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Abstract. One of the most intricate algorithms related to words is 
Makanin's algorithm solving word equations. The algorithm is very com- 
plicated and the complexity of the problem of solving word equations is 
not well understood. Word equations can be used to define various prop- 
erties of strings, e.g. general versions of pattern-matching with variables. 
This paper is devoted to introduce a new approach and to study relations 
between Lempel-Ziv compressions and word equations. Instead of deal- 
ing with very long solutions we propose to deal with their Lempel-Ziv 
encodings. As our first main result we prove that each minimal solution 
of a word equation is highly compressible (exponentially compressible 
for long solutions) in terms of Lempel-Ziv encoding. A simple algorithm 
for solving word equations is derived. If the length of minimal solution is 
bounded by a singly exponential function (which is believed to be always 
true) then LZ encoding of each minimal solution is of a polynomial size 
(though the solution can be exponentially long) and solvability can be 
checked in nondeterministic polynomial time. As our second main result 
we prove that the solvability can be tested in polynomial deterministic 
time if the lengths of all variables are given in binary. We show also that  
lexicographically first solution for given lengths of variables is highly 
compressible in terms of Lempel-Ziv encodings. 

1 I n t r o d u c t i o n  

Word  equat ions are used to describe properties and relations of  words, e.g. 
pattern-matching with variables, imprimitiveness, periodicity, conjugation, see [5]. 
The  main  a lgor i thm in this area is Makanin 's  a lgor i thm for solving word equa- 
tions, see [8]. The  t ime complexi ty of  the a lgor i thm is too  high, its mos t  efficient 

version works in 22"(~) nondeterminis t ic  t ime where p(n) is the m a x i m a l  index 
of  periodici ty of  word equat ions of length n (p(n) is a singly exponent ia l  func- 
t ion),  see [6]. The  descriptional complexi ty  is also too high. As a side effect of 
our results we present a much simpler algori thm. 
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It is known that  the solvability problem for word equations is NP-hard ,  even 
if we consider (short) solutions with the length bounded by a linear function and 
the right side of equations contains no variables, see [1]. 

The main open problem is to close the gap between N P  and 2 2p(d), and to 
show the following 

C o n j e c t u r e  A: the problem of solving word equations is in N P .  

Assume n is the size of the equation and N is the minimal length of the solution 
(if one exists). It is generally believed that another conjecture is true (at least 
no counterexample is known): 

C o n j e c t u r e  B: N is at most singly exponentiM w. r . t .n .  

Current estimation for the function N is 2 ~p("). We strongly believe that  the 
proper bound is singly exponential. If it is true then our construction would 
prove that the problem of solvability of word equations is NP-complete .  
In this paper we introduce a new approach to deal with word equations: Lempel- 
Ziv (LZ)  encodings of solutions of word equations. Recently many results for 
several variations of pattern-matching and other combinatorial  problems for 
compressed texts were obtained, see [4, 9, 3]. Many words can be exponentially 
compressed using LZ-encoding. A motivation to consider compressed solutions 
follows from the following fact. 

L e m m a  1. 
I f  we have LZ-encoded values of the variables then we can verify the word equa- 
tion in polynomial time with respect to the size of the equation and the total size 
of given LZ-encodings. 

Proof. We can convert each LZ-encoding to a context-free grammar generating 
a single word, due to the following claim. 

C l a i m  Let n = ]LZ(w)]. Then we can construct a conte• grammar G of 
size O(n 2 log n) which generates w and which is in the Chomsky normal form. 

Now we can compute the grammars corresponding to the left and right sides of 
the equations by concatenating some smaller grammars. The equality of gram- 
mars can be checked in polynomial time by the algorithm of [10]. 

Our first result is: 

T h e o r e m  2 ( M a i n - R e s u l t  1). 
Assume N is the size of rninirnal solution of a word equation of size n. Then each 
solution of size N can be LZ-cornpressed to a string of size O(n 2 log2(N)(log n +  
loglogN)) .  

As a direct consequence we have: 

C o r r o l a r y  1. Conjecture B implies conjecture A. 

