). Then w and v have both
period r = ged(p, ¢). Since ged(p, ¢) < min{p, ¢} < |n/2], then w = v.
(Hint. Use the technique developed in previous problems, and in par-
ticular, if ged(p, ¢) = 1 use graph Gy).

Prove the following statement.

A necessary and sufficient condition for two non-empty words u, v to be
power of the same word is that uv and vu contain a common left factor
of length |u| + |v| — ged(|u], |v]).

(Hint. If v < u then uv < u? and vu < v* for some k > 2. Use the
theorem of Fine e Wilf).
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8.1.6

*8.1.7

**8.1.8

8.1.9

Section

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

*8.2.6

8.2.7

8.2.8

8.2.9

Periodicity

A factor of a word v is internal if it is not a suffix or a prefix of v. Prove
that a word u is primitive if and only if u is not an internal factor of
ul.

Prove the equivalence of 1, 2 and 4 in Theorem 1.3.13 by using the
theorem of Fine and Wilf.

A triple (p1,p2,ps) is called a good triple if

h(p1,p2,p3) = ged(pr,p2,p3) = 1.

Given a good triple (p1, p2, p3) prove that there exists a word w of length
|lw| = %(pl +p2+ps—3) = f(p1,p2,p3) — 1 over an alphabet of 3 letters
that has period p;, p2> and ps.

If I{w) ={0 =po < p1 <--- < ps = |w|} and if ép, = pr — Pr—1,
1 < h < s, then the sequence of the differences d;, is a non-increasing
sequence. (Hint. Use Lemma 8.1.1 and Problem 8.1.1).

8.2

Fix @ > 1. If j is a critical point for w and i, j < i < |w| (respectively
0 < i < j) is not a critical position, then the minimal central repetition
of order « at position ¢ is not left external (respectively right external).
Let w =a;---ay, and let u =a;---a; be a factor of w with 1 <¢ < j <
n. Either ¢ (w, j) < p(u) or ca(w,j) > |u| + 1.

Let w =a;---a, and let v = ap---ax, 1 < h, k < n be a factor of w
such that p(v) > 2 and the word v’ = ap_iv has period p(v') > p(v)
(one cannot extend the word v to the left maintaining the period).
Show that if Z3(v) is the least critical position of v then ¢z (w, Z2(v)) >
p(v).

Find examples different from a™ba™ba™ that show that statement (ii)
in the proof of critical factorization theorem is tight.

(Hint. Look for words in the set of central words defined in Chapter 2).
Let k = [a]. If the period of w is smaller than or equal to k then every
position of w is left critical (of order ).

For any natural number n there does not exist any prefix (or suffix) of
the n-th Fibonacci word f,, having order > ¢ + 1.

Prove that if a square uu is a factor of a Fibonacci word then its length
is a Fibonacci number and it is a conjugate of some other Fibonacci
word.

Fix a > 1. If j is a left critical point for w and i, j < i < |w]|, is not
a left critical position, then the minimal left repetition of order « at
position 7 is not left external.

Let w=ay---a, and let v = ap---ax, 1 < h, k < n, be a factor of w
such that p(v) > 2 and the word v = ap_jv has period p(v') > p(v)
(one cannot extend the word v to the left maintaining the period).
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**8.2.10

**8.2.11

**8.2.12

**8.2.13

Section

8.3.1

8.3.2

*8.3.3

*8.3.4

8.3.5

Show that if T,2(v) is the least critical position of the word v then
lp2(w, Tp2(v)) > p(v).

In every sequence of d > max(1,Q(w) — 2)) consecutive positions be-
tween R(w) and T(w), there is a left critical one (of order (?).

(Hint. Use induction on the period p(w) of w. The base of induction
is p(w) = 1,2,3. In the inductive step suppose that there exist two
consecutive critical points r < s such that s —r > Q(w) — 2. Find
the positions j, r < j < s, where [,2(w, j) reaches the maximum value.
Use inductive hypothesis, Theorem 8.2.13 and previous two problems
in order to find a contradiction).

Prove that the constant ¢? is tight in Theorem 8.2.13.

(Hint. Follows the suggestions in Remark 8.2.15).

Prove that any word w admits a factorization w = vu such that there
exists at most one internal left repetition of w, |v| of order ¢? and |u| <
Cp(v), with the real constant C' smaller than or equal to 2.

Prove or disprove the following open conjecture. Let v be a word of
length 2n such that its prefix u of length n is an unbordered word and
such that any of its unbordered factors have length < n. Then v is a

square, i.e., v = u?.

8.3

Let = be a two-sided infinite word and suppose that P is the period of
z, and v is a factor of z of length |v| > 2P —1 or v is a one-sided infinite
word that is a suffix of . Then P is also the period of v. Find a periodic
word & with minimal period P and a factor v of x with |v| = 2P —1
such that the period of v is smaller than P.

Let x be a one-sided eventually periodic infinite word and let p be its
(shortest) period. Let m(1), m(2), ....... be an increasing sequence of
points such that m(i + 1) < 2m(i), and denote p(i) = m(i + 1) — m(i).
Prove that, if co(z,m (7)) = p(i), then from a given rank, the sequence
(p(4))i>1 is constant and equal to the period p of the word z.

Let f be the infinite word of Fibonacci. For any € there exists a constant
k(e) such that at any position j > k(e) there exists a central repetition
of order 2 — ¢, and the sequence of local periods at positions j > k(e) is
bounded.

Let f be the infinite Fibonacci word. For any e > 0 there exists a
constant 7 such that for any n > 7 there exists a left repetition of order
p? — € at position n and f is not eventually periodic.

A two-sided infinite word y = - --a_1agay - - - is eventually periodic to the
right with period P if there exists an integer j such that the one-sided
infinite word ajaji1a;4 - - is periodic with period P. It is eventually
periodic to the left with period P if there exists an integer j such that
the one-sided infinite word aja;_1a;_» - - is periodic with period P
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Prove that if L,2(x) is finite then z is eventually periodic to the left
with period P; and it is eventually periodic to the right with period P.
Moreover P = Ly2(x) < P, and if Pi = P> then z is periodic with
period P;.
(Hint. Cf. the proof of Theorem 8.3.17.)

8.3.6 For each non-eventually periodic one-sided infinite word w, there exists
a one-sided infinite word w’ so that

a) each factor of w' is a factor of w,
b) w' does not begin in any 1+ ¢ powers.

**8.3.7 Let w be a one-sided infinite word such that all except finitely many pre-
fixes have a square uu as suffix with |u| < 4. Prove that w is eventually
periodic.

Give examples that show that if the condition on the length of u is
relaxed to |u| < 5 above conclusion does not hold anymore.

**8.3.8 Let w be a one-sided infinite word such that all except finitely many
prefixes v have a suffix u such that

a) w appears a second time as factor in v.
b) |u|/|v| > ¢ for some fixed constant c.

Find the smallest value (or the inf of those values) for ¢ so that previous
conditions imply that w is eventually periodic.

**8.3.9 Let w be a recurrent word and let R(n) be the smallest integer such
that any factor of w of length R(n) contains all factors of w of length n.
R(n) is called the recurrence function of w. Prove that, if for all except
finitely many n R(n)/n < 2 + ¢, then w is periodic.

Notes

The original reference for Theorem 8.1.4 is Fine and Wilf 1965. Another proof
can be found in Lothaire 1983. A good reference to Euclid’s algorithm is Knuth
1988. The ideas used in Problem 8.1.3 can be found in Choffrut and Karhumaki
1997 and also independently in Giancarlo and Mignosi 1994. A solution to
Problem 8.1.5 can be found in Lentin and Schiitzenberger 1967. A solution to
Problem 8.1.4 can be found in Berstel and Boasson 1999. Theorem 8.1.7 is
from Castelli et al. 1999, where it is also possible to find a solution to Problem
8.1.8. The words described in this problem are words of Arnoux and Rauzy
and can be considered as a generalization of Sturmian words to a three letter
alphabet (Chapter 2). A generalizations of these results to the case of more
than three periods is in Justin 2000. A notion of quasi-periodicity for words has
been introduced in Apostolico and Ehrenfeucht 1993. For recent contributions
on this subject cf. Régnier and Mouchard 2000 and Brodal and Pedersen 2000
and references therein. For other extensions of the notion of periodicity cf.
Carpi and Luca 2000 and references therein. A solution of Problem 8.1.7 can
be found in Epifanio, Koskas, and Mignosi 1999. Many results and applications
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concerning generalizations to the multidimensional case of Theorem 8.1.4 have
been developed, starting from the seminal works Amir and Benson 1992, Amir
and Benson 1998.

The equivalence of points 1), 2) and 3) of Theorem 8.1.11 is proved in Guibas
and Odlyzko 1981. Point /) as well as some of the proofs are from Breslauer
1995. A simple proof of the equivalence of only 1) and 2) can be found in
Halava, Harju, and Ilie 2000. They also describe a linear time algorithm which,
given a word, computes a binary one with the same set of periods. Some related
results can be found in E. Rivals 2001 and in Régnier and Mouchard 2000.

Theorem 8.1.16 and its corollary are from Fraenkel and Simpson 1998. See
also Crochemore, Hancart, and Lecroq 2000. Lemma 8.1.14 is from Crochemore
and Rytter 1995a. The simple and elegant proof given here is due to V. Diekert
(Chapter 12). Short surveys on related problems can be found in the intro-
ductions of the beautiful papers Kolpakov and Kucherov 1999a, Kolpakov and
Kucherov 1999b. See also Crochemore and Rytter 1994, Czumaj and Gasie-
niec 2000 and references therein. A solution to Problem 8.1.6 can be found in
Crochemore and Rytter 1995a.

A weak form of the critical factorization theorem was first conjectured in
Schiitzenberger 1976 and settled in Césari and Vincent 1978. Subsequent im-
provements in Duval 1979 lead to the actual formulation (see also Duval 1982,
Duval 1998). The proof reported here is from Duval, Mignosi, and Restivo 2001.
Among the applications of the critical factorization theorem we cite Crochemore
and Perrin 1991 and Breslauer, Jiang, and Jiang 1997. A solution to Problem
8.2.6 can be found in Mignosi and Pirillo 1992. A solution to Problem 8.2.7 can
be found in Séébold 1985 and Pirillo 1997 for further improvements. A solution
to Problem 8.2.12 can be found in Mignosi, Restivo, and Salemi 1995.

Theorem 8.2.13 is proved in Mignosi et al. 1995 and in Mignosi, Restivo,
and Salemi 1998

Problem 8.2.13 states an old standing open conjecture in Duval 1982. This
is the latest and strongest of a sequence of three conjectures stated by different
authors. To our knowledge, no weaker versions of it have even been proved.

Theorem 8.3.9 and Corollary 8.3.10 are in Ehrenfeucht and Silberger 1979
(see also Assous and Pouzet 1979). The proof here reported, as well as Proposi-
tion 8.3.8, is inspired by Duval 1982. Almost all the remaining results in the last
section are from Mignosi et al. 1995 and Mignosi et al. 1998, if they concern
left repetitions and from Duval et al. 2001 otherwise.

Solutions to Problems 8.3.6 and 8.3.7 can be found respectively in Holton
and Zamboni 2000 and in Karhum#ki, Lepist6, and Plandowski 1998a. See also
Lepist6 1999 for related results. The article Holton and Zamboni 2000 is the last,
for the moment, of a long sequence of articles and results concerning periodicities
and Sturmian words (Chapter 2). It is worth to notice that in Sturmian words,
periodicities are strongly related to the recurrence function defined in Problem
8.3.9, as shown by the two beautiful and independent papers Cassaigne 1999
and Vandeth 2000.

Problem 8.3.8 was posed, as a conjecture for a fixed constant ¢, in Shallit
and Breibart 1996 and settled in Cassaigne 1997. Problem 8.3.9 was stated as
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conjecture in Rauzy 1983. It is linked in some way to the previous problem, as
proved in Allouche and Bousquet-Mélou 1995.



CHAPTER 9

Centralizers of Noncommutative
Series and Polynomials

9.0. Introduction

It is a well-known and not too difficult result of combinatorics on words that
if two words commute under the concatenation product, then they are both
powers of the same word: they have a common root. This fact is essentially
equivalent to the following one: the centralizer of a nonempty word, that is, the
set of words commuting with it, is the set of powers of the shortest root of the
given word.

The main results of this chapter are an extension of this latter result to
noncommutative series and polynomials: Cohn and Bergman’s centralizer the-
orems. The first asserts that the centralizer of an element of the algebra of
noncommutative formal series is isomorphic to an algebra of formal series in
one variable. The second is the similar result for noncommutative polynomials.
Note that these theorems admit the following consequences: if two noncommu-
tative series (resp. polynomials) commute, then they may both be expressed
as a series (resp. a polynomial) in a third one. This formulation stresses the
similarity with the result on words given above.

We begin by Cohn’s theorem, since it is needed for Bergman’s theorem. Its
proof requires mainly a divisibility property of noncommutative series. The
proof of Bergman’s theorem is rather indirect: it uses the noncommutative Eu-
clidean division of Cohn, the difficult result that the centralizer of a noncommu-
tative polynomial is integrally closed in its field of fractions, its embeddability in
a one-variable polynomial ring, which uses a pretty argument of combinatorics
on words, and finally another result of Cohn characterizing free subalgebras of
a one-variable polynomial algebra. The latter result is proved in the Appendix,
since it is a result of commutative algebra, and for the sake of completeness,
we have proved all the results on valuation rings which are needed for its proof.
We have added a section on the defect theorem and free subalgebras: a result of
Cohn, together with Bergman’s centralizer theorem, shows that the defect the-
orem holds for two noncommutative polynomials. However, a counterexample
of Bergman shows that it does not hold for more than two polynomials: this

275
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was proved by Kolotov, and for this, we give his theorem asserting that each
free subalgebra of a free associative algebra is an anti-ideal.

9.1. Cohn’s centralizer theorem

In all that follows, k will be a field (all fields are assumed to be commutative)
and all algebras will be over k. Let X be an alphabet, that is, a set of noncom-
muting variables. We denote by k(X)) the algebra of noncommutative formal
series in these variables with coefficients in k& and by k(X) its subalgebra of
noncommutative polynomials. We call an element of k(X) simply a polynomial.

THEOREM 9.1.1 (Cohn). The centralizer of a nonscalar element in k(X)) is
isomorphic to kl[[t]], for a single variable t.

The isomorphism will be shown to be continuous, for the X and ¢-adic topolo-
gies. In other words we shall prove that for some series b in the centralizer, with
zero constant term, each element in the centralizer has a unique representation
of the form )~ ., a,b", with the a, in k.

Recall Levi’s lemma for words over X: if u,v,u’,v" are words over X such
that uv’ = vu' and that w is not shorter than v, then u = vm,mv' = ' for
some word m. We need the following lemma, which is the analogue of Levi’s
lemma for series. Recall the well-known fact that a series is invertible if and
only if its constant term is nonzero. As usual, X* is the free monoid generated
by X, and the length |w| of a word w is the number of letters appearing in
it. In other words, the length of a word is its X —degree. If a is a series, we
denote it by a = ), x+ ayw, where a,, is the coefficient of the word w in the
series a. Denote by v(a) the X -adic valuation of a, that is, the length of the
shortest word w such that a,, is nonzero (with v(a) = oo if a = 0). Note that
v(ab) = v(a) + v(b).

LeEmMA 9.1.2. Ifa,b,a’,b" are nonzero series such that ab’ = ba' and v(a) >
v(b), then a = bq for some series q.

Proof. If b’ is an invertible series, then the conclusion follows with ¢ = a’b’'~!.

In the general case, let m be a fixed word of shortest length appearing
(with nonzero coefficient) in the series b'. This length is equal to v(b'). Since
v(a) + v(b') = v(b) + v(a') and v(a) > v(b), we have v(b') < v(a'), hence each
word appearing in a’ has length at least the length of m.

Now, since ab' = ba’, for any word w the two sums > ... a,b,, and
Y vw —wm bu@y , over all words u,v’,v,u/, are equal. We have seen that in order
for b, # 0 and al, # 0, the length of v' and u’ cannot be smaller than that of
m. In this case, the equalities uv’ = wm and vy’ = wm imply, by Levi’s lemma
for words, v = vim,v’ = uym and uwv; = w,vu; = w. Since in a sum one
may disregard vanishing terms, we obtain ), _ @uby . = D00 —w Du@yym)
where the sum is now over all words u,vy,v,u;. Define the series B and A by
By, = b,,,,, and Ay, = a;, ,,,- Then the previous equality shows that aB = bA.

vim
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Finally, note that the constant term of B is b,, hence is nonzero, by the
choice of m, and we are done by the beginning of the proof. n

Proof of the theorem. Let Z be the centralizer in k{X)) of a nonscalar element
a. The constant term of a is in k& and by subtracting it, we may suppose a to
have constant term 0. We claim that if ¢;,c are nonzero elements of Z with
v(c2) > v(ey) then co = ¢1d for some d € Z.

The claim being assumed, let b be an element of Z such that v(b) is positive
and minimal. We show that each element ¢ in Z has a unique decomposition
€= ,50@nb", with the a,, in k. This will imply that Z is isomorphic to k[[t]].

Note that uniqueness is clear, since the valuation of a,;,b™ + a1 0™ 4 - -
is, for nonzero a,,, equal to mv(b). In order to prove existence, let ¢ € Z. Then
for ap = constant term of ¢, we have v(c — ap) > 0, hence v(c — ap) > v(b), by
the minimality of v(b). Suppose that we have found scalars ag, a1, . . ., ay such
that: (*) v(c—ag—aib—-- —a,b") > (n+1)v(b). Since (n+ 1)v(b) = v(b™*1),
the series on the left-hand side of (*) is, by the claim, equal to b"*1d for some
series d € Z. Now as before we choose a scalar a,,+1 such that v(d — ay+1) > 0,
hence v(d — a,11) > v(b), and we obtain c—ag —a1b—- - — @, b" — a1 "L =
bn+1d - Oén+1bn+1 = bn+1 (d — Oén+1).

Therefore, this series has valuation > (n + 2)v(b), which concludes the in-
duction step, and Eq.(*) holds for each n.

In Eq.(*), let n tend to co. Then we obtain that ¢ = )", ., @,b", as desired.

It remains to prove the claim. Since a has zero constant term, we have
v(a™) = nv(a) > v(cz) for n large enough. Since ¢, ¢y are in Z, they commute
with a, hence with a™. Thus a™c; = c¢1a™ and a"cy = c2a™. From the latter
equation and the lemma, we conclude that a™ = cyq, for some series q. Hence,
we have caqe; = c¢1a™. Since v(ez) > v(cr), the lemma implies that co = ¢;d.
Now cjad = acid = acy = cza = cida, and canceling c;, we obtain ad = da,
hence d is in Z. [

COROLLARY 9.1.3. The centralizer of any nonscalar element in k(X)) or k(X)
is commutative.
This means that if two polynomials (or series) commute with a third non-

scalar one, then they commute each with another.

9.2. Euclidean division and principal right ideals

The next result is Cohn’s Euclidean division in k(X) (a particular case of his
weak algorithm).

THEOREM 9.2.1. Ifa,b,a’,b’" are polynomials such that ab' = ba’ and b, b’ are
nonzero, then a = bq + r,deg(r) < deg(b) for some unique polynomials q,r.

Proof. We totally order the free monoid on X in the following way: let < be
a fixed order on X and define: u < v if either | u |[<| v |, or |u |=| v |=n
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and v < v in the lexicographic order of X™ (from left to right). In any finite
nonempty set of words the greatest element will be called its leader. Note that
if u (resp. v) is the leader of A (resp.B), then w = uw is the leader of the set AB
consisting of all the products uivy, u; € A, vy € B, and that w has a unique
such decomposition. Likewise we call leader of a nonzero polynomial the leader
of the words appearing in it. Then in a product of two nonzero polynomials,
the leader is the product of the leaders.

Now let ab’ = ba'. If deg(a) < deg(b), we take ¢ = 0, r = a and we are done.
Otherwise, let u, v’ be the leaders of a, b’ and v,u’ be the leaders of b,a’. Then
we must have have uv’ = vu’. Since deg(a) > deg(b), we have | u |>| v | and
therefore by Levi’s lemma for words, u = vuy for some word u;.

Hence, for some scalar a, the polynomial a — abu; has a smaller leader
than a. Now, we have ab’ = ba’, hence (a — abui)b’ = b(a' — auyb'), and we
conclude by induction that a — abu; = bq’ + r for some polynomials ¢, with
deg(r) < deg(b). Thus a = b(q' + auy) + r. Uniqueness is proved as in the
commutative case. L]

COROLLARY 9.2.2. If I is a family of nonzero polynomials such that any two
of them always have a nonzero right multiple, then the right ideal Ik(X) of
k(X) is principal.

Proof. We first prove that if two polynomials a, b have a nonzero right multiple,
then the right ideal ak(X) + bk(X) is principal. Indeed, we may suppose that
deg(a) > deg(b) and ab’ = ba', b,b' nonzero. Then the theorem shows that
a = bg + r, with deg(r) < deg(b). If r = 0, then the previous ideal is bk({X),
and hence is principal. Otherwise, rb' = b(a’ — ¢b’), » and b have a nonzero
common right multiple (since r, b’ are nonzero), and we conclude by induction
that rk(X) + bk(X) is principal. But since a = bq + r, the latter ideal is the
same as the previous one, which concludes this part of the proof.

Now suppose that I is finite. We may suppose that it has at least two
elements. Let a € I and I' = I — {a}. Then by induction, the right ideal
I'k(X) is principal, equal to bk(X) say. We may choose some element ¢ in I'.
By hypothesis, a and ¢ have a nonzero common right multiple, hence so have
a and b, since ¢ € bk(X). By the first part, the right ideal ak(X) + bk(X) is
principal. But this ideal is equal to ak(X) + I'k(X) = Ik(X), which concludes
the second part of the proof.

In the general case, for each nonempty finite subset I’ of I, we have I'k(X) =
ak(X), for some nonzero polynomial a. Choose I' and a such that the latter
has least possible degree. Then for any b in I, we have by the previous part
of the proof, ak(X) + bk(X) = I'k(X) + bk(X) = (I' UbD)k(X) = ck(X),
for some polynomial ¢. By the minimality of the degree of a, we must have
deg(a) < deg(c). Since a € ck(X), we conclude that a = ac for some nonzero
scalar . Hence ak({X) contains ¢, hence b, hence any element of I. Thus
ak(X) = ITk(X). "
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9.3. Integral closure of the centralizer

The next result, due to Bergman, asserts that the centralizer is integrally closed,
and is one of the key ingredients in his proof of the centralizer theorem.

THEOREM 9.3.1. Let Z be the centralizer in k(X) of some nonscalar polyno-
mial. Let Z be the integral closure of Z in its field of fractions. Then Z = Z.

Note that we take for granted that Z is commutative (Corollary 9.1.3). We
shall use the following lemma.

LeEMMA 9.3.2. Let r be a polynomial and R = {a € k(X) | ra € k(X)r}. If
a,ab € R, with a nonzero, then b € R.

Note that k(X)r is a left ideal of k(X), but not a two-sided one in general.
We leave to the reader the verification of the following fact (not needed in the
proof): R is the largest subring of k£(X) containing k(X )r as a two-sided ideal.
This is called the idealizer of k(X)r in k(X).

Proof. We may suppose that r and b are nonzero. Since a,ab € R, we have
ra = a'r and rab = b'r for some polynomials a’,b'. Hence a'rb = rab = b'r.
Thus rb and r have a nonzero common left multiple. If we choose such a nonzero
multiple of least degree, then it is of the form c¢rb = dr and ¢, d have no common
left factor (otherwise, we may cancel it and lower the degree).

Now let ¢ be a new variable, and A = k[t], K = k(t), respectively the algebras
of polynomials and rational functions in ¢ over k. We consider the ring K(X)
of noncommutative polynomials in X over K and its subring A(X). Both have
their degree function with respect to X and A(X) has also a degree with respect
to t. Note that A(X) may be thought as the algebra of polynomials in the
variable ¢t over the ring of coefficients k(X).

We have in A(X) the equality cr(t —b) = (¢t — d)r. Viewing this equality in
K(X), we obtain by Corollary 9.2.2 (with K replacing k) that crK(X) + (ct —
d)K(X) is a principal right ideal of K(X). Let E € K(X) be a generator of
this ideal. Then we have cr = EF, ¢t — d = EG, for some elements F, G in
K(X). We claim that E, F, G may be chosen in A(X).

Let us assume this for the moment. We view each element of A(X) as a
polynomial in the variable ¢ over k(X). Then the equality cr = EF’, together
with er € k(X), implies that E is in k(X). Moreover, the equality ct —d = EG,
together with ¢,d, E € k(X), implies that E divides ¢ and d on the left in k({X).
Hence E € k, since ¢, d have no common left factor.

This shows that the ideal er K(X) + (¢t — d) K (X) is equal to K(X). Hence
we may express 1 as a right linear combination over K (X) of ¢r and ¢t — d. By
multiplying by a suitable element ¢ in k[t], we obtain a relation

crP + (ct — d)Q = ¢,

with P, @ in A(X). Viewing again the elements of A(X) as polynomials in ¢
over k(X), with their t-degree, let p,q be the leading coefficients of P,Q. We
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may also suppose that the leading coefficient of ¢ is 1, and that ¢ has t-degree
n. If the t-degree of P is m > n, then @) must be of degree m — 1 and we have,
upon canceling ¢, rp + ¢ = 0. Hence we have cr(P — pt™ + bpt™™1) + (ct —
d)(Q — qt™ ) = erP + (ct — d)Q — crpt™ + crbpt™ ™! — cqt™ + dgt™ ! = ¢,
since crbp = drp = —dq. Hence in the relation above we may suppose that P
has degree < n, and consequently @) has degree < n — 1: let ¢’ be the coefficient
of t"1in Q. Looking at the coefficient of " in the previous relation, we obtain
crp + ¢¢' = 1, which implies ¢(rp + ¢') = 1, and so ¢ is in k, since r, p,q" are in
kE(X).

Finally, we obtain rb = ¢~'dr, which shows that b € R.

It remains to prove the claim. This is very similar to Gauss’ lemma for
commutative polynomials. Call a nonzero polynomial P € A(X) primitive if
its coefficients have no nontrivial common divisor in A (A is a unique fac-
torization domain as is k[t]). The product of two primitive polynomials is
primitive: otherwise, let a be an irreducible common divisor of the coeffi-
cients of the product. Then by taking the images of these three polynomials
in (A/a), we obtain that this ring has zero-divisors, which is a contradiction.
Now, if P € K(X) is nonzero (K is the field of fractions of A), we may write
P = aQ, where ¢ € K and Q € A(X) is primitive. This representation is
unique up to a unit in A. Choose such a representation for each nonzero P:
P = ¢(P)P', ¢(P) € K, P' € A(X) primitive. ¢(P) is called the content of
P. Then ¢(PQ) = ¢(P)c(Q) and (PQ)' = P'Q’, up to a unit in A: indeed,
c(P)e(Q)P'Q" = PQ = ¢(PQ)(PQ), P'Q', (PQ)" are primitive, and we are
done by uniqueness up to a unit of the representation .

Coming back to the claim, we had PK(X) + QK(X) = EK(X) for some
nonzero polynomials P,Q € A(X), E € K(X). Hence, P = EF,Q = EG
with F;G € K(X). Then, with equalities holding up to a unit of A (that
is, a nonzero element of k), P' = E'F', Q' = E'G', P = E'(¢(P)F'"), Q =
E'(c(Q)G), EK(X) = E'K(X), and we are done since E', F',G' € A(X), and
e(P),c(Q) € A. "

Proof of the theorem. We show that if C' is a subring of F' (the field of fractions
of Z), and a finitely generated Z-module, then C is contained in Z. This will
imply the theorem, since Z is the union of such C.

Since C is a finitely generated sub-Z-module of F, there exists a common
denominator for the elements of C, that is a nonzero element zg of Z such that
20C C Z. Let I = zgC'. This is a C-module, since C' is a subring of F. It is also
an ideal of Z, since C' is a Z-module.

The right ideal Ik({X) of k(X) is principal: indeed, two nonzero elements of
I always have a nonzero common right multiple, I being a subset of Z, which
is commutative by Corollary 9.1.3, and to this we apply Corollary 9.2.2. Hence
Ik(X) = rk(X), for some r € k(X).

We have Zr C rk(X). Indeed, Zr C Zrk(X) = ZIk(X) C Ik(X) (since I
is an ideal of Z) = rk(X).

Since r is nonzero (indeed 1 € C, hence C # 0), there exists a well-defined
function fo : Z — k(X) such that zr = rfy(z) for any z in Z. Note that fy is
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an injective ring homomorphism.

Suppose that ¢ € C, with ¢ = 21/20, 2z; € Z. Then rfo(z1) = 217 €
21rk(X) = 21 Tk(X) C 21CIk(X) = 20¢CTk(X) C 22CIk(X) C 22Ik(X) (since
I is a C-module) = zork(X) = rfo(22)k(X).

This shows that fo(z1) € fo(z2)k(X), and there is a function f: C — k(X)
such that: (*) fo(z1) = fo(z2)f(c), where ¢ = z1/zy. This function is well-
defined, since fy is a homomorphism. Furthermore, f extends fo (take zo = 1
in (*)) and f is an injective homomorphism C' — k(X): indeed, by (*), f(c)
commutes with every element of fo(Z), since Z is commutative and fy is a
homomorphism, hence we have:

fo(z125 + 2122) = fo(z1) fo(23) + fo(21) fo(22)
= fo(z2)f(c) fo(zz) + fo(z3)f(c') fo(22)
= fo(22) fo(235)(f(c) + f(c)) = fo(z225)(f(c) + f(c')) .

Since ¢ + ¢ = (212} + z{22)/(222%), we deduce that f(c+ ') = f(c) + f(c).
Similarly, f preserves multiplication.

Let R = {a € k(X) | ra € kE(X)r}. Then we know by the above lemma that
a,ab € R, with a nonzero, implies b € R. Note that fo(z) € R. For ¢ as above,
and a = fo(2z2),b = f(c), we have a € R, ab = fo(z1) € R, hence b = f(c) € R.

This implies that for each ¢ in C, we may define g(c¢) € k(X) by the condition
rf(c) = g(c)r. Then g is an injective homomorphism C' — k(X), and for z € Z,
we have zr = rfo(z) = rf(z) = g(z)r, which implies that g is the identity on
Z. Hence g : C — k(X) extends the identity mapping Z — k(X), and we
obtain that ¢g(C) is a commutative subring of k(X) containing Z. Since Z is
a centralizer, it is necessarily a maximal commutative subring of k(X), thus
g(C) = Z, and thus C = Z, for g being injective. n

9.4. Homomorphisms into k[t

The next result will allow us, still following Bergman, to embed the centralizer
into a one variable polynomial algebra.

THEOREM 9.4.1. Let Z be a finitely generated subalgebra of k(X). Then there
exists a nontrivial homomorphism Z — k[t].

Proof. Let X+ denote the set X*\ 1, the set of nonempty words on X. Denote
by X* the set of right infinite words on X, order it lexicographically from left
to right (where X is totally ordered) and for w € X, denote by u* the infinite
word wuu---. For any set M of nonempty words, one has u¥ = v¥ for each
u,v € M if and only if the words in M are power of the same word, which is
unique if of minimum length.

Let Y be a finite set of polynomials generating the subalgebra Z and let
m € XT be such that m* is the maximum of all 4, for all nonempty words
u appearing with nonzero coefficient in all elements of Y. Take m of mini-
mum length, and let M = {m" | n > 0}. For each a =} _y.ayu € Z, let
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f(a) = > a,u, where the sum is over u € M. Then f is a linear mapping from
Z into the subalgebra of k(X) generated by m, which is isomorphic to a one
variable polynomial algebra. We show below that f is an algebra homomor-
phism, necessarily nontrivial since some element of Y involves a word of the
form m", n > 1.

We claim that for each nonempty words u,v such that u* < m®* and v*¥ <
m*, one has (uv)” < m*. If moreover, one of the two former inequalities is
strict, then the latter is, too. Indeed, either (uv)¥ < (vu)*, and then (vu)¥ =
v(uw)? < v(vu)? = v?(uv)? < v*(vu)¥ < --- < v¥ (by taking the limit), hence
(wv)? < m¥, or (vu)¥ < (uv)¥, and then similarly (uv)¥ = u(vu)? < u(uv)¥ <
--- < u¥, hence (uv)® < m¥, or (uv)¥ = (vu)*, hence uv,vu are power of the
same word and thus equal, so that u,v also are power of the same word, which
implies (uv)¥ = u* = v¥ < m*. This ends the proof of the claim.

In order to finish the proof, it is enough to show that f preserves products.
This will follow from the fact that u,v € M implies that uv € M, and from
the following fact: if u,v are words appearing in elements of Z, then uv € M
implies that © and v are in M. We may suppose u,v # 1. Note first that
each nonempty word w appearing in an element of Z is a product of elements
appearing in Y. Hence, by the claim, w* < m®“. Hence, again by the claim, if
u? < m¥ orif v¥ < m¥, then (uv)¥ < m¥, hence uv ¢ M, which contradicts
the assumption.

This proves the previous fact. [

9.5. Bergman’s centralizer theorem

THEOREM 9.5.1. The centralizer of a nonscalar polynomial is isomorphic to
Ek[t].

We first prove a lemma.

LEMMA 9.5.2. The centralizer of a nonscalar polynomial p is a finitely gener-
ated subalgebra of k(X), and also a finitely generated k[p]—module.

Proof. We show first that if p is a nonscalar homogeneous polynomial, then there
exists a homogeneous polynomial ¢ such that each homogeneous polynomial
commuting with p is a scalar multiple of some power of ¢q. Indeed, the centralizer
of p in k(X)) is of the form k[[s]], for some series s with zero constant term
(Theorem 9.1.1). Let ¢ be the lowest homogeneous part of s. Now let r be a
homogeneous polynomial commuting with p. Then r = 3 ., a,s", for some
scalars a,. In this sum, the lowest homogeneous part is a,q", where n with
a, # 0 is chosen as small as possible. Thus by homogeneity r = «,¢", which
concludes the first part of the proof.

Now, let p be any nonscalar polynomial, of degree n. Let Z be its centralizer
in £(X) and denote by p the highest homogeneous part of p. By what we have
just seen, there exists a homogeneous polynomial ¢ such that each homogeneous
polynomial commuting with p is a scalar multiple of some power of q.
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For i = 0,...,n — 1 such that some element of degree = i mod. n exists
in Z, let p; denote such an element of least degree. If r is in Z, we may find [
and i such that r and p;p' have the same degree. Both polynomials are in Z,
so that their highest homogeneous part commutes with p, and they are a scalar
multiple of some power of ¢, necessarily of the same power. Hence for some
scalar a, r —ap;p' is of degree less than that of r, and we conclude by induction
that Z is spanned over k by the polynomials p;p'.

This shows that Z is finitely generated as an algebra, and also a finitely
generated k[p]—module. "

Proof of the theorem. Let Z be the centralizer in k(X) of a nonscalar polynomial
p. By Corollary 9.1.3, Z is commutative. We know by the lemma that Z is a
finitely generated subalgebra of k(X). Hence by Theorem 9.4.1, there exists a
nontrivial homomorphism f : Z — k[t], that is, we have f(Z) # k. Since by the
lemma, Z is a finitely generated k[p]— module, it is of transcendence degree 1
over k. Hence f must be injective, otherwise f(Z) would be of transcendence
degree 0 over k (since noninjective homomorphisms decrease the transcendence
degree) and thus would be equal to k (since no nonscalar polynomial is algebraic
over k). We conclude that Z is isomorphic to f(Z).
Now, by Theorem 9.3.1, Z, and hence f(Z), is integrally closed. This implies
by Theorem 7.3 in the Appendix that f(Z), and hence Z, is isomorphic to k[t].
|

9.6. Free subalgebras and the defect theorem

The next result is due to Cohn.

THEOREM 9.6.1. If a,b are elements of k((X)), without constant term, satis-
fying a nontrivial relation S(a,b) = 0 for some noncommutative series S in two
variables, then a,b commute.

Using Bergman’s theorem (Theorem 9.5.1), we obtain the following corollary.

COROLLARY 9.6.2. If P,@Q are two polynomials in k(X) which do not freely
generate a subalgebra of k(X), then they lie in a subalgebra of k(X) generated
by a single polynomial.

This is the defect theorem for two polynomials. We show below that it does
not hold for more than two polynomials. Note that a similar result holds for
two series, instead of polynomials (one has to use Cohn’s theorem Th.1.1).
Proof. We may suppose that P, have zero constant term, and that P is
nonscalar. If P, Q) do not generate a free subalgebra, then we have S(P,Q) =0
for some nonzero noncommutative polynomial S in two variables. Hence, by
Theorem 9.6.1, they commute. Hence @ lies in the centralizer of P and we are
done by Theorem 9.5.1, since this centralizer is generated by a single polynomial.

|
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Proof of the theorem. We show the result by contradiction, and induction on
v(ab — ba). Suppose that a,b do not commute. Then a,b # 0. Let S(u,v) be
a noncommutative series in two variables u, v, of smallest possible valuation,
such that S(a,b) = 0. Then we may write S(u,v) = a + uSy(u,v) + vS,(u,v)
and we have the relation a + ab’ + ba’ = 0, where o/ = Sy(a,b),b’ = S,(a,b)
are elements of k£(X)). Then o must be equal to 0, since a,b have no constant
term, and o', b’ must be nonzero, by the minimal choice of S. We may apply
Lemma 9.1.2: assuming without loss of generality that v(a) > v(b), we have
a = bq for some series ¢ in k{X)). Let ¢ = B8 + ¢1, where 3 is the constant
term of g. Then 0 # ab — ba = bgb — bbg = b(qb — bg) = b(q1b — bq1), so that
v(gb — bg1) < v(ab — ba). Moreover, S(a,b) = 0 implies a similar nontrivial
relation for ¢; and b, since a = 8b + bq;, and gives the desired contradiction.

|

Consider the following example, due to Bergman: f = zyzz + zy,9 =
zyx,h = zzxyxr + yxr. Then one has fg = zyzzryr + xyzyr = gh. Hence
f,g,h do not freely generate a subalgebra of k(x,y, z). We show that the three
polynomials f, g, h do not belong to a free subalgebra generated by two polyno-
mials in k < z,y,z >. This will imply that the defect theorem does not hold in
general.

First, we need to prove a necessary condition satisfied by free subalgebras.
Following Kolotov, we say that a subalgebra A of k(X) is an anti-ideal if for
a € k(X) and any nonzero b,c € A, ab,ca € A implies a € A. The next result
is due to Kolotov.

THEOREM 9.6.3. If A is a free subalgebra of k(X), then it is an anti-ideal.

Proof. We know by Theorem 9.2.1 that one can perform the Euclidean division
of u by v in k(X) whenever u,v have a nonzero right multiple in k(X). We
claim that if u,v are in the free subalgebra A and if they have a nonzero right
multiple in A, then the quotient and the remainder are also in A. This being
assumed, let a € k(X) and b,c € A with b,¢ # 0 and ab,ca € A. We may
suppose that a is nonzero. Since ca and ¢ have the nonzero right multiple cab,
and since ca, ¢, cab, b, ab are all in A, the claim implies that the quotient of the
division of ca by ¢, which is a, is in A.

It remains to prove the claim. Suppose that A is freely generated by a
set Y of polynomials in k(X), and denote by Deg the degree-function in A
with respect to this set Y. Let u,v in A have a nonzero right multiple in A.
Then we have by Theorem 9.2.1 applied to k(X) and k(YY) that u = vqg + 7,
u,v € k(X), deg(r) < deg(v) and u = v@Q + R, Q,R € A, Deg(R) < Deg(v).
We prove by induction on n = Deg(v) that Q@ = ¢, R = r, which will imply
the claim. If n = 0, this is clear. If R = 0, the result is also clear, since the
quotient and remainder of Euclidean division in k(X) are unique. Hence we
may suppose that R # 0. We know that uwv' = vu' for some nonzero u',v’
in A. Thus (vQ + R)v" = vu', which implies v(u' — Qv') = Rv'. All the
elements involved in this equation are in A, and since Deg(R) < Deg(v), the
induction hypothesis implies that v = Rq’' + ', with ¢',r' € A and deg(r') <
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deg(R), Deg(r') < Deg(R). Since Deg(R) < Deg(v), ¢' is not a constant, thus
deg(R) < deg(R) + deg(q') = deg(v). This implies by uniqueness of quotient
and remainder that ) = ¢, R = r. [

We come back to the previous example: suppose that f,g,h lie in a free
subalgebra A. Then, since fg = gh, the claim in the previous proof shows that
f=gq+r,q,r € A,deg(r) < deg(g). Since evidently f = gz+zy,deg(zy) =2 <
3 = deg(g), we have by uniqueness that z,zy € A. Furthermore, g = (zy)z =
z(yx),zy,yr = h — zg all lie in A, so that x € A, since A is an anti-ideal. For
the same reason, zy,yx € A implies that y € A. Thus A contains z,y, z and is
thus equal to k{x,y, z), which cannot be generated by two elements (since its
commutative image k[z,y, z] has transcendence degree 3).

9.7. Appendix: some commutative algebra

In this section, all rings and fields are commutative, without zero divisors, and
all algebras are over the field k. We begin by Liiroth’s theorem. Here ¢ is a
variable.

THEOREM 9.7.1 (Liiroth). If F' is subfield of k(t) properly containing k, then
it is isomorphic to k(t).

We need a lemma.

