
Application of Lempel-Ziv Encodings
to the Solution of Word Equations

W o j c i e c h P l a n d o w s k i * l and W o j c i e c h R y t t e r **2

1 Turku Centre for Computer Science and Department of Mathematics, Turku
University, 20 014, Turku, Finland

2 Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa,
Poland, and Department of Computer Science, University of Liverpool, UK.

Abstract. One of the most intricate algorithms related to words is
Makanin's algorithm solving word equations. The algorithm is very com-
plicated and the complexity of the problem of solving word equations is
not well understood. Word equations can be used to define various prop-
erties of strings, e.g. general versions of pattern-matching with variables.
This paper is devoted to introduce a new approach and to study relations
between Lempel-Ziv compressions and word equations. Instead of deal-
ing with very long solutions we propose to deal with their Lempel-Ziv
encodings. As our first main result we prove that each minimal solution
of a word equation is highly compressible (exponentially compressible
for long solutions) in terms of Lempel-Ziv encoding. A simple algorithm
for solving word equations is derived. If the length of minimal solution is
bounded by a singly exponential function (which is believed to be always
true) then LZ encoding of each minimal solution is of a polynomial size
(though the solution can be exponentially long) and solvability can be
checked in nondeterministic polynomial time. As our second main result
we prove that the solvability can be tested in polynomial deterministic
time if the lengths of all variables are given in binary. We show also that
lexicographically first solution for given lengths of variables is highly
compressible in terms of Lempel-Ziv encodings.

1 I n t r o d u c t i o n

Word equat ions are used to describe properties and relations of words, e.g.
pattern-matching with variables, imprimitiveness, periodicity, conjugation, see [5].
The main a lgor i thm in this area is Makanin 's a lgor i thm for solving word equa-
tions, see [8]. The t ime complexi ty of the a lgor i thm is too high, its mos t efficient

version works in 22"(~) nondeterminis t ic t ime where p(n) is the m a x i m a l index
of periodici ty of word equat ions of length n (p(n) is a singly exponent ia l func-
t ion), see [6]. The descriptional complexi ty is also too high. As a side effect of
our results we present a much simpler algori thm.

* On leave from Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097
Warszawa, Poland. Email:wojtekp:l.@mimuw. edu. pi. Partially supported by Academy
of Finland under grant 14047.

** Partially done while visiting University of Turku, Finland.

732

It is known that the solvability problem for word equations is NP-hard , even
if we consider (short) solutions with the length bounded by a linear function and
the right side of equations contains no variables, see [1].

The main open problem is to close the gap between N P and 2 2p(d), and to
show the following

C o n j e c t u r e A: the problem of solving word equations is in N P .

Assume n is the size of the equation and N is the minimal length of the solution
(if one exists). It is generally believed that another conjecture is true (at least
no counterexample is known):

C o n j e c t u r e B: N is at most singly exponentiM w. r . t .n .

Current estimation for the function N is 2 ~p("). We strongly believe that the
proper bound is singly exponential. If it is true then our construction would
prove that the problem of solvability of word equations is NP-complete .
In this paper we introduce a new approach to deal with word equations: Lempel-
Ziv (LZ) encodings of solutions of word equations. Recently many results for
several variations of pattern-matching and other combinatorial problems for
compressed texts were obtained, see [4, 9, 3]. Many words can be exponentially
compressed using LZ-encoding. A motivation to consider compressed solutions
follows from the following fact.

L e m m a 1.
I f we have LZ-encoded values of the variables then we can verify the word equa-
tion in polynomial time with respect to the size of the equation and the total size
of given LZ-encodings.

Proof. We can convert each LZ-encoding to a context-free grammar generating
a single word, due to the following claim.

C l a i m Let n =]LZ(w)]. Then we can construct a conte• grammar G of
size O(n 2 log n) which generates w and which is in the Chomsky normal form.

Now we can compute the grammars corresponding to the left and right sides of
the equations by concatenating some smaller grammars. The equality of gram-
mars can be checked in polynomial time by the algorithm of [10].

