
Artur Jeż

Gramatyki koniunkcyjne i uk lady

równań nad zbiorami liczb

naturalnych

Rozprawa doktorska napisana pod kierunkiem

prof. Krzysztofa Lorysia, Uniwersytet Wroc lawski
oraz

dr. hab. Alexandra Okhotina, University of Turku

Instytut Informatyki

Uniwersytet Wroc lawski
2010

ii

Artur Jeż

Conjunctive Grammars and

Equations over Sets of Natural

Numbers

Ph.D. Thesis

Supervisors:
prof. Krzysztof Loryś, University of Wroc law

and
dr. docent Alexander Okhotin, University of Turku

Institute of Computer Science
University of Wroc law

2010

iv

Contents

1 Introduction 1

1.1 Formal languages . 2

1.2 Language equations . 3

1.2.1 General language equations 4

1.2.2 Resolved language equations 5

1.3 Systems of equations over sets of numbers 5

1.4 Outline of the results . 7

2 Basic terminology and notation 9

2.1 General notation conventions 9

2.1.1 Formal languages . 9

2.1.2 Natural numbers . 10

2.2 Semantics of conjunctive grammars 10

2.3 Solutions of systems of equations 12

2.3.1 Least solutions of resolved systems 12

2.3.2 Solutions from natural numbers and positive natural
numbers . 13

2.4 Constants and solutions . 14

2.5 Representing numbers in positional notation 16

2.5.1 From strings to numbers 16

2.5.2 Symbolic addition and subtraction 16

2.6 Distributivity . 17

I Resolved equations over sets of natural numbers 19

3 Sets with regular positional notation 21

3.1 Toy example . 21

3.2 Regular notation . 24

3.2.1 Sets of numbers with two leading digits fixed 25

3.2.2 Any regular language 28

v

vi CONTENTS

4 Sets with trellis positional notation 45

4.1 Definition of trellis automata 46

4.2 A representation of trellis automata 49

II Unresolved equations over sets of natural numbers 65

5 Transforming resolved to unresolved 69

5.1 Two general translation lemmata 70

5.2 Sets with regular positional notation 74

5.3 Sets trellis positional notation 79

6 Completeness of systems of equations 97

6.1 Sketch . 98

6.2 Unresolved systems with {∪,∩,+} 99

6.3 Equations with ∪, + or ∩, + 107

7 Equations with addition only 113

7.1 Overview of the argument . 114

7.2 Encoding of sets . 114

7.3 Simulating operations . 118

7.4 Simulating a system of equations 121

7.5 Systems with finite constants 123

7.6 Afterthought . 125

III Decision Problems 127

8 Single nonterminal grammars 131

8.1 First example . 132

8.2 One-nonterminal conjunctive grammars 132

9 Equation with one variable 139

9.1 Equations ϕ(X) = ψ(X) with periodic constants 139

9.2 Equations ϕ(X) = ψ(X) with singleton constants 144

10 Membership for resolved equations 155

10.1 Related work . 155

10.1.1 Fixed membership problem 156

10.1.2 General membership problem 156

10.2 Arithmetisation of EXPTIME-completeness 157

10.3 The membership problem . 171

CONTENTS vii

11 Conjunctive grammars 175
11.1 Membership . 176
11.2 Equivalence . 178
11.3 Finiteness . 182
11.4 Co-finiteness . 184

12 General systems of equations 189

viii CONTENTS

Streszczenie

W niniejszej rozprawie rozważamy uk lady równań postaci ψ(~X) = ϕ(~X)
nad zbiorami liczb naturalnych. Równania te mog ↪a używać operacji sumy
mnogościowej, przeci ↪ecia oraz dodawania. S ↪a one równoważne uk ladom rów-
nań j ↪ezyków formalnych nad alfabetem jednoliterowym z operacjami sumy
mnogościowej, przeci ↪ecia oraz konkatenacji.

Ważnym przypadkiem szczególnym s ↪a uk lady równań w postaci rozwi ↪a-
zanej, tj. ~X = ϕ(~X). Odpowiadaj ↪ace im uk lady równań j ↪ezyków formalnych
w postaci rozwi ↪azanej s ↪a z kolei równoważne gramatykom koniunkcyjnym.
Pokażemy, że uk lady równań w postaci rozwi ↪azanej mog ↪a mieć najmniejsze
rozwi ↪azania, które nie s ↪a ci ↪agami arytmetycznymi. Równoważnie, gramatyki
koniunkcyjne generuj ↪a nieregularne j ↪ezyki nad alfabetem jednoliterowym,
w przeciwieństwie do gramatyk bezkontekstowych. Dowód tego twierdze-
nia jest konstruktywny: dla zadanego zbioru S konstruujemy uk lad równań
taki, że S jest jego najmniejszym rozwi ↪azaniem, o ile tylko notacje pozycyjne
liczb z S s ↪a rozpoznawane przez pewien specjalny automat komórkowy.

W przypadku ogólnym dowodzimy, że klasa rozwi ↪azań jedynych (naj-
mniejszych, najwi ↪ekszych) równań nad zbiorami liczb naturalnych pokrywa
si ↪e z klas ↪a zbiorów rekurencyjnych (odpowiednio: rekurencyjnie przeliczal-
nych, ko-rekurencyjnie przeliczalnych). Wynik ten zachodzi nawet dla rów-
nań używaj ↪acych tylko operacji sumy mnogościowej i dodawania lub tylko
przeci ↪ecia i dodawania. Twierdzenie to jest uogólnieniem znanego wyniku
dla uk ladów równań j ↪ezyków formalnych nad alfabetami wieloliterowymi.
Nast ↪epnie zajmujemy si ↪e uk ladami, w których jedyn ↪a dozwolon ↪a operacj ↪a
jest dodawanie. W ich przypadku odpowiednie klasy rozwi ↪azań s ↪a oblicze-
niowo zupe lne, tj. klasa rozwi ↪azań jedynych (najmniejszych, najwi ↪ekszych)
zawiera kodowanie wszystkich zbiorów rekurencyjnych (odpowiednio: reku-
rencyjnie przeliczalnych, ko-rekurencyjnie przeliczalnych).

Ponadto zajmujemy si ↪e z lożoności ↪a obliczeniow ↪a problemów decyzyj-
nych dla rozważanych uk ladów równań. Pokazalísmy, że problem przynależ-
ności do najmniejszego rozwi ↪azania uk ladu równań w postaci rozwi ↪azanej
jest EXPTIME-zupe lny. Inne problemy decyzyjne dla obu formalizmów s ↪a
w wi ↪ekszości nierozstrzygalne, nawet w przypadku ograniczonym do jednej
zmiennej i jednego równania.

ix

x CONTENTS

Abstract

Systems of equations ψ(~X) = ϕ(~X) over sets of natural numbers with union,
intersection and addition allowed, are studied in this thesis. Such systems
can be equally viewed as systems of language equations over a single-letter
alphabet and operations of union, intersection and concatenation.

The first to be considered is the subclass of systems of equations over
sets of numbers of the resolved form ~X = ϕ(~X). Their counterparts among
the language equations are the resolved systems of language equations over
a single-letter alphabet, which can be also seen as a conjunctive grammar
over a single-letter alphabet. It is shown that the resolved systems of equa-
tions over sets of natural numbers can have non-ultimately periodic sets as
the least solutions. Equivalently, conjunctive grammars over a single-letter
alphabet can generate non-regular languages, as opposed to context-free
grammars. To this end, an explicit construction of a resolved system with a
given set of numbers as the least solution is presented, provided that base-k
positional notations of numbers from this set are recognised by a certain
type of a real-time cellular automaton.

In the general case of systems of equations, it is shown that the class of
unique (least, greatest) solutions of such systems coincides with the class of
recursive (recursively enumerable, co-recursively enumerable, respectively)
sets. This result holds even when only union and addition (or only inter-
section and addition) are allowed in the system. This generalises the known
result for systems of language equations over a multiple-letter alphabet. Sys-
tems with addition as the only allowed operation are also considered, and it
is shown that the obtained class of sets is computationally universal, in the
sense that their unique (least, greatest) solutions can represent encodings
of all recursive (recursively enumerable, co-recursively enumerable, respec-
tively) sets.

The computational complexity of decision problems for both formalisms
is investigated. It is shown that the membership problem for the resolved
systems of equations is EXPTIME-hard. Many other decision problems
for both types of systems are proved to be undecidable, and their exact
undecidability level is settled. Most of these results hold even when the
systems are restricted to the use of one equation with one variable.

xi

xii CONTENTS

Acknowledgments

I would like to thank my co-advisors: Krzysiek Loryś, for his idea to investi-
gate conjunctive grammars, encouragement when it seemed to be pointless
and all the discussion about the problem; Alexander Okhotin, for all the
time we spent writing, thinking and reading and for good scientific ideas in
general.

My parents and brother, for their patience and support.
Ania, for her understanding in the crucial moment.
Friends, for their help in making leisure-time not work-time.
Polish Ministry of Science and Higher Education, for their kind and

generous support under grant MNiSW N N206 259035 2008–2010.

xiii

xiv CONTENTS

Chapter 1

Introduction

Systems of equations over sets of natural numbers are among the simplest
and most intuitive mathematical formalisms. Each equation is of the form

ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn) ,

where expressions ϕ and ψ may use Boolean operations and arithmetical
operations, applied pairwise to elements of sets, for example:

A+B = {a+ b | a ∈ A, b ∈ B} .

In this thesis, equations with only union and intersection as the allowed
Boolean operations and with addition as the only arithmetical operation are
studied.

Consider the following example of an equation with an unknown X ⊆ N,
with the operations of addition and union, and with two singleton constant
languages.

X = (X + {2}) ∪ {0} .

This equation defines even numbers inductively, by stating that 0 is an even
number, and that an even number plus two is an even number as well.
Formally, the equation has a unique solution, which is the set of all even
numbers.

Another example of a univariate equation

X + {1} = (X +X) ∪ {2}

no longer defines an explicit induction, as none of its sides is X (in the fol-
lowing, such equations shall be called unresolved, vs. resolved for equations
of the previous type). It has multiple solutions, among them the solutions
X = {1} and X = {1, 2, . . .}. Furthermore, every solution of this equa-
tion must contain 1 and be contained in {1, 2, . . .}, which makes these two
solutions the least and the greatest solutions of this equation.

1

2 CHAPTER 1. INTRODUCTION

As already shown by the above examples, an equation over sets of num-
bers may have a unique solution or multiple solutions, or sometimes no
solutions at all, as in the example X = X+{1}. There is a common outlook
on an equation as a formalism for defining its solutions. An equation with
a unique solution may be seen as a definition of this solution, and in case of
multiple solutions, least or greatest solutions (provided that they exist, as
in the second example above) may be similarly considered.

All the examples considered so far define ultimately periodic sets, and
in fact, every ultimately periodic set can be easily defined by a unique solu-
tion of an equation with finite constants. However, when one tries to write
any such system of equations, its solution somehow tends to be ultimately
periodic, and there seems not to be an easy way to avoid this. Prior to this
thesis, only one example of a non-periodic set defined by an equation over
sets of numbers has been known, and no general method of constructing any
further examples.

In this thesis a surprising result is shown: the class of unique solutions
of equations of the general form is exactly the class of recursive sets, that
is, the sets with an effectively decidable membership. For equations in the
resolved form X = ϕ(X), the computational power of their solutions is
limited, yet still much exceeds the class of ultimately periodic sets. Such
results belong to the domain of the theory of computations, and the methods
used to establish them come from formal language theory.

1.1 Formal languages

The idea of a formal language as a set accepted by some sort of an abstract
machine goes back to Turing. While in general Turing Machines recognise
exactly the recursive sets, one can limit their computational power in many
ways and thus obtain simpler abstract automata corresponding to different
models of computation with restricted resources.

The desire to process natural languages led Chomsky [9] to define formal
grammars. This is where the notations of grammars and derivations were
coined. The idea that abstract constructions of formal languages are means
to generate languages was stressed. In this approach, basic grammatical
terms, such as a noun or a verb, as well as more complex ones, such as a
noun phrase or a verb phrase, are denoted by some intermediate symbols
used in the rewriting, usually called non-terminal symbols. In this way the
syntax defined by a grammar is strongly connected with the semantics of
the studied object.

A parallel approach is motivated by programming languages and parser
design, where the language constructs have to be precisely defined so that
they can be used to swift and unambiguous text parsing. For example, the
ALGOL 60 committee devised, independently from Chomsky, the notion of

1.2. LANGUAGE EQUATIONS 3

a context-free grammar and used it in the specification of ALGOL program-
ming language [2, 3]. Since this type of study is very practically oriented,
it introduced the idea of efficiency, properties related to parsing and subtle
trade-offs between expressive power and complexity of decision problems,
mainly the membership problem.

These independent sources defined the most popular formalisms in formal
language theory: pushdown automata and context-free grammars, which
capture the two intuitive properties of formal languages: the acceptance by
some machine and the derivation, which is a top-down way of producing
a parse tree. Nevertheless, these are not the only formalisms known. The
language equations are an alternative approach. They achieve a great sim-
plicity and mathematical soundness of the semantics as well as robustness
at the slight expense of the intuition behind the formalism.

1.2 Language equations

Language equations are equations with formal languages as unknowns, their
most general form can be given as





ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn) ,

where each ϕi, ψi consist of variables, constants from some given class, and
operations on languages, such as concatenation, union, intersection, comple-
mentation, and possibly others. While language equations are an old formal-
ism, studied theoretically already in the early research of Conway [10], in the
recent years they have attracted new attention; this resulted in some unex-
pected results, including solving old open questions. This renewed interest
was summarised by Kunc in his recent survey [30].

Language equations have several useful properties. Their semantics is
intuitively clear and can be mathematically well formalised. One can trim
or extend them in many ways to obtain different classes of languages or
to adapt them to a particular application. Such changes do not affect the
way the semantics is given. Moreover, grammars and automata can be
translated to systems of language equations. While this does not introduce
any theoretical or practical novelty on its own, it often eases the proofs and
formalisation and provides an elegant common generalisation.

Despite all the motivation, language equations are far away from being
fully, or even partially, understood. The quest for their better understanding
is crucial. In particular, even a partial progress in a limited simple subcase
is important, as the gained experience might eventually help in dealing with
more general cases.