LeEmMMA 9.7.2. Ifu = f(t)/g(t) € k(t) is nonscalar, with f,g relatively prime
in k[t], then t is algebraic over k(u), of degree deg(u) = maz(deg(f), deg(g))-

Proof. Note that ¢ is a root of the polynomial f(z) — ug(z) in k(u)[z], where z
is a new variable. Since this is a nonzero polynomial in x (otherwise u is scalar),
we deduce that ¢ is algebraic over k(u). Note that k(t,z) is of transcendence
degree 2 over k, so that k(u,z) too. Hence u,z are algebraically independent.
If the previous polynomial is not irreducible in k(u)[z], then it may be factor-
ized in k(u)[z], and by Gauss’ lemma, also in k[u,x]. Since it is linear in wu,
one factor must be independent of u, which is impossible because f,g are rel-
atively prime. Hence, the polynomial is irreducible, and since its x-degree is
max(deg(f),deg(g)), the lemma follows. "

Proof of the theorem. There exists u € F'\ k(t). By the lemma, t is algebraic
over k(u). Hence ¢ is also algebraic over F'. Let the minimal polynomial of ¢
over F' be

() = 2" +ur ()z" "+ +un(t),
where u;(t) € F. By multiplying the rational fractions u;(t) by their lowest
common denominator, we obtain a polynomial

®(z,t) = vo(t)x™ + vt (D)2 + -+ + v, (8),

where the v;(t) are polynomials without common divisor, and vy # 0. This
implies that ®, considered as element of k[t][z], is primitive. The u; are not
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all constant, and we choose j such that u; ¢ k. By the lemma, ¢ has degree
m = deg(u;) over k(u;), while its degree over F' is n. Thus m = [k(¢) : k(u;)] =
[k(t) : F][F : k(u;)] = n[F : k(u;)], and to complete the proof, we need only
show that m = n, for then F' = k(u;). Write u; = a(t)/b(t) with relatively
prime polynomials a,b. Note that the t-degree of ® is > deg(a),deg(b). We
may assume b is monic and we have by the lemma m = maz(deg(a), deg(b)).
The polynomial a(z) — u;b(z) in F[z]| has ¢ as a root, so that it is divisible
by ¢(z) in F[z]. Hence we obtain a(z) — u;(¢)b(z) = q(z)¢(x), q(z) € Flz].
Replace u;(t) in terms of a(t),b(t) and multiply by b(¢). Then we obtain

a(x)b(t) — a(t)b(z) = Q(z, 1) (x, 1), (%)

where @ is a polynomial in z. Since ® and a(z)b(t) — a(t)b(x) are polynomials
in k[t][z], and the first is primitive, we deduce by Gauss’ lemma that @ is also
such a polynomial. The polynomial a(z)b(t) — a(t)b(z) has degree m in ¢, and
® has degree at least m in ¢. This implies that @ is independent of ¢. Suppose
that (@ depends on z. Then it has a zero, «, in some extension of k. Thus
a(a)b(t) — a(t)b(a) = 0. If b(a) = 0, then a(a) = 0, which implies that a,b are
both divisible by the minimal polynomial of « over k, and they are not relatively
prime. Hence b(a) # 0. We thus have u;(t) = a(t)/b(t) = a(a)/b(a), and wu;(t)
is algebraic over k, hence ¢ is too and we have a contradiction. This shows that
Q is also independent of x. Hence m = n by comparing the z- degree of both
sides in (*). n

Finally, we shall prove Cohn’s result characterizing the free subalgebras of
Ek[t].

THEOREM 9.7.3. A subalgebra of k[t] is free (and then isomorphic to k or k[t])
if and only if it is integrally closed.

In order to prove the theorem, we need some results of valuation theory.
Before that, recall that a local ring is a ring R which has a unique maximal
ideal M, which is (necessarily) the set of noninvertible elements of R. If S is a
commutative integral domain, and P a prime ideal of S, a classical construction
in ring theory is the local ring at P, which is Sp = {a/b | a,b € S,b ¢ P}
(we view S as a subring of its field of fractions). Then Sp is a local ring, with
maximal ideal PSp = {a/b| a,b € S,a € P,b ¢ P}. Observe that PSpNS = P,
since P is prime.

Recall also that a subring R of a field F is a wvaluation ring if for any x in
F, either z or 7! is in R.

THEOREM 9.7.4. a. If R is a valuation subring of the field F', then it is a local
ring with maximal ideal {x € R |z~ ¢ R}.

b. Each proper valuation subalgebra of k(t) is either of the form R, = {f/g |
f € k[t], g € k[t]\ pk[t]} for some irreducible polynomial p in kl[t], or of the form
D = {a/b|a,b € k[t],deg(b) > deg(a)}.
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c. (Chevalley) If R is a subring of a field F and P a prime ideal of R, then
there exists a valuation subring S of F' such that S contains R and M NR = P,
where M is the maximal ideal of S.

d. (Krull) If F C G is a field extension, and R a valuation ring of F, then
there exists a valuation ring S of G such that R=SNF.

e. (Krull) If a ring is integrally closed, then it is an intersection of valuation
subrings of its field of fractions.

Note that the converse of Part e is also true, but we shall not use it.

Proof. a. It is enough to show that {x € R |z = 0orxz~! ¢ R} is an ideal of R.
If ,y are in this set and r is in R, then rz is also, otherwise, r~'z~' is in R,
which implies that —! is in R, which is a contradiction. Furthermore, we have
either z7'y € R, or y 2 € R, since R is a valuation ring. In the first case, we
have y = zr for some r € R, hence z + y = (1 + r) is in the previous set. The
other case is symmetric.

b. Let R be a proper valuation subalgebra of k(t). Suppose first that R
contains k[t]. If p,q are relatively prime polynomials such that p/q is in R,
then ap + bg = 1 for some polynomials a,b, and thus 1/¢ = ap/q+ b is in R.
This implies that if p, ¢ are distinct irreducible polynomials, then at least one of
1/p,1/qis in R: indeed, since R is a valuation subring, either p/q is in R, hence
1/q is too, or ¢/p is, and 1/p too. Thus for at most one irreducible polynomial,
1/pis not in R. Since R # k(t), there is exactly one such p, and R = R,,.

Suppose now that R does not contain k[t]. Hence R contains = 1/t, thus
R contains k[z]. By what we have just seen, R is of the form S = {a/b| a €
k[z],b € k[z] \ gk[z]}, for some irreducible polynomial ¢(z) € k[z]. Now, if
q =z, it is easy to see that S = D, and if ¢ # x, then S = R),, where p(t) is the
reciprocal polynomial of ¢(z).

c. We may suppose that P # 0. Let F denote the family of local subrings
S of F, with maximal ideal M, such that S contains R and that M N R = P.
This family is nonempty, since it contains Rp. Indeed Rp contains R, has the
unique maximal ideal M = PRp, and M N R = P, since P is prime.

This family F is inductive, as the reader may verify. Hence, by Zorn’s lemma,
there is a maximal element S in this family. We show that S is the required
valuation ring. Suppose by contradiction that S is not a valuation subring of F'.
Then for some = in F, we have z ¢ S,z ¢ S. For S’ = S[z] or S’ = S[z 1],
we have S’ # S. Suppose that S'M # S’ where M denotes the unique maximal
ideal of S. Then S’'M is contained in some maximal ideal M’ of S', and S},
would be in the family F. Indeed M'S}, NS = M'S), NnS'NS=M NS is
an ideal of S containing M, hence is equal to M by maximality of M (since
1¢ M'S)y;). Thus M'Sy,, NR = M'S}y,NSNR = MNR = P. This contradicts
the maximality of S in the family F, and we conclude that S'M = S’. This
implies that one can write

1= Z a;zt, 1= Z bzt

0<i<m 0<i<n
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with a;, b; in M. We choose n, m minimal. Then if for example n < m, we have
T = 0cicn biz" % hence (1 — by)z™ = Yi<i<n b;z™ %, Since by € M, 1 — by
is not in M (otherwise M = S), it hence is invertible in S (since S is a local
ring), and this shows that 2™ is a linear combination with coefficients in M of
1,z,...,z" 1. Hence z"*!,... 2™ may also be written as such a linear combi-
nation, and using the first equality above, we would have 1 =3, .., | ezl
for ¢; in M, which contradicts the minimality of m. This contradiction shows
that we cannot have z,z~! ¢ S, and S must be a valuation ring.

d. Let P be the unique maximal ideal of R. It is a prime ideal, hence we
may apply Part ¢, and obtain that there is a valuation subring S of G, with
maximal ideal M, such that S contains R and P = M NR. Then SNF contains
R. Suppose that there exists some element z in SN F and not in R. Then 2!
isin R, and by Part a even in P, hence in M, which contradicts by Part a the
fact that z is in S.

e. Let R be integrally closed in its field of fractions F, and let a € F'\ R.
We show that there is valuation subring S of F' such that S contains R but not
a (this will imply Part e). Note that a ¢ R[a™'], otherwise a = >, ., mia ",
for some r; in R, which implies a™** =3 _,_ r;a"*, hence a is integral over
R, and thus belongs to R, which is a contradiction. Consider the family of
subrings S of F such that Rla=!] C S and a ¢ S. This family is nonempty, and
is inductive. Hence, by Zorn’s lemma, it has a maximal element, S say. We now
show that S is a valuation subring of F'.

Suppose that € F,z ¢ S. Then S is strictly included in S[z], which implies
by maximality of S that a € S[z]. Hence a = spz™ + --- + s,—12 + Sy, which
implies after multiplying by a "tz =" that x " (1—s,at) = s, _ja 'zt "+ -+
soa~t. We claim that S is a local ring. This being assumed for the moment, a !
must be in its unique maximal ideal, hence 1 — s,a~! is invertible in S, which
implies that ' is integral over S. Let S’ denote the integral closure of S in F.
If S was strictly included in S’, then we would have a € S’, by maximality of S.
Hence a™ = t1a™ 1 4---+t,, forsome t; in S,anda =t, +---+t,,al "™ € S
(since a=! € §), which is a contradiction. Thus S = S’, z7! € S and S is a
valuation ring.

It remains to prove the claim. Since a ¢ S, Sa™' is strictly included in S.
Hence for some maximal ideal P of S, one has Sa~! C P. Then S C Sp, and
a ¢ Sp (otherwise a = b/c with b,c € S, ¢ ¢ P, hence ¢ = a~*b € P, which is a
contradiction). Thus, by the maximality of S, we have S = Sp and S is a local
ring. ]

1

Proof of Theorem 9.7.3. Let R be a free subalgebra of k[t]. Since it is free
and commutative, it can be only k or isomorphic to k[t]. In both cases, it is
integrally closed, as is well-known.

Conversely, suppose that R is an integrally closed subalgebra of k[t]. We may
suppose that R is not equal to k. By Theorem 9.7.4.e, R is an intersection of
valuation subalgebras of its field of fractions F'. Now, by Theorem 9.7.4.d, each
valuation subalgebra of F' is of the form SNF, where S is a valuation subalgebra
of k(t). Hence R is the intersection of F' with the family of valuation subalgebras
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of k(t) containing R. These valuation subalgebras are given in Theorem 9.7.4.b:
note that, with the notations of this theorem, k[t] C R,, which implies that
R, contains R . Hence the only valuation subalgebra which possibly does not
contain R is D, the second case of Theorem 9.7.4.b. But surely D cannot contain
R, since the intersection of all valuation subalgebras of k(t) is k, and we would
have R = k, which was excluded. Hence R is the intersection of all valuation
subalgebras of F', except DN F.

Now by Liiroth’s theorem (Theorem 9.7.1), F' = k(z), for some z in k(t) \ k.
Note that k[z] is the intersection of all valuation subalgebras of k(x), except
E = {a/b] a,b € k[z],deg,(a) < deg,(b)} (a consequence of Theorem 9.7.4.b).
Also note that  is in all valuation subalgebras of k(z), except E (ibid.). Suppose
that = is not in D N F: since z is in all valuation subalgebras of F' except E,
we must have E = DN F, and it implies that R = k[z]. If z is in D, then we
claim that y = 1/(z — @) ¢ D, for suitable « € k. Then we have F = k(y), and
we conclude as before that R = k[y].

For the claim, note that z = f/g, with deg(f) < deg(g). For some «a € k,
x—a = f'/g, with deg(f') < deg(g). Then g/f" ¢ D, which proves the claim
and completes the proof. [

Notes

Bergman’s centralizer theorem was conjectured by Cohn (Cohn 1963, p. 348).
For its proof, we have followed the original proof (Bergman 1969), with the help
of Cohn 1985. We did not make any real improvement, but hope to give a larger
audience to this result and its proof. That is why we have also included in the
Appendix all the results of commutative algebra which are needed in order to
prove Cohn’s characterization of free subalgebras of k[t]. For Liiroth’s theorem,
we have followed Cohn 1991, p.172-174. For valuation ring theory, we have
followed Ribenboim 1965. For the proof of Th.3.1, we have followed Melancon
1993, which also gives a computational version of Cohn’s weak algorithm. The
proof of Lemma 4.2 is due to Cohn. It would be a real challenge to give to
the centralizer theorem a proof that would be simpler that the one found by
Bergman thirty years ago.

A result of Cohn (Theorem 9.1.1) allows one to deduce the defect theorem for
two polynomials from the centralizer theorem. Then a result of Kolotov implies
that the defect theorem does not hold in general (he works out an example of
three polynomials due to Bergman). His result gives a necessary condition for a
subalgebra to be free, which is similar to the condition of stability, necessary and
sufficient for a submonoid of a free monoid to be free (see Chapter 6). Kolotov’s
condition is not sufficient in general, although it is in the one-variable case (see
Kolotov 1978 and Cohn 1985).

No simple condition characterizing free subalgebras of a free associative al-
gebra is known. It seems likely that there is no such condition, in view of
Bergman 1979 (whose title is clear enough, so requires no further comments
from the author of these lines).
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Note that the centralizer theorem and the defect theorem have analogues
in free monoids, free groups and free Lie algebras. See Th.6.2.1, Lyndon and
Schupp 1977 (in the free group, it is a consequence of the theory of Nielsen
transformations, see especially Prop.1.2.2 and Prop.1.2.5) and Reutenauer 1993
Th.2.2.10. A defect theorem (in the terminology of Lentin) in an algebraic
structure is a theorem that asserts that if n elements generate a substructure
which is not free, then they lie in some substructure generated by n—1 elements.
For the free field the centralizer theorem is not known in general, but partial
results exist, see Cohn 1985 Section 7.7.8, and Cohn 1978.



CHAPTER 10

Transformations on Words and
q-Calculus

10.0. Introduction

When sorting was systematically studied in the sixties and seventies, in partic-
ular for comparing the different methods used in practice, it was essential to go
back to the classics, to the works by MacMahon and especially to his treatise
on Combinatory Analysis. He had made an extensive study of the distributions
of several statistics on permutations, or more generally, on “permutations” with
repeated elements, simply called words in the sequel. The most celebrated of
those statistics is probably the classical number of inversions which stands for a
very natural measurement of how far a permutation is from the identity. There
are several other statistics relevant to sorting or to statistical theory, such as
the number of descents, the number of excedances, the major index, and more
recently the Denert statistic.

MacMahon had already calculated the distributions of the early statistics
and proved that some of them were equally distributed on each class of rear-
rangements of a given word. Let us state one of his basic results. To this end
suppose that X is a finite non-empty set, referred to as an alphabet. For con-
venience, take X to be the subset {1,2,...,r} (r > 1) of the positive integers,

equipped with its standard ordering. Let ¢ = (c¢1,¢2,...,¢.) be a sequence
of r nonnegative integers and v be the nondecreasing word v = 1°12¢2 .. rcr,
ie, v =wyy...ym wWith m =c1 +c2+---+c, and y3 = --- = y,, = 1,
Yertl = " = Yerdes = 25 o+ 5 Yertoden141 = =+ = Yym = r. The class of

all rearrangements of v, i.e., the class of all the words w that can be obtained
from v by permuting its letters in some order will be denoted by R(c).

If w==z125...2, is such a word, the number of excedances, excw, and the
number of descents, des w, and also the major index of w are classically defined
as

excw = #{i:1<i<m,x; >y},
desw=#{i:1<i<m-—1,2; > 241}, (10.0.1)

majw:Z{i:lgigm—l,wi>wi+1}.

291
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Let AS¢(t) (resp. Ad®(t)) be the generating polynomial for the class R(c) by
the statistic “exc” (resp. “des”), i.e.,

Aixc(t) — Ztexcw’ A(cies(t) — thesw (’LU c R(C)).

w w

MacMahon showed that those two polynomials were equal for every c¢. More
explicitly he showed that the generating functions for those two families of poly-
nomials had the same analytic expression. This raises the question of providing
methods for deriving those analytic expressions. This will be done in the first
part of this chapter in the more general set-up of g-calculus, as not only single
statistics will be considered, but pairs of statistics.

Now saying that the previous two polynomials are equal for every c implies
that the two statistics “exc” and “des” are equidistributed on each rearrangement
class R(c). Proving this equidistribution property in a bijective manner means
that a bijection ¢ on each rearrangement class R(c) is to be constructed with
the property that

excw = des ¢(w) (10.0.2)

holds for every w.

This brings up the matter of the second part of this chapter: does there
exist a systematic way for constructing those bijections? We shall see that a
large class of those bijections can be constructed by means of a straightening
algorithm on biwords which is based on a commutation rule itself defined on the
biwords. Although any commutation rule can be integrated in the algorithm,
our attention will be focused on the contextual commutation that serves to the
construction of a bijection ® mapping a pair of statistics onto another pair.
Instead of property (10.0.2) we shall have

(exc,den) w = (des, maj) ®(w), (10.0.3)
where “maj” and “den” are the major index and the Denert statistic (further
defined in section 10.11), respectively.

For every class R(c) introduce the two generating polynomials

Agxc,den(t’q) — Z pexc wqdenw, Ages,maj(t,q) _ Z tdes wqmajw‘
weR(c) weER(c)

An analytical expression for Ad*™ai(¢ ¢) was already derived by MacMahon
(see section 10.2). But there is no direct way for proving that the polynomial
Agxeden(t g is equal to that analytical expression. Thus the construction of
the bijection @ is crucial.

After recalling the fundamental material on g¢-calculus in section 10.1 we
present the MacMahon Verfahren which is a rearrangement method that has
been generalized in various contexts. In section 10.3 we discuss an insertion
technique that makes possible the derivation of a recurrence relation for gen-
erating polynomials for words and in section 10.4 we show how to go from a
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recurrence relation to an identity between g-series. All the calculations made in
sections 10.2—4 involve the generating polynomials Ad¢smai(¢ ¢).

The second part of the paper (section 10.5-11) is devoted to the construction
of the main algorithm. It involves the introduction of commutation rules on
biwords that serve to the constructions of both bijections ¢ and ®. We conclude
with the proofs of the equidistribution properties (10.0.2), (10.0.3).

10.1. The ¢-binomial coefficients

We use the following notation on g-calculus. First, (a;q), denotes the ¢-
ascending factorial

1, if n = 0;

(a;q)n = { (1—-a)(1—aq)...(1—ag™?t), ifn>1.

Here a and ¢ are any symbols, variables, or real or complex numbers. The
g-binomial coefficient (or the Gaussian polynomial) is defined by

0, otherwise.

, if0<k<m;
- (10.1.1)

The following properties of the g-binomial coefficients are straightforward and
given without proof:

A A
Z - n ; 1] +q {Z _ ﬂ (10.1.3)
Z B Z _ ﬂ ' [n; 1}5 (10.1.4)
S Z B <Z> (10.1.5)

The g-binomial coefficient has a combinatorial interpretation in terms of non-
decreasing sequences of integers, as stated in the next proposition, where a =
(a1,...,an) denotes a nonincreasing sequence of nonnegative integers and where
lall = a1 + - + an.

ProposITION 10.1.1. For each pair of nonnegative integers (k,n) we have

k 2;- n] _ Z gl = Z gPll, (10.1.6)

k>a1>--->an, 20 n>by 2>-->b 20
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Proof. The fact that the above two summations are equal follows from the sym-
metry of the g-binomial coefficient [k+"] in k and n. Denote the first summation
by D(k,n) and let D(0,0) = 1. Then D(n,0) = D(0,k) for every n > 1 and

k > 1. Next, for k and n > 1

Dlkm)= 3 glal+ 3 glal.

a,a,=0 a,an>1
Let b; =a; —1 (i =1,...,n) in the second summation. Then
D(k,n) = 3 glall + 3 g+l
k>a1>-->an 120 k—=1>by>--->bn >0

=D(k,n—1)+¢" D(k —1,n).

This shows that D(k,n) satisfies the recurrence relation (10.1.2), (10.1.3) for
the g-binomial coefficient [k'};"] n

Proposition 10.1.1 provides the generating function for the nonincreasing
sequences of integers bounded from above. There is also a formula for sequences
without upper bound, as explained next. For each integer n > 0 consider the

expansion
Z Z t* " p(s,m) (10.1.7)
(t 1+n §>0m>0
The coefficient p(s,m) is equal to the number of sequences of nonnegative inte-
gers (ig,i1,...,in) such that ig+41 +---+i, =sand 1-i; +2-is+---+n-i, =
m. Consequently, p(s,m) is equal to the number of nonincreasing sequences
a = (a1,as,...,as) such that n > a3 > --- > a5 > 0 and ||a]| = m. It follows
from Proposition 10.1.1 that for each s > 0

Spsm= X = Y gl oL
m2>0 n>a1>-->as >0 s>a1>>an>0
so that

=Y > =y {"Zs} (10.1.9)

O14n $>0  s>a1>>an>0 $>0

10.2. The MacMahon Verfahren

Let Ac(t,q) = Adesmai(¢ g) be the generating polynomial for the class R(c)
by the pair (des,maj). Those two statistics have been defined in (10.0.1). By
convention, Aq(t,q) = 1, if ¢ is the null sequence. In this section we shall derive
the identity

L Atg) = ZtS[cﬁs}--{cﬁs], (10.2.1)

(& @1t el = s
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by means of the so-called MacMahon Verfahren.

First let us derive a symmetry property for the polynomials A.(¢,q). For
each permutation o of the set of letters {1,2,...,r} denote by oc the sequence
(Co(1)>Co(2)s - -+ Co(r)), SO that R(oc) is the class of all the rearrangements of
the word 1¢s(1) 262 _  pCotr),

THEOREM 10.2.1. For each permutation o of the set {1,2,...,r} the distri-
butions of the pair (des, maj) over R(c) and over R(oc) are identical. In other
words, Ac(ta Q) = Aac(ta Q)'

Proof. Tt suffices to prove the property when o is a transposition (i,7+ 1) of two
adjacent integers (1 < i < r —1). Consider a word w in R(c) and write all its
factors of the form (i + 1)i in bold-face; then replace all the maximal factors of
the form i%(i 4+ 1)°, with @ > 0, b > 0, that do not involve any bold-face letters
by i®(i + 1)®. Finally, rewrite all the bold-face letters in roman type. Clearly,
the transformation is a bijection that maps each word w in R(c) onto a word w’
in R((7,7 4+ 1)c) with the property that (des, maj)w = (des, maj) w'. "

To derive identity (10.2.1) we proceed as follows. By (10.1.9) the left-hand
side of (10.2.1) is equal to the sum of the series

! .
+d +
E :ts eswq||a\| maJw,

extended over the triples (s',a,w), where s’ is a nonnegative integer, where a is
a nonincreasing sequence of length ||c|| such that s' > a; > - > a)¢ > 0 and
where w € R(c).

By (10.1.6) the right-hand side of (10.2.1) is the sum of the series

3 prgle® |

extended over all sequences (s,a™), ... a("), where s is a nonnegative integer
and where a(l) = (@1,15---501,¢1), -+ alm = (@ra,-..,arc.) are nonincreasing
sequences of integers all comprised between s and 0.

To prove that the sums of those two series are equal it suffices to build a
bijection (s,al"), ... ,a(") > (s’ a,w) having the properties

s=s+desw and |[a|+---+ |]a"”| = ||ja]| + majw. (10.2.2)

The construction of the bijection is an updated version of a bijection already
derived by MacMahon that has been generalized in several contexts. The re-
arrangement method described below is usually referred to as the MacMahon
Verfahren.

Form the two-row matrix

a1 ---Ale; A2,1 --- A2,c --- Ay 1 -« Qpc,
r ... 1 2 ... 2 ...r ... 1
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and rearrange its columns in such a way that the mutual orders of the columns
with the same bottom entries are preserved and the entire top row is nonin-

creasing. Let
< v > — <y1 y2 e yHC” ) (10.2‘3)
w 1 T2 ... :L’Hc”

be the resulting matrix (remember that ¢; + -+ 4 ¢, = ||c||.) From the previous
method of rearrangement we have y, = yx+1 = T < Zp41, Or equivalently

Tp > Tl = Yk > Ykt1- (10.2.4)

The top row of the matrix (10.2.3) is a word v = y1ya...y|c| of length ||c]]
which is the unique nonincreasing rearrangement of the juxtaposition product
a)...a(". The bottom row of the matrix (10.2.3) is a word w = z1 5. . S T[e|l
that belongs to R(c).

For i = 1,2,...,||c|| let z; be the number of descents in the right factor
TiTit1 ... T||c| of w, that is to say, the number of indices j such that i < j <
llell = 1 and z; > xj41. In particular,

z1 = desw. (10.2.5)
Also, by the very definition of the major index,
majw =21 + 22 + -+ + 2||c||- (10.2.6)
Now condition (10.2.5) implies that the word a = ajas ... ac defined by
a;=y;i—z (=1,2,....]c|l), (10.2.7)
is nonincreasing; moreover, its letters are nonnegative. Then define
2 =s—desw.
As s > y; = maxa;; and z; = desw, we deduce that:
s'=s—desw >y —2z >0
and also

la® ||+ + ||]a|| = Zyl = Zai + Zzl = ||a|| + majw.

The two conditions (10.2.2) are fulfilled. The bijection
(s,aM, ... a") = (s a,w)

is fully described and is completely reversible. Identity (10.2.1) is then estab-
lished. m
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ExampPLE 10.2.2. Illustrate the previous construction with an example. Start
with the sequence (s,a(!), ..., a(") defined by r = 3; a)) = 6,5,1,1,0,0; al® =
5,4,1,1; a® = 3,1 and s = 7. The rearrangement of the matrix

651100541131
111111222233

as in (10.2.3) yields

655431111100
112231122311

Hence
v=6,5,5,4,3,1,1,1,1,1,0,0;
w=1,1,2,2,3,1,1,2,2,3,1,1;
2 =2,2,2,221,1,1,1,1,0,0;
a=4,3,3,2,1,0,0,0,0,0,0,0;
desw = 2; s’ =s—desw =5.
Therefore

a® +a® +a® =6+5+1+1+5+4+1+1+3+1=28
= |lal| + majw = (4 + 3+ 3 +2+ 1) + (5 + 10) = 28.

If uy,us,...,u, are r commuting variables, it is convenient to use the no-
tations u¢ = uilu? cooubrand (W5q)s41 = (U13Q)s+1 - (Ur5Q)sy1. Below the
summations of the form ) are extended to all sequences ¢ = (¢1,...,¢,) of r

nonnegative integers, including the null sequence.
Form the following factorial generating function

Alt,q; Ac(t 10.2.8
e Z 0 tl])1+\c|| ( )

for the polynomials A¢(t,q). It follows from (10.2.1) that

At g:u Ztsz {014—3]“_[@:8}

§>0 c
s e |C1 + s er | Cr + s
_gt (Z { s })(;ur{ s ])’
so that by (10.1.9)
At,q;u) = ! (10.2.9)

>0 (ll; q)s+1 -

Conversely, it is clear that (10.2.9) implies (10.2.1). We then have two ways
for expressing the polynomials A.(t,q). In the next section we will see another
expression for those polynomials by means of a recurrence relation.
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10.3. The insertion technique

When deriving a recurrence relation for generating polynomials over permuta-
tion groups of order n = 1,2,..., the insertion technique is of frequent use:
starting with a permutation of order n we study the modification brought to
the underlying statistic when the letter (n + 1) is inserted into the (n + 1) slots
of the permutation. With words with repetitions some transformations called
word marking in the sequel must be made on the initial word.

Write
Aclt,g) =Y Aes(@)t?, (10.3.1)

§>0

so that Ac 5(g) is the generating polynomial for the words w € R(c) such that
desw = s by the major index. It will be convenient to use the notations [s]; =
14+g+¢*+---+¢ tande+1; = (c1,...,¢j+1,...,¢.) foreach j = 1,2,...,r
and each sequence ¢ = (¢, ¢, ..., ¢p).

PrOPOSITION 10.3.1. With ||c|| = ¢1 + -+ ¢ and 1 < j < r the following
relations hold

(1 - qu+1)Ac+1j (t, q) =
(1 —tg" Tl Ae(t, q) — ¢ (1 — ) Ae(tq, q); (10.3.2)

[Cj + l]ch-i-lj,s(Q) = .
e + 1+ 8]y Ac.o(@) + a1+ llell = 5 — cj]y Acsoi(a). (10.3.3)

Proof. The latter identity is equivalent to the former one, so that only (10.3.4)
is to be proved. By Theorem 10.2.1 this relation is equivalent to the relation
formed when j is replaced by any integer in {1,...,r }. It is convenient to prove
the relation for j = 1 which reads

(I4+qg+-+¢")Act1,5(q) =
(T4 g+ +¢"T)Acs(q) + (T 4+ -+ ¢l A ;1 (g). (10.3.4)

Consider the set R*(c + 11,s) of 1-marked words, i.e., rearrangements w*
of 19+ || r¢r with s descents such that exactly one letter equal to 1 has been
marked. Each word w € R(c+1;) that has s descents gives rise to ¢; +1 marked
words w(®, ..., w(°!), Define

maj* w® = majw + ny,

where n; is the number of letters equal to 1 to the right of the marked 1. Then
clearly

c1
Zmaj*w(i) =(14+qg+ - +¢*)majw.
i=0

Hence
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A+g+-+¢) A, sl = Y, ™
wER*(c+11,s)

Let m = ||c|| and let the word w = z1@2 .. .z, € R(c) have s descents. Say
that w has m + 1 slots x;x;11, 1 =0,...,m (where zo = 0 and ,,+1 = 0o by
convention). Call the slot z;z;y1 green if either z;z;;, is a descent, z; = 1,
or i = 0. Call the other slots red. Then there are 1 + s + ¢; green slots and
m — s — ¢y red slots. Label the green slots 0,1,...,¢; + s from right to left, and
label the red slots ¢; + s+ 1,...,m from left to right.

For example, with = 3, the word w = 2,2, 1,3, 2,1, 2, 3, 3 has three descents
and ten slots. As ¢; = 2, there are eight green slots and two red slots, labelled
as follows

slot 0221|321 ]2]3]3]
label 5 6 4 3 2 107 8 9

Denote by w'? the word obtained from w by inserting a marked 1 into the
i-th slot. Then it may be verified that

, desw, ifi <ep+s;
desw® = { 7Y nrs C.l § (10.3.5)
desw + 1, otherwise.
maj* w? = majw + i. (10.3.6)

ExAMPLE 10.3.2. Consider the above word w. The following table shows the
values of “des” and “maj*” on w”. Descents are indicated by —~ and the
marked 1 is written in boldface.

i w® des w(® maj* w(?
0 2 271 372711 2 3 3 3 11
1 2 271 372711 2 3 3 3 12
2 2 271 371 271 2 3 3 3 13
3 2 2711 37271 2 3 3 3 14
4 2 271 1 37271 2 3 3 3 15
5 1 2 271 37271 2 3 3 3 16
6 271 271 37271 2 3 3 4 17
7 2 271 37271 271 3 3 4 18
8 2 271 37271 2 371 3 4 19
9 2 271 37271 2 3 371 4 20

So each word w € R(c) with s descents and majw = n gives rise to ¢; + s+ 1
marked words in R*(c + 14, s) with maj* equal to n,n+ 1,...,n+ ¢; + s; and
to m — s — ¢; marked words in R*(c+ 11, s+ 1) with maj* equal ton +c¢; + s+
1,...,n+m. Hence a word w in R(c) with s—1 descents gives rise to m—s+1—c¢;
marked words in R*(c+ 11, s) with maj* equal to majw+c¢; +s,...,majw+m.
This now proves relation (3.4). n
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10.4. The (t,q)-factorial generating functions

In the previous section we have seen that formulas (10.2.1) and (10.2.9) im-
plied each other. The purpose of this section is to show that the recurrence
formula (10.3.2) is also equivalent to (10.2.1) and (10.2.9). This is achieved by
a manipulation of g-series we shall describe in full details.

As defined in (10.2.8) consider the factorial generating function

A(t,q;U)ZZ(

— (5D 14

C

Ac(t,q) (10.4.1)

and consider the partial ¢g-difference
Du,« = A(t)(I;ula N )ur) - A(t7 q; Uy, ... >ur71;uTQ)'

Directly from (10.4.1) we obtain

Z( +1) uc+1r ( )
D, = 1—q¢" ") ——Act1, (g

(t; ‘Z)2+\|c||

lell+1) 1 ucth
= 1—tg"® Ac( ¢ (1 —t)————Ac(tq, q).
Z (t Q)2+\| I Z (t Q)2+|ICH
Now use the recurrence relation (10.3.2). We get
uc+1,, uc—i—lr
(1= tqloH) ————Ac(t,q) =Y ————Ac(t,q)
zc: (t; Qa4 el zc: (t D14
= u,A(t, ¢ u,)
and
c+1, c+1, cr+1
ot u B u q
¢ (L= t)———Ac(tg,q) = ) 7 Ac(tg, )
EC: ()24 je) Z (g 1+ el
= uTqA(tqa g Uty - .., Upr—-1,Urq, )
Hence
A(ta q; 11) - A(t) q,Ury .., Upr—1,Urq, )
= uA(t, ¢;u) — urqA(tq, ¢ ur, - .. Up—1, Upq, ). (10.4.2)

The (partial) g-difference equation with respect to each u; (i = 1,...,r) has the
form

A(tvq;u) - A(t)Q;ula"'aui(Iw":ur)
= UZA(t7 q; ll) - uqu(tq> q; UL, ..., Uiq, . .. )ur)' (1043)
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Now let
Alt,gu) = Y #°Gi(u,q).

§>0

From (10.4.3) we get

Zts(l - ui)Gs(u)q) = Zts(l - uiqSJrl)Gs(ul) s Uig, - '7u7‘;q)'

s>0 s>0
Taking the coefficient of ¢* in both members yields the relation

1 gt

Gs(ua q) - Gs(uly'-')uiq)'-')uTHQ): (1044)

].—’U,i

fori=1,...,r. Now put
Fy(u,q) = Gs(u,q)(1;q)s41- (10.4.5)
From equation (10.4.4) we deduce that fori=1,...,r
Fs(u,q) = Fs(u1, .-, uiG,y -« -, Up, q). (10.4.6)

But F;(u,q) can be expressed as Fs(u,q) = Y u®F,(g), where F;(q) is a

power series in non-negative powers of ¢q. Fix ¢ and let a be a non-zero compo-
nent of c. Then relation (10.4.6) implies that Fsc(¢) = ¢*Fs.c(q). Therefore,
F;c(g) = 0. Hence Fy(u,q) = Fs(q). It remains to evaluate F; o(g). But from
(10.4.5)

= Gy, q)(wig)us | _ (= Ga(0,0) =1,

=0

s _ IO T s _ 1
as got Ga(0.) = Alt,050) = - §t - Thus Gy(,q) = s
by (10.4.5). This proves identity (10.2.9). Conversely showing that (10.2.9) =
(10.3.2) is much simpler, for (10.2.9) implies (10.4.3) in an easy manner and from
(10.4.3) the recurrence relation (10.3.2) can be reached without any difficulty.

10.5. Words and biwords

The rest of this chapter is devoted to the construction of a class of bijections on
each class R(c) based on specific commutation rules. We will see that by means
of the so-called Cartier-Foata rule and the contextual rule two bijections ¢ and ®
can be constructed having properties (10.0.2) and (10.0.3), respectively.

Keep the same alphabet X = {1,2,...,r}. A biword is an ordered pair of
words of the same length, written as a = (h,b) (“h” stands for “high” and “b”

for “bottom”) or as
o R\ _ ([ hihs...hpy
AL )T bbby )
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For easy reference we shall sometimes indicate the places 1, 2, ... , m of the
letters on the top of the biword:

id 1 2...m
h{=/|h hy...
b bi by ... by

The word h (resp. b) is the top (resp. bottom) word of the biword (h,b). Each
biword (%) can also be seen as a word whose letters are the biletters (’;11), e

(2“") The integer m is the length of the biword w. A triple (h,b;i) where i is
an integer satisfying 1 < ¢ < m — 1 is called a pointed biword. When h and b
are rearrangements of each other, the biword (h,b) is said to be a circuit.

Two classes of circuits will play a special role. First, we introduce the stan-

dard circuits T'(b) which are circuits of the form (Z), where b is the nondecreasing

rearrangement of the word b with respect to the standard ordering. Clearly I'
maps each word onto a standard circuit in a bijective manner.

The second class of circuits is defined as follows. A nonempty word b =
bmbi ... by—2by,—1 is said to be dominated, if by, > b1, by, > bay ... by > b1
The right to left cyclic shift of b is defined to be the word 6b = b1bs ... _1by,.
A biword of the form (Jbb) with b dominated is called a dominated cycle.

As it is known or easily verified, each word b is the juxtaposition product

u'u? ... of dominated words whose first letters pre(u'), pre(u?), ... are in non-
decreasing order:

pre(u') < pre(u®) < --- (10.5.1)
That factorization, called the increasing factorization of b, is unique.

Given the increasing factorization u'u?... of a word b, we can form the
juxtaposition product
dul du? ...
A(b) = (ul w2 (10.5.2)

of the dominated cycles. Clearly A maps each word onto a product of dominated
cycles satisfying inequalities (10.5.1), in a bijective manner. Such a product,
written as a biword (10.5.2), will be called a well-factorized circuit.

ExampLE 10.5.1. Consider the word b = 2,2,1,3,5,3,4,5,1. The standard
circuit associated with b reads

112233455
F(b)_<221353451>'

It has an increasing factorization given by: 2|21|3|534|51, so that the cor-
responding well-factorized circuit reads:

212 3 345 15
A(b)"<221 353451)'
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As will be seen the next bijections on words can be viewed as composition
products
b— L) — Ae) — ¢,

where the mapping T'(b) — A(c) will be described as a sequence of commutations
on circuits.

10.6. Commutations

Suppose given a four-variable Boolean function Q(z,y;z,t) (also written as

Q(m’ii)) defined on quadruples of letters in X. The commutation “Com”
z

Y

induced by the Boolean function Q(z,y;z,t) is defined to be a mapping that
maps each pointed biword (h,b;7) onto a biword (h',d") = Com(h, b;i) with the
following properties: if

B\ (hahy.. W\ (Wb H,
<b>_<b1b2...bm> and (b’>_<b’1b’2...b;n, !

(CO) m' =m;

then

(C1) hj = hy, b = b; for every j #i,i+ 1;

7 g
(C2) hj,, = hi, hi = hiy1 (the i-th and (i + 1)-st letters of the top word are

transposed);

(C3) b; = bl and b;+1 = bi+1 if Q(h“ hi+1; bi, bi+1) true; b; = bi+1 and b;+1 = bl
if Q(hl, hi+1; bi, bi+1) false.

We can also describe the commutation by the following pair of mappings

h=hy... hi_1hihi+1hi+2 R h = hy.. .hi_lhi+1hihi+2 L hm;
b=2b;.. -biflbibi+1bi+2 by b = by...b; thi+2 . ..bm;

where either z = b;, t = b1 if Q(hi, hit1;bi,biq1) true, or z = bjgq, t = b; if
Q(hiyhiy1;bi,biy1) false.

DEFINITION 10.6.1. A Boolean function Q(xz,y; z,t) is said to be bi-symmetric
if it is symmetric in the two sets of parameters {z,y}, {z,t}.

LEMMA 10.6.2. The commutation “Com” induced by a bi-symmetric Boolean
function Q(z,y;z,t) is involutive, i.e., if (h',b") = Com(h,b;i), then (h,b) =
Com(h',b';1).
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The proof of the lemma is a simple verification and will be omitted. In the
rest of the chapter we will assume that all the four-variable Boolean functions
Q(z,y; z,t) are bi-symmetric.

Two extreme cases are worth being mentioned, when @ is the Boolean
function Qirue “always true” (resp. Qrase “always false”). The commutation
Comyyye, associated with Qtrue, permutes only the i-th and (i + 1)-st letters of
the top word b, while Comygase, associated with Qfase, permutes the i-th and
(i + 1)-st biletters of the biword (h,b).

Sorting a biword is defined as follows. Again consider a biword (h,b) of
length m and let (h',0) = Com(h,b;i) with 1 <i<m—-1. If1<j<m-—1,
we can form the pointed biword (h',d';j) and further apply the commutation
“Com” to (h',b'; j). We obtain the biword Com(h',b'; j) = Com(Com(h, b;);5),
we shall denote by Com(h,b;i,j). By induction Com(h,b;i1,...,i,) can be
defined, where (i1, ...,iy,) is a given sequence of integers less than m.

As each commutation always permutes two adjacent letters within the top
word (condition (C2)), we can transform each biword (h, b) into a biword (h', ")
whose top word h' is non-decreasing by applying a sequence of commutations.
We can also say that for each biword (h,b) there exists a sequence (iy,...,iy,)
of integers such that the top word in the resulting biword Com(h,b;i1,...,iy,)
is non-decreasing. Such a biword is called a minimal biword and the sequence
(i1y...,0n) a commutation sequence.

When using the commutations Comy;,e or Comg,jse we always reach the same
minimal biword, but the commutation sequence is not unique. With an arbi-
trary commutation “Com” neither the minimal biword, nor the commutation
sequence are necessarily unique. We then define a particular commutation se-
quence (i1, . ..,iy,) called the minimal sequence by the following two conditions:

(i) it is of minimum length;
(ii) it is minimal with respect to the lexicographic order.

Clearly the minimal sequence is uniquely defined by those two conditions and
depends only on the top word A in (h,b). The minimal biword derived from
(h,b) by using the minimal sequence is called the straightening of the biword
(h,b). The derivation is described in the following algorithm SORTB.