Proof. If N is exponential then the compressed version of the solution is of a 
polynomial size. The algorithm below solves the problem in nondeterministic 
polynomial time. The first step works in nondeterministic polynomial time, the 
second one works in deterministic polynomial time due to Lemma 1. 
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A L G O R I T H M  Solving_by_LZ-Encoding ; 
guess LZ-encoded solution of size 

O(n 2 log 2 g ( l o g  n + loglog N));  
verify its correctness using the polynomial  
t ime deterministic algorithm from L e m m a  1. 

O b s e r v a t i o n .  Take N = 222p('~ . Then the algorithm Solving_by_LZ-Encoding 
is probably the simplest algorithm solving word equations with similar t ime 
complexity as the best known (quite complicated) algorithms. 

It was known before that  there is a polynomial  t ime deterministic algori thm 
if the lengths of all variables are given in unary. We strengthen this results 
allowing binary representations (changing polynomial  bounds to exponential).  
Our second main  result is: 

T h e o r e m 3  ( M a i n - R e s u l t  2). 
Assume the length of all variables are given in binary by a function f .  Then we 
can test solvability in deterministic polynomial time, and produce polynomial-size 
compression of the lexicographically first solution (if there is any). 

Let Z be an alphabet  of constants and (9 be an alphabet  of variables. We assmne 
that  these alphabets  are disjoint. A word equation E is a pair of words (u, v) C 
( Z  U (9)* • ( Z  U (9)* usually denoted by u = v. The size of an equation is the 
sum of lengths of u and v. A solution of a word equation u = v is a morphism 
h :  (ZU(9)* -+ Z* such that  h(a) = a, for a E ~ ,  and h(u) = h(v). For example 
assume we have the equation 

a b x l x 2 x 2 x 3 x 3 x 4 x 4 x  5 ~ XlX2X3X4XhX6, 

and the length of xi 's  are consecutive Fibonacci numbers. Then the solution is 
h(xi) = FibWordi,  where FibWordi is the i-th Fibbonaci word. 

We consider the same version of the LZ algorithm as in [3] (this is called 
LZ1 in [3]). Intuitively, LZ algorithm compresses the text because it is able to 
discover some repeated subwords. We consider here the version of LZ algori thm 
without self-referencing. The factorization of w is given by a decomposition: 
w = e l f l c2 . . ,  fkCk+l ,  where Cl  : w[1] and for each 1 < i < k + 1 c~ E ~ and 
fi is the longest prefix of f i c i+l . . ,  fkck+l which appears  in Cl f lC2 . . . f i - l c i .  
We can identify each fi with an interval [p, q], such that  f~ = w[p..q] and q _< 
I c l f l c 2 . . . f i - l c i - l l .  If we drop the assumption related to the last inequality 
then it occurs a self-referencing (fi is the longest prefix which appears  before 
but not necessarily terminates at a current position). We assume (for simplicity) 
that  this is not the case. We use simple relations between LZ-encodings and 
context-free grammars .  

Example 1. The LZ-factorizat ion of a word aababbabbaababbabba# is given by 
the sequence: 

Cl f l  52 f2 C3 f3 C4 f4 C5 : a a b ab b abb a ababbabba @. 
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After identifying each subword fi with its corresponding interval we obtain the 
LZ encoding of the string. Hence 

LZ(aababbabbababbabb#) = a[1, 1]b[2, 3]b[4, 6]a[2, 10]#. 

As another example we have that  the LZ-encoding of FibWordn is of size O(n). 

2 R e l a t i o n s  o n  p o s i t i o n s  a n d  i n t e r v a l s  i n  t h e  s o l u t i o n s  

Let F be the set of variables. Assume the function f : 12 --+ N gives the lengths 
of variables. The function f can be natural ly extended to all words over C U 1; 
giving lengths of them under the assumption that  the lengths of words which are 
substi tuted for variables are defined by f .  Let e : u = v be the word equation to 
consider. Each solution of e in which the lengths of words which are subst i tuted 
by variables are defined by f is called an f-solut ion of e. We consider a fixed 
equation u = v with the lengths of the components of its solution h given by a 
function f .  

