
Algorithmica
DOI 10.1007/s00453-014-9931-3

One-Variable Word Equations in Linear Time

Artur Jeż

Received: 22 January 2014 / Accepted: 7 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract In this paper we consider word equations with one-variable (and arbitrarily
many occurrences of it). A recent technique of recompression, which is applicable to
general word equations, is shown to be suitable also in this case. While in general case
the recompression is nondeterministic in case of one-variable it becomes deterministic
and its running time is O(n+#X log n), where #X is the number of occurrences of the
variable in the equation. This matches the previously best algorithm due to Dąbrowski
and Plandowski. Then, using a couple of heuristics as well as more detailed time
analysis, the running time is lowered to O(n) in the RAM model. Unfortunately, no
new properties of solutions are shown.

Keywords Word equations · String unification · One-variable equations

1 Introduction

1.1 Word Equations

The problem of satisfiability of word equations was considered as one of the most
intriguing in computer science and its study was initiated by Markow already in the
50s. The first algorithm for it was given by Makanin [15], despite earlier conjectures
that the problem is undecidable. The proposed solution was very complicated in terms

A. Jeż
Max Planck Institute fü Informatik, 66123 Campus E1 4, Saarbrücken, Germany
e-mail: ajez@mpi-inf.mpg.de

A. Jeż (B)
Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław, Poland
e-mail: aje@cs.uni.wroc.pl

123

Algorithmica

of proof-length, algorithm and computational complexity. It was improved several
times, however, no essentially different approach was proposed for over two decades.

An alternative algorithm was proposed by Plandowski and Rytter [21], who showed
that each minimal solution of a word equation is exponentially compressible, in the
sense that for a word equation of size n and minimal solution of size N the LZ77
(a popular practical standard of compression) representation of the minimal solution is
polynomial in n and log N . Hence a simple non-deterministic algorithm that guesses
a compressed representation of a solution and verifies the guess has running time
polynomial in n and log N . However, at that time the only bound on N followed from
Makanin’s work (with further improvements) and it was triply exponential in n.

Soon after Plandowski showed, using novel factorisations, that N is at most doubly
exponential [18], showing that satisfiability of word equations is in NEXPTIME.
Exploiting the interplay between factorisations and compression he improved the
algorithm so that it worked in PSPACE [19].

Producing a description of all solutions of a word equation, even when a procedure
for verification of its satisfiability is known, proved to be also a non-trivial task. Still, it
is also possible to do this in PSPACE [20], though insight and non-trivial modifications
to the earlier procedure are needed.

On the other hand, it is only known that the satisfiability of word equations is
NP-hard.

1.1.1 Two Variables

Since in general the problem is outside P, it was investigated, whether some subclass
of it is feasible, with a restriction on the number of variables being a natural candidate.
It was shown by Charatonik and Pacholski [2] that indeed, when only two variables are
allowed (though with arbitrarily many occurrences), the satisfiability can be verified in
deterministic polynomial time. The degree of the polynomial was very high, though.
This was improved over the years and the best known algorithm is by Dąbrowski and
Plandowski [3] and it runs in O(n5) and returns a description of all solutions.

1.1.2 One-Variable

Clearly, the case of equations with only one-variable is in P. Constructing a cubic
algorithm is almost trivial, small improvements are needed to guarantee a quadratic
running time. First non-trivial bound was given by Obono, Goralcik and Maksimenko,
who devised an O(n log n) algorithm [17]. This was improved by Dąbrowksi and
Plandowski [4] to O(n+#X log n), where #X is the number of occurrences of the vari-
able in the equation. Furthermore they showed that there are at most O(log n) distinct
solutions and at most one infinite family of solutions. Intuitively, the O(#X log n) sum-
mand in the running time comes from the time needed to find and test these O(log n)

solutions.
This work was not completely model-independent, as it assumed that the alphabet

Γ is finite or that it can be identified with numbers. A more general solution was
presented by Laine and Plandowski [13], who improved the bound on the number of
solutions to O(log #X) (plus the infinite family) and gave an O(n log #X) algorithm that

123

Algorithmica

runs in a pointer machine model (i.e. letters can be only compared and no arithmetical
operations on them are allowed); roughly one candidate for the solution is found and
tested in linear time. Note that there is a conjecture that one-variable word equations
have O(1) solutions (plus the infinite family), in fact, an equation with three solutions
outside the infinite family is not known.

1.2 Recompression

Recently, the author proposed a new technique of recompression based on previ-
ous techniques of Mehlhorn et al. [16] (for dynamic text equality testing), Lohrey
and Mathissen [14] (for fully compressed membership problem for NFAs) and
Sakamoto [22] (for construction of the smallest grammar for the input text). This
method was successfully applied to various problems related to grammar-compressed
strings [5,6,8]. Unexpectedly, this approach was also applicable to word equations, in
which case alternative proofs of many known algorithmic results were obtained using
a unified approach [7]. Recently, it was also extended from strings to trees [10], in
particular the algorithm for word equations was generalised to context unification [9].

The technique is based on iterative application of two replacement schemes per-
formed on the text t :

– pair compression of ab: For two different letters a, b such that substring ab occurs
in t replace each of ab in t by a fresh letter c.

– a’s block compression: For each maximal block a�, where a is a letter and � > 1,
that occurs in t , replace all a�s in t by a fresh letter a�.

In one phase, pair compression (block compression) is applied to all pairs (blocks,
respectively) that occurred at the beginning of this phase. Ideally, each letter is then
compressed and so the length of t halves, in a worst-case scenario during one phase t
is still shortened by a constant factor.

The surprising property is that such a schema can be efficiently applied to grammar-
compressed data [5,8] or to text given in an implicit way, i.e. as a solution of a word
equation [7]. In order to do so, local changes of the variables (or nonterminals) are
needed: X is replaced with a� X (or Xa�), where a� is prefix (suffix, respectively) of the
substitution for X . In this way the solution that substitutes a�w (or wa�, respectively)
for X is implicitly replaced with one that substitutes w.

1.2.1 Recompression and One-Variable Equations

Clearly, as the recompression approach works for general word equations, it can be
applied also to restricted subclasses. However, while in case of word equations it
heavily relies on the nondeterminism, when restricted to instances with one-variable
it can be easily determinised; Sect. 2 recalls the main notions of word equations and
recompression. Furthermore, a fairly natural implementation has O(n + #X log n)

running time, so the same as the Dąbrowski and Plandowski algorithm [4]; this is
presented in Sect. 3. Lastly, adding a few heuristics, data structures as well as applying
a more sophisticated analysis yields a linear running time, this is described in Sect. 4.

123

Algorithmica

1.3 Outline of the Algorithm

In this paper we present an algorithm for one-variable equations based on the recom-
pression. It also provides a compact description of all solutions of such an equation.
Intuitively: when pair compression is applied, say ab is replaced by c (assuming it
can be applied) then there is a one-to-one correspondence of the solutions before and
after the compression, this correspondence is simply an exchange of all abs by cs
and vice-versa. The same applies to the block compression. On the other hand, the
modification of X can lead to loss of solutions (note that for technical reasons we do
not consider the solution S(X) = ε): when X is to be replaced with a� X and S(X)

is a solution of the old equation then the new equation has a corresponding solution
S′(X) unless S(X) = a�. So before the replacement, it is tested whether S(X) = a� is
a solution and if so, it is reported. The test itself is simple: both sides of the equation
are read and their values under substitution S(X) = a� are created on the fly and
compared symbol by symbol, until a mismatch is found or both strings end.

It is easy to implement the recompression so that one phase takes linear time. Then
the cost can be distributed to explicit words between the variables, each of them is
charged proportionally to its length. Consider such a string w, if it is long enough,
its length decreases by a constant factor in one phase, see Lemma 10. Thus, the cost
of compressing this fragment and testing a solution can be charged to the lost length.
However, this is not true when w is short and the #X log n summand in the running
time comes from bounding the running time for such ‘short’ strings.

In Sect. 4 it is shown that using a couple of heuristics as well as more involved
analysis the running time can be lowered to O(n). The mentioned heuristics are as
follows:

– The problematic ‘short’ words between the variables need to be substrings of the
‘long’ words, this allows smaller storage size and consequently faster compression.

– When we compare Xw1 Xw2 . . . wm X from one side of the equation with its copy
(i.e. another occurrence of Xw1 Xw2 . . . wm X) on the other side, we make such a
comparison in O(1) time (using suffix arrays).

– (S(X)u)m and (S(X)u′)m′ (perhaps offsetted) are compared in O(|u| + |u′|) time
instead of naive O(m · |u| + m′ · |u′|), using simple facts from combinatorics on
words (i.e. periodicity).

Furthermore a more insightful analysis shows that problematic ‘short’ words in
the equation can be used to invalidate several candidate solutions fast, even before
a mismatch in the equation is found during the testing. This allows a tighter estimation
of the time spent on testing the solutions.

A Note on the Computational Model

In order to perform the recompression efficiently, some algorithm for grouping pairs
(and blocks) is needed. When we can identify the symbols in Γ with consecutive
numbers, the grouping can be done using RadixSort in linear time. Thus, all (efficient)
applications of recompression technique make such an assumption. On the other hand,
the second of the mentioned heuristics requires checking string equality in constant

123

Algorithmica

time, to this end a suffix array [11] plus a structure for answering longest common
prefix query (lcp) [12] are employed and we use range minimum queries [1] on them.
The last structure needs the flexibility of the RAM model to run in O(1) time per
query.

2 Preliminaries

2.1 One-Variable Equations

A word equation with one-variable over the alphabet Γ and variable X is ‘A = B’,
where A,B ∈ (Γ ∪{X})∗. During the run of algorithm OneVarWordEq we introduce
new letters into Γ , but no new variable is introduced. In this paper we shall consider
only equations with one-variable.

Without loss of generality in a word equation A = B one of A and B begins with
a variable and the other with a letter:

– if they both begins with the same symbol (be it letter or nonterminal), we can remove
this symbol from them, without affecting the set of solutions;

– if they begin with different letters, this equation clearly has no solution.

The same applies to the last symbols of A and B. Thus, in the following we assume
that the equation is of the form

A0 X A1 . . . AnA−1 X AnA = X B1 . . . BnB−1 X BnB , (1)

where Ai , Bi ∈ Γ ∗ (we call them words or explicit words) and nA (nB) denote the
number of X occurrences in A (B, respectively). Note that exactly one of AnA , BnB
is empty and A0 is non-empty. If this condition is violated for any reason, we greedily
repair it by cutting identical letters (or variables) from both sides of the equation. We
say that A0 is the first word of the equation and the non-empty of AnA and BnB is the
last word. We additionally assume that none of words Ai , B j is empty. We later (after
Lemma 4) justify why this is indeed without loss of generality.

A substitution S assigns a string to X , we expand it to (X ∪ Γ)∗ with an obvious
meaning. A solution is a substitution such that S(A) = S(B). For a given equation
A = B we are looking for a description of all its solutions. We treat the empty solution
S(X) = ε in a special way and always assume that S(X) �= ε.

Note that if S(X) �= ε, then using (1) we can always determine the first (a) and last
(b) letter of S(X) in O(1) time. In fact, we can determine the length of the a-prefix
and b-suffix of S(X).

Lemma 1 For every solution S of a word equation the first letter of S(X) is the first
letter of A0 and the last the last letter of AnA or BnB (whichever is non-empty).

If A0 ∈ a+ then S(X) ∈ a+ for each solution S of A = B.
If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution S(X) ∈ a+,

existence of such a solution can be tested (and its length returned) in O(|A| + |B|)
time. Furthermore, for S(X) /∈ a+ the lengths of the a-prefixes of S(X) and A0 are
the same.

123

Algorithmica

Two comments are in place:

– Symmetric version of Lemma 1 holds for the suffix of S(X).
– It is later shown that finding all solutions from a+ can be done in linear time, see

Lemma 11.

Proof Concerning the first claim, observe that the first letter of S(A) is the first letter
of A0, while the first letter of S(B) is the first letter of S(X), hence those letters are
equal. The same applies to the last letter of S(X) and the last letter of AnA or BnB ,
whichever of them is non-empty.

Consider the case when A0 ∈ a+ and suppose that S(X) /∈ a∗, let � ≥ 0 be the
length of the a-prefix of S(X). The length of the a-prefix of S(A) is then |A0|+� > �,
which is the length of the a-prefix of S(B), contradiction. Hence S(X) ∈ a+.

Consider now the case when A0 begins with a but A0 /∈ a+, let its a-prefix have a
length �A. Consider S(X) ∈ a+, say S(X) = a�. Let the first letter other than a in B
be the �B + 1 letter in B and let it be in explicit word Bi . If there is no such Bi then
there is no solution S(X) ∈ a+, as then S(B) consists only of as, which is not true
for S(A). The length of the a-prefix of S(A) is �A, while the length of the a-prefix of
S(B) is �B + i · �. Those two need to be equal, so �A = �B + i · � and consequently
� = �A−�B

i , so this is the only candidate for the solution.
It is easy to verify whether S(X) = a� is a solution for a single � in linear time. It is

enough to compare S(A) and S(B) letter by letter, note that they can be created on the
fly while reading A and B. Each such comparison consumes one symbol from A and
B (note that if we compare a suffix of S(X), i.e. some a�′ for �′ < �, with S(X) = a�

we simply remove a�′ from both those strings). So the running time is linear.
Lastly, consider S(X) /∈ a∗. Then the a-prefix of S(A) has length �A and since

S(X) /∈ a+, the a-prefix of S(B) is the same as the a-prefix of S(X), which conse-
quently has length �A. �	

By TestSimpleSolution(a) we denote a procedure, described in Lemma 1, that for
A0 /∈ a∗ establishes the unique possible solution S(X) = a�, tests it and returns � if
this indeed is a solution.

2.2 Representation of Solutions

Consider any solution S of A = B. We claim that S(X) is uniquely determined by its
length and so when describing solution of A = B it is enough to give their lengths.

Lemma 2 Each solution S of equation of the form (1) is of the form S(X) = (A0)
k A,

where A is a prefix of A0 and k ≥ 0. In particular, it is uniquely defined by its length.

Proof If |S(X)| ≤ |A0| then S(X) is a prefix of A0. When |S(X)| > |A0| then S(A)

begins with A0S(X) while S(B) begins with S(X) and thus S(X) has a period A0.
Consequently, it is of the form Ak

0 A, where A is a prefix of A0. �	

123

Algorithmica

Weight

Each letter in the current instance of our algorithm OneVarWordEq represents some
string (in a compressed form) of the input equation, we store its weight which is the
length of such a string. Furthermore, when we replace X with a� X (or Xa�) we keep
track of the sum of weights of all letters removed so far from X . In this way, for
each solution of the current equation we know what is the length of the corresponding
solution of the original equation (it is the sum of weights of letters removed so far
from X and the weight of the current solution). Therefore, in the following, we will
not explain how we recreate the solutions of the original equation from the solution
of the current one. Concerning the running time needed to calculate the length of the
original solution: our algorithm OneVarWordEq reports only solutions of the form
a�, so we just need to multiply � with the weight of a and add the weights of the
removed suffix and prefix.

2.3 Recompression

We recall here the technique of recompression [5,7,8], restating all important facts
about it. Note that in case of one-variable many notions simplify.

2.3.1 Preserving Solutions

All subprocedures of the presented algorithm should preserve solutions, i.e. there
should be a one-to-one correspondence between solution before and after the appli-
cation of the subprocedure. However, when we replace X with a� X (or Xbr), some
solutions may be lost in the process and so they should be reported. We formalise
these notions.

Definition 1 (Preserving solutions) A subprocedure preserves solutions when given
an equation A = B it returns A′ = B′ such that for some strings u and v (calculated
by the subprocedure)

– some solutions of A = B are reported by the subprocedure;
– for each unreported solution S of A = B there is a solution S′ of A′ = B′, where

S(X) = uS′(X)v and S(A) = uS′(A′)v;
– for each solution S′ of A′ = B′ the S(X) = uS′(X)v is an unreported solution of

A = B and additionally S(A) = uS′(A′)v.

The intuitive meaning of these conditions is that during transformation of the equation,
either we report a solution or the new equation has a corresponding solution (and no
new ‘extra’ solutions).

By hc→ab(w) we denote the string obtained from w by replacing each c by ab, which
corresponds to the inverse of pair compression. We say that a subprocedure implements
pair compression for ab, if it satisfies the conditions from Definition 1, but with
S(X) = u hc→ab(S′(X))v and S(A) = u hc→ab(S′(A′))v replacing S(X) = uS′(X)v

and S(A) = uS′(A′)v.