Algorithm SORTB: sorting a biword: Given a biword (h,b) and a com-
mutation “Com” the following algorithm transforms (h, b) into its straightening
(W', 0.

Prototype (h',b') := SORTB(h, b, Com).
(1) Let (h',b") := (h,b).
(2) If A’ is non-decreasing, RETURN (h',b’).

(3) Else, let j be the smallest integer such that h'(j) > h'(j + 1). Then let
(W',b") := Com(h',b'; 5). Go to (2).
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ExXAMPLE 10.6.3. Consider the biword

id 123456789
h|=1212334515
b 221353451

The sequence of the indices j that occur in Algorithm SORTB applied to the
biword is:
1, that transforms A/ into 1,2,2,3,3,4,5,1,5

7, ibid. 1,2,2,3,3.4,1.5,5
6, ibid. 1,2,2,3,3,1,4,5,5
5, ibid. 1,2,2,3,1,3,4,5,5
4, ibid. 1,2,2,1,3,3,4,5,5
3, ibid. 1,2,1,2,3,3,4,5,5
2, ibid. 1,1,2,2,3,3,4,5,5

so that the minimal sequence is: 1,7,6,5,4,3,2, and accordingly the final word A/
is 1,1,2,2,3,3,4,5,5. Notice that the final word b’ depends on the commutation
rule Com.

10.7. The two commutations

We shall introduce two commutations associated with two specific Boolean func-
tions Q.

7.1. The Cartier-Foata commutation. We denote by Comc g the commuta-
tion induced by the following Boolean function Qcp:

z,
Q0F< Y
z

t) true if and only if z =y. (10.7.1)

7.2. The contextual commutation. For each letter x let o7 = x + % and
denote by Compy the commutation induced by the following Boolean function

Qu:

Qu <Z’ ZZ> true iff (z —z)(z —yt)(t—at)(t —yT) > 0. (10.7.2)

)

Notice that both Qcr and Qg are bi-symmetric, so that Q% = Q% =
the identity map.

The second commutation can also be defined by means of the following
“cyclic intervals.” Place the r elements 1,2,...,z, (z +1),...,(r —1),r on a
circle or on a square (!) counterclockwise and place a bracket on each of those
elements as shown in Fig. 10.1. For z,y € X (z # y) the cyclic interval [z, y]
is the subset of all the elements that lie between x and y when the circle is
read counterclockwise. The brackets (in the French notation) indicate if the
extremities of the interval are to be included or not.

For instance, suppose 1 < z < r. Then [1,z] = {2,...,z} (the origin 1
excluded, but the end z included), while |z,1] = {z +1,...,r,1} (z excluded
but 1 included); finally, let [z, 2] = 0.
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1 rm—mr
2 1 (T‘—].)
T m (CU—l—l)

Figure 10.1. Cyclic Interval

T,y

ProPosITION 10.7.1. The Boolean function QH<
2,

) is true if and only if
both z,t are in ]]a:, y]] or neither in ]]a:, y]]

The proof is a lengthy but easy verification and is omitted. Notice that
condition (10.7.2) is efficient in programming while the other condition involving
cyclic intervals is more adapted for human beings!

10.8. The main algorithm

It is denoted by T and is defined for any Boolean function ). Let Com be the
commutation induced by . Then T transforms each word b into a rearrange-
ment c¢ of b.

Prototype ¢ := T(b, Com).

(1) Let h be the nondecreasing rearrangement of b. Form the standard circuit

() = (h,b):
id 1 2---m
h|=1hthyhyl,
b by by -+ by

let ¢ := b and a be the empty cycle a =

(2a) If all the places 1,2, -- -, m occur in a, RETURN ¢ (the juxtaposition product
of the bottom words in a.)

(2b) Else, let D be the greatest place not occurring in «.

(2c) Let M be the greatest letter in h not in «, so that hp = M and the initial
biword has been changed into:
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«
id * *
h| =%
c * - *

(3a) Let B :=cp.

(3b) If B = M, terminate the dominated cycle [ - M | and add it to the
*
M

] a. Go to (2a).

*
left of «, so that the new a reads { EP

(3c) Else, look for the greatest place j < D — 1 such that B = hj; in short

If < D — 2, apply the commutation:
(hac) = Com(hac;jvj + ]-7 T >D - 2)7

so that hp_; = B after running the commutation; in short:

id j--D—-1D-- % *
h| = - B x.-- M *
c * B * *

(3d) Let D :=D — 1 and go to (3a).

We can verify that each step in the previous algorithm is feasible. For exam-
ple, the place j in step (3c) is well-defined: at this stage (") is the product of the

left factor (in square brackets) [g:] by a and k' is necessarily a rearrangement
of ¢'.

Define the two transformations:
¢(b) = T(b,Com¢cr) and @(b) = T (b, Compy). (10.8.1)
ExampLE 10.8.1. Consider the word b = 2,1,2,3,3,5,4,5,1 and the circuit

[id‘| [123456789]
I(b)=|h|=1112233455
[bJ [212335451J
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and calculate the image of b under ¢ and ®.
For the first transformation we easily obtain

id 123456789
hlm |234532115],
¢ 234553211

so that ¢ = ¢(b) =234553211.
For the second we indicate all the commutations needed in bold-face:

{h] -112233455] {121233455] {122133455}

b 1212335451 221335451 221335451
H'122313455] {122331455]H{122334155}
1221335451 221353451 221353451
H'122334515} [122334515]
12213534 51 2213 534 51
H'122 3 345 11 [212 3 345 11
1221 3 534 51 2 21 353451

so that ¢ = ®(b) =221353451.

10.9. The inverse of the algorithm

Given a commutation Com, the following algorithm denoted by T~ transforms
a word ¢ into a word b such that b = T~!(c, Com).

Prototype b := T~ (c, Com).
(1) Leti:=1, S :=¢y;
(2a) If i = length(c), let h; :== S, (h,b) := SORTB(h, ¢, Com). RETURN b.
(2b) Else, let B :=¢;41.
(2¢) If B> S, let h; :=S, S := B. Else, let h; := B.
(3) Let i:=i+ 1. Go to (2a).

Now examine algorithm T. Before returning ¢ in step (2a) the algorithm
provides the juxtaposition product a = y'42 ... of cycles. Let u', u?, ... be the
bottom words of those cycles and let pre(ul), pre(u?), ... be the first letters of
those bottom words. Steps (2¢) and (3b) say that each cycle v* was terminated
as soon as pre(u') was greater than all the other letters in the cycle. Accordingly,
all the cycles 7 are dominated. Furthermore, pre(u!) < pre(u?) < ---

Thus u'wu? ... is the increasing factorization of ¢ (in the terminology of sec-

15,2
tion 6), while a = 442 ... = 6:;1 (ZLQ . ) is the increasing product of domi-
nated cycles, i.e., « is equal to the well-factorized circuit A(c). We can say that
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the algorithm T maps b onto I'(b), then transforms each standard circuit T'(b)
into a well-factorized circuit A(c), the word ¢ being a rearrangement of b. Let
U be the mapping U : ['(b) — A(c), so that T is the composition product

b T(B) S Ale) > ¢ (10.9.1)

As each commutation applied to a pointed biword is involutive, U and therefore
T are bijective.

Further examine Algorithm T~! and let u'u?--- be the increasing factor-
ization of ¢ as a product of dominated words. Once we have reached step (2a),
verified that the test i = length(c) was positive and executed h; := S, the
biword (h, ¢) is exactly the well-factorized circuit

h dul du? ...
Ale) = <c> o <u1 u? ) '
Thus Algorithm T~! first builds up the well-factorized circuit A(c) and applies
algorithm SORTB to A(c) to produce a standard circuit I'(b), so that T~ may
be represented as the sequence

SORTB
—

¢ Ac) T(b) - b. (10.9.2)

Again as each local commutation applied to a pointed biword is involutive, T~!
is a bijection.

Finally, to prove that T and T~ are inverse of each other, we simply examine
Algorithm T. The commutations are made only in steps (2c¢) and (3c). In both
steps the reverse operation can be written as

(h,c) := SORTB(h, ¢, Com).
We have then proved the following property

PROPERTY 10.9.1. Algorithms T and T~ ! are inverse of each other, i.e., for
each word b we have

(T (b, Com), Com) = T(T * (b, Com), Com) = b.

REMARK 10.9.2. Algorithms T and T~! are valid for each bi-symmetric Boo-
lean function (). However only the Cartier-Foata and the contextual commuta-
tions will be used to derive the next results on statistics on words.

10.10. Statistics on circuits

Let C(X) denote the set of all circuits. Remember that a circuit is a pair of
words o = (ZL), where h = y1y> ...y, and b = z125 ... 2, are rearrangements
of each other and & is not necessarily non-decreasing. Two circuits a and g are
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said to be H-equivalent, written a ~ [, if one can be obtained from the other
by a sequence of commutations Comp (see paragraphe 7.2).

The two statistics “des” and “maj” for each circuit a = (?) are defined
as follows. They depend only on the bottom word b. First let desa = desb.
Then the statistic “maj” is based on the notion of cyclic interval, as introduced
in section 10.7. Put z,,+; = oo (an auxiliary letter greater than every letter
of X). Then for each i = 1,2,...,m define ¢; to be the number of j such that
1<j<i-1andz; € |o;,zi11]. The sequence (qi,q2,...,qm) is said to be
the maj-coding of a. Define

maja=q1+q2+- -+ gm. (10.10.1)

Now given the commutation Compyg we can apply Algorithm SORTB of section
10.6 to each circuit . It produces a standard circuit 8 to which the rearrange-
ment U defined in (10.9.1) can be further applied to derive a well-factorized
circuit :

LI QAU (10.10.2)

Let ¥ denote the mapping « +— . Because of (10.9.1) and (10.9.2) we have
U(a) = a if « is well-factorized. In particular, ¥ is surjective.

THEOREM 10.10.1. There exists at most one bivariate statistic (f, g) defined
on C(X) having the following two properties:

(1) a~a' = (f,g)a=(fg)d;

(2) if a is well-factorized, then

(f,9) & = (des, maj) a. (10.10.3)

Proof. Both algorithms SORTB and U involve sequences of commutations Compgy,
so that if v = ¥(«), we have (f,9) a = (f,g) v = (des, maj) . "

Our next task is to give an explicit definition of the pair (f,g). For each
circuit a = (}) with A = y1y2...ym and b = z122...7,, define exc a to the
the number of integers i such that 1 <4i < m and z; > y;. For each place i
(1 < i < m) define p; to be the number of j such that 1 < j < i —1 and
x; € ]]a:i,yi]]. The sequence (p1,p2,-..,Pm) is said to be the den-coding of «.
Furthermore, define

dena=pi +p2+ -+ Pm- (10.10.4)

ExaMpPLE 10.10.2. The following circuit

id 123456789
a=|h|=1212334515
b’ 221353451

was already considered in Example 10.6.3. It has an excedance at places 2, 5, 8,
so that exca = 4. For its den-coding we first have py = p, = 0. As 2 € ]]1, 2]],
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we have p3 = 2. Then py = 0. As ]]5,3]] ={1,2,3}, ps = 4. Next ps = 0. Also
]]4,5]] = {5}, so that p; = 1 and ]]5,1]] = {1}, so that ps = 1. As ]]1,5]] =
{2,3,4,5}, we get pg = 7. Thusdena=0+0+24+0+4+0+1+1+7=15.

THEOREM 10.10.3. The pair (exc,den) is the unique bivariate statistic defined
on C(X) having properties (1) and (2) of Theorem 10.10.1.

Proof. Proving that a ~ o' = (exc,den) @ = (exc,den) o is lengthy but easy,
as the property is to be proved only when a and o' differ by a commutation
Comyp. The proof is omitted.

To show that (exc,den) a = (des,maj) a when « is well-factorized proceed
as follows.

s ... G011 Gixo ... G @ by ... . .
Let 2 il itz Bo%0) and (2 be two successive domi-
Qi ... G Qip1 ... Qp—1 Of by ...

nated cycles in the increasing factorization of «, so that

a:<...a2...ai+1ai+2... ar (a1 b2>

R ...in Qig1]--- Qg1 lag b1| ... )~

Inside each dominated cycle a pair like (a;, a;11) occurs horizontally and verti-
cally, so that there is a descent a;a;41 if and only if there is an excedance (“a“)
Furthermore, the letters in w to the left of a; that fall into the cyclic interval
]]ai,aiﬂ]] bring the same contribution to both maja and dena. If (aa“) is
the j-th biletter of o (when read from left to right), we have p; = ¢; in the
notations used in (10.10.4)) and (10.10.1).

At the end of a dominated cycle we have to compare the contributions of
the horizontal pair (ay,b;) with the contribution of the vertical pair (Z;) But
ar < a; < by by definition of the increasing factorization, so that (ax,a;) is
never an excedance and (a, by) never a descent.

Now if a; = by, the two cyclic intervals JJay, b1 ]| and JJax, a1 ] that serve in
the calculation of maja and den « are identical. If a; < by, there is no letter x
in w to the left of by such that a; < x < by. For any two sets A, B let A+ B
denote the union of A and B when the intersection A N B is empty. As

]]Gk,lh]] Z]]ak,al]] +{zr:a; <z <b},

there are as many letters to the left of aj falling into the interval ]]ak, bl]] as
letters falling into ]]ak, al]].

Suppose that a is of length m and take up again the notations of (10.1) and
(10.2). Tt remains to compare g,, and py,. Let (Y™) be the rightmost biletter
of a. The letter y,, is necessarily equal to the greatest letter occurring in w.
Hence the cyclic intervals ]]a:m, oo]] used for evaluating ¢,, and ]]xm,ym]] for
evaluating p,, are equal. [

As the transformation U is a sequence of commutations Comgy we have

(exc, den) a = (exc,den) U(a) = (des, maj) U(a). (10.10.5)
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The above development can be reproduced for the commutation Comgp.
However the proofs are far simpler. In the same manner, we can prove that the
statistic “exc” is the unique statistic having the following properties:

(1) a~a' (for Comerp) = exca = exca';
(2) if v is well-factorized, then exc a = des a.

Hence, if Comcp is used, we have

exca = excU(a) = desU(a). (10.10.6)

10.11. Statistics on words and equidistribution properties

To get the definitions of desw, majw, excw and den w for a word w we simply
form the standard circuit T'(w) and put

desw = desT'(w), majw = majl'(w),
excw = exc(w), denw = denT(w). (10.11.1)

The definitions given for des w and excw are identical with the definitions given
in the introduction. The definition of den w is new, while that of majw differs
from the definition given in the introduction. However we have the following
result.

THEOREM 10.11.1. The statistic majw given in (10.11.1) and the statistic
majw given in the introduction are identical.

This theorem is easy to prove by induction on the length of the word.

The excedance index of w is defined as the sum, excindexw, of all ¢ such that
i is an excedance in w. When a certain correcting term is added to excindexw,
we get the second definition of den w. To fully describe that correcting term we
need the further definitions. For each word w = z12> ... 2,, let

invw =#{1<i<j<m:z; >z},
imvw=#{1<i<j<m:z; >z} (10.11.2)

Now if excw = e, let iy < i < --- < i, be the increasing sequence of the
excedances of w and let j; < ja < -++ < jjm—e be the complementary sequence.
Form the two subwords

Excw = x4, x4, ... T, ; Nexcw = xj, Tj, ... Zj,, _.-
Then the Denert statistic of w is also defined to be

denw = excindexw + imv Excw + inv Nexcw. (10.11.3)
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THEOREM 10.11.2. For every word w the two definitions of denw occurring
in (10.11.1) and (10.11.3) are identical.

Surprisingly this theorem is not easy to prove, see the Notes below.

THEOREM 10.11.3. The transformations ¢ and ® defined in (10.8.1) have the
equidistribution properties

exc(w) = des ¢(w) and (exc,den)w = (des, maj) ®(w).

Proof. As shown in (10.8.1) both transformations ¢ and ® are defined by means

of the main algorithm T which itself is defined by the chain: b — I['(b) LA
A(e) = ¢ (see (10.9.1).)

If Comgp is used, then excT'(b) = desA(c) by (10.10.6). On the other
hand, excb = excT'(b) by (10.11.1) and des A(c) = desc, as the definition of
“des” depends only on the bottom word ¢ of the circuit. Thus excb = desc.

If Comy is used, then (exc,den)I'(b) = (des,maj) A(c) by (10.10.5). Also
(exc,den) b = (exc,den) I'(b) by (10.11.1) and (des,maj) A(c) = (des, maj)(c),
as the definition of (des,maj) depends only on the bottom word c¢. Hence
(exc,den) b = (des, maj)(c). "

ExampPLE 10.11.4. Again consider the word b = 2,1,2,3,3,5,4,5,1 and its

id 123456789
standard circuit I'(b) = | h | = |112233455]|. Then excb = 3. Using
b 212335451

the definition (10.11.3) for the Denert statistic we find: dend = (1 +4 + 6) +
imv(2,3,5) +inv(1,2,3,4,5,1) = 11 + 0 + 4 = 15.

The images ¢(b) = 2,3,4,5,5,3,2,1,1 and ®(b) = 2,2,1,3,5,3,4,5,1 have
been determined in Example 10.8.1. Observe that des¢(b) = 3 = excbh. The
word ®(b) has also three descents. Furthermore, its major index is equal to
2 +5+4 8 =15, so that (exc,den) b = (des, maj) ®(b) = (3, 15).

Problems

Section 10.1

oo .
10.1.1 (The g-binomial theorem). Using the notation (a;¢)s = [[ (1 — ag?)
the g-binomial theorem reads: j=0

,;)(q;q)nu T (W)

The symbols ¢ and u can be taken as complex numbers such that |g| < 1,
|u] < 1 or as variables. In the latter case the previous identity holds in
the algebra of formal power series in two variables with coefficients in
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a given ring. See Andrews 1976, Theorem 2.1 or Gasper and Rahman
1990, paragraphe 1.3. Consider the following special cases. For a = 0,

oo n 1
Z (q?tq) = w0 = e4(u) (the first g-exponential.)
n=0 ’ n ) oo

For v = —u/a, a — oo,
© q(g)fu,n
Z o = (—u; q)oo = E,4(u) (the second g-exponential.)
— (& )n

With a = ¢F*+1,

i[k;n}un:;

n—=0 (43 Qi+’

kow— —ug®,

— k
> qt®) [ ]U” = (—u; @)-
n=0 L
Extraction of coefficients of u™ in the next to the last identity gives

{k"’:n] — Z girttan

k>a1>>an>0

and with a = ¢~

and in the last one
¢(5) {k} — 3 gttan
n
k—1>a1>->an>0

This provides another proof of Proposition 10.1.1.

Section 10.2

10.2.1 For each Ferrers diagram A with m boxes (see section 6.1) and each

vector ¢ = (¢1,¢a,. . ., ¢,) of positive integers such that ¢; +co+- - -+¢, =
m let (A, c¢) denote the set of Young tableaus containing c¢; 1’s, c¢o
2’s, ... , ¢ r’s. Let o be a permutation of the set {1,2,...,r}. The
symmetry argument that is carried over the proof of Theorem 10.2.1 can
be used to construct a one-to-one correspondence between (A, ¢) and
K (A, o c). Proceed as follows. Let ¢ = (¢, - .-, ¢, Cia1,---,¢r) and ¢ =
(¢1y.--,Cit1,Ciy- - -, cr) differ only by a transposition of two adjacent
terms and consider a tableau T in K(A,c¢) in its planar representation
(as in section 6.1). Write all the pairs i,i + 1 in bold-face whenever
those two integers occur in the same column with (i + 1) just above i.
The remaining i’s and (i + 1)’s in 7 occur as horizontal blocks 7% 5
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10.2.2

10.2.3

10.2.4

(@ >0,b>0). We define a bijection T' — T of IC(A, ¢) onto K(A,c') b
replacing each block i® j® in T by i’ j* and rewriting the vertical pairs
i, + 1 in roman type. This argument provides another proof of the
symmetry of the Schur function (see section 6.4).

(The MacMahon Verfahren revisited). Let U = (S<,S<,L<,L<) be a
partition of the alphabet X = {1,...,r} such that ScUS< = {1,...,h}
(the small letters) and Lo U L< = {h + 1,...,7} (the large letters)
for a certain h (0 < h < r). Let w = z129...2,, be a word in the
alphabet and let x,,41 = h + % An integer i such that 1 < i < m
is said to be an U-descent in w, if either z; > x;11, or x; = ;41 and
z; € S<UL<. Let desy w (resp. majy; w) denote the number (resp. the
sum) of the U-descents in w. For each sequence ¢ = (¢q, ..., ¢, ) consider
the generating polynomial for the class R(c) by the pair (desU, maj),
e, AY(t,q) = >, t1®v v ¢mv™ (w € R(c)). The identity to be
proved reads

R W I m

s>0 ieSc i€S<
c+s—1
i€L< l€L<

and can be derived as follows. As in Section 10.2 the left-hand side is
equal to the sum of the series S ¢ +desv wollal+majy w oyer al] triples
(s';a,w). By using the last two identities of 10.1.1 the right-side is
equal to the sum of the series ) t* q”a(l)lH"'H'a(””, where each a(?)
(@in,-.-,aic) is a sequence of integers satisfying s > a;1 > ---
Gic; > 0,ifi € Sy s > a0 > - >a”l>0 ifieS<;8>a;1 >
-Zaiyci21,ifi€L<;32az71> >a,yc>11fz€L< The
bijection (s',a,w) — (s,a"),...,a(")) such that s = s’ + desy w and
lla|| + maj; w = [|a®M|| + -+ + [|a”]|| can be constructed by rewriting
the MacMahon Verfahren developed in Section 10.2 almost verbatim.
(See Foata and Krattenthaler 1995.)
The identity derived in 10.2.2 is equivalent to the following identity
between g-series

VIV I

IT (~uisa),,, '61;[ (—quisq),

€S< (3 <
) =) t* - =
(D14 el Z:O I (uisa),, l'L[ (qui; q),

IES< €L <

> oAl

(See Foata and Krattenthaler 1995.)
Write the previous identity as

ZAU —z:tsas

t Divlell 53
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and let

[T (—usq) . I1 (—quisq)

iESS ieLS

T (wisq), IT (quisq),

1ES« i€l <

w(u;q) =

The sequence (as(u;q)) (s > 0) converges to as(u;q) in the topology
of the formal power series in the variables uy, ... , u,. Let a_;(u;q) =
0; then the sequence (as(u;q) — as—1(u;q)) (s > 0) is summable of
sum aoo(u;q). As we have (1 — 1))  tPas(u;q) = > t° (as(u;q) —
as—1(u;q)), it makes sense to multiply the identity in 10.2.3 by (1 — ¢)
and make ¢ = 1. This yields

Cc

u u =a u, .
EC:AC (l’q)(q;q)”cu = oo (u;q)

(See Foata and Krattenthaler 1995.)

Section 10.3

10.3.1 Take up again the notations of 10.2.2 with the further assumption that
the subalphabets S< and L. are empty, so that {1,...,h} (resp. {(h+
1),...,7r}) is the set of small (resp. large) letters. With 1 < h < r
the following recurrence relations for the polynomials AY(t,q) can be
derived by using the insertion technique:

(1—g»t)AY (tq) = 1 —tg"TIel) AY (2, q) — ¢+ (1 — ) AY (tq, q);
(1—g= =AY, (t,q) = —(1—tg" TNy AY (2, q) — g~ (1~ 1) AY (tq, q).

(See Clarke and Foata 1995a.)
Section 10.4

10.4.1 With the specializations of 10.3.1 for U the identity written in 10.2.3

becomes
. 1_<[<( qui;q),
AU _ +1<i<r
Z (5 D 14le) Z:O <h(Ui%q)s+1
Z

The latter identity can be derived directly from the recurrence relations
in 10.3.1. (See Clarke and Foata 1995a.)

10.4.2 (g-Eulerian polynomials). With the specializations of 10.3.1 for U and
for ¢ = 1" the identity in 10.2.2 becomes

T AL () = )t ([s+ 1) " a " ([s])7"
(& Q)14 =
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10.4.3

10.4.4

Let A(t,q) = A%.(t,q) (0 < h <r) and form

r

r —
Az, yitq) =) <h>w’" Pyt ARt q).

h=0
Then
u" A (z,y;t,
S A S explu(ag (5], + ols + 1)),
r>0 qr—i-l s>0

For h = r the polynomial A (t,q) is the traditional g-Eulerian polyno-
mial for the symmetric group S, by the pair (des,maj). (See Carlitz
1975.)

(The t-extension of the g-evaluation of a tableau). With the notations
of Problem 6.5.1 let desT" be the number of the recoils of a tableau T'
of shape A with m boxes. The following identity is the t-extension of
the identity in 6.5.1, question 4):

Z tdequmaJT (tqm+12t sxlq,q, --,qk)'
TEeSTab(\) k>0

(See Désarménien and Foata 1985, theorem 4.1.)

(The Schur function method). Again let A.(t,q) = Adesmai(t q). To
each word w € R(c) there corresponds a unique pair of tableaus (P, Q)
such that ev(P) = c and @ is a standard tableau such that des w = des Q
and majw = maj @ (see Problem 6.5.1). Hence

ZA Z Z tdesQ majQ

t (t;
el q)1+“°” w el (@)
LYY Ly ma e
(#
< pi=lell P EDutien

:Zs)\ ul;"-y r) thks)\(]-aq>q2)"'7qk)v
A

k>0

by the definition of a Schur function (see Definition 6.4.1) and Prob-
lem 10.4.3. The last product is equal to > _o,t*/(u;q)s+1 by us-
ing the Cauchy identity (see Theorem 6.4.2) with the alphabets & «
{ui,...,u.} and n < {1,q,...,¢"*}. (See Foata 1995.)

Section 10.5+

The remaining problems refer to the last seven sections of this chapter and will
be numbered 10.5.n.
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10.5.1 (Euler-Mahonian statistics). As seen in Problem 10.4.2, the polyno-

mial A7(t,q) = Ai-(t,q) is the ¢-Eulerian polynomial that can be in-
terpreted as the generating function for the symmetric group S, by the
pair (des,maj). Let AL(t,q) = Y ,oq Al (q)t5. With ¢ = 1771, j =7,
¢ = 0 the recurrence relation (10.3.3) specializes into

Al (@) =1+l ATZ1 () + ¢° [r = sy AT 1,4 (a), (%)

for 1 < s < r —1 with the initial conditions A} (¢g) = 1 for all r > 0
and A7 ((¢) = 0 for s > r. The first values of the polynomials AJ ((q)
read:

s=10 1 2 3
r=0]|1
1)1
2|1 q
31 2q + 2¢° 7
411(3g+5¢%+3¢° | 3¢° +5¢* + 3¢° | ¢°

Let E = (E,) (r > 0) be a family of finite sets such that Card E, = r!
for every r > 0. A family (f,g) = (fr,g-) (r > 0) is said to be Euler-
Mahonian on E, if fo = go = 0, fi = g1 = 1 and if for every r > 2
both f, and g, are integral-valued functions defined on E, and there
exists a bijection 9, : (w',j) = w of E,_; x [0,7 — 1] onto E, having
the properties:

gr(w) = gr—1(w') +
f (’LU) _ {frl(’u}’), if 0 <j< frfl(’u}l); (**)
r o froa(@)+1, if frq(w)+1<j<r—1

Each pair (f,g,) is called a Fuler-Mahonian statistic on E,.

1) Let (f,g) be Euler-Mahonian on E and for every triple (r,s,l) let
A ¢, be the number of elements w € E, such that f.(w) = | and
gr(w) = s and form A (q) = >, A7, ¢'. Then the family (A7 (q))
satisfies the above recurrence relation (k).

2) A word w = 1 ...z, of length r is said to be subexcedent if its letters
are integral numbers and satisfy 0 < z; < i—1forall ¢ =1,... 7.
Denote by SE, the set of those words. Let the sum of w be defined by
sumw = x1 + - - - + z, and its Eulerian value, eul w, by: eul = 0 if w is
of length 1, and for r > 2

eulzy...xzp_1, if o, <eulxy...z,._1;

eulzy ...z, = .
eulzy...zp_1+1, ifz, >eulzy...z,_1 + 1.

Then the pair (sum,eul) is a Euler-Mahonian statistic on SE, for ev-
ery r > 0. The bijection ), is obvious to imagine.
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3) Let r > 2 and let w' = z125 ... 2,1 be a permutation of 12...(r—1)
having s descents. Let g = 0, ,, = 0o and for each i = 0,1,...,(r —1)
label the r slots z;z; 41 as follows: z,._1x, gets label 0, then reading the
permutation from right to left label 1,2,... s the s descents z; > ;1;
then reading from left to right label (s +1),...,r — 1 the (r — 1 — s)
non-descents x; < z;y1 (0 < i < r—2). If the slot z;x;4; gets label j
define ¢.(w',j) = x1 ... i rxiy1 ... ¢.—1. Then with (f, g) = (des, mayj)
the mapping 1, has the properties (#x), so that (des, maj) is a Euler-
Mahonian statistic on each permutation group S,. (see Carlitz 1954,
Rawlings 1981.)

4) Let r > 2 and let w' = 125 ... 2,1 be a permutation of 12...(r—1)
having s excedances. Let (z;, > --- > z;_) be the decreasing sequence
of the excedance values z > k and let (z;,,, < --- < x;,_,) be the
increasing sequence of the non-excedance values x; < k. By convention,
let x;, =r.

Define 9, (w,0) = z129 ... xpqr. H1<j<s(resp. s+1<j<r—1)
replace each letter z; in w' such that 1 < m < j (resp. such that
1 <m < s) by z;,_,, leave the other letters invariant and insert z;;
(resp. x;,) to the i;-th place in w'. Let w = ¢, (w’, j) be the permutation
thereby obtained.

For example, w' = 32541 has the s = 2 excedances 3 = 5 > 3,
1 = 3 > 1 (in decreasing order) and three non-excedances z5 =1 < 5,
x2 =2 < 2, 24 =4 <4 (in increasing order), so that (i1, i2,43,14,15) =
(3,1,5,2,4). With j = 1 we have i; = 3 and #3 = 5. To obtain
e(w', 1) replace x;, = 5 by z;, = 6, leave the other letters invariant
and insert x;; = 5 to the i;-th=3rd place. Thus vs(w’,1) =325641.
For j = 3 we have i; = 5 and 5 = 1. As j =3 > s = 2, replace
x;, = x3 by x; = 6, then x;, = x; = 3 by z;;, = 5, leave the other letters
invariant and insert z;, = x;, = x1 = 3 to the i3-th=>5-th place to yield
Ye(w',3) =526431.

With (f, g) = (exc,den) the mapping ¢, has the properties (xx), so that
(exc,den) is a Euler-Mahonian statistic on each permutation group S,.
(see Han 1990b.)

5) Let (f,g) be a Eulerian-Mahonian family on £ = (E,). For each
w € B (r>2)let Y7 (w) = ('), ¢;5 ') = (W, jr1), o,
Y3 (wT2) = (wrY jy) and j; = 0; the word ¥(w) = jijz-..Jr_14r
is a subexcedant word and ¥ is a bijection of E, onto SE, such that
f(w) = sum ¥(w) and g(w) = eul ¥(w). The bijection ¥ is called the
(f,9)-coding of E,..
Let ¥(qes,maj) (1€SP.  ¥(exc,den)) be the (des,maj)-coding (see ques-
tion 3)) (resp. the (exc,den)-coding (see question 4) of S,. Then
0= \I](:lts,maj) 0 U(eyc,den) 18 @ bijection of S, onto itself that satisfies
(exc,den) w = (des, maj) O(w). (see Han 1990b.)

10.5.2 With the assumptions of Problem 10.3.1 the alphabet X = {1,...,r} is
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split into two disjoint parts, the set S = {1,...,h} of the small letters
and L = {h+1,...,r}, the set of the large letters. An U-descent of
the word w = x; ...z, is an integer ¢ such that 1 < ¢ < m and either
x; > Tiv1, Or T; = ;01 € L (by convention, x,,11 = h+ %) Denote by
desy w (resp. majy w) the number (resp. the sum) of the U-descents
in w.

Now if 4192 ...ym is the nondecreasing rearrangement of the word w
let excy w be the number of ¢ such that x; > y;, or ©; = y; € L. The
definition of deny requires the introduction of three further statistics.
The U-excedance index of w is defined as the sum, excindexy w, of all ¢
such that i is an U-excedance in w. Also let

invpw=#{1<i<j<m:z; >zjorz; =x; >h+1}
+#{1<i<m:z; > h+ 1},
impw=#{1<i<j<m:z; >z;orz; =x; <h}

If excpw = e, let i1 < iy < -+ < i, be the increasing sequence of the
U-excedances of w and let j; < j2 < --- < jm—e be the complementary
sequence. Form the two subwords Excy w = x;, %4, ... 2;,, Nexcyw =
Tj, Tjy ... Tj, .. Then the U-Denert statistic, deny w, of w is defined
to be

deny w = excindexy w + imvy Excy w + invy Nexcy w.

When the set L of large letters is empty, all the statistics without any
subscript U that were defined in the chapter are recovered.

The algorithm T described in section 10.8 can be adequately modified
to make up a bijection ® of each rearrangement class R(c) onto itself
having the property

(excy, deny) w = (desy, majyr) (w)

for every word w in R(c). Thus the generating polynomial for R(c) by
the pair (excy,deng) is the polynomial AY(t,q) whose factorial gener-
ating polynomial is shown in Problem 10.4.1. (See Foata and Han 1998
for the details of the construction of ®, see Clarke and Foata 1994 for
an earlier construction and Han 1995 for another equivalent definition
for deny.)

In section 10.10 it is proved that if @ = (h,b) and o' = (h',b") are
H-equivalent, then (exc,den)a = (exc,den)a’. The converse is true
whenever the words h, h', b, b’ are words without repetitions. (See
Clarke 1997.)

With his treatise on Combinatory Analysis and his numerous papers MacMa-
hon (1915, 1978) may be regarded as the initiator of the study of permutation
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statistics that includes methods for deriving analytical expressions for generat-
ing functions. In particular, he made a clever use of his Master Theorem (see
MacMahon 1915, p. 97) that allowed him to show that the generating polyno-
mials for each rearrangement class by the number of descents “des” and by the
number of excedances “exc” were equal, so that “des” and “exc” are equidis-
tributed on every rearrangement class. Back in the sixties, as initiated by the
late Schiitzenberger, it was natural to prove such equidistribution properties in
a bijective manner. The transformation ¢ that satisfies (10.0.2) was constructed
in Foata 1965. A further presentation was made in Knuth 1973, p. 24-29, a
more algebraic version appeared in Cartier and Foata 1969 and also in Lothaire
1983, chap. 10.

In studying the genus zeta function of local minimal hereditary orders Den-
ert (1990) introduced a new permutation statistic, that was later christened
“den”. She observed and conjectured that the generating polynomials for each
rearrangement class by the pairs (des,maj) and (exc,den) were equal. Foata
and Zeilberger (1990) proved the conjecture for permutations by making use of
the linear partial recurrence operator algebra. Then Han (1990a, 1990b) proved
the result combinatorially.

The definition of “den” for arbitrary words (with repetitions) is due to Han
(1994) who also constructed a bijection ® having property (10.0.3) for an arbi-
trary rearrangement class. In the case of permutations the equivalence between
the two definitions (10.11.1) and (10.11.3) of the Denert statistic was given in
Foata and Zeilberger 1990. Another proof appeared in Clarke 1995. The general
case for arbitrary words was derived by Han (1994), who also introduced the
definition (10.10.1) of “maj”, which was basic for constructing the bijection ®.

When the underlying alphabet X is partitioned into two subalphabets S
of small letters and L of large letters, the classical permutation statistics can
be further refined to take large inequalities into account (see Clarke and Foata
1994, 1995a, 1995b). Those statistics are denoted by desy, exc, ... (or by desy,
excy, ... in Problem 10.5.2). It is also possible to derive explicit formulas for
the generating polynomials by using the techniques developed in sections 10.2—
4. Furthermore, a bijection ®;, of each rearrangement class can be constructed
(see Clarke and Foata 1995a) such that (excy,deng)w = (desg,maj;) Pr(w)
holds identically. As shown in Foata and Han 1998 there is a common frame
for constructing all the bijections ¢, ®, ®; based on the concept of biword
commutation as presented in sections 10.5-8.

When ¢ = 1" the generating polynomial for (des, maj) is the celebrated g-
Eulerian polynomial A, (¢,q) whose first study goes back to Carlitz (1954, 1959,
1975). Also see Problem 10.5.1. There is another class of g-Eulerian polynomials
that can be introduced as generating functions for the permutation group by
the pair (des, inv), where “inv” is the number of inversions Stanley 1976.

The basic material on g-calculus can be found in Andrews 1976, Gasper and
Rahman 1990. The MacMahon Verfahren takes its rise in MacMahon 1913.
Formula (10.2.1) already appeared in MacMahon 1915, vol. 2, p. 211. Stanley
(1972) and his disciple Reiner (1993) have extended the MacMahon Verfahren
from the linear model used in this chapter and in Problem 10.2.2 to the poset
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environment and developed an adequate P-partition theory. There have been
several papers that propose various techniques to derive analytical expressions
for the permutation or word distributions, for example, Gessel 1977, Garsia
1979, Garsia and Gessel 1979, Gessel 1982, Zeilberger 1980 for the “commaed”
permutation technique; Fedou and Rawlings 1995 for an adjacency study; Foata
and Han 1997 for an iterative method. A systematic permutation statistic study
has been undertaken by Clarke, Steingrimsson, and Zeng (1997a, 1997b).



CHAPTER 11

Statistics on Permutations and
Words

11.0. Introduction

This chapter is devoted, as the previous one, to combinatorial properties of
permutations, considered as words. The starting point in this subject is the
bivalent status of permutations, which can be considered as products of cycles
as well as a sequence of the first n integers written is disorder.

The fundamental results concerning this area are presented in Chapter 10
of Lothaire 1983. They consist essentially in two transformations on words.
The first one (First Fundamental Transformation) is an encoding of the cy-
cle decomposition of a permutation. The second one (Second Fundamental
Transformation) accounts for a statistical property of permutations, namely the
equidistribution of the number of inversions and the inverse major index on
permutations with a given shape.

In the previous chapter (Chapter 10) some other properties are presented,
including basic facts on g-calculus and additional statistics on permutations.

In this chapter, we carry on with complements focused on two main aspects.
The first one is a shortcut avoiding the Second Fundamental Transformation by
a simple evaluation of determinants. The second one is the analogy between the
First Fundamental Transformation and the Lyndon factorization (the Gessel
Normalisation).

The organization of the chapter is the following: After some preliminaries,
Sections 11.2 provides a determinantal expression for the commutative image
of some sets of words. This expression is used in Sections 11.3 and 11.4, for
evaluating respectively the inverse major index and the number of inversions of
permutations with a given shape. In Section 11.5 the Gessel Normalisation is
introduced. In Section 11.6, it is then applied to evaluating the major index of
permutations with a given cycle structure.

11.1. Preliminaries

Let us recall some notations and preliminary results.

323



324 Statistics on Permutations and Words 11.1

In the sequel, [n] will denote the set of integers {1,...,n}. We shall also
use alphabets whose letters are the nonnegative integers. By Nj we mean the
alphabet {0,1,...%k} equipped with the natural ordering. By letting k tend
to infinity, we obtain the infinite alphabet N. Quite obviously, if £ < r, then
Ny C N,.. In that way, a word on NV}, is a finite sequence of nonnegative integers
which do not exceed k.

To each Nj one can associate the set X of commuting indeterminates
{zo,x1...21}. Given a word w = wyws...w, on Ny, its commutative im-
age is the commutative monomial GS(w) = @y, Ty, - - - Tqy,, - This definition can
be extended to a set of words. If A is such a set, its generating series GS(A)
is the sum of the commutative images of its elements. When A is infinite, so
is its generating series. This does not yield any problem of convergence. When
the number of letters (finite or infinite) is irrelevant, we shall simply write NV
for the alphabet and X for the associated indeterminates.

A particular—and fundamental-—example is the following. Let a and k be
integers. By W, (Vi) we denote the set of all nonincreasing words of length a
over the alphabet Nj. Its commutative image, denoted by S,(X}) is known as
the complete symmetric function.

A favorite operation for deriving generating functions is the substitution of
powers of a new indeterminate ¢ in the generating series.

First, recall the definition of the g-factorial (¢f. Chapter 10):

(@n=01-q)1=¢°)--(1=q"),

and define the Gaussian polynomial (or g-binomial) by

{Z] = (D)0 (D)1 (@) -

Substituting z; by ¢’ in generating series will provide generating functions
for various statistics on words or permutations. In that respect, we shall need
two preliminary results. The first one is a reformulation of Proposition 10.1.1.

ProrosITION 11.1.1. Let S,({1,q,¢%,...,4"}) be the result of the substitu-
tion of x; by ¢' in S,(X}), 0 <i < k. Then

Sa({l,q,¢% ..., ¢"}) = {a N k]

k

The next one is the limit of the former when & tends to infinity.

PROPOSITION 11.1.2. Let S,({1,q,q>,...}) be the result of the substitution of
z; by ¢ in So(Xn), i > 0. Then

Sa({l,0,4%,--.}) = 1/(q)a-
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The series S,({1,q,q>,...}) has a classical combinatorial interpretation. It
is the generating function of the number of partitions of integers in parts less
than a. A partition of an integer n is a nonincreasing sequence of positive
integers (the parts) whose sum is n. Removing any restriction on the size of the
parts yields the celebrated Euler generating function 1/(¢)s for the number of
partitions partitions.

Without the nonincreasing condition, the corresponding combinatorial ob-
ject is called a composition of the integer n. So it is a sequence of integers whose
sum is n.

We shall enumerate various statistics on permutations. Let us recall that a
permutation of [k] can be thought of either as a bijection from [k] onto itself or
as a word of length k with distinct letters in [n]. If 0 = 6(1)0(2)...0(k) is such
a permutation, an inversion of o is a pair (i,7) such that 1 <i < j < k and
o(i) > o(j). The number of inversions of ¢ will be denoted by inv o.