Our first result is:

T h e o r e m 2 (M a i n - R e s u l t 1).
Assume N is the size of rninirnal solution of a word equation of size n. Then each
solution of size N can be LZ-cornpressed to a string of size O(n 2 log2(N)(log n +
loglogN)) .

As a direct consequence we have:

C o r r o l a r y 1. Conjecture B implies conjecture A.

Proof. If N is exponential then the compressed version of the solution is of a
polynomial size. The algorithm below solves the problem in nondeterministic
polynomial time. The first step works in nondeterministic polynomial time, the
second one works in deterministic polynomial time due to Lemma 1.

733

A L G O R I T H M Solving_by_LZ-Encoding ;
guess LZ-encoded solution of size

O(n 2 log 2 g (l o g n + loglog N));
verify its correctness using the polynomial
t ime deterministic algorithm from L e m m a 1.

O b s e r v a t i o n . Take N = 222p('~ . Then the algorithm Solving_by_LZ-Encoding
is probably the simplest algorithm solving word equations with similar t ime
complexity as the best known (quite complicated) algorithms.

It was known before that there is a polynomial t ime deterministic algori thm
if the lengths of all variables are given in unary. We strengthen this results
allowing binary representations (changing polynomial bounds to exponential).
Our second main result is:

T h e o r e m 3 (M a i n - R e s u l t 2).
Assume the length of all variables are given in binary by a function f . Then we
can test solvability in deterministic polynomial time, and produce polynomial-size
compression of the lexicographically first solution (if there is any).

Let Z be an alphabet of constants and (9 be an alphabet of variables. We assmne
that these alphabets are disjoint. A word equation E is a pair of words (u, v) C
(Z U (9)* • (Z U (9)* usually denoted by u = v. The size of an equation is the
sum of lengths of u and v. A solution of a word equation u = v is a morphism
h : (ZU(9)* -+ Z* such that h(a) = a, for a E ~ , and h(u) = h(v). For example
assume we have the equation

a b x l x 2 x 2 x 3 x 3 x 4 x 4 x 5 ~ XlX2X3X4XhX6,

and the length of xi 's are consecutive Fibonacci numbers. Then the solution is
h(xi) = FibWordi, where FibWordi is the i-th Fibbonaci word.

We consider the same version of the LZ algorithm as in [3] (this is called
LZ1 in [3]). Intuitively, LZ algorithm compresses the text because it is able to
discover some repeated subwords. We consider here the version of LZ algori thm
without self-referencing. The factorization of w is given by a decomposition:
w = e l f l c2 . . , fkCk+l , where Cl : w[1] and for each 1 < i < k + 1 c~ E ~ and
fi is the longest prefix of f i c i+l . . , fkck+l which appears in Cl f lC2 . . . f i - l c i .
We can identify each fi with an interval [p, q], such that f~ = w[p..q] and q _<
I c l f l c 2 . . . f i - l c i - l l . If we drop the assumption related to the last inequality
then it occurs a self-referencing (fi is the longest prefix which appears before
but not necessarily terminates at a current position). We assume (for simplicity)
that this is not the case. We use simple relations between LZ-encodings and
context-free grammars .

Example 1. The LZ-factorizat ion of a word aababbabbaababbabba# is given by
the sequence:

Cl f l 52 f2 C3 f3 C4 f4 C5 : a a b ab b abb a ababbabba @.

734

After identifying each subword fi with its corresponding interval we obtain the
LZ encoding of the string. Hence

LZ(aababbabbababbabb#) = a[1, 1]b[2, 3]b[4, 6]a[2, 10]#.

As another example we have that the LZ-encoding of FibWordn is of size O(n).

2 R e l a t i o n s o n p o s i t i o n s a n d i n t e r v a l s i n t h e s o l u t i o n s

Let F be the set of variables. Assume the function f : 12 --+ N gives the lengths
of variables. The function f can be natural ly extended to all words over C U 1;
giving lengths of them under the assumption that the lengths of words which are
substi tuted for variables are defined by f . Let e : u = v be the word equation to
consider. Each solution of e in which the lengths of words which are subst i tuted
by variables are defined by f is called an f-solut ion of e. We consider a fixed
equation u = v with the lengths of the components of its solution h given by a
function f .