4 CHAPTER 1. INTRODUCTION

1.2.1 General language equations

When no restriction on the form of language equations is imposed, they
possess great computational power. It was observed quite early, that the so-
lution existence problem is undecidable, as shown by Charatonik [8]. Later it
was determined by Okhotin [47, 41, 42] that the family of sets representable
by unique (least, greatest) solutions of such equations is exactly the family
of recursive languages (recursively enumerable, co-recursively enumerable,
respectively). To understand the formulation of this theorem, a partial or-
der on solutions of a fixed system of equations is needed. In the general
case, a solution is a vector of languages (L1, . . . , Ln), and it is greater than
another solution (K1, . . . ,Kn), if Ki ⊆ Li for each i-th coordinates. The
least (greatest) solution is the one that is less (greater, respectively) than
any other solution. Though such extremal solutions do not always exist,
when they do, then have a computationally complete expressive power:

Theorem 1.1 (Okhotin [47, 41]). Consider a system of language equations
using union, intersection, concatenation and recursive constants that has
a unique (least, greatest) solution (L1, . . . , Ln). Then each component Li is
recursive (recursively enumerable, co-recursively enumerable, respectively).

Conversely, for every recursive (recursively enumerable, co-recursively
enumerable) language L ⊆ Σ∗ (with |Σ| ≥ 2) there exists a system using
concatenation, union and singleton constants (concatenation, intersection
and singleton constants) with the unique (least, greatest, respectively) solu-
tion (L, . . .).

This shows that language equations are computational devices equivalent
to Turing Machines and other established notions.

All hardness results shown in Theorem 1.1 use an explicit construction of
a system of language equations, with the language of computation histories
of a given Turing Machine as a unique solution. Then one can extract the
starting tape contents of a Turing Machine out of its computation history.
It should be stressed that both the representation of the computation his-
tory and the extraction of the tape contents essentially use a multiple-letter
alphabet.

Among the interesting results obtained for language equations, the one of
Kunc [29] should be mentioned, as it settled a question that remained open
for decades. In his book, Conway [10] asked, whether all greatest solutions
of equations of the form XL = LX for regular L are context free. For many
years even a non-regular solution could not be found, which actually raised a
conjecture, that all such equations have regular greatest solutions. Contrary
to that, Kunc [29] constructed an equation XL = LX with a finite L, which
has a co-recursively enumerable hard greatest solution.

1.3. SYSTEMS OF EQUATIONS OVER SETS OF NUMBERS 5

1.2.2 Resolved language equations

Among all language equations a particularly useful subclass consists of re-
solved language equations, i.e., the one of the form:





X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn) .

Such systems possess several nice properties. First of all, if the expressions
ϕi are monotone, the least solution exists, which is assured by the Tarski’s
Fixpoint Theorem [52]. Moreover, only slight restrictions on the form of ϕi’s
are needed to guarantee that the least solution is in fact the unique solution
not containing ε (i.e., the empty word) in any of its coordinate.

Their second key property was discovered by Ginsburg and Rice [13],
who gave a semantics of context-free grammars by using resolved language
equations with concatenation and union as the only operations. In fact
this semantics is a simple (syntactic) transformation between context-free
grammars and resolved language equations using union and concatenation.
Such a transformation supports the claim that there is a strong connection
between resolved language equations and grammars.

This connection was further explored by A. Okhotin, who defined con-
junctive grammars. They can be viewed as an extension of context-free
grammars by a possibility of an unrestricted intersection in the body of ev-
ery rule. Informally speaking, a string is generated by a conjunction of rules
if and only if it is produced by every conjunct.

The particular importance of conjunctive grammars among other exten-
sions of context-free grammars lies not in the possibility of the intersection
itself, but in the semantics. It can be given not only in terms of string rewrit-
ing, but also in terms of language equations. In fact this is the (unique)
semantics generalising the one of Ginsburg and Rice [13] to the language
equations using union, intersection and concatenation. And this is the ma-
jor justification both for conjunctive grammars and for resolved systems of
language equations.

It should be noted that the conjunctive grammars inherit almost all
good parsing properties of context-free grammars, while having much larger
expressive power, stretching beyond the finite intersection of context-free
languages.

1.3 Systems of equations over sets of numbers

Consider language equations over a single letter alphabet. By a trivial iso-
morphism an ←→ n, unary languages can be regarded as sets of natural

6 CHAPTER 1. INTRODUCTION

Figure 1.1: The Leiss construction depicted graphically. The black boxes
represent the numbers from the unique solution, while the white ones rep-
resent the numbers outside the solution.

numbers, and language equations over a single-letter alphabet become equa-
tions over sets of numbers. Concatenation of languages accordingly turns
into addition (or sum) of sets

S + T = {m+ n |m ∈ S, n ∈ T} .

Such equations constitute a basic mathematical object on its own, the study
of which can be traced up to the seminal paper of Stockmeyer and Meyer [51],
who studied integer expressions, i.e., regular expressions (though with com-
plementation) over unary languages. Their work was continued by Yang [56],
who studied integer circuits, that is expressions which may share the subex-
pressions; recursive calls are still not allowed though. A very systematic and
thorough study of complexity of such problems was conducted by McKen-
zie and Wagner [34]. As such expressions (and circuits) define only finite
sets, they were studied mainly with complexity of their decision problems
in mind, while their expressive power was not investigated, as there was
virtually nothing to investigate.

Equations over sets of numbers are a more general formalism, and its
expressive power seems to be related to the allowed Boolean operations. For
example, it is relatively easy to see that for resolved equations using union
and addition, only ultimately periodic sets can be obtained (or, in terms of
formal languages, that unary context-free languages are regular [13]).

Constructing any system of equations, even an unresolved one, with
a non-regular unique solution has proved to be a non-trivial task; the first
example of such an equation using the operations of concatenation and com-
plementation was presented by Leiss [31], in fact this was a single resolved
equation.

Example 1.1 (Leiss [31]). For every expression ϕ, denote 2ϕ = ϕ+ϕ. Then
the unique solution of the equation

X = 2
(

2
(
2X
))

+ {1}

is {n | ∃i ≥ 0 : 23i ≤ n < 23i+2} =

= {n | base-8 notation of n starts with 1, 2 or 3} .

1.4. OUTLINE OF THE RESULTS 7

Knowing this result, and seeing the expressive power of conjunctive
grammars, Wotschke [55] asked the question, whether unary conjunctive
grammars generate non-regular languages, or equivalently, whether there
exists a non-periodic least solution of resolved system of equations over sets
of numbers using union, intersection and addition.

This question remained open for some time, in fact it was considered
by A. Okhotin [44] as one of the most important problem in the field. In
particular, a negative answer was conjectured.

Contrary to that, I found an example of such a system, with the least
solution {4n |n ∈ N}. This thesis is a result of a study started by this single
simple result.

It should be noted, that all the previous result by Stockmeyer and Meyer,
Yang, McKenzie and Wagner can be rewritten as resolved systems of equa-
tions over sets of numbers and apparently no work was carried for general
systems. This may look strange, as in case of language equations over gen-
eral alphabet their true expressive power was found only for unresolved
equations, see Theorem 1.1. It seems natural and very tempting to ask,
what is the complexity of general systems of equations over sets of num-
bers? A recursive upper bound for unique solution can be easily deduced
from Theorem 1.1, but it is hard to believe that this level of complexity can
be achieved. It is shown that such a lower bound in fact holds. This raises
even more questions—for example, can any non-trivial set be obtained with
equations with addition only? The result of Kunc [29] demonstrates that
this is true for language equation with concatenation only, but this construc-
tion is very complicated and seems impossible to replicate. Still, some non
trivial partial results are provided in the later chapters.

1.4 Outline of the results

This thesis deals with various aspects of equations over sets of numbers.
Both resolved and general systems of equations are considered, restricted
to usage of monotone Boolean operations, i.e., union and intersection. The
former systems may be equally interpreted as unary conjunctive grammars.
Results concerning expressive power, computational complexity as well as
descriptional complexity of such systems are provided.

Firstly, the expressive power of resolved systems of equations is inves-
tigated, as the first results in whole area emerged there. While matching
bounds are not provided, still the lower bound obtained is quite unexpected
and its application is crucial for the later results to hold. Being more pre-
cise, for a set S with language LS of base-k positional notations of numbers
from S, an effective construction of resolved system of equations with least
solution S is supplied, assuming L belongs to a certain class of formal lan-
guages. This class has an automaton characterisation: it is recognised by a

8 CHAPTER 1. INTRODUCTION

certain subclass of real-time cellular automata. It is relatively rich, as it is
closed under all Boolean operations and properly contains linear context-free
grammars.

The first example of a non-regular least solution and representation of
sets with regular positional notation is the author’s independent work [19],
while the general representation of sets with positional notation recognised
by real time cellular automata is a joint work with the advisor, Alexander
Okhotin [24]

Secondly, the interest is switched to the expressive power of general sys-
tems. Matching lower and upper bound are provided, they are the same as
the bounds for general language equations from Theorem 1.1, i.e., the class
of unique (least, greatest) solutions of such systems of equations over sets of
natural numbers coincides with the class of recursive (recursively enumer-
able, co-recursively enumerable, respectively) sets. This part of the thesis is
based on author’s joint work with the advisor, Alexander Okhotin [21, 22].

Then the descriptional complexity of such systems is investigated. That
is, the attempts are made to understand how limiting the use of operations
and variables affects the complexity of the solutions. Contrary to the intu-
ition, these systems are as hard as the general ones already when limited
to one variable and one equation. The general equations are also equally
hard when allowed to use addition only. This part of the thesis is based on
author’s joint work with the advisor, Alexander Okhotin [23, 25].

Finally the computational complexity of the decision problems for these
formalisms is studied. As soon as their expressive power is understood well,
the complexity of most common decision problems for both resolved and
unresolved equations is easily settled. Among surprising result, the member-
ship problem for the resolved systems is shown to be EXPTIME-complete,
while most of other decision problems for both resolved and unresolved sys-
tems, such as emptiness, equivalence, finiteness etc., are shown to be un-
decidable. This part of the thesis is based on author’s joint work with the
advisor, Alexander Okhotin [20, 21, 22, 24].

Statement of originality

The results presented in this thesis are original and are either author’s own
work or joint work with the advisor, Alexander Okhotin. All of them were
either accepted at refereed conferences; or printed or accepted for printing
in refereed journals.

Results by other authors are properly cited.

Chapter 2

Basic terminology and

notation

In this chapter, the basic terminology and the general facts about conjunc-
tive grammars, language equations and equations over sets of natural num-
bers are stated.

2.1 General notation conventions

2.1.1 Formal languages

The standard notation for formal languages is used, i.e., Σ denotes a fi-
nite alphabet, its elements are called letters. A word over Σ is a finite
sequence of letters from Σ, the empty word is denoted by ε. Any set
of words over Σ is called a language. The usual set-theoretic operations,
such as union, intersection and complementation, are applied to languages
with the standard meaning. Concatenation is denoted by · and defined as
L · L′ = {ww′ | w ∈ L,w′ ∈ L′}. For a fixed language L, its concatenation
with itself is shortened to: L0 = {ε} and Lk = Lk−1 · L. The Kleene star
denotes the set of words obtained by a finite concatenation of words from a
given language L: L∗ =

⋃
i≥0 L

i. An operation inverse to concatenation of
a word is the quotient with a word

Lw−1 = {w′ | w′w ∈ L}, w−1L = {w′ | ww′ ∈ L} .

It is extended to quotient with a language in a standard way.

LT−1 = {w′ | w′w ∈ L,w ∈ T}, T−1L = {w′ | ww′ ∈ L,w ∈ T} .

Single-word languages {w} are abbreviated to w, whenever there is no
danger of confusion. By wr the word w written in reverse is denoted.

9

10 CHAPTER 2. BASIC TERMINOLOGY AND NOTATION

2.1.2 Natural numbers

The set of natural numbers N = {0, 1, 2, . . .} is assumed to contain zero. A
set of natural numbers S ⊆ N is ultimately periodic if there exist numbers
d ≥ 0 and p ≥ 1, such that n ∈ S if and only if n+ p ∈ S, for every n ≥ d.
Otherwise, S is non-periodic. Note that S is ultimately periodic if and only
if the corresponding language L = {an | n ∈ S} ⊆ a∗ is regular.

By default, systems of equations are assumed to be over sets of numbers,
and use operations ∩, ∪ and +. The allowed constants are usually the
singletons, unless stated otherwise.

To simplify the notation, the following precedence of operations is as-
sumed: addition has the highest precedence, followed by the intersection
and with the union having the least precedence. For example:

Y ∪A+B ∩X

should be parsed as
Y ∪

(
(A+B) ∩X

)
.

A system of equations is a system of the form




ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn) ,

where the unknowns Xi are subsets of N, while ϕj and ψj are expressions
using union, intersection and addition, as well as singleton constants. A solu-
tion of such a system is a vector (S1, . . . , Sn), such that substituting Xi = Si

for i = 1, . . . , n in the system turns each equation into an equality.
A solution (S1, . . . , Sn) is the least solution (greatest, unique) if for any

solution (S′
1, . . . , S

′
n) of the system satisfies Si ⊆ S′

i (Si ⊇ S′
i, Si = S′

i,
respectively) for each i = 1, . . . , n. Classes of least, greatest and unique
solutions are of a particular interest, since they are already known to have
good properties, as demonstrated by Theorem 1.1 or Kunc’s results [29].

2.2 Semantics of conjunctive grammars

As already mentioned, informally speaking, the conjunctive grammars ex-
tend the context-free grammars by allowing an operation of unrestricted
intersection in the body of each production. Presenting it more formally:

Definition 2.1 (Okhotin [36]). A conjunctive grammar is a quadruple G =
(Σ, N, P, S), in which Σ and N are disjoint finite nonempty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules,
each of the form

A→ α1& . . .&αn (with A ∈ N , n ≥ 1 and α1, . . . , αn ∈ (Σ ∪N)∗) (2.1)

2.2. SEMANTICS OF CONJUNCTIVE GRAMMARS 11

and S ∈ N is a nonterminal designated as the start symbol.

A rule (2.1) ‘states’ that if a string is generated by each αi, then it is
generated by A. This semantics can be formalised using term rewriting,
which generalises Chomsky’s string rewriting [9].