A descent of o is an index i, 1 <4 < k such that o(i) > o(i + 1). The set of
the descents of o, its descent set is denoted by DES . The sum of the elements
of this set is the so called major index, majo.

We say that i, 0 < i < k is a backstep of o when the letter i + 1 appears
on the left of ¢ in the word o. This condition is equivalent to saying that ¢ is a
descent of the inverse of . The set of the descents of ¢ is designated by BSo.
As for descents, we can sum all the backsteps of o to obtain imaj o, the inverse
magjor index of o.

11.2. Words with a given shape

Each word w = wiws - - - wy, can be uniquely factored as a product of maximal
nonincreasing words: w = ujus - - - ug, where each w; is nonincreasing, its last
letter being strictly smaller than the first letter of u;41. The respective lengths
ai, as, ...of uy, us, ...constitute a composition a of n. This composition is
called the shape of w.

EXAMPLE 11.2.1. Let w =102204751. Its shape is a = (2,3, 1,3).

Let (by < by < --- < by) a nondecreasing sequence of integers, N = (NN, C
Np, C -+ C Np, ) the sequence of corresponding alphabets and a a composition
of n. Let us consider the set W (a,N) consisting of the words w = ujus - - - ug
of shape a such that the factor u; contains only letters in Ny,.

Let us denote by S(a,X) the generating series of W (a, IN). If all alphabets
are equal to the same alphabet X, finite or infinite, we shall simplify the notation
in S(a, X). If furthermore a is reduced to a single integer a, we have S(a, X) =
S (X).

PROPOSITION 11.2.2. Let a = (a,as,...,a;) a shape, by < by < --- < by
and X = (X3, Xp,, ..., Xp,). Then S(a,X) = det(M), where M is the matrix
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M = (Mi,j){lgi,jgk} with
Sai+ai+1+"'+aj (Xbl) ifi < j;
M;;=<¢1 ifi=j+1, (11.2.1)
0 ifi >j+1.
Proof. Fully written, the matrix M is:

Sﬂ1 (Xb1) Sa1+ﬂ2 (Xb1) Sﬂ1+"'+ak—1(Xb1) Sﬂ1+"'+ak (Xb1)

1 Saz (Xb2) T Sﬂ2+"'+ak—1 (Xb2) Sﬂer"'Jrak (sz)
M = 0 1 U Sa3+"'+ak—1(Xb3) Sa3+"'+ak (sz)
0 0 1 Sar (Xb,)

The proof is by induction on the length k of the shape a of w.
If ¥ =1, Equation 11.2.1 is trivially the definition of S,(X). For a general
k, let us expand the determinant along its last row:

S(a,X) = S,, (X3, ) det(My) — det(M,), (11.2.2)

where M; consists of the first £k — 1 rows and columns of M and M5 is identical
to My, except for its last column, which consists of the first k& — 1 rows of the
last column of M, and so is:

Saitaipr+otan(Xp;)  for 1 <i <k,
By the recurrence hypothesis,
det(M;) = S(a1, X4) = S((ar, a2, .. ak-1), (Xpy, Xbgy oo, Xop_y)),
and
det(Mz) = S(az, Xy) = S((a1,az2,...,ak-2,a5-1 + ag), (Xp,, Xy, Xop_y))-

To the term S,, (X3, ) det(M7) of Equation 11.2.2 contribute exactly pairs of
words made of a word w' in W (a;,X;) and a nonincreasing word w" of length
ay, over the alphabet X, . Let w = w'w”. Then either w is an element of
W (a, X) if the last letter of w' is strictly smaller than the first letter of w”, or
it is an element of W (ay, X;) otherwise.

In the first case it contributes to S(a,X). In the latter case, it contributes
to S(az,X;) = det(Ms). This combinatorial interpretation yields precisely
Equation 11.2.2. [

11.3. Backsteps of permutations with a given shape

Let 0 = 0(1)0(2)...0(n) a permutation of [n]. Let a; be the first index such
that o(a1) > o(a1 +1). Let a; + as the second such index and, more generally,
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let a; + as + ---a; the i-th such index. (We suppose, by convention, that
o(n+1) = 0.) The sequence a = (a1, as,...,ax) is a composition of n called
the shape of o. If the permutation is considered as a word with distinct letters,
its shape as a word coincides with its shape as a permutation, provided that the
order is reversed. This apparent complication actually keep the results of the
next sections reasonably simple to state.

ExampLE 11.3.1. Let 0 =684593127. Its shape isa = (2, 3,1, 3).

Let w = wyws -+ - wy, be a word of shape a. On [n] define the total order <
by i < j iff w; > w; or w; = w; and i < j. Let o(i) be the rank of index i
according to this total order. This implies that i < j < o(i) < 0(j). Then o is
a permutation called the standard normalization of w.

Let ¢(w) be the pair (o, s) consisting of the standard normalization o of w
and of the nonincreasing reordering s of the letters of w. In the next theorem,
as well as in Theorem 11.6.1, we shall say that the nonincreasing sequence
s = s182...1s compatible with a set E of positive integers s; > s;4+1 whenever ¢
is an element of E.

THEOREM 11.3.2. Let a be a shape. Then ¢ is a bijection between the set
of words w of shape a and the set of pairs (o,s), where ¢ is a permutation of
shape a and s a nonincreasing sequence compatible with BS o.

Proof. 1t is clear that the shape of o and the shape of w are identical.

Suppose i = o(u) and i + 1 = o(v). Then o(u) < o(v) hence u < wv.
Then, from the very definition of <, we have w, > w,, which can also be
written wy-1(;) > we-1(;). Since the application which, to i, associates wq-1(;
is nonincreasing, it is the nonincreasing rearrangement of w. This means that
S; = ’w071(i) .

Suppose moreover that ¢ is a backstep of o, that is u > v. We already know
that u < v. Those last two conditions are compatible only if w, > w,, which is
the same as Wa—1(j) > We—1(;) O S; > Siq1.

Conversely, suppose we are given a pair (o, s) where s is compatible with
BSo. Let w the word of length n given by w, = s,(,).- Consider the order <
defined by u < v iff o(u) < o(v). We shall prove that this order is precisely
the same as the order < which has been defined earlier on w. This will prove
that ¢(w) = (o, s). To do so, suppose o(u) < o(v). Since s is nonincreasing, we
have s,(y) > $5(y) and so wy, > w,. Either w, > w,, which proves the point, or
Wy = Wy.

In this latter case we have s,(,) = S5(,). This implies (because s is com-
patible with BS o) that none of o(u), o(u) + 1, ..., o(v) — 1 is a backstep.
Hence

u=o0" (o) <o ou)+1)<--- <o (o) —1) <o (o(v) =v.

We have then proved that v < v and w, = w, imply v < v, which completes
the proof of the theorem. n
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EXAMPLE 11.3.3. Let w=102204751. Then ¢(w) = (0,s) where

0=684593127,
§=754221100.

The backsteps of o and the corresponding elements of s appear in boldface. It
can be noted that, although s; > so, the integer 1 is not a backstep of . The
shape of both w and o is (2,3,1, 3).

COROLLARY 11.3.4. Let a be a composition of n and A be a subset of [n — 1].
Denote by D 4(a) the number of permutations of n of shape a whose backsteps
are precisely the elements of A. Then

S(a,Xn)= Y. Da(a)) GS(s), (11.3.1)

AC[n—1]

where the second sum is over the set of all nonincreasing sequences s compatible
with A.

Proof. A word of shape a corresponds to a commutative monomial of S(a, Xy).
Applying the bijection ¢ of Proposition 11.3.2 and summing over subsets of
[n — 1] yields the proposition. n

It can be noted that the second sum in Corollary 11.3.4 is independent of
the shape a. As those sums are linearly independent, the numbers D 4(a) are
uniquely determined by S(a, Xy). See Problem 11.6.2 for a use of this property.

As a corollary, we shall now derive the enumeration of permutations with
shape a by imaj, by substituting successive powers ¢’ to the letters i.

COROLLARY 11.3.5. Let a be a composition of n. Then

> d™H7 = ()nS(a,{1,q,¢%, .. .}), (11.3.2)

a

where the sum is over the set of permutations of [n] of shape a.

Proof. Let A be a subset of [n —1] and s be a nonincreasing sequence compatible
with A. From s define a sequence d of nonnegative integers by

Sk — Sk+1 ifkg Aand 0 <k <n,
di = { sk —spe1 — Lif k € A, (11.3.3)
Sn if k =n.

The set of sequences d of length n consisting of nonnegative integers is in that
way in bijection with the set of nonincreasing sequences s of integers compatible
with A. This bijection depends on A.

Let A denote the sum of the elements of A. Substituting ¢’ to i transforms
GS(s) into ¢ to the power ), ., ,. sk Now, from Equation 11.3.3, one obtains

> sk= > kdp+TA.

1<k<n 1<k<n
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Therefore,

Z q81+sz+"'+8n — qEA Z qd1+2d2+"'+ndn_
s d

The latter sum is the generating series for partitions into positive parts not
greater than n, which is equal to 1/(q),. This, combined with Corollary 11.3.4
yields the conclusion. n

ExamMpPLE 11.3.6. In Example 11.3.3, we had

c=684593127,
s=754221100,

and BSo = {2,3,5,7}. The sequence d defined by Equation 11.3.3 is then
d=201000000,

corresponding to partition 123.

ProPOSITION 11.3.7. Let a = (a1, as,...,a) be a composition of n. Then
Yo @™ = (q)ndet(N). The sum is over the set of permutations of [n] of
shape a and N = (Ni,j){lgi,jgk} with

1/(@)(ai+ast-tay) i1 < 7,
L ifi=j+1, (11.3.4)
0 ifi>j+1.

Ni,j =

Proof. Apply Proposition 11.2.2 in the case when all alphabets X3, are equal
to Xy, then substitute ¢* to i. From Proposition 11.1.2, one obtains precisely
Formula 11.3.4. n

Using Proposition 11.3.7 one can obtain explicit expressions for the enumer-
ation of permutations of special shapes by imaj. This has been done for alter-
nating permutations and permutations with a given number of descents, thus
leading to g-analogues of tangent and secant numbers as well as g-analogues of
Eulerian polynomials. See Problems 11.3.2 and 11.3.3 for more specific details.

11.4. Inversions of permutations with a given shape

The inversions of a permutation can be conveniently taken care of by a simple
encoding with particular words.

Let o be a permutation of [n]. For 1 <i < n, let ¢; be the number of indices
j < i such that o(j) > o(i). The word £ = {145 --- ¢, will be called Lehmer
encoding of o.

ExAmPLE 11.4.1. To permutation

0c=684593127
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corresponds the Lehmer encoding
¢=002205662.

It can be noted that ¢ and ¢ have the same shape a = (2,3,1,3). This point
will be established in the next proposition.

PRrROPOSITION 11.4.2. The Lehmer encoding is a bijection between the set of
permutations of [n] and the set of words £ of length n such that 0 < £; <i—1
for 1 <4 < n. This bijection has the following properties:

(i) o and ¢ have the same shape,

(ii) The sum of the letters of £ is the number of inversions of o.

Proof. From the definition, it is clear that 0 < ¢; < i for 1 < ¢ < n. Proving
that the Lehmer encoding is a bijection is done by describing its reverse. This
is left as an elementary exercise (To start, observe that the position of 1 in o is
the greatest index i such that ¢; =i —1).

If (i + 1) < o(i) then for any j < i one has o(j) > o(i) = o(j) > o(i + 1).
Therefore £;41 > ¢;. Since ¢ is smaller than i + 1 and o(i) > o(i + 1), one has
in fact ¢;41 > ¢;. Conversely, if o(i + 1) > o(i) then for any j < ¢ one has
o(j) > o(i+1) = o(j) > o(i). Therefore £(i + 1) < £(i). This proves that o
and ¢ have the same shape.

The second assertion is obvious from the definition of the Lehmer encoding.

]

PropoOSITION 11.4.3. Let a = (a1, as,...,a;) be a shape, o be a permutation
of shape a and ¢ be the Lehmer encoding of o. Denote by N the sequence
(Noy Nays Naytass - -+ s Naytas+-+ar_y ). Lhen £ is an element of W(a,N). Fur-
thermore, the Lehmer encoding induces a bijection between the set of permu-
tations of shape a and W (a,N).

Proof. Let 0 < i < k and let r be 0 if ¢ = 0 and a; + as + --- + a; otherwise.
As /.1 <1 (general property of Lehmer codes) and ;11 > lpy0 > -+ -lyyq;,,
(because ¢ has shape a), it follows that, for r + 1 < j < r + a;4+1, one has
0 < ¢; < r. This implies that £ is in W(a, N).

The conditions on the alphabets ensure that every element of W(a,N) is
an admissible Lehmer encoding. The corresponding permutation has the same
shape a, which prove the bijection part of the proposition. [

Using the same arguments than at the end of Section 11.3, it is possible
to derive the enumeration of permutations of special shapes by number of in-
versions. This leads to the following theorem, which can also be proved using
Foata’s “Second Fundamental Transformation”. See Lothaire 1983.

THEOREM 11.4.4 (Foata-Schiitzenberger). Let a be a composition of n. Then,
for any integer m, the number of permutations of shape a having m inversions
is the same as the number of permutations of shape a having m backsteps.
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Proof. Proposition 11.3.7 gives a determinantal expression for the generating
polynomial of permutations of given shape by imaj. We shall establish a similar
expression for the generating polynomial of the same permutations by number
of inversions. Finally, we shall verify that both determinants are equal.

If ¢ is a permutation of shape a, its number of inversions inv ¢ is the sum of
the letters of £ (Proposition 11.4.2). This implies that the generating polynomial
>, ¢™7 is obtained by substituting ¢* to i in S(a,X), where X is defined in
Proposition 11.4.3.

We use the determinantal formula of Proposition 11.2.2 S(a, X) = det(M)
where, in this particular case:

Sai+ai+1+---+aj (Xa1+...+ai71) ifi<j,
M;,j=<1 ifi=j+1, (11.4.1)
0 ifi>j+ 1.

Proposition 11.1.1 implies that, when substituting ¢’ to 4 in the entries of
this determinant, its generic element becomes:

(q)a1+"'+aj/(q)ﬂ1+"'+ﬂi—1 (Q)ai+---+a]‘ if 4 < j:
1 ifi=75+1,
0 ifi>j+1.
We can then factor (¢)q,4...44; in column j and (q)gllJr___Jral,71 in row i.
Thus, the generating polynomial of permutations of shape a by number of
inversions ) _¢™' 7 is equal to

(@ art-ta;
11 # X det(((¢)ai+-+a;) {1<ij<h})s
1<i ik @i

with the conventions that the generic term of the determinant is 1ifi = j+ 1
and 0 if i > j + 1. After canceling we obtain

(Dar+-+ar, €1/ (@) ast-+a;) {1<i,j,<k} )

which, since a; + -+ - + ax = n, is Equation 11.3.4 of Proposition 11.3.7. L]

11.5. Lyndon factorization and cycles of permutations

Recall from Chapter 1, Section 1.2.1 that a Lyndon word of length n is a word
w = wyws - - - w, whose letters are nonnegative integers, which is strictly smaller
lexicographically than its conjugates. As a consequence, a Lyndon word is
primitive.

The following result, due to Lyndon, will play the role of the factorization
of Section 11.2.

THEOREM 11.5.1 (Lyndon). Any word w can be written uniquely as a nonin-
creasing product w = ujus - - - ug, of Lyndon words.
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The lengths of the Lyndon factors constitute a partition A of n, which will
be called the type of w.

ExAMPLE 11.5.2. The word w =210120101 of length 9 has the following
Lyndon factorization:
w=2 1 012 01 01

The type of w is the partition A = 32211 of 9.

The same Lyndon factorization can be performed on permutations (for the
same technical reasons as in Section 11.3, the order has to be reversed). Start
with a permutation 7 considered as the concatenation of its values. Its Lyndon
factorization (for the reverse order) is 7 = 6165 ...6;. Consider each Lyndon
word 6; as the sequence of the values of cyclic permutation. Finally, let o be
the product (in the symmetric group) of those cycles.

This transformation from 7 to ¢ is a bijection of the symmetric group onto
itself. Its inverse is known as Foata’s “first fundamental transformation”. In
the case of permutations, the first fundamental transformation can be easily
described: Start with a permutation o. Consider its decomposition as a product
of cycles. Write each cycle with its greatest value first. Finally, concatenate
those words in increasing order of their first element. The resulting word is 7.

If o is a permutation of [n], the multiset of the lengths of its cycles is a
partition of n, which will also be called the type of o. The type of a permutation
is characteristic of its conjugacy class in the symmetric group, but we shall not
use this property in the sequel.

ExAMPLE 11.5.3. Let
T=7(1)7(2)...7(9) =147328596.
As a word, its Lyndon factorization (for the reverse order) is
T=1 4 732 85 96.
Hence the resulting permutation o is the product of cycles
o= (1)(4)(732)(85)(96).

As a word,
oc=0(1)o(2)...0(9) =172489356.

We are now ready to describe the Gessel normalization of a word w, which
will play the same role for the cycle decomposition as the standard normalization
of Section 11.3 did for the shape.

Let w = wyws---w, be a word of length n and w = wujus---u, be its
Lyndon decomposition. Suppose that letter w; of w is in the Lyndon factor
Up = Wy Wy + - Wp,. Let p(i) = wjwiyq -+ - wp,u? be the infinite word obtained
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by writing the suffix of u, starting with w; and concatenating to it an infinite
number of copies of w,.. Then, we can define the total order < on [n] by

- e [ () > p(h), or
i< lﬁ{p(i) = p(j) and i < j. (11.5.1)

Let 7(i) be the rank of index ¢ according to this total order. Now apply to
7 the inverse of Foata’s first fundamental transformation to obtain ¢. This last
permutation is the Gessel normalization of w.

We shall need the following technical lemma to prove Proposition 11.5.5.

LEMMA 11.5.4. Let uw and v be two words such that lexicographically u >
v. Suppose that u is a Lyndon word. Then, as infinite words and for the
lexicographic order, u® > v*.

Proof. Let us say that u is strongly greater that v—which we write u > v—
when v > v and v is not a proper prefix of u. The following statement is easy
to prove: If u > v, then ux > vy for any words z and y.

Thus, if u > v, the lemma is true even if u is not a Lyndon word.

Suppose now that v is a proper prefix of u. We can factor u = vFu' for
some k > 1, where v is not a proper prefix of u’. (The case when ' is empty
is to be excluded, as u # v and u is Lyndon, hence primitive.) Then, being a
Lyndon word, w is strictly smaller than any of its proper suffixes (Lothairel,
Proposition 5.1.2), that is u < u'. As u > v by hypothesis, we have u' > v.
As v is not a proper prefix of v/, we have in fact v’ > v. Then u'u¥ > vov¥.
Multiplying on the left by v* yields u® > v*. "

ProprosITION 11.5.5. A word w and its Gessel normalization o have the same
type.

Proof. We shall prove that the Lyndon factorizations of w and that of permuta-
tion 7 have corresponding Lyndon factors of the same length. That will imply
the proposition since the factors of 7 correspond to the cycles of o.

Consider w = wuqus---ug. The factor u,, written as a concatenation of
letters, is equal to wy, wy, - - - w,,. Let ¢ be an index such that 1 < ¢ < rs. Then

p(i) = w; - - wp, uy.
Since u, is a Lyndon word, p(r1) < p(i) so that i < r; and, consequently,
7(ry) > 7(i). This proves that 7(ry) is strictly greater than any of the 7(i),
i=r+1,...,r5. So7(r1)T(ry + 1) ---7(rs) is eligible as a Lyndon factor of 7.
To finish the proof, we must show that the first letters of those potential
factors of 7 are increasing. Let u, = wy wy, -+ w,, and uy = wy wy, ---wy, be
two Lyndon factors of w such that r; < fi. Then, either u, = uy. In that case
p(r1) = p(f1) and r; < fi so ry < fi, hence 7(r1) < 7(f1), which is what is
expected. In the other case u, # uy. Then, for the lexicographic order u, > uy.
We can then apply Lemma 11.5.4 so that p(r1) = uy’ > p(f1) = u%. This implies



334 Statistics on Permutations and Words 11.6

that r; < fi which in turn implies that 7(r;) < 7(f1). This is exactly what was
needed to complete the proof. [

ExAMPLE 11.5.6. Let w = 210120101 as in Example 11.5.2. Its Lyndon
factorization is
w=2 1 012 01 O01.

For that w, we find:

p(1) = 222222, p(2) = 111111
p(3) = 012012. p(4) = 120120
p(5) = 201201 p(6) = 010101
p(7) = 101010 p(8) = 010101
p(9) = 101010

The order < on the indices is then:
1<5<4<2<7<9<3<6<8.

Consequently,
T=147328596,

which has the following Lyndon decomposition:
T=1 4 732 85 96.
As a product of cycles,
o = (1)(4)(732)(85)(96),
which, written as the sequence of its values is

0=172489356.

11.6. Major index of permutations with a given cyclic
type

In Section 11.5, a shape-preserving normalization was used to enumerate per-
mutations with a given shape by backsteps. In this section, the type-preserving
Gessel normalization will allow the same enumeration for permutations with a
given type by descents.

Let w be a word and ¢ (w) be the pair (o,s) consisting of the Gessel nor-
malization of o and of the nonincreasing reordering s of the letters of w.

THEOREM 11.6.1. Let A be a partition of n. Then 1 is a bijection between
the set of words w of type X\ and the set of pairs (o, s), where o is a permutation
of type A and s a nonincreasing sequence compatible with DES .
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Proof. We already know (Proposition 11.5.5) that w and o have the same type.
Suppose that i < j and call 771(i) = a and 771(j) = b. As 7(a) < 7(b),
we deduce from the definition of 7 that a < b and so p(a) > p(b). This latter
relation implies that the first letters of each infinite word also satisfy w, > wy.
We have then proved
P < J = We-1g) 2 We-1(jy.

As for Theorem 11.3.2, this proves that s(i) = w,-1(;.

To prove that s is compatible with DES o, we shall prove the (apparently)
more general result that if ¢ < j and (i) = a > o(j) = b, then s; > s;. We
already know that s(i) > s(j).

Let us suppose then that ¢ < j (that is a < b) and s; = s;. This is the
same as w, = wp. We also know that p(a) > p(b). But p(a) = wep(a) and
p(b) = wyp(b). As w, = wy, it follows that p(a) > p(b). The index @ is the index
of the element immediately following ¢ cyclically in the Lyndon factor to which
it belongs, so that 7(a) = o ().

We face two possibilities:

If p(a) > p(b), then, by definition, @ < b, which implies 7(@) < 7(b), which
is also o (i) < o(j).

If p(a) = p(b) then p(a) = p(b). As a < b, we must have a < b. Then w, and
wy are in two equal Lyndon factors of w and the one containing w, precedes the
one containing w,. But w; and wj belong to the same factors, which implies
@ < b. Then, as in the previous case, o (i) < o(j).

We have then proved that ¢ < j and s; = s; imply o (i) < o(j), which implies
the compatibility of s with the set DESo.

To prove that v is a bijection, start with o, then construct 7 by rearranging
the cycles of o using Foata’s first fundamental transformation. Then define the
word w by w, = s;(q)- To verify that ¢(w) = (0,s) we only have to verify
that the Lyndon decompositions of w and of 7 have corresponding factors of
the same length.

To do so, given an index a, define a p(a) from 7: If 7(a) belongs to the Lyndon
factor 6, = 7(ry) - - 7(rs), let p(a) = wg - - - Wy, Wy, -+ - W, - - - The nonincreasing
property of s ensures that, if 7(a) < 7(b), then w, = s:(q) > 5,74 = ws.

Suppose then that 7(a) and 7(b) belong to the same Lyndon factor of 7
and that 7(b) is the first (and greatest) letter of that factor. If w, > w;, we
have p(a) > p(b) which implies that the corresponding factor of w satisfies
the minimality property of Lyndon words. If w(a) = w(b) consider the cyclic
successors @ and b. Then, as before, 7(a) = o(7(a)). As s is compatible, we have
o(r(a)) < o(r(b)), which is 7(a) < 7(b). If ws > wj, we can again conclude
that p(a) > p(b), otherwise we iterate until the iterated cyclic successor of a is
b, which leads to a contradiction with the fact that 6, is a Lyndon word.

The factors of w corresponding to the Lyndon factors of 7 are consequently
Lyndon words. We still have to prove that they constitute the Lyndon decom-
position of w, ie that they are in nonincreasing order.

Suppose then that 7(a) and 7(b) do not belong to the same Lyndon factor
of 7. Suppose that each of them is the first letter of its respective Lyndon
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factor, and a < b. This implies that 7(a) < 7(b). If w, > wy, we have as above
p(a) > p(b) which implies from Lemma 11.5.4 that the corresponding factors of
w are in nonincreasing order. Otherwise, if w, = wy, and for the same reason
as above, either we find successors of a’ of a and b’ of b such that, for the first
time, p(a’) > p(b'), and so p(a) > p(b). In the other case, for all corresponding
letters of both factors we have p(a’) = p(b') which implies (as Lyndon words are
primitive) that the corresponding factors of w are equal, and so in nonincreasing
order. ]

EXAMPLE 11.6.2. Proceed with Example 11.5.6. We have found that

w=210120101,
T=147328596,
0=172489356 and
§=221111000.

The descent set of o is {2,6}. Notice that sy > s3 and sg > s7.

Since the descent set of a permutation is the backstep set of its inverse, and
since both permutations have the same type, Theorem 11.6.1 can also be used
for counting permutations with a given type by its backsteps.

Let L(X, X) the commutative image of the sum of all words on the alphabet
N with type A.

COROLLARY 11.6.3. Let A be a partition of n and A be a subset of [n — 1].
Denote by E4(\) the number of permutations with type A whose descents are
precisely the elements of A. Then

LX) = ) Ea(N))_ GS(s), (11.6.1)

AC[n—1]

where the second sum is over the set of all nonincreasing sequences s compatible
with A.

Proof. Tt is identical to that of Corollary 11.3.4 L]

There is also an analogue of Corollary 11.3.5.

COROLLARY 11.6.4. Let A be a partition of n. Then

Z qmajtT = Z qimaja' = (q)nL(Av {17 q, q27 - })’ (1162)

where the sum is over the set of permutations of [n] of type \.

As a consequence, any information about L(\, X) can be used to derive in-
formation about the distribution of descents on permutations with type A. No
“general” formula, similar to the determinant of Proposition 11.2.2, is known.
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Some particular cases of types, such as cyclic permutations, involutions, de-
rangements will be given as exercises.

Contrary to what happens for permutations with a given shape, the distri-
bution of inversions is in general different from that of descents. There is no
analogue of Theorem 11.4.4 for permutations with a given type.

Problems

Section 11.1

11.1.1 (The g-binomial theorem) The generating series for all words on the
alphabet N is:

B(X) =) S.(X)=[[(1—z)".

a>0 iEN
From this, it is easy to derive the g-binomial theorem:
a+k|, _
> e = I a-w
a>0 0<i<k
and Euler’s g-exponential series:

e(tia) = (;;a = [ —ta)".

a>0

See for example Andrews 1976.

Section 11.2

11.2.1 The simplest nontrivial case for Theorem 11.2.2 is when a = (k,n — k).
In that case,
S(avX) = Sk(X)Snfk(X) - Sn(X)
11.2.2 Consider alternating words of odd length n, i.e. words with shape
a=1(2,2,...,2,1). Denote by X' the set of indeterminates {z;, z2,...}.
Prove that the generating series S(a, X) = tan(X) for alternating words
satisfy the recurrence relation:

tan(X) — tan(X') = zo(1 + tan(X) tan(X")).

To do so, consider the last occurrence of the letter 0 in an alternating
word. Note the similarity with the classical differential equation satisfied
by the tangent function.

From this recurrence, by recurrence on the size of X, and by letting this
size tend to infinity, derive the formula:

_1E(@X) - E(—=iX)
tan(X) = 5 i T Eix)
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11.2.3

Section

11.3.1

11.3.2

Statistics on Permutations and Words

(By iX, we mean the set obtained by multiplying each indeterminate by
the square root of —1 in the series E(X) as defined in Problem 11.1.1.)
Similarly, for alternating words of even length, one obtains as generating

series:
2

E(iz) + E(—iX)’

sec(X) =

See Désarménien 1983.

Let A,k (X) be the generating series for words of length n whose shapes
contain k parts. Let A(X) =37, (o Ank(X)u¥. By considering the
first occurrence of the letter r, prove that:

AX,) (1 =2, F(X, 1)) = (1— 2, (1 —u)AX, 1).

It then follows that:

See Désarménien 1983.

11.3

From Problem 11.2.1 and from Corollary 11.3.5, it follows that the enu-
meration by imaj of permutations of [n] with only one descent in position

k is:
n
M Y

This is a particular case of a more general result proved in Gessel and
Reutenauer 1993.

(The g-Euler numbers)Consider the g-exponential e(t; ¢). The ¢g-tangent
and g-secant series may be defined by:

g, it 2
ey s = s

1
tan(t; q) = —— -
(69) = 5 it ) + e(itra)
The ¢-Euler numbers EUL,,(q) (also called tangent and secant numbers)
are the coefficients of the series expansions of those functions:
tn

Z EULn(Q)W = tan(t; q) + sec(t; ).

Using Problem 11.2.2, prove that EUL, (¢) enumerates alternating per-
mutations of [n] by imaj. (Alternating permutations are those whose
shapeis (2,2,2,...2) or (2,2,2,...1), depending on the parity of n.) By
letting ¢ tend to 1, one obtains André’s classical interpretation of the
Euler numbers as counting alternating permutations. See Désarménien
1983.
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11.3.3

Section

11.4.1

Section

11.5.1

Section

11.6.1

(The g-Eulerian polynomials) The g-Eulerian polynomials are defined
by
t" 1—u
An(u;q = .
2 A o = T s g

n>0

From Problem 11.2.3, prove that the coefficient of u* in A, (u;q) enu-
merates permutations of [n] with & — 1 descents (i.e. their shape is
a composition with k parts) by imaj. This generalizes the classical
interpretation of the Eulerian polynomials as generating functions for
permutations according to the number of descents. See Désarménien
1983.

11.4

(The g-Euler numbers again) According to Theorem 11.4.3, the ¢-Euler
numbers also enumerate the alternating permutations of [n] by number
of inversions. This can be proved directly from the definitions of the
g-tangent and g¢-secant series. The g¢-derivative of a series f(t;q) is
D, f(t;q) = (f(t;q) — f(tg; q))/t. Prove that the g-tangent and g-secant
series satisfy the following ¢-differential equations:

D (tan(t; g) + sec(t; q)) = 1+ tan(t; q) (tan(tq; q) + sec(tq; q)).

It follows that the g-Euler numbers satisfy the following quadratic re-
currence:

n _9i_
EULh41(q) = Z [2-+J q" % 1EUL2j(+1 ¢) EUL,,—2;_1(q).
0<j<(n—1)/2

By considering the position of n + 1 in an alternating permutation of
length n + 1 and counting the inversions, it can be shown that the
enumeration of permutations by number of inversions satisfy the same
quadratic recurrence. See Désarménien 1982.

11.5

Actually, Lemma 11.5.4 provides a characterization of Lyndon words.
Prove that the following statements are equivalent:

(i) wis a Lyndon word,;

(ii) for any word v, it is equivalent that v > v and u® > v¥.

11.6

(The g-counting of cycles) The generating series of Lyndon words of
length n on the alphabet X is

LX) = 15wy (T )™
din

(3
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11.6.2

11.6.3

11.6.4

Statistics on Permutations and Words

This can be obtained by observing that any word of length n is some
power of a primitive word, taking the commutative image and using
Mobius inversion. By substituting powers of ¢ to indeterminates, one
obtains the enumeration of n-cycles by imaj:

_ (@)n p(d)
Cnla) = = dz;(l—qd)”/d'

See Gessel and Reutenauer 1993.

(Derangements and desarrangements) A derangement is a permutation
without fixed points. A desarrangement is a permutation whose first
ascent is even (i.e. its shape starts with an odd number of 1’s). A
derangement is a permutation with a given cycle structure (no 1-cycle)
and a desarrangement is a permutation with a given shape.

If A is a subset of [n—1], then the number of derangements whose back-
steps are the elements of A is equal to the number of desarrangements
whose backsteps are the elements of A. This can be proved by showing
that the generating series of both types of permutations are equal, then
applying Corollaries 11.3.4 and 11.6.3.

Then the number of derangements and of desarrangements counted by
imaj are equal. Their common value is:

du(q) =) 3

0<k<n

(_l)qu(kfl)/z
[K]! ’

where [n]! = (¢)n/(1—¢"). This is the natural g-analogue of the number
of derangements. This problem has been considered in Désarménien and
Wachs 1988, Désarménien and Wachs 1993 and Gessel and Reutenauer
1993.

(Involutions) An involutions has cycles of length 1 or 2. Let I, 1 (X)
be the generating series for words on the alphabet N corresponding to
involutions of [n] with k fixed points. Prove that:

S Lp(X)uk = J[ —ua)™ [ @—wzy)
n,k iEN i<jEN

From this generating series, one can derive the generating series for the
number I, 1, of involutions of [n] with % fixed points:
t" ) o
an,k(X)uk( o [T —utg)™ T (1 —22g'¢))™".
d)n
n,k

0<i 0<i<j

See e.g. Désarménien and Foata 1985 and Gessel and Reutenauer 1993.
(A symmetry property) The generating series considered for words on
the alphabet N with a given shape or with a given type are symmet-
ric functions of the indeterminates. This translates into a symmetry
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property for the distribution of the backsteps on permutations on [n]
with a given shape or with a given type. More precisely, any subset
A={a; <az <---<ag} of [n] can be encoded by a composition ¢(A)
of n, namely, (a1,as — ai1,...,n —ag). Then, given a composition a of
n, the number of permutations of [n] with a given shape or with a given
type, such that their backsteps are a subset of ¢~!(a) does not depend
on the order of the parts of a.

For example, with n = 4, to the partition (2,1,1) correspond 3 com-
positions, (2,1,1), (1,2,1) and (1,1,2). The corresponding sets A are
respectively {2,3}, {1,3} and {1,2}. There are 5 permutations of [4]
of shape (2,2): 1324 (backstep 2), 1423 (backstep 3), 2314 (backstep
1), 3412 (backstep 2) and 2413 (backsteps 1 and 3). Among those per-
mutations 3 have backsteps in each of the sets A. See Désarménien
1990.

Notes

The major ingredients to this chapter are g-calculus and symmetric functions.
What is needed of the former can be found in Andrews 1976. An excellent
introduction to symmetric function is contained in Chapter 1 of Macdonald
1995. In it can also be found the essence of Corollary 11.3.5.

Actually, the determinant in Section 11.2 is a particular case of a Schur func-
tion on a flag of alphabets. This concept is due to Lascoux, and can be found in
Lascoux 1974. If all alphabets are equal, it becomes the determinantal expres-
sion of a Schur function of ribbon shape. Corollary 11.3.5, as well as Corollary
11.6.4, can be extended to the case of finite alphabets. What arises is a double
generating function for imaj and the number of descents. This is Theorem 4.1
of Désarménien and Foata 1985, which contains various applications of this the-
orem, in particular to involutions (¢f. Problem 11.6.3). See also Désarménien
and Foata 1991.

The key to Section 11.4, which is the use of Lehmer encoding together with
a Schur function on a flag of alphabets is due to Thibon. This leads to a new
proof of Theorem 11.4.4, which was originally proved bijectively in Foata and
Schiitzenberger 1970.

A proof of Theorem 11.5.1 can be found in Chapter 5 of Lothaire 1983. In
Chapter 10 of the same reference, Foata’s “First Fundamental Transformation”
is described.

The Gessel Normalisation is to be found in Gessel and Reutenauer 1993,
along with many enumerative results related to descent sets and cycle structure.
This article contains different formulations of Sections 11.3, 11.5 and 11.6 in the
setting of symmetric functions. This encoding had been exploited earlier in
Désarménien and Wachs 1988 and Désarménien and Wachs 1993.



CHAPTER 12

Makanin’s Algorithm

12.0. Introduction

A seminal result of Makanin (1977) states that the existential theory of equations
over free monoids is decidable. Makanin achieved this result by presenting
an algorithm which solves the satisfiability problem for word equations with
constants. The satisfiability problem is usually stated for a single equation, but
this is no loss of generality.

This chapter provides a self contained presentation of Makanin’s result. The
presentation has been inspired by Schulz (1992a). In particular, we show the
result of Makanin in a more general setting, due to Schulz, by allowing that
the problem instance is given by a word equation L = R together with a list
of rational languages L, C A*, where z € (2 denotes an unknown and A is the
alphabet of constants. We will see that it is decidable whether or not there
exists a solution ¢:Q — A*, which, in addition to o(L) = o(R), satisfies the
rational constraints o(z) € L, for all x € Q. Using an algebraic viewpoint,
rational constraints mean to work over some finite semigroup, but we do not
need any deep result from the theory of finite semigroups. The presence of
rational constraints does not make the proof of Makanin’s result much harder,
however the more general form is attractive for various applications.

In the following we explain the outline of the chapter, for some background
information and more comments on recent developments we refer to the notes.

The major step toward Makanin’s result is to bound the exponent of peri-
odicity, which is, by definition, the maximal number of direct repetitions of a
primitive word in a solution of minimal length. A priori it is not at all clear
why an upper bound for the exponent of periodicity is a key, since there are
arbitrarily long words where the exponent of periodicity is three. This means
that the exponent of periodicity alone does not give any recursive bound on
the length of a minimal solution. However, together with a deep combinatorial
analysis in the situation of word equations, it does. The bound for the exponent
of periodicity is calculated in Section 12.2 using the notion of p-stable normal
form (Section 12.1.5) and some standard linear algebra.

Instead of working with word equations directly, it turns out to be more con-
venient to work with boundary equations. Systems of boundary equations are

342
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introduced in Section 12.3. In some sense they store the relative lengths of the
variables in possible solutions. The important point is that a notion of convex
chain can be defined (Section 12.3.4). This leads to a geometrical reflection on
the problem. An upper bound for the exponent of periodicity yields an upper
bound on the maximal length of clean convex chains (Proposition 12.3.15). As
soon as the convex chain condition is satisfied, the maximal length of convex
chains yields an upper bound on the number of boundary equations (Corol-
lary 12.3.16). The strategy of Makanin’s algorithm is therefore as follows: A
word equation is transformed into a system of boundary equations, which will
satisfy the convex chain condition for trivial reasons. Then transformation rules
are applied which maintain the convex chain condition (which is not trivial) and
which either lead to a solution of the word equation or which introduce more and
more boundary equations. But for the number of boundary equations there is
an upper bound provided by the exponent of periodicity. Hence, we can stop the
procedure at some stage. The transformation rules (Section 12.3.5) are at the
heart of Makanin’s algorithm. The central idea is a left-to-right transport of po-
sitions in combination with a splitting of variables. It is not so much Makanin’s
algorithm which is complicated; the hard part is the termination proof when
to stop the procedure. Main steps are Proposition 12.3.15 and the proof that
the transformations preserve the convex chain condition. Makanin’s algorithm
itself becomes the construction of a finite search graph: the vertices are systems
of boundary equations and edges are transformation rules.

During our presentation we do not focus on necessary decidable conditions
which might be used to prune the search graph. A good pruning strategy is of
course extremely important for an implementation since the search graph tends
to be huge. However pruning doesn’t help to understand the algorithm nor
does it seem to have any effect on the worst-case analysis. For the worst-case
analysis we use standard notions of complexity theory as they can be found in
the textbooks of Hopcroft and Ullman (1979) or Papadimitriou (1994). The
final result of this chapter shows that Makanin’s algorithm can be implemented
in exponential space, Theorem 12.4.2.

Exponential space is not optimal for the satisfiability problem of word equa-
tions, since Plandowski (1999b) has shown that the satisfiability problem of word
equations can be decided in polynomial space. Plandowski’s new approach is
rather different from the material presented here, for example, an important
ingredient of Plandowski’s method is data compression in terms of exponential
expressions, whereas we do not need any data compression here. Makanin’s
algorithm has many other nice features, and, since the equations are written in
plain form, it seems to be easier to follow some strategy during the search for
a solution. Experimental results indicate Makanin’s algorithm is quite suitable
for practical application.
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12.1. Words and word equations

12.1.1. Basic notions

By A ={a,b,...} we mean an alphabet of constants and  is a set of variables
(or unknowns) such that AN Q = (). Throughout this chapter we shall use the
same symbol o to denote a mapping o:{) — A* and its canonical extension
to a homomorphism o: (AU Q)* — A* leaving the letters of A invariant. The
empty word (and also the unit element in other monoids) is denoted by €. The
length of a word w is denoted by |w|. We have |e|] = 0. The prefix relation
of words is denoted by u < v, the proper prefix relation is u < v. As usual,
the set of integers is Z. The set of natural numbers is N, these are the non-
negative integers. Lower case Greek letters like «, 3 etc. are mostly used to
denote natural numbers. By log @ we mean max{1, [log, a]}.

A word equation is a pair (L, R) € (AUQ)* x (AUN)*, it is written as L = R.
A system of word equations is a set of equations {L1 = Ry,..., L = Ri}. A
system where each variable occurs at most twice is called a quadratic system. A
solution is a homomorphism o: (AU Q)* — A* leaving the letters of A invariant
such that o(L;) = o(R;) for all 1 <i < k. It is called non-singular, if o(x) # ¢
for all z € Q; otherwise it is called singular.

ExXAMPLE 12.1.1. Let A = {a,b} and Q = {x,y,z,u}. Consider the equation
rauzau = yzbraaby.

This is a solvable quadratic equation. There are singular and non-singular
solutions. A possible non-singular solution is given by:

o(x) =abb, o(y)=ab, o(z)=ba, o(u)= bab.