We introduce the relation TC (defined formally below) on positions of the
solution, two positions are in this relation iff they correspond to the same symbol
in every f-solution (Td is implied by the structure of equation).

Fig . 1. Assmne we have equation a b x l x 2 x 2 x 3 x 3 x 4 x 4 x 5 : Xl x2x3x4x5x6 and the
lengths of xi 's are consecutive Fibonacci numbers. Two positions are equivalent
(contain always a same symbol) iff they are in the relation 7~, which is a transit ive
closure ofT~/. For example the 19th and the first positions are connected via pairs
of positions which are in the relation 7~ ~. Hence these positions are equivalent,
so the 19th position is in the class corresponding to the constant b.

We use the identity h(u) = h(v) in Z*, that is identify the corresponding letters
on both sides of this identity, to define an equivalence relation Tr on positions
of h(u). The positions in the equivalence classes are to be filled by the same
constant. The constant is uniquely determined if one of the positions in the class
corresponds to a constant in an original equation. Otherwise the constant can

735

be chosen arbitrarily. Moreover, the posit ions in such a class can be filled by any
word.

Now, assume tha t we are given an equat ion vl . . . vk = ul . . . us over t vari-
ables and a funct ion f such that f (v) = f (u) . Denote by v(j) (u(j)) the vari-
able or a constant f rom the left (right) hand of the equat ion and such tha t it
contains a posit ion j or in case of a constant occurs at posit ion j under the
assumpt ion tha t the lengths of variables are given by the funct ion f . Formally,
v(j) = vp+l i f f (v l . . , vp) < j <_ f (v l . . . vp+l). Denote also l(j) = j - f (v l . . . Vp)
(r(j) = j - f (u l . . , up)) the position in the variable v(j) (u(j)) which correspond
to j . We define a funct ion lef t : { 1 , . . . , f (u) } --+ N x (O t_J ~) in the following
way:

(l(j), v(j)) if v(j) is a variable
l e f t (j) = (j , v (j)) otherwise.

Similarly, we define the function right:

(r(j) , u(j)) if u(j) is a variable
r igh t (j) = (j, u(j)) otherwise.

The relat ion 7U is defined as follows:

i7r iff l e f t (i) = r ight (j) or l e f t (i) = l e f t (j) or right(i) = r igh t (j) .

Finally, an equivalence relation 7~ on posit ions { 1 . . . f (u) } is the transi t ive and
symmet r i c closure of the relation 7r ~. We say tha t a posit ion i belongs to a
variable X if either l e f t (i) = (j, X) o1" right(i) = (j, X) , for some j . Let C be
an equivalence class of the relation TO. We say tha t C corresponds to a cons tant
a if there is a posit ion i in C such that either l e f t (i) = (i, a) or r ight(i) = (i, a).
Now the following l e m m a is obvious.

L e m I n a 4. Let C be an equivalence class of the relation 7r connected to an equa-
tion e : u = v under the assumption that the lengths of variables are given by the
funct ion f . Then the following conditions are satisfied:
1. I f there is a class C corresponding to no constant then the solution is not of
minimal length. The symbols at positions in C can be filled with a same arbitrary
word, in particular by the empty word.
2. For any two positions i, j E C and an f -solut ion h of e, h(u)[i] = h(u)[j].
3. I f C corresponds to a constant a and i E C, then for each f -solut ion h of e,
h(u)[i] = a.
4. There is an f -solut ion of e iff no equivalence class contains positions of dif-
ferent constants of e.
5. A lexicographically first f -solut ion of e, if exists, can be obtained by filling
all positions in all equivalence classes of Tr which do not contain a constant by
lexicographically first letter of the alphabet.

The relation 7~ is defined on positions of an f - so lu t ion of e. In our considera-
t ions we need an extension of this relation to length n segments of an f - so lu t ion
of e.