123

Algorithmica

Similarly, by h{a�→a�}�>1
(w) we denote the string w with letters a� replaced with

blocks a�, for each � > 1; note that this requires that we know, which letters ‘are’
a� and what is the value of �, but this is always clear from the context. A notion of
implementing blocks compression for a letter a is defined similarly as the notion of
implementing pair compression. The intuitive meaning of both those notions is the
same as in case of preserving solutions: we not loose, nor gain any solutions.

Note that a composition of operations preserving solutions also preserves solution
and a composition of an operation preserving the solution (first) and a one that imple-
ments pair compression (second) also implements the pair compression; the same
applies to a composition of operations preserving a solution and implementing block
compression.

Given an equation A = B, its solution S and a pair ab ∈ Γ 2 occurring S(A) (or
S(B)) we say that this occurrence is explicit, if it comes from substring ab of A (or
B, respectively); implicit, if it comes (wholly) from S(X); crossing otherwise. A pair
is crossing if it has a crossing occurrence and non-crossing otherwise. Similar notion
applies to maximal blocks of as, in which case we say that a has a crossing block or
it has no crossing blocks. Alternatively, a pair ab is crossing if b is the first letter of
S(X) and aX occurs in the equation or a is the last letter of S(X) and Xb occurs in the
equation or a is the last and b the first letter of S(X) and X X occurs in the equation.
Similar reformulation applies to crossing blocks, with a taking the place of both a and
b.

Unless explicitly stated, we consider crossing/non-crossing pairs ab for a �= b.
Note that as the first (last) letter of S(X) is the same for each S, see Lemma 1, the
definition of the crossing pair does not depend on the solution; the same applies to
crossing blocks.

When a pair ab is non-crossing, its compression is easy, as it is enough to replace
each explicit ab with a fresh letter c

Algorithm 1 PairCompNCr(a, b) Pair compression for a non-crossing pair
1: let c ∈ Γ be an unused letter
2: replace each explicit ab in A and B by c

Similarly when none block of a has a crossing occurrence, the a’s blocks compres-
sion consists simply of replacing explicit a blocks.

Algorithm 2 BlockCompNCr(a) Block compression for a letter a with no crossing
block
1: for � > 1 do
2: for each explicit a’s �-block occurring in A or B do
3: let a� ∈ Γ be an unused letter
4: replace every explicit a’s �-block occurring in A or B by a�

123

Algorithmica

Lemma 3 Let ab be a non-crossing pair then PairCompNCr(a, b) implements the
pair compression for ab. Let a has no crossing blocks, then BlockCompNCr(a)

implements the block compression for a.

Proof Consider first the case of PairCompNCr. Suppose that A = B has a solution
S. Define S′: S′(X) is equal to S(X) with each ab replaced with c (where c is a new
letter). Consider S(A) and S′(A′). Then S′(A′) is obtained from S(A) by replacing
each ab with c (as a �= b this is well-defined): the explicit occurrences of ab are
replaced by PairCompNCr(a, b), the implicit ones are replaced by the definition of
S′ and by the assumption there are no crossing occurrences. The same applies to S(B)

and S′(B′), hence S′ is a solution of A′ = B′.
Since c is a fresh letter, the S(A) is obtained from S′(A′) by replacing each c

with ab, the same applies to S(X) and S′(X) as well as S(B) and S′(B′). Hence
S(A) = hc→ab(S′(A)) = hc→ab(S′(B)) = S(B) and S(X) = hc→ab(S′(X)), as
required by the definition of implementing the pair compression.

Lastly, for a solution S′ of A′ = B′ take the corresponding S defined as S(X) =
hc→ab(S′(X)) (i.e. replacing each c with ab in S′(X)). It can be easily shown that
S(A) = hc→ab(S′(A′)) and S(B) = hc→ab(S′(B′)), thus S is a solution of A = B.

The proof for the block compression follows in the same way. �	
The main idea of the recompression method is the way it deals with the crossing

pairs: imagine ab is a crossing pair, this is because S(X) = bw and aX occurs in
A = B or S(X) = wa and Xb occurs in it (the remaining case, in which S(X) = bwa
and X X occurs in the equation is treated in the same way). The cases are symmetric,
so we deal only with the first one. To ‘uncross’ ab in this case it is enough to ‘left-pop’
b from X : replace each X in the equation with bX and implicitly change the solution
to S(X) = w. Note that before replacing X with bX we need to check, whether
S(X) = b is a solution, as this solution cannot be represented in the new equation;
similar remark applies to replacing X with Xa.

Algorithm 3 Pop(a, b)

1: if b is the first letter of S(X) then
2: if TestSimpleSolution(b) returns 1 then � S(X) = b is a solution
3: report solution S(X) = b
4: replace each X in A = B by bX

� Implicitly change S(X) = bw to S(X) = w

5: if a is the last letter of S(X) then
6: if TestSimpleSolution(a) returns 1 then � S(X) = a is a solution
7: report solution S(X) = a
8: replace each X in A = B by Xa

� Implicitly change S(X) = w′a to S(X) = w′

Lemma 4 Pop(a, b) preserves solutions and after its application the pair ab is non-
crossing.

123

Algorithmica

Note that Lemma 4 justifies our earlier claim that without loss of generality we
can assume that none of Ai , B j is empty: at the beginning of the algorithm we can
run Pop(a, b) once for a being the first letter of S(X). This ensures the claim and
increases the size of the instance at most twice.

Proof It is easy to verify that a pair ab is crossing if and only if one of the following
situations occurs:

CP1 aX occurs in the equation and the first letter of S(X) is b;
CP2 Xb occurs in the equation and the last letter of S(X) is a;
CP3 X X occurs in the equation, the first letter of S(X) is b and the last a.

Let A′ = B′ be the obtained equation, we show that ab in A′ = B′ is noncrossing.
Consider whether X was replaced by bX is line 4. If not, then the first letter of S(X)

and S′(X) is not b, so neither (CP1) nor (CP3) hold. Suppose that X was replaced with
bX . Then to the left of each X there is a letter which is not a, so none of situations
(CP1), (CP3) occurs.

A similar analysis applied to the last letter of S(X) yields that (CP2) cannot happen
and so ab cannot be a crossing pair.

Pop can be naturally divided into two parts, which correspond to the replacement
of X by bX and the replacement of X by Xa. We show for the first one that it preserves
solutions, the proof for the second one is identical.

If S(X) does not begin with b (recall that all solutions have the same first letter,
see Lemma 1) then nothing changes and the set of solutions is preserved. Otherwise
S(X) = bw and there are two subcases:

if w = ε then it is reported in line 3;
if w �= ε then it is not reported and S′(X) = w is a solution of the obtained
equation.

Moreover, if b is reported then indeed it is a solution. On the other hand, whenever
S′(X) = w is a solution after popping b then S(X) = bw is a solution of A = B.

A symmetric analysis is done for the operation of right-popping a, which ends the
proof. �	

Now the presented procedures can be merged into one procedure that turns cross-
ing pairs into noncrossing ones and then compresses them, effectively compressing
crossing pairs.

Algorithm 4 PairComp(a, b) Turning crossing pair ab into non-crossing ones and
compressing it
1: run Pop(a, b)

2: run PairCompNCr(b, a)

Lemma 5 PairComp(a, b) implements the pair compression of the pair ab.

The proof follows by combining Lemmas 3 and 4.

123

Algorithmica

There is one issue: the number of non-crossing pairs can be large, however,
a simple preprocessing, which basically applies Pop, is enough to reduce the number
of crossing pairs to 2.

Algorithm 5 PreProc Ensures that there are at most 2 crossing pairs
1: let a, b be the first and last letter of S(X)

2: run Pop(a, b)

Lemma 6 PreProc preserves solution and after its application there are at most two
crossing pairs.

Proof It is enough to show that there are at most 2 crossing pairs, as the rest follows
from Lemma 4. Let a and b be the first and last letters of S(X), and a′, b′ such letters
after the application of PreProc. Then each X is preceded with a and succeeded with
b in A′ = B′. So the only crossing pairs are aa′ and b′b (note that this might be the
same pair or part of a letter-block, i.e. a = a′ or b = b′). �	

The problems with crossing blocks can be solved in a similar fashion: a has a cross-
ing block if and only if aa is a crossing pair. So we ‘left-pop’ a from X until the first
letter of S(X) is different than a, we do the same with the ending letter b. This can
be alternatively seen as removing the whole a-prefix (b-suffix, respectively) from X :
suppose that S(X) = a�wbr , where w does not begin with a nor end with b. Then
we replace each X by a� Xbr implicitly changing the solution to S(X) = w, see
Algorithm 6.

Algorithm 6 CutPrefSuff Cutting prefixes and suffixes; assumes that A0 is not a block
of letters
Require: A0 is not a block of letters, the non-empty of AnA , BnB is not a block of

letters
1: let a be the first letter of S(X)

2: report solution found by TestSimpleSolution(a)

� Excludes S(X) ∈ a+ from further considerations.
3: let � > 0 be the length of the a-prefix of A0

� By Lemma 1 S(X) has the same a-prefix
4: replace each X in A = B by a� X � a� is stored in a compressed form,

� implicitly change S(X) = a�w to S(X) = w

5: let b be the last letter of S(X)

6: report solution found by TestSimpleSolution(b)

� Exclude S(X) ∈ b+ from further considerations.
7: let r > 0 be the length of the b-suffix of the non-empty of AnA , BnB� By Lemma 1 S(X) has the same b-suffix
8: replace each X in A = B by Xbr � br is stored in a compressed form,

� implicitly change S(X) = wbr to S(X) = w

123

Algorithmica

Note that in order to claim that the lengths of a-prefix of S(X) and A0 are the same,
see Lemma 1, we need to assume that S(X) is a not block of letters. This is fine though,
as this condition holds when we apply Algorithm 6.

Lemma 7 Let a be the first letter of the first word and b the last of the last word. If the
first word is not a block of as and the last not a block of bs then CutPrefSuff preserves
solutions and after its application there are no crossing blocks of letters.

Proof Consider first only the changes done by the modification of the prefix. Suppose
that S(X) = a�w, where w does not begin with a. If w = ε then, as A0 /∈ a+
from the assumption, by Lemma 1 there is only one such solution and it is reported
in line 2. Otherwise, by Lemma 1, each solution S of the equation is of the form
S(X) = a�w, where a� is the a-prefix of A0 and w �= ε nor w does begin with a.
Then the S′(X) = w is the solution of the new equation. Similarly, for any solution
S′(X) = w the S(X) = a�w is the solution of the original equation.

The same analysis can be applied to the modifications of the suffix: observe that if
at the beginning the last word was not a block of bs it did not become one during the
cutting of the a-prefix.

Lastly, suppose that some letter c has a crossing block, without loss of generality
assume that c is the first letter of S(X) and cX occurs in the equation. But this is not
possible: X was replaced by a� X and so the only letter to the left of X is a and S(X)

does not begin with a, contradiction. �	

The CutPrefSuff allows defining a procedure BlockComp that compresses maxi-
mal blocks of all letters, regardless of whether they have crossing blocks or not.

Algorithm 7 BlockComp Compressing blocks of a
1: Letters← letters occurring in the equation
2: run CutPrefSuff � Removes crossing blocks of a
3: for each letter a ∈ Letters do
4: BlockCompNCr(a)

Lemma 8 Let a be the first letter of the first word and b the last of the last word.
If the first word is not a block of as and the last not a block of bs then BlockComp
implements the block compression for letters present in A = B before its application.

The proof follows by combining Lemmas 3 and 7.

3 Main Algorithm

The following algorithm OneVarWordEq is basically a specialisation of the general
algorithm for testing the satisfiability of word equations [7] and is built up from
procedures presented in the previous section.

123

Algorithmica

Algorithm 8 OneVarWordEq Reports solutions of a given one-variable word equa-
tion
1: while the first block and the last block are not blocks of a letter do
2: Pairs← pairs occurring in S(A) = S(B)

3: BlockComp � Compress blocks, in O(|A| + |B|) time.
4: PreProc � There are only two crossing pairs, see Lemma 6
5: Crossing ← list of crossing pairs from Pairs � There are two such pairs
6: Non-Crossing ← list of non-crossing pairs from Pairs
7: for each ab ∈ Non-Crossing do

� Compress non-crossing pairs, in time O(|A| + |B)|
8: PairCompNCr(a, b)

9: for ab ∈ Crossing do � Compress the 2 crossing pairs, in time O(|A| + |B)|
10: PairComp(a, b)

11: TestSolution � Test solutions from a∗, see Lemma 11

We call one iteration of the main loop of OneVarWordEq a phase.

Theorem 1 OneVarWordEq runs in time O(|A| + |B| + (nA+ nB) log(|A| + |B|))
and correctly reports all solutions of a word equation A = B.

Before showing the running time, let us first comment on how the equation is stored.
Each of the sides (A and B) is represented as two lists of pointers to strings, i.e. to
A0, A1, …, AnA and to B0, B1, …, BnB . Each of those words is stored as a doubly-
linked list. When we want to refer to a concrete word in a phase, we use names Ai

and B j , when we want to stress its evolution in phases, we use names (A, i)-word and
(B, j)-word.

Shortening of the Solutions

The most important property of OneVarWordEq is that the explicit strings between
the variables shorten (assuming that they have a large enough length). To show this
we use the following technical lemma, which is also used several times later on:

Lemma 9 Consider two consecutive letters a, b at the beginning of the phase in S(A)

for any solution S. At least one of those letters is compressed in this phase.

Proof Consider whether a = b or not:

– a = b: In this case they are compressed using BlockComp.
– a �= b: In this case ab is a pair occurring in the equation at the beginning of the

phase and so it was listed in Pairs in line 2 and as such we try to compress it, either
in line 8 or in line 10. This occurrence cannot be compressed only when one of
the letters a, b was already compressed, in some other pair or by BlockComp. In
either case we are done. �	
We say that a word Ai (Bi) is short if it consists of at most 100 letters and long

otherwise. To avoid usage of strange constants and its multiplicities, we shall use
N = 100 to denote this value and we shall usually say that N = O(1).

123

Algorithmica

Lemma 10 Consider the length of the (A, i)-word (or (B, j)-word). If it is long then
its length is reduced by 1/4 in this phase. If it is short then after the phase it still is.
The length of each unreported solution is reduced by at least 1/4 in a phase.

Additionally, if the first (last) word is short and has at least 2 letters then its length
is shortened by at least 1 in a phase.

Proof We shall first deal with the words and then comment how this argument extends
to the solutions. Consider two consecutive letters a, b in any word at the beginning of
a phase. By Lemma 9 at least one of those letters is compressed in this phase. Hence
each uncompressed letter in a word (except perhaps the last letter) can be associated
with the two letters to the right that are compressed. This means that in a word of length
k during the phase at least 2(k−1)

3 letters are compressed i.e. its length is reduced by
at least k−1

3 letters.
On the other hand, letters are introduced into words by popping them from variables.

Let symbol denote a single letter or block a� that is popped into a word. We investigate,
how many symbols are introduced in this way in one phase. At most one symbol is
popped to the left and one to the right by BlockComp in line 3, the same holds for
PreProc in line 4. Moreover, one symbol is popped to the left and one to the right in
line 10; since this line is executed twice, this yields 8 symbols in total. Note that the
symbols popped by BlockComp are replaced by single letters, so the claim in fact
holds for letters as well.

So, consider any word Ai ∈ Γ ∗ (the proof for B j is the same), at the beginning of
the phase and let A′i be the corresponding word at the end of the phase. There were at
most 8 symbols introduced into A′i (some of them might be compressed later). On the

other hand, by Lemma 9, at least |Ai |−1
3 letters were removed Ai due to compression.

Hence

|A′i | ≤ |Ai | − |Ai | − 1

3
+ 8 ≤ 2|Ai |

3
+ 8

1

3
.

It is easy to check that when Ai is short, i.e. |Ai | ≤ N = 100, then A′i is short as well
and when Ai is long, i.e. |Ai | > N then |A′i | ≤ 3

4 |Ai |.
It is left to show that the first word shortens by at least one letter in each phase.

Consider that if a letter a is left-popped from X then we created B0 and in order to
preserve (1) the first letters of B0 and A0 are removed. Thus, A0 gained one letter
on the right and lost one on the left, so its length stayed the same. Furthermore the
right-popping does not affect the first word at all (as X is not to its left); the same
analysis applies to cutting the prefixes and suffixes. Hence the length of the first word
is never increased by popping letters. Moreover, if at least one compression (be it
block compression or pair compression) is performed inside the first word, its length
drops. So consider the first word at the end of the phase let it be A0. Note that there
is no letter representing a compressed pair or block in A0: consider for the sake of
contradiction the first such letter that occurred in the first word. It could not occur
through a compression inside the first word (as we assumed that it did not happen),
cutting prefixes does not introduce compressed letters, nor does popping letters. So in
A0 there are no compressed letters. But if |A0| > 1 then this contradicts Lemma 9.