We introduce the relation TC (defined formally below) on positions of the 
solution, two positions are in this relation iff they correspond to the same symbol  
in every f-solution (Td is implied by the structure of equation). 

Fig .  1. Assmne we have equation a b x l x 2 x 2 x 3 x 3 x 4 x 4 x 5  : Xl x2x3x4x5x6 and the 
lengths of xi 's  are consecutive Fibonacci numbers. Two positions are equivalent 
(contain always a same symbol) iff they are in the relation 7~, which is a transit ive 
closure ofT~/. For example the 19th and the first positions are connected via pairs 
of positions which are in the relation 7~ ~. Hence these positions are equivalent, 
so the 19th position is in the class corresponding to the constant b. 

We use the identity h(u) = h(v) in Z*, that  is identify the corresponding letters 
on both sides of this identity, to define an equivalence relation Tr on positions 
of h(u). The positions in the equivalence classes are to be filled by the same 
constant. The constant is uniquely determined if one of the positions in the class 
corresponds to a constant in an original equation. Otherwise the constant can 
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be chosen arbitrarily. Moreover, the posit ions in such a class can be filled by any 
word. 

Now, assume tha t  we are given an equat ion vl . . .  vk = ul  . . .  us over t vari- 
ables and a funct ion f such that  f ( v )  = f ( u ) .  Denote by v( j )  (u( j ) )  the vari- 
able or a constant  f rom the left (right) hand  of the equat ion and such tha t  it 
contains a posit ion j or in case of  a constant  occurs at posit ion j under  the 
assumpt ion  tha t  the lengths of  variables are given by the funct ion f .  Formally,  
v( j )  = vp+l i f f ( v l . . ,  vp) < j <_ f ( v l  . . .  vp+l). Denote also l( j)  = j - f ( v l  . . .  Vp) 
(r( j )  = j - f ( u l . . ,  up)) the position in the variable v( j )  (u( j ) )  which correspond 
to j .  We define a funct ion lef t :  { 1 , . . . ,  f ( u ) }  --+ N x (O t_J ~ )  in the following 
way: 

(l(j), v( j ) )  if v(j)  is a variable 
l e f t ( j )  = ( j , v ( j ) )  otherwise. 

Similarly, we define the function right: 

(r( j ) ,  u(j ) )  if u( j )  is a variable 
r igh t ( j )  = (j, u( j )  ) otherwise. 

The  relat ion 7U is defined as follows: 

i7r iff l e f t ( i )  = r ight ( j )  or l e f t ( i )  = l e f t ( j )  or right( i)  = r igh t ( j ) .  

Finally, an equivalence relation 7~ on posit ions { 1 . . .  f ( u ) }  is the transi t ive and 
symmet r i c  closure of  the relation 7r ~. We say tha t  a posit ion i belongs to  a 
variable X if either l e f t ( i )  = (j, X) o1" right( i)  = (j, X ) ,  for some j .  Let C be 
an equivalence class of  the relation TO. We say tha t  C corresponds to  a cons tant  
a if there is a posit ion i in C such that  either l e f t ( i )  = (i, a) or r ight( i)  = (i, a). 
Now the following l e m m a  is obvious. 

L e m I n a  4. Let C be an equivalence class of  the relation 7r connected to an equa- 
tion e : u = v under the assumption that the lengths of  variables are given by the 
funct ion f .  Then the following conditions are satisfied: 
1. I f  there is a class C corresponding to no constant then the solution is not  of  
minimal  length. The symbols at positions in C can be filled with a same arbitrary 
word, in particular by the empty word. 
2. For any two positions i, j E C and an f -solut ion h of e, h(u)[i] = h(u)[j].  
3. I f  C corresponds to a constant a and i E C, then for each f -solut ion h of  e, 
h(u)[i] = a. 
4. There is an f -solut ion of  e iff no equivalence class contains positions of  dif- 
ferent constants of e. 
5. A lexicographically first f -solut ion of  e, if  exists, can be obtained by filling 
all positions in all equivalence classes of Tr which do not contain a constant by 
lexicographically first letter of the alphabet. 