We have
abbababbaabab = o (vauzau) = o(yzbraaby).

12.1.2. Solving quadratic systems

Using Nielsen transformations there is a simple strategy for solving quadratic
systems. The strategy is as follows. Let E = {L; = Ry,...,L; = Ri} be a
system of word equations and assume that every variable z € Q occurs at most

k
twice in the system. Let ||E|| = Y |L;R;| denote the denotational length of
i=1
E. Using induction on || we describe a non-deterministic decision algorithm
which solves the question whether there is a solution in space O(||E||). The case
Q = ( is trivial, hence let  # (. The first step is the guess whether there is a
solution o: ! — A* such that o(z) = € for some = € Q. This is done by choosing
some Q' C Q and by replacing all occurrences of all z € Q' by the empty word.
We obtain a new system E’ over 2 \ Q' and recursively, if Q' # ), we decide in
non-deterministic linear space whether E' has a solution. Thus, after this step
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we are looking for non-singular solutions of E, only. We may assume that the
first equation is either of the form

r--=a--- withz € Q,aec A
or x-=y--  withz€eQ yeQ z#y.

By symmetry (or a non-deterministic guess to interchange the réle of L; and
R;) we may either write x = az or x = yz, where z is a new variable. Replacing
the occurrences of x by az or yz respectively, we obtain a new system where
x does not occur any more and z occurs at most twice. On the left of the
first equation we may cancel either a or y, and then y also occurs at most
twice. Hence we end up with a new system E’' where the number of variables
is the same as in E, every variable occurs at most twice and we have ||E'|| <
[|[E||. Clearly, if E has a non-singular solution, then E’ is solvable including the
possibility of a singular solution with o(z) = . However, if E' is solvable, then
E is also solvable. Now, let 0: Q) — A* be a non-singular solution of E where
Y zcqlo(z)| is minimal. Then we find a solution ¢’ for £’ with |o’(2)| < |o(z)|
since o(y) # €. Thus, the length of a shortest solution has decreased. This
shows that the non-deterministic procedure will find a solution, if there is any.
The space requirement for this algorithm is linear, but its time complexity might
be exponential. The exponential time bound is perhaps inevitable, because the
satisfiability problem for quadratic word equations remains NP-hard.

The algorithm above has a convenient graphical representation which we
show by another example: Consider A = {a,b,c} and Q = {x,y,z}. Let the
word equation be abzcy = ycxba. Running the algorithm leads to the graph as
depicted in Figure 12.1. The arcs are labeled such that we can reconstruct a
solution by going backwards on a path from the initial equation to the trivial
equation ba = ba. One of the paths has the following labels:

Yy < ay, y(—by,l’(—yl’, T &€, y<—ay, y<c.

It corresponds to the minimal solution, where o(z) = a and o(y) = aba. Nodes
or arcs which cannot lead to any solution have been omitted in the picture, they
are not drawn.

12.1.3. Combinatorial properties

Two words y,z € A* are conjugate, if zy = zx for some z € A*. The next
proposition shows that in free monoids conjugates are obtained by transposition.

ProrosiTION 12.1.2. Let z,y,z € A* be words, y,z # €. Then the following
assertions are equivalent:

(i) zy = 2z,

(il) Ir,s € A% s #e,a > 0:z = (rs)*r, y = sr, and z = rs.

A word p is called primitive, if it cannot be written in the form p = r® with
r € AT and « # 1. In particular, a primitive word p is non-empty, p # €.
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Yy < ay
abrcy = ycxba brcay = ycxba
Yy<cy y < by
y <y
cabry = ycxba zxcaby = ycxba
T4cx ||T YT
Yy e xcaby = cyxba
T <€
abr = zba aby = yba
r—br ||z ax y<by ||y ay
bax = xba bay = yba
T ¢ y<e
ba = ba

Figure 12.1. Solving the equation abzcy = yczba.

PROPOSITION 12.1.3. Let p € A* be primitive and p> = xpy for some x,y €
A*. Then we have either x = € or y = € (but not both).

Proofs of Propositions 12.1.2 and 12.1.3 can be found e.g. in Lothaire (1983:
Section 1.3).
An overlapping of two words w; and w is depicted by the following figure:

| w |

| w; |

It says that the common border is an identical factor, i.e., w1 = xy, ws = zz.
Usually we mean z # € and sometimes the figure also indicates that both y # &
and z # e. But there will be no risk of confusion. For example, Proposi-
tion 12.1.3 can be rephrased by saying that the following picture is not possible
for a primitive word.
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| P |

12.1.4. Domino towers

Every non-empty word w € A1 can be written in the form w = (rs)"~1r with
s # €, h > 2. This is trivial for r = ¢ and h = 2. The more interesting case
is when we have r # . Writing w = (rs)"~!r leads to an arrangement of the
following shape:

rsrsrs -+ rsrs r|
|7“s rsrs --- rsSrs r|
|7“s rsirs --- rSrs r|
height h T R
|rs rsrs ---|rsrs r|
|rs rsrs --- rs|rs r|
|rs rsrs --- rsrs r|

The position of the vertical line says that the upper left boundary is never
to the right of the lower right boundary. The formal definition of such an
arrangement also allows a less uniform shape. Let h > 2. We say that a non-
empty word w € AT can be arranged in a domino tower of height h, if there are
words Zi,...,Th—1 € A* and non-empty words yi,...,Yn—1, 22,...,2, € AT,
such that

(i) w=x;y; = ziq1x; for all 1 <i < h,
(i) |22 2] < ful.

In the figure above we have z; = --- = x,_1 = (rs)"2r, gy = - =yp_1 =
sr, and zo = -+- = 2z = rs. Note also that a domino tower of height two may
degenerate as in the following figure.

Let w € A* be a word. The exponent of periodicity exp(w) is defined by
exp(w) = max{a € N| Ir,s,p € A*,p #£e: w =rps}.

LEMMA 12.1.4. Let h > 2 and w € AT be a non-empty word which can be
arranged in a domino tower of height h. Then we have exp(w) > h — 1.

Proof. Choose a domino tower and words x;,y;, 2; as in the definition above.
Let z = z; € {z2,...,2,} be of minimal length, x = z;—1, y = y;—1. Then
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(h —1)|z| < |w|, and we have zy = zz = w. Hence y and z are conjugate and
we may apply Proposition 12.1.2. We obtain z = rs and ¢ = (rs)®r for some
a >0 and |r| < |z|. Hence w = 2**!1r and therefore

(h = Dz| < |w] < (a+2)]z].
Since |z| > 0 we see that h — 1 < a + 1 < exp(w). "

12.1.5. Stable normal forms

Let p € AT be a primitive word. The p-stable normal form of the word w € A*
is a shortest sequence (k is minimal)

(u07a1>u1)"'>ak>uk)

such that k& > 0, ug,u; € A*, a; > 0 for 1 < i < k, and the following three
conditions are satisfied:
(i) w = upp*tuy - - - p** uy.
(ii) k= 0 if and only if p? is not a factor of w.
(iii) If £ > 1, then:

ug € A*p\ A p?A*,
u; € (A*pNpA*) \ A*p?A* for 1 <i <k,
up € pA*\ A*p?A*.

EXAMPLE 12.1.5. Let p = aba and w = ab(aba)®ba(aba)*ba. Then the p-stable
normal form of w is the sequence

(ababa, 3, ababa, 3, ababa).

PROPOSITION 12.1.6. Let p € AT be primitive. The p-stable normal form
of w € A* is uniquely defined. This means, if (ugp,q1,uy,...,q,u;) and
(vo,B1,---,B¢,v¢) are p-stable normal forms of the same word w € A*, then
they are identical, i.e., we have k = {, uy = vg, u; = v;, and a; = [; for
1<i<k.

Proof. Assume that (ug,1,u1,...,qr,ug) and (vo, B1,v1,..., B¢, v¢) are both
p-stable normal forms of w. Since these are shortest sequences, the indices k&
and ¢ are both minimal, hence k = /.

For k = 0 we have w = ug = vp, hence let k = ¢ > 1.

We show first that ugp = vg. To see this, suppose by symmetry that |ug| <
|vo|. Since uop € A*p? and vy € (A*p\ A*p?A*), we obtain that uy < vy < ugp.
By Proposition 12.1.3 this yields ug = vyg.

Let w' denote the word u;p®2us - - - p** ug. A simple reflection using u; # p,
Proposition 12.1.3, and u; € (A*pNpA*)\ A*p?> A* shows that p*1w' € p* 1A%\
p*1t2A*. This implies oy = £, and w' = v1p”2vy ---pPFvy. Since we have
w' € pA*, we see that the first component of its p-stable normal form is in pA*.
Hence (u1, a2, us,...,qr, ug) is the p-stable normal form of w’. By induction
we conclude (u1, sz, us, ...,k uk) = (v1, B2, V2, - - -, Br, U)- n
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12.1.6. The existential theory of concatenation

The existential theory of equations over free monoids is decidable, i.e., the sat-
isfiability of any propositional formula over word equations (with rational con-
straints) can be decided. This can be deduced from Makanin’s result as follows.
In a first step we may assume that all negations in a given formula are of type
L # R. Due to the following proposition these negations can be eliminated.

ProPOSITION 12.1.7. An inequality L # R is equivalent with the following
positive existential formula:

dr Iy Iz : \/(L:RamVR:Lam)V \/ (L =zay AR = xbz).
aEA a,bEA, a#b

In a second step the formula (without negations) is written in disjunctive
normal form. Then, for satisfiability, it is enough to see how a system of word
equations can be transformed into a single word equation. The method is given
in Proposition 12.1.8. It relies on the observation that if ua < wva,ub < vb,
u,v € A* a,b € A, and a # b, then we have u = v.

ProPoOsSITION 12.1.8. Let a,b € A be distinct letters, a # b, and let E =
{Li = Ry,...,Lr = Ry} be a system of word equations. Then the set of
solutions of E is identical with the set of solutions of the following equation:

Lia---LryaLlib---Lib = Ria--- Rya Rib--- Ryb.

Sometimes it is useful to do the opposite of Proposition 12.1.8 and to split
a single word equation into a system where all equations are of type zy = z
with z,y,z € AU Q. This can be derived from the next proposition. Again its
(simple) proof is left to the reader.

PROPOSITION 12.1.9. Let z1 -+ x4 = Tgy41 -+ Tq be a word equation with 1 <
g <d,x; € AUQ for 1 < i < d. Then the set of solutions is in canonical
bijection with the set of solutions of the following system:

1 = Y1, Tg+1 = Yg+1,
Y12 = Y2, Yg+1Tg+2 = Yg+2,
Yg—1Tg = Yg, Yd—1Td = Yd,
Yg = Ya-
In the system above y1,...,yq denote new variables.

It is worth noting that a disjunction of word equations can be replaced by an
existential formula in a single equation, too. The construction showing below
has been taken from Karhumiki, Mignosi, and Plandowski (2000).
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PropPoOSITION 12.1.10. Let a,b € A be distinct letters, a # b. A disjunction
of two word equations is equivalent with a single word equation in two extra
unknowns.

Proof. Consider a disjunction
L =RV Ly =Ry,
where L1, Lo, R, R2 € (AU Q)*. This is equivalent to the disjunction
LiRy =RiRsV RiL> = R R».

Thus, for the construction we can start with a disjunction where the right hand
sides are equal: L1 = RV L, = R.

It turns out that the word P = LiLoRalLiLyRb € (AUQ)T is primitive. In
fact, we need a sharper statement: Choose a primitive word Q € (AU Q)* and
some a > 1 such that P is a prefix of @*. Then we have |Q| > %|P|. To see
this, assume to the contrary that |@| < £|P|. Since a # b we have |Q| < £|P|
and @) is a prefix of Ly L, R. But this is impossible due to Proposition 12.1.3.
As a consequence, if P? is a factor of some word P?W P? where [W| < 1|P|,
then P? is either a prefix or a suffix of P2W P2. (This can be seen from the
statement above, using again Proposition 12.1.3, and by Proposition 12.1.2.)

Having this, let z,y be two extra unknowns. Then the disjunction L; =
RV Ly = R is equivalent to the existential formula:

Jx 3y : P’L,P?L,P? = xP2RP?y.

Indeed, if L1 = RV Ly = R is solvable then we can satisfy the existential
formula above. For the other direction let o be a solution to the formula. Since
lo(Li)| < %|o(P)|, i = 1,2, the first P? of the right-hand side matches either
the first or second P? on the left-hand side. If it matches the second one, we are
done. Hence we may assume that the first P2 of the right-hand side matches
the first P? on the left-hand side. Now the second P? of the right-hand side
cannot match the third P? on the left-hand side since |o0(R)| < |o(L1P?Ls)|, so
it matches the second one. The assertion follows. m

Let us look at the number of different constants which are used in a word
equation. It is well-known that the problem of solving word equations can be
reduced to the case where only two constants appear:

ProposITION 12.1.11. Let L = R be a word equation over a set of constants A
and B = {a,b} be a two-letter alphabet. Then we can construct (in polynomial
time) a word equation over B which is solvable if and only if L = R has a
non-singular solution.

Proof. We may assume that A = {ay,...,ar} with & > 2. We define an injective
homomorphism 7 : (AU Q)* — (BU Q)* by n(a;) = ab'a for 1 < i < k and
n(z) = aza for x € Q. We obtain an equation n(L) = n(R).
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Clearly, if L = R has a non-singular solution o : § — AT, then for all
z € Q we can write n(o(z)) = ar(z)a; and 7 : & — BT is a non-singular
solution of (L) = n(R).

For the converse, let 7 : § — B* be any solution of n(L) = n(R). (Even
if this solution is singular, we will produce a non-singular solution of L = R.)
Define o'(z) = ar(z)a for z € Q, and modify n by defining n'(a;) = ab’a and
n(xz) =xfor 1 <i<kandze Q. Let L' =n'(L), and R' = n'(R). Then
o' is a non-singular solution of L' = R’ such that o'(z) € aB*a for all z € Q.
Of course, we cannot guarantee that o'(x) € n(A4)*, it might happen that o'(z)
contains factors of the form aaa or abtabta or so. But such a wrong factor
on one side of the equation must correspond to the same wrong factor on the
other side, which must be again inside some piece corresponding to a variable.
In order to formalize this idea we observe that the subset {¢}U(aB*NB*a) is a
free submonoid of B*. The (infinite) basis is ¥ = {a} UaB*a \ B*aaB*. Hence
o'on' : @ — LT is a non-singular solution of the original equation L = R if we
identify n'(A) with A. The only difference is that ¢'(z) may contain (finitely
many) letters from ¥ \ 7'(A). Hence for some finite set C' C ¥\ n’(A) we have
o'(LR) C (n'(A)UC). Choosing any mapping p: C — n'(A)* we obtain a non-
singular solution o = pog”’, which can be identified with a non-singular solution
of L = R using the following composition leaving the letters of A invariant:

(AuQ) o, (n'(A) U Q)* <, ('(AuC)t LAt LR

12.1.7. A single variable

A parametric description of the set of all solutions can be computed in polyno-
mial time, if there is only one variable occurring in the equation. This serves as
an example of why p-stable normal forms might be useful.

Let E be a set of word equations where exactly one variable z occurs, 2 =
{z}. By Proposition 12.1.8 we may assume that F is given by a single equation
L =R with L,R € (AU {z})*. The basic check is whether o(z) = € yields the
singular solution. It is therefore enough to consider only non-singular solutions.
Let us denote by £ a list of pairs (p,r) where p € AT is primitive and r € A* is
some prefix r < p. We say that L is complete for the equation L = R, if every
non-singular solution ¢ has the form o(z) = p®r for some a > 0 and (p,r) € L.

Assume for a moment that a finite complete list £ has already been computed
in a first phase of the algorithm. Then we proceed as follows. For each pair
(p,7) € L we make a first test whether o(x) = r is a solution and a second
test whether o(x) = pr is a solution. After that, we search (for this pair (p,r))
for solutions where o(r) = p®r with a > 2. Replace all occurrences of z in
the equation L = R by the expression pp® 2pr, where a now denotes an integer
variable. Thus, the problem is now to find solutions for « such that a > 2. Using
the symbolic expression we can factorize L and R in their p-stable normal forms:
m1a+n1u1 cp
miatny, L pmeatngg,,

mpo+ng m
)

L = upp
R =vp
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Here k,¢ > 0 and m;,m}; € N, n;,n’ € Zfor 1 <i < kand 1 <j </{ By
Proposition 12.1.6 we have to verify k = ¢, u; = v; for 0 < i < k, and we have

to solve a linear Diophantine system:
(m; —m})a =n}; —n; for1 <i<k.

There are three cases. Either no or exactly one a > 2 or all a > 2 satisfy these
equations.

It is clear that for each pair (p,r) the necessary computations can be done
in polynomial time. In fact, using pattern matching techniques it can be proved
that linear time is enough for each pair (p, ). The performance of the algorithm
therefore depends on an efficient computation of a short and complete list L.

We may assume that L = uxz--- and R = zv---, where u € AT,v € A* and
both words v and v are of maximal length. Let p € AT be the primitive root
of u, i.e., p is primitive and v = p® for some e > 1. If ¢ is a solution of L = R,
then o also solves an equation of type ux = zw for some word w € At. By
Proposition 12.1.2 it is immediate that we have o(x) = p®r for some o > 0 and
r < p. Thus, the obvious method is to define the list £ by all pairs (p,r) where
r < p. We obtain a list £ with |p| elements.

There is an improvement of the algorithm due to Eyono Obono, Goralcik,
and Maksimenko (1994) by observing that there is a complete list £ of at most
logarithmic length. This improvement uses a finer combinatorial analysis and
it relies, in particular, on the following well-known fact:

e Let u,v,w € At be primitive words such that u? < v?> < w?. Then we

have |u| + |v| < |w|. In particular, a word w € A* of length n has at most
O(logn) distinct prefixes of the form pp where p is primitive.

For a proof of the fact see Chapter 8 (Lemma 8.1.14) or Crochemore and Rytter
(1995b: Lemma 10).

We outline the method of Eyono Obono et al. (1994): The set of non-singular
solutions is divided into two classes. The first class contains all solutions where

lo(z)| > |u] —|v|. (Of course, in the case |u| < |v| all solutions satisfy this
condition.) Let w be the prefix of the word vu such that |w| = |u|. If o is a
solution with |o(z)| > |u| — |v|, then we have uo(z) = o(z)w. Let p be the

primitive root of v and let ¢ be the primitive root of w. Then o(z) = p®r for
some « > 0 and the unique prefix » < p such that p = rs and ¢ = sr. If p and
q are not conjugate, then there is no such solution. Otherwise, if p and ¢ are
conjugate, we include the unique pair (p,r) into £. This pair covers all solutions
where |o(z)| > |u| — |v].

Now, let o be a non-singular solution such that 0 # |o(z)| < |u| — |v|. This
implies that R has the form R = zvz--- and that o(z)vo(z) < uo(z). Hence
o(x)vo(x) < uu and ww < vuu, where w denotes the non-empty word vo(x).
Let ¢ be the primitive root of w, then we have qq < vuu.

There is a unique factorization ¢ = sr with s < ¢ such that v € ¢*s. The
word rs also is primitive and we have o(x) = (rs)®r for some a > 0. Therefore
it is enough to compute the list of all primitive words ¢ such that qq < vuu. If
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v = €, then we add all pairs (q,€) to £. Otherwise, if v # ¢, then we compute
for each ¢ the unique factorization ¢ = sr with s # e such that v € ¢*s. We add
all pairs (rs,r) to L. It follows from Crochemore (1981) that the list £ can be
computed in time O(|LR|log|LR|). The conclusion is that the solvability of an
equation L = R in one variable can be decided in time O(|LR|log|LR|). It is
however not clear whether there is a linear time algorithm.

12.1.8. Constraints over a semigroup

The input for Makanin’s algorithm is an equation L = R with L, R € (AU Q)*
together with rational languages L, C A* for all variables x € 2. We assume
that the languages are specified by non-deterministic finite automata. If it
happens that for some variable no rational constraint is defined, then we simply
put L, = A*. We are looking for a solution o:{ — A* such that (L) = o(R)
and o(z) € L, for all z € Q. For notational convenience, henceforth we will not
distinguish between variables and constants in the equation. Every constant
a € A is replaced by a new variable xz, and the constraint L,, = {a} for all
a € A. (For readability we shall use constants in examples however.) From now
on the equation is given as

ml...mg:mg+1...xd

with z; € Q. In order to exclude trivial cases we shall assume 1 < g < d
whenever convenient. The number d is called the denotational length of the
equation. It is enough to consider non-singular solutions. Hence we shall assume
that ¢ € L, for all z € Q. Next we fix a finite semigroup S and a semigroup
homomorphism ¢: At — S such that L, = ¢ tp(L,) for all z € Q. For later
purposes we demand that ¢ is surjective. The semigroup S can be realized
as the image p(A™) of the canonical homomorphism to the direct product of
the syntactical monoids with respect to L, for x € 2. Sometimes it is more
convenient to work with monoids instead of semigroups. We denote by 5S¢
the monoid, which is obtained by adjoining a unit element £ to S. We have
5S¢\ {e} = S and the homomorphism ¢ is extended to a monoid homomorphism
p: A* — S%. We have p~1(g) = {e} and p(AT) = S.

Given S we can compute constants £(S) > 0 and ¢(S) > 0 such that
stS)+a(8) = §tS) for all s € S°. In the following we actually use another
constant ¢(S), which is defined as the least multiple of ¢(S) such that ¢(S) >
max{2,#(S)}. Note that this implies s"+*¢(5) = §7+6¢(9) for all s € S and r > 0
and a, 8 > 1.

REMARK 12.1.12. Assume that each rational language L, is specified by a

(non-deterministic) finite automaton with r, states, z € Q. Let r = ) r,.
zeQ
Then we may choose the semigroup S such that

1S| < 27 and ¢(S) < rl.
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A proof for these bounds can be found in Markowsky (1977), where a more
precise analysis is given. For the moment explicit upper bounds for |S| and ¢(S)
are not relevant. They are used only later (Section 12.4.2) when complexity
issues are investigated.

12.2. The exponent of periodicity

This section provides an effective upper bound for the exponent of periodicity in
a solution of minimal length of a given word equation (with rational constraints).
For the decidability result any effective upper bound would be sufficient, but,
due to its close relation to linear Diophantine equations and by techniques from
linear optimization, one can be precise. The upper bound for the exponent of
periodicity is exponential in the input size, and this is essentially optimal. In
the proof below a rather detailed analysis is given hiding perhaps some basic
ideas. In a first reading one is therefore invited to ignore the exact values. We
shall use the notations as introduced in Section 12.1.8.

THEOREM 12.2.1. Let d > 1 be a natural number, p: A* — S° a homomor-
phism, and ¢(S) > 2 as above. There is a computable number e(c(S),d) €
¢(S) - 294 satisfying the following assertion.

Given as instance a word equation 1 ---x, = Tgy1 - -4 of denotational
length d together with a solution ¢': Q) — A*, we can effectively find a solution
0:Q0 - A* and a word w € A* such that the following conditions hold:

(i) po'(x) = po(x) for all x € Q,
(ii) w=o(z1---24) = 0(2g11 -+ 2a),
(iii) exp(w) < e(c(S),d).

Proof. For g =0 or g = d, we have exp(w) = 0, hence let 1 < g < d.

Testing all words of length up to |o'(21 ---24)| we find a solution ¢ and a
word w such that w = o(x1 -+ ®y) = 0(Tg41 - - xq) is of minimal length among
all solutions ¢ where @o'(x) = po(z) for all x € Q. Recall that z;---z, =
Zg41 - Zq is equivalent to the following system:

r1r = Y1, Tg+1 = Yg+1,
Y12 = Y2, Yg4+1Tg42 = Yg42,
Yg—1Tg = Yg, Yd—1Td = Yd,
Yg = Yd

Note also that exp(w) = exp(o(y,)). After an obvious elimination of variables,
the system above is equivalent to a system of d — 2 equations of type

Ty =z, z,y,z € Q.

Choose a primitive word p € A% such that w = up®P(®y for some u,v €
A*. Consider an equation xy = z from the system above and write the words
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o(x),0(y),o(z) in their p-stable normal forms:

o(x): (ug,m1 + ar1c(S),u1,...,rp + are(S), ug),
a(y): (vo,s1 + Bre(S),v1, ..., 80+ Bec(S),ve),
O'(Z): (w();tl + 716(5);1171; s >tm + ’)/mC(S),’LUm)-

The natural numbers r;, s;, t;, a;, 8;, and 7; are uniquely determined by w, ¢(S5),
and the requirement 0 < r;, s;,t; < ¢(S).

Since w is a solution, there are many equations among the words and among
the integers. For example, for k,¢ > 2 we have ug = wy, v; = Wy, 11 = t1,
a1 = 71, etc. In order to be precise, we shall use:

ar = 7, ceey Of—1 = YE—1,
B2 = Ym—t42, -5 Be=Ym-

We have no bound on k, ¢, or m, but we have |k + ¢ — m| < 2. What
exactly happens depends on the p-stable normal form of the product wugvg.
Since uy,vo ¢ A*p?A*, it is enough to distinguish nine cases. Here are the
nine possible p-stable normal forms of ugvg, where ¢ € {0,1},u,vo € A*, and
ul, v, w' € AT:

(ukv0)> (pat;p)a (p,t,pU[I)),
(uip,t,p), (uy,p, t, pvg), (p,0,',0,p),
(p,O,'LU’,O,p’U(’)), (u;cp707w,707p)7 (u;cp707wl707pv(l))'

The case (p,0,w’,0,p) can be produced, if p has an overlap as in p = ababa.
Then we might have uy = pabab, vy = abap, which yields ugvy = ppbap = pabpp
and abp = pba. Hence the p-stable normal form wuvg is (p, 0, abp,0, p). We may
conclude w41 = abp and

tr +’ka(S) =7 + akc(S) +1, trt1 +'yk+1c(5) =51 + ,816(5) + 1.

In particular k + ¢ =m. If r, < ¢(S) — 1, then ay =y, otherwise ay + 1 = ;.
Similarly, if s1 < ¢(S) — 1, then 81 = 41, otherwise 81 + 1 = Yg11-

A p-stable normal form of type (u'p,0,w’,0,pv') with v/, v, w' € AT leads
tok+¢=m+2and 0 =, = yk4+1- Let us consider another example. If
upvy = p°, then k +¢ = m + 1 and we have

i+ 51+ 3+ (o + B1)e(S) =ty + ie(S).
Since by assumption ¢(S) > 2, the case uivo = p® leads to the equation:
Vi — (o + f1) = ¢ with ¢ € {0,1, 2}.

We have seen that there are various possibilities for ugvg. However, always
the same phenomenon arises. First of all we obtain a bunch of trivial equations
which can be eliminated by renaming. All equations of type v = 0 are eliminated
by substitution. Then, for each xy = z either there are at most two equations of
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type v = a+ 1 or there is one equation of type v — (a+8) = ¢ with ¢ € {0, 1,2}.
If there are two equations of type v = a + 1, then one of them is eliminated
by substitution. So after renaming and substituting we end up with at most
one non-trivial equation having at most three variables. Proceeding this way
through all d — 2 word equations we have various interactions due to renaming
and substitution. However, finally each equation zy = z leads to at most one
non-trivial equation with at most three variables. The type of this equation is:

cl'y—l—il—cza—i2—03ﬂ—i3:c

where we have 0 < iy,i2,i3 <d—2, 0 < ¢ <2, ¢1,c2,c3 € {0,1}. This can be
written as:
1y — cax — 33 = ¢ with || < 2d — 2.

For the case @« = 8 # v and ¢; = ¢c2 = ¢3 = 1 we obtain a coefficient —2,
because then v — 2a = ¢'.

We have viewed the symbols «, 3, . .. as variables ranging over natural num-
bers. Going back to the solution ¢, which is given by the word w, the symbols
Q1yeeny Qky B1y ooy Bes Y1, - - -5 Y Tepresent concrete values. Some of them might
still be zero. These are eliminated now. The reason is that they cannot be
replaced by other values without risk of changing the image under . If § > 1
is a remaining value, i.e., a number greater than zero, then we replace it by
60 =1+ Zs where now Zs denotes a variable over N. For example an equation

y-—a—-pg=¢

with a, 8,7 > 1 is transformed to a linear Diophantine equation with integer
variables Z, Z3, Z,, > 0 as follows:

Zy—Zoy—Zg=c+1with |¢ +1| <2d—1.

Putting all equations of type zy = z together we obtain a (possibly) huge
system of linear equations. After substitution and elimination of variables, we
end up with a system of at most d — 2 equations and n integer variables with
n < 3(d—2). The absolute values of the coefficients are bounded by 2 and those
of the constants by 2d — 1. For each equation the sum over the squares of the
coefficients is bounded by 5. The linear Diophantine system is defined by w and
the word w provides a non-negative integer solution.

What becomes crucial now is the converse: Every solution in non-negative
integers yields by backward substitution a word w' and a solution o”: Q — A*
satisfying (7) and (i¢) of the theorem. Therefore, since w was chosen of minimal
length, the solution of the integer system given by w is a minimal solution
with respect to the natural partial ordering of N*. In this ordering we have
(a1, 0ap) < (B1,-..,8,) if and only if @; < B; for all 1 < i < n.
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For a = (ay,...,an) € N* let ||@|| = max{a; | 1 <1i < n}. All we need is a
recursive bound for the following value:

e(d) = max{||@|| | & is a minimal solution of a system of linear Diophantine
equations with at most d — 2 equations, 3(d — 2) variables,
where the absolute value of the coefficients is bounded
by 2, the sum over the squares of the coefficients in each
equation is bounded by 5, and the absolute values
of constants are bounded by 2d — 1}.

Obviously, there are only finitely many systems of linear Diophantine equa-
tions where the number of equations, variables, and the absolute values of coeffi-
cients and constants are bounded. For each system the set of minimal solutions
is finite, this is a special case of Lemma A of Dickson (1913). Moreover the set
of minimal solutions is effectively computable. Hence, the set of values of ||d@||
above is finite and effectively computable. Therefore e(d) is computable. Since
e(d)+d—-1>ay,...,p1,... for original values under the consideration above,
we obtain a recursive upper bound for the exponent of periodicity. A much more
precise statement is possible. It is known that e(d) € 2°(9), see Remark 12.2.2.
Hence we can state:

exp(w) <24 (¢(S) = 1) + (e(d) + d — 1) - ¢(S) € ¢(S) - 29D,

This proves the theorem. [

REMARK 12.2.2. The result on the exponent of periodicity e(d) saying that it
can be bounded by a singly exponential function is due to Ko$cielski and Pa-
cholski (1996). The analysis given there is more accurate than the one presented
here, and it leads to linear Diophantine systems having a slightly different struc-
ture. The article uses results of von zur Gathen and Sieveking (1978). They
show that the exponent of periodicity of a minimal solution of a word equa-
tion of denotational length d (without rational constraints) is in O(21-07?). The
introduction of rational constraints doesn’t change the situation very much: It
yields the factor ¢(S), as it is shown above. Therefore the actual result including
rational constraints is:

e(c(S),d) € ¢(S) - 0(2107),

It is rather difficult to obtain this very good bound. However, a bound which
is good enough to establish Theorem 12.2.1 is e(d) € O(2°?) for some constant
¢, say ¢ = 4. Such a more moderate bound can be obtained using the present
approach and some standard knowledge in linear algebra, see Problem 12.3.1.

ExaMpPLE 12.2.3. Consider ¢,n > 2 and let S = Z/cZ be the cyclic group of
c elements. We give a rational constraint for the variable z; by defining

Ly, ={we A" | |w|=0 (mod c)}.
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The system is given by

— € — 2 Y/
rr =a, T2 =T, cey Tp = Th_1-

Its unique solution o is: o(x;) = ac'2i_1, 1 <i < n. A transformation into a

single equation according to Proposition 12.1.8 shows that e(c(S),d) € ¢(S) -
22(d)  Thus, the assertion given in Theorem 12.2.1 is essentially optimal.

The following example shows that the length of a minimal solution can be
very long although the exponent of periodicity is bounded by a constant.

ExamPLE 12.2.4. Consider the following system of word equations:

To = a, Yo = b:
Ti = Ti-1Yi-1,  Yi = Yi-1Ti—1 for 1 <i <.

The unique solution is the Thue-Morse word:
o(z,) = abbabaabbaababbabaababbaabbabaab - - - for n > 5.
We have |o(zy)| = 2", but exp(o(zy,)) = 2.
ExAmpPLE 12.2.5. Consider the equation with rational constraints:
aryz = zzay, L, =a’a*, L, ={a,b}"\ (a*Ub*), L, = {a,b}".

A suitable homomorphism ¢: {a,b}™ — S is given by the canonical homomor-
phism onto the quotient semigroup of {a,b}*, which is presented by the defining
relations

a’>=a?, b=10% ab=ba = aab.

Thus, S is a semigroup with a zero, 0 = ab; and S has four elements:
S = {a,a® b,0}.

The constant ¢(S) = 2 fits the requirement s™+¢(5) = gr+ec(9) for all s € S°
and r > 0, a > 1. It is not difficult to find a solution ¢ for the equation above,
e.g. o(z) = a?, o(y) = ba?, and o(z) = a®ba®. Now let «, 3, 7, and & be some
integer variables and let w, v, and w be parametric words, which are described

by the following a-stable normal forms:
u: (a,2a,a), wv:(ba,28,a), w:(a,1+ 2vy,aba,26,a).

In order to derive the system of linear Diophantine equations, we make a direct
approach: We want to solve auvw = wuav. First we write auvw as a sequence
of a-stable normal forms:

((a), (a,2a,a), (ba, 28, a), (a,1 + 27, aba, 26, a)).
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The resulting a-stable normal form is:
(a,2a + 1,aba, 26 + 2y + 3, aba, 26, a).
Now consider the right-hand side wuav. This yields:
(a,2v + 1,aba,2a + 26 + 3,aba, 20, a).
We obtain the linear Diophantine system:

2a+1=2y+1,
26+2v+3=2a+20+3,
20 = 25.

Going back to the equation we see that for all & > 0 and 8 > « the mapping
o(z) =d®™, o(y) =ba®>P, 0(z) = a>T?¥ba?> 2P

yields a solution of the equation axyz = zxay satisfying the rational constraints.

12.3. Boundary equations

12.3.1. Linear orders over a semigroup

We introduce some concepts using the semigroup .S which describes the rational
constraints. Let us start with an informal explanation of the notions discussed
in this subsection. Assume that =, - 2y = zg41---74,1 < g < d, z; € Q for
1 <1 < d is a solvable word equation with rational constraints and that there
is a non-singular solution o such that o(z;) = u; for 1 < i < d. The equation
and the solution define a word w € A" and two factorizations w = uy -+ -u, =
Ug41 - -uq. The positions between the factors u; and u;4q for 1 < i < g or
g < i < d are called cuts. By convention, the first and the last position of w are
also cuts, and then we have at most d cuts. Reading the word from cut to cut,
we obtain a sequence (wq,...,w,,) such that each u; is a product of some wy,
and such that w = wy - wy,, wi#e, 1<k<m, m<d.

On an abstract level we can say that the sequence (w1, ..., w,,) refines the
two sequences (u1,...,uy) and (ugt1,...,uq). Let us see what happens if we
pass via the homomorphism ¢ to the finite semigroup S. Thus we replace the
u; and wg by p; = p(u;) and s = @(wy,) respectively.

Two sequences (p1,...,p,) € S and (pgi1,...,pd) € ST79 are refined to a
single sequence (s1,...,8m) € S™, m < d, such that each p; € S is a product of

some si. We shall say that (s1,...,sm) is a common refinement of (p1,...,p,)
and (pg+1,...,Pd)-
However, for each d, there are only finitely many candidates for (si,...,Sm)

with m < d. Hence, in a non-deterministic step, we can guess and fix such a
sequence (81, ..., Sn) being the g-image of (wy, ..., wp).
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A basic technique of solving word equations is to split a variable. Working
over the sequence (si,...,8,) € S™, a splitting of a variable z = z'z" corre-
sponds to a splitting of some s; and a guess of s',s” € S such that s; = s’s”. In

this way the lengths of the sequences are increasing.

ExampPLE 12.3.1. Consider the equation zauzau = yzbraaby. The solution,
which was given in Example 12.1.1, leads to the sequences (abb, a, bab, ba, a, bab)
and (ab,ba,b,abb,a,a,b,ab), where (ab,b,a,b,ab,b,a,a,b,adb) is a common re-
finement. This can be visualized by the following figure.

a b blalb a b|lb ala|lb a b
a blbla|lb|la b|blalalb]la b
a blb albla b blalalb]la b

Passing to the semigroup S = {a,a?,b,0} of Example 12.2.5, we could start to
search for a solution with the sequence (0,b,a,b,0,b,a,a,b,0) € S'°.

We now start the formal discussion of this section. The semigroup S and
the homomorphism : AT —s S are given as in Section 12.1.8. An S-sequence
is a sequence (s1,...,8m) € S™, m > 0. A representation of (s1,...,sm) is a
triple (I, <,¢y) such that (I, <) is a totally ordered set of m + 1 elements and

pri{(if) € IxT|i<j}—5°

is a mapping satisfying for some order respecting bijection p: I 5{0, ..., m} the
condition

©1(i,5) = Sp(i)+1 - 8p(j) € ST foralli,j €1, i <j.

We have ¢ (i,7) = ¢ if and only if i = j, and we have (i, k) = @;(i,j)p1(j, k)
foralli,j,kel,i<j<k.

The standard representation of (si1,...,8y) is simply (I, <, ;) where I =
{0,...,m} and @r(i,j) = si41---s; for i,j € I,i < j. Hence for the standard
representation the bijection p is the identity.

In the following any representation (I, <, ) of some S-sequence is called a
linear order over S.

REMARK 12.3.2. An S-sequence can be viewed as an abstraction of a linear
order over S. In most cases we are interested in the abstract objects only, but if
we work with them we have to pass to concrete representations. When counting
linear orders over S (c.f. Lemma 12.3.6), by convention, we count only standard
representations.

Let w=a;---am, € A*, a; € Afor 1 <i <m. The set {0,...,m} is the set
of positions of w, and for 0 < i < j < m let w(i,j) denote the factor a;jt1 - - - a;.
In particular, w = w(0,m) = w(0,i)w(i,m) for all 0 < i < m. The associated
S-sequence of a word w is defined by ws = (p(a1),...,¢(amn)). The notation
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wg also refers to its standard representation ws = ({0,...,m},<,¢w). The
mapping ¢,, is defined by ¢,,(7,5) = p(w(i, 7)) for all 0 <i < j < m.

Let s,s’ be S-sequences, which are given by some representations (I, <, pr)
and (I', <, o). We say that s’ is a refinement of s (or that s matches s), if
there exists an order respecting injective mapping p: I — I’ such that ¢;(i, j) =
e (p(i),p(y)) for all i,5 € I, i < j. We write either s < s’ or, more precisely,
s <, s and (I, <,¢r) <, (I',<,¢r) in this case.

REMARK 12.3.3. Let s,s’ be S-sequences such that s < s'.

< Then we may
choose concrete representations and a refinement (I, <,¢r) <, (I, <,¢%) such

that p: I — I’ is an inclusion, i.e., I C I' and ¢y is the restriction of ¢ to I.

Let s be an S-sequence and (I, <, ¢r) some representation. A word w € A*
is called model of s (of (I,<,pr) resp.), if the associated S-sequence wg is a
refinement of s, i.e., (I, <,¢r) <, ws for some p.

If w is a model of s, then we write w = s or w = (I, <,¢r). By abuse of
language, we make the following convention. As soon as we have chosen a word
w as a model, we are free to view the set I as a subset of positions of w, i.e., p
becomes an inclusion and therefore ¢;(i,j) = p(w(i,j)) for all i,5 € I, < j.

LeEmMA 12.3.4. Every S-sequence (si,...,Sy,) has a model w € A*.

Proof. Since ¢ is surjective, there are non-empty words w; € A" such that

s; = @(w;) forall 1 <i <m. Let w = w; - - - wyy, then we have w = (s1,...,Sm)-
|

The lemma above will yield the positive termination step in Makanin’s al-
gorithm if there are no more variables. In the positive case we can eventually
reconstruct some S-sequence such that some model w describes a solution of
the word equation.

Let i,j € I, i < j be positions in a linear order over S. Then [i,j] denotes
the interval from i to j, this is a linear sub-order over S which is induced by
the subset {k € I | i <k < j}. More generally, let T' C I be a subset, then we
view (T, <, pr) as a linear suborder of (I, <,¢r). In the following min(7") and
max(T") refer to the minimal respectively to the maximal element of a subset T'
of a linear order 1.

Let (I,<,¢r) be a representation of some S-sequence, T' C I a non-empty
subset, and £*,r* € I positions such that £* < r*.

An admissible extension of (I, <,¢r) by T at [€*,7*] is given by a linear order
(I*, <, ¢1+) and two refinements (I, <,¢r) <, (I*,<,¢r+) and (T, <, p1) <p*
(I*, <, pr+) such that the following two conditions are satisfied:

(i) I* = p(I) U p*(T),
(if) min(p*(T)) = £* and max(p*(T")) = r*.

The intuition behind the last definition should be rather clear. An admissible
extension refines (I, <, ;) by defining new positions between ¢* and r* until 7'
matches the enlarged interval [£*,7*] in such a way that all new points have a
corresponding point in 7" and such that min(7") is mapped to ¢* and max(T")
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is mapped to r*. The other way round: Let (I*,<,y+) denote an admissible
extension of (I, <, ) by T at [£*,r*], then we may view I C I*, whence T' C I*.
There is a subset T* C I* representing the same S-sequence as T'; and we have
I* =TUT* min(T*) = £*, and max(T*) = r*.