123

Algorithmica

Now, consider a solution S(X). We know that S(X) is either a prefix of A0 or of
the form A�

0 A, where A is a prefix of A0, see Lemma 2. In the former case, S(X) is
compressed as a substring of A0. In the latter observe that argument follows in the
same way, as long as we try to compress every pair of letters in S(X). So consider
such a pair ab. If it is inside A0 then we are done. Otherwise, a is the last letter of A0
and b the first. Then this pair occurs also on the crossing between A0 and X in A, i.e.
ab is one of the crossing pairs. In particular, we try to compress it. So, the claim of
the lemma holds for S(X) as well. �	

The correctness of the algorithm follows from Lemmata 8 (for BlockComp),
Lemma 6 (for PreProc), Lemma 3 (for PairCompNCr), Lemma 5 (for PairComp)
and from the lemma below, which deals with TestSolution.

Lemma 11 For a ∈ Γ we can report all solutions in which S(X) = a� for some
natural � in O(|A| + |B|) time. There is either exactly one � for which S(X) = a� is
a solution or S(X) = a� is a solution for each � or there is no solution of this form.

Note that we do not assume that the first or last word is a block of as.

Proof The algorithm and proof is similar as in Lemma 1. Consider a substitution
S(X) = a�. We calculate the length of the a-prefix of S(A) and S(B). Consider first
letter other than a in A, let it be in the AkA and suppose that there were �A letters a
before it (if there is non such letter, imagine we attach an ‘ending marker’ to both A
and B, which then becomes such a letter). Then the length of the a-prefix of S(A)

is kA · � + �A. Let additionally A′ be obtained from A by removing those letters a
and variables in between them. Similarly, define kB, �B and B′. Then the length of the
a-prefix of S(B) is kB · �+ �B .

The substitution S(X) = a� is a solution if and only if kA · �+ �A = kB · �+ �B

and S(A′) = S(B′). Consider the number of natural solutions of the equation

kA · x + �A = kB · x + �B :

– no natural solution: Clearly there is no solution of the word equation A = B.
– one solution x = �: Then S(X) = a� is the only possible solution from a+ of

A = B. To verify whether S satisfies A′ = B′ we apply the same strategy as in
TestSimpleSolution(a): we evaluate both sides of A′ = B′ under the substitution
S(X) = a� on the fly. The same argument as in Lemma 1 shows that the running
time is linear in |A′| + |B′|.

– satisfied by all natural numbers: Then the a-prefixes of A and B are of the same
length for each S(X) ∈ a∗. We thus repeat the procedure for A′ = B′, shortening
them so that they obey the form (1), if needed. Clearly, solutions in a∗ of A′ = B′
are exactly the solutions of A = B in a∗.

The stopping condition for the recurrence above is obvious: if A′ and B′ are both
empty then we are done (each S(X) = a� is a solution of this equation), if exactly one
of them is empty and the other is not then there is no solution at all.

Lastly, observe that the cost of the subprocedure above is proportional to the amount
of read letters, which are then not read again, so the running time is O(|A| + |B|). �	

123

Algorithmica

Running Time

Concerning the running time, we first show that one phase runs in linear time, which
follows by standard approach, and then that in total the running time is O(n+#X log n).
To this end we assign in a fixed phase to each (A, i)-word and (B, j)-word cost
proportional to their lengths in this phase. For a fixed (A, i)-word the sum of costs
assigned while it was long forms a geometric sequence, so sums up to at most constant
more than the initial length of (A, i)-word; on the other hand the cost assigned when
(A, i)-word is short is O(1) per phase and there are O(log n) phases.

Lemma 12 One phase of OneVarWordEq can be performed in O(|A| + |B|) time.

Proof For grouping of pairs and blocks we use RadixSort, to this end it is needed
that the alphabet of (used) letters can be identified with consecutive numbers, i.e. with
an interval of at most |A| + |B| integers. In the first phase of OneVarWordEq this
follows from the assumption on the input.1 At the end of this proof we describe how
to bring back this property at the end of the phase.

To perform BlockComp we want for each letter a occurring in the equation to have
lists of all maximal a-blocks occurring in A = B (note that after CutPrefSuff there
are no crossing blocks, see Lemma 7). This is done by reading A = B and listing
triples (a, k, p), where k is the length of a maximal block of as and p is a pointer to
the beginning of this occurrence. Notice, that the maximal block of a’s may consist
also of prefixes/suffixes that were cut from X by CutPrefSuff. However, by Lemma 1
such a prefix is of length at most |A0| ≤ |A| + |B| (and similar analysis applies for
the suffix). Then each maximal block includes at most one such prefix and one such
suffix thus the length of the a maximal block is at most 3(|A|+|B|). Hence, the triples
(a, k, p) can be sorted by their first two coordinates using RadixSort in total time
O(|A| + |B|).

After the sorting, we go through the list of maximal blocks. For a fixed letter a, we
use the pointers to localise a’s blocks in the rules and we replace each of its maximal
block of length � > 1 by a fresh letter. Since the blocks of a are sorted, all blocks of
the same length are consecutive on the list, and replacing them by the same letter is
easily done.

To compress all non-crossing pairs, i.e. to perform the loop in line 8, we do a similar
thing as for blocks: we read both A and B, whenever we read a pair ab where a �= b
and both a and b are not letters that replaced blocks during the blocks compression, we
add a triple (a, b, p) to the temporary list, where p is a pointer to this position. Then
we sort all these pairs according to lexicographic order on first two coordinates, we
use RadixSort for that. Since in each phase we number the letters occurring in A = B
using consecutive numbers, this can be done in time O(|A| + |B|). The occurrences
of the crossing pairs can be removed from the list: by Lemma 6 there are at most two
crossing pairs and they can be easily established (by looking at A0 X A1). So we read
the sorted list of pairs occurrences and we remove from it the ones that correspond

1 In fact, this assumption can be weakened a little: it is enough to assume that Γ ⊆ {1, 2, . . . , poly(|A| +
|B|)}: in such case we can use RadixSort to sort Γ in time O(|A| + |B|) and then replace Γ with set of
consecutive natural numbers.

123

Algorithmica

to a crossing pair. Lastly, we go through this list and replaces pairs, as in the case of
blocks. Note that when we try to replace ab it might be that this pair is no longer there
as one of its letters was already replaced, in such a case we do nothing. This situation
is easy to identify: before replacing the pair we check whether it is indeed ab that we
expect there, as we know a and b, this is done in constant time.

We can compress each of the crossing pairs naively in O(|A|+ |B|) time by simply
first applying the popping and then reading the equation form the left to the right and
replacing occurrences of this fixed pair.

It is left to describe, how to enumerate (with consecutive numbers) letters in Γ at the
end of each phase. Firstly notice that we can easily enumerate all letters introduced in
this phase and identify them (at the end of this phase) with {1, . . . , m}, where m is the
number of introduced letters (note that none of them were removed during the OneVar-
WordEq). Next by the assumption the letters in Γ (from the beginning of this phase)
are already identified with a subset of {1, . . . , |A|+|B|}, we want to renumber them, so
that the subset of letters from Γ that are present at the end of the phase is identified with
{m+1, . . . , m+m′} for an appropriate m′. To this end we read the equation, whenever
we spot a letter a that was present at the beginning of the phase we add a pair (a, p)

where p is a pointer to this occurrence. We sort the list in time O(|A| + |B|). From
this list we can obtain a list of present letters together with list of pointers to their
occurrences in the equation. Using those pointers the renumbering is easy to perform
in O(|A| + |B|) time.

So the total running time is O(|A| + |B|). �	
The amortisation, especially in the next section, is much easier to be shown when we

know that both the first and last words are long. This assumption is not restrictive, as as
soon as one of them becomes short, the remaining running time of OneVarWordEq
is linear.

Lemma 13 As soon as first or last word becomes short, the rest of the running time
of OneVarWordEq is O(n).

Proof One phase takes O(|A| + |B|) time by Lemma 12 (this is at most O(n) by
Lemma 10) and as Lemma 10 guarantees that both the first word and the last word
are shortened by at least one letter in a phase, there will be at most N = O(1) many
phases. Lastly, Lemma 11 shows that TestSolution also runs in O(n). �	

So it remains to estimate the running time until one of the last or first word becomes
short.

Lemma 14 The running time of OneVarWordEq till one of first or last word becomes
short is O(n + (nA + nB) log n).

Proof By Lemma 12 the time of one iteration of OneVarWordEq is O(|A|+|B|). We
distribute the cost among the A words and B words: we charge β|Ai | to (A, i)-word
and β|B j | to (B, j)-word, for appropriate positive β. Fix (A, i)-word, we separately
estimate how much was charged to it when it was a long and short word.

– long: Let ni be the initial length of (A, i)-word. Then by Lemma 10 the length in
the (k + 1)th phase it at most (3

4)kni and so these costs are at most βni + 3
4βni +

(3
4)2βni + . . . ≤ 4βni .

123

Algorithmica

– short: Since (A, i)-wordis short, its length is at most N , so we charge at most Nβ

to it. Notice, that there are O(log n) iterations of the loop in total, as first word is
of length at most n and it shortens by 3

4 in each iteration when it is long and we
calculate only the cost when it is long. Hence we charge in this way O(log n) times,
so in total O(log n).

Summing those costs over all phases and over all words and phases yields
O(n + (nA + nB) log n). �	

4 Heuristics and Better Analysis

The intuition gained from the analysis in the previous section, especially in Lemma 14
is that the main obstacle in obtaining the linear running time is the necessity of deal-
ing with short words, as the time spend on processing them is difficult to charge.
This applies to both the compression performed within the short words, which
does not guarantee any reduction in length, see Lemma 10, and to testing of the
candidate solutions, which cannot be charged to the length decrease of the whole
equation.

Observe that by Lemma 13 as soon as the first or last word becomes short,
the remaining running time is linear. Hence, in our improvements of the running
time we can restrict ourselves to the case, in which the first and last word are
long.

The improvement to linear running time is done by four improvements in algorithm
analysis and employed data structures, which are described in details in the following
subsections:

– several equations: Instead of a single equation, we store a system of several equa-
tions and look for a solution of such a system. This allows removal of some
words from the equations that always correspond to each other and thus decreases
the overall storing space and testing time. This is described in Sects. 4.2 and
4.4.

– small solutions: We identify a class of particularly simple solutions, called small,
and show that a solution is reported within O(1) phases from the moment when
it became small. In several problematic cases of the analysis we are able to show
that the solutions involved are small and so it is easier to charge the time spent on
testing them. Section 4.3 is devoted to this issue.

– storage: The storage is changed so that all words are represented by a structure
of size proportional to the size of the long words. In this way the storage space
decreases by a constant factor in each phase and so the running time (except for
testing) is linear. This is explained in Sect. 4.4.

– testing: The testing procedure is modified, so that the time it spends on the short
words is reduced. In particular, we improve the rough estimate that one TestSim-
pleSolution takes time proportional to the equation to an estimation that actually
counts for each word whether it was included in the test or not. Section 4.5 is
devoted to this.

123

Algorithmica

4.1 Suffix Arrays and lcp Arrays

We use a standard data structure for comparisons on strings: a suffix array
S A[1 .. m] for a string w[1 .. m] stores the m non-trivial suffixes of w, i.e.
w[m], w[m − 1 .. m], . . . , w[1 .. m] in (increasing) lexicographical order. In other
words, S A[k] = p if and only if w[p . . . m] is the kth suffix according to the
lexicographical order. It is known that such an array can be constructed in O(m)

time [11] assuming that RadixSort is applicable to letters, i.e. that they are integers
from {1, 2, . . . , mc} for some constant c. We assume explicitly that this is the case in
our problem.

Using a suffix array the equality testing for substrings of w reduces to the longest
common prefix (lcp) query: observe that w[i .. i + k] = w[j .. j + k] if and only if the
common prefix of w[i .. m] and w[j .. m] is at least k. The first step in constructing
a data structure for answering such queries is the LCP array: for each i = 1, . . . , m−1
the LC P[i] stores the length of the longest common prefix of S A[i] and S A[i + 1].
Given a suffix array, the LCP array can be constructed in linear time [12], however,
the linear-time construction of suffix arrays can be in fact extended to return also the
LCP array [11].

When the LCP array is supplied, the general longest prefix queries reduce to the
range minimum queries: the longest common prefix of S A[i] and S A[j] (for i < j)
is the minimum among LC P[i], . . . , LC P[j − 1], and so it is enough to have a data
structure that answers the queries about the minimum in the range in constant time.
Such data structures in general case are known and in case of LCP arrays even simpler
constructions were given [1]. The construction time is linear and query time is O(1) [1].
Hence, after a linear preprocessing, we can calculate the length of the longest common
prefix of two substrings of a given string in O(1) time.

4.2 Several Equations

The improved analysis assumes that we do not store a single equation, instead, we
store several equations and look for substitutions that simultaneously satisfy all of
them. Hence we have a collection Ai = Bi of equations, for i = 1, . . . , m, each of
them is of the form described by (1); by A = B we denote the whole system of the
equations. In particular, each of those equations specifies the first and last letter of the
solution, length of the a-prefix and suffix etc., exactly in the same way as it does for a
single equation. If there is a conflict, as two equations give different answers regarding
the first/last letter or the length of the a-prefix or b-suffix, then there is no solution
at all. Still, we do not check the consistency of all those answers, instead, we use an
arbitrary equation, say A1 = B1, to establish the first, last letter, etc., and as soon as
we find out that there is a conflict, we stop the computation and terminate immediately.

The system of equations stored by OneVarWordEq is obtained by replacing one
equation A′iA′′i = B′iB′′i (where A′i ,A′′i ,B′i ,B′′i ∈ (Γ ∪ {X})∗) with equivalent two
equations A′i = B′i and A′′i = B′′i (note that in general the latter two equation are not
equivalent to the former one, however, we perform the replacement only when they
are; moreover, we need to trim them so that they satisfy the form (1).

123

Algorithmica

The described way of splitting the equations implies a natural order on the equations
in the system: when A′iA′′i = B′iB′′i is split to A′i = B′i and A′′i = B′′i then A′i = B′i is
beforeA′′i = B′′i (moreover, they are both before/after each equation before/after which
A′iA′′i = B′iB′′i was). This order is followed whenever we perform any operations on
all words of the equations. We store a list of all equations, in this order.

We store each of the equations in the same way as described for a single equation
in the previous phase, i.e. for an equation Ai = Bi we store a list of pointers to words
on one side and list of pointers to words on the other side. Additionally, the first word
of Ai has a link to the last word of Ai−1 and the last word of Ai similarly, the last
word of Ai has a link to the first word of Ai and the first word of Ai+1. We also say
that Ai (B j) is first or last if it is in any of the stored equations.

All operations on a single equation introduced in the previous sections (popping
letters, cutting prefixes and suffixes, pair compression, blocks compression) generalise
to a system of equations. The running times are addressed in detail later on. Concerning
the properties, they are the same, we list those for which the generalisation or the proof
are non-obvious: PreProc should ensure that there are only two crossing pairs. This
is the case, as each X in every equation is replaced by the same aXb and S(X) is the
same for all equations, which is the main fact used in the proof of Lemma 6. Lemma 10
ensured that in each phase the length of the first and last word is decreased. Currently
the first words in each equation may be different, however, the analysis in Lemma 10
applies to each of them.

4.3 Small Solutions

We say that a word w is almost periodic with period size p and side size s if it can be
represented as w = w1w

�
2w3 (where � is an arbitrary number), where |w2| ≤ p and

|w1w3| ≤ s; we often call w2 the periodic part of this factorisation. (Note that several
such representation may exist, we use this notion for a particular representation that
is clear from the context). A substitution S is small, if S(X) = (w)kv, where w, v are
almost periodic with period and side sizes N .

The following theorem shows the main result of this section: if a solution is small,
then it is reported by OneVarWordEq within O(1) phases.

Theorem 2 If S(X) is a small solution then OneVarWordEq reports it within O(1)

phases.

We would like to note that the rest of the paper is independent from the proof of
Theorem 2, so it might be skipped in reading.