The relation 7~ is defined on positions of an f - so lu t ion  of  e. In our considera- 
t ions we need an extension of this relation to length n segments  of  an f - so lu t ion  
of  e. 

( l ( j ) ,v ( j ) )  v( j )  = v( j  + n -  1) 
f t , ,  (j) = (j, v( j)  ) other, ise 
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( r ( j ) , u ( j ) )  u( j )  = u ( j  + n -  1) 
right , , ( t)  = ( j , u ( j ) )  o therwise  

The functions l e f t~  and right,~ are used to define length n segments  of solutions 
which have to be equal in each f -so lu t ion  of  e. They  are defined by the relat ion 
7r which is defined as a symmetr ic  and transit ive closure of  the following relat ion 
" ~ / 1 ,  . 

iTg~,j iff le f t~  (i) = right~ (j) or lef t , ,  (i) = le f t~  ( j)  or right , , ( i)  = right~ ( j ) .  

L e m m a 5 .  Let h be an f -solut ion of  a word equation e : u = v and let E be an 
equivalence class of  T t , .  I f  i, j C E then h(u)[i . . i  + n - 1] = h(u)[ j . . j  + n - 1]. 

3 M i n i m a l  s o l u t i o n s  a r e  h i g h l y  L Z - c o m p r e s s i b l e  

Assume h(u) = h(v) = T is a solution of a given word equat ion  E.  A c u t  in T 
is a border of a variable or a constant  in 7-. There  is a linear number  of  such 
cuts and they will be denoted by small Greek letters. 

left side 
X y Z 

[ 

r igh t  s ide  

[ - - I  
z y 

I 

/ 
the  cuts  

I. [ - - I . I  
: y 

i 

i i 
. /  

• 

I I 

Fig .  2. The cuts for the equat ion x y z x  = y z y x s  with fixed length of variables, 
corresponding to the figure. 

We say tha t  a subword w of T o v e r l a p s  a cut  7 iff an occurrence of  w extends 
to the left and right of  7 or 7 is a border of an occurrence. 

L e m m a  6 ( k e y  l e m m a ) .  
A s s u m e  7- is the minimal  length solution of  the equation E .  Then each subword 
of  7- has an occurrence which overlaps at least one cut in 7-. 

Pro@ Assume tha t  bo th  sides of the equat ions are equal 7-, where 7- is the 
minimal  length solution of the equat ion E.  Assume also tha t  a subword w = 
T[i ,  j] of size t of  7- has no occurrence which overlaps at least one cut  in T .  This  
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implies tha t  it never happens i 7~.t p, for an interval [p, q] overlapping a cut. It is 
easy to see that  in this situation no position inside [i, j] is in the relation "/~ with 
any constant (since each constant is a neighbor of a cut, by definition). Hence 
in the equivalence class C corresponding to some position in [i,j] there is no 
constant.  Due to Lemma  4 we can delete all symbols on positions belonging to 
C. In this way a new shorter solution is produced, which contradicts minimali ty  
of the initial solution 7-. This completes the proof. 

Fig.  3. Active segments and the k-th active area. 

For k = 0, 1, . . . loglT-I  and each cut 7 in 7 -denote  by lk(7) and rk(7) the sub- 
words of length 2 k whose right (left) border is the cut 7- Denote also segment~ (7) 
to be the concatenation of lk (7) and rk(7). We say that  lk (7) and rk (7) are re- 
spectively, left and right c h a r a c t e r i s t i c  w o r d s  of rank k and words segmentk (7) 
are a c t i v e  s e g m e n t s .  The union of all active segments of rank k is denoted by 
Active-Area(k). 

T h e o r e m  7 ( M a i n - R e s u l t  1). 
Assume N is the size of minimal solution of a word equation of size n. Then each 
solution of size N can be LZ-compressed to a string of size O(n 2 l o g 2 ( N ) ( l o g n +  
log log N)) .  