(l (j) ,v (j)) v(j) = v(j + n - 1)
f t , , (j) = (j, v(j)) other, ise

736

(r (j) , u (j)) u(j) = u (j + n - 1)
right , , (t) = (j , u (j)) o therwise

The functions l e f t~ and right,~ are used to define length n segments of solutions
which have to be equal in each f -so lu t ion of e. They are defined by the relat ion
7r which is defined as a symmetr ic and transit ive closure of the following relat ion
" ~ / 1 , .

iTg~,j iff le f t~ (i) = right~ (j) or lef t , , (i) = le f t~ (j) or right , , (i) = right~ (j) .

L e m m a 5 . Let h be an f -solut ion of a word equation e : u = v and let E be an
equivalence class of T t , . I f i, j C E then h(u)[i . . i + n - 1] = h(u)[j . . j + n - 1].

3 M i n i m a l s o l u t i o n s a r e h i g h l y L Z - c o m p r e s s i b l e

Assume h(u) = h(v) = T is a solution of a given word equat ion E. A c u t in T
is a border of a variable or a constant in 7-. There is a linear number of such
cuts and they will be denoted by small Greek letters.

left side
X y Z

[

r igh t s ide

[- - I
z y

I

/
the cuts

I. [- - I . I
: y

i

i i
. /

•

I I

Fig . 2. The cuts for the equat ion x y z x = y z y x s with fixed length of variables,
corresponding to the figure.

We say tha t a subword w of T o v e r l a p s a cut 7 iff an occurrence of w extends
to the left and right of 7 or 7 is a border of an occurrence.

L e m m a 6 (k e y l e m m a) .
A s s u m e 7- is the minimal length solution of the equation E . Then each subword
of 7- has an occurrence which overlaps at least one cut in 7-.

Pro@ Assume tha t bo th sides of the equat ions are equal 7-, where 7- is the
minimal length solution of the equat ion E. Assume also tha t a subword w =
T[i , j] of size t of 7- has no occurrence which overlaps at least one cut in T . This

737

implies tha t it never happens i 7~.t p, for an interval [p, q] overlapping a cut. It is
easy to see that in this situation no position inside [i, j] is in the relation "/~ with
any constant (since each constant is a neighbor of a cut, by definition). Hence
in the equivalence class C corresponding to some position in [i,j] there is no
constant. Due to Lemma 4 we can delete all symbols on positions belonging to
C. In this way a new shorter solution is produced, which contradicts minimali ty
of the initial solution 7-. This completes the proof.

Fig. 3. Active segments and the k-th active area.

For k = 0, 1, . . . loglT-I and each cut 7 in 7 -denote by lk(7) and rk(7) the sub-
words of length 2 k whose right (left) border is the cut 7- Denote also segment~ (7)
to be the concatenation of lk (7) and rk(7). We say that lk (7) and rk (7) are re-
spectively, left and right c h a r a c t e r i s t i c w o r d s of rank k and words segmentk (7)
are a c t i v e s e g m e n t s . The union of all active segments of rank k is denoted by
Active-Area(k).

T h e o r e m 7 (M a i n - R e s u l t 1).
Assume N is the size of minimal solution of a word equation of size n. Then each
solution of size N can be LZ-compressed to a string of size O(n 2 l o g 2 (N) (l o g n +
log log N)) .

P ro@ For a given cut 7 consider consecutive words u0 (7), ul (7), u2 (7), �9 �9 whose
lengths are 1, 1, 2, 4, ..., and which are on the left of 7- Similarly we define
words v0(7), vl (7) , . . . to the right of 7, see Figure 4. The sequences of these
words continue maximal ly to the left (right) without hit t ing another cut. Then
f o r k > O

segmentk+l (7) = uk+l segmentk (7) vk+l

C l a i m 1. 7- is covered by a concatenation of a linear number of active segments.

It is easy to see that due to Lemma 6 we have.

C l a i m 2. Each of the words uk+l and vk+l is contained in segmentk(/3),
segrnentk (~) for some cuts a',/3.

738

u3 v3
vO vl v2

~ " - ~ e s e g ~

Fig. 4. The structure of active segments for the same cut.

We can write now:

8egrrtentk+l (~/) ---- 8egmen tk (fl)[i..j] segmentk (7) segmentk (a)[p..q]
for some cuts c~,/3 and intervals [i..j], [p..q].

In this way we have recurrences describing larger active segments in terms of
smaller active segments (as their subwords). We start with active segments of a
constant size.