Intuition is as follows: observe first that in each phase we make Pop and test whether
S(X) = a, where a is a single letter, is a solution. Thus it is enough to show that a
small solution is reduced to one letter within O(1) phases. To see this, consider first an
almost periodic word, represented as w1w

�
2w3. Ideally, all compressions performed in

one phase of OneVarWordEq are done separately on w1, w3 and each w2. In this way
we obtain a string w′1w′�2 w′3 and from Lemma 9 it follows that w′i is shorter than wi

by a constant fraction. After O(log |w2|) steps we obtain a word w′′1w′′�2 w′′3 in which
w′′2 is a single letter, and so in this phase w′′�2 is replaced with a single letter. Then,

123

Algorithmica

since the length of w′′′1 w′′′3 is at most N , after O(1) phases this is also reduced to a
single letter. Concerning the small solution, wkv we first make such an analysis for
w, when it is reduced to a single letter (after O(1) phases) after one additional phase
wk = ak is also reduced to one letter (by BlockComp) and so the obtained string akv

′
is a concatenation of two almost periodic strings. Using the same analysis as above
for each of them we obtain that it takes O(1) time to reduce them all to single letters.
Thus we have a 2-letter string, which is reduced to a single letter within 2 phases.

In reality we need to take into the account that some compressions are made on
the crossings of the considered strings, however, we can alter the factorisation (into
almost periodic words and almost periodic words into periodic part and rest) of the
string so that the result is almost as in the idealised case.

We say that for a substring w of S(X) during one phase of OneVarWordEq the
letters in w are compressed independently, if every compressed pair or block were
either wholly within this w or wholly outside this w (in some sense this corresponds
to the non-crossing compression).

The following lemma shows that given an almost periodic substring of S(X) with
period size p and side size s we can find an alternative representation in which the
period size is the same, side size increases (a bit) but each w in wk in this new repre-
sentation is compressed independently. This shows that the intuition about shortening
of almost periodic strings is almost precise—we can think that periodic part in almost
periodic strings are compressed independently, but we need to pay for that by an
increase in the side size.

Lemma 15 Consider almost periodic substring of S(X) with period size p and side
size s represented as w1w

�
2w3, where w2 is not a block of single letter. Then there is

a representation of this string as w′1w′�
′

2 w′3 such that

– �− 2 ≤ �′ ≤ �

– |w′2| = |w2| (and consequently |w′1| + |w′3| ≤ |w1| + |w3| + 2|w2|)
– the form of w′2 depends solely on w2 and does not depend on w1, w3 (it does depend

on the equation and on the order of blocks and pairs compressed by OneVar-
WordEq)

– the compression in one phase of OneVarWordEq compresses each w′ from w′�′

independently.

In particular, this other representation has period size p and side size s + 2p.

Proof First of all, if � ≤ 2 then we take w′2 = ε, k′ = 0 and concatenate wk
2 to w1

to obtain w′1 (and take w3 = w′3). So in the following we consider the case in which
� > 2 and set �′ = �− 2.

Let w2 = am zbr , where a, b ∈ Γ, m, r ≥ 1 and z ∈ Γ ∗ does not start with a
nor it ends with b, such a representation is possible, as w2 is not a block of letters.
Note that if a = b then z �= ε, as otherwise w2 is a block of letters. Then w1w

�
2w3 =

w1(am zbr)�w3. Since w1 can end with a and w2 can begin with b, we are interested in
compressions within the middle zbr (am zbr)�−2am z. We first show that indeed there
is a compression of a substring that is fully within the zbr (am zbr)�−2am z:

123

Algorithmica

u a vbz bza bza bza bza

z′ cdu′

v′

z′cd z′cd z′cdcd

w′
2

Fig. 1 The alternative factorisation. The first compressed letters are in grey. For simplicity m = r = 1.
Each z′ between the cds is compressed independently

– If a = b then z �= ε and br am = ar+m is a block of letters (of length at least 2) that
is surrounded by z (which does not begin, nor end with a) from both ends, so it is
compressed.

– If a �= b and m > 1 or r > 1 then we compress the block am or br .
– If a �= b, m = r = 1 and z = ε then this substring is b(ab)�−2a. As � > 2 the pair

ab is listed by OneVarWordEq and we try to compress it. If we fail then it means
that one of the letters was already compressed with a letter inside the considered
string.

– If a �= b, m = r = 1 and z �= ε then ba is listed among the pairs and we try to
compress the occurrence right after the first z. If we fail then it means that one of
the letters was compressed with its neighbouring letter, which is also in the string.

Consider the first substring that is compressed and it is wholly within zbr (am zbr)�−2

am z. There are two cases: the compressed substring is a block of letters or it is a pair.
We give a detailed analysis in the latter case, the analysis in the former case is similar.

So, let the first pair compressed wholly within this fragment zbr (am zbr)�−2am z be
cd, see Fig. 1 for an illustration. We claim that all pairs cd that occurred within this
fragment at the beginning of the phase are compressed at this moment. Assume for
the sake of contradiction that this is not the case. So this means that one of the letters,
say c, was already compressed in some other compression performed earlier. By the
choice of the compressed pair (i.e. cd), this c is compressed with a letter from outside
of the fragment zb(am zbr)�−2az, there are two possibilities:

– c is the last letter of zbr (am zbr)�−2am z: Observe that the letter succeeding c is
either b or a letter representing a compressed pair/string. In the latter case we do not
make a further compression, so it has to be b. This is a contradiction: each c that is
a last letter of z was initially followed by b, and so in fact some compression of cb
(note that by our choice the last letter of z was not b, and so b �= c) was performed
wholly within zbr (am zbr)�−2am z and it was done earlier than the compression of
cd, contradiction with the choice of cd.

– c is the first letter of zbr (am zbr)�−2am z: The argument is symmetric, with a pre-
ceding c in this case.

There are at least �− 1 occurrences of cd that are separated by |w2| − 2 letters, i.e.
the (cdz′)�−2cd is a substring of zbr (am zbr)�−2am z, for some z′ of length |w2| − 2,
see Fig. 1. We take w′2 = cdz′ and let w′1 be the w1 concatenated with string preceding
the (cdz′)�−2cd and w′3 the w3 concatenated with the string following this (cdz′)�−2

(note that the latter includes the ending cd, see Fig. 1). Clearly |w′2| = |w2| and
consequently |w′1| + |w′3| = |w1| + |w3| + 2|w2|. Note that each w′2 begins with cd,

123

Algorithmica

which is the first substring even partially within w′2 that is compressed, furthermore,
each of those w′2 is also followed by cd. So the compression inside each w′2 is done
independently (because by the choice of cd there was no prior compression applied
in w′2).

Concerning the analysis when the first compressed substring is some cm it can be
routinely verified that there are no essential differences in the analysis. �	

The consequence of Lemma 15 is that when an almost periodic string is a substring
of S, then we can give bounds on the period size and side size on the corresponding
word after one phase of OneVarWordEq.

Lemma 16 Consider an almost periodic substring w of S(X) with period size p and
side size s at the beginning of the phase. Then the corresponding substring after the
phase of OneVarWordEq has a factorisation with period size at most 3

4 p and side
size at most 2

3 s + 7
3 p.

There are two remarks: firstly, if period size of the original word was 1 then the
given bound is 3

4 < 1, which holds, i.e. the corresponding word has no periodic part
in the factorisation. Secondly, the first (last) letter of the substring may be compressed
with the letter to the left (right, respectively), so outside of the considered substring.
In such a case we still include the letter representing the replaced pair or block in the
corresponding substring.

Proof Let us fix the factorisation w1w
�
2w3 of w, where p = |w2| is the period size

and s = |w1w3| is the side size. First of all, consider the special case, in which w2
is a block of letters, say a (note that this simple borderline case is not covered by
Lemma 15). Then without loss of generality we may assume that w2 is a single letter:
otherwise we replace w�

2 with a�·|w2|, which decreases the period size. Also without
loss of generality we also may assume that w1 does not end and w3 does not begin
with a, as otherwise we can move those letters to w�

2, decreasing the side size and
not increasing the period size. Then during the block compression the w�

2 = a� is
going to be replaced by a single letter (this block may also include some letters from
outside of w, when w1 or w3 is empty, this does not affect the analysis). Now consider
w1 and its letters that are not compressed with at least one other letter inside w1, i.e.
uncompressed or compressed with letters outside w1. For the latter, only the first letter
of w1 can be compressed with a letter outside w1, as the last letter of w1 is succeeded
by w2 that is a block of a and w1 does not end with a. Concerning uncompressed
letters, by Lemma 9, they are always followed by two (or more) compressed letters,
those two letters are also inside w1, except perhaps the case when this uncompressed
letter is the last letter of w1 (by a similar observation as before, the second-last letter
of w1 cannot be uncompressed, as then the last letter would have to be compressed
with w2). So the number of letters that are not compressed inside w1 is at most 1 (the
first letter) +1 (the last letter) +|w1|−2

3 (other uncompressed letters). So the number

of letters compressed inside w1 is at least |w1| − 2 − |w1|−2
3 = 2|w1|−4

3 . During the

compression at least half of them, i.e. |w1|−2
3 , is removed, so in the end the obtained

word has length at most |w′1| ≤ 2|w1|+2
3 . Similarly for w′3 its length is at most 2|w3|+2

3 .

123

Algorithmica

Adding 1 for the letter replacing w�
2 we obtain |w′1w′2w′3| ≤ 2|w1w3|+7

3 = 2s
3 + 7p

3 , as
claimed.

In other cases, by Lemma 15 we can refactor w into u1u�′
2 u3 such that |u1u3| ≤

|w1w3| + 2|w2| and |u2| = |w2| and each u2 is compressed independently (note
that |u2| ≥ 2). Then after one phase of OneVarWordEq the corresponding word
w′ can be represented as u′1u′�′2 u′3. Let us inspect its compression rate. The argument
for u1 and u3 is the same as for w1 and w3 in the previous case (note that u2 is
compressed independently, i.e. the same as w2 in the previous case), so |u′1| ≤ 2|u1|+2

3

and |u′3| ≤ 2|u3|+2
3 . As |u1u3| ≤ |w1w3| + 2|w2|, the new side size is at most 2

3 s +
4
3 p + 4

3 ≤ 2
3 s + 2p, as p ≥ 2. For the period size, consider u2 and recall that it is

compressed independently. By Lemma 9, each uncompressed letter (perhaps except the
last one) is followed by two compressed ones, so there are at most 1+ |u2|−2

3 = |u2|+1
3

uncompressed letters, so at least 2|u2|+2
3 compressed ones. During the compression at

least half of them is removed, and so |u′2| ≤ |u2| − |u2|−1
3 = 2|u2|+1

3 . For |u2| ≥ 4
this yields the desired compression rate 3

4 , for |u2| = 2 and |u2| = 3 observe that by
Lemma 9 at least one letter inside u2 is compressed and we know that the compressions
inside u2 are done independently, so |u′2| ≤ |u2| − 1, which yields the desired bound
for those two border cases. �	

Imagine now we want to make a similar refactoring also for the small word (in
order to draw conclusions about shortening of S(X), which is small). So take wkv

where both w and v are almost periodic words (with some period sizes and side sizes)
and k is some number. When we look at wk , each single w can be refactored so that
its periodic part is compressed independently. Note that this is the same word, i.e. we
are still given wkv, though we have in mind a different factorisation of w. However,
the compression of the w is influenced by the neighbouring letters, so while each of
the middle w in wk−2 is compressed in the same way, both the first and the last w

can be compressed differently. Hence, after the compression we obtain something of
the form w1w

′k−2w2v
′, where w1, w

′, w2, v
′ are almost periodic. In the next phase

the process continues and we accumulate almost periodic words on both sides of w′k′ .
So in general we deal with a word of the form uwkv, where w is almost periodic
and u, v are concatenations of almost periodic words. The good news is that we can
bound the sum of side sizes and period sizes of almost periodic words occurring in
u, v. Moreover, the period size of w drops by a constant factor in each phase, so after
O(1) phases it is reduced to 0, i.e. wk is almost periodic.

As a first technical step we show that Lemma 15 can be used to analyse what happens
with a concatenation of almost periodic words in one phase of OneVarWordEq: as in
the case of a single word, see Lemma 16, the sum of period sizes drops by a constant
factor, while the sum of side sizes drops by a constant factor but it increases by
a magnitude of sum of period sizes.

Lemma 17 Let u, a substring of S(X)at the beginning of the phase, be a concatenation
of almost periodic words with a factorisation for which the sum of period sizes is p
and side sizes is s. Then after one phase of OneVarWordEq the corresponding string
u′ is a concatenation of almost periodic words with a factorisation for which the sum
of period sizes is at most 3

4 p and sum of side sizes is at most 2
3 s + 7

3 p.

123

Algorithmica

Note that as in the case of Lemma 16 when sum of the period sizes is 1, then after
one phase we are guaranteed that all almost periodic words in the factorisation have
empty periodic parts. Moreover, as in the case of Lemma 16, the first and last letter
of u may be compressed with the letters outside u, in which case we include in the
corresponding word the letters that are obtained in this way.

Proof Let the promised factorisation of u into almost periodic words be u1 ·u2 · · · um .
We apply Lemma 16 to each of them. By a simple summation of the guarantees from
Lemma 16 the bound on the period sizes is 3

4 p while the bound on the sum of the side
sizes is 2

3 s + 7
3 p. �	

The following lemma is the crowning stone of our considerations. It gives bounds
on the period sizes and side sizes for the word that can be represented as uwkv, where
w is almost periodic and u, v are concatenations of almost periodic words.

Lemma 18 Suppose that at the beginning of the phase of OneVarWordEq a substring
of S(Ai) can be represented as uwkv, where w is almost periodic with period size
pw > 0 and side size sw while u, v are concatenations of almost periodic words, let the
sum of their period sizes be puv and side sizes suv . Then the corresponding substring at
the end of the phase can be represented as u′(w′)k′v′, where w′ is almost periodic with
period size pw′ ≤ 3

4 pw and side size sw′ ≤ 2
3 sw+ 11

3 pw and u′, v′ are concatenations
of almost periodic words, the sum of their period sizes is pu′v′ ≤ 3

4 (puv + 2pw) and
the sum of their side sizes su′v′ at most 2

3 (suv + sw)+ 7
3 (puv + 2pw).

Proof Consider the factorisation of w as an almost periodic word. Consider first the
main case, in which the periodic part of w is not a block of single letter. Then we
can apply Lemma 15 to each w, obtaining a factorisation w = w1w

�
2w3 such that

|w2| ≤ pw and |w1w3| ≤ sw + 2pw. Then uwkv can be represented as

u
(
w1w

�
2w3

)k
v = uw1

(
w�

2w3w1

)k−1
w�

2w3v.

Define u′ = uw1 and v′ = (w�
2)w3v, they are concatenations of almost periodic

words, the sum of their period sizes is puv + |w2| ≤ puv + pv while side sizes
suv + |w1| + |w3| ≤ suv + sw + 2pw. Define also w′ = w�

2w3w1, observe that each
such w′ is delimited by w2 (it includes it in the left end and to the right there is a copy
of it which is not inside this w′) and each w2 is compressed independently, so also
each w′ is compressed independently, so in particular it is compressed in the same
way. Thus u′w′k−1v′ is compressed into u′′w′′k−1v′′, let us estimate their sizes.

For u′ and v′ can can straightforwardly apply Lemma 17, obtaining that the sum
of period sizes is at most 3

4 (puv + pw) while their side sizes 2
3 (suv + sw + 2pw) +

7
3 (puv + pw) = 2

3 (suv + sw)+ 7
3 puv + 11

3 pw. Concerning w′: we apply Lemma 16,
which shows that the new period size is at most 3

4 pw and new side size 2
3 (sw+2pw)+

7
3 pw = 2

3 sw + 11
3 pw, so all as claimed.