P ro@ For a given cut 7 consider consecutive words u0 (7), ul (7), u2 (7), �9 �9 whose 
lengths are 1, 1, 2, 4, ..., and which are on the left of 7- Similarly we define 
words v0(7), vl (7 ) , . . .  to the right of 7, see Figure 4. The sequences of these 
words continue maximal ly  to the left (right) without hit t ing another cut. Then 
f o r k > O  

segmentk+l (7) = uk+l segmentk (7) vk+l 

C l a i m  1. 7- is covered by a concatenation of a linear number  of active segments. 

It  is easy to see that  due to Lemma 6 we have. 

C l a i m  2. Each of the words uk+l and vk+l is contained in segmentk(/3), 
segrnentk (~) for some cuts a',/3. 
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u3 v3 
vO vl v2 

~ " - . . . . ~ e  s e g ~  

Fig. 4. The structure of active segments for the same cut. 

We can write now: 

8egrrtentk+l (~/) ---- 8egmen tk  (fl)[i..j] segmentk (7) segmentk (a)[p..q] 
for some cuts c~,/3 and intervals [i..j], [p..q]. 

In this way we have recurrences describing larger active segments in terms of 
smaller active segments (as their subwords). We start with active segments of a 
constant size. 

C l a i m  3. Assume we have a set of rn recurrences describing consecutive words in 
terms of previously defined words, as concatenations of finite number of subwords 
of these earlier words. Assume we start with words of constant size. Then the last 
described word has an LZ-encoding of size O(m 2 log m). This small LZ-encoding 
can be computed in deterministic polynomial time w.r.t, m if the recun-ences 
are given. 
Ske t ch  o f  t h e  p r o o f  o f  t h e  Cla im.  Assume the words computed by recurrences 
are z l , z2 , . . . , z ,~ .  Then we can create one long word z = Zl �9 z; . . . . z ,~  which 
has the LZ-encoding of size O(rn) given by recurrences. We can transform this 
encoding to a context-free grammar of size O(rn 2 log m)) generating z as a single 
word, we refer to the claim in the proof of Theorem 11 in [4]. Next we construct 
a grammar of size O(m 2 logm) for zm as a segment of z. Next we can transform 
this grammar to a LZ-encoding of similar size. 

In our case we have m = O(n log N) as a bound for the number of possible log N 
segments for n cuts together with n subwords of segments, needed in Claim 
1. Hence the resulting encoding is O(m 2 logm) which is O(n 2 log2(N)(logn + 
log log N)). 

4 P o l y n o m i a l  t i m e  a l g o r i t h m  f o r  a g i v e n  v e c t o r  o f  l e n g t h s  

We use again the idea of geometrically decreasing neighborhoods (active areas) 
of the cuts, which are the most essential in the solution. Let us fix the length of 
the variables and h(u) = h(v) = T. We want to represent the relation between 
positions o f t  (implied by the equation) restricted to the k-th active areas, start- 
ing from large k and eventually finishing with k = 0, which gives the relation of 
a polynomial size which can be used directly to check solvability. So we compute 
consecutive structures like shortcuts in a graph corresponding to the relation on 
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positions (identifying symbols on certain pairs of positions). The crucial point 
is to represent succinctly exponential sets of occurrences , this is possible due to 
the following fact. 

L e m m a  8. 
The set of occurrences of a word w inside a word v which is exactly twice longer 
than w forms a single arithmetic progression. 

Denote by Sk the relation 7~2k restricted to positions and intervals which are 
within the active area of rank k. 
Our main data structure at the k-th iteration is the k-th overlap structure OSk,  
which is a collection: 

{Overlapsk (w, fl) : fl E C U T S ( T ) }  

where w is a characteristic word of rank k. 
The sets in OSk consist of overlaps of characteristic words against the cuts in 
T. We consider only overlaps which fit inside segrnentsk (7), and which form 
arithmetic progressions and are implied by the structure of the equation, the 
relation ~2k- The overlap structure Overlaps has three features 

- for each cut fl and a characteristic word w of rank k the set {Overlapsk (w, fl) : 
fl C C U T S ( T ) }  forms single arithmetic progression, 

- in each f-solution of the equation the words of length 2 k which start at 
positions in Overlapsk (w, fl) are equal to w, 

- the sum Overlapsk (w, ~) which is taken over all cut points fl is a union of 
some equivalence classes in Sk. 