ExampLE 12.3.5. Let (s1,...,S6) be some S-sequence, (I,<,yy) its stan-
dard representation, £* = 4 and r* = 6. Let (I*,<,ps+) represent an ad-
missible extension of (I,<,¢r) by {0,3,4,5} at [4,6]. Then we may assume
I* ={0,...,6}U{3*,4*}. The ordering of I* satisfies0 <1 <2<3<4<5<6
and 4 =0* < 3* <4* < 5* =6.

We may or may not have 5 € {3* 4*}. Say we have 5 = 3*. Then the
corresponding S-sequence has the form

(817 $2, 53, 54, S5, S4, 85)
such that s5 = s189s3 and sg = s455.
The following figure represents this admissible extension.

S1 52

958 g 54 4 55 4 56 6

0* 515283 3* S4 4* S5 5*

0 1

LEMMA 12.3.6. Given (I,<,p;),T C I,0*,r* € I. Then the list of all admis-
sible extensions of (I,<,yr) by T at [¢*,r*] is finite and effectively computable.

Proof. Trivial, since the cardinality of an admissible extension is bounded by
[I| +|T. ]

ExampPLE 12.3.7. Consider the same situation as in Example 12.3.5. The
number of admissible extensions by the subset {0, 3, 4, 5} at the interval [4, 6]
is given as a sum e; + e; + e3. The numbers e, ez, and ez respectively are
the numbers of admissible extensions with 4* < 5, with 3* < 5 < 4*, and with
5 < 3* respectively. We have:

e = |{s € 5% | 55 = 515253545, S5 = 556}|,

ey = |{(7“, S) €S XS |s4=rS, s5= 85152837, S¢ = SS5}

)

es = |{s € 57| 515283 = 555, 56 = $5455}|.

Note that s159835485 7 s586 implies e; +ea+e3 = 0. Thus, there is no admissible
extension of {0, 3, 4, 5} at [4, 6] in this case.
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12.3.2. From word equations to boundary equations

Let 1+ 2y = 2941 --24, 1 < g <d, z; € Qfor1<i<dbea word equation
with rational constraints L, C A* such that, without restriction, e & L, # 0
for all z € Q. Recall that we fixed a homomorphism ¢: AT — S to some
finite semigroup S such that o '¢(L,) = L, for all z € Q. Since the images
p(L;) C S are finite sets we can split into finitely many cases where in each
case ¢(L,) is a singleton. Thus, it is enough to consider a situation where the
input is x1 -+ -y = 441 - 24, 1 < g < d and the question is the existence of a
non-singular solution o:) — A™ satisfying ¢» = ¢ o ¢ for some fixed mapping
:Q — S. The question will be reformulated in terms of boundary equations.
Let n > 0 and ¢: At — S be a homomorphism to a finite semigroup S.
(i) A system of boundary equations is specified by a tuple

B=((T,7),,<,¢r1),left, B)

where I' is a set of 2n variables, :I" — I' is an involution without fixed
points, i.e., T =z, # 7, for all z € T, the triple (I, <, ;) is a linear order
over S, left: ' — I is a mapping, and B is a set of boundary equations.
Every boundary equation b € B has the form b = (z,i,%, j) with z € T,
i,7 € I, such that left(z) < i and left(T) < j.

(ii) A solution of B is a model w = (I, <,¢r), w € A*, such that

w(left(x),i) = w(left(z), j) for all (z,i,T,5) € B.

(Recall that if a word w € A* is a model for (I, <, pr), then we view I
as a subset of positions of w. Hence it makes sense to write w(p,q) for
pgel,p<q.)

(iii) If B is solvable, then the ezponent of periodicity exp(B) of B is defined by

exp(B) = min{exp(w) | w is a solution of B}.

We shall not distinguish between isomorphic systems. In particular, we
may always think that T' = {z;,...,2,,%1,...,%,} and that (I,<,ps) is the
standard representation of some S-sequence, I = {0,...,m} for some n,m > 0.

REMARK 12.3.8. If we have n = 0, then there are no variables, hence no
boundary equations, and any model w |= (I, <, ¢r) is a solution of B. Therefore,
if n =0, then the system is solvable by Lemma 12.3.4.

We are now ready to pass from word equations to boundary equations. The
formal description is rather technical. We will see an example later. Consider
a word equation x; --- x4 = Tgy1 -+ - Tq and a mapping ¢: Q@ — S. We are going
to construct a system

B=((T,7),,<,¢r1),left, B)

of boundary equations having the following two properties.
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1.) Let 0:Q2 — AT be a solution of the word equation such that ) = ¢ o o,
and let v € A* be a word with v = o(21---24) = 0(Tg41---2q). Then
w = vv is a solution of B.

2.) Let w | (I,<,¢r) be a solution of B. Then we have w € A*vvA* for
some v € A* and there is a solution of the word equation ¢o: Q — AT such
that v = poocand v =0(x1--x4) = 0(Tgg1 -~ Tq)-

In order to define B we start with the S-sequence

(1), - -, (xa))-

Let (I,<,¢r) be some representation, I = {ig,...,ia}, 0 < --- < ig. The
next step is to define the pair (I',”) and the mapping left: ' — I. The intuitive
meaning of (T',7) is that " is a new set of variables where the notion of dual
is defined and that left indicates the leftmost position of a variable in a given
solution. We formalize this concept by using some undirected graph. Let (V, E)
be the undirected graph with vertex set V = {1,...,d} and edge set £ =
{(p,q) € VxV |z, =x,}. Clearly, each edge defines a variable, but now we
have a canonical choice to define the dual of (p,q) to be (g,p).

The idea is now that for v = o(z1,...,24) = 0(Tg41,...,2q) and w = vv we
can realize I as a subset of positions of w such that both w |= (¢(z1),...,¥(zq))
and the following equations hold:

w(ig,ig) = w(ig,tq), w(ip—1,ip) =w(ig—1,iq) for all (p,q) € E.

For the first equation we shall introduce below an extra variable zp (and its
dual Tp); in the other list of equations there is some redundancy since the edge
relation in our graph is transitive. For (p,q),(q,r) € E, we have by defini-
tion (p,r) € E, but the equations w(ip_1,ip) = w(ig—1,iq) and w(iq_1,i4) =
w(ipr_1,%r) already imply w(ip—1,ip) = w(ir—_1,%r). Hence we do not need the
edge (p,r) for the equation. To avoid this redundancy we let FF C E be a
spanning forest of (V, E). This means FF = F~', F* = E*, and (V, F) is an
acyclic undirected graph. We have |F| = 2(d — ¢), where ¢ is the number of
connected components of (V, E). For each x = (p,q) € F we define its dual and
two positions left(z), right(z):

T = (¢,p), left(x) = ip_1, right(z) = i.

Note that * # T and T = x for all + € F. Taking duals corresponds to edge
reversing in (V, F). Define two extra elements zo and Ty with Tg = x¢ and
define T = {x,To} U F and:

left(xo) = io, right(zo) = i, = left(Tog), right(To) = iq-

This defines the set I', the involution without fixed points :I' — T', and the
mapping left: ' — I. The elements of I are called variables again.
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The last step of the construction is to define the set B of boundary equations.
It should be clear what to do. We define

B = {(z,right(x),Z,right(Z)) | z € T'}.
We still have to verify the two properties above.

1. Let 0:Q — AT be a solution such that ¢) = ¢ o ¢, and let w = vv, where
v=0(z1--24) = 0(xg41 - xq). The word w has positions 0 = ig < i1 <
.-+ < ig, where i4 is the last position and the following equations hold:

’LU(’L.[),’L.g) = W(ig,id), w(ip—laip) = U(wp) for 1 <p< d.
In particular, w |= (I, <, ¢r) and w is a solution of 5.

2. Let w = (I,<,pr) be a solution of B. Without restriction we may
view I as a subset of positions of w. Consider the factors w(io,i,) and
w(ig,iq). The boundary equation (zo, right(xo), Tg, right(Zg)) € B implies
w(ip,ig) = w(ig,iq) and it follows that w € A*vvA* for v = w(ip,i,).
We define 0:Q — A" by o(z,) = w(ip_1,ip). Since i,_1 < ip, this
is a non-empty word. The elements (z,right(z),Z,right(Z)) € B for
r = (p,q), T = (¢,p), (p,q) € T imply w(ip—1,ip) = w(ig—1,4,) When-
ever ¢, = z,. Hence o is well-defined. We have po(z,) = pw(ip_1,ip) =
Y(zp) since w = (I,<,¢r). Finally, v = w(ig,iy) = w(iy,iq) implies
v=0(x1--245) = 0(Tgy1 - Tq).

Thus, the word equation with rational constraints given by the mapping v
has a solution if and only if the system of boundary equations is solvable. The
construction of the system B above can be performed in polynomial time (and
logarithmic space). Due to this reduction, Makanin’s result follows from The-
orem 12.3.10. The assertion of this theorem is in fact equivalent to Makanin’s
result, see Lemma 12.3.12.

ExAMPLE 12.3.9. We assume that the equation is simply xyxyz = zyxyx and
that we ignore any constraints for a moment. Hence, o(z) = a, o(y) = b, and
o(z) = aba, i.e., the word v = abababa solves the equation. The transformation
which yields the system of boundary equations is based on the following picture.
The first line represents the word w = vv of length 14.

a|ofalofalv]alalofafb]a]b]a

To To
351|352 T3|Ts Ts5 Ts Te | X7 a:_(,-l:v_7
Ty |T2 Ty4|T3

According to the picture above we may represent the equation by a system
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of word equations using a set of 8 variables with their duals {z¢,Tg, ..., z7,T7}:

To = T122X3T42s5,
To = T5T6T7T6T7,

T1 = T3,
T3 = x7,
1'_2:2]’4,
1'_4:2]’6,

i =%; for 0 <i<7.

The system looks more complicated than the original equation, but the pat-
tern is straightforward from the picture. The word vv has positions 0, ..., 14.
We define left(zo) = 0, left(Zg) = 7, left(z1) = 0, left(z1) = 2, left(z) = 1,
left(Z3) = 3, left(x3) = 2, left(z3) = 11, left(zq) = 3, left(Tz) = 10, left(x5) = 4,
left(75) = 7, left(zg) = 10, left(Ts) = 12, left(x7) = 11, and left(z7) = 13.

The set B of boundary equations is defined by the following list:

(1'0) 7,1’_0, 14)7 (1'1, 1,1’_1, 3)7 (1’2, 2)1'_27 4)) (1‘3,3,1’_3, 12)7
(.’1,'4,4,.7[7_4, 11)7 (375, 77'17_57 10)7 (mﬁa llam_ﬁa 12)7 (377, 12737_77 14)

Since there were no constraints, the linear order is just the pair ({0,..., 14}, <).

12.3.3. The main theorem

THEOREM 12.3.10. It is decidable whether a system of boundary equations
has a solution.

The rest of this chapter is devoted to the proof of Theorem 12.3.10. An
important step is done in the next proposition: We can bound the exponent of
periodicity while searching for a solution.

ProposITION 12.3.11. Given as instance a system of boundary equations B,
we can compute a number e(B) having the property that if B is solvable, then
we have exp(B) < e(B).

The proof of Proposition 12.3.11 could be based on the same techniques
as presented in Section 12.2. However, for our purposes we prefer to prove
Proposition 12.3.11 via a reduction to word equations.

LEMMA 12.3.12. Thereis an effective reduction of the solvability of a system of
boundary equations B to the satisfiability problem of some word equation with
rational constraints such that for all solutions w € A* of the word equation we
have exp(B) < exp(w).

Proof. Let B=((T,7), (I, <, pr),left, B) be a system of boundary equations. We
may assume that the linear order (I, <, ¢y) is the standard representation of its
underlying S-sequence s = (s1,...,Sm,). Introduce new variables yi,...,ym
with rational constraints ¢ (y,) = sp, 1 <p < m.
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For each boundary equation b = (z,4,%, j) € B we introduce a word equation

Yieft(z)+1 """ Yi = Yleft(z)+1 """ Yj-

This system of word equations with rational constraints is solvable if and
only if B is solvable. Indeed, if w € A* is a solution of B, then, by definition, we
have (I, <,¢1) <, wg, and p(I) is a subset of positions of w. All word equations

w(p(left(z)), p(i)) = w(p(left(z)), p(5))

are satisfied for (z,4,7,j) € B. Hence defining o(y,) = w(p(p — 1),p(p)), 1 <
p < m yields a solution of the system of word equations.

For the other direction let o(y,) = vp, 1 < p < m, be some solution of the
system of word equations. Due to the rational constraints we have ¥ (y,) = sp
and v, # ¢ for all 1 < p < m. Therefore the word v = o(y1) - - - 0(ym) solves B.

Next, we transform the system of word equations into a single word equation
L = R using Proposition 12.1.8 and finally we reduce to the word equation
Lyy - Ym = Ry1---ym. The point is that if w is a solution of this equation,
then some suffix v of w solves B. Hence exp(B) < exp(v) < exp(w). This
yields Lemma 12.3.12. Now, let d be the denotational length of Ly; - -y, =
Ry; - -+ Ym- Then define the number e(B) = e(¢(S), d), which has been given in
Theorem 12.2.1. We can choose w such that exp(w) < e(¢(S),d). This proves
Proposition 12.3.11. L]

12.3.4. The convex chain condition

Let B = ((T,7), (I, <, pr),left, B) be a system of boundary equations. Hence-
forth, a boundary equation b = (x,4,T,j) € B also will be called a brick. The
variable z is called the label of the brick b = (z,i,%,j). Pictorially a brick is
given as follows:

T
T J

The dual brick b of b = (z,4,, j) is given by reversing the brick, it has label Z:

z J
T

We make the assumption that B is closed under duals (i.e., b € B implies
b € B) and that there is at least one brick b € B having label = for all 2 € T.
Clearly, this is no restriction. For z € T let B(x) C B be the subset of bricks
with label . Then B(z) = {(,i1,%, j1),...,(z,i,,T, j.)} for some non-empty
subset {i1,...,%,} C I such that left(z) < i; < --- < i,. The right boundary of
x is defined by right(z) = i,.

Before we continue, we make some additional assumptions on B. All of them
are necessary conditions for solvability and easily verified.

Let (x,1,T,7), (y,4,7,7), (y,i',7,j') € B. Then we assume from now on:
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o left(z) < left(z) if and only if i < j,

o pr(left(z),i) = @r(left(T), j),

o left(z) < left(y) if and only if left(T) < left(7),
e 1 < ¢ if and only if j < j'.

These assumptions imply that if B(z) = {(=,i1,%,51),...,(z,ir, T, j)} is
given such that left(z) <i; < --- <i,, then we also have left(z) < j; <--- < j,.

In particular, B(x) contains a brick (z,right(z), =, right(Z)). The set B(x) can
be depicted as follows:

B(a:):{ x i | x | x right(z) }

T J1 T Jo T right(Z7)

In our pictures a brick (z,i, 7, j) can be placed upon (y,j',7,£), if and only
if j = j'. We obtain one out of three different shapes:

x 7 T 7 xr 7
T 7 T J T J
Yy J Y J Yy J
Y { Y / y /

Which one of these cases occurs is determined by the function left:T" — 1.

The leftmost picture corresponds to left(Z) < left(y), the picture in the middle

corresponds to left(Z) = left(y), the picture on the right means left(Z) > left(y).
Let £ > 1. A chain C of length k is a sequence of bricks

C= ((wlailax_laiQ)a (.’1,'2,7:2,37_2,1.3), R (wkaikaﬁaik-i-l)):

where (zp, iy, Tp,ipt1) € Bforall 1 <p <k.

For a chain C' and a variable z € T' we define the z-length |C|, of C to be
the number of bricks in C' having label 2. Thus, the length of a chain C' is the
sum Y. |C|,.

zel
A chain C is called convez, if for some index ¢ with 1 < g < k we have:

left(T,) > left(zpt1) for 1 <p < g,
left(7,) < left(zpt1) for ¢ <p < k.

A convex chain C is called clean, if the bricks of C' are pairwise distinct.

A brick (z,1,7, j) is linked via a convex chain to a brick (z',4',Z', j'), if there
is a convex chain C of length k as above for some k£ > 1 such that (z,i,Z,j) =
(xl,ilym_lyi2)7 and (xl)ilaflajl) = (xk,ik;x_kvikJrl)'

REMARK 12.3.13. If C' = (b1,...,bx) is a convex chain, then its dual C =
(bky...,b1) and (bp,...,b,), 1 < p < q < k are convex chains. If b, =
k, th

(®p,ip, Tp,ip) for some 1 < p < en (bi,...,bp—1,b0pt1,...bx) is a convex
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Ty i1
T i2

T2 i2
T2 i3
T3 i3
T3 iy

Ty iy
Ta is

Ty, i

T Gyl

Figure 12.2. A convex chain.

chain. If b, = b, for some 1 < p < ¢ < k, then (b1,...,bp—1,by,...bg) is also
a convex chain. In particular, if two bricks are linked via a convex chain, then
they are linked via some clean convex chain. The shortest chain linking two
bricks to each other is always clean.

Let F' C I be a subset. A brick (z,7,Z,j) € B is called a basis or foundation
with respect to F', if 7 € F. We say that B satisfies the convez chain condition
(with respect to F'), if every brick b € B can be linked via some convex chain
to some basis. The set F' is also called the set of final indices.

In the following we concentrate on solvable systems and we need a few more
notations. Let B = ((T',7), (I, <, @), left, B) be a solvable system of boundary
equations and w € I'* such that w | (I,<,¢r) is a solution of B. Since w is
a solution we may assume that [ is a subset of positions of w. For all z € T’
define a word w(z) € A* by

w(z) = w(left(z), right(x)).
This also permits a notion of w-length for x € I'. We define
2w = Jw(z)|-
Moreover, for each brick b = (x,4,T,j) € B we also define its w-length by
|blw = |w(left(z), )]
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For all z € T and b € B we have w(z) = w(%), |2|w = |Z|w, |blw = |b|w, and
|blw < |Z|w, if z is the label of b. A brick is uniquely determined by its label
and its w-length |b|,,. A singly exponential bound on the number of bricks as
given in the next lemma is due to Gutiérrez (1998a). The improvement on this
number has been essential in order to obtain the singly exponential complexity
bound in Theorem 12.4.2 below.

LeEmMA 12.3.14. Let n,m, f € N and B = ((T',7), (I, <, 1), left, B) be a solv-
able system of boundary equations such that w = (I, <, ¢r) is a solution of B.
Let || =2n, F C I, and |F| = f. Suppose that every brick b € B can be linked
via a convex chain C' to a basis with respect to F such that for each x € T the
number of bricks in C' having label z is at most m, i.e., |C|, < m.

Then we can bound the size of B by

1Bl <2n-f-(2m+ 1)

Proof. Consider a convex chain C of length k such that |C|, < m for allz € T
and where the last brick is a basis:

C= ((mlailax_laiQ)a (.’1,'2,7:2,37_2,1.3), RN} (mkaikaﬁaik-i-l))-

There are 2n possibilities for the label of the first brick. We shall calcu-
late an upper bound for the number of possible w-lengths for the first brick
(z1,i1,T1,%2)- The length of the first brick is determined by the w-length of the
last brick (zy, ik, Tk, %k+1) and by summing up the values left(z;11) — left(T;)
fori =k—1,...,1, see Figure 12.2. Recall that i € I denotes a position in the
solution w, hence left(z;;1) — left(Z;) € Z. So the w-length of the first brick is

i1 — left(Tg) + left(xg) — left(Tp—1) + - - - + left(z2) — left(T7).

Then we can rearrange this sum in some formula of type

k1 — eft(FT) + > my - (left(x) — left(z))
zel

where due to the hypothesis on C' we have —m < m, < m. The value left(Z7)
is uniquely determined by the label z; and igy; is a basis. Hence at most
f+(2m+1)" different values can be produced using these sums, when the label
x is fixed. Thus, at most

2n- f-(2m+1)".

different first bricks are possible. But this is also an upper bound for the number
of bricks |B| by the convex chain condition. "

Every system of boundary equations B satisfies the convex chain condition
with respect to the set I, trivially. Furthermore, if we construct B by starting
from a word equation 1 --- 25 = 41 -4, 1 < g < d, then we have |I| < d.
The transformation rules below will neither increase the number 2n of variables
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nor the sum 2n + f. They will increase the sizes of I and of B. However, Lem-
ma 12.3.14 says that a large number of boundary equations (i.e., a large set of
bricks) yields that there are long convex chains in order to satisfy the convex
chain condition (pictorially: many bricks build skyscrapers). The next step is to
show that long convex chains (or skyscrapers) lead to high domino towers and
hence to a lower bound on the exponent of periodicity in any solution.

ProprosITION 12.3.15. Let n,m € N and B = ((I',7), (I, <, ¢r), left, B) be a
solvable system of boundary equations with |I'| = 2n. Let w = (I, <, 1) be a
solution of B. Suppose that there is at least one clean convex chain such that
m < |C|, for some x € T'. Then we have the following lower bound for the
exponent of periodicity of the solution w:

m < 2n - (exp(w) +1) — 1

Proof. The hypothesis implies n # 0, hence w # . The assertion is trivial for
m < 4n. Hence let n > 1 and m > 4n. Define h = {";—'T’;l] . We have h > 3.
(Eventually h will be the height of some domino tower.)

Let C = (by,...,bt) be a clean convex chain such that m < |C|, for some
z €. Let by, = (x,,ip, T, ipt1) for 1 < p < k. Define m' = [ ], then by
duality (replacing C' by C and z by T) we may assume that the label  occurs

at least m' times in the upper part up to some k' where k' < k such that:

left(Z7) > left(z2), left(zz) > left(xs), ..., left(Tp—1) > left(zy ).

This upper part of the chain C' up to k' might look like in Figure 12.3.

T i1

T i2

T2 i2

T3 i3

T3 i3

T3 iq

T4 iq

Ty i5

x5 i5
T5 ig
Tg ig
Tg i7

Figure 12.3. The upper part of a convex chain.

In the following we need a suitable chain where the label of the last brick
has minimal w-length. In order to find such a chain we scan (b,...,by ) from
right to left. We find a sequence of indices

0=po<p1 <+ <pp-1 <pp =k
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such that n' <n and for all ¢, j where p;_1 < ¢ <p;, 1 <j < n' we have:
|Zqlw > |2p; |uw-

This means that in each interval [p;_1 + 1, p;] the last label z,, has minimal
w-length. By the pigeon hole principle there is at least one index j € {1,...,n'}
such that the number of occurrences of the label z in the interval [pj_1 + 1, p;]

is at least
m+1
oan |-

We conclude that (after renaming) there is a clean convex chain C' = (by,...,by)
and a variable z € I" having the following properties:

Cl. = [%57],
left(z,) > left(zpy1) for 1<p<d,
|Zplw > |zelw for 1<p</.

Recall that h = [ZEL]. We have h > 3 and the label & occurs exactly h times
in the clean convex chain C. By cutting off the sequence we may assume that
z is the first label 2.

This is the point where we switch from the chain to the sequence of words:

(w(z1),...,w(xp)).

We obtain a tower of words where w(xz,) has minimal length and the word w(z1)
occurs at least h times.

w(ze) |

Define v, € A* to be the prefix of w(zp) of length |w(z¢)| and let u, =
w(left(xy),ip) for 1 < p < £. Since |u,| < |w(left(z,),i)| < |ve] = |vp|, the
word wu, is a prefix of v, for all 1 < p < ¢. The sequence (vy,...,v¢) can be
arranged in a tower of words which is already in better shape: All words v, have
equal length.
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[ [ o |
U2
U3
[ e ]
Vs
Vg

The vertical line corresponds to the factorization v, = u,u;, for 1 <p < L.

Finally, let {q1,q2,-..,qn} be a set of the h indices where the bricks have
label z;. Since the convex chain leading to this tower is clean, we see that
Ug, # ug; forall 1 <4, j < h, i # j. (This is the only point where it is used
that the chain is clean!) We obtain:

0< |utI1| < |uqz| <--< |utIh|'

Moreover, we have v, = vg, = vy, = --- = vg,. We omit all other words in the
tower above and we see that the word v; can be arranged in a domino tower
of height h and h > 2. Applying Lemma 12.1.4 we obtain h — 1 < exp(w;) <
exp(w). The assertion of the proposition follows. n

COROLLARY 12.3.16. Let B = ((T',)), (I, <,¢1), left, B) denote a solvable sys-
tem of boundary equations which satisfies the convex chain condition with re-
spect to some subset F' C I. Let |I'| = 2n and |F| = f. Then we have

Bl <201 - (4n- (exp(B) + )"
If moreover |T|, |F| € O(d), and exp(B) € 20(¢+10ec(9)) then we have
B| € 20(d2+d10gc(5))_

Proof. Let 2n = |T'|, f = |F|, and m be the maximal z-length of a clean convex
chain, z € I'. By Remark 12.3.13 and Lemma 12.3.14 we have

IB| <2n-f-(2m+1)".
Choose a solution w such that exp(w) < exp(B). Proposition 12.3.15 yields:
m < 2n - (exp(w) + 1) — 1.
Putting things together we obtain:
[BI < 2n- f - (4n - (exp(w) + 1))" < 2n- f - (4n - (exp(B) + )"

The result follows. n
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12.3.5. Transformation rules

We are ready to define the (non-deterministic) transformation rules of Makanin’s
algorithm. If we apply a rule to a system B = ((T',7), (I, <, ¢1), left, B), then the
new system is denoted by B' = ((I'',”), (I', <, ¢r ), left’, B'). The transformation
rules below will have the property that if B = ((T',7), (, <, ¢r1), left, B) satisfies
the convex chain condition with respect to some subset F' C I, then B’ satisfies
the convex chain condition with respect to some subset F’ C I’ such that
IT'| + |F'| < ||+ |F|. Thus, if we start with a system By where |T'g| = 2ng and
|Io| < d, then throughout the whole procedure the size of the set of final indices
is smaller than or equal to 2ng + d.

We say that a (non-deterministic) rule is downward correct, provided the
following condition holds: If w € A* is a solution of B, then (for at least one
non-deterministic choice) some suffix w' of w is a solution of B’, and moreover
either |I'| < |T'| or |w'| < |w|. Thus, applied to solvable systems at least one
sequence of choices of downward correct rules leads to termination.

We say that a (non-deterministic) rule is upward correct, provided the fol-
lowing condition holds: If w' € A* is a solution of B’ (and B’ is the result of any
non-deterministic choice), then there is word w € A*, which is a solution of B.

RULE 1. If there is some z € T’ with left(z) = right(x), then cancel both bricks
(z,right(z), T, right(Z)) and (T, right(z), z, right(z))

from B. Cancel z and 7 from .

REMARK 12.3.17. Obviously Rule 1 is upward and downward correct since
we have w(i,i) = € for all words w and all positions i of w. Hence the set
of solutions is the same. In order to preserve the convex chain condition we
introduce two new final indices. Let x € T such that left(z) = right(z) and
assume that x,T are canceled by Rule 1. Define F' = F U {left(z),left(Z)}.
Counsider a convex chain C' = (by,...,b,,) where for some 1 < p < m the brick
b, has the form b, = (z,right(z),,right(T)). Hence the brick b, is canceled.
However, the brick b; is linked to b,_; via a convex chain and b,_; is now a basis
since right(z) = left(x) € F'. Thus, if B satisfies the convex chain condition
with respect to F', then the system B’ (after an application of Rule 1) satisfies
the convex chain condition with respect to F'. We have |I''| + |F'| < |T| + |F).

RULE 2. If there exists some = € I" with left(z) = left(Z), then cancel all bricks
(x,4,%,j) and (T, j,2,j) from B. Cancel x and T from T.

REMARK 12.3.18. Recall that for (x,i,%,j) € B we have left(z) = left(T)
if and only if 4 = j. Thus, if left(z) = left(Z), then all bricks with label
x have the form (z,j,7,j). Again, Rule 2 is obviously upward and down-
ward correct. For the convex chain condition consider a convex chain C' =
(b1,...,bm) where b, = (z,4,%Z,j) for some 1 < p < m. If we have p < m,
then C" = (by,...,bp—1,bpt1,...,by) is a shorter convex chain linking b; with
a basis. For p =m we have j € F. Hence b,,— is also a basis.
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RULE 3. Let ¢ = min(I). If ¢ & left(T"), then cancel the index ¢ from I. This
means we replace the linear order over S by the induced sub-order (I', <, py)
where I' =T\ {¢}.

REMARK 12.3.19. Clearly, the convex chain condition is not affected by this
rule. Downward correctness is obvious, too. To see the upward correctness let
(I,<,¢r) be given by the S-sequence (si,...,s,) and let w' € A* be a solution
of the new system after an application of Rule 3 such that min(I') is the first
position of w'. By definition of an S-sequence there is a non-empty word u € A™
with ¢(u) = s1. Then the first position of w’ is not equal to the first position
in the word ww’, and uw' is a solution of B. For later use notice that we can
choose u such that |u| < |S].

The next rule is very complex. It is the heart of the algorithm. Before we
apply it to some system B = (([',7), (I, <,¢r), left, B), we apply Rules 1, 2 or
3 as often as possible. In particular, we shall assume that left(z) < right(z),
left(z) # left(z) for all z € T, and that there exists some x € I' with left(z) =
min(7).

RULE 4. We divide Rule 4 into six steps.
We need some notation. Define ¢ = min(I) and r = max{right(z) | = €
T, left(z) = £}. Note that ¢ € left(T"), hence r € I exists and we have ¢ < r.
Choose (and fix) some z, € I' with left(z,) = £ and right(z,) = r. Define ¢* =
left(Z,) and r* = right(Z,). Define the critical boundary ¢ € I by ¢ = min{c’,r}
where
¢ = min{left(z) |z € T, r < right(z)}.

Note that since r < r* = right(z,), the minimum ¢’ and hence the critical
boundary ¢ exists. We have £ < ¢ < r < r* and ¢ < £* < r*. The ordering of r
and ¢* depends on the system, it is of no importance.

Define the subset T' C I of transport positions by

T={iell|li<ctu{iel]|3(x,i,z,j) € B :left(z) < ¢}

Note that min(7") = ¢ and that ¢ € T for all (z

01, To,7) € B. Moreover, since
left(z) < ¢ implies right(z) < r, we have max(T) = r.

STEP 1. Choose some admissible extension (I*,<,¢y+) of (I,<,pr) by T at
[¢*,r*]. By convention we identify I as a subset of I*, whence I C I*, and there
is a subset T* C I* with min(T™*) = ¢* and max(7T*) = r* and such that 7™ is
in order respecting bijection with 7". For each ¢ € T' the corresponding position
in T* is denoted ¢*. Having these notations we put a further restriction on
the admissible extension: We consider only those admissible extensions where
first, ¢ < ¢* for all 4 € T' and second, for all (z,i,Z,j) € B with left(z) < ¢ we
demand:

left(x)" = left(%)

-~
left(z)" < left(z) <&
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In particular, for all bricks (z,,i,Z,,j) we demand i* = j. If such an admis-
sible extension is not possible, then Step 1 cannot be completed and Rule 4 is
not applicable.

STEP 2. Introduce a new variable z, and its dual Z,. We define left(z,) = ¢,
left(Z,) = c¢*. For all i € T such that there is some (z,i,T,7) € B with
left(z) < ¢ < i introduce new bricks (z,,1,T,,i*) and (T,,i*, z,,1).

STEP 3. As long as there is a variable x € T with left(z) < ¢, replace left(z) by
left’ (x) = left(z)* and replace all bricks (z,i,7, j), (%, j,=,i) € B by (z,i*,T, j)
and (T, 7, z,1%).

REMARK 12.3.20. To have some notation let x denote a variable before Step 3
and let 2’ be the corresponding variable after Step 3. Likewise let b = (z,14,T, j)
denote a brick before Step 3 and let b’ = (z',4',Z', j) be the corresponding brick
after Step 3. If left(z) = left'(z’), then sometimes we may still write z = 2’. In
particular, z, = z,,, T, = %,', T, = T, , but =, # x,’.
For b = (z,i,7,j) and b’ = (z',i', T, j') there are four cases:
b= (25,7, 5%)  ifleft(z) <e, left(T) <c,
b = (2',i*, T, j) if left(z) < ¢, ¢ <left(z),
b = (x,i,7,5%) if ¢ <left(z), left(z) <ec,
b = (x,i,T,7) if ¢ <left(z), ¢ < left(T).
Note that after Step 3 all bricks (z,,%,%,,j) € B have the form (z!,i*, %5, i*).

STEP 4. Define as the new set of final indices

Fr={i*el"|li<candie F}U{i e F |c<i}.

STEP 5. Cancel all bricks with label z! or Z,, i.e., cancel all bricks of the form
(x],i*,Ty,1*) or (To',1*,2),4*). Then cancel the variables z,, T,.

STEP 6. Replace I* by I' = {i € I* | ¢ < i} and consider the linear order
(I', <, pr) induced by I' C I*.

After Step 6 the transformation rule is finished. The new system is denoted
by B' = ((T",),I",<,¢p),left', B'). We will show from Lemma 12.3.25 to

12.3.28 that B’ satisfies the convex chain condition with respect to F’. The first
lemma is a trivial observation.

LEMMA 12.3.21. We have |I''| = |I'| and |F'| < |F|.

Proof. In Step 2 new variables z, and T, are introduced, but in Step 5 the
variables z( and Tg are canceled. Hence || = |I'|. The set of final indices is
changed in Step 4 such that |[F'| < |F|. "

The following lemma is used to bound the size of I during the transformation
procedure. The lemma has a rather subtle proof.
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LEMMA 12.3.22. Let B' = |[{(«',i',7,j') € B' | left'(z') < i'}| and B =
{(z,i,%,j) € B | left(z) < i}|. Then we have

21" = B" < 2|I] - B.

Proof. The inequality can be destroyed either by a new position i* € T\ I
or by the cancellation of bricks (z!,i*,T5,i*), (To,4*,2),4*) in Step 5, where
¢* < i*. (Recall the definition of 3 and ' and that left(z,) = ¢, left'(z]) =
£*.) The cancellation of these bricks involves again a position of type i* € T*.
Fortunately, if (z!,i*,T,,i*) is canceled, where £* < i*, then i* = j for some
Jj € I'\ {¢}. In particular, i* is not a new position and the two cases don’t occur
simultaneously. Therefore it is enough to find for each i* € T\ {£*} either two
new bricks which are introduced in Step 2 or one position which is canceled in
Step 6. Then the total balance will be negative or zero.

Let us consider the positions of type i* € T*\ {£*} one by one. If ¢* < i*,
then by the definition of T' and Step 2 there are two new bricks (x,,%,T,,i*),
(Ty,i*,zy,1) € B" and we have left(x,) < i, left(Z,) < i*. Next consider i* = ¢*.
At least one position (namely ¢) is canceled in Step 6. Next let £* < i* < ¢*,
i.e., £ < i < c. The position i is canceled in Step 6. Hence we have the assertion
of the lemma. ]

LEMMA 12.3.23. Rule 4 is downward correct.

Proof. Let w € A* be a solution of B. Since w = (I, <, ¢r), we can view I as
a subset of positions of w with £ = 0. Let w = vw' where v = w({,c). The
word v is a non-empty prefix of w(¢,r). The word w(¢,r) is a prefix of w and
at the same time another factor of w'; we have w(¢,r) = w(€*,r*) with £ < ¢*
due to the brick (z,,r,%,,r*) € B. The set T is a subset of positions of w(¢,r),
hence we find a corresponding subset T of positions of w(¢*,r*). The union
TUT* leads to an admissible extension (I*,<,¢r) such that first, i < ¢* for all
i € T and second, w(j, k) = w(j*,k*) for all j,k € T,j < k. A careful but easy
inspection of Rule 4 then shows that w' |= (I',<,¢r) and w' is a solution of
B'. ]

LeEMMA 12.3.24. Rule 4 is upward correct.

Proof. Let w' € A* be a solution of B'. Since w' | (I', <, %), we can view
I' as a subset of positions of w' where ¢ is the first position of w’. Define
v = w'(l*,¢*) and let w = vw'. Then we have w = (I*,<,¢r+) such that
v =w(l,c) = w(l*, ¢*). With the help of the bricks (z,,¢,T,,i*) we conclude
that w(j, k) = w(j*, k*) for all j, k € T, j < k. Therefore we have w(left(z),i) =
w(left(z), 5) for all (x,i,Z,j) € B. Since I C I'*, we have w = (I, <,¢r) and w
is a solution of B. m

Finally we show that Rule 4 preserves the convex condition. This is clear
for Step 1, for the other steps we state lemmata.
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LEMMA 12.3.25. Step 2 preserves the convex chain condition with respect to
the set F'.

Proof. The new bricks in Step 2 have the form (z,,i,7,,i*) and (T,,i*,z,,1)
for some (z,1, T, j) € B with left(xz) < ¢ = left(z,) < i. Since (z,i,Z,j) € B can
be linked via a convex chain to some basis, it is enough to consider the following
figure:

Ty 7
Ty i
Ty i
Ty 7
T
T J

LeEmMA 12.3.26. Let C = (by,...,by) be a convex chain before Step 3 linking
b1 with by,. Then after Step 3 there is a convex chain C' linking by with b/, .

Proof. Let us have a local look at the convex chain:
C=(...,(z,i,%,5),(y,5,9,k)...).

By symmetry we may assume that left(Z) > left(y). Pictorially this local part
is then given by the following figure.

5]

Q=
TS| =

This is the situation before Step 3. After Step 3 let us denote the corre-
sponding bricks by (z',i,%',j') and (v',j",7',k"). This yields the following
figure.

|
=
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The question is whether or not j' = j”. If j' = j* or j"" = j, then we have
j' = 7", and the chain is not broken. Hence we have to consider the case j' = j
and j" = j*, only. This case is equivalent to

left(y) < ¢ <left(z) < j.

With the help of the brick (z,,7,T,,j*), which was introduced in Step 2, we
can repair the broken chain. We have

left(z,) = ¢ < left(z), left'(y’) < c* = left(z,)

and we obtain the following figure:

xr 1

z J

T, J

T, J"*

y' J*
yl kl

Doing this transformation wherever necessary we construct the convex chain
C'. ]

Note that C' constructed in the lemma above may contain many bricks of

!

the form (x},i*,%,,4*) and (T,,i*,z),i*). These bricks were canceled only later

in Step 5. In fact their presence in the next lemma is very useful again.

LEMMA 12.3.27. After Step 4 the convex chain condition is satisfied with re-
spect to the set F'.

Proof. Let b’ be a brick after Step 3 and b the corresponding brick before Step 3.
This brick b is linked before Step 3 via a convex chain to some basis (z,4,T, j)
with j € F. Lemma 12.3.26 states that after Step 3 the brick b is linked via
a convex chain to the corresponding brick (z',i',%',j'). For j < ¢ we have
left(Z) < ¢ and j' = j* € F'. Hence (2',4',Z', j*) is again a basis. For j' = j we
have ¢ < j and therefore j € F'. This also solves the case j' = j. The remaining
case is ¢ < j and j' = j*. This means left(T) < ¢ < j. By Step 2 there is a
brick (Z,,,7*, 7., j) and we have left'(z') < c* = left(Z,). We may put the brick
(2',i', T, j*) upon the basis (T, j*,z,,7). Since j € FNF"', it is in fact a basis
before and after Step 4. We obtain the following figure:

z' 7
fl j*
T, J*
T, J
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LEMMA 12.3.28. Steps 5 and 6 preserve the convex chain condition with re-
spect to the set F'.

Proof. Step 5 is a special case of an application of Rule 2, likewise Step 6 is a
special case of applications of Rule 3. In particular, the convex chain condition
is preserved. [

The lemmata above yield the following proposition:

ProprosITION 12.3.29. Rule 4 is upward and downward correct. It preserves
the convex chain condition.

EXAMPLE 12.3.30. Let 2y ---24 = 441 --- 24 be a word equation, 1 < g < d,
such that the rational constraints are given by a mapping ¢ : Q@ — S. Let

B = ((Fvi)a (Ia S:@I)aleftaB)

be the result of the (log-space) reduction presented in Section 12.3. Recall that
(I, <, ¢r) represents the S-sequence

(1/](1’1), e )dj(mg))d](ngrl): v 7/¢(1‘d))

We may assume that (I, <,y) is in its standard representation, I = {0,...,d}.
According to the reduction the set I' contains two variables g and Zg such that
left(zo) = 0, right(z¢) = g = left(To), and right(Zg) = d. The set B contains at
most d boundary equations (or bricks), among them there is the brick:

Iy g
To d

We have |I| = d+1 and |T'| = |B| < 2d. If the word equation has a non-singular
solution satisfying the rational constraints, then exp(B) < 2-e(c¢(S), d).
Rules 1 to 3 are not applicable to B, but we can try Rule 4. Doing this we
find:
To=x9, (=0, c=g=r=1" andc* =g"=r"=d.

The set T of transport positions is T' = {0, ..., g}.

In Step 1 we have to choose some admissible extension of (I,<,¢r) by T
at [g,d]. In general it is not clear that such an extension exists. Under the
hypothesis that 1 ---z4 = 2441 -+ 24 has a non-singular solution o: ) — At
with ¢ o ¢ = ¢ we can continue. Let v = o(z1 ---x,) and assume that v has
minimal length among all solutions satisfying the rational constraints given by
®. With the help of this word Step 1 can be completed: Define w = vwv, then
we have

w = (Y(21), -, ¢ (2a))-
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The set of positions of w is {0,...,m,m + 1,...,2m} where m = |v|]. The
fact that w is a model of (I, <,py) is realized by an order respecting injective
mapping

p:{0,...,d} = {0,...,2m}.

Define T* = {m + p(i) | 0 < i < g} and I* = p(I) UT*. Since I* is a
subset, of positions of w, this induces a linear suborder over S, which is denoted
by (I*,<,pr+). We have |[I*| < d+ g — 1. After renaming we may assume
I*={0,...,d}UT* and T* = {0*,...,g*} where 0* =c =g and ¢* = ¢* = d.
This completes Step 1 of Rule 4. Since in reality we usually do not know v, the
choice of I* is a non-deterministic guess!

The next steps in Rule 4 are deterministic. In Step 2 we introduce new
variables z,, and T, with left(z,) = g = right(x,) and left(Z,) = d = right(z,).