Let us return to the trivial case, in which w = w1w
�
2w3 and w2 is a block of a single

letter. Note that without a loss of generality, we can assume that w2 is a single letter

123

Algorithmica

(we can replace w�
2 with a|w2|�) and that w1 does not end and w3 does not begin with

a (we can move those letters to w2, decreasing side size and not increasing the period
size). Then uwkv = u(w1a�w3)

kv. If w1w3 = ε this is equal to uak�v, we treat ak�

as a almost periodic word with period size 1 and side size 0, so uak�v have a sum of
period sizes puv + 1 = puv + pw and sum of side sizes suv . Applying Lemma 17
yields the claim: the sum of period sizes is at most 3

4 (puv + pw) while the new side
sizes 2

3 suv+ 7
3 (puv+ pw). Similarly, when k = 1 we can treat uwv as a concatenation

of almost periodic words, the sum of their period sizes is at most puv + pw and side
sizes suv + sw; again, applying Lemma 17 yields the claim: the sum of period sizes is
at most 3

4 (puv + pw) while the new side sizes 2
3 (suv + sw)+ 7

3 (puv + pw).
So let us go back to the main case, in which w1w3 �= ε and k ≥ 2. Then uwkv =

u(w1a�w3)
kv = uw1a�w3w1(a�w3w1)

k−2a�w3v. As w3w1 is non-empty and does
not end, nor begin with a, each a� in (a�w3w1)

k−2 is compressed independently. We
set u′ = uw1a�w3w1, v

′ = a�w3v and w′ = a�w3w1. Applying Lemma 17 to u′ and
w′ yields that after one phase the sum of period sizes is 3

4 (puv + 2pw) while side size
2
3 (suv + 2sw)+ 7

3 (puv + 2pw). On the other hand, the period size of w′′ is 3
4 pw while

its side size at most 2
3 sw + 7

3 pw �	
With Lemma 18 established, we can prove Theorem 2.

Proof of Theorem 2 Consider the string S(X), which is small. We show that within
O(log N) = O(1) phases this string is reduced to a single letter. This means that
S(X) is reported in the same time. Note that in the following phases the corresponding
solution (if unreported) is not the corresponding string, as we also pop letters from X .
However, the corresponding solution is the substring of this string, in particular, after
those phases it is at most a letter.

So fix a small solution and its occurrence within S(A). It can be represented as
wkv, where w and v are almost periodic with period and side size N . We claim that in
each following phase the corresponding string can be represented as u′w′k′v′, where
u′ and v′ are concatenations of almost periodic words, the sum of their period sizes is
at most 6N while side sizes 78N . Also, w′ is almost periodic with side size at most
11N and period size dropping by 3

4 in each phase (and at most N at the beginning).
This claim can be easily verified by induction on the estimations given by Lemma 18:
this clearly holds at the beginning (take w′ = w, v′ = v, u′ = ε and k′ = k), which
shows the induction basis. Concerning the induction step, consider the word after a
phase. For the new period size of w′, it drops by a factor 3

4 by Lemma 18, so in
particular it is at most N , its side size is at most 2

3 ·11N + 11
3 ·1N = 11N , as claimed.

For the new side size and period size of u′, v′, by the same Lemma they are at most
2
3 · (78N + 11N)+ 7

3 (6N + 2N) = 59 1
3 N + 18 2

3 N = 78N and 3
4 (6N + 2N) = 6N ,

as claimed; this shows induction step and thus the whole claim.
As the period size of w′ drops by 3

4 in each phase and initially it is N , after O(log N)

phases w′ has period size 0. Then inside u′w′k′v′ we treat w′k′ as a periodic word with
period size |w′| ≤ 11N and side size 0. Thus u′w′k′v′ is a concatenation of almost
periodic words with sum of period sizes at most 11N + 6N = 17N and sum of side
size at most 78N . Then, by easy induction on bounds given by Lemma 17, in the
following phases the corresponding string will be a concatenation of almost periodic

123

Algorithmica

strings, with sum of period sizes decreasing by 3
4 in each phase (and initial value

17N) and sum of side sizes at most 119N : the induction basis trivialy holds. For the
induction step consider the word after one phase, as it was a concatenation of almost
periodic words, by Lemma 17 the sum of period sizes drops by a factor of 3/4 and
the sum of side sizes is at most 2

3 · 119N + 7
3 · 17N = 79 1

3 N + 39 2
3 N = 119N ; this

shows the inductive step and so the whole claim.
Since the corresponding word initially has sum of period sizes at most N and this

sum drops by a factor 3/4 in each phase, after O(log N) phases this sum of is reduced
to 0. Thus the whole string is of length equal to the sum of side sizes, i.e. at most
119N , which will be reduced to a single letter within O(log N) rounds, as claimed.
Since N = O(1), we obtain the claim of the lemma. �	

4.4 Storing of an Equation

To reduce the running time we store duplicates of short word only once. Recall that
for each equation we store lists of pointers pointing to strings that are the explicit
words in this equation. We store the long words in a natural way, i.e. each long word
is represented by a separate string. The short words are stored more efficiently: if two
short words in equations are equal we store only one string, to which both pointers
point. In this way all identical short words are stored only once (though each of them
has a separate pointer pointing to it); we call such a representation succinct.

We show that the compression can be performed on the succinct representation,
without the need of reading the actual equation. This allows bounding the running
time using the size of the succinct representation and not the equation.

We distinguish two types of short words: those that are substrings of long words
(normal) and those that are not (overdue). We can charge the cost of processing the
normal short words to the time of processing the long words. The overdue words can
be removed from the equation after O(1) phases after becoming overdue, so their
processing time is constant per (A, i)-word (or (B, j)-word).

The rest of this subsection is organised as follows:

– We first give precise details, how we store short and long words, see Sect. 4.4.1
and prove that we can perform compression using only succinct representation, see
Lemma 19.

– We then define precisely the normal and overdue words, see Sect. 4.4.2 as well as
show that we can identify new short and overdue words, see Lemma 21. Then we
show that overdue words can be removed O(1) phases after becoming overdue, see
Lemmas 22 and 23.

– Lastly, in Sect. 4.4.3, we show that the whole compression time, summed over all
phases is O(n). The analysis is done separately for long words, normal short words
and overdue short words.

As observed in Lemma 13, see also a comment at the beginning of Sect. 4, as soon
as the first or last word becomes short, the remaining running time is linear. Thus,
when such a word becomes short, we drop our succinct representation and recreate
out of it the simple representation used in Sects. 2 and 3. Such a recreation takes linear
time.

123

Algorithmica

4.4.1 Storing Details

We give some more details about the storing: All long words are stored on two doubly-
linked lists, one representing the long words on the left-hand sides and the other the
long words on the right-hand sides. Those words are stored on the lists according to
the initial order of the words in the input equation. Furthermore, for each long word we
store additionally, whether it is a first or last word of some equation (note that a short
word cannot be first or last). The short words are also organised as a list, the order on
the list is irrelevant. Each short word has a list of its occurrences in the equations, the
list points to the occurrences in the natural order (occurrences on the left-hand sides
and on the right-hand sides are stored separately).

We say that such a representation is succinct and its size is the sum of lengths of
words stored in it (so the sum of sizes of long words, perhaps with multiplicities, plus
the sum of sizes of different short words). Note that we do not include the number of
pointers from occurrences of short words. We later show that in this way we do not
need to actually read the whole equation in order to compress it; it is enough to read
the words in the succinct representation, see Lemma 20.

We now show that such a storage makes sense, i.e. that if two short words become
equal, they remain equal in the following phases (note again that none of them are
first, nor last).

Lemma 19 Consider any explicit words A and B in the input equation. Suppose that
during OneVarWordEq they were transformed to A′ = B ′, none of which is a first
or last word in one of the equations. Then A = B if and only if A′ = B ′.

Proof By induction on operation performed by OneVarWordEq. Since none of the
A′, B ′ is the first or last word in the equation, it means that during the whole OneVar-
WordEq they had X to the left and to the right. So whenever a letter was left-popped
or right-popped from X , it was prepended or appended to both A and B; the same
applies to cutting prefixes and suffixes. Compression is never applied to a crossing
pair or a crossing block, so after it two strings are equal if and only if they were before
the operation. The removal of letters [in order to preserve (1)] is applied only to first
and last words, so it does not apply to words considered here. Partitioning the equation
into subequations does not affect the equality of explicit words. �	

We now show the main property of succinct representation: the compression (both
pair and block) can be performed on succinct representation in linear time.

Lemma 20 The compression in one phase of OneVarWordEq can be performed in
time linear in size of the succinct representation.

Proof Let us recall what operations we need to perform and what changes are needed
when comparing with the case of one equation, see Lemma 12 We comment on the
case of pair compression, the case of blocks compression is done in a similar way.

Observe first, that from Lemma 19 it follows that if an explicit short word A occurs
twice in the equations (both times not as a first, nor last word of the equation) it
is changed during OneVarWordEq in the same way at both those instances. This

123

Algorithmica

justifies our approach of performing the operations on the words stored in the list of
short words and not separately on each occurrence in the equations.

First, we perform the preprocessing, to this end we need to know the first (a)
and last (b) letter, this is done by looking at the first and last word. Then we
prepend b and append a to each word, except those that are first or last (first
ones get only a and last ones only b). To this end we go through the list of long
words and short words and append appropriate letters, note that each word stores an
information, whether it is first or last, so we always know, whether to prepend or
append.

Now we need to list the pairs that occur in the equation, again, this is done by going
through the list. As each pair occurs in one of the words, the total size is proportional
to the size of the succinct representation. Sorting then also is done in linear time (note
that the size of the alphabet is at most the size of the succinct representation: each
letter needs to occur somewhere).

To establish the crossing pair, it is enough to look at Ai X Ai+1, where Ai is any of
the first words, after establishing this we filter out the crossing pair by going through
the sorted list. Lastly, we perform the compression, using pointers to localise the
occurrences of ab to be replaced. The compression of crossing pairs is done while
reading the whole succinct representation, so also in linear time. �	

4.4.2 Normal and Overdue Short Words

The short words stored in the tables are of two types: normal and overdue. The normal
words are substrings of the long words or A2

0 and consequently the sum of their sizes is
proportional to the size of the long words. A word becomes overdue if at the beginning
of the phase it is not a substring of a long word nor A2

0. It might be that it becomes
a substring of such a word later, it does not stop to be an overdue word in such a
case.

Since the normal words are of size O(N) = O(1), the sum of lengths of normal
words stored in short word list is at most O(1) larger than the sum of sizes of the
long words. Hence the processing time of normal short words can be charged to the
long words. For the overdue words the analysis is different: we show that after O(1)

phases we can remove them from the equation (splitting the equations). Thus their
processing time is O(1) per (A, i)-word(or (B, j)-word), so summed over all words
it yields O(nA + nB) = O(n) in total.

The new overdue words can be identified in linear time: this is done by constructing
a suffix array for a concatenation of long and short words occurring in the equations.

Lemma 21 In time proportional to the size of succinct representation size we can
identify the new overdue words.

Proof Consider all long words A0, …, Am (with or without multiplicities, it does not
matter) and all short (not yet overdue) words A′1, …A′m′ , without multiplicities; in
both cases this is just a listing of words stored in the representation (except for old
overdue words). We construct a suffix array for the string

123

Algorithmica

A2
0$A1$. . . Am$A′1$. . . A′m′#.

As it was already observed that the size of the alphabet is linear in the size of the
succinct representation, inside the proof of Lemma 20, the construction of the suffix
array can be done in linear time [11].

Now A′i is a factor in some A j (the case of A2
0 is similar, it is omitted to

streamline the presentation) if and only if for some suffix A′′j of A j the strings
A′′j $A j+1 . . . Am$A′1$. . . $A′m′# and A′i $. . . $A′m′# have a common prefix of length
at least |A′i |. In terms of the constructed suffix array, the entries for A′i $. . . $A′m′# and
A′′j $A j+1 . . . AmA′1$. . . $A′m′# should have a common prefix of length at least |A′i |.
Recall that the length of the longest common prefix of two suffixes stored at positions
p < p′ in the suffix array is the minimum of LC P[p], LC P[p+1], …, LC P[p′−1].

For fixed suffix A′i $. . . $A′m′# we want to find A′′j $A j+1 . . . AmA′1$. . . $A′m′#
(where A′′j is a suffix of some long word A j) with which it has the longest common
prefix. As the length of the common prefix of pth and p′th entry in a suffix array is
min(LC P[p], LC P[p + 1], . . . , LC P[p′′ − 1]), this is is either the first previous or
first next suffix of this form in the suffix array. Thus the appropriate computation can
be done in linear time: we first go down in the suffix array, storing the last spotted
entry corresponding to a suffix of some long A j , calculating the LCP with consecutive
suffixes and storing them for the suffixes of the form A′i $. . . $A′m′#. We then do the
same going from the bottom of the suffix array. Lastly, we choose the larger from two
stored values; for A′i $. . . $A′m′# it is smaller than |A′i | if and only if A′i just became
an overdue word.

Concerning the running time, it linearly depends on the size of the succinct repre-
sentation and alphabet size, which is also linear in size of succinct representation, as
claimed. �	

The main property of the overdue words is that they can be removed from the
equations inO(1)phases after becoming overdue. This is shown by a series of lemmata.

First we need to define what does it mean that for solution word A in one side of the
equation is at the same position as its copy on the other side of the equation: we say
that for a substitution S the explicit word Ai (or its subword) is arranged against the
explicit word B j (S(X) for some fixed occurrence of X) if the position within S(Ak)

occupied by this explicit word Ai (or its subword) are within the positions occupied
by explicit word B j (S(X), respectively) in Bk .

Lemma 22 Consider a short word A in a phase in which it becomes overdue. Then
for each solution S(X) either S is small or in every S(Ak) = S(Bk) each explicit word
Ai equal to A is arranged against another explicit word B j equal to A.

Proof Consider an equation and a solution S such that in some S(Ak) = S(Bk) an
explicit word Ai (equal to an overdue word A) is not arranged against another explicit
word equal to A. There are three cases:

A is arranged against S(X) Note that in this case A is a substring of S(X). Either
S(X) is a substring of A0 or S(X) = Ak

0 A′0, where A′0 is a prefix of A0. In the former
case A is a factor of A0, which is a contradiction, in the latter it is a factor of Ak+1

0 .

123

Algorithmica

X B

X XA

X

Fig. 2 A is arranged against B. The periods of length at most |B| − |A| are in ligther grey. Since A �= B,
at least one of them is non-empty

Fig. 3 Subword of Ai is
arranged against the whole S(X) BX

A

As A0 is long and A short, it follows that |A| < |A0| and so A is a factor of A2
0,

contradiction with the assumption that A is overdue.
A is arranged against some word Since A is an overdue word, this means that Ai is

arranged against a short word B j . Note that both Ai and B j are preceded and succeeded
by S(X), since Ai �= B j we conclude that S(X) has a period at most |B j | − |Ai |, see
Fig. 2; in particular S is small.

Other case Since Ai is not arranged against any word, nor arranged against S(X),
it means that some substring of Ai is arranged against S(X) and as Ai is preceded and
succeeded by S(X), this means that either S(X) is shorter than Ai or it has a period at
most |Ai |, see Figs. 3 and 4, respectively. In both cases S is small.

�	
Observe that due to Theorem 2 and Lemma 22 the (A, i)-words and (B, j)-words

that are overdue can be removed in O(1) phases after becoming overdue: suppose that
A becomes an overdue word in phase �. Any solution, in which an overdue word A is
not arranged against another occurrence of A is small and so it is reported after O(1)

phases. Consider an equation Ai = Bi in which A occurs. Then the first occurrence
of A in Ai and the first occurrence of A in B j are arranged against each other for
each solution S. In particular, we can write Ai = Bi as A′i X AXA′′i = B′i X AXB′′i ,
where Ai and Bi do not have A as an explicit word (recall that A is not the first, nor
the last word in Ai = Bi). This equation is equivalent to two equations A′i = B′i
and A′′i = B′′i . This procedure can be applied recursively to A′′i = B′′i . In this way,
all occurrences of A are removed and no solutions are lost in the process. There
may be many overdue strings so the process is a little more complicated, however,
as each word can be removed once during the whole algorithm, in total it takes O(n)

time.

B

X

XX

X A

Fig. 4 Subword of Ai is arranged against S(X). The overlapping S(X) are in in grey, the S(X) has a period
shorter than Ai , the period is depicted in lighter grey

123

Algorithmica

Lemma 23 Consider the set of overdue words introduced in phase �. Then in phase
�+O(1) we can remove all occurrences of these overdue words from the equations.

The obtained set of equations has the same set of solutions. The amortised time spend
on removal of overdue words, over the whole run of OneVarWordEq, is O(#X).

Proof Consider any word A that become overdue in phase � and any solution S of
this equation, such that in some S(Ai) = S(Bi) the explicit word A is not arranged
against another instance of the same explicit word. Then due to Lemma 22 the S(X)

is small. Consequently, from Theorem 2 this solution is reported before phase �+ c,
for some constant c. So any solution S′ in phase � + c corresponds to a solution S
from phase � that had each explicit word A arranged in each S(Ai) = S(Bi) against
another explicit word A. Since all operations in a phase either transform solution,
implement the pair compression of implement the blocks compression for a solution
S(X), it follows that in phase �+ c the corresponding overdue words A′ are arranged
against each other in S′(A′i) = S′(B′i). Moreover, by Lemma 19 each explicit word
A′ in this phase corresponds to an explicit word A in phase �, i.e. there are no ‘new’
copies of A′ (recall that the fisrt and last words are long).