The second and the third conditions gives us the following property of the 
set O$0 which deals with one-letter subwords of each f-solution. 

L e m m a 9 .  The equation has an f-solution iff for each characteristic word w of 
rank 0 there is no set in U/~ecuTs(T) Overlapso(w, fl) in OSo which contains 
two different constants of the equation. 
I f  OSo is given then solvability can be tested in polynomial time. 

A package is a set of starting positions of some occurrences of some word w 
inside words which are twice longer than w. It is always an arithmetic progression 
and is stored as a pair (b, e) where b is the first number in the progression, e the 
last one. Since the distance between consecutive numbers in the progression will 
be the same for all packages it will be stored in one global variable per, which 
is a period of w. Each set Overlapsk (w, fl) is represented as a package. 
The algorithm works on graphs Gk (w) where w is a characteristic word of rank k 
which is by definition of length 2 k. The vertices of the graph are the characteristic 
words of rank k + 1 represented by two numbers: starting and ending positions 
of these words in an f-solution. There is an edge u -+ v labeled fl in Gk (w) if the 
set Overlapsk+l (u, fl) is not empty and v is one of the words lk+l (fl) or rk+l (fl). 

Each vertex v keeps a package package(v) of occurrences of w in v. Initially, 
package(v) is empty for all vertices except the vertex v(w) which is lk+l(fl) if 
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w = lk(fl)) or rkTl(fl) if W = rk(fl). The set package(v(w)) consists of one 
position which is the occurrence of w as the word lk(fl) or rk(fl) in v(w). At the 
end the sets package(v) contain all occurrences of w in v which can be deduced 
from the initial distribution of package (v) and how the packages can move using 
the set (gSk+l of overlaps of characteristic words of rank k + 1. 

A l g o r i t h m  Solvability_For_Given_Lengths 
for  k := logT  d o w n t o  0 do 

{invariant OSk+l is known} 
for  each  characteristic word w of rank k do  

Close_Oraph(Gk (w),v (w) ) 
compute OSk on the basis of the closed graphs Gk(w) 
{ invariant OSk is computed} 

test solvability using OSo and Lemma 8 

Due to the fact that  we operate on packages the set package(v) may contain 
additional occurrences of w which cannot be deduced in a direct way from OSk, 
i.e. by simply moving the information on occurrences along the edges of Gk. 
Since the resulting set is to be a single progression we use operation Join for 
merging several packages of occurrences of w inside the same word into the 
smallest package containing all input packages. The legality of this operation is 
justified by the following fact. 

L e m m a  10. Let Pl, P2 be two packages of occurrences of a w o r d  w i n s i d e  a twice 
longer word v. Then Join(pl,p2) is also a package of occurrences of w in v. 

Example 2. The operation Join of joining packages can result in changing the 
distance between consecutive numbers in the input progressions per if the num- 
bers in progressions do not synchronize as in the following case 

Join({1,3},{6,8}) = {1,2, 3,4, 5,6,7, 8}. 

To formalize the above we define the closure of a graph Gk(w) as the smallest 
set of packages containing initial distribution of the packages and such that each 
edge v --+ u of the graph is closed, i.e. transferring a package package(v) from 
a vertex v to u produces a package which is a subset of package(u) (no new 
packets are produced). Transferring a package along the edge v --+ w labeled 
fl consists in putting package(v) in all occurrences of v in Overlapsk+l(v, fl), 
joining them into one package, extracting those which drops into u and joining 
them with packages(u). 

L e m m a  11. Given closed graph Gk(w), for each characteristic word w of rank 
k, the set OSk can be computed in polynomial time. 