In Step 3 we transport the structure of the interval [0, g] to [0*, ¢*] = [g, d].
If we still view I* as a subset of positions of w, then this reflects a transport to
the positions from the first to the second factor v in the word w = vwv.

The definition of F' according to Step 4 is

F'={ieI"|g<i}.

In Step 5 we cancel the bricks (z,,d,Z,,d), (Z,,d,z,,d) and the variables
Ty, To-

In Step 6 we replace I* by I' = F”.

Rule 4 is finished. The cardinality of I’ is bounded by d. Let B’ denote the
new system, then the word v is a solution, v = (I', <, ¢(I').

Since in the present situation left(x,) = right(z,) = g, Rule 1 is now appli-
cable to B', it cancels the superfluous bricks (z,,9,%y,d), (Tr,d, z,,g) and the
variables x,, and T,,. The new system after an application of Rule 1 is denoted by
B" = ((Ty,"), (1Y, S,aplér),leftg,B(’)’). We have |I"]| < d, |T"| = |B"| < 2(d —1).
It is now the word v which is a solution of B”, hence exp(B") < exp(v). There-
fore we can choose e(B") = e(c(S), d).

12.4. Proof of Theorem 12.3.10

12.4.1. Decidability

The proof of Theorem 12.3.10 is now a reduction to a reachability problem in
some finite directed graph.
The instance is a system of boundary equations

Bo = ((To,7), (1o, <, ¢1,), leftg, By).

We may assume that By satisfies the assumptions made at the beginning of Sec-
tion 12.3.4, because otherwise By is not solvable. For trivial reasons the system
By satisfies the convex chain condition with respect to the set Fy = Ij.

Let 2ng = |To| and fo = |Fo| = |lo|. According to Proposition 12.3.11 choose
a number e(By) such that either By is not solvable or exp(w) < e(Bp) for some
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solution w of By. Define an integer Syax by
Bmax = 271[) . (2710 + fo) . (4110 - (6(80) + ].))no.

Note that this value is defined just to fit Corollary 12.3.16 for a set of final
indices having size at most 2ng + fo.

Now, consider a directed graph G (the search graph of Makanin’s algorithm),
which is defined as follows. The nodes of G are the systems of boundary equa-
tions B = ((T',7), (I, <, ¢r1), left, B), where:

T < 2n,
ng + 2
2
|B| < Bmax-

1] <

. Bmax:

For systems B,B’ € G we define an arc from B to B’ whenever first, there
is a transformation rule applicable to B and second, B’ is the result of the
corresponding transformation. A system B € G with an empty set of variables
is called a terminal node.

Clearly, By € G and the search graph G has only finitely many nodes. Hence,
it is enough to show the following claim: The system By has a solution if and
only if there is a directed path in G from By to some terminal node.

The ”if”-direction of the claim is trivial since all transformation rules are
upward correct and since all terminal nodes are solvable by Lemma 12.3.4. For
the ”only-if”-direction let By be solvable and let wy |= (lo, <, ¢1,) be a solution
satisfying exp (wp) < exp (Bp).

Let M > 0 and assume that there is an inductively defined sequence of
solvable systems (Bo, B1,...,Bax), M > 0, such that the following properties
are satisfied for all 1 < k < M:

o B, = ((T'k,”), I, <, 01, ), lefty, By) is the result of some transformation
rule applied to Bj_1,

e By, has a solution wy, = (Ix, <,¢r,) such that wy is a suffix of wy_1,
e cither |T'y| < |Tp_1] or |wg| < |wi—1],

e BB, satisfies the convex chain condition with respect to some subset Fj, C I},
with [Fi| + |Tk| < 2n0 + fo.

If By is a system of boundary equations without variables, then we stop.
Otherwise, since By, is solvable, a transformation rule is applicable. Conse-
quently, the sequence can be continued by some solvable system Bjs41 satisfying
all properties above. The third property however implies that M < ng + |wp|.
Hence, finally we must reach a system without variables. We may assume that
this happens with reaching Bys. Let us show that all By are nodes of G for all
0 < k < M. This will imply the claim since then there is a directed path to
B, and By is a terminal node.
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We have to verify |Fk| < 2”0; |Ik| < nOTH . /Bmaxy and |Bk| < 6max-

The assertion |I'x| < 2ng is trivial. The second property of the sequence
implies exp (By) < exp (wg) < exp (wo) < e(Bp). By Corollary 12.3.16 and the
fourth property we have | Bg| < fmax. The next lemma yields an invariant which
will give the desired bound on the size of every Ij.

LEMMA 12.4.1. For 0 < k < M define By, = |{(z,i,T, j) € By, | lefty,(z) < i}|.
Then for all 1 < k < M we have:

|Fk| |Fk 1]

2|Ik| 61»"‘ 6max§2|]—k 1|_/Bk 1+ — /Bmax

Proof. Consider the rule which was applied to pass from Bj_1 to By. For Rule 1
or 2 we have:

Tl = Tk-1] =2,
[ Ik| = Tk—1],
Br—1 — Br < Bmax-

For Rule 3 we have:

Tk = Te=1],
(k| = Tp—a] = 1,
|/Bk| = |/8k71|-

Finally, for Rule 4 we have |I'y| = |I';_1| and Lemma 12.3.22 says:
2|1k = Br < 2|Ig—1]| — Br-1.

The assertion of the lemma follows. n

A consequence of Lemma 12.4.1 (and 8y < Bmax) is:

21| <2|Ip| + (np + 1)Bimax for all 0 < k < M.

Since |Io| < 2Bmax, we obtain |I| < 2223, Hence By, € G for all 0 < k <
M. This proves Theorem 12.3.10, hence Makanin’s result.

12.4.2. The complexity of Makanin’s Algorithm

Our estimations on the upper bounds of Makanin’s algorithm are given by the
size of the semigroup S and the maximal number of boundary equations fBmax
as defined in the precedent section.

A node B = ((T,7), (I, <, ¢1), left, B) of the search graph G is encoded as a
binary string over {0, 1} as follows: The code for (T',7) is simply the number n
written in binary such that |I'| = 2n. Thus, O (logng) bits are enough for this
part. The linear order (I, <,¢y) is encoded by its underlying S-sequence. For
this part O(ngfmax log|S|) bits are used. The mapping left:T" — I is encoded
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by using O(ng log (nofmax)) bits. Finally, the set of bricks B can be encoded
by using O(SBmax l0g (nofmax)) bits. Note that ng < log fmax. It follows that
there is effectively a constant ¢ € N such that every B € G can be described
by a bit string of length equal to ¢ - (log|S| - Bmax * 10& (Bmax)).- Up to some
calculations performed over S this is the essential upper space bound for the
non-deterministic procedure. It is at most exponential in the input size.

Consider the original question whether a given word equation z;---z, =
ZTg41 - -Zq, 1 < g < d with rational constraints has a solution. We may assume
that each rational language L, C A* is specified by a non-deterministic finite
automaton with r, states, z € Q. Define r =3 _, r;; we are going to measure
the complexity of Makanin’s algorithm in terms of d and r. First, we choose
a suitable semigroup S and a homomorphism ¢: AT — S. By Remark 12.1.12
we may assume that S satisfies |S| < 27* and ¢(S) < rl. By Theorem 12.2.1
choose a value e (¢(S),d) € ¢(S) - 20(@) C 20(d+rlogr) guch that e (¢ (S),d) is
an upper bound for the exponent of periodicity. Transform the word equation
(by a non-deterministic guess) into a system of boundary equations

Bo = ((To,7), (1o, <, ¢1,), leftg, By).

such that the word equation has a solution satisfying the rational constraints if
and only if By is solvable. This is possible such that first, |Iy|, |I'o|, |Bo| € O(d),
and second, if By is solvable, then

6(80) < 26(0(5) ,d) € 90(d+rlogr)

More precisely, by Example 12.3.30 we can say |Io| < d—1, |T'o| = |Bo| < 2(d—1)
and, if By is solvable, then e (By) < e (c(S),d).

Compute a value fmax € 90(4*+drlogr) guch that Bmax is an upper bound for

the number of boundary equations of each node in the search graph G. The value
Bmax can be taken large enough to perform all computations over the semigroup
S and it can be taken small enough in order to solve the reachability prob-
lem in the search graph G in non-deterministic space NSPACE(QO(d2+dr log 7"))
By Savitch’s theorem, see e.g. Hopcroft and Ullman (1979), this is equal to

DSPACE (20(d2+dr log r)) Hence we can state the final result of this chapter.

THEOREM 12.4.2. The space requirement of Makanin’s algorithm for word
equations with rational constraints is at most exponential space. More precisely,
we have the following complexity bound:

DSPACE (20(d2+dr log r)) _

REMARK 12.4.3. The theorem above is an assertion on Makanin’s algorithm
and therefore it is no statement about the inherent complexity of the satisfiabil-
ity problem for word equations. In fact, by Plandowski (1999b) we know that
the satisfiability problem for word equations can be solved in polynomial space,
see the notes below.
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Problems

Section

12.1.1

12.1.2

12.1.3

12.1.4

12.1.5

Section

12.2.1

12.2.2

12.2.3

12.2.4

Section

12.3.1

12.1

Decide whether the solution abbababbaabab given in Example 12.1.1 is
a non-singular solution of minimal length.

Let Q = {z,y} and u,v € A* be words. Give necessary and sufficient
conditions on w and v such that the equation zu = vy is solvable.
Reduce the satisfiability problem of word equations to the satisfiability
problem of systems of word equations where each variable occurs at
most three times.

(Thierry Arnoux) Let n > 0. Consider the following word equation with
rational constraints:

A={a,b}, Q={z;]0<i<n},
L., = A%, L., = aA*\(A*b'A*) for i > 0,
zpab™z, = a abroazy ab®>ziabxry -+ ab®zp_1ab™ ' Tpy_y

The denotational length of this equation is d = n? + 5n + 4. Show that
there is only one solution satisfying the rational constraints, and that
the length grows exponentially in n.

Show that the solvability of word equations becomes undecidable, if the
constraints are allowed to be deterministic context-free languages.
Hint: It is well-known that the emptiness problem for intersections of
deterministic context-free languages is undecidable.

12.2

Give a greedy algorithm to compute the p-stable normal form of a word
w € A*. Modify the algorithm by pattern matching techniques such
that it runs in linear time.

Prove Propositions 12.1.7, 12.1.8, and 12.1.9. Show that the results
remain true when there are rational constraints.

Show that the satisfiability problem of word equations without rational
constraints is NP-hard.

Hint: Show that the problem is NP-complete for systems of word equa-
tions, if there is exactly one constant, A = {a}. Use the fact that linear
integer programming is NP-hard, even in unary notation.

Let L, C A* be a rational language. Describe the set of all solutions o
for an equation with only one unknown x under the constraint o(z) €

L.
12.3

An instance of a linear integer programming problem is given by an
m X n matrix D € Z™*™ and a vector ¢ € Z™. Let z € N" be a minimal
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12.4.1

12.4.2
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vector such that Dx = c¢. Assume that the sum over the squares of the
coefficients in each row of D is in O(1) and ||c|| € O(n?). Show that
there is a (small) constant ¢ such that

2]l € O2°").

Hint: The proof is a slight modification of the standard proof which
shows that linear integer programming is NP-complete, see e.g. Hopcroft
and Ullman (1979). Use Hadamard’s Inequality for an upper bound for
the maximal absolute value over the determinants of square submatrices
of D. Next, show that if x € N is a minimal solution, then there also
is a minimal solution ' € N* such that first, the absolute value of at
least one component can be bounded and second, Y ;' x; < Y, 2.
Freeze by an additional equation one variable of 2’ to be a constant.
Repeat the process until the homogeneous system Dz = 0 has only the
trivial solution. Then apply Cramer’s Rule.

It should be noted that this method doesn’t yield the best possible
result. But it is good enough to establish that e(d) € 2°(?, which was
used in the proof of Theorem 12.2.1.

12.4

Consider the reduction in the proof of Lemma 12.3.12. Give an esti-
mation for the length d of the word equation and thereby for an upper
bound of e(B). Define another reduction where the denotational length
of the resulting word equation becomes smaller. This also improves
the estimation for e(B). Give a third estimation for e(53) based on the
techniques presented in Section 12.2.

Hint to the second part: If a system contains two equations z = z’ and
xy = 2'y’, then the second one can be replaced by y = y'.

According to Kodcielski and Pacholski (1996: Theorem 4.8) the lower
bound for e(c(S),d) given in Example 12.2.3 can be refined. Consider
the following equation with k£ = 5.

_ k k ky c
TpaZpbrp_1b---T2br1 = azxpx, _ b, _5b---z7ba”.

Show that there is a unique solution. Derive from this solution a lower
bound for the constant hidden in the notation e(c(S),d) € ¢(S) - 2%,
Why is k£ = 5 a good value? Hint: Show first that o(x;) € a* for all
1<t <n.

A systematic study of equations in free monoids was initiated in the Russian
school by A. A. Markov in the late 1950’s in connection with Hilbert’s Tenth
Problem, see Hmelevskil (1971), Makanin (1981). The connection is based on
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the fact that the set of matrices having non-negative integer coefficients and
determinant 1 form a free monoid inside the special linear group SL2(Z). Free

generators are:
(11 b— 10
“=\o1)’ “\11)-

Let L = R be a word equation over {a,b} with Q = {z;,...,x,}. Replace
each variable z; € Q by a matrix
Q1 Q2
Qiz Qig )’

where «a;; denote variables over N. Multiplying matrices corresponding to the
words L and R yields an equation of the form

(Pl P2> _ (@1 Q2>
P; Py Q3 Qq)"
The coefficients P;,...,Q4 are polynomials in the a;;. It is clear that the

equation L = R has a solution if and only if the following Diophantine system
has a non-negative solution:

oy — apagz =1, i=1,...,n,
Pj:Q]’,]ZI,...,4.

The satisfiability problem of word equations becomes thereby a special instance
of Hilbert’s Tenth Problem: the satisfiability problem of Diophantine equations.
The hope of Markov was to prove the unsolvability of Hilbert’s Tenth Problem
using this reduction. This hope failed, the unsolvability of Hilbert’s Tenth
Problem was shown in 1970 by Matiyasevich using an entirely different approach,
see Matiyasevich (1993). The solvability of word equations is due to Makanin
(1977). Tt is the subject of the present chapter. However, the reduction from
word equations to Diophantine equations is still very useful. For example it
yields a simple proof of the Ehrenfeucht Conjecture, see Chapter 13 for details.

A consequence of Makanin’s result is the decidability of the existential theory
of concatenation. The method is given in Section 12.1.6. The decidability of the
existential theory is close to the borderline to undecidability. By Marchenkov
(1982) and by Durnev (1995) it is known that the positive V3*-theory of con-
catenation is unsolvable, see also the survey paper of Durnev (1997). Durnev
(1974) and Biichi and Senger (1988) defined length predicates such that adding
these predicates yields an undecidable existential theory of concatenation. The
latter article also shows that equal-length is not existentially definable by word
equations. The decidability of word equations with an additional equal-length
predicate is still an open problem. For more details about the expressibility of
languages and relations by word equations see Karhuméki et al. (2000).

A few partial results about the decidability of word equations were known
quite early. The fact that a disjunction of two equations can be replaced by
a single equation was shown by Biichi in the mid sixties, but his proof was
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published only much later, see Biichi and Senger (1986/7). In 1964 and 1967
Hmelevskii found a positive solution for the cases with two and three variables
respectively, see Hmelevskii (1971). Other special cases were solved by Plotkin
(1972) and Lentin (1972). In the case of two variables Charatonik and Pachol-
ski (1993) analyzed Hmelevskii’s work by proving a polynomial time bound on
his algorithm. Their estimation about the degree of the polynomial was rather
rough and extremely high. Ilie and Plandowski (2000) lowered the estimation
on the degree down to six by giving a quadratic bound on the length of the
minimal solution. In the case where each variable occurs at most twice, i.e., in
the case of quadratic systems, there is a linear time algorithm for the satisfia-
bility problem, once the lengths for the solutions of variables are fixed and their
binary representation is part of the input, see Robson and Diekert (1999). The
linear space algorithm for this problem without fixing the lengths appeared in
Matiyasevich (1968); the main result of that paper is however a quite different
way to reduce word equations with additional conditions on equality of length
of some words to Diophantine equations.

After Makanin presented his result in 1977 other questions became central.
Makanin (1979) has shown that the rank of an equation is computable, see also
Pécuchet (1981). The original article of Makanin is rather technical. In the
sequel other presentations with various improvements were given, let us refer to
Jaffar (1990), Schulz (1992a, 1993), Gutiérrez (1998b). The present chapter is
along this line. A brief survey on equations in words can be found in the paper
of Perrin (1989). Further material on equations in free monoids and, especially
on equations without constants, is in the Handbook of Formal Languages, see
Choffrut and Karhumaiki (1997). There are two volumes in the Springer Lecture
Notes series dedicated to word equations and related topics: Schulz (1992b) and
Abdulrab and Pécuchet (1993). Makanin’s algorithm was implemented in 1987
at Rouen by Abdulrab, see Abdulrab and Pécuchet (1990).

The inherent complexity of the satisfiability problem of word equations with
constants is not yet understood. The lower bound is NP-hardness, simply be-
cause Linear Integer Programming (in unary notation) is a special instance and
the latter problem is NP-hard. The satisfiability problem of word equations also
remains NP-hard for a single quadratic equation. On the other hand, the expo-
nent of periodicity is only linear for quadratic systems, see Diekert and Robson
(1999), and it is believed that at least quadratic systems can be solved in NP.
In fact, a conjecture of Plandowski and Rytter (1998) claims NP-completeness
as the complexity bound for general word equations with constants. The devel-
opment toward this conjecture over the past few years is somewhat unexpected
since a first analysis of Makanin’s algorithm done in the works of Jaffar and
Schulz showed a 4-NEXPTIME result, only. By Koécielski and Pacholski (1996:
Corollary 4.6) this went down to 3-NEXPTIME and then to 2-EXPSPACE dur-
ing the work on the present chapter. The final version of this chapter uses an-
other improvement due to Gutiérrez (1998a), see Lemma 12.3.14. It shows that
the space requirement for Makanin’s algorithm does not exceed EXPSPACE.
This is the statement of Theorem 12.4.2. It is still the smallest space require-
ment for a full implementation of Makanin’s algorithm.
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However, in 1999 Plandowski found a new way for solving word equations
which is independent of Makanin’s work and which led to polynomial space.
He obtained his result in two consecutive papers which both appeared in 1999:
Plandowski (1999a) showed that the satisfiability problem for word equations is
in NEXPTIME. This is based on a result due to Plandowski and Rytter (1998),
which shows that the minimal solution of a word equation is highly compressible
in terms of Lempel-Ziv encodings and by a non-trivial combinatorial argument
showing that the length of a minimal solution is at most doubly exponential
in the denotational length of the equation. The NEXPTIME algorithm is to
guess such an encoding of a minimal solution and to verify in deterministic
polynomial time that the guess actually corresponds to some solution. Moreover,
it is conjectured that the length of a minimal solution is at most exponential in
the denotational length of the equation. If this were true, then the Lempel-Ziv
encoding would have polynomial length and the satisfiability problem for word
equation with constants would become NP-complete. So it might be that the
trivial lower bound of NP-hardness already matches the upper bound, which is
exactly the conjecture mentioned above. A counter example to NP-completeness
would imply the existence of a family of solvable word equations over a two letter
alphabet where the lengths of minimal solutions grow faster than an exponential
function.

Plandowski (1999b) showed that the satisfiability problem is in PSPACE.
One important ingredient of his work is to use data compression in terms of
exponential expressions. It is an interesting open problem whether the use of
data compression could also lower the complexity bound in Makanin’s method
from exponential space down to polynomial space.

This chapter dealt with word equations having rational constraints. In this
form the satisfiability problem becomes PSPACE-hard, simply because we may
encode the intersection problem for rational languages, and the latter problem
is known to be PSPACE-complete by Kozen (1977). Extending Plandowski’s
method Rytter has stated a PSPACE-completeness result for the satisfiability
problem for word equations with rational constraints, see Plandowski (1999b:
Thm. 1).

Another surprising consequence of Plandowski’s work is the dramatic im-
provement for solving equations over free groups. Let us first recall some back-
ground. Word equations in the framework of combinatorial group theory were
introduced by Lyndon (1960), see Lyndon and Schupp (1977) for a standard
reference. The corresponding notion of quadratic equation plays an impor-
tant role in the classification of closed surfaces, and basic ideas how to solve
quadratic equations go back to Nielsen (1918). The general satisfiability prob-
lem for equations with constants in free groups was shown to be decidable by
Makanin (1982) and Makanin (1984). Razborov (1984) presented an algorithm
which generates all solutions to a given equation. Let us also refer to the survey
given of Razborov (1994). Makanin’s method for group equations turned out
to be even more complicated than in the word case, it is much more involved.
Its complexity has been investigated by Koscielski and Pacholski (1998). The
authors define the notion of abstract Makanin algorithm and they show that
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this abstract scheme is not primitive recursive. Therefore it was widely believed
that the inherent complexity of the satisfiability problem in the group case is
much higher than in the word case. However, there were hints that this was
perhaps misleading: Using a result of Merzlyakov (1966) it has been shown by
Makanin (1984) that the positive theory of equations in free groups is decidable
whereas it was known to be undecidable in the word case. This contrast does
not fit well to the assumption that the existential theory over free groups is
much harder than over free monoids. And indeed, Gutiérrez (2000) achieved
to extend Plandowski’s method such that it became applicable to the situation
in free groups. As in the word case, the existential theory of equations in free
groups is in PSPACE. Consequently, a non-primitive recursive has been replaced
by some polynomial space bounded algorithm. Finally, it became possible to
cope with rational constraints in free groups. Diekert, Gutiérrez, and Hagenah
(2001) have shown that the satisfiability problem for equations with rational
constraints in free groups is PSPACE-complete, too.

An ongoing direction of research is to extend Makanin’s result beyond free
monoids and free groups. We briefly list some of the known results. For example,
the main result of Diekert et al. (2001) is in fact a statement about free monoids
with involution. This was used when the existential theory of equations in plain
groups was shown to be decidable by Diekert and Lohrey (2001), thereby solving
an open problem of Narendran and Otto (1997). According to Haring-Smith
(1983) a group is called plain, if it is a free product of a finitely generated free
group and finitely many finite groups. The class of plain groups is contained
in the class of hyperbolic groups, which was introduced by Gromov (1987), and
furthermore it is known that the existential theory of equations in torsion-free
hyperbolic groups is decidable by Rips and Sela (1995). The intersection of plain
groups and of torsion-free word hyperbolic groups is the class of free groups. It
is strongly conjectured that the existential theory of equations is decidable in
the whole class of hyperbolic groups.

On the other hand, if we move to free inverse semigroups, then the exis-
tential theory becomes undecidable, see Rozenblatt (1982, 1985). The situation
improves if we wish to include partial commutation. Free partially commutative
monoids are also called trace monoids. They are a tool to study some phenom-
ena in concurrency theory, see Mazurkiewicz (1977) and Diekert and Rozenberg
(1995) for a general reference. Matiyasevich (1997) has shown that the satisfi-
ability problem of trace equations is decidable, see also Diekert, Matiyasevich,
and Muscholl (1999). Diekert and Muscholl (2001) generalized this result to
trace monoids with involution and the corresponding result in free partially
commutative groups became a corollary. Free partially commutative groups are
also called graph groups in mathematics, see e.g. Droms (1985, 1987a, 1987b).

The comments above show that the work on word equations led to remark-
able results with progress all over the years and many connections to other
fields. Makanin’s deep insight in the combinatorics on words has been a basis
and a source for an active area of research.



CHAPTER 13

Independent Systems of
Equations

13.0. Introduction

The notion of a dimension, when available, is a powerful mathematical tool in
proving finiteness conditions in combinatorics. An example of this is Eilenberg’s
Equality Theorem, which provides an optimal criterion for the equality of two
rational series over a (skew) field. In this example a problem on words, i.e., on
free semigroups, is first transformed into a problem on vector spaces, and then
it is solved using the dimension property of those algebraic structures. One
can raise the natural question: do sets of words possess dimension properties of
some kind?

We approach this problem through systems of equations in semigroups. As
a starting point we recall the well known defect theorem, see Chapter 6, which
states that if a set of n words satisfies a nontrivial relation, then these words
can be expressed simultaneously as products of at most n — 1 words. The defect
effect can be seen as a weak dimension property of words. In order to analyze it
further one can examine what happens when n words satisfy several independent
relations, where independence is formalized as follows: a set E of relations on
n words is independent, if E, viewed as a system of equations, does not contain
a proper subset having the same solutions as E.

It is not difficult to see that a set of n words can satisfy two or more equations
even in the case where the words cannot be expressed as products of fewer than
n — 1 words. This proposes an interesting problem: how many independent
equations a set of n words can satisfy? In other words, how weak is the above
dimension property? A partial answer is given in a fundamental result of words
revealed in 1985, namely in the compactness property of free semigroups (known
as Ehrenfeucht’s conjecture): each independent set of equations of words is
finite. This is the central theme of this chapter.

For finite systems of equations over a free semigroup, we show that there
exist independent systems of 2(n?) equations in n variables. Moreover, in com-
parison to the defect theorem, we construct a set X of words with Card(X) =n
that satisfies Q(n?) independent relations, and still the words of X cannot be
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expressed as products of less than n — 1 words. That is, these relations cause
the same defect effect as a single nontrivial relation.

Our central problem generalizes, in a natural way, to all semigroups S. In
this setting we consider infinite systems of equations, i.e., pairs of words from a
free semigroup of variables, and ask whether, for each such system, there exists a
finite subsystem of equations that is equivalent to the given one, that is, whether
the subsystem has exactly the same set of solutions in S as the original one.

The compactness property does not hold in all semigroups, an example being
the bicyclic semigroup, while it does hold in some other than the free semi-
groups. In general, no characterization of semigroups satisfying the compactness
property is known. This, however, changes if we consider varieties of semigroups
or monoids. There is a nontrivial characterization in terms of ascending chains
of congruences for a variety to satisfy the compactness property.

13.1. Sets and equations

Let A and Z be two finite sets, where the elements of = are called variables.
Let (u,v) € Z* x =¥ be an equation, usually written as u = v. Its solution in
the free semigroup AT (resp. in a semigroup S) is a morphism a:=T — AT
(resp. a:ET — S) that satisfies a(u) = a(v). Solutions of an (infinite) system
of equations E are defined in the obvious way. Let Sol(E) be the set of all
solutions of a system FE of equations. Two systems E and E’ of equations are
said to be equivalent if they have the same solutions, Sol(E) = Sol(E'). Further,
a system E of equations is independent, if it is not equivalent to any of its proper
subsystems.

For simplicity, we often write x = w instead of a(z) = w, when x € E is a
variable and « a morphism.

The combinatorial rank of a finite subset X C At of words is defined by

7o(X) = min{Card(Y) | X CYT}.
Clearly, we have r.(X) < max{Card(X), Card(A)}.

ExamMpLE 13.1.1. Consider the following three systems of equations:

Ey: xy=zx
Ey: azy'=z%, i=12,...,

FBs: wxyz=zyr, zy’z=zy’z.

Here E; and E, are equivalent, since xy = zx implies, for ¢ > 1,

eyt = (zy)y' = (za)y’ = 22y’
which gives, by induction, that zy*! = 2*+1z. The system Es is independent,
since x = a, y = b and z = aba is a solution of the first equation of E3 that is
not a solution of the second one, and £ = a, y = b and z = abba is a solution of
the second equation that is not a solution of the first one.
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The morphisms a: 2+ — AT are, in a natural way, in a 1-1 correspondence
with the finite ordered subsets X C A* with Card(X) = Card(Z). We exploit

this by attaching to a finite ordered subset X = {wy,wa,...,wy}, a set Ex =
{x1,22,...,z,} of variables and a morphism ax: =% — X+, for which ax (z;) =

w; for all i. Such a surjective morphism is a presentation of the semigroup X .
Now we can view the set X of words as a solution of an equation u = v over
Zx, if the morphism ax is its solution. Further, the set of relations satisfied by
X is defined as the kernel of the morphism ax,

E(X) ={(u,v) € E% x 2} | ax(u) = ax(v)}. (13.1.1)

Clearly, E(X) is a congruence of the free semigroup E}, that is, it is an equiv-
alence relation and a subsemigroup of the direct product =} x =%.

A subsemigroup X T of a free semigroup AT is cancellative, and so is the
semigroup E(X) C Z% x Z%. Therefore if X T satisfies the relations (u1,v;) and
(uyug,v1v2) (or (uguyg,vevr)), it also satisfies (uq,v2). We say that a relation
(u,v) is reduced, if it belongs to the minimal generating set E,eq(X) of the
semigroup E(X):

Erea(X) = (B(X) \ E(X)?) \ 12

=X
where 1z, = {(z,z) | * € Ex} is the identity relation of Ex. Clearly, if
(u,v) € Erea(X), then the first variables in w and v are different, and so are
the last ones. It is obvious that, as systems of equations over Ex, E(X) and
E,eqa(X) are equivalent. However, E,eq(X) need not be a minimal equivalent
subsystem of E(X).

ExaMPLE 13.1.2. Let X = {a,ab,ba} C {a,b}". Then it satisfies the rela-
tion (z1x3,x221), and, by the previous example, it also satisfies the relations
(z12%, zbx,) for all i € N. Tt is not difficult to see that the latter are exactly the
reduced relations satisfied by X+, that is, Ereq(X) = {(z12%,24x1) | i € N}.
Indeed, the validity of this can be concluded from the finite automaton given in
Fig. 13.1 that seeks through all double X-factorizations of words in X .

Figure 13.1. A finite automaton for the relations of X

In general, such an automaton can be constructed as follows. The states of
the automaton form a subset of the pairs (u,¢), (¢,u), where u is a proper suffix
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of a word in X, and there is a transition

(ur,v1) % (ua, vs)

if uyax (z)ve = viax(y)us for z,y € Ex U {e}. The initial and the final state
of the automaton is (g,¢). In our example, the automaton has been simplified
after the construction.

The proof of the next theorem is left to the reader as an exercise. Exam-
ple 13.1.2 serves as an illustration.

THEOREM 13.1.3. The sets Eyeq(X) and E(X) for a finite set X C AT are
rational relations.

Thus the sets Eyeq(X) and E(X) are rather easy to compute. However,
to compute Sol(u,v) for a given equation u = v maybe very demanding, see
Chapter 12.

13.2. The compactness property

In this section we shall prove a compactness result, which states that every
system of equations in a free semigroup over a finite set of variables has an
equivalent finite subsystem. In other words, each independent system of equa-
tions in a free semigroup over a finite set = of variables, is finite. This can be
viewed, beside the defect theorem, as another positive dimension property of
words.

13.2.1. The proof

In the proof of the compactness result we need Hilbert’s basis theorem. For
this, let Z[X] be the ring of polynomials with integer coefficients in a finitely
many (commuting) variables X.

THEOREM 13.2.1 (Hilbert’s basis theorem). Let P;, for i > 1, be polynomials
in Z[X]. There exists a finite subset Py, P, ..., P, of these polynomials such
that every P; can be expressed as a linear combination

Pi :PlQil +P2Qi2 +---+PtQi“
where Q;, € Z[X].

We use Theorem 13.2.1 in the following form. Let {P; = 0 | i > 1} be a
system of polynomial equations, where P; € Z[X]. There exists a finite subsys-
tem {P; =01]i=1,2,...,t}, every solution of which is a solution of the whole
system of equations.

THEOREM 13.2.2. Every independent system of equations in a free semigroup
AT over a finite set = of variables is finite.
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Proof. To take advantage of Hilbert’s basis theorem, we transform each word
equation v = v into a polynomial equation in Z[X]. For this, we use noncom-
muting matrices of integer polynomials.

Let £ = {z1,2,...,71} be a fixed set of word variables. Since each A* can
be embedded into B*, where B = {a, b}, it is sufficient to solve equations over
Zin BT.

Consider the multiplicative semigroup Z2*2 of 2 x 2-matrices over Z. Let F
be the subsemigroup of Z2*? of all matrices of the form

2™ n m
M = 0 1) where 0 < n < 2™. (13.2.1)

CraM 1. The semigroup F is free. In fact, the morphism p:{a,b}*t — Z2*?2

defined by u(a)=<2 0) and u(b):<2 1)
01 v

is injective, and onto F.

We observe that M, = u(a) and My = u(b) have the inverses

= () e = (Y2 1)

in rational entries. Further, for a matrix M in (13.2.1),

_ 2m-1 /2 _ 2m-1  (n—1)/2
1 _ 1 _
MEM_< 0 1) and MbM_< 0 . .

This yields that M, 1M € F if and only if n is even, and Mb_lM € F if and
only if n is odd. Consequently, M, and M, generate I, and each M € F has
a unique factorization M = My, M,, ... M,, in terms of the matrices M, and
My. This shows that F is freely generated by M, and My, proving Claim 1.

Next we introduce, for each x; € =, two commuting integer variables y; and
z;i, and denote X = {y;,z; | i =1,2,...,k}. Further, for each i, let

(Y %
=% %),

and let M(Z) be the subsemigroup of the multiplicative semigroup Z[X]**?
generated by the matrices My, Ms, ..., M.

CramM 2. The semigroup M(Z) is free. In fact, the morphism p:E% — M(Z),
defined by p(x;) = M;, is an isomorphism.
For this, consider any M = M;, M;, ...M;, € M(E). Then

_ yi1yi2 yzt mia
o= (T ).
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where the right upper corner entry mis = 24, + ¥i, Zip + .+« - + Yi, Yiy - - - Yi, 1 Ziy -
From the entry ms we conclude, despite of the fact that the unknowns y; and
z; commute, that it determines the sequence 7y, s, .. .,%; uniquely, and Claim 2
follows.

For each morphism a: =t — Bt let @ = pap~':M(ZE) — Z>*? so that the
following diagram commutes:

=+ @ B+
‘pl H
M(E) —2 7:2%2

Denote for each word w € =T,

p(w) = <Pléw) P2§“’)> € Z[X]2*2

Finally, let &:Z[X] — Z be the ring morphism, which is defined by

F(M;) = (07(31') 07(12z')> ‘

It follows that A(Py(w))  a(Py(w))
ap(w) = < 0 1 ) '

Now, a morphism a:Z%t — BT is a solution of an equation u = v over = if
and only if @ is a solution of the matrix equation ¢(u) = ¢(v). We conclude
that « is a solution of v = v if and only if the corresponding ring morphism
&:Z[X] — Z is a solution of the system

{ Pi(u) = Py (v)
PQ(U) = PQ(U)

of integer equations, or equivalently, of the equation e(u,v) = 0, where
e(u,v) = (Pi(u) = P1(v))” + (Pa(u) — P2(v))*.

Let then E = {(u;,v;) | ¢ > 1} be a system of word equations, and denote
by J = {e(u;,v;) | i > 1} the corresponding system of polynomial equations.
By Hilbert’s basis theorem, J has an equivalent finite subsystem, say Jy =
{e(us,v;) |i=1,2,...,t}. By the above, if a is a solution of the finite subsystem
Ey = {(us,v;) | i = 1,2,...,t}, then the corresponding & is a solution of .Jy,
and thus also of J, which gives that a is a solution of E. This shows that Ey is
equivalent to E, proving the theorem. [

The above deserves a special comment on the proof method. We have proved
there a combinatorial result for semigroups (with one operation) concerning
noncommuting variables by reducing it to a result for rings (with two operations)
concerning commuting variables.
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13.2.2. Applications

We give two applications of the above compactness theorem. The first of these
solves the isomorphism problem for finitely generated subsemigroups of free
semigroups. For the proof of this we need an effective restriction of Theo-
rem 13.2.2, see Problem 13.2.3.

LEMMA 13.2.3. Let R C 2t xZT be a rational relation (considered as a system
of equations). Then an equivalent finite subsystem Ry C R can be effectively
found.

Now we state our first application.

THEOREM 13.2.4. Let X,Y C AT be two finite sets of words. It is decidable
whether the semigroups X+ and Yt are isomorphic.

Proof. Since computing the base of X7 is effective, we may assume that X and
Y are the bases of their semigroups X and Y. Further, we can suppose that
Card(X) = n = Card(Y); otherwise X' and Y* are not isomorphic. Let = be
a set of variables with Card(Z) = n.

We consider the bijections ¢: X — Y. Note that there are only finitely many
of these, since X and Y are finite. We need to decide whether the (unique) ex-
tension ¢: X — YT of ¢ is an isomorphism. For this, consider the representing
morphisms, ax:ZT — XT and ay = pax:ZFT — YT for X and Y. Now ¢
is an isomorphism if and only if it is injective, and this holds if and only if
E(X) = E(Y) as sets of relations defined in (13.1.1). By Theorem 13.1.3,
E(X) and E(Y) are rational relations. Despite of the fact that the equivalence
problem for rational relation is undecidable, we can solve the present problem.
Considering E(X) and E(Y) as systems of equations, Theorem 13.2.2 states
that they have finite equivalent subsystems, and by Lemma 13.2.3, such subsys-
tems, say Eo(X) C E(X) and Ey(Y) C E(Y'), can be effectively constructed. It
is now a simple task to check whether ax is a solution of Ey(Y). If the answer
is positive, then ax is a solution of E(Y"), and E(X) = ker(ax) C E(Y). If the
answer is negative, then clearly E(X) # E(Y"). Similarly, if ay is a solution of
Ep(X), then E(Y) C E(X). This proves the theorem. n

We emphasize that the above theorem reveals one of the rare cases, where
the isomorphism problem for infinite (finitely generated) semigroups is known
to be decidable. Indeed, already for multiplicative matrix semigroups with
nonnegative entries, it is undecidable.

As a second application of Theorem 13.2.2, we prove a decidability result
for monoids of endomorphisms. By an endomorphism we mean a morphism
a: AT — AT of a free semigroup A™ into itself.

We first study test sets of languages, which constitute the original language
theoretic formulation of the compactness property of Ehrenfeucht’s conjecture.
Let L C AT be a language, i.e., a subset of AT. We say that a subset T' C L is
a test set for L, if for all morphisms o, 3: AT — BT:

a(u) =B(u) forall u € T <= a(u) = f(u) for all u € L.
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From Theorem 13.2.2 we obtain

THEOREM 13.2.5. Every set L C At possesses a finite test set.

Proof. For any alphabet B, let B = {a | a € B} denote its copy, and write for
all words u = a1as...a; € BT, 4 =a1as ...a; € BT. Here the function u — @
is an isomorphism Bt — B*.

Let L C B*, and define E = {(u,u) | u € L}. By Theorem 13.2.2, when FE is
considered as a system of equations, it has an equivalent finite subsystem Ej. Let
T = {u| (u,u) € Ep}. Certainly, T is a finite subset of L. Consider morphisms
a,B: BT — At satisfying a(u) = B(u) for all u € T. Let = = B U B be our
set of variables, and define a morphism v: 2% — A* such that v(z) = a(z) and
v(T) = p(z) for all z € B. Now y(u) = y(w) for all w € T, and hence v is
a solution of the finite system Fjy, and therefore 7 is a solution of E as well.
Consequently, a(u) = S(u) for all u € L, which shows that T is a finite test set
of L. [

Using Makanin’s result, see Chapter 12, one can prove (see Problem 13.2.4)

LEMMA 13.2.6. Let L,,L, C A% be finite sets such that L, C L,. It is
decidable whether L, is a test set of Ls.

With a help of the above lemma, we now show

THEOREM 13.2.7. Let H be a finitely generated monoid of endomorphisms of
a free semigroup A", and let w be a word in AT. It is decidable, for given
endomorphisms «, 3 of A*, whether ary(w) = Bv(w) for all vy € H.

Proof. Let H be generated by G = {y1,72,...,Vn}, and denote L(H,w) =
{y(w) | v € H}. We consider the level sets

Ly(H,w) = {y(w) | v € G*},

where GP denotes the set of all compositions ~;;7vi;_, ... i, of at most p mor-
phisms from G. By Theorem 13.2.5, the set L(H,w) has a finite test set, and,
consequently, there exists an index p such that L,(H,w) is a test set for L(H,w).

It follows that there exists an index ¢, and hence the least index ¢, such that
L,(H,w) is a test set for Lyy1(H,w) as well. We claim that L,(H,w) is a test
set of L(H,w). This is seen inductively as follows. Assume that for morphisms
a and B, ay(w) = By(w) for all v € HI*. Let v' € H, v; € G and v € HY,
and denote k = v'v;9" € H4 "+l Now, by the assumption on « and j3,

(@) (w) = ay'y"(w) = By'y" (w) = (B7)7" (),

and, by the assumption on HY, also (ay')y;7"(w) = (8v")v;7" (w), which shows
that ak(w) = Br(w) as required.

Finally, by Lemma 13.2.6, the index g can be effectively found. Indeed, it is
sufficient to check, for i = 1,2, ..., whether L;(H,w) is a test set of L;1(H,w).



13.3. Independence of finite systems of equations 399

The existence of g guarantees that this checking will end in a positive answer.
The test set L,(H, w) is finite, and therefore the decidability claim follows. n

In the DTOL problem we are given a word w € A1, two monoids H; and
H, of endomorphisms of A* with equally many generators {a1,as,...,ay} and
{B1, B2, ..., Bn}, respectively. We ask whether for all sequences iy,1io,...,i of
indices,

Qi oo Oy (’LU) = /Blk [N /Bil (U)) (1322)

This problem reduces to Theorem 13.2.7, since, as is easy to see, (13.2.2) holds
for all sequences of indices if and only if a;a(w) = B;a(w) for all i and « € Hj.

COROLLARY 13.2.8. The DTOL problem is decidable.

Our proof for the DTOL problem is short. However, it is based on two deep
results, namely Makanin’s algorithm and the compactness property. Amazingly
this is the only known proof for this problem, although, its special case, the
celebrated DOL problem, where Hy and Hs are both generated by a single mor-
phism, has several different proofs.