This observation allows removing all overdue words introduced in phase �. Let
C1, C2, …, Cm (in phase �+ c) correspond to all overdue words introduced in phase
�. By Lemma 21 we have already identified the overdue words. Using the list of short
words, for each overdue word C , we have the list of pointers to occurrences of C in
left-hand sides of the equations and right-hand sides of the equations, those lists are
sorted according to the order of occurrences. In phase �+ c we go through those lists,
if the first occurrences of A in the left-hand sides and right-hand sides are in different
equations then the equations are not satisfiable, as this would contradict that in each
solution both A is arranged against its copy. Otherwise, they are in the same equation
Ai = Bi , which is of the form A′i X AXA′′i = B′i X AXB′′i , where A′i and B′i do not
have any occurrence of A within them. We split Ai = Bi into two equations A′i = B′i
and A′′i = B′′i and we trim them so that they are in the form described in (1). Clearly
each solution of the new system of equation is also a solution of the old system, on the
other hand, in any solution of the old system the copies of A were arranged against its
copy, so the solution also satisfies the created equations.

Note that as new equations are created, we need to reorganise the pointers from the
first/last words in the equations, however, this is easily done in O(1) time. The overall
cost can be charge to the removed X , which makes in total at most O(#X) cost. �	

4.4.3 Compression Running Time

Lemma 24 The running time of OneVarWordEq, except for time used to test the
solutions, is O(n).

Proof By Lemma 20 the cost of compression is linear in terms of the size of the
succinct representation by Lemma 21 in the same time bounds we can also identify
the overdue words. Lastly, by Lemma 22 the total cost of removing the overdue words
is O(n). So it is enough to show that the sum of sizes of the succinct representations
summed over all phases is O(n).

123

Algorithmica

X

X Bj′Bj

Fig. 5 Let B j and B j ′ both have their letters arranged against letters from fixed occurrence of X . Then the
X separating them is a proper substring of another X , contradiction

When the overdue words are excluded, the size of the succinct representation is
proportional to the total length of long words. Since by Lemma 10 this sum of lengths
decreases by a constant in each phase, the sum of those costs is linear in n.

Concerning the costs related to the overdue words: Note that an (A, i)-word or
(B, j)-word is overdue for only O(1) phases, after which it is deleted from the equation
see Lemma 23. So in O(1) phases it is charged O(N) = O(1) cost, during the whole
run of OneVarWordEq. Summing over all (A, i)-words and (A, i)-words yields O(n)

time. �	

4.5 Testing

We already know that thanks to appropriate storing the compression of the equations
can be performed in linear time. It remains to explain how to test the solutions fast,
i.e. how to perform TestSimpleSolution when all first and last words are still long.

Recall that TestSimpleSolution checks whether S,which is of the form S(X) = a�

for some �, is a solution by comparing S(Ai) and S(Bi) letter by letter, replacing X
with a� on the fly. We say that in such a case a letter b in S(Ai) is tested against the
corresponding letter in S(Bi). Note that during the testing we do not take advantage of
the smaller size of the succinct representation, so we need to make a separate analysis.
Consider two letters, from Ai and B j , that are tested against each other. If one of Ai

and B j is long, this can be amortised against the length of the long word. The same
applies when one of the words Ai+1 or B j+1 is long. So the only problematic case
is when all of those words are short. To deal with this case efficiently we distinguish
between different test types, in which we exploit different properties of the solutions
to speed up the tests. In the end, we show that the total time spent on testing is linear.

For a substitution S by a mismatch we denote the first position on which S is shown
not be a solution, i.e. sides of the equation have different letters (we use a natural order
on the equations); clearly, a solution has no mismatch. Furthermore, OneVarWordEq
stops the testing as soon as it finds a mismatch, so in the rest of this section, if we use
a name test for a comparison of letters, this means that the compared letters are before
the mismatch (or that there is no mismatch at all).

There are two preliminary technical remarks: First we note that when testing a
substitution S, for a fixed occurrence of X there is at most one explicit word whose
letters are tested against letters from this occurrence of X .

Lemma 25 Fix a tested substitution S and an occurrence of X in the equation. Then
there is at most one explicit word whose letters are arranged against letters from this
fixed occurrence of S(X).

123

Algorithmica

Proof Without loss of generality assume that X occurs within A� in an equation
A� = B�. Suppose that B j and B j ′ (for j ′ > j) have their letters arranged against
a letter from this fixed occurrence of S(X), see Fig 5. But B j and B j ′ are separated
by at least one X in the equation, and whole this X is also arranged against this fixed
occurrence of X , contradiction. �	

As a second remark, observe that tests include not only explicit letters from S(A�)

and S(B�) but also letters from S(X). In the following we will focus on tests in which
at least one letter comes from an explicit word. It is easy to show that the time spent
on other tests is at most as large as time spent on those tests. This follows from the fact
that such other tests boil down to comparison of long blocks of a and the previous test
is of a different type, so we can account the comparison between two long blocks of a
to the previous test. However, our fast testing procedures in some times makes a series
of tests in O(1) time, so this argument can be made precise only after the explanation
of the details of various testing optimisations. For this reason the proof of Lemma 26
is delayed till the end of this section.

Lemma 26 Suppose that we can perform all tests in which at least one letter comes
from an explicit word in O(n) time. Then we can perform all test in O(n) time.

Thus, in the following of this section we consider only the tests in which at least
one letter comes from an explicit word.

4.5.1 Test Types

Suppose that for a substitution S a letter from Ai is tested against a letter from S(X B j)

or a letter from B j is tested against a letter from S(X Ai) (the special case, when there
is no explicit word after X is explained later). We say that this test is:

– protected: if at least one of Ai , Ai+1, B j , B j+1 is long;
– failed: if Ai , Ai+1, B j and B j+1 are short and a mismatch for S is found till the

end of Ai+1 or B j+1;
– aligned: if Ai = B j and Ai+1 = B j+1, all of them are short and the first letter of

Ai is tested against the first letter of B j ;
– misaligned: if all of Ai , Ai+1, B j , B j+1 are short, Ai+1 �= Ai or B j+1 �= B j and

this is not an aligned nor failed test;
– periodical: if Ai+1 = Ai , B j+1 = B j , all of them are short and this is not an

aligned nor failed test.

So far this classification does not apply to the case, when a letter from Ai is tested
against letter from X that is not followed by an explicit word. There are two cases:

– If Ai is not followed by X in the equation then Ai is a last word, in particular it is
long. Therefore this test is protected.

– If Ai is followed by X then there is a mismatch till the end of Ai X , so this test is
failed.

Observe that ‘failed test’ does not mean a mismatch, just a fact that soon there will
be a mismatch. The protected, misaligned and failed tests are done in a letter-by-letter

123

Algorithmica

way, while the aligned and periodical tests are made in larger groups (in O(1) time
per group, this of course means that we use some additional data structures).

It is easy to show that there are no other tests, see Lemma 27. We separately calculate
the cost of each type of tests. As some tests are done in groups, we distinguish between
number of tests of a particular type (which is the number of letter-to-letter comparisons)
and the time spent on test of a particular type (which may be smaller, as group of tests
are performed in O(1) time); the latter includes also the time needed to create and
sustain the appropriate data structures.

For failed tests note that they take constant time per phase and we know that there
are O(log n) phases. For protected tests, we charge the cost of the protected test to the
long word and only O(|C |) such tests can be charged to one long word C in a phase.
On the other hand, each long word is shortened by a constant factor in a phase, see
Lemma 10, and so this cost can be charged to those removed letters and thus the total
cost of those tests (over the whole run of OneVarWordEq) is O(n).

In case of the misaligned tests, it can be shown that S in this case is small and that
it is tested at the latest O(1) phases after the last of Ai , Ai+1, Bi , Bi+1 becomes short,
so this cost can be charged to, say, Bi becoming short and only O(1) such tests are
charged to this Bi (over the whole run of the algorithm). Hence the total time of such
tests is O(n).

For the aligned tests, consider the consecutive aligned tests, they correspond to
comparison of Ai X Ai+1 . . . Ai+k X and B j X B j+1 . . . B j+k X , where Ai+� = B j+�

for � = 1, . . . , k. So to perform them efficiently, it is enough to identify the maximal
(syntactically) equal substrings of the equation and from Lemma 19 it follows that
this corresponds to the (syntactical) equality of substrings in the original equation.
Such an equality can be tested in O(1) using a suffix array constructed for the input
equation (and general lcp queries on it). To bound the total running time it is enough
to notice that the previous test is either misaligned or protected. There are O(n) such
tests in total, so the time spent on aligned tests is also linear.

For the periodical test suppose that we are to test the equality of (suffix of)
S((Ai X)�) and (prefix of) S(X (B j X)k). If |Ai | = |B j | then the test for Ai+1 and
B j+1 is the same as for Ai and B j and so can be skipped. If |Ai | > |B j | then the
common part of S((Ai X)�) and S(X (B j X)k) have periods |S(Ai X)| and |S(B j X)|
and consequently has a period |Ai | − |B j | ≤ N . So it is enough to test first common
|Ai |−|B j | letters and check whether |S(Ai X)| and |S(B j X)| have period |Ai |−|B j |,
which can be checked in O(1) time.

This yields that the total time of testing is linear. The details are given in the next
subsections.

We begin with showing that indeed each test is either failed, protected, aligned,
misaligned or periodical.

Lemma 27 Each test is either failed, protected, misaligned, aligned or periodical.
Additionally, whenever a test in made, in O(1) time we can establish, what type of test
this is.

Proof Without loss of generality, consider a test of a letter from Ai and from S(X B j).
If any of Ai+1, B j+1, Ai or B j is long then it is protected (this includes the case in
which some of Ai+1, B j , B j+1 does not exist). Concerning the running time, for each

123

Algorithmica

explicit word we keep a flag, whether it is short or long. Furthermore, as each explicit
word has a link to its successor and predecessor, we can establish whether any of
Ai+1, B j+1, Ai or B j is long in O(1) time.

So consider the case in which all Ai+1, B j+1, Ai and B j (if they exist) are short,
which also can be established in O(1) time. It might be that this test is failed (again,
some of the words Ai+1, B j , B j+1 may not exist), too see this we need to make some
look-ahead tests, but this can be done in O(N) time (we do not treat those look-aheads
as tests, so there is not recursion here).

Otherwise, if the first letter of Ai and B j are tested against each other and Ai = B j

and Ai+1 = B j+1 then the test is aligned (clearly this can be established in O(1) time
using look-aheads). Otherwise, if Ai+1 �= Ai or B j+1 �= B j then it is misaligned
(again, O(1) time for look-aheads). In the remaining case Ai+1 = Ai and B j+1 = B j ,
so this is a periodical test. �	

4.5.2 Failed Tests

We show that in total there are O(log n) failed tests. This follows from the fact that
there are O(1) substitutions tested per phase and there are O(log n) phases.

Lemma 28 The number of all failed tests is O(log n) over the whole run of OneVar-
WordEq.

Proof As noticed, there are O(1) substitutions tested per phase. Suppose that the
mismatch is for the letter from Ai and a letter from X B j (the case of X Ai and B j

is symmetrical). Then the failed tests include at least one letter from X Ai−1 X Ai or
X B j−1 X B j X , assuming they come from a short word. There are at most 4N failed
tests that include a letter from Ai−1, Ai , B j−1, B j (as if the test is failed then in
particular this explicit word is short). Concerning the tests including the occurrences
of X in-between them, observe that by Lemma 25 each such X can have tests with at
most one short word, so this gives additional 5N tests. Since N = O(1), we conclude
that there are O(1) failed tests per phase and so O(log n) failed tests in total, as there
are O(log n) phases, see Lemma 10. �	

4.5.3 Protected Tests

As already claimed, the total number of protected tests is linear in terms of length
of long words: to show this it is enough to charge the cost of the protected test to
the appropriate long word and see that a long word A can be charged only |A| such
tests for test including letters from A and O(1) letters from neighbouring short words,
which yields O(|A|) tests. As the length of the long words drops by a constant factor,
summing this up over all phases in which this explicit word is long yields O(n) tests
in total.

Lemma 29 In one phase the total number of protected tests is proportional to the
length of the long words. In particular, there are O(n) such test during the whole run
of OneVarWordEq.

123

Algorithmica

Proof As observed in Lemma 26 we can consider only tests in which at least one letter
comes from an explicit word. Suppose that a letter from Ai takes part in the protected
test (the argument for a letter from B j is similar, it is given later on) and it is tested
against a letter from X B j , then one of Ai , Ai+1, B j , B j+1 is long, we charge the cost
according to this order, i.e. we charge it to Ai if it is long, if Ai is not but Ai+1 is
long, we charge it to Ai+1, if not then to B j if it is long and otherwise to B j+1. The
analysis and charging for a test of a letter from B j is done in a symmetrical way (note
that when the test includes two explicit letters, we charge it twice, but this is not a
problem).

Now, fix some long word Ai , we estimate, how many protected tests can be charged
to it. It can be charged with cost of tests that include its own letters, so |Ai | tests. When
Ai−1 is short, it can also charge tests in which its letters take part. As it is short, it is
at most O(N) = O(1) such tests.

Also some words from B can charge the cost of tests to Ai , we can count only the
test in which letters from Ai do not take part. This can happen in two situations: letters
tested against X Ai and letters tested against X Ai−1 (in which case we additionally
assume that Ai−1 is short). We have already accounted the tests made against Ai−1
and Ai and by Lemma 25 for each occurrence of X there is at most one explicit word
whose letters are tested against this occurrence of X . Those that were charged to Ai

come from short words, so there are additionally at most 2N tests of this form.
So in total Ai is charged only O(|Ai |) in a phase. From Lemma 10 the sum of

lengths of long words drops by a constant factor in each phase, and as in the input it
is at most n, the total sum of number of protected tests is O(n). �	

4.5.4 Misaligned Tests

On the high level, in this section we want to show that if there is a misaligned test
then the tested solution is small and use this fact for accounting the cost of such tests.
However, this statement is trivial, as we test only solutions of the form ak for some k,
which are always small. To make this statement more meaningful, we generalise the
notion of a misaligned test for arbitrary substitutions, not only the tested one. In this
way two explicit words Ai and B j can be misaligned for a substitution S. We show
three properties of this notion:

M1 If there is a misaligned test for a substitution S for a letter from Ai against letter
in X B j or a letter from B j against letter from X Ai then Ai and B j are misaligned
for S. This is shown in Lemma 30.

M2 If there are misaligned words Ai and B j for a solution S then S is small, as shown
in Lemma 31.

M3 If Ai and B j are misaligned for S in a phase � then S is reported in phase � or
the corresponding words A′i and B ′j in phase � + 1 are also misaligned for the
corresponding S′, see Lemma 32.

Those properties are enough to improve the testing procedure so that one (A, i)-
word (or (B, j)-word) takes part in only O(1) misaligned tests: suppose that Ai

becomes small in phase �. Then all solutions, for which it is misaligned with some
B j , are small by (M2). Hence, by Theorem 2, all of those solutions are reported (in

123

Algorithmica

particular: tested) within the next c phases, for some constant c. Thus, if Ai takes part
in a misaligned test (for S) in phase �′ > � + c then S is not a solution: by (M1) Ai

and appropriate B j are misaligned and by (M3) they were misaligned also in phase
� (for the corresponding solution S′), and solution S′ was reported before phase �′,
by (M2). Hence we can immediately terminate the test; therefore Ai can take part in
misaligned tests in phases �, �+ 1, …, �+ c, i.e. O(1) ones. This plan is elaborated
in this section, in particular, some technical details (omitted in the above description)
are given.

We say that Ai and B j that are blocks from two sides of one equations A� = B�

are misaligned for a substitution S if

– a mismatch for S is not found till the end of Ai+1 or B j+1;
– all Ai+1, Ai , B j+1 and B j are short;
– either Ai �= Ai+1 or B j �= B j+1;
– it does not hold that Ai = B j and Ai+1 = B j+1 and the first letter of Ai is at the

same position as the first letter of B j under substitution S;
– the position of the first letter of Ai in S(A�) is among the position of S(X B j) in

S(B�) or, symmetrically, the position of the first letter of B j in S(B�) is among the
position of S(X Ai) in S(A�).

We show (M1), which shows that the definitions of misaligned blocks and mis-
aligned tests are reformulations of each other.