The algorithm for constructing an f-solution is more complicated. In this algo- 
r i thm we have to compute a grammar which represents all characteristic words. 
A production for lk+l(fl), which is now treated as a nonternfinal in the created 
grammar,  is of the form Ik+l (fl) --+ l'k (fl)lk (fl) and the production for rk+l (fl) is 
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rk+l(/3) --+ rk(/3)r'k(/3) where r '  and l' are the halves of rk+l and lk+t. The  pro- 
ductions for the words r '  and l' are built on the basis of some of the occurrences 
of these words over some cut 7 of the equation. We compute  it using the same 
technique as for finding the occurrences of words lk and rk on the cuts. If  such an 
occurrence does not exist the word l~ and r~ can be replaced with the word a 2k 
which can be represented by a g r am m ar  of size O(k). Otherwise the production 
for a word r'k(fl) is of the form r'k(/3 ) -+ Suf f ix( t , lk  (7))Pref(s, rk(7)) where 
Suf f ix ( t ,  u) (PreZ(t, u)) is a suffix (prefix) of length t of u. The application of 
the operations of Su f f i x  and Pref  generalizes context-free productions, and 
the whole construction is equivalent via a polynomial  t ime/size t ransformat ion 
to a s tandard context-free grammar .  

T h e o r e m  12 (Main-Result 2). 
Assume the length of all variables are given in binary by a function f. Then we 
can test solvability in polynomial time, and produce polynomial-size compression 
of the lexicographically first solution (if there is any). 

5 C o m p u t i n g  C l o s e _ G r a p h ( G k ( w ) , v ( w ) )  

Assume w and k are fixed. The operation Close_Graph(Gk(w),v(w)) consists 
essentially in computing occurrences of w inside characteristic words of rank 
k + 1. These occurrences are treated as packets. Initially we have one occurrence 
(initial packet) which is an occurrence of w in v(w), then due to the overlaps of 
words of rank k + 1 implied by the overlap structure OSk+l the packets move 
and replicate. Eventually we have packages (changing sets of known occurrences) 
which are ari thmetical  progressions with difference per which is the currently 
known period (not necessarily smallest) of w. 

A meta-cycle is a graph (B,t --+ s) which is composed of an edge t --+ s 
and an acyclic graph B such that  each node of B belongs to some path  from s 
(source) to t (target). A meta-cycle can be closed in polynomial  time, see the 
full version of the paper [11]. 

T h e o r e m  13. The algorithm Close_Graph works ira polynomial time. 

S k e t c h  o f  t h e  p r o o f .  Let n be the number  of vertices of G. An acyclic version 
of the graph G is a graph Aeyclie(G) which represents all paths of length n 
of G. The graph consists of n layers of vertices, each layer represents copies 
of the vertices of G. All edges join consecutive layers of Acyclic(G). If  there is 
an edge v --+ w in G labeled /3 then there is an edge labeled /3 between the 
copies of v and w in all consecutive layers of Acyclic(G). There are also special 
edges which are not labeled and they go between copies of the same vertex in 
consecutive layers. The operation transfer of packages along these edges just  
copies the packages. It is not difficult to prove that  transferring the packages in 
Acyelie(G) simulates transferring the packages n times in G using simultaneously 
all edges. In particular each package package(v) travels on all paths s tar t ing 
from v of length n. The restriction of Acyelie(G) to all vertices reachable from a 
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copy of v from the first layer of Acyclic(G) is called Path(v). Similarly a graph 
Simple_Paths(u,v) is created from Aeyelic(G) by removing all vertices which do 
not belong to a path from a copy of v in the first layer and some copy of u and 
by joining all copies of u into one vertex. The graph Simple_Paths(u,v) is acyclic 
and has one source u and target node v. Transferring a package from u to v in 
Simple_Paths(u,v) corresponds to transferring a package between u and v along 
all paths of length at most n in G in particular transferring packages along all 
simple paths (which do not contain a cycle) of G. 

A l g o r i t h m  Close_Graph(G,source) 
G/:=the vertex source; 
T:=nonclosed edges going in G from source; 
whi le  T ~s 0 do 

{invariant graph G ~ is closed} 
take an edge u --+ v from T and put it into GJ; 
construct the graph SP=Simple_Paths(v,u); 
if  SP is not empty t h e n  Close_Meta-eycle(SP,u --+ v); 
construct the graph Paths(v); 
transfer package(u) inside aeyclie graph Paths(v); 
find edges in G which are nonclosed and put them into T 
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