C l a i m 3. Assume we have a set of rn recurrences describing consecutive words in
terms of previously defined words, as concatenations of finite number of subwords
of these earlier words. Assume we start with words of constant size. Then the last
described word has an LZ-encoding of size O(m 2 log m). This small LZ-encoding
can be computed in deterministic polynomial time w.r.t, m if the recun-ences
are given.
Ske t ch o f t h e p r o o f o f t h e Cla im. Assume the words computed by recurrences
are z l , z2 , . . . , z ,~ . Then we can create one long word z = Zl �9 z; z ,~ which
has the LZ-encoding of size O(rn) given by recurrences. We can transform this
encoding to a context-free grammar of size O(rn 2 log m)) generating z as a single
word, we refer to the claim in the proof of Theorem 11 in [4]. Next we construct
a grammar of size O(m 2 logm) for zm as a segment of z. Next we can transform
this grammar to a LZ-encoding of similar size.

In our case we have m = O(n log N) as a bound for the number of possible log N
segments for n cuts together with n subwords of segments, needed in Claim
1. Hence the resulting encoding is O(m 2 logm) which is O(n 2 log2(N)(logn +
log log N)).

4 P o l y n o m i a l t i m e a l g o r i t h m f o r a g i v e n v e c t o r o f l e n g t h s

We use again the idea of geometrically decreasing neighborhoods (active areas)
of the cuts, which are the most essential in the solution. Let us fix the length of
the variables and h(u) = h(v) = T. We want to represent the relation between
positions o f t (implied by the equation) restricted to the k-th active areas, start-
ing from large k and eventually finishing with k = 0, which gives the relation of
a polynomial size which can be used directly to check solvability. So we compute
consecutive structures like shortcuts in a graph corresponding to the relation on

739

positions (identifying symbols on certain pairs of positions). The crucial point
is to represent succinctly exponential sets of occurrences , this is possible due to
the following fact.

L e m m a 8.
The set of occurrences of a word w inside a word v which is exactly twice longer
than w forms a single arithmetic progression.

Denote by Sk the relation 7~2k restricted to positions and intervals which are
within the active area of rank k.
Our main data structure at the k-th iteration is the k-th overlap structure OSk,
which is a collection:

{Overlapsk (w, fl) : fl E C U T S (T) }

where w is a characteristic word of rank k.
The sets in OSk consist of overlaps of characteristic words against the cuts in
T. We consider only overlaps which fit inside segrnentsk (7), and which form
arithmetic progressions and are implied by the structure of the equation, the
relation ~2k- The overlap structure Overlaps has three features

- for each cut fl and a characteristic word w of rank k the set {Overlapsk (w, fl) :
fl C C U T S (T) } forms single arithmetic progression,

- in each f-solution of the equation the words of length 2 k which start at
positions in Overlapsk (w, fl) are equal to w,

- the sum Overlapsk (w, ~) which is taken over all cut points fl is a union of
some equivalence classes in Sk.

The second and the third conditions gives us the following property of the
set O$0 which deals with one-letter subwords of each f-solution.

L e m m a 9 . The equation has an f-solution iff for each characteristic word w of
rank 0 there is no set in U/~ecuTs(T) Overlapso(w, fl) in OSo which contains
two different constants of the equation.
I f OSo is given then solvability can be tested in polynomial time.

A package is a set of starting positions of some occurrences of some word w
inside words which are twice longer than w. It is always an arithmetic progression
and is stored as a pair (b, e) where b is the first number in the progression, e the
last one. Since the distance between consecutive numbers in the progression will
be the same for all packages it will be stored in one global variable per, which
is a period of w. Each set Overlapsk (w, fl) is represented as a package.
The algorithm works on graphs Gk (w) where w is a characteristic word of rank k
which is by definition of length 2 k. The vertices of the graph are the characteristic
words of rank k + 1 represented by two numbers: starting and ending positions
of these words in an f-solution. There is an edge u -+ v labeled fl in Gk (w) if the
set Overlapsk+l (u, fl) is not empty and v is one of the words lk+l (fl) or rk+l (fl).