Lemma 30 If a letter from Ai is tested (for S) against a letter from X B j and this test
is misaligned then Ai and B j are misaligned for S; similar statement holds for letters
from B j .

Proof This is just a reformulation of a definition (we consider only the case of letters
from Ai , the argument for letters from B j is symmetrical):

– Since this is not a failed test, there is no mismatch till the end of Ai+1 and B j+1.
– As this is not a protected test, all Ai , Ai+1, B j and B j+1 are short.
– As this is a misaligned test, either Ai �= Ai+1 or B j �= B j+1.
– As this is not an aligned test, either Ai �= B j or Ai+1 �= B j+1 or the first letter of

Ai is not at the same position as the first letter of B j (both under S).
– By the choice of B j , the first position of Ai under S is among the positions of X B j

(under S).

�	
We move to showing (M2). It follows by considering S(X Ai X Ai+1 X) and

S(X B j X B j+1 X). The large amount of S(X) in it allows showing the periodicity
of fragments of S(X) and in the end, that S is small.

Lemma 31 When the Ai and B j are misaligned for a solution S then S is small.

Proof Suppose that Ai and B j are from an equation A� = B�. In the proof we consider
only one of the symmetric cases, in which Ai is begins not later than B j (i.e. the first
letter of Ai is arranged against the letter from X B j), the other case is shown similarly.

There are two main cases: either some of Ai , Ai+1, B j and B j+1 has some of its
letters arranged against an explicit word or all those words are arranged against (some
occurrences) of X .

123

Algorithmica

Fig. 6 A letter from B j is
arranged against the letter from
Ai . The period of S(X) is in
grey

Ai

Bj

X

X

One of the Words has Some of Its Letters Arranged Against an Explicit Word

We claim that in this case S has a period of length at most N , in particular, it is small.
First of all observe that it is not possible that each of Ai , Ai+1, B j and B j+1 has all
of its letters arranged against letters of an explicit word: since Ai is arranged against
X B j this would imply that Ai is arranged against B j (in particular, their first letters
are at corresponding positions) and (as no mismatch is found till end of Ai and B j)
so Ai = B j . Similarly, Ai+1 = B j+1. This contradicts the assumption that Ai and B j

are misaligned.
Thus, there is a word among Ai , Ai+1, B j and B j+1, say B j , that is partially

arranged against an explicit word and partially against X (note that this explicit word
does not have to be among Ai , Ai+1, B j and B j+1), see Fig. 6. As each explicit words
is proceeded and succeeded by X , it follows that S(X) has a period at most N .

All Words have all their Letters Arranged Against Occurrences of X

In the following we assume that letters from Ai , Ai+1, B j and B j+1 are arranged
against the letters from S(X). Observe that due to Lemma 25 this means that whole Ai

is arranged against S(X) preceding B j , the B j against S(X) preceding Ai+1, whole
Ai+1 against S(X) preceding B j+1 and whole B j+1 against S(X) succeeding Ai+1,
see Fig. 7.

Let a = |Ai |, b = |B j | and x = |S(X)|, as in Fig. 7. There are three cases:
a > b, a < b and a = b, we consider them separately.

Consider first the case in which a > b, see Fig. 7. Let p denote the offset between
the S(X) preceding Ai and the one preceding B j ; then S(X) has a period p. Similarly,
when we consider the S(X) succeeding Ai and the one succeeding B j we obtain that
the offset between them is p − a + b, which is also a period of S(X). Those offsets
correspond to borders (of S(X)) of lengths x − p and x − p + a − b, see Fig. 7.
Then the shorter border (of length x − p) is also a border of the longer one (of length
x − p+ a− b), hence the border of length x − p+ a− b has a period a− b, so it is of

X X XAi+1Ai

X X XBj+1

x − pp a p − a b x − p + a − b

Bj

Fig. 7 The letters of Ai , Ai+1, B j and B j+1 are arranged against the letters from S(X). The lengths of
fragments of text are beneath the figure, between dashed lines. Comparing the positions of the first and
second S(X) yields that p is a period of S(X), second and third that x − p + a while the third and fourth
that p − a + b is. The borders of S(X) corresponding to the first and third one are marked in grey

123

Algorithmica

the form wku, where |w| = a − b and |u| < a − b. Now, the prefix of S(X) of length
x − p + a is of the form wku′, for some u′ of length less than a (as this is a prefix
of length x − p + a − b extended by the following b letters). When we compare the
positions of S(X) preceding B j and the one succeeding Ai we obtain that S(X) has a
period x − p + a so the whole S(X) is of the form (wku′)�w′, where w′ is a prefix
of wku′, hence S is small: w and u′ are of length at most N , as w′ is a prefix of wku′,
either it is a prefix of wk , so it is of the form wk′w′′ where w′′ is a prefix of w, or it
includes the whole wk , so it is of the form wku′′, where u′′ is a prefix of u′.

Consider the symmetric case, in which b > a and again use Fig. 7. The same argu-
ment as before shows that p and p−a+ b are periods of S(X) and the corresponding
borders are of length x − p and x − p + a − b. Now, the shorter of them (of length
x − p+ a− b) is a border of longer of them (of length x − p), so the prefix of length
x − p of S(X) has a period b − a, so it is of the form wku, where |w| = b − a and
|u| < b− a. Hence the prefix of length x − p + a is of the form wku′ for some u′ of
length less than b. As in the previous case, S(X) has a period x − p + a and so the
whole S(X) is of the form (wku′)�w′, where w′ is a prefix of wku′, hence S is small.

Consider now the last case, in which |Ai | = |B j |. If |Ai+1| �= |Ai | then |B j | �=
|Ai+1| and we can repeat the same argument as above, with B j and Ai+1 taking the roles
of Ai and B j , which shows that S is small. So consider the case in which |Ai+1| = |Ai |.
If |B j | �= |B j+1| then again, repeating the argument as above for Ai+1 and B j+1 yields
that S is small. So we are left with the case in which |Ai+1| = |Ai | = |B j | = |B j+1|.
Then Ai+1 is arranged against the same letters in S(X) as Ai and B j+1 is arranged
against the same letters in S(X) as B j . As there is no mismatch till the end of Ai+1
and B j+1, we conclude that Ai+1 = Ai and B j+1 = B j contradicting the assumption
that Ai and B j are misaligned, so this case is non-existing. �	

We now show that if Ai and B j are misaligned for S then they were (for a corre-
sponding solution) in the previous phase (assuming that all involved words were short).
This is an easy consequence of the way explicit words are modified (we prepend and
append the same letters and compress all explicit words in the same way).

Lemma 32 Suppose that Ai and B j are misaligned for a solution S. If at the previous
phase all A′i+1, A′i , B ′j+1 and B ′j were short then A′i and B ′j were misaligned for the
corresponding solution S′.

Proof We verify the conditions on misaligned words point by point:

– Since S′ is a solution, there is no mismatch.
– By the assumption, all A′i+1, A′i , B ′j+1 and B ′j are short.
– We know that either Ai �= Ai+1 or B j �= B j+1 and so by Lemma 19 either

A′i �= A′i+1 or B ′j �= B ′j+1 (observe that none of them is the last nor first, as they
are not in the next phase).

– Suppose that A′i = B ′j , A′i+1 = B ′j+1 and under S′ the first letters of A′i and B ′j are
arranged against each other. By Lemma 19 it follows that Ai = B j , Ai+1 = B j+1.
Observe that left-popping and right popping preserves the fact that the first letters
of (A, i)-word and (B, j)-word are arranged against each other for S′ (as S(A)

and S′(A′) are the same words). As S′ is a solution, the same applies to pair
compression and block compression. Hence, the first letters of Ai and B j are

123

Algorithmica

arranged against each other, contradiction with the assumption that Ai and B j are
misaligned.

– Suppose that the first letter of Ai is arranged against a letter from S(X B j). Consider,
how A′i and X B ′j under S′ are transformed to Ai and X B j under S. As in the
above item, popping letters does not influence whether the first letter of (A, i)-
word is arranged against letter from S(X) and (B, j)-word (as S(A) and S′(A′)
are the same words). Since S′ is a solution, the same applies also to pair and
block compression. So the position of the first letter of Ai is among the position
of S(X B j) if and only if the first letter of A′i is arranged against a letter from
S′(X B ′j).

The case in which the position of the first letter of B j is among the position of S(X Ai)

is shown in a symmetrical way. �	
Now we are ready to give the improved procedure for testing and estimate the

number of the misaligned tests in it.

Lemma 33 There are O(n) misaligned tests during the whole run of OneVar-
WordEq.

Proof Consider a tested solution S and a misaligned test for a letter from Ai against a
letter from X B j (the case of test of letters from B j tested against X Ai the argument is
the same). Let � be the number of the first phase, in which all (A, i)-word, (A, i + 1)-
word, (B, j)-word and (B, j + 1)-word are short. We claim that this misaligned test
happens between �th and �+ c phase, where c is the O(1) constant from Theorem 2.

Let A′i and B ′j be the corresponding words in the phase �. Using induction on
Lemma 32 it follows that A′i and B ′j are misaligned for S′. Thus by Lemma 31 the S′
is small and thus by Theorem 2 it is reported till phase �+ c. So it can be tested only
between phases � and �+ c, as claimed.

This allows an improvement to the testing algorithm: whenever (say in phase �) a
letter from Ai has a misaligned test against a letter from S(X B j) we can check (in
O(1) time), in which turn �′ the last among (A, i)-word, (A, i+1)-word, (B, j)-word
and (B, j + 1)-word became small (it is enough to store for each explicit word the
number of phase in which it became small). If �′ + c < � then we can terminate the
test, as we know already that S is not a solution. Otherwise, we continue.

Concerning the estimation of the cost of the misaligned tests (in the setting as
above), there are two cases:

– The misaligned tests that lead to the rejection of S: This can happen once per
tested solution and there are O(log n) tested solution in total (O(1) per phase and
there are O(log n) phases).

– Other misaligned tests: The cost of the test (of a letter from Ai tested against
S(X B j)) is charged to the last one among (A, i)-word, (A, i + 1)-word, (B, j)-
word and (B, j + 1)-word that became short. By the argument above, this means
that this word became short within the last c phases.

Let us calculate, for a fixed (A, i)-word (the argument for (B, j)-word is symmetrical)
how many misaligned tests of this kind can be charged to this word. They can be
charged only within c phases after this word become short. In a fixed phase we test

123

Algorithmica

only a constant (i.e. 5) substitutions. For a fixed substitution, Ai can be charged the
cost of tests in which letters from Ai or Ai−1 are involved (providing that Ai or Ai−1
is short), which is at most 2N . They can be charged also the tests from letters from
B j that is aligned against X preceding Ai−1 or X preceding Ai (providing that B j as
well as Ai−1 are short). Note that there is only one B j whose letter are aligned against
X preceding Ai−1 and one for X preceding Ai , see Lemma 25, so when they are short
this gives additional 2N tests.
This yields that one (A, i)-word is charged O(N) = O(1) tests in total. Summing
over all words in the instance yields the claim of the lemma. �	

4.5.5 Aligned Tests

Suppose that we make an aligned test, without loss of generality consider the first such
test in a sequence of aligned tests. Let it be between the first letter of Ai and the first
letter in B j (both of those words are short). For this Ai and B j we want to perform the
whole sequence of successive aligned tests at once, which corresponds of jumping to
Ai+k and B j+k within the same equation such that

– Ai+� = Bi+� for 0 ≤ � < k and
– Ai+k �= B j+k or one of them is a last word or Ai+k X or B j+k X ends one side of

the equation.

Note that this corresponds to a syntactical equality of fragments of the equation, which,
by Lemma 19, is equivalent to a syntactical equality of fragments of the original
equation. We preprocess (in O(n) time) the input equation (building a suffix array
equipped with a structure answering general lcp queries) so that in O(1) we can return
such k as well as the links to Ai+k and B j+k . In this way we perform all equality tests
for Ai X Ai+1 X . . . Ai+k−1 X = B j X B j+1 X . . . X B j+k−1 X in O(1) time.

To simplify the considerations, when Ai X (B j X) ends one side of the equation, we
say that this Ai (B j , respectively) is almost last word. Observe that in a given equation
exactly one side has a last word and one an almost last word.

Lemma 34 InO(n)we can build a data structure which given equal Ai and B j inO(1)

time returns the smallest k ≥ 1 and links to Ai+k and B j+k such that Ai+k �= B j+k

or one of Ai+k, B j+k is a last word or one of Ai+k , B j+k is an almost last word.

Note that it might be that some of the equal words Ai+� = Bi+� are long, and so their
tests should be protected (also, the tests for some neighbouring words). So in this way
we also make some free protected tests, but this is not a problem. Furthermore, the
returned Ai+k and B j+k are guaranteed to be in the same equation.

Proof First of all observe that for Ai and B j it is easy to find the last word in their
equation as well as the almost last word of the equation: when we begin to read
a particular equation, we have the link to both the last word and the almost last word
of this equation and we can keep them during the testing of this equation. We also
know the numbers of those words so we can also calculate the respective candidate
for k. So it is left to calculate the minimal k such that Ai+k �= A j+k .

123

Algorithmica

Let A′i , B ′j etc. denote the corresponding original words of the input equation.
Observe that by Lemma 19 it holds that Ai+�

′ = B ′j+� if and only if Ai+� = B j+�

as long as none of them is last or first word. Hence, it is enough to be able to answer
such queries for the input equation: if the returned word is in another equation then
we should return the last or almost last word instead.

To this end we build a suffix array [11] for the input equation, i.e. for a string
A′1 X A′2 X . . . A′′nA X B ′1 X B ′2 X . . . B ′nB $. Now, the lcp query for suffixes A′i . . . $ and
B ′j . . . $ returns the length of the longest common prefix. We want to know what is
the number of explicit words in the common prefix, which corresponds to the number
of Xs in this common prefix. This information can be easily preprocessed and stored
in the suffix array: for each position � in A′1 X A′2 X . . . A′nA X B ′1 X B ′2 X . . . B ′nB$ we
store, how many Xs are before it in the string and store this in the table pre f X . Then
when for a suffixes beginning at positions p and p′ we get that their common prefix
is of length �, the pre f X [p + �] − pre f X [p] is the number of Xs in the common
prefix in such a case. If none of Ai , Ai+1, …, Ai+k nor B j , B j+1, …, B j+k is the last
word nor it ends the equation (i.e. they are all still in one equation) by Lemma 19 the k
is the answer to our query (as Ai = B j , Ai+1 = B j+1,…and Ai+k �= B j+k and none
of them is a last word, nor none of them ends the equation). To get the actual links
to those words, at the beginning of the computation we make a table, which for each
i returns the pointer to (A, i)-word and (B, i)-word. As we know i, j and k we can
obtain the appropriate links in O(1) time. So it is left to compare the value of k with
the value calculated for the last word and almost last word and choose the one with
smaller k and the corresponding pointers. �	

Using this data structure we perform the aligned tests is in the following way:
whenever we make an aligned test (for the first letter of Ai and the first letter of B j),
we use this structure, obtain k and jump to the test of the first letter of Ai+k with the
first letter of B j+k and we proceed with testing from this place on. Concerning the
cost, by easy case analysis it can be shown that the test right before the first of sequence
of aligned tests (so the test for the last letters of Ai−1 and B j−1) is either protected or
misaligned. There are only O(n) such tests (over the whole run of OneVarWordEq),
so the time spend on aligned tests is O(n) as well.

Lemma 35 The total cost aligned test as well as the usage of the needed data structure
is O(n).

Proof We formalise the discussion above. In O(1) we get to know that this is an aligned
test, see Lemma 27. Then in O(1), see Lemma 34, we get the smallest k such that
Ai+k �= B j+k or one of them is an almost last word for this equation or the last word
for this equation. We then jump straight to the test for the first letter of Ai+k and B j+k .

Consider Ai−1 and B j−1 we show that the test for their last letters (so the test
immediately before the first aligned one) is protected or misaligned. By Lemma 27 it
is enough to show that it is not aligned, nor periodic, nor failed.

– If it were failed then also the test for the first letters of Ai and B j would be failed.
– It cannot be aligned, as we chose Ai and B j as the first in a series of aligned tests.
– If it were periodic, then Ai−1 = Ai and B j−1 = B j while by assumption Ai = B j ,

which implies that this test is in fact aligned, which was already excluded.