Definition 2.2 (Okhotin [36]). Given a conjunctive grammar G, consider
terms over concatenation and conjunction with symbols from Σ∪N as atomic
terms. The relation =⇒ of immediate derivability on the set of terms is
defined as follows:

• Using a rule A → α1& . . .&αn, a subterm A ∈ N of any term ϕ(A)
can be rewritten as ϕ(A) =⇒ ϕ(α1& . . .&αn).

• A conjunction of several identical strings can be rewritten by one such
string: ϕ(w& . . .&w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term ϕ is LG(ϕ) = {w | w ∈ Σ∗, ϕ =⇒∗ w}.
The language generated by the grammar is L(G) = LG(S) = {w | w ∈
Σ∗, S =⇒∗ w}.

There are advantages in such a semantics. Firstly, it is easy to un-
derstand for a human. Secondly, it refers to the well-established grammar
derivation defined by Chomsky [9]. Unfortunately, it has some serious draw-
backs as well. Firstly, this particular variant of rewriting may seem to be
chosen in an arbitrary way, as opposed to the intuitiveness of the context-
free grammars. Secondly, while term rewriting is good for understanding
and in showing the production of a word, it is very cumbersome in proving
properties of the grammars, in particular that there is no derivation. For
these reasons, another semantics is employed—it is given with the help of
language equations. With each non-terminal, a language variable is asso-
ciated, and the grammar is represented as a system of language equations.
The semantics is given by the least solution of this system. The approach of
giving semantics of grammars by language equations was started by Gins-
burg and Rice [13], who presented an alternative semantics for context-free
grammars.

Definition 2.3 (Okhotin [44]). Let G = (Σ, N, P, S) be a conjunctive gram-
mar. The associated system of language equations is the following system in
variables N :

A =
⋃

A→α1&...&αn∈P

n⋂

i=1

αi , for all A ∈ N .

Let (. . . , LA, . . .) be its least solution and denote LG(A) := LA for each
A ∈ N . Define L(G) := LG(S).

12 CHAPTER 2. BASIC TERMINOLOGY AND NOTATION

It should be noted, that this semantics gives a clear idea why conjunc-
tive grammars should be viewed as a natural extension of context-free gram-
mars: they are the only extension that generalises the semantics based upon
language equations. Moreover, the two semantics do not differ, i.e., it is
relatively easy to prove that the language of the grammar is the same under
both semantics.

The other reason for supporting the semantics given by language equa-
tions is that it can be generalised even to grammars with negation [39]. This
topic, however, is not covered in this thesis at all.

As this thesis deals with equations over subsets of natural numbers, they
can be equally seen as language equations over a single-letter alphabet. The
latter approach is quite cumbersome in general, but in some specific cases
unary conjunctive grammars are used, if a presentation of the result using
this formalism is a little easier.

2.3 Solutions of systems of equations

There is a natural partial order on the sets of solution of a given system. A
solution (S1, . . . , Sn) is greater than (S′

1, . . . , S
′
n), denoted as (S1, . . . , Sn) ⊇

(S1, . . . , Sn) if for each i = 1, . . . , n it holds that Si ⊇ S′
i. Note that this

order justifies the previously used names of least and greatest solutions, as
a solution (S1, . . . , Sn) is the least solution according to this order if for any
solution (S′

1, . . . , S
′
n) of the system it holds that

(S1, . . . , Sn) ⊆ (S1, . . . , Sn) .

It is the greatest solution according to this order if for any solution
(S′

1, . . . , S
′
n) it holds that

(S1, . . . , Sn) ⊇ (S1, . . . , Sn) .

2.3.1 Least solutions of resolved systems

With every resolved system of equations of the form

X = ϕ(X) ,

where X is a vector of k variables, an operator ϕ :
[
2N
]k
7→
[
2N
]k

can be
associated. Then every solution is a fixpoint of such an operator and vice-
versa, in particular, the least fixpoint is the least solution of the system.
While for an arbitrary operator ϕ this is just a rephrasing, for some special
types of operators this is quite meaningful.

An operator is monotone, if

A ⊆ A′ =⇒ ϕ(A) ⊆ ϕ(A′) ,

2.3. SOLUTIONS OF SYSTEMS OF EQUATIONS 13

and ∪-continuous, if for a sequence {An}n≥1 with An ⊆ An+1 it holds that

⋃

n

ϕ(An) = ϕ(
⋃

n

An) .

It can be routinely verified that if an operator is a composition of mono-
tone (∪-continuous) operators, it is itself monotone (∪-continuous).

By well-known Tarski’s Fixpoint Theorem [52], each monotone operator
has the least fixpoint. Still, this does not give any construction of this
operator. An older Kleene’s Fixpoint Theorem [28] can be used instead. It
deals with monotone and ∪-continuous operators and provides a constructive
version of the Tarski’s Fixpoint Theorem:

Theorem 2.1. The least fixpoint of a monotone and ∪-continuous operator
is given by

∞⋃

i=0

ϕi(∅, . . . ,∅) . (2.2)

In particular, it is easily seen that for
[
2N
]k

, each operation ∪, ∩ and
+ is monotone and ∪-continuous. In fact, the generalisation for languages
is true as well, i.e., ∪, ∩ and ·, are monotone and ∪-continuous. Thus the
least solution for resolved systems of equations is given by (2.2).

It should be noted, that the formula given by Kleene (2.2) in fact re-
sembles the derivation. That is, a number is in set on the jth coordinate of
ϕi(∅, . . . ,∅) if and only if it can be derived from a proper terminal using a
derivation with a derivation tree of height at most i.

2.3.2 Solutions from natural numbers and positive natural

numbers

In many proofs in the following chapters, it is shown that a certain vector
of sets is a solution of a given resolved system of equations. Usually this
is not the end of the proof, as it remains to show that this solution is the
least solution of the system. It turns out, that for a relatively large class
of resolved systems there is a unique solution in positive numbers, which is
also the least solution in all natural numbers. Informally speaking, the key
property is the lack of 0 on the right-hand sides of the equations.

Definition 2.4. Consider expressions with ∪, ∩ and +. Such an expression
is called positive if it is of the following inductively defined form:

1. a constant set not containing 0 is a positive expression;

2. a sum ϕ+ψ of any two expressions, in which no constant set contains
0, is a positive expression;

14 CHAPTER 2. BASIC TERMINOLOGY AND NOTATION

3. a union or intersection of two positive expressions is a positive expres-
sion.

For a system of equations with resolved positive expressions on the right-
hand sides, there is always a unique positive solution:

Lemma 2.1. Let Xi = ϕi(X1, . . . ,Xn) be a system of equations over natural
numbers, in which every ϕi is a positive expression. Then it has a unique
solution in sets of positive integers.

This solution is the least solution in sets of natural numbers

The class of positive systems is a variant of the notion of a proper system
of language equations defined by Autebert et al. [1]. Lemma 2.1 is proved
by a straightforward use of the same methods. Such a proof can be easily
imagined using the derivation approach: for grammars with which such
systems are associated, an ε can be derived either as concatenation of ε’s or
from a constant; both are not possible.

It should be noted that not much is lost by considering only proper
systems, as even for conjunctive grammars one can transform each grammar
to an equivalent grammar in binary normal form [36], which is a variant of
the Chomsky normal form. The systems associated with unary conjunctive
grammars in the binary normal form constitute a subclass of proper systems.

Definition 2.5 (Okhotin [36]). A conjunctive grammar G = (Σ, N, P, S)
such that ε /∈ L(G) is said to be in the binary normal form, if each rule in
P is of the form

A→ B1C1& . . .&BmCm, where m ≥ 1;A,Bi, Ci ∈ N

A→ a, where A ∈ N, a ∈ Σ .

Theorem 2.2 (Okhotin [36]). For each conjunctive grammar G =
(Σ, N, P, S) with ε /∈ L(G) there exists and can be effectively constructed
a conjunctive grammar G0 = (Σ, N0, P0, S0) in the binary normal form,
such that L(G) = L(G0).

2.4 Constants and solutions

In the thesis, the majority of lower bounds are shown for systems of equations
using only singleton constants. Nevertheless, the actual constructions use
a large number of complicated constants, which are represented separately
as a solution of some systems of equations using only singleton constants.
Such an approach looks natural and intuitively correct, but still it shall be
stated formally for completeness.

Also, in the transformations of equations it is usually assumed that the
equations to be transformed are of a simple form, while in reality long and

2.4. CONSTANTS AND SOLUTIONS 15

complicated equations are constructed. It should be obvious that introduc-
ing new variables and splitting the equations solves the problem; again, for
completeness this is stated explicitly.

Nevertheless, as all the propositions given here are in fact much more
meta-theorems than theorems, they are not going to be addressed directly,
but used implicitly instead.

The first two propositions state that values of the unique (least, greatest)
solutions may be substituted for the corresponding variables and vice-versa.

Proposition 2.1. Let a system

ϕt(X1, . . . ,Xm, Y1, . . . , Yn) = ψt(X1, . . . ,Xm, Y1, . . . , Yn)

have a unique (least, greatest) solution Xi = Si, Yj = Tj . Then the system

ϕt(S1, . . . , Sm, Y1, . . . , Yn) = ψt(S1, . . . , Sm, Y1, . . . , Yn)

in variables {Y1, . . . , Yn} has the unique (least, greatest, respectively) solution
Yj = Tj .

Proposition 2.2. Let a system

ϕt(S1, . . . , Sm, Y1, . . . , Yn) = ψt(S1, . . . , Sm, Y1, . . . , Yn)

have a unique (least, greatest) solution Yj = Tj and a system

ϕ′
`(X1, . . . ,Xm) = ψ′

`(X1, . . . ,Xm)

have a unique (least, greatest) solution Xi = Si. Then the system

ϕt(X1, . . . ,Xm, Y1, . . . , Yn) = ψt(X1, . . . ,Xm, Y1, . . . , Yn) ,

ϕ′
`(X1, . . . ,Xm) = ψ′

`(X1, . . . ,Xm)

has the unique (least, greatest, respectively) solution Xi = Si and Yj = Tj.

The other transformation is a decomposition of complex sides of the
equation by introducing extra variables:

Proposition 2.3. Let (S1, . . . , Sm) be the unique (least, greatest) solution
of a system of equations in variables (X1, . . . ,Xm) using union, intersection
and addition, and let

ϕ(X1, . . . ,Xm;ψ(X1, . . . ,Xm)) = η(X1, . . . ,Xm)

be one of its equations. Then a system with a new variable Y , a new equation
Y = ψ(X1, . . . ,Xm), and with the above equation replaced by

ϕ(X1, . . . ,Xm;Y) = η(X1, . . . ,Xm)

has the unique (least, greatest, respectively) solution

(S1, . . . , Sm;ψ(S1, . . . , Sm)) .

16 CHAPTER 2. BASIC TERMINOLOGY AND NOTATION

2.5 Representing numbers in positional notation

2.5.1 From strings to numbers

While all the equations defined in this thesis deal with numbers as they are,
the principal outlook on these numbers considers their base-k positional
notation, for a suitable k. For example, the very first non-trivial example of
a least solution of a resolved system of equations defines the set {4n |n ∈ N},
i.e., the set of all numbers that, written in base-4 notation, consist of 1

followed by some zeroes. For this reason, a special notation for sets of
natural numbers is employed. Fix a base k ≥ 2 and define the alphabet
Σk = {0, 1, 2, . . . , k − 1} of k-ary digits. Note that a special font is used to
distinguish them from numbers. Nevertheless, a standard order on numbers
is sometimes applied to them to shorten the notation.

Every string w = dn−1 . . . d1d0 with di ∈ Σk represents the following
number:

(w)k = (dn−1 . . . d1d0)k =

n−1∑

i=0

di · k
i .

In particular, the empty string ε denotes the number 0. Accordingly, every
language L ⊆ Σ∗

k defines a certain set of numbers:

(L)k =
{

(w)k

∣∣ w ∈ L
}
.

Note that every number has infinitely many notations with different number
of leading zeroes. In some cases it is required that no notations have leading
zeroes, that is, L ⊆ Σ∗

k \ 0Σ∗
k. There is a bijection between such strings

(languages) and non-negative integers (sets thereof).
To simplify the notation and case analysis, the base-k numerical values

of the words outside Σk are considered, i.e., also the ones using digits greater
than k− 1 and smaller than 0. They do not denote proper numbers and are
included only to streamline the analysis.

2.5.2 Symbolic addition and subtraction

The technical proofs in the thesis employ symbolic addition and subtraction.
They are symbolic in the sense that they are applied to strings and not to
actual numbers. The symbolic addition of w′ is defined as w′′ = w�w′, where
w′′ is the unique string such that (w)k +(w′)k = (w′′)k and |w| = |w′′|. Note
that the second condition implicitly states that (w′)k < k|w|−(w)k, i.e., that
the result fits in the w’s number of digits. This operation is never applied
to words not fulfilling this condition. For example, in decimal notation,
0099� 1 = 0100.

The symbolic subtraction is defined for a pair of words as w′′ = w � w′,
where (w′′)k = (w)k − (w′)k and |w′′| = |w|. This operation is applied only
to w, w′ such that (w)k ≥ (w′)k, i.e., that the result has meaning. One can

2.6. DISTRIBUTIVITY 17

write, e.g., ((u� v)0∗)k for the set of all numbers with their k-ary notation
beginning with the fixed digits determined by the given difference, followed
with any number of zeroes.

Symbolic addition and subtraction are extended to languages:

L� w′ = {w � w′ | w ∈ L, (w′)k + (w′)k < k|w|} ,

L� w′ = {w � w′ | w ∈ L, (w)k ≥ (w′)k} ,

they are both extended only to addition (subtraction) of a single word, as
only such operation is ever used in this thesis. Those operations obviously
preserve regularity, hence they can be used inside regular expressions for
sets of positional notations, and the sets thus defined remain regular.

2.6 Distributivity

The majority of equations constructed in this thesis use expressions with a
particular property: they are distributive over infinite union, in the sense
that the value of an expression for a set S can be evaluated by substituting
all singletons {n} ⊆ S into the expression, and then taking the union of all
results. This allows treating such an expression in a simplified manner—
whenever showing something about it, it is enough to calculate the value of
this expression on a single number from the considered set. In fact, while
the properties of the first equations given early in this thesis will be shown
by an exhaustive case analysis, the later equations will be devised so that
the majority of expressions are in fact (partial) functions on numbers.

The following sufficient condition of distributivity covers all distributive
expressions developed in this thesis.

Lemma 2.2. Let ϕ(X) be an expression defined as a composition of the
following operations:

• the variable X;

• constant sets;

• union;

• intersection with a constant set;

• addition of a constant set.

Then ϕ is distributive over infinite union, that is, ϕ(X) =
⋃

n∈X ϕ({n}).

Proof. Induction on the structure of ϕ.

Basis. If ϕ(X) = X or ϕ(X) = C ⊆ N, the statement trivially holds.

18 CHAPTER 2. BASIC TERMINOLOGY AND NOTATION

Induction step I. Let ϕ(X) = ψ(X)∪ξ(X). By the induction hypothesis,
ψ(X) =

⋃
n∈X ψ({n}) and ξ(X) =

⋃
n∈X ξ({n}). Therefore

ϕ(X) = ψ(X) ∪ ξ(X)

=
⋃

n∈X

ψ({n}) ∪
⋃

n∈X

ξ({n})

=
⋃

n∈X

(
ψ({n}) ∪ ξ({n})

)

=
⋃

n∈X

ϕ({n}) .

Induction step II. If ϕ(X) = ψ(X) ∩ C for some C ⊆ N, then, by the
induction hypothesis, ψ(X) =

⋃
n∈X ψ({n}). Since union and intersection

are distributive,

ϕ(X) = ψ(X) ∩C

=

(
⋃

n∈X

ψ({n})

)
∩ C

=
⋃

n∈X

(
ψ({n}) ∩C

)

=
⋃

n∈X

ϕ({n}) .

Induction step III. The case of ϕ(X) = ψ(X) +C is handled similarly to
the previous case, using the distributivity of union and concatenation.

Part I

Resolved equations over sets

of natural numbers

19

Chapter 3

Sets with regular positional

notation

It was already found by Leiss [31](Example 1.1) that equations over sets of
natural numbers can have non-periodic sets as the unique solutions. Unfor-
tunately, the construction of this example was rather cryptic and gave no
idea behind it. Moreover it seemed to base on the structure of the obtained
set. In particular there was no generalisation of this example to any larger
class of sets. Last not least, it essentially used complementation.

After hearing about conjunctive grammars, D. Wotschke asked
A. Okhotin [55] the question of the expressive power of conjunctive gram-
mars over a single letter alphabet. This question was suppose to settle,
whether conjunctive grammars possess more expressive power than context-
free grammars even in the simplest case of a single-letter alphabet, as context
free grammars over such an alphabet generate only regular languages. Due
to problems with generalising Leiss example and failed attempts to find any
other approach, A. Okhotin conjectured that only regular languages can
be generated by unary conjunctive grammars [44], similarly to the case of
context-free grammars.

In this chapter the contrary claim is shown: a construction of a resolved
system of equations with non-periodic least solution is presented. While this
example presents a relatively simple set, the approach and understanding
devised as a by-product is much more important. In particular, this con-
struction can be generalised to sets of the form (L)k for regular L. Moreover,
this construction is the cornerstone of the rest of this thesis.

3.1 Toy example

The first example of unary conjunctive grammar generating non-regular lan-
guage actually comes from attempts of proving that each such language is
regular. It was an intention to show that a language of the form {a2n

|n ≥ 0}

21

22 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

cannot be generated by a conjunctive grammar. At the first glance there is
no obvious reason to forbid a production A → A · A to be intersected with
some other (specially designed) set, so that only concatenation of two words
of the same length could pass through the following intersection; this would
yield L(A) = {a2n

| n ∈ N}.
So some attempts to construct such a grammar, despite the relatively

strong belief that it is not possible, were made. It should be stressed that
they were made in order to understand what prevents them from existence.
In particular, one attempt was to create grammar generating languages
{ai·2n

| n ≥ 0} for various i in parallel, i.e., by different non-terminals. This
approach was a little cumbersome, so power base was replaced with 3 and
eventually with 4. After some unsuccessful attempts, the following example
of grammar (presented here in a form of a resolved system of equations) was
found.

Theorem 3.1. The least solution of the system





X1 = X2+X2 ∩ X1+X3 ∪ {1}
X2 = X12+X2 ∩ X1+X1 ∪ {2}
X3 = X12+X12 ∩ X1+X2 ∪ {3}
X12 = X3+X3 ∩ X1+X2 ,

(3.1)

is
((10∗)4, (20

∗)4, (30
∗)4, (120

∗)4) .

This is the unique solution of this system in sets of positive integers.

It is enough to show that these sets are a solution. The proof follows
by a simple principle: each sum of two sets consists of numbers with a few
non-zero digits (in base-4 notation). Intersection of two such sum filters out
numbers with unwanted base-4 notation.

proof of Theorem 3.1. To see that this vector is indeed a solution, let us
substitute the values Xi = (i0∗)4 into the equation for Xi. Then the first
sum can be transformed as follows:

X2 +X2 = (20∗)4 + (20∗)4

= (10+)4 ∪ (20∗20∗)4 ,

and similarly the second sum equals

X1 +X3 = (10∗)4 + (30∗)4

= (10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4 .

Then their intersection is

(X2 +X2) ∩ (X1 +X3) = (10+)4 ,

3.1. TOY EXAMPLE 23

and after taking union with {1}, exactly (10∗)4 = X1 is obtained.

Similar calculations are done for other equations:

X12 +X2 = (120∗)4 + (20∗)4

= (20∗120∗)4 ∪ (320∗)4 ∪ (20+)4 ∪ (120∗20∗)4 ,

X1 +X1 = (10∗)4 + (10∗)4

= (10∗10∗)4 ∪ (20∗)4 .

Thus

X12 +X2 ∩X1 +X1 ∪ {2} = (20+)4 ∪ {2}

= (20∗)4 .

For the third equation similar calculations follow:

X12 +X12 = (120∗)4 + (120∗)4

= (120∗120∗)4 ∪ (1320∗)4 ∪ (30+)4 ,

X1 +X2 = (10∗)4 + (20∗)4

= (20∗10∗)4 ∪ (10∗20∗)4 ∪ (30∗)4 .

And hence

X12 +X12 ∩X1 +X2 ∪ {3} = (30+)4 ∪ {3}

= (30∗)4 .

Checking the last equation

X3 +X3 = (30∗)4 + (30∗)4

= (30∗30∗)4 ∪ (120∗)4 ,

X1 +X2 = (10∗)4 + (20∗)4

= (20∗10∗)4 ∪ (10∗20∗)4 ∪ (30∗)4 .

After the intersection it follows that

X3 +X3 ∩X1 +X2 = (120∗)4 .

It remains to show that the given solution is the unique solution of this
system in sets of positive numbers and the least solution in the sets of natural
numbers. This follows from the general form of the right-hand sides of this
system, in which all occurrences of variables are in sums of two variables,
and no constant set contains 0. Thus Lemma 2.1 can be applied and the
desired properties hold.

24 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

3.2 Regular notation

The construction presented in Section 3.1 effectively manipulates the leading
digits of the numbers in order to construct numbers of a required form. It
is natural to ask, how far this method can be extended, i.e., what sets
can be constructed in this way. An easy generalisation of this example gives
construction of sets of the form (ij0∗)k, for ‘big enough’ k > 1 and i, j ∈ Σk,
i 6= 0.

Then this approach is generalised to a much larger case of sets of the
form (L)k for a regular set L (with some conditions on L imposed). This
construction uses the sets of natural numbers of the form (ij0∗)k, treating
them like constants, since it is already know how to construct system with
such a solution.

It is technically much easier to deal with larger values of k, as for small k
there is only a small set of digits and hence it is harder to filter out unwanted
results in intersection. In the following mainly ‘big enough’ k are considered,
that is the proofs focus on k ≥ 9. Still, this is not restricting, as for k < 9
the results can be inferred from constructions for k′ > k. To this end it
is shown that for a given set S the regularity of the base-k notation of its
element and base-k′ notation are related when k′ is a power of k.

Lemma 3.1. Let S ⊆ N be a set of numbers, let k and km (with k ≥ 2 and
m ≥ 2) be two bases of positional notation. Then the language L ⊆ Σ∗

k \0Σ∗
k

such that (L)k = S is regular if and only if the language L′ ⊆ Σ∗
km \ 0Σ∗

km

such that (L′)km = S is regular.

Proof. Define a block code h : Σ∗
km → Σ∗

k as follows: for any k-ary digits
d0, . . . , dm−1 ∈ Σk, let

h
(m−1∑

i=0

di · k
i
)

= dm−1 . . . d1d0 ,

where
∑m−1

i=0 di · k
i is a single digit in base-km notation. Then, clearly,

(w)km = (h(w))k for every w ∈ Σ∗
km, and (L)km = (h(L))k for every L ⊆

Σkm.
⇐© Let S = (L′)km, consider the language L̂ = h(L′) ⊆ Σ∗

k. Since regular

languages are closed under homomorphisms, L̂ is regular provided that L′ is
regular. The only remaining problem is that there may be strings starting
with 0 in L̂. Define L =

(
(0∗)−1 · L̂

)
∩
(
Σ∗

k \ 0Σ∗
k

)
. These operations remove

the leading 0’es from words in L̂. As all the used operations (effectively)
preserve regularity, L is regular and satisfies (L)k = (L̂)k = S.
⇒© Conversely, let S = (L)k and construct a modified version of L by

appending a limited number of leading zeroes:

L̃ =
(
{ε, 0, 02, . . . , 0m−1} · L

)
∩
(
(Σk)m

)∗
.

3.2. REGULAR NOTATION 25

Obviously, it is possible to append some number of zeroes to every string in
L, so that the number of digits in the result is divisible by m. Hence every
string in L has a representative in L̃ with the same numerical value, and
S = (L̃)k. The language L̃ is regular, as it is obtained as a composition of
operations (effectively) preserving regularity.

Consider the language L′ = h−1(L̃) ⊆ Σ∗
km, which is regular by the

closure of regular languages under inverse homomorphisms. Every element
of L̃ is represented by an element of L′ with the same numerical value, and
therefore S = (L′)km.

3.2.1 Sets of numbers with two leading digits fixed

Theorem 3.2. Let k ≥ 9 be a natural number. The system

X1,j =
2⋂

n=1

Xk−n,0 +Xj+n,0 ∪ (1j)k , for j = 0, 1, 2 , (3.2)

Xi,j =
2⋂

n=1

Xi−1,k−n +Xj+n,0 ∪ (ij)k , for j = 0, 1, 2; i > 1 , (3.3)

Xi,j =

2⋂

n=1

Xi,j−n +Xn,0 ∩Xi,0 +Xj,0 ∪ (ij)k , for j > 2; i > 1 . (3.4)

has a unique solution

Xij = (ij0∗)k, for i > 0, j ≥ 0

in the set of positive natural numbers.
This is the least solution of this system in the natural numbers.

Proof. It is first checked that Xi,j = (ij0∗)k is a solution of this system.
Then it is argued that it is in fact a unique solution in positive natural
numbers and the least solution in the natural numbers.

Consider the first addition in the equations, i.e., for j = 0, 1, 2 and
n = 1, 2:

Xk−n,0 +Xj+n,0 = ((k − n)0+)4 + ((j + n)0+)4

= ((k − n)0∗(j + n)0+)4 ∪ ((j + n)0∗(k − n)0+)4 ∪ (1j0+)4 .

Now consider Xk−1,0 +Xj+1,0 ∩Xk−2,0 +Xj+2,0:

(
Xk−1,0 +Xj+1,0

)
∩
(
Xk−2,0 +Xj+2,0

)

=
(
((k − 1)0∗(j + 1)0+)4 ∪ ((j + 1)0∗(k − 1)0+)4 ∪ (1j0+)4

)

∩
(
((k − 2)0∗(j + 2)0+)4 ∪ ((j + 2)0∗(k − 2)0+)4 ∪ (1j0+)4

)
.

26 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

By comparing the leading digits of the numbers in the sets in question and
by using the fact that 1 ≤ j + 1 < j + 2 < k − 2 < k − 1:

Xk−1,0 +Xj+1,0 ∩Xk−2,0 +Xj+2,0

=
(
((j + 1)0∗(k − 1)0+)4 ∪ (1j0+)4

)
∩ (1j0+)4

= (1j0+)4 .

Taking the union with (1j)k one obtains that

Xk−1,0+Xj+1,0 ∩Xk−2,0 +Xj+2,0 ∪ (1j)k

=((k − 1)0+)k + ((j + 1)0+)k ∩ ((k − 2)0+)k + ((j + 2)0+)k

∪ (1j)k

=(1j0∗)k .

Similar calculations can be done for other equations. Consider the second
equation—let j = 0, 1, 2 and i > 1. Then for n = 1, 2:

Xi−1,k−n +Xj+n,0

= ((i− 1)(k − n)0∗)k + ((j + n)0+)k

= ((j + n)0∗(i− 1)(k − n)0∗)k ∪ ((i− 1)(k − n)0∗(j + n)0+)k

∪ ((i+ j + n− 1)(k − n)0∗)k ∪ (1(i+ j + n− 1− k)(k − n)0∗)k

∪ (ij0+)k .

Consider

Xi−1,k−1 +Xj+1,0 ∩Xi−1,k−2 +Xj+2,0 .

The last non-zero digits of the numbers from this intersection are compared.
The numbers fromXi−1,k−1+Xj+1,0 are either in (ij0+)k or have j+1 or k−1
as last non-zero digit. On the other hand, numbers from Xi−1,k−2 +Xj+2,0

belong to (ij0+)k or have either j + 2 or k − 2 as the last non-zero digit.
Since

j + 1 < j + 2 < k − 2 < k − 1 ,

the numbers in Xi−1,k−1 + Xj+1,0 ∩ Xi−1,k−2 + Xj+2,0 are from (ij0+)k.
Therefore

Xi−1,k−1 +Xj+1,0 ∩Xi−1,k−2 +Xj+2,0 = (ij0+)k .

Taking the union with (ij)k one obtains that

2⋂

n=1

Xi−1,k−n +Xj+n,0 ∪ (ij)k

=

2⋂

n=1

((i− 1)(k − n)0∗)k + ((j + n)00∗)k ∪ (ij)k

= (ij0+)k ∪ (ij)k

= (ij0∗)k .

3.2. REGULAR NOTATION 27

In the same way the last equation is treated: let j > 2. First the value
of the auxiliary addition Xi,0 +Xj,0 is calculated:

Xi,0 +Xj,0 = (i0+)k + (j0+)k

= (i0∗j0+)k ∪ ((i+ j)0+)k ∪ (1(i+ j − k)0+)k ∪ (j0∗i0+)k .

Note that each number in this sum has at most two non-zero digits. This
property is used this to filter the numbers in other sums.

Consider n = 1, 2 and i such that i + n ≥ k (note that this implies
i+ j > k as well)

(
Xi,j−n +Xn,0

)
∩
(
Xi,0 +Xj,0

)

=(i(j − n)0∗)k + (n0+)k ∩Xi,0 +Xj,0

=
(
(n0∗i(j − n)0∗)k ∪ (1(i+ n− k)(j − n)0∗)k

∪ (ij0+)k ∪ (i(j − n)0∗n0+)k

)
∩
(
Xi,0 +Xj,0

)

=
(
(1(i+ n− k)(j − n)0∗)k ∪ (ij0+)k

)
∩
(
Xi,0 +Xj,0

)
.

with the equality following from the fact that each number in Xi,0 + Xj,0

has at most two non-zero digits (the removed sets consist of numbers with
at least three non-zero digits). Moreover, if i + n − k > 0 also the set
(1(i+ n− k)(j − n)0∗)k consists of numbers with three non-zero digit, so it
is filtered out and the result is

(Xi,j−n +Xn,0) ∩ (Xi,0 +Xj,0) = (ij0+)k .

So consider the case i = k − n. Then

(
Xi,j−n +Xn,0

)
∩
(
Xi,0 +Xj,0

)

=
(
(10(j − n)0∗)k ∪ (ij0+)k

)

∩
(
(i0∗j0+)k ∪ (1(j − n)0+)k ∪ (j0∗i0+)k

)

=
(
(10(j − n)0∗)k ∩

[
(i0∗j0+)k ∪ (1(j − n)0+)k ∪ (j0∗i0+)k

])

∪ (ij0+)k

=(ij0+)k ,

as i, j > 2 and j − n > 0. Therefore if i = k − 1 or i = k − 2 then

(Xi,j−1 +X1,0) ∩ (Xi,j−2 +X2,0) ∩ (Xi,0 +Xj,0) = (ij0+)k .

28 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

So consider i < k − 2.

(Xi,j−n +Xn,0) ∩ (Xi,0 +Xj,0)

=
(
(i(j − n)0∗)k + (n0+)k

)
∩
(
Xi,0 +Xj,0

)

=
(
(n0∗i(j − n)0∗)k ∪ ((i+ n)(j − n)0∗)k ∪ (ij0+)k ∪ (i(j − n)0∗n0+)k

)

∩
(
Xi,0 +Xj,0

)

=
(
((i+ n)(j − n)0∗)k ∪ (ij0+)k

)
∩
(
Xi,0 +Xj,0

)
.

The sets removed from the first subexpression consisted of numbers with
at least three non-zero digits, while Xi,0 +Xj,0 consists of numbers with at
most two non-zero digits.

When these terms are intersected for n = 1, 2

Xi,j−1 +X1,0 ∩Xi,j−2 +X2,0 ∩Xi,0 +Xj,0

=
(
((i+ 1)(j − 1)0∗)k ∪ (ij0+)k

)

∩
(
((i+ 2)(j − 2)0∗)k ∪ (ij0+)k

)
∩
(
Xi,0 +Xj,0

)

=(ij0+)k ∩
(
Xi,0 +Xj,0

)

=(ij0+)k ,

since the first digit of the number from the first term is i + 1 and i + 2 for
those from the second term. Taking the union with (ij)k one obtains that
for j > 2:

2⋂

n=1

Xi,j−n +Xn,0 ∩Xi,0 +Xj,0 ∪ (ij)k

=

2⋂

n=1

(i(j − 2)0∗)k + (20+)k ∩ (i0+)k + (j0+)k ∪ (ij)k

=(ij0+)k ∪ (ij)k

=(ij0∗)k .

Hence this is a solution of this set of equations.
By Lemma 2.1 this system has a unique solution in the positive natural

numbers, as each variable appears on the right-hand side only in a sum with
other variable and all constants are 0-free. By the same lemma this is the
least solution in the natural numbers.

3.2.2 Any regular language

While the construction of all sets of the form (ij0∗)k gives a large class of
examples of non-periodic sets that are the least solutions of resolved systems,

3.2. REGULAR NOTATION 29

they do not constitute an interesting or particularly useful class of sets on
their own. On the other hand, the approach itself seems to be promising
and not exploited to the limits.

In order to construct a larger class of sets the idea behind the construc-
tion has to be changed a bit. Until now, in the sets Xi,j = (ij0∗)k the digits
i, j were crucial, while the strings of 0’es after them were just a gadget of
the construction. For the new sets it works the other way around—they are
of the form Xi,j,L = ({ijw | w ∈ L})k for some language L. So now i, j are
just technical gadgets that are used in the construction to manipulate the
leading digits, while the important information is stored in the rest of the
digits.

The construction uses several different variables, which represent differ-
ent sets L and different two leading digits. In order to develop the details,
a class of formal languages, from which L comes, has to be chosen. One
should imagine that for a fixed ` and varying i, j variables Xi,j,` correspond
to one language L`. Moreover, the technique, if properly generalised, al-
lows manipulating a small amount of leading digits, being more precise, it
allows expanding the numbers by a fixed digit. So the intuition is that
languages {L`}` should express themselves using other languages from this
group of languages and left-concatenation with a digit. This is almost the
formal definition of the class of regular languages, which have just become
the candidate.

Consider an arbitrary regular language L ⊆ Σ+
k \ 0Σ∗

k. Let M =
〈Σk, Q, δ, F, q0〉 be a (deterministic) automaton recognizing Lr. A resolved
system of equations with the least solution Xi,j,q = {(ijw)k | δ(q0, w

r) = q},
for i, j ∈ Σk, i > 0 and q ∈ Q will be constructed. Then constructing a re-
solved equation with the least solution (Lr)k easily follows. The reversal
of the word in the definition of Xi,j,q is for technical reasons—while the
automata read the word from the left to the right, the constructed systems
expand the numbers by digits to the left, i.e., by the digit read first by the
automaton.

Constructing such a system using only mentioned variables seems to be
cumbersome. In order to simplify the manipulation of the leading digits
constants of the form (ij0∗)k for i, j ∈ Σk, i > 0 are used. By Theorem 3.2
a separate system with those sets as the unique solution in positive numbers
and least in natural numbers (at the same time) can be constructed. For the
ease of presentation, constants (ij0∗)k are used instead of separate variables
with their own subsystems.

Since the construction expands the numbers from each set by one digit
it is useful to introduce auxiliary variables also for this intermediate sets.
At a proper moment a union of them is taken so that their third leading
digit ceases to matter. They are represented by variables Xi,j,`,q with the
intended solution {(ij`w)k | δ(q0, w

r) = q}.

30 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

Consider the system:

Xi,j,`,q =
3⋂

n=0

(in0∗)k +Xj−n,`,q′ ∪ ({ij | q0 = q})k,

for j > 3, i 6= 0 , (3.5)

Xi,j,q,` =

4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q′ ∪ ({ij | q0 = q})k,

for j < 4, i 6= 0, 1 , (3.6)

X1,j,`,q =

4⋂

n=1

((k − n)00∗)k +Xj+n,`,q′ ∪ ({1j : q0 = q})k,

for j < 4 , (3.7)

Xi,j,q =
⋃

(`,q′):
δ(q′,`)=q

Xi,j,`,q′, for j ∈ Σk, i > 1 , (3.8)

S =(L ∩ Σk) ∪
⋃

q,i,j:
δ(q,ji)∈F

Xi,j,q . (3.9)

It is shown that Xi,j,q = {(ijw)k | δ(q0, w
r) = q} and Xi,j,`,q =

{(ij`w)k | δ(q0, w
r) = q} for i, j, ` ∈ Σk, i 6= 0 and q ∈ Q is the least

solution of (3.5)–(3.8) for large enough k. Then S = (Lr)k easily follows.
Since the right-hand sides do not contain constants that include 0 as an
element it easily follows that all the expressions on the right-hand sides are
proper and so Lemma 2.1 is applicable to this system. Therefore the natural
way of proving this claim is by showing that the specified sets in fact are a
solution.

To this end the value of the right-hand sides are inspected, under substi-
tution Xi,j,q = {(ijw)k|δ(q0, w

r) = q} andXi,j,`,q = {(ij`w)k|δ(q0, w
r) = q}.

Lemma 3.2. For k ≥ 9, j > 3 and i 6= 0

3⋂

n=0

(in0∗)k +Xj−n,`,q = Xi,j,`,q ,

assuming Xi′,j′,q′ = {(i′j′w)k | δ(q0, w
r) = q′} and Xi′,j′,`,q′ =

{(i′j′`w)k | δ(q0, w
r) = q′} for each i′, j′, ` ∈ Σk, i

′ 6= 0 and q′ ∈ Q.

Proof. The proof follows the same principle as the proof of Theorem 3.2,
though this time it is a little more complicated, as sets with many unspecified
digits are added and intersected. Since the numbers from one of the sets in
the addition have specified only two leading digits while their other digits
may be arbitrary, the natural attempt to prove the claim of the lemma is to
consider only the leading digits of the numbers from the intersection.

3.2. REGULAR NOTATION 31

Fix n ∈ {0, 1, 2, 3} and consider numbers from the set

(in0∗)k + ({(j − n)`w | δ(q0, w
r) = q})k .

Each number p from this sum can be represented as a sum of two numbers p′,
p′′, such that p′ has two leading digits i, n and p′′ has leading digits j−n, `.
We inspect the digits of their sum p′ +p′′. This depends of relative positions
of leading digits in them. If i and j are on the same position, then p is in
the set:

Ai,j,`,n =((i+ j − n)(`+ n)Σ∗
k)k ∪ ((i+ j − n+ 1)(`+ n− k)Σ∗

k)k

∪ (1(i+ j − n− k)(`+ n)Σ∗
k)k

∪ (1(i+ j − n+ 1− k)(`+ n− k)Σ∗
k)k .

The listed sets describe the possible situations: whether there is a carry
from position of `+ n or not and whether there is a carry from position of
i+ j − n.

If the position of i is exactly one greater than the position of j − n then
p ∈ Xi,j,`,q.

If i is on the position smaller than j − n then p is in the set

Bi,j,`,n =((j − n){`, `+ 1, `+ i, `+ i+ 1}Σ∗
k)k

∪ ((j − n+ 1){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k

∪ (1(j − n+ 1− k){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k .

If the position of i is greater by more than 1 than the position of j − n
then p is in the set

(inΣ∗
k)k .

As the number p was chosen arbitrarily, it can be concluded that

3⋂

n=0

(in0∗)k +Xj−n,`,q ⊆ Xi,j,`,q ∪
3⋂

n=0

(Ai,j,`,n ∪Bi,j,`,n ∪ (inΣ∗
k)k)

and it should be shown that the intersection on the right-hand side is empty.
To this end the distributivity of union and intersection is applied and then
intersections of atomic expressions are inspected. Consider first Ai,j,`,n and
Ai,j,`,n′ for n 6= n′. It is shown that their intersection is empty.

Claim 3.1. Ai,j,`,n ∩Ai,j,`,n′ = ∅ for n 6= n′.

Proof. Suppose that there is a number in the intersection. The first possi-
bility is that it comes from one of the two first subexpressions for Ai,j,`,n and

32 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

from one of the two last subexpression for Ai,j,`,n′, i.e., that the following
intersection is non-empty

(
((i+ j − n)(`+ n)Σ∗

k)k ∪ ((i+ j − n+ 1)(`+ n− k)Σ∗
k)k

)
∩

(
(1(i+ j − n′ − k)(`+ n′)Σ∗

k)k ∪ (1(i+ j − n′ + 1− k)(`+ n′ − k)Σ∗
k)k

)
.

Then i + j − n′ + 1 ≥ k and so i + j ≥ k − 1. Also the leading digit of
any number from sets in this intersection is 1, since both the subexpressions
taken from Ai,j,`,n′ consist of sets of numbers with 1 as a leading digit. Hence
i+ j − n = 1 or i+ j + 1− n = 1. This allows estimating i+ j ≤ 1 + n ≤ 4,
contradiction.

The same argument, by symmetry, applies to intersection of last two
subexpressions of Ai,j,`,n and the first two of Ai,j,`,n′, i.e.,

(
(1(i+ j − n− k)(`+ n)Σ∗

k)k ∪ (1(i+ j − n+ 1− k)(`+ n− k)Σ∗
k)k

)

∩
(
((i+ j − n′)(`+ n′)Σ∗

k)k ∪ ((i+ j − n′ + 1)(`+ n′ − k)Σ∗
k)k

)

is empty.
So suppose that there is a number that belongs to the

((i+ j − n)(`+ n)Σ∗
k)k ∩ ((i+ j − n′)(`+ n′)Σ∗

k)k .

But they clearly describe the sets of numbers with different leading digits,
hence the intersection is empty. Similarly for the other subexpressions:

((i+ j − n+ 1)(` + n− k)Σ∗
k)k ∩ ((i+ j − n′ + 1)(`+ n′ − k)Σ∗

k)k = ∅ ,

(1(i+ j − n− k)(`+ n)Σ∗
k)k ∩ (1(i+ j − n′ − k)(`+ n′)Σ∗

k)k = ∅ ,

(1(i+ j − n+ 1− k)(`+ n− k)Σ∗
k)k

∩(1(i+ j − n′ + 1− k)(`+ n′ − k)Σ∗
k)k = ∅ .

with the only exception, that in the second and third cases, second leading
digits are considered.

Consider now

((i+ j − n)(`+ n)Σ∗
k)k ∩ ((i+ j − n′ + 1)(`+ n′ − k)Σ∗

k)k .

If the intersection is non-empty, then `+n = `+n′−k, which forces n′−n = k,
which cannot be satisfied. Similarly

((i+ j − n+ 1)(` + n− k)Σ∗
k)k ∩ ((i+ j − n′)(`+ n′)Σ∗

k)k = ∅ .

So look now at the the last cases:

(1(i+ j − n− k)(`+ n)Σ∗
k)k ∩ (1(i+ j − n′ − k + 1)(`+ n′ − k)Σ∗

k)k .

3.2. REGULAR NOTATION 33

As in the previous case, if the intersection is non-empty, then `+n = `+n′−k,
which cannot happen. By symmetry, also

(1(i+ j − n− k + 1)(`+ n− k)Σ∗
k)k ∩ (1(i+ j − n′ − k)(`+ n′)Σ∗

k)k = ∅ .

In a similar fashion we deal with Ci,j,`,n. We show that for n, n′, n′′

pairwise distinct the intersection Bi,j,`,n ∩Bi,j,`,n′ ∩Bi,j,`,n′′ is empty.

Claim 3.2. For n, n′, n′′ pairwise different Bi,j,`,n ∩Bi,j,`,n′ ∩Bi,j,`,n′′ = ∅
for each j > 0 and i 6= 0.

Proof. Each of the considered sets consists of three subexpressions. Suppose
that the intersection of any two corresponding subexpressions is empty, i.e.,
consider n1 6= n2 and:

((j−n1){`, `+1, `+ i, `+ i+1}Σ∗
k)k∩((j−n2){`, `+1, `+ i, `+ i+1}Σ∗

k)k .

Those sets consist of numbers with different leading digit, so their intersec-
tion is empty. Similarly for other subexpressions, let again n1 6= n2:

((j − n1 + 1){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k

∩((j − n2 + 1){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k

is empty as it consists of the sets of numbers with different leading digit:
j − n1 + 1 6= j − n2 + 1. The last case follows by the same principle:

(1(j − n1 + 1− k){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k

∩(1(j − n2 + 1− k){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k = ∅ ,

this time though we focus on second leading digit.

So if the intersection Bi,j,`,n∩Bi,j,`,n′∩Bi,j,`,n′′ is non-empty, the intersec-
tion of three subexpressions non corresponding to each other is non-empty.
So consider

((j − n){`, `+ 1, `+ i, `+ i+ 1}Σ∗
k)k

∩((j − n′ + 1){` + 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k

∩(1(j − n′′ + 1− k){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k .

Then j − n = j − n′ + 1 = 1, in particular j ≤ 3, as n′ ≤ 3. On the other
hand j − n′′ + 1 ≥ k, so j ≥ k − 1, contradiction.

While it is already known that the intersection of three different Bi,j,`,n’s
is empty, in the later proof some more specific knowledge on the non-empty
intersection of two such sets is needed.

34 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

Claim 3.3. Suppose that Bi,j,`,n∩Bi,j,`,n′ 6= ∅ for n < n′. Then n = n′−1,
j − n+ 1 < k, i = k − 1 and

Bi,j,`,n ∩Bi,j,`,n′ ⊆ ((j − n)`Σ∗
k)k .

Proof. Assume for the sake of contradiction that j − n+ 1 ≥ k. Then

Bi,j,`,n = (1(j − n+ 1− k){` + 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k .

as all other subexpression are empty. On the other hand, j − n′ + 1 < k
(since j < k) and thus

Bi,j,`,n′ =((j − n′){`, `+ 1, `+ i, `+ i+ 1}Σ∗
k)k

∪ ((j − n′ + 1){` + 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k .

so the leading digits of numbers from those sets are different: by the a
contrario assumption j ≥ k + n− 1 ≥ k − 1 and thus j − n′ ≥ k − 1− n′ ≥
k− 4 > 1. The obtained contradiction shows that j −n+ 1 < k. So assume
now, for the sake of contradiction, that n < n′ − 1. Since j − n+ 1 < k:

Bi,j,`,n =((j − n){`, `+ 1, `+ i, `+ i+ 1}Σ∗
k)k

∪ ((j − n+ 1){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k ,

Bi,j,`,n′ =((j − n′){`, `+ 1, `+ i, `+ i+ 1}Σ∗
k)k

∪ ((j − n′ + 1){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k

and their intersection is empty, as numbers in Bi,j,`,n start with digit at
least j − n, while numbers in Bi,j,`,n′ start with digit at most j − n′ + 1 <
j − n − 1 + 1 = j − n. Using this we conclude that if Bi,j,n ∩ Bi,j,n−1 is
non-empty then n′ = n+ 1

Bi,j,`,n ∩Bi,j,`,n+1 =((j − n){`, `+ 1, `+ i, `+ i+ 1}Σ∗
k)k

∩ ((j − n){`+ 1− k, `+ i− k, `+ i+ 1− k}Σ∗
k)k .

Let us inspect the second leading digits of numbers from this intersection.
As

`+ 1− k < `+ i− k < `+ i+ 1− k ≤ ` < `+ 1 < `+ i < `+ i+ 1

it can be concluded that `+ i+ 1− k = ` which yields i = k − 1. Knowing
this it can be conclude that

Bi,j,`,n ∩Bi,j,`,n+1 = ((j − n)`Σ∗
k)k ,

which establishes the claim.

The last intersection of unwanted terms is inspected.

3.2. REGULAR NOTATION 35

Claim 3.4. For n 6= n′

(inΣ∗
k)k ∩ (in′Σ∗

k)k = ∅ .

Proof. The first set consists only of numbers with second leading digit n
while the second consist of numbers with second leading digit n′ 6= n.

Going back to

3⋂

n=0

(
Ai,j,`,n ∪Bi,j,`,n ∪ (inΣ∗

k)k

)
,

assume that the intersection is non-empty. As intersection of Ai,j,`,n∩Ai,j,`,n′

is empty for n 6= n′ by Claim 3.1; so is (inΣ∗
k)k ∩ (in′Σ∗

k)k by Claim 3.4;
and Bi,j,`,n ∩ Bi,j,`,n′ ∩ Bi,j,`,n′′ by Claim 3.2, it can be inferred that there
are pairwise distinct n, n′, n′′, n′′′ such that the intersection

Ai,j,`,n ∩Bi,j,`,n′ ∩Bi,j,`,n′′ ∩ (in′′′Σ∗
k)k

is non-empty. By Claim 3.2 this implies that Bi,j,`,n′ ∩ Bi,j,`,n′′ ⊆ ((j −
n′)`Σ∗

k)k and i = k − 1. So it is enough to consider the intersection

Ak−1,j,`,n ∩ ((j − n′)`Σ∗
k)k ∩ ((k − 1)n′′′Σ∗

k)k

and in particular conclude that j − n′ = k − 1, which implies that n′ = 0
and j = k − 1. Recall the definition of Ak−1,k−1,`,n:

Ak−1,k−1,`,n =(((k − 1) + (k − 1)− n)(`+ n)Σ∗
k)k

∪ (((k − 1) + (k − 1)− n+ 1)(`+ n− k)Σ∗
k)k

∪ (1((k − 1) + (k − 1)− n− k)(`+ n)Σ∗
k)k

∪ (1((k − 1) + (k − 1)− n+ 1− k)(`+ n− k)Σ∗
k)k .

Since 2k−2−n > k, only the last two subexpressions define proper numbers
and therefore this can be simplified to

Ak−1,k−1,`,n = (1(k − n− 2)(`+ n)Σ∗
k)k ∪ (1(k − n− 1)(`+ n− k)Σ∗

k)k .

But then the intersection of this set with (in′′′Σ∗
k)k = ((k − 1)n′′′Σ∗

k)k is
empty.

Hence it is concluded that

3⋂

n=0

(
Ai,j,`,n ∪Bi,j,`,n ∪ (inΣ∗

k)k

)
= ∅

and thus
3⋂

n=0

(in0∗)k +Xj−n,`,q ⊆ Xi,j,`,q .

36 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

What is left to show is that

Xi,j,`,q ⊆

3⋂

n=0

(in0∗)k +Xj−n,`,q .

So take any p = (ij`w)k ∈ Xi,j,`,q, i.e., such that δ(q0, w
r) = q. Fix n ∈

{0, 1, 2, 3}. Then ((j − n)`w)k ∈ Xj−n,`,q by assumption of the lemma and
(in0|w|+1)k ∈ (in0∗)k. Hence

p = (ij`w)k = ((j − n)`w)k + (in0|w|+1)k ∈ Xj−n,`,q + (in0∗)k .

Taking the intersection over possible n and noting that p was chosen arbi-
trarily:

Xi,j,`,q ⊆
3⋂

n=0

(in0∗)k +Xj−n,`,q ⊆ Xi,j,`,q ,

which ends the proof.

The techniques and approach used to show Lemma 3.2 are now going to
be used to show analogous results concerning (3.6) and (3.7) .

Lemma 3.3. For k ≥ 9, j < 4 and i 6= 0, 1

4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q = Xi,j,`,q ,

under the assumption that Xi′,j′,q′ = {(i′j′w)k | δ(q0, w
r) = q′} and

Xi′,j′,`,q′ = {(i′j′`w)k | δ(q0, w
r) = q′} for each i′, j′, ` ∈ Σk, i

′ 6= 0 and
q′ ∈ Q.

Proof. Fix n ∈ {1, 2, 3, 4} and consider a number p from the set

((i− 1)(j + n)0∗)k + ({(k − n)`w | δ(q0, w
r) = q})k .

Each such a number number is a sum of two numbers p′ and p′′, each from
one summand. Number p′ has leading digits i − 1 and j + n while p′′ has
k − n and `. Consider the possible leading digits of p′ + p′′. Depending on
the relative position of the digits i− 1 and k−n, p is in one of the specified
sets: if i − 1 is on position greater by at least two than k − n number p
satisfies

p ∈ ((i− 1)(j + n)Σ∗
k)k .

When i− 1 is on position exactly one greater than k − n then:

p ∈ ({ij`w | δ(q0, w
r) = q})k = Xi,j,`,q .

3.2. REGULAR NOTATION 37

When i− 1 is on the same position as k − n, number p is in the set

Ci,j,`,n =((k + i− 1− n)(`+ j + n)Σ∗
k)k ∪ ((k + i− n)(`+ j + n− k)Σ∗

k)k

∪ (1(i− 1− n)(`+ j + n)Σ∗
k)k ∪ (1(i− n)(`+ j + n− k)Σ∗

k)k ,

with various subsets corresponding to the cases, when there is a carry from
position of sum (i − 1) + (k − n) or not and when there is a carry from
position of `+ (j + n) or not.

The last possibility is that i−1 is on position strictly smaller than k−n.
Then p is in set

Di,j,`,n =((k − n){`, `+ 1, `+ i− 1, `+ i}Σ∗
k)k

∪ ((k − n+ 1){` + 1− k, `+ i− 1− k, `+ i− k}Σ∗
k)k

∪ (1(−n+ 1){`+ 1− k, `+ i− 1− k, `+ i− k}Σ∗
k)k .

Then

4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q ⊆

⊆

4⋂

n=1

(
((i− 1)(j + n)Σ∗

k)k ∪ Ci,j,`,n ∪Di,j,`,n

)
∪Xi,j,`,q

and our goal is to show that the intersection on the right-hand side is empty.
For the sake of contradiction, assume that it is not. Then there is n 6= n′

such that one of the following is not empty:

((i−1)(j+n)Σ∗
k)k∩((i−1)(j+n′)Σ∗

k)k, Ci,j,`,n∩Ci,j,`,n′, Di,j,`,n∩Di,j,`,n′ .

We arrive to contradiction by showing, that in fact all of those intersections
are empty.

Claim 3.5. For n 6= n′

((i− 1)(j + n)Σ∗
k)k ∩ ((i− 1)(j + n′)Σ∗

k)k = ∅ .

Proof. This is clearly empty, as those sets consist of numbers with different
second leading digit.

Similarly consider Ci,j,`,n ∩ Ci,j,`,n′, without loss of generality it may be
assumed that n > n′

Claim 3.6. For n > n′

Ci,j,`,n ∩ Ci,j,`,n′ = ∅ .

38 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

Proof. By taking into account that i > 1, j < 4, k ≥ 9 and 1 ≤ n < n′ ≤ 4
it can be deduced that

1 < k + i− 1− n < k + i− n ≤ k + i− 1− n′ < k + i− n′ .

Then using the distributivity of union and intersection and comparing the
leading digits of numbers from Ci,j,`,n and Ci,j,`,n′ it can be observed that
Ci,j,`,n ∩ Ci,j,`,n′ is a union of
[
((k + i− 1− n)(`+ j + n)Σ∗

k)k ∪ ((k + i− n)(`+ j + n− k)Σ∗
k)k

]

∩
[
((k + i− 1− n′)(`+ j + n′)Σ∗

k)k ∪ ((k + i− n′)(`+ j + n′ − k)Σ∗
k)k

]

and

[
(1(i− 1− n)(`+ j + n)Σ∗

k)k ∪ (1(i− n)(`+ j + n− k)Σ∗
k)k

]

∩
[
(1(i− 1− n′)(`+ j + n′)Σ∗

k)k ∪ (1(i− n′)(`+ j + n′ − k)Σ∗
k)k

]
.

The former can be shown to be empty by comparing the second leading
digits from sets taking part in the intersection, as

`+ j + n > `+ j + n′ > `+ j + n− k > `+ j + n′ − k ,

i.e., the sets taking part in the intersection consist of numbers with different
second leading digits.

The latter is also empty, which can be shown by the similar argument
applied to the third leading digits, which are the same as the second leading
digits in the former case. Thus

Ci,j,`,n ∩ Ci,j,`,n′ = ∅ ,

which establishes the claim.

Similar argument is given for intersection of Di,j,`,n∩Di,j,`,n′ for n < n′.

Claim 3.7. For n < n′ it holds that

Di,j,`,n ∩Di,j,`,n′ .

Proof. Note, that since n′ > n > 0, −n′ + 1 < 0 and therefore it does not
define a proper digit. Thus

Di,j,`,n′ ∩Di,j,`,n =
(
((k − n′){`, `+ 1, `+ i− 1, `+ i}Σ∗

k)k

∪ ((k − n′ + 1){`+ 1− k, `+ i− 1− k, `+ i− k}Σ∗
k)k

)

∩
(
((k − n){`, `+ 1, `+ i− 1, `+ i}Σ∗

k)k

∪ ((k − n+ 1){`+ 1− k, `+ i− 1− k, `+ i− k}Σ∗
k)k

∪ (1(−n+ 1){`+ 1− k, `+ i− 1− k, `+ i− k}Σ∗
k)k

)
.

3.2. REGULAR NOTATION 39

This expression is transformed using the distributivity of intersection and
union. Then the values of the leading digits of the numbers in the intersected
sets can be compared. As

1 < k − n′ < k − n′ + 1 ≤ k − n < k − n+ 1

it can be concluded that

Di,j,`,n′ ∩Di,j,`,n =((k − n′ + 1){` + 1− k, `+ i− 1− k, `+ i− k}Σ∗
k)k

∩ ((k − n){`, `+ 1, `+ i− 1, `+ i}Σ∗
k)k .

But this intersection is empty, as the second leading digits of numbers from
these sets satisfy

`+ 1− k ≤ `+ i− 1− k < `+ i− k < ` < `+ 1 ≤ `+ i− 1 < `+ i ,

and so they are different. Thus

Di,j,`,n ∩Di,j,`,n′ = ∅ ,

which shows the claim.

Concluding, it was shown in Claims 3.5, 3.6 and 3.7 that for n 6= n′

((i− 1)(j + n)Σ∗)k ∩ ((i− 1)(j + n′)Σ∗)k = Ci,j,`,n ∩ Ci,j,`,n′

= Di,j,`,n ∩Di,j,`,n′

= ∅ .

and therefore

4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q

⊆

4⋂

n=1

(((i− 1)(j + n)Σ∗)k ∪ Ci,j,`,n ∪Di,j,`,n) ∪Xi,j,`,q

=Xi,j,`,q .

What is left to show is that

Xi,j,`,q ⊆

4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q .

Fix n ∈ {1, 2, 3, 4} and consider p ∈ Xi,j,`,q. There is w such that
p = (ij`w)k, by lemma assumption, where δ(q0, w

r) = q. Then p′ =
((k − n)`w)k ∈ Xk−n,`,q, also by lemma assumption, and p′′ = ((i − 1)(j +
n)0|w|+1)k ∈ ((i− 1)(j + n)0∗)k. Hence

p = p′ + p′′ ∈ Xk−n,`,q + ((i− 1)(j + n)0∗)k .

40 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

Therefore

Xi,j,`,q ⊆
4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q ⊆ Xi,j,`,q ,

which concludes the proof.

The proof for (3.7) follows the same pattern.

Lemma 3.4. For k ≥ 9, i, j ∈ Σk, i 6= 0, j < 4

4⋂

n=1

((k − n)0+)k +Xj+n,`,q = X1,j,`,q ,

assuming Xi′,j′,q′ = {(i′j′w)k | δ(q0, w
r) = q′} and Xi′,j′,`,q′ =

{(i′j′`w)k | δ(q0, w
r) = q′} for each i′, j′, ` ∈ Σk, i > 0 and q′ ∈ Q.

Proof. Fix n ∈ {1, 2, 3, 4} and consider any two numbers p′ ∈ ((k − n)0+)k

and p′′ ∈ Xj+n,`,q′ = ({(j+n)`w |δ(q0, w
r) = q′})k. Then the sum p = p′+p′′

has a form depending on the position of digit k − n in p′ and j + n in p′′.
If k − n is on greater position, then p is in the set

((k − n)Σ∗
k)k .

If k − n is on exactly the same position as j + n then p is in the set

({1j`w | δ(q0, w
r) = q})k = X1,j,`,q .

If k − n is on position smaller than j + n then the result is in set

Ej,n,` = ((j+n){`, `+ 1, `+k−n}Σ∗
k)k ∪ ((j+n+ 1){`+ 1−k, `−n}Σ∗

k)k ,

with the cases representing whether k−n is on position exactly one smaller
than j + n or not and whether there was some carry or not.

Then

((k − n)00∗)k +Xj+n,`,q′ ⊆ X1,j,`,q ∪

4⋂

n=1

(
((k − n)Σ∗

k)k ∪ Ej,n,`

)

and the goal is to show that
⋂4

n=1(((k − n)Σ∗
k)k ∪ Ej,n,`) = ∅. Using dis-

tributivity this can be reduced to showing that for n < n′ both

((k − n)Σ∗
k)k ∩ ((k − n′)Σ∗

k)k and Ej,n,` ∩ Ej,n′,`

are empty.
Consider ((i − 1)(j + n)Σk)k ∩ ((i − 1)(j + n′)Σk)k. Then it is clearly

empty, as it describes the intersection of two sets consisting of numbers with
different leading digits.

3.2. REGULAR NOTATION 41

Consider Ej,n,` ∩ Ej,n′,` for n < n′.

Ej,n,` ∩ Ej,n′,` =
(
((j + n){`, `+ 1, `+ k − n}Σ∗

k)k

∪ ((j + n+ 1){` + 1− k, `− n}Σ∗
k)k

)

∩
(
((j + n′){`, `+ 1, `+ k − n′}Σ∗

k)k

∪ ((j + n′ + 1){` + 1− k, `− n′}Σ∗
k)k

)
.

Consider the first digit of the numbers from the sets involved in the inter-
section. As

j + n < j + n+ 1 ≤ j + n′ < j + n′ + 1

the considered intersection is equal to

Ej,n,` ∩ Ej,n′,` =((j + n+ 1){` + 1− k, `− n}Σ∗
k)k

∩ ((j + n′){`, `+ 1, `+ k − n′}Σ∗
k)k .

But then, as

`+ 1− k < `− n < ` < `+ 1 < `+ k − n′

the second leading digits in numbers from those sets are different and hence
the intersection is empty, i.e.,

Ej,n,` ∩ Ej,n′,` = ∅ .

Consequently

((k − n)00∗)k +Xj+n,`,q′ ⊆ X1,j,`,q ∪
4⋂

n=1

(((k − n)Σ∗
k)k ∪ Ej,n)

= X1,j,`,q .

What is left to be shown is that

X1,j,`,q ⊆ ((k − n)00∗)k +Xj+n,`,q .

So consider any p ∈ X1,j,`,q. Fix n ∈ {1, 2, 3, 4}. By assumption of the
lemma, p = (1j`w)k, where δ(q0, w

r) = q. By the same assumption, p′ =
((k − n)0|w|+1)k ∈ ((k − n)00∗)k and p′′ = ((j + n)`w)k ∈ Xj+n,`,q. Then

p = p′ + p′′ ∈ ((k − n)00∗)k +Xj+n,`,q .

Since n was chosen arbitrarily, an intersection over its possible values can
be taken. As also p was chosen in an arbitrary fashion among elements of
X1,j,`,q, it can be concluded that

X1,j,`,q ⊆
4⋂

n=1

((k − n)00∗)k +Xj+n,`,q ⊆ X1,j,`,q ,

which completes the proof.

42 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

When basic equations (3.5)–(3.7) have been validated, it is time to vali-
date (3.8) and (3.9). Since they are defined uniquely with respect to Xi,j,`,q =
{(ij`w)k | δ(q0, w

r) = q} (the former) and Xi,j,q = {(ijw)k | δ(q0, w
r) = q}

(the latter), the proofs follow by a simple calculation.

Lemma 3.5. For k ≥ 9 sets Xi,j,q = {(ijw)k | δ(q0, w
r) = q} and Xi,j,`,q =

{(ij`w)k | δ(q0, w
r) = q} for i, j, ` ∈ Σk, i 6= 0 and q ∈ Q are the unique

solution in positive natural numbers of (3.5)–(3.8).
This is also the least solution in the natural numbers.

Proof. Firstly it is shown that these sets are in fact a solution. Consider
(3.8). Then by Lemmata 3.2–3.4 substituting {((j − n)`w)k | δ(q0, w

r) =
q′} for Xj−n,`,q′ on the right-hand side of (3.5)–(3.7) yields Xi′,j′,`,q′ =
{(i′j′`w)k | δ(q0, w

r) = q′}. Then substituting these values to the right-
hand side of (3.8)

Xi,j,q =
⋃

(`,q′):
δ(q′,`)=q

Xi,j,`,q′ ∪ ({ij | q0 = q})k

=
⋃

(`,q′):
δ(q′,`)=q

({ij`w | δ(q0, w
r) = q′})k ∪ ({ij | q0 = q})k

=({ij`w | δ(q0, (w`)
r) = q})k ∪ ({ij | q0 = q})k

=({ijw | δ(q0, w
r) = q}, |w| > 0)k ∪ ({ijw | δ(q0, w

r) = q}, |w| = 0)k

=({ijw | δ(q0, w
r) = q})k .

Hence it was shown that

Xi,j,q = {(ijw)k | δ(q0, w
r) = q}, for i, j ∈ Σk, i > 0, q ∈ Q ,

Xi,j,`,q = {(ij`w)k | δ(q0, w
r) = q}, for i, j ∈ Σk, i > 0, q ∈ Q .

is a solution of the system. As the system is proper, thus Lemma 2.1 is
applicable and so this is the unique solution in the sets of positive natural
numbers as well as the least solution in the sets of natural numbers.

After establishing the technical lemmata, the general representation the-
orem can be stated and easily proved.

Theorem 3.3. For every natural k > 1 and every regular language L ⊆
Σ+

k \ 0Σ∗ the set of numbers (L)k can be represented as a unique solution of
a resolved system of equations.

This solution is the least solution of this system in the natural numbers.

Proof. Suppose first that k ≥ 9. Consider the system (3.5)–(3.9).
By Lemma 3.5, subsystem (3.5)–(3.8) has a unique solution in posi-

tive numbers, which is also the least solution in natural numbers, Xi,j,q =

3.2. REGULAR NOTATION 43

{(ijw)k | δ(q0, w
r) = q}, Xi,j,`,q = {(ij`w)k | δ(q0, w

r) = q} for i, j, ` ∈ Σk,
i 6= 0 and q ∈ Q. Then, as (3.9) defines S uniquely with respect to Xi,j,q the
whole system has a unique solution in the positive numbers, which is also
the least solution in natural numbers.

The value of S in this solution can be easily calculated by substituting
values obtained in Lemma 3.5 to (3.9)

S = (L ∩ Σk)k ∪
⋃

q,i,j:
δ(q,ji)∈F

Xi,j,q

= (L ∩ Σk)k ∪
⋃

q,i,j:
δ(q,ji)∈F

{(ijw)k | δ(q0, w
r) = q}

= (L ∩ Σk)k ∪ {(w)k | δ(q0, w
r) ∈ F, |w| ≥ 2}

= (L ∩ Σk)k ∪ {(w)k | w ∈ L, |w| ≥ 2}

= (L)k .

What is left to do is the removal of the constants of the form (ij0∗)k, which
are present in the system (3.5)–(3.7). By Theorem 3.2, there is a resolved
system such that all sets of the form (ij0∗)k are the coordinates of its least
solution, which is also the unique solution in positive numbers. Replacing the
constants of this form in (3.5)–(3.7) with variables and adding a subsystem
from Theorem 3.2 ends the proof for k ≥ 9.

Consider now 1 < k < 9 and a language L ⊆ Σ+
k \ 0Σ∗

k. Let k′ = k4 > 9.
By Lemma 3.1 the language L′ ⊆ Σ+

k′ \ 0Σ∗
k′, such that (L′)k′ = (L)k, is

regular, as L is regular. And since k′ > 9, it was already shown in this
proof that there is a system such that (L′)k′ = (L)k is a component of
its unique solution in positive numbers, which is also the least solution in
natural numbers.

44 CHAPTER 3. SETS WITH REGULAR POSITIONAL NOTATION

Chapter 4

Sets with trellis positional

notation

It seems that the methods developed in Chapter 3, at least in the way they
have been used so far, were exploited to the limit—they allow modifying
only the leading digit and the information about the positional notation is
kept in a finite amount of ‘memory’ (here—variable name). This naturally
corresponds to regular languages. Still, the obtained class of sets is not very
large. It has an exponentially bounded growth rate, the decision problems
are likely to be decidable, etc. A natural attempt to extend this class is to
slightly enrich the method used—since the leading digits can be manipulated
(or even less formally—the notations of numbers are expanded to the left by
a given digit), maybe the same can be done with the ending digit? This may
lead to a larger class of numbers. Unfortunately, it looks that the previous
techniques are not applicable here.

In order to enforce this approach, a different representation of a word is
needed: in the previous construction, a single word w was represented by
a number (ijw)k, in particular one word was represented by one number.
Now a word w is represented by the numbers (1w1000 . . . 0)k, i.e., by the
numbers with their base-k notation consisting of 1w1 followed by a series of
0’es. The two additional 1’s are ‘sentinels’, as they mark the beginning and
the end of the word w—note that w may contain both leading and ending
0’es. Then going from w to, say, w3 is just changing the 10 in the end into
31. Moreover, since it is not known in advance, how many ending 0’es will
be consumed, w is represented as (1w10∗)k, i.e., one word is represented by
an infinite set of numbers.

This intuition requires a lot of work to be transformed into a formally
sound construction. Before that one needs to understand what type of com-
putational device can be simulated in this way. On a high level, it is an
automaton with a finite state control, since the state of the computation is
uniquely determined by the variable name. Concerning the transition func-

45

46 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

tion, the state calculated on a word awb depends on the states calculated
on aw and on wb. This corresponds to the idea that the notation of the
number is expanded both to the left and the right.

Such a class of automata is well-known in the literature—these are trellis
automata[11, 12, 18]. The class of trellis languages (i.e., those recognised by
such automata) includes: arbitrarily dense and arbitrarily sparse languages,
languages of computation histories of Turing Machines, linear context-free
languages; it is closed under all Boolean operations, etc. This makes it
an interesting class of languages in general. Quite surprisingly, the class of
trellis languages coincides with the class of linear conjunctive languages [40],
which are a strict subclass of conjunctive languages.

The rest of this chapter is dedicated to formalising the concept of trel-
lis automata and simulating its action on notations of numbers by resolved
systems of equations over sets of numbers. Such equations are used in the
later chapters as a building block for systems of unresolved equations. More-
over, they are the source of all undecidability results for unary conjunctive
grammars.

It should be pointed out, that after representing sets of numbers with a
regular positional notation, the task of constructing equations with specified
least solutions becomes substantially easier, as using constants with a regular
positional notation is allowed. It is particularly useful to be able to intersect
the sums of two sets with a set with a specified regular notation. Generally
speaking, this allows modifying a single digit in one of the input sets.

4.1 Definition of trellis automata

Trellis automata, also known as one-way real-time cellular automata, were
studied by Culik, Gruska and Salomaa [11, 12], Ibarra and Kim [18], and
others. We explain this concept generally following Culik et al. [11].

A trellis automaton (TA) processes an input string of length n ≥ 1

using a uniform triangular array of n(n+1)
2 processor nodes, as presented in

the Fig. 4.1. Each node computes a value from a fixed finite set Q. The
nodes in the bottom row obtain their values directly from the input symbols
using a function I : Σ → Q. The rest of the nodes compute the function
δ : Q×Q→ Q of the values in their predecessors. The string is accepted if
and only if the value computed by the topmost node belongs to the set of
accepting states F ⊆ Q. This is formalised in the below definition.

Definition 4.1. A trellis automaton is a quintuple M = (Σ, Q, I, δ, F), in
which:

• Σ is the input alphabet,

• Q is a finite non-empty set of states,

4.1. DEFINITION OF TRELLIS AUTOMATA 47

a1 a2 a3 a4

Figure 4.1: A schematic example of a trellis automaton.

• I : Σ→ Q is a function that sets the initial states,

• δ : Q×Q→ Q is the transition function, and

• F ⊆ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)) ,

while I is extended to a homomorphism I : Σ∗ → Q∗.
Let LM(q) = {w | δ(I(w)) = q} and define L(M) =

⋃
q∈F LM (q).

The family of languages recognised by trellis automata is known to be
closed under all Boolean operations. On the other hand, it is not closed
under concatenation [53], using similar methods it can be shown that it is
not closed under Kleene star [40]. This family is not closed under homo-
morphisms in general, but it is closed under block codes [12]. It is also not
closed under quotient with regular languages; however, it is closed under
quotient with singletons, that is, whenever a language L ∈ Σ∗ is recognised
by a trellis automaton M , then for every u, v ∈ Σ∗, the languages u−1L and
Lv−1 are also recognised by some trellis automata. These trellis automata
can be effectively computed from M and u, v.

Trellis automata over a unary alphabet recognise only regular languages
[40]. Together with the above closure property, this implies the following
simple result, which will be used later on:

Lemma 4.1. Let L be a trellis language over an alphabet Σ, let u, v ∈ Σ∗

and a ∈ Σ. Then the language L ∩ ua∗v is regular.

Proof. Let K = L ∩ ua∗v. Then the language

K̃ = u−1 ·K · v−1 = {w | uwv ∈ K}

is a trellis language by the closure of this family under quotient with single-
tons. Since K̃ is a unary trellis language, it is regular. Then K = uK̃v is
regular as well.

48 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

Lemma 3.1 assured that for regular positional base-k notations one can
consider only ‘big enough’ languages, as the regularity of base-k notations
of a fixed set S was equivalent to regularity of base-km notations of S. This
property is shared by trellis languages, the proof of this fact is similar as the
one of Lemma 3.1, nevertheless it is given for completeness.

Lemma 4.2. Let S ⊆ N be a set of numbers, let k and km (with k ≥ 2 and
m ≥ 2) be two bases of positional notation. Then the language L ⊆ Σ∗

k \0Σ∗
k

such that (L)k = S is a trellis language if and only if the language L′ ⊆
Σ∗

km \ 0Σ∗
km such that (L′)km = S is a trellis language.

Proof. Consider the same block code as in Lemma 3.1: h : Σ∗
km → Σ∗

k given
for any k-ary digits d0, . . . , dm−1 ∈ Σk by

h
(m−1∑

i=0

di · k
i
)

= dm−1 . . . d1d0 ,

where
∑m−1

i=0 di · k
i is a single digit in base-km notation.

It was already noted that (w)km = (h(w))k for every w ∈ Σkm, and
(L)km = (h(L))k for every L ⊆ Σkm.

Now the proof follows the same lines as the proof of Lemma 3.1.

⇐© Let S = (L′)km and define L̂ = h(L′) ⊆ Σ∗
k. A theorem by Culik

et al. [12] assures that trellis languages are (effectively) closed under block
codes, and h is a block code, so L̂ is (effectively) a trellis language. Moreover,
S = (L̂)k. The problem remaining is that some strings in L̂ have leading
zeroes. The number of such leading zeroes is at most m− 1. Let

L =
(
{ε, 0, 02, . . . , 0m−1}−1 · L̂

)
\ 0Σ∗

k .

Every string in L̂ has a representative in L with all leading zeroes removed.
By the closure properties of trellis languages, this is a trellis language, more-
over S = (L)k.

⇒© Conversely, let S = (L)k. Construct L̃ as in Lemma 3.1, i.e., by
appending a limited number of leading zeroes to L:

L̃ =
(
{ε, 0, 02, . . . , 0m−1} · L

)
∩
(
(Σk)m

)∗
.

Every string in L has a (unique) representative in L̃ with the same numerical
value, and S = (L̃)k. By closure properties of trellis languages, L̃ is a trellis
language.

Consider the language L′ = h−1(L̃) ⊆ Σ∗
km. It is known that trellis

languages are closed under inverse homomorphisms [12, 18], hence L′ is a
trellis language. Then S = (L′)km, as every element of L̃ has its counterpart
with the same numerical value in L′ .

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 49

It is quite surprising that trellis automata are connected with conjunctive
grammars. They are equivalent to linear conjunctive grammars, whose def-
inition was modelled on linear CFG. The computation equivalence of linear
conjunctive grammars and trellis automata is stated as follows:

Theorem 4.1 (Okhotin [40]). A language L ⊆ Σ+ is defined by a linear
conjunctive grammar if and only if L is recognised by a trellis automaton.
These representations can be effectively transformed into each other.

4.2 A representation of trellis automata

In this section the informal approach presented at the beginning of this
chapter is transformed into a solid construction with provable properties.
That is, similarly to Theorem 3.3 which dealt with sets of numbers with
regular positional notation, it is asserted that every set of numbers with
positional notation recognised by trellis automaton is represented by a least
solution of a resolved system of equations.

Theorem 4.2. For every k ≥ 2 and for every trellis automaton M over
Σk = {0, . . . , k − 1}, such that L(M) ∩ 0Σ∗

k = ∅, there exists and can be
effectively constructed a resolved system of equations over sets of numbers
using the operations ∪, ∩ and + and singleton constants, such that its least
solution contains a component

(L(M))k = {n | k-ary notation of n is in L(M)} .

This is the unique solution in sets of positive natural numbers.

The proof of the theorem is given in the rest of this chapter. The core
of the argument is the following simulation of the computation of a trellis
automaton by a system of equations. Once this lemma is shown, the rest of
the argument used to prove Theorem 4.2 easily follows.

Lemma 4.3. For every k ≥ 5 and for every trellis automaton M over Σk,
there exists and can be effectively constructed a system using constant sets
with regular base-k notation, such that one of the components of the unique
solution in positive numbers of this system is

(1(L(M) � 1)10∗)k = {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ L(M)} .

This solution is also the least solution in natural numbers.

A brief explanation how the informal intuition was changed into this
specific encoding should be given before. When devising the representation
for word w several possible obstacles should be taken taken into account:

50 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

• while we L(M) ∩ 0Σ∗
k = ∅ can be assumed, and hence in the end

w ∈ L(M) does not start with 0, its substring can start with 0. Thus
a way of marking the number of leading 0’es is needed;

• similar question arises for w’s ending 0’es—they should be distinguish-
able from 0’es added in the end.

The natural approach is to add sentinels on both side of the word, i.e., to
represent w as (1w10∗)k. This solves the two mentioned problems. Still
it creates another: resolved equations are ‘monotone’ in the sense that if
(w)k ∈ ϕ({(w′)k}) then usually (w)k ≥ (w′)k. The current encoding does
not guarantee such property—the right sentinel is a problem here: trying
to extend w by 0 to the right causes the drop of value of representation—
(1w10`)k > (1w010`−1)k. This is answered by representing w not by 1w10∗

directly, but by 1(w � 1)10∗ instead. However, in this way w ∈ 0
∗ cannot

be represented at all and thus w ∈ Σk0
∗ ∪ 0

∗Σk cannot be constructed by
referencing to other constructed sets. Therefore such w have to be treated
separately.

proof of Lemma 4.3. For a given trellis automaton M = (Σk, Q, I, δ, F), de-
fine a system of equations over sets of numbers with the set of variables Xq

for q ∈ Q, and with an additional variable Y . It will be proved that the
least solution of that system is Xq = Sq, Y = S, where

Sq = (1((LM (q) \ 0∗) � 1)10∗)k

= {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} ,

S = (1((L(M) \ 0∗) � 1)10∗)k

= {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ L(M)} .

The equations are rather complex and will be constructed and explained in
stages.

As already mentioned, every string w ∈ Σ+\0∗ is represented by numbers
of the form (1(w� 1)10`)k with ` ≥ 0. The main idea of the construction is
to represent numbers corresponding to a string iwj ∈ LM (q), with i, j ∈ Σk

and w ∈ Σ∗
k, through numbers corresponding to the strings iw and wj.

Consider that iwj belongs to LM (q) if and only if there are states q′, q′′ with
δ(q′, q′′) = q, iw ∈ LM(q′) and wj ∈ LM (q′′). In terms of the encodings, the
number (1(iwj � 1)10`)k should belong to Xq if and only if there are states
q′, q′′ with δ(q′, q′′) = q, (1(iw�1)10`+1)k ∈ Xq′ and (1(wj�1)10`)k ∈ Xq′′ .

To this end, two expressions: λi and ρj for i, j ∈ Σk depending on the
variables Xq are devised. The purpose of λi is to take a number of the
form (1(wj � 1)10`)k and append the digit i to the left of the encoded
string obtaining a number (1(iwj � 1)10`)k. Similarly, ρj starts with a
number (1(iw � 1)10`+1)k and appends j to the right of the string, also

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 51

obtaining (1(iwj � 1)10`)k; note that one of the zeroes in the tail has to be
consumed. This is implemented by adding digits at some specific positions,
so that selected digits in the original number (at the left and at the right
of the encoding, respectively, whence the letters λ and ρ come from) could
be modified in the resulting number, while the rest of the digits remain the
same. This is to be done by adding a number of the form ((j− i)0`)k, where
` is the position in which digit i is to be replaced by digit j > i.

For convenience, the inner subexpressions of λi are denoted by κi′ and
the inner subexpressions of ρj are πj′.

κi′(X) =
(
X ∩ (1i′Σ∗

k10
∗)k

)
+(10∗)k ∩ (2i′Σ∗

k)k,

for all i′ ∈ Σk ,

λi(X) =
⋃

i′∈Σk

(
κi′(X)+((k + i− 2)0∗)k ∩ (1iΣ∗

k)k

)
,

for i = 0, 1 ,

λi(X) =
⋃

i′∈Σk

(
κi′(X)+(1(i− 2)0∗)k ∩ (1iΣ∗

k)k

)
,

for i ≥ 2 ,

πj′(X) =
(
X ∩ (1Σ∗

kj
′
10

∗)k

)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k,

for all j′ ∈ Σk ,

ρj(X) =
⋃

j′∈Σk

(
πj′(X)+((k + j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
,

for j = 0, 1 ,

ρj(X) =
⋃

j′∈Σk

(
πj′(X)+(1(j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
,

for 2 ≤ j ≤ k − 2 ,

ρk−1(X) =
⋃

j′∈Σk

(
πj′(X)+((k − 3)10∗)k ∩ (1Σ∗

k(k − 1)10∗)k

)
.

Define also the following constant sets Rq ⊆ N for every q ∈ Q:

Rq = {(1(w � 1)10∗)k | w ∈ 0
∗(Σk \ 0) ∪ (Σk \ 0)0∗, w ∈ LM (q)} .

Constant Rq represents the numbers in Sq that cannot be obtained by a ref-
erence to Sq′ and Sq′′ , since this would involve representing w � 1, where
w ∈ 0

∗. By Lemma 4.1, the language of positional notations of these num-
bers is regular, so Rq are allowed constants.

Using the functions λi and ρj , as well as the constant sets Rq, the resolved

52 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

system of equations can be succinctly represented in the following form:




Xq = Rq ∪
⋃

q′,q′′ : δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′), for all q ∈ Q ,

Y =
⋃

q∈F Xq .

Intuition behind this equations is as follows: the sets Rq contain the
starting part of Sq representing elements of LM (q) of a very simple form:
either a non-zero digit followed by zeroes, or a sequence of zeroes ending
with one nonzero digit. All other numbers are constructed by simulating
the transition of M : a word w belongs to LM (q) if and only if there exists
two states q′, q′′ ∈ Q such that δ(q′, q′′) = q and letters i, j ∈ Σk such that
w = iw′j and iw′ ∈ LM (q′) and w′j ∈ LM (q′′).

The overall goal is to prove the following statement:

Main Claim. The unique solution of the system in sets of non-negative
integers is Xq = Sq (for all q ∈ Q), Y = L.

This is the least solution in natural numbers.

Consider the system for the variables Xq, for all q. By Lemma 2.1, the
form of this system ensures the uniqueness of its solution in non-negative
integers. The equation for Y is just a union of some of these variables
and it cannot yield any extra solutions. It remains to substitute the vector
(. . . , Sq, . . . , S) into the system and verify that all equations hold true.

The first to be calculated is the value of each λi on each Sq, beginning
with its subexpression κi′ .

Claim 4.1. For each q ∈ Q and i′ ∈ Σk,

κi′(Sq) = {(2i′w10m)k |m ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)} .

Proof. The inner subexpression X ∩ (1i′Σ∗
k10

∗)k clearly has value

Sq ∩ (1i′Σ∗
k10

∗)k = {(1i′w10m)k |m ≥ 0, i′w /∈ (k− 1)∗, i′w� 1 ∈ LM (q)} .
(4.1)

The evaluation of an entire expression κi′ is first done for singletons
X = {n}, and then Lemma 2.2 is applied to obtain its value on X = Sq. In
view of the above intersection (4.1), it is sufficient to consider numbers of
the form

n = (1i′w10m)k .

with w′ ∈ Σ∗
k, j′ ∈ Σk and m ≥ 0. Then any number n′ = (10`)k with ` ≥ 0

can be added, and it is required that the base-k notation of the sum n+ n′

has 2i′ as its first two digits.

• If the number of digits in n and n′ is the same, that is, if |i′w10m| = `,
then the leading 1s in n and n′ are in the same position, and the sum
is n+ n′ = (2i′w10m)k ∈ (2i′Σ∗

k)k.

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 53

• If n′ has more digits than n, then n + n′ begins with 1, and hence
n+ n′ /∈ (2i′Σ∗

k)k.

• If n′ has fewer digits than n, then the form of the sum depends on
whether there is a carry into the first position. If there is no carry,
then the sum of these numbers does not begin with 2. Otherwise