Each vertex v keeps a package package(v) of occurrences of w in v. Initially,
package(v) is empty for all vertices except the vertex v(w) which is lk+l(fl) if

740

w = lk(fl)) or rkTl(fl) if W = rk(fl). The set package(v(w)) consists of one
position which is the occurrence of w as the word lk(fl) or rk(fl) in v(w). At the
end the sets package(v) contain all occurrences of w in v which can be deduced
from the initial distribution of package (v) and how the packages can move using
the set (gSk+l of overlaps of characteristic words of rank k + 1.

A l g o r i t h m Solvability_For_Given_Lengths
for k := logT d o w n t o 0 do

{invariant OSk+l is known}
for each characteristic word w of rank k do

Close_Oraph(Gk (w),v (w))
compute OSk on the basis of the closed graphs Gk(w)
{ invariant OSk is computed}

test solvability using OSo and Lemma 8

Due to the fact that we operate on packages the set package(v) may contain
additional occurrences of w which cannot be deduced in a direct way from OSk,
i.e. by simply moving the information on occurrences along the edges of Gk.
Since the resulting set is to be a single progression we use operation Join for
merging several packages of occurrences of w inside the same word into the
smallest package containing all input packages. The legality of this operation is
justified by the following fact.

L e m m a 10. Let Pl, P2 be two packages of occurrences of a w o r d w i n s i d e a twice
longer word v. Then Join(pl,p2) is also a package of occurrences of w in v.

Example 2. The operation Join of joining packages can result in changing the
distance between consecutive numbers in the input progressions per if the num-
bers in progressions do not synchronize as in the following case

Join({1,3},{6,8}) = {1,2, 3,4, 5,6,7, 8}.

To formalize the above we define the closure of a graph Gk(w) as the smallest
set of packages containing initial distribution of the packages and such that each
edge v --+ u of the graph is closed, i.e. transferring a package package(v) from
a vertex v to u produces a package which is a subset of package(u) (no new
packets are produced). Transferring a package along the edge v --+ w labeled
fl consists in putting package(v) in all occurrences of v in Overlapsk+l(v, fl),
joining them into one package, extracting those which drops into u and joining
them with packages(u).

L e m m a 11. Given closed graph Gk(w), for each characteristic word w of rank
k, the set OSk can be computed in polynomial time.

The algorithm for constructing an f-solution is more complicated. In this algo-
r i thm we have to compute a grammar which represents all characteristic words.
A production for lk+l(fl), which is now treated as a nonternfinal in the created
grammar, is of the form Ik+l (fl) --+ l'k (fl)lk (fl) and the production for rk+l (fl) is

741

rk+l(/3) --+ rk(/3)r'k(/3) where r ' and l' are the halves of rk+l and lk+t. The pro-
ductions for the words r ' and l' are built on the basis of some of the occurrences
of these words over some cut 7 of the equation. We compute it using the same
technique as for finding the occurrences of words lk and rk on the cuts. If such an
occurrence does not exist the word l~ and r~ can be replaced with the word a 2k
which can be represented by a g r am m ar of size O(k). Otherwise the production
for a word r'k(fl) is of the form r'k(/3) -+ Suf f ix(t , lk (7))Pref(s, rk(7)) where
Suf f ix (t , u) (PreZ(t, u)) is a suffix (prefix) of length t of u. The application of
the operations of Su f f i x and Pref generalizes context-free productions, and
the whole construction is equivalent via a polynomial t ime/size t ransformat ion
to a s tandard context-free grammar .

T h e o r e m 12 (Main-Result 2).
Assume the length of all variables are given in binary by a function f. Then we
can test solvability in polynomial time, and produce polynomial-size compression
of the lexicographically first solution (if there is any).

5 C o m p u t i n g C l o s e _ G r a p h (G k (w) , v (w))

Assume w and k are fixed. The operation Close_Graph(Gk(w),v(w)) consists
essentially in computing occurrences of w inside characteristic words of rank
k + 1. These occurrences are treated as packets. Initially we have one occurrence
(initial packet) which is an occurrence of w in v(w), then due to the overlaps of
words of rank k + 1 implied by the overlap structure OSk+l the packets move
and replicate. Eventually we have packages (changing sets of known occurrences)
which are ari thmetical progressions with difference per which is the currently
known period (not necessarily smallest) of w.