123

Algorithmica

Hence we can associate the O(1) cost of whole sequence of aligned test to the previous
test, which is misaligned or protected. Clearly, one misaligned or protected test can be
charged with only one sequence of aligned tests (as it is the immediate previous test).
By Lemmas 29 and 33 in total there are O(n) misaligned and protected tests. Thus in
total all misaligned tests take O(n) time. �	

4.5.6 Periodical Tests

The general approach in case of periodical tests is similar as for the aligned tests: we
would like to perform all consecutive periodical tests in O(N) time and show that the
test right before this sequence of periodic tests is either protected or misaligned. As in
case of aligned tests, the crucial part is the identification of a sequence of consecutive
periodical tests. To identify them quickly, we keep for each short Ai the value k such
that Ai+k is the first word that is different from Ai or is the last word or the almost last
word (in the sense as in the previous section: Ai+k is almost last if Ai+k X ends the
side of the equation), as well as the link to this Ai+k . Those are easy to calculate at
the beginning of each phase. Now when we perform a periodical test for a letter from
Ai , we test letters from S((AX)k) against the letters from (suffix of) S(X (B X)�). If
|A| = |B| then both strings are periodic with period |S(AX)| and their equality can
be tested in O(|A|) time. If |A| �= |B| then we retrieve the values kA and kB which
tell us what is repetition of AX and B X . If one of them is smaller than 3 we make
the test naively, in time O(|A| + |B|). If not, we exploit the fact that S((B X)�) has
a period |S(B X)|while S((AX)k) has a period |S(AX)| and so their common fragment
(if they are indeed equal) has a period | |S(AX)|− |S(B X)| | = | |A|− |B| | (note that
the outer ‘|’ denote the absolute value). Hence we check, whether S(AX) and S(B X)

have this period and check the common fragment of this length, which can be done
in O(|A| + |B|) time. The converse implication holds as well: if S(AX) and S(B X)

have period ||A| − |B|| and the first ||A| − |B|| tests are successful then all of them
are. Concerning the overall running time, as in the case of aligned test, the test right
before the first periodic test is either protected or misaligned, so as in the previous
section it can be shown that the time spent on periodical tests is O(n) during the whole
OneVarWordEq.

Lemma 36 Performing all periodical tests and the required preprocessing takes in
total O(n) time.

Proof Similarly as in the case of aligned tests, see Lemma 35, we can easily keep
the value k and the link to Ai+k such that Ai+k is the last or almost last word in this
equation, the same applies for B j+k . Hence it is left to show how to calculate for each
short Ai (and B j) the k such that Ai+k is the first word that is different from Ai .

At the end of the phase we list all words Ai that become short in this phase, see
Lemma 19, ordered from the left to the right (this is done anyway, when we identify
the new short words). Note that this takes at most the time proportional to the length
of all long words from the beginning of the phase, so O(n) in total. Consider any Ai

on this list (the argument for B j is identical), note that

123

Algorithmica

XA XA XA

XB XB XB XB

a + x a + x

b + x b + x b + x b + x

Fig. 8 The case of a > b. The part of S((X Ai)
2) that has a period a + x and b + x is in grey

– if Ai+1 �= Ai then Ai should store k = 1 and a pointer to this Ai+1;
– if Ai = Ai+1 then Ai+1 also became short in this phase and so it is on the list and

consequently Ai should store 1 more than Ai+1 and the same pointer as Ai+1.

So we read the list from the right to the left, let Ai be an element on this list. Using
the above condition, we can establish in constant time the value and pointer stored by
Ai . This operation is performed once per (A, i)-word, so in total takes O(n) time.

Consider a periodic test, without loss of generality suppose that a letter from Ai

is tested against a letter from X B j (in particular, Ai begins not later than B j), let
the kA and kB be stored by Ai and B j ; as this is a periodical test, both kA and kB

are greater than 1. Among Ai+kA and B j+kB consider the one which begins earlier
under substitution S: this can be determined in O(1) by simply comparing the lengths,
the length on the A-side of the equation is kA(|Ai | + |S(X)|) while B-side length is
kB(|B j |+|S(X)|)+m, where m is the remainder of S(X) that is compared with Ai . Let
k and � be the smallest numbers such that the common part of S(Ai X · · · X Ai+k−1 X)

and S(B j X · · · X B j+�−1 X) contain the common part of S(Ai X · · · X Ai+kA−1 X) and
S(B j X · · · X B j+kB−1 X).

Ai+k and B j+� be the Note that the test for the first letter of this word is not periodic,
so when we jump to it we skip the whole sequence of periodic tests. We show that in
O(1) time we can perform the tests for all letters before this word and that the test
right before the first test for Ai is protected or misaligned.

Let a = |Ai |, b = |B j | and x = |S(X)|. First consider the simpler case in which
a = b. Then the tests for Ai+1, …, Ai+k−1 are identical as for Ai , and so it is enough
to perform just the test for Ai and B j and then jump right to Ai+k .

So let us now consider the case in which a > b. Observe that when the whole
S((B j X)�) is within S((Ai X)3) then this can be tested in constant time in a naive
way: the length of S((Ai X)3) is 3(a + x) while the length of S((B j X)�) is �(b+ x).
Hence 3(a + x) ≥ �(b+ x) and so � ≤ 3(a + x)/(b+ x) ≤ 3 max(a/b, x/x) ≤ 3N ,
because a/b is at most N . Thus all tests for S((Ai X)3) and S((B j X)�) can be done
in O(N) = O(1) time.

So consider the remaining case, see Fig. 8 for an illustration, when k > 3. We claim
that the tests for S(Ai X · · · X Ai+k−1 X) and S(B j X · · · X B j+�−1 X) are successful if
and only if

– S(Ai X) and S(B j X) have period gcd(a + x, b + x) and
– the first gcd(a+x,b+x) tests for S(Ai X · · ·X Ai+k−1 X) and S(B j X · · ·X B j+�−1 X)

are successful.

©⇒ First S(X Ai X Ai) has period x + a. However, it is covered with S((B j X)�),
so it also has period x + b. Since x + a + x + b < 2x + 2a, it follows that also the

123

Algorithmica

Fig. 9 The test right before the
first among the sequence of
periodic tests. Since Ai begins
not later than B j , B j−1 ends not
earlier than Ai−1

X

Bj

Ai

XBj−1

Ai−1

gcd(x + a, x + b) is a period of S(X Ai X Ai) and so also of S(Ai X) and thus also
S(B j X). The second item is obvious.
©⇐Since S(Ai X) and S(B j X)have period gcd(a+x, b+x) also S(Ai X · · · X Ai+k−1

X) and S(B j X · · · X B j+�−1 X) have this period. As the first gcd(a + x, b + x) tests
for S(Ai X · · · X Ai+k−1 X) and S(B j X · · · X B j+k−1 X) are successful, it follows that
all the tests for their common part are.

So, to perform the test for S(Ai X · · · X Ai+k−1 X) and S(B j X · · · X B j+�−1 X)

it is enough to: calculate p = gcd(a + x, b + x), test whether S(Ai X), S(B j X)

have period p and then perform the first p tests for S(Ai X · · · X Ai+k−1 X) and
S(B j X · · · X B j+�−1 X). All of this can be done in O(1), since p ≤ a − b ≤ N (note
also that calculating p can be done in O(1), as gcd(x +a, x +b) = gcd(a−b, x +b)

and a − b ≤ N).
The case with b > a is similar: in the special subcase we consider whether

S((Ai X)k) is within S(X (B j X)3). If so then the tests can be done in O(N) time.
If not, then we observe that the S(X B j+1 X B j+2) is covered by S((Ai X)k). So it
the tests are successful, it has period both x + b as well as x + a, so it has period
gcd(x + a, x + b). The rest of the argument is identical.

For the accounting, we would like to show that the test right before the first among
the considered periodic tests is not periodic. Observe, that as Ai begins not later (under
S) than B j it means that the last letter of B j−1 is not earlier than the last letter of Ai−1,
see Fig. 9. So the previous test includes the last letter of B j−1. It is enough to show
that this test is not failed, periodic, nor aligned.

– failed: If it is failed then also the test for the letters in Ai are failed.
– periodic: If it is periodic then this contradicts our choice that the test for the first

letter of Ai is the first in the sequence periodic tests.
– aligned: Since the first letter of Ai is arranged against X B j , in this case the last letter

of B j−1 needs to be arranged against the last letter of Ai−1. Then by the definition
of the aligned test, B j = Ai and their first letters are at the same position. As by
the assumption about the periodic tests we know that Ai+1 = Ai and B j+1 = B j

we conclude that the test for the first letter of Ai is in fact aligned, contradiction.

Hence, by Lemma 27, the test for the last letter of B j−1 is either protected or mis-
aligned. Using the same accounting as in Lemma 35 we conclude that we spent at
most O(n) time on all periodic tests. �	
Proof of Lemma 26 It is left to show that indeed we do not need to take into the account
the time spent on comparing S(X) with S(X) on the other side of the equation.

Proof (proof of Lemma 26) Recall that we only test solutions of the form S(X) = ak .
Since we make the comparisons from left to the right in both S(A�) and S(B�) then

123

Algorithmica

when we begin comparing letters from one S(X) with the other S(X), we in fact
compare some suffix a� of ak with ak . Then we can skip those a� letters in O(1) time.
Consider the previous test, which needs to include at least one explicit letter. Whatever
type of test it was or whatever group of tests it was in, some operations were performed
and this took �(1) time. So we associate the cost of comparing S(X) with S(X) to
the previous test, increasing the running time by at most a multiplicative constant. �	

Open Problems

– Is it possible to remove the usage of range minimum queries from the algorithm
without increasing the running time?

– Can the recompression approach be used to speed up the algorithms for the two
variable word equations?

– Can one use recompression approach also to improve upper bound on the number
of solutions of an equation with a single variable (currently it is O(log #X)?

Acknowledgments I would like to thank A. Okhotin for his remarks about ingenuity of Plandowski’s
result, which somehow stayed in my memory; P. Gawrychowski for initiating my interest in compressed
membership problems and compressed pattern matching, exploring which eventually led to this work as well
as for pointing to relevant literature [14,16]; J. Karhumäki, for his explicit question, whether the techniques
of local recompression can be applied to the word equations; last not least, W. Plandowski for his numerous
comments and suggestions on the recompression applied to word equations. This work was supported by
Alexander von Humboldt Foundation.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2), 221–242
(1993). doi:10.1137/0222017

2. Charatonik, W., Pacholski, L.: Word equations with two variables. In: Abdulrab, H., Pécuchet, J.P.
(eds.) IWWERT, LNCS, vol. 677, pp. 43–56. Springer, Berlin (1991). doi:10.1007/3-540-56730-5_30

3. Dąbrowski, R., Plandowski, W.: Solving two-variable word equations. In: Díaz, J., Karhumäki, J.,
Lepistö, A., Sannella, D. (eds.) ICALP, LNCS, vol. 3142, pp. 408–419. Springer, Berlin (2004). doi:10.
1007/978-3-540-27836-8_36

4. Dąbrowski, R., Plandowski, W.: On word equations in one variable. Algorithmica 60(4), 819–828
(2011). doi:10.1007/s00453-009-9375-3

5. Jeż, A.: Faster fully compressed pattern matching by recompression. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP (1), LNCS, vol. 7391, pp. 533–544. Springer, Berlin (2012).
doi:10.1007/978-3-642-31594-7_45. Full version accepted for publication in Transactions on Algo-
rithms. doi:10.1145/2631920

6. Jeż, A.: Approximation of grammar-based compression via recompression. In: Fischer, J.,
Sanders, P. (eds.) CPM, LNCS, vol. 7922, pp. 165–176. Springer, Berlin (2013). doi:10.1007/
978-3-642-38905-4_17. Full version at http://arxiv.org/abs/1301.5842

7. Jeż, A.: Recompression: a simple and powerful technique for word equations. In: Portier, N., Wilke,
T. (eds.) STACS, LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2013). doi:10.4230/LIPIcs.STACS.2013.233

8. Jeż, A.: The complexity of compressed membership problems for finite automata. Theory of Comput.
Syst. (2014). doi:10.1007/s00224-013-9443-6

123

http://dx.doi.org/10.1137/0222017
http://dx.doi.org/10.1007/3-540-56730-5_30
http://dx.doi.org/10.1007/978-3-540-27836-8_36
http://dx.doi.org/10.1007/978-3-540-27836-8_36
http://dx.doi.org/10.1007/s00453-009-9375-3
http://dx.doi.org/10.1007/978-3-642-31594-7_45
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1007/978-3-642-38905-4_17
http://dx.doi.org/10.1007/978-3-642-38905-4_17
http://arxiv.org/abs/1301.5842
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233
http://dx.doi.org/10.1007/s00224-013-9443-6

Algorithmica

9. Jeż, A.: Context unification is in PSPACE. In: ICALP, LNCS, vol. 8573, pp. 244–255. Springer, Berlin
(2014). Full version at http://arxiv.org/abs/1310.4367

10. Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammar. In: Mayr, E.W., Portier, N. (eds.)
STACS 2014, LIPIcs, vol. 25, pp. 445–457. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. JACM 53(6), 918–936
(2006). doi:10.1145/1217856.1217858

12. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation
in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.) CPM, LNCS, vol. 2089, pp.
181–192. Springer, Berlin (2001). doi:10.1007/3-540-48194-X_17

13. Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found. Comput. Sci. 22(2),
345–375 (2011). doi:10.1142/S0129054111008088

14. Lohrey, M., Mathissen, C.: Compressed membership in automata with compressed labels. In: Kulikov,
A.S., Vereshchagin, N.K. (eds.) CSR, LNCS, vol. 6651, pp. 275–288. Springer, Berlin (2011). doi:10.
1007/978-3-642-20712-9_21

15. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matematicheskii Sbornik
2(103), 147–236 (1977) (in Russian)

16. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality tests in polylog-
arithmic time. Algorithmica 17(2), 183–198 (1997). doi:10.1007/BF02522825

17. Obono, S.E., Goralcik, P., Maksimenko, M.N.: Efficient solving of the word equations in one variable.
In: Prívara, I., Rovan, B., Ruzicka, P. (eds.) MFCS, LNCS, vol. 841, pp. 336–341. Springer, Berlin
(1994). doi:10.1007/3-540-58338-6_80

18. Plandowski, W.: Satisfiability of word equations with constants is in NEXPTIME. In: STOC, pp.
721–725. ACM (1999). doi:10.1145/301250.301443

19. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. JACM 51(3), 483–496
(2004). doi:10.1145/990308.990312

20. Plandowski, W.: An efficient algorithm for solving word equations. In: Kleinberg, J.M. (ed.) STOC,
pp. 467–476. ACM (2006). doi:10.1145/1132516.1132584

21. Plandowski, W., Rytter, W.: Application of Lempel–Ziv encodings to the solution of word equations.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP, LNCS, vol. 1443, pp. 731–742. Springer,
Berlin (1998). doi:10.1007/BFb0055097

22. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete
Algorithms 3(2–4), 416–430 (2005). doi:10.1016/j.jda.2004.08.016

123

http://arxiv.org/abs/1310.4367
http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1142/S0129054111008088
http://dx.doi.org/10.1007/978-3-642-20712-9_21
http://dx.doi.org/10.1007/978-3-642-20712-9_21
http://dx.doi.org/10.1007/BF02522825
http://dx.doi.org/10.1007/3-540-58338-6_80
http://dx.doi.org/10.1145/301250.301443
http://dx.doi.org/10.1145/990308.990312
http://dx.doi.org/10.1145/1132516.1132584
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1016/j.jda.2004.08.016

	One-Variable Word Equations in Linear Time
	Abstract
	1 Introduction
	1.1 Word Equations
	1.1.1 Two Variables
	1.1.2 One-Variable

	1.2 Recompression
	1.2.1 Recompression and One-Variable Equations

	1.3 Outline of the Algorithm
	A Note on the Computational Model

	2 Preliminaries
	2.1 One-Variable Equations
	2.2 Representation of Solutions
	Weight

	2.3 Recompression
	2.3.1 Preserving Solutions

	3 Main Algorithm
	Shortening of the Solutions
	Running Time

	4 Heuristics and Better Analysis
	4.1 Suffix Arrays and lcp Arrays
	4.2 Several Equations
	4.3 Small Solutions
	4.4 Storing of an Equation
	4.4.1 Storing Details
	4.4.2 Normal and Overdue Short Words
	4.4.3 Compression Running Time

	4.5 Testing
	4.5.1 Test Types
	4.5.2 Failed Tests
	4.5.3 Protected Tests
	4.5.4 Misaligned Tests
	One of the Words has Some of Its Letters Arranged Against an Explicit Word
	All Words have all their Letters Arranged Against Occurrences of X
	4.5.5 Aligned Tests
	4.5.6 Periodical Tests

	Open Problems

	Acknowledgments
	References