Corollary 13.2.8 should be compared to the DTOL language equivalence prob-
lem, where we are given a word w, and two finitely generated monoids H; and
H, of endomorphisms of a free monoid A*, and we ask whether for all o € Hy
there exists an § € Hs such that a(w) = f(w). This problem is known to be
undecidable.

13.3. Independence of finite systems of equations

As we have mentioned both the defect theorem and the compactness property
formalize — although from a different perspective — a weak dimension property
of words. A link between these two important results is found by considering
independent systems of equations. At the same time this allows to analyze how
weak these dimension properties are.

From the point of view of the compactness property, it is natural to ask how
large a (necessarily finite) independent system of equations in n variables can be.
From the point of view of (extensions of) the defect theorem, a natural question
is to ask whether two or more ‘different’ relations force a larger ‘defect effect’
than a single equation, or how many different relations still allow nonperiodic
solutions, i.e., solutions of combinatorial rank at least two. Here we formalize
the notion of different relations as the independence of a system of equations
and the defect effect of a system E of equations in n variables as the number
n — t, where t is the maximal combinatorial rank of a solution of E.

The goal of this section is to search for answers to these questions. In
other words, we want to construct as large as possible independent systems
of equations in n variables in general, or requiring in addition that they still
possess a solution of a certain rank. Recall that the set of equations was defined
to be independent, if it was not equivalent to any of its proper subsets.
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At this point we emphasize that for any solution X = «(E) of a system E of
equations, the (combinatorial) rank of X is a property of X, i.e., of a solution of
E. The independence of E, in turn, is a property of all solutions of E. Therefore
attempts to fulfill our goal face a problem of relating a particular solution of E
to all solutions of it.

Using Makanin’s algorithm, see Chapter 12, Theorem 13.1.3 and Prob-
lem 13.2.3, it is not difficult to conclude

THEOREM 13.3.1. For each finite set X C AT, one can effectively find an
independent subset E;(X) of E(X), which is equivalent to E(X).

From the point of view of our goal, Theorem 13.3.1 is not really helpful.
Indeed, the set E;(X) need not be unique, and, moreover, to find E;(X) in
practice is very difficult, as is illustrated by the challenging Problem 13.3.1.

We now define formally the central notion of this section. For this, let = be
a set of variables and denote n = Card(Z). For t < n, define

Dy(n) = sup{Card(E) | E is an independent system over = having

a solution of combinatorial rank at least n — t}.

Now, for all ¢ with 1 <t <n —1, D1(n) < D¢(n) < D,_2(n), and therefore
the two most natural choices for the parameter ¢ are the values ¢t = 1 and
t = n—2. The former corresponds to the case where the defect effect is minimal,
that is, equal to 1, while the case t = n — 2 corresponds to the case where
nonperiodic solutions are required to exist. The topic of this section is to search
for lower bounds of the value D;(n).

13.3.1. In free semigroups

We start with an example.

EXAMPLE 13.3.2. Let E = {z,y} U {pi, ¢,z | i = 1,2,...,n} be a set of
variables, and let E be the following system of equations over =:

E: =xpjzpqy =ypjzegix for j,k=1,2,...,n.

Then Card(E) = n? and Card(Z) = 3n + 2. We claim that
(i) E has a solution of combinatorial rank 3n + 1, and
(ii) E is independent.

The condition (i) is easy to verify. Indeed, choose # = y, which makes the
equations of F trivial, so that a required solution can be found over the free
semigroup having 3n + 1 generators.

The essential part is to prove (ii). For this, we have to show that, for each
pair (4, k), there exists a solution of the system

E(j, k) = E\ {zpjzrq;y = ypjzrq;x},
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which is not a solution of E. Here is such a solution:

z = b%ab,
y= b,
ba ift=j,
PP Vbab  otherwi
bab? flek (13.3.1)
Zy =
¢ { b otherwise ,
{ba ift=7j,
qt = .
a otherwise .

To find (13.3.1) is not obvious, but to verify that it is a required one, is easy.
Indeed, we compute for t = j and £ = k,

TP 2RqY = b’ab-ba...#b-ba-bab®... = YDjZrq;T.

Therefore (13.3.1) is not a solution of E. For the remaining cases, we compute
t#j4,0#k: b*ab-bab-b-a-b= (bba)®b=b-bab-b-a -b*ab,
t#4,0="Fk: b%ab-bab-bab®-a-b= (bba)b = b- bab - bab® - a - b2ab,
t=j,l#k: b*ab-ba-b-ba-b= (bba)*bh=b-ba-b-ba-b ab,

and, indeed, (13.3.1) is a solution of E(j, k).

The above example yields
THEOREM 13.3.3. (i) Di(n) = Q(n?) in AT with Card(A) = oo.
(ii) Dp—2(n) = Q(n?) in A" with Card(A) > 2.

Proof. Part (i) of the claim follows directly from Example 13.3.2. Note that
here we have to solve the equations over an infinitely generated free semigroup.

To prove part (ii), we modify Example 13.3.2 slightly by introducing n copies
of z and y, say z; and y; for ¢ = 1,2,...,n, and by setting

E': Tipj2rq;yi = Yipjzrgiri for i, g,k =1,2,...,n.
Accordingly we extend the solutions (13.3.1) by setting

{ b*ab ift=1i,
Tt =
a otherwise, (13.3.2)

{ b ift=1,
Yt = .
a otherwise .

Then we have a system E’ of cardinality n® over 5n variables, which, moreover,
by the computations of Example 13.3.2, is independent. It contains nonperiodic
solutions, namely, those specified by z; = y;. Hence, also (ii) is valid, and here
indeed A can be binary. n
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We remark that in the part (i) of the previous theorem we used an infinite
generating set A. Indeed, this is unavoidable if the definition of D, (n) is defined
based on the combinatorial rank. However, the definition can be based, for
instance, on the prefiz rank, which, for a subset X C A%, is defined as the
cardinality of the least prefix code Y such that X C Y. If D;(n) were defined
using the prefix rank, then in the part (i) we could choose a binary generating
set A. This is due to the fact that countably generated free semigroups can be
embedded into a 2-generator one using a prefix code as an embedding.

13.3.2. In free monoids

Lower bounds of Section 13.3.1 can be improved if the equations are solved in
free monoids instead of free semigroups. This is no surprise, since if the empty
word is available, it is essentially easier to find nontrivial equations, and hence
also independent systems of equations, having a given set as a solution.

ExaMPLE 13.3.4. Let

E= {y} ) {«Ti:pi:‘Jiam;:?;:‘];:mglapy:qzl | v = 17 27 s ,’I’L}
be a set of variables, and let E be the following system of equations,

E . yriprqerphapcipray = ziprqerppqpeipragy  for jk0=1,2,... n.
Then E is over 9n + 1 variables, and it has n® equations. Let us denote by
e(j, k, £) the equation of E for the triple (4, k, £). As in Example 13.3.2, we show
that

(i) E has a solution of combinatorial rank 9n in A*, and

(ii) FE is independent.

Part (i) is again clear: fix y = ¢, so that all equations of E become trivial over
E\ {y}. To prove the part (ii), we fix an equation from E, say e(jo, ko, {o), and
search for a solution of the system E \ {e(jo, ko, %0)} which is not a solution of
the whole E. Such a solution is provided by

y = ababa,

Tjy = Pro = Qe, = ab,

"Ijl, = pl = ql = Qa (1333)
P — b

Tjy, = Pro = 4y = ba’

z = ¢ for all others.

Indeed, this is not a solution of e(jo, ko, ¢o), since ababa - ab...# ab-ab-ab....
On the other hand, for any triple (j,%,¢) # (jo, ko, %), we obtain one of the
following identities when substituting (13.3.3) into e(j, k, £),
ababa = ababa,
ababa - ab-a-ba = ab- a - ba - ababa,
ababa -ab-ab-a-a-ba-ba =ab-ab-a-a-ba-ba-ababa.

Note that in the above factorizations we have omitted factors that are equal to
€.
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By the above, we can formulate

THEOREM 13.3.5. (i) Di(n) = Q(n?) in A* with Card(A) = .
(i) Dp_a(n) = Q(n*) in A* with Card(4) > 2.

The proof of Theorem 13.3.5 is analogous to that of Theorem 13.3.3. Note
also that the remark made after Theorem 13.3.3 applies to the present case.

13.3.3. In free groups

The problems of this section change drastically when free semigroups are re-
placed by free groups, although both of these satisfy the compactness prop-
erty, cf. Example 13.5.5. First, instead of considering the values D(n) in the
free groups, it is more meaningful to consider only the maximal cardinality of
independent systems of equations. Second, the independent systems can be
unboundedly large in free groups.

THEOREM 13.3.6. Let n be a positive integer. There exists an independent
system E, of n equations in a free group using six variables.

Proof. Let E = {z,y, 2,%,7, Z} be a set of variables. Denote & = Zp,Zp—1 - .. Z1
for each u = x5 .. .2y, and T = z, where z; € {x,y,2z}. Let [u,v] = Gouv
correspond to the commutator word of u and v for u,v € EF, and define induc-
tively,

[V1y .-y Vkt1] = [[01,-- -, VK], Vkt1]-
Let vy, = zFakgz* for k > 1, and let w; = [vi,va,...,Vi—1,Vit1,...,0p]. For
each n € N, consider the system FE,, of equations,

E,: (w))> =w; fori=1,2,...,n.
It is now easy to verify that for two generators a, b of a free group,
t=a,t=a ', y=d, g=a, 2=b, z=0b"

is a solution of (w;)? = wy, if i # j, but not of (w;)? = w;. This shows that E,
is independent. [

REMARK 13.3.7. For groups G one usually prefers group equations w = &,
where w is an element of the free group Z*) generated by the variables in =,
that is, w is a word over the alphabet = U E"!, where =71 = {71 | z € E}.
In this case a solution a:Z*) — G of an equation w = ¢ is required to respect
the inverses, a(r™1) = a(x)~! for all z € =. It is straightforward to show, see
Problem 13.3.5, that a group G satisfies the compactness property for group
equations if and only if G satisfies it for the ordinary semigroup equations.

In the proof of the above theorem the equations (w;)? = w; can now be
replaced by the equations w; = ¢, and the variables Z, %, Z can be replaced by
the expressions ', y~', 27! that respect the group inversion. With these
modifications Theorem 13.3.6 can be rephrased using only three variables.
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13.4. Semigroups without the compactness property

We now consider systems of equations in arbitrary semigroups. A semigroup S
is said to satisfy the compactness property, if for every finite set = of variables,
each system E C 2T x =t of equations is equivalent in S to a finite subsystem
E' C E, that is, if every independent system of equations is finite.

In this section we shall demonstrate, via several examples of semigroups,
that the compactness property of the previous section does not hold in general.

ExAMPLE 13.4.1. Let A = {a,b}, and Z = {x,y,2}. The monoid Fin(A*) of
all nonempty finite subsets of the free monoid A* does not satisfy the compact-
ness property. Indeed, the system E of equations

zy'e = z2'z fort>1

over three variables does not have an equivalent finite subsystem in Fin(A4*).
To see this, define, for each n > 1, a morphism ¢,,: 2% — Fin(A*) as follows:

on(z) = {a’ |0 <j<2n+2},
on(y) = {a'ba’ |0<i+j<n, or
0<i<2n+2andn+1<j53<2n+2, or
n+1<i<2n+2and0<j<2n+2},
on(z) = {a'ba? | 0 <i,j < 2n+2}.
Now for all ¢ > 1,

on(zy's) C op(zz'z) = {a™ba™b. .. ba"

0<rp<4n+4, k=1,2,...,i}.

We leave it as an exercise to show that o,(zy‘z) = o,(zz'z) for all i <
n — 1. However, o, (xy"Tlz) # 0, (22" 12), since (ba™)"b € oy, (2" z), but
(ba™)"b ¢ op(xy™Ttx). These show that E does not have a finite equivalent
subsystem in Fin(A*).

ExaMpPLE 13.4.2. Let B be the monoid of functions generated by a, 3: N — N,
a(n) = max{0,n — 1}, B(n) =n+1.

The product of B is the ordinary composition of functions. This monoid is called
the bicyclic monoid, and it has a simple monoid presentation (a,b | ab = 1).
Let N — N be the identity function. Now af = ¢, but fa # 1. Let
v; = B*a’ for all i > 0. We have
i ifn<i,
i(n) = e
7i(n) { n ifn>i,

and we observe that 7;v; = Ymax{i,j}- In particular, each v; is an idempotent of
B, i.e., 72 = v;. Consider the system E C = x Z¥ consisting of the equations

rlylz =2 fori>1
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in the variables = = {z,y, z}. For a fixed j, the morphism ¢; defined by d;(z) =
B, 6;(y) = a and §;(z) = v;, is a solution of z'y’z = z for all i < j, but §; is not
a solution of z7t1yi*!12 = 2. We conclude that the system E does not have an
equivalent finite subsystem, and therefore the bicyclic monoid does not satisfy
the compactness property.

This example extends directly to the bicyclic semigroup (without the identity
element).

ExXAMPLE 13.4.3. In this example we give a finitely generated semigroup S
such that it and its ideal I both satisfy the compactness property but the Rees
quotient S/I does not.

Let S = At for A = {a,b}, and define

I=A"{ab*abla |1 < j < k}A™

It is plain that I is an ideal of A", and that both A™ and I, as a subsemigroup
of AT satisfy the compactness property. Let = = {z,y, 2} be a set of variables,
and E the following system of equations,

E: azytzdie = ayteiex for k,j > 1.
Let E' C FE be any finite subsystem, and set
m = max {j | zy*zzlz = zy*zice in E'Y.

Define a morphism a:E% — AT /I by a(z) = a, a(y) = b™, a(z) = b. Now,
by the definition of I, a(zy*zziz) = a(zy*zz/2zz) in A*/I for each zy*z2iz =
zykrzize from E', but a(zyzz™'z) # a(zyrz™ ' zx). We conclude that E’
is not equivalent to E. This proves that AT /I does not satisfy the compactness
property.

We obtain other semigroups that do not satisfy the compactness property
after we prove some necessary conditions for this property in the next section,
see Examples 13.5.7 and 13.5.11.

13.5. Semigroups with the compactness property

In this section, we search for connections between the compactness property and
some classical notions of semigroup theory. We shall give, apart from positive
examples, some necessary conditions for a semigroup to guarantee that it satis-
fies the compactness property. These conditions provide examples of semigroups
that defy the compactness property.

Also, it turns out that all the monoids in a wvariety satisfy the compact-
ness property if and only if these monoids satisfy the maximal condition on
congruences. Such a characterization does not hold for individual monoids (or
semigroups). Indeed, the free semigroups do not satisfy the maximal condition
on congruences, but, as we have seen, they do satisfy the compactness prop-
erty. The bicyclic semigroup, on the other hand, is an example of a semigroup
that does satisfy the maximal condition, but does not satisfy the compactness

property.
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13.5.1. An extension of the proof

As is shown in Theorem 13.5.1, the compactness property is preserved under
some natural operations on semigroups. On the other hand, the second case
of the theorem shows that the compactness property fails on some other basic
operations.

THEOREM 13.5.1. (i) The class of semigroups that satisfy the compactness
property is closed under taking isomorphic images, subsemigroups and
finite direct products.

(ii) The class of semigroups that satisfy the compactness property is not closed
under taking morphic images or infinite direct products.

Proof. The proof of (i) is fairly easy, and it is left to the reader as an exercise.
That the compactness property is not inherited by the morphic images (or
by the quotients) holds simply because the free semigroup {a,b} " satisfies the
compactness property, but, as we have seen, its morphic image B (the bicyclic
semigroup) does not.
Consider the semigroup F' = Fin(A*) of all nonempty finite subsets of A*
from Example 13.4.1. For each k > 0, define a relation 8y on F' by

X6,Y < XUAP =y uab,

where A¥) = {w € A* | |w| > k}. Tt is immediate that 6}, is a congruence on F,
that is, for all X,Y,Z € F, X6,Y implies that also ZX60,ZY and XZ6,Y Z.
Furthermore, the quotient F'/6y, is a finite semigroup, and therefore it satisfies
the compactness property.

Let S = [, F/6x be the direct product of these finite semigroups, and
define a morphism «a: F — S by its projections,

’/TkCE(X) = XOk,

where 7, is the projection of S onto F'/6, and X8, € F/8y is the congruence
class of X with respect to 6.

For any two distinct X,Y € F, we have X0, # Y6, for k = max{|X|, Y|},
and therefore the morphism « is an embedding of F' into S. We conclude from
Example 13.4.1 and the case (i) of the present theorem that S = [[, F/6; does
not satisfy the compactness property although each of the semigroups F'/6;, does
S0. "

ExamMpPLE 13.5.2. By Theorem 13.2.2, finitely generated free semigroups sat-
isfy the compactness property. For a countably generated free semigroup AT,
where A = {a1,as,...}, the mapping a: AT — {a,b}" defined by a(a;) = a'b
for all i, is an embedding of A into the free semigroup {a,b}*. Therefore the
compactness property holds also for countably generated free semigroups.
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EXAMPLE 13.5.3. A trace monoid M, often referred to as a free partially com-
mutative monoid, is a monoid that has a presentation (A | ab = ba ((a,bd) € R)),
where R is a symmetric relation on the finite set A = {aj,a2,...,ar} of gen-
erators. A trace monoid M can be embedded into the k-folded direct product
pk) = {a,b}* x ... x {a,b}*. To see this, let for each i = 1,2,...,k, v; be the
vector defined by the conditions,

a ifi=j,
mj(v;) = € if (a;,a;) € R and i # j,

b otherwise,

where 7; denoted the j-th projection of P®) into {a,b}*. Then it is plain that
vjv; = vy for @ # j if and only if (a;,a;) € R, which shows that the monoid
generated by the vectors v;, for i = 1,2,...,k, is isomorphic to M. Now, the
claim follows from Theorem 13.5.1.

The above examples are special cases of a general theorem which we now
prove as an extension of Theorem 13.2.2.

THEOREM 13.5.4. Let R be a commutative Noetherian ring R containing an
identity element. If a semigroup S can be embedded in the multiplicative matrix
semigroup R™*"™, then it satisfies the compactness property.

Proof. We give a detailed outline of the proof. Indeed, polynomials over such
a commutative Noetherian ring R satisfy Hilbert’s basis theorem, and therefore
R can be used instead of Z in the proof of Theorem 13.2.2. In the case n = 2,
for each variable z; in = = {z1, 23, ..., 21}, we introduce a matrix

M; = (%’1 l‘iz) :

Tiz  Ti4
where x;1, T2, 23, ;4 are commuting variables. Let the set of these new vari-
ables be X = {z;; | i = 1,2,...,k,j = 1,2,3,4}. The subsemigroup M of
R[X]?*? generated by the matrices M; is a free semigroup (see Problem 13.2.2).
If S is a semigroup such that there exists an embedding p: S — R?*2, then the
commuting diagram of the proof of Theorem 13.2.2 takes the form:

a

+ S

In

©
B —— 1
|

R2><2

The proof of Theorem 13.2.2 can now be easily modified for Theorem 13.5.4.
The general case is treated in a similar way. m

As an illustration of the above, we provide
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ExAMPLE 13.5.5. It is easy to see that the matrices

1 2 1 0
Ma—<0 1) and Mb—<2 1)

generate a free subgroup of Z2*2. Further, as is well known, every finitely gen-
erated free group can be embedded into a free group generated by two elements,
and therefore Theorem 13.5.4 yields that the finitely generated free groups sat-
isfy the compactness property.

13.5.2. Necessary conditions

The next result is motivated by Example 13.4.2.

An element e of a semigroup S is an idempotent, if it satisfies e? = e. The
idempotents of a semigroup S can be partially ordered by defining: e < f if and
only if fe = e = ef. We say that S satisfies the chain condition on idempotents,
if each subset of idempotents of S contains a maximal and a minimal element,
i.e., each chain ...e; 1 < e; < €341 ... of idempotents is finite.

THEOREM 13.5.6. Let S be a finitely generated semigroup satisfying the com-
pactness property. Then it satisfies the chain condition on idempotents.

Proof. Let S be generated by n elements, and let u:=% — S be a natural
morphism onto S, where Card(Z) = n.

Suppose first that e; > es > ... is an infinite descending chain of idempotents
of S. Therefore e;ej = emax(s, ;) for all 4,5 > 1. Now, for each i > 1, let w; =t
be a word such that p(w;) = e;, and denote Y = Z U {y}. Consider the system
E of equations w;y = y, with i € N, over Y. For each j > 1, let a;: Y+ — S
be a morphism such that a;(z) = p(z) for x € Z, and let a;(y) = e;. Now
aj(w;y) = eze; for all 4 and j. Consequently, «; is a solution of w;y = y for all
i with ¢ < j, but a; is not a solution to wj;1y = y. We conclude that E does
not have an equivalent finite subsystem in S.

The case of an infinite ascending chain e; < es < ... of idempotents is
treated analogously. Hence our proof is complete. m

Theorem 13.5.6 yields immediately another example of semigroups that do
not satisfy the compactness property.

ExaMpPLE 13.5.7. The free inverse semigroups do not satisfy the chain con-
dition on idempotents, and therefore the compactness property fails for these.
Indeed, the free monogenic inverse semigroup, which is generated by one element
as an inverse semigroup, has a semigroup presentation

FI, = {(a,b| a = aba, b = bab, a™b™ "a™ = b"a" ™b™, n,m > 1).

Here a™b™ is an idempotent for n > 1, and a™b"™ - a™b™ = a™b" = a™b™ - a™b",
ie., a”b™ < a™b™ for all n > m.
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Next we look for a connection between the compactness property and cer-
tain types of congruences of semigroups. A congruence 6 of a semigroup S is
called nuclear, if it is induced by an endomorphism, i.e., if § = ker(«) for an
endomorphism a: S — S. In other words, a congruence 6 of S is nuclear, if the
quotient S/6 is isomorphic to a subsemigroup of S.

LEMMA 13.5.8. Let S be a semigroup with the compactness property, and let
= be a finite alphabet. Then each sequence a;:=% — S of morphisms with
ker(a;) C ker(ajt1), fori =1,2,..., is finite.

Proof. Assume that (a;);>o0 is an infinite sequence of morphisms such that
ker(a;) C ker(a;y1). Consider a system E = {(u;,v;) | i = 1,2,...} of equa-
tions, where (u;, v;) € ker(a;41)\ker(a;) for each i. Clearly, E has no equivalent
finite subsystem in S. This proves the lemma. m

We say that a semigroup S satisfies the mazimal condition on nuclear con-
gruences, if each ascending chain 6y C 6y C ... of its nuclear congruences is
finite. We obtain our second necessary condition.

THEOREM 13.5.9. Let S be a semigroup with the compactness property. Then
the finitely generated subsemigroups of S satisfy the maximal condition on
nuclear congruences.

Proof. Suppose that Sy is a finitely generated subsemigroup of S such that,
for each ¢ > 1, a;: Sp — Sp is an endomorphism satisfying ker(a;) C ker(a;t1)
for all i > 1. Let u:=% — Sy be a natural morphism onto Sy. Consequently,
ker(a;pu) C ker(a 1) for all i > 1, and the claim follows from Lemma 13.5.8.

|

Theorem 13.5.9 can be used to formulate another necessary condition for the
compactness property. A semigroup S is said to be Hopfian, if it is not isomor-
phic to a quotient S/ for any of its nontrivial congruences 6. Equivalently, S
is Hopfian, if every surjective endomorphism a: S — S is an automorphism.

THEOREM 13.5.10. Let S be a semigroup with the compactness property.
Then every finitely generated subsemigroup of S is Hopfian.

Proof. Assume that Sy is a non Hopfian finitely generated subsemigroup of S,
and let a: Sy — Sp be a noninjective endomorphism onto Sy. Now the nuclear
congruences ; = ker(a?) for i > 1 form a properly ascending chain, and hence
the claim follows by Theorem 13.5.9. m

Note that if a semigroup S satisfies the compactness property, then S itself
need not be Hopfian, if it is infinitely generated. Indeed, a countably generated
free semigroup A* satisfies the compactness property, but it is not Hopfian.

ExaMPLE 13.5.11. One of the simplest non Hopfian semigroups is the so called
Baumslag-Solitar group which has a group presentation G = {(a,b | b*a = ab®).
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For simplicity, we use group equations introduced in Remark 13.3.7. Let
[9,h] = g th tgh be the commutator of the elements g, h € G, and denote by
eg the identity element of G. The morphism a:G — G defined by a(a) = a
and a(b) = b? is surjective, because a([a,b™1]) = b. However, it can be shown
that a(g) = e for g = [a ba, b] # eg, and therefore « is not injective.

Let = = {z,y}, and denote by E(*) the free group generated by Z. Let
u = [z 'yz,y]. Define a (group) morphism §:Z*) — Z*) by f(z) = = and
B(y) = [z,y~']. We obtain a system E of equations {3%(u) = ¢ | i > 1}, which
has no equivalent finite subsystem. Now if y:2*) — @G is defined by v(z) = a
and v(y) = b, then a’v(37(u)) = e¢ for j < i, but a’y(B(u)) # eq.

13.5.3. The compactness property for varieties

For convenience, in the rest of this chapter we shall consider monoids and groups
rather than semigroups.

Recall that a class V of monoids (resp. groups) is a wvariety, if it is closed
under taking submonoids (resp. subgroups), morphic images, and arbitrary
direct products. By Birkhoff’s theorem, a variety of monoids becomes defined
by a set of identities u = v, which are equations (u,v) € =* such that every
morphism a:=* — M with M € V is a solution of (u,v). Note that here the
set = of variables is allowed to be infinite, although the equations are required
to be finite. For instance, the identity x1x> = xox; defines the variety of all
commutative monoids.

A monoid M satisfies the mazimal condition on congruences, if each set of
congruences of M has a maximal element. The following general result is easy
to prove using Zorn’s lemma.

LEMMA 13.5.12. The following conditions are equivalent for a monoid M .
(i) M satisfies the maximal condition on congruences.
(ii) Each ascending chain 6, C 8, C ... of congruences of M is finite.
(iii) For each congruence 6 of M generated by a subset E C @ there exists a
finite subset E' C E such that E' generates 6.

Using the above lemma, we obtain the following characterization.

THEOREM 13.5.13. A variety V of monoids satisfies the compactness property
if and only if each finitely generated monoid M € V satisfies the maximal
condition on congruences.

Proof. We first recall that, for all n > 1, a variety V has a monoid V;, generated
by an n-element subset B satisfying the following extension property: for any
mapping yg: B — M with M € V, there exists a unique morphism ~:V,, — M,
which is an extension of vg, i.e., y(b) = yg(b) for all b € B. Such a monoid
Vi, is a free monoid of V. The extension property yields that each morphism
a:2* — M, with M € V and Card(Z) = n, can be factored as @ = Su, where
w:=* =V, is the natural morphism onto V,, and §:V,, — M is a morphism.
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Suppose now that each M € V satisfies the maximal condition on congru-
ences. Let E = {(u;,v;) | i > 1} C 2* x Z* be a system of equations, where
Card(E) = n. Further, let # be the congruence on V,, generated by the re-
lation p(E) = {(u(u;), pw(v;)) | @ > 1}, i.e., 6 is the smallest congruence on
V., containing u(E). By assumption and Lemma 13.5.12, 6 is generated by a
finite subset E" of p(E). Clearly, E" = u(E') for a finite subset E' of E.
Now, if M € V and a = fu:E* — M is a solution to E’, then E’' C ker(a)
and hence E" = u(E'") C ker(8), which implies that 8 C ker(3). In particu-
lar, u(E) C ker(8), and, consequently, E C ker(a). Therefore M satisfies the
compactness property.

To prove the converse, let V be a variety of monoids, and assume that M € V
is a finitely generated monoid that does not satisfy the maximal condition on
congruences. Let ; C 0, C ... be an ascending chain of congruences of M,
and let a;: M — M; = M/6;, for each i > 1, be a surjective morphism with
ker(a;) = 6;. Each quotient M; is in V), since V is a variety. Let again u: Z* — M
be a natural morphism from the free monoid Z* onto M.

We observe that the congruences 6] = ker(a;pu) of =Z*, for i > 1, form a
properly ascending chain. For each i > 2, choose a pair (u;,v;) € 6} \ 6;_,, and
let E = {(u;,v;) | i > 2}. Consider the direct product II;>; M;. Since V is a
variety, also II;>1M; € V. Let B;: M; — Il;»>1M; be the natural embedding,
and define v; = fjou:Z* — Ij> 1 M;. Now 7;(uj) = v;(v;) for all j < i,
but v;(wit+1) # 7i(vit1), and therefore E does not have an equivalent finite
subsystem in II;> M;. n

Theorem 13.5.13 is interesting in the sense that it provides a nontrivial
characterization when a variety, i.e., all monoids in that variety, satisfies the
compactness property. No similar characterizations are known for individual
monoids (or semigroups).

By Redei’s Theorem, the finitely generated commutative monoids satisfy
the maximal condition on congruences. Hence we have the following corollary
of Theorem 13.5.13.

COROLLARY 13.5.14. Every commutative monoid satisfies the compactness
property.

By Theorem 13.2.2 and Corollary 13.5.14, the compactness property holds
in the extremes with respect to commutativity, namely, for the free semigroups
as well as for the commutative semigroups. Both results are based on Hilbert’s
basis theorem. Note also that in neither of these cases the semigroups need be
finitely generated.

As a difference between these cases we mention that it is not known whether
arbitrary large independent systems of equations with n variables exist in free
semigroups, while for commutative semigroups such are easy to find, see Prob-
lem 13.3.3.

The proof of Theorem 13.5.13 does not use the property that varieties are
closed under taking submonoids. Since (monoid) morphic images and direct
products of groups are groups, the proof applies also to groups. Further, in
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a group G, the congruence class containing the identity element is a normal
subgroup of G that determines the congruence 6. Therefore we obtain

THEOREM 13.5.15. A variety V of groups satisfies the compactness property
if and only if each finitely generated group of V satisfies the maximal condition
on normal subgroups.

ExAMPLE 13.5.16. For groups Corollary 13.5.14 can be much improved. Let
G be a group, and let [a,b] = a~'b~tab be the commutator of the elements
a,b € G. The metabelian groups form a variety defined by a single identity
[[z1, 2], [x3,24]] = €. Clearly, every abelian group is metabelian. Moreover, by
Hall’s theorem, every finitely generated metabelian group satisfies the maximal
condition on normal subgroups. Therefore the metabelian groups satisfy the
compactness property. This result is interesting, since the free semigroups can
be embedded into a free metabelian group. This gives the original proof of
Albert and Lawrence to Theorem 13.2.2 for free semigroups. However, the
proof of Hall’s theorem uses a variant of Hilbert’s basis theorem.

ExaMpPLE 13.5.17. The nilpotent groups satisfy the compactness property, al-
though they do not form a variety. Indeed, the smallest variety that contains
all nilpotent groups consists of all groups. However, each nilpotent group be-
longs to a variety (nilpotent groups of class n, for some n) that does satisfy the
maximal condition on normal subgroups.

Problems

Section 13.1

13.1.1 If a system E C E* x 2T of equations does not have an equivalent
finite subsystem (in a semigroup S, in general), then E has an infinite
subsystem E' = {(u;,v;) | i = 1,2,...} ordered in such a way that for
each j there exists a solution of the system u; = v; for i = 1,2,...,7,
which is not a solution of the equation w11 = vj41.

13.1.2 Show that the system zy’z = zy’z, i = 1,2, 3, is dependent in X*.

13.1.3 Prove Theorem 13.1.3.

*13.1.4 Classify the relations defined by three generator subsemigroups of a free
semigroup. (See Spehner 1976)

Section 13.2

13.2.1 Let S be a semigroup, = = {z,y}, and let £ > 0 and m > 0 be two
fixed integers. Denote I = {k + jm | j > 0}. Show that the system
of equations z! = y* (i € I) in S is equivalent to its finite subsystem
ot =yt (i€ {k+jim|j<k}).
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13.2.2

13.2.3

*13.2.4

13.2.5

*13.2.6

Section

*13.3.1

13.3.2

13.3.3

Let R be any commutative nontrivial ring with an identity 1 (# 0)
element. Let X = {x;; | 1 <j <k, 1 <i <4} be aset of commuting
variables for R. Show that the matrix semigroup M(Z) of R[X]**?,
generated by the matrices

M Ti1 T2
i = ) ) B
Ti3 Ti4

Prove Lemma 13.2.3: each rational relation R C =t x 2T has (as a
system of equations) an equivalent finite subsystem Ry C R that can
be effectively found.

Prove Lemma 13.2.6: it is decidable whether L; is a test set of L, for
finite sets Ly C Ly. For this, one applies Makanin’s result in proving
that the equivalence of two finite systems of equations is decidable. (See
Culik IT and Karhuméki 1983)

The famous 2n-conjecture for DOL systems states that if a'(w) = 8*(w)
for all i < 2n (where «, 8: A* — A* are morphisms with Card(4) = n
and w € A* is a word), then of(w) = B*(w) for all i > 0. Prove,
by modifying the system of equations in Section 13.3.2, that such a
conjecture does not hold for HDOL systems, that is, for morphic images
of DOL systems. Indeed, show that if a function f: N — N satisfies

is a free semigroup.

Tt (w) = yf(w) for all i < f(n) = ya(w) = B8 (w) for all i >0

for all words w € A* and morphisms «,3,71,72: A* — A*, where
Card(A) = n, then f(n) = Q(n?). (See Plandowski 1995)

Show that the 2n-conjecture holds for DOL systems over binary alpha-
bets. (See Karhumiki 1981)

153.3

Show that any language over a binary alphabet has a test set of car-
dinality three. This problem on three variables is completely open! In
particular, does there exist an independent system of three equations
in three variables that has a solution of rank 2 over a free semigroups
AT? (For the binary case, see Ehrenfeucht, Karhumiki, and Rozenberg
1983b)

Show that for all n,m,p,q > 1,
Dp(n) + Dg(m) < Dpyq(n +m).

Use this inequality to prove that for 0 < ¢ < 1, Df.,(n) = Q(n?) in
free monoids, and Dy.,1(n) = Q(n®) in free semigroups.

Show that there are arbitrary large independent systems of equations
with n variables in the commutative semigroup S = {z | In: 2" = 1} of
the complex roots of unity.
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**13.3.4

13.3.5

13.3.6

Section

*13.4.1

13.4.2

Section

13.5.1

13.5.2

13.5.3

13.5.4

*13.5.5

Independent Systems of Equations

Improve the lower bounds of Theorems 13.3.3 and 13.3.5. This is an
open problem.

Show that a group G satisfies the compactness property for group equa-
tions w = ¢ with w € 2*) if and only if G satisfies it for the semigroup
equations v = v with u,v € ZT.

Prove Theorem 13.3.1.

13.4

Two elements a and b of a semigroup S form an inverse pair, if a = aba
and b = bab. In this case, the elements ab and ba are idempotents
of S. Show that if S contains an inverse pair a,b such that ba < ab
in the partial ordering of the idempotents, then the subsemigroup of S
generated by a and b is isomorphic to the bicyclic monoid, and therefore
S does not satisfy the compactness property. (See Petrich 1984, p.432.)
(i) Prove that a variety V of monoids satisfies the compactness prop-
erty if and only if the (relative) free monoids of this variety satisfy
the maximal condition on congruences.
(ii) Show that the bicyclic monoid B satisfies the maximal condition
on congruences. Show also that B is a monoid that does not satisfy
the compactness property, but all its proper quotients do.

13.5

Prove the claim of Example 13.5.5.

For a semigroup S that is not a monoid, let S be the monoid obtained
from S by adding an identity element eg to it. Show that S satisfies
the compactness property if and only if the monoid S does so.

Show that a monoid S satisfies the compactness property if and only if
each sequence a;: 2T — TS of morphisms with ker(a;) C ker(a;y1) is
finite for all finite =. (See Harju, Karhuméki, and Plandowski 1997b.)
Let us say that a class S of semigroups satisfies the compactness prop-
erty uniformly, if each system of equations £ C 2+ x 2T has a finite
subsystem E’ C E such that E' is equivalent to E in all semigroups
S € §. Show that if a variety V of monoids (or groups) satisfies the
compactness property, then it satisfies it uniformly. In particular, if a
variety V satisfies the compactness property, and S is a semigroup that
is locally V (i.e., each finitely generated subsemigroup of S is in V), then
S satisfies the compactness property. (See Harju et al. 1997b.)

Show that the finite semigroups generated by two elements do not satisfy
the compactness property uniformly. (They do satisfy the compactness
property, but not uniformly. For this one can use a result, due to Munn,

stating that the finitely generated free inverse semigroups are residually
finite. See Harju et al. 1997b.)
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Notes

For a general source in the theory of semigroups and groups, we refer to Howie
1976 and Magnus et al. 1966, respectively. General references of combinatorics
of words are Lothaire 1983 and Choffrut and Karhumaki 1997.

For the statement and the proof of the equality theorem, see Eilenberg 1974,
or for a generalization using skew fields. For the defect theorem, see Chapter 6,
and the references given there.

The compactness theorem, Theorem 13.2.2, was conjectured by A. Ehren-
feucht in the beginning of 1970’s in a language theoretic setting, see Theo-
rem 13.2.5. Its reformulation in systems of equations is due to Culik II and
Karhuméki 1983. Theorem 13.2.2 was proved independently by Albert and
Lawrence 1985b and Guba 1986. The present proof follows the ideas of the
proof by Guba 1986. As mentioned in the notes of Chapter 12, this techniques
was originated by Markov in the 1950’s. Hilbert’s basis theorem is proved in
many ‘standard’ textbooks on algebra. For the proof of the basis theorem formu-
lated for Noetherian rings, see e.g. Kostrikin and Shafarevich 1990 (p.45) and,
for a different proof, Cohn 1989 (p.318). Albert and Lawrence 1985b proved the
compactness property by embedding the free semigroups into free metabelian
groups, for which a variant of Hilbert’s basis theorem was proved by Hall 1954.

The applications in Section 13.2.2 are treated in Harju and Karhuméki 1986,
Choffrut, Harju, and Karhumaki 1997, Culik IT and Karhumaki 1983 and Cu-
lik IT and Karhumiki 1986. The undecidability of the isomorphism problem for
semigroups of nonnegative integer matrices follows, for instance, from the unde-
cidability of freeness for these semigroups, see Klarner, Birget, and Satterfield
1991. The isomorphism problem as well as many other algorithmic problems on
semigroups, are treated in a more general setting in Kharlampovich and Sapir
1995. For the decidability problems on iterated morphisms, especially the DOL
and DTOL systems, see Rozenberg and Salomaa 1980. The isomorphism prob-
lem is open for subsemigroups of free semigroups A" generated by a regular
set.

The results on the independent systems of equations for free semigroups and
monoids in Section 13.3 are due to Karhumiki and Plandowski 1994. Theo-
rem 13.3.6 for free groups was proved by Albert and Lawrence 1985a. Sizes of
independent systems of equations in various semigroups have been studied by
Karhumaki and Plandowski 1996.

Example 13.4.1 for the semigroup of all finite subsets of a free semigroup is
due to Lawrence 1986. For the other examples in Section 13.4, see Harju et al.
1997b and Harju, Karhumiki, and Petrich 1997a.

The compactness property for free groups, see Example 13.5.5, was proven
by Guba 1986 and De Luca and Restivo 1986. Since every free semigroup can be
embedded into a free group, Theorem 13.2.2 follows from this result. We refer
also to Stallings 1986 for a more general approach of the compactness property.

For the theory of varieties needed in Section 13.5, see e.g. Cohn 1981. The
results concerning the compactness property in varieties are due to Albert and
Lawrence 1985a and Harju et al. 1997b. A short proof of Redei’s theorem,
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needed in Corollary 13.5.14 for commutative semigroups, is given by Freyd 1968.
This proof is based on Hilbert’s basis theorem.

We have treated the compactness property for groups only cursorily. For
more information on this topic, see Baumslag, Myasnikov, and Roman’kov 1997,
where the groups satisfying the compactness property are called equationally
noetherian. In particular, Baumslag et al. 1997 show that if a group G has a
subgroup of finite index that satisfies the compactness property, then so does
G. Also the authors construct a large class of groups that do not satisfy the
compactness property. Indeed, they show that if G is any nonabelian group and
H is any infinite group, then their wreath product G ! H does not satisfy the
compactness property.
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Notation

AX 3
At 3
Ao 11
AX) o 12
Ac(t,q) oo 294
Adh(X) oo 197
A 6
Alphy (X)) oiiio 179
alph ... 3
Ambx ..........LL 186
AN . 6
AY 6
Alt,gu) oo 297
AT 10
AS 10
BS ... 325
G 1
Card... ... 1
D 135
den.....cooviiiiiiiiiiia.. 312
DES.......co 325
des ..o 291
Erea(X) ooooiiiii 393
E(X) oo 393
BXC vt iee e e 291
F(X) i 6
F(z).ooiiiiiiiiiiii. 3,6, 10
Firsty (X) ..ot 179
Fo()eoee e 6
FX e 20
ged oo )
Hoe 135
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h(S) e 28
maj.......oooiiiiiiiiio 325
} GV (/) I 168
EUX) oo 276
E(X) oo 276
Lasty (X)....oooiiiiiii . 179
Lg(X) oo 183
1002 291
N 1
Pw)..ooviiiiiiiiiiiii 146
PL(A) oo 148
Pref(X) ..o 186
Qe 1
R 1
Te(X) e 392
Row (A) .oooiiii i 164
PX ooeeie et i 20
STab (A)...voviiiii e 149
std (w) «voeii 152
Suff(X) oo 186
S X 23
o 188
Tab (A) .o 149
Tab (A A) oo 149
WDVt eee e 145
L7 AN 186
W et 3
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wlX 12
X 2,5
Xt 2
X+Y 5
XY o 12
2 4
X 6
X 6
X o 3
X 10
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