A meta-cycle is a graph (B,t --+ s) which is composed of an edge t --+ s
and an acyclic graph B such that each node of B belongs to some path from s
(source) to t (target). A meta-cycle can be closed in polynomial time, see the
full version of the paper [11].

T h e o r e m 13. The algorithm Close_Graph works ira polynomial time.

S k e t c h o f t h e p r o o f . Let n be the number of vertices of G. An acyclic version
of the graph G is a graph Aeyclie(G) which represents all paths of length n
of G. The graph consists of n layers of vertices, each layer represents copies
of the vertices of G. All edges join consecutive layers of Acyclic(G). If there is
an edge v --+ w in G labeled /3 then there is an edge labeled /3 between the
copies of v and w in all consecutive layers of Acyclic(G). There are also special
edges which are not labeled and they go between copies of the same vertex in
consecutive layers. The operation transfer of packages along these edges just
copies the packages. It is not difficult to prove that transferring the packages in
Acyelie(G) simulates transferring the packages n times in G using simultaneously
all edges. In particular each package package(v) travels on all paths s tar t ing
from v of length n. The restriction of Acyelie(G) to all vertices reachable from a

742

copy of v from the first layer of Acyclic(G) is called Path(v). Similarly a graph
Simple_Paths(u,v) is created from Aeyelic(G) by removing all vertices which do
not belong to a path from a copy of v in the first layer and some copy of u and
by joining all copies of u into one vertex. The graph Simple_Paths(u,v) is acyclic
and has one source u and target node v. Transferring a package from u to v in
Simple_Paths(u,v) corresponds to transferring a package between u and v along
all paths of length at most n in G in particular transferring packages along all
simple paths (which do not contain a cycle) of G.

A l g o r i t h m Close_Graph(G,source)
G/:=the vertex source;
T:=nonclosed edges going in G from source;
whi le T ~s 0 do

{invariant graph G ~ is closed}
take an edge u --+ v from T and put it into GJ;
construct the graph SP=Simple_Paths(v,u);
if SP is not empty t h e n Close_Meta-eycle(SP,u --+ v);
construct the graph Paths(v);
transfer package(u) inside aeyclie graph Paths(v);
find edges in G which are nonclosed and put them into T

References

1. Angluin D., Finding patterns common to a set of strings, J.C.S.S., 21(1), 46-62,
1980.

2. Choffrut, C., and Karhum/iki, J., Combinatorics of words, in G.Rozenberg and
A.Salomaa (eds), Handbook o] Formal Languages, Springer, 1997.

3. Farah, M., Thorup M., String matching in Lempel-Ziv compressed strings,
STOC'95, 703-712, 1995.

4. L. Gesieniec, M. Karpifiski, W. Plandowski and W. Rytter, Randomized Efficient
Algorithms for Compressed Strings: the finger-print approach, in proceedings of
the CPM'96, LNCS 1075, 39-49, 1996.

5. I(arhums J., Mignosi F., Plandowski W., The expressibility of languages and
relations by word equations, in ICALP'97, LNCS 1256, 98-109, 1997.

6. Koscielski, A., and Pacholski, L., Complexity of Makanin's algorithm, J. ACM
43(4), 670-684, 1996.

7. A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. on In].
Theory, 22, 75-81, 1976.

8. Makanin, G.S., The problem of solvability of equations in a free semigroup, Mat.
Sb., Vol. 103,(145), 147-233, 1977. English transl, in Math. U.S.S.R. Sb. Vol 32,
1977.

9. Miyazald M., Shinohara A., Takeda M., An improved pattern matching algorithm
for strings in terms of straight-line programs, in CPM'97, LNCS 1264, 1-11, 1997.

10. W. Plandowski, Testing equlity of morphisms on context-free languages, in ESA'94
11. Plandowski W., Rytter W., Application of Lempel-Ziv encodings to the solution

of word equations, TUCS report, Turku Centre for Computer Science, 1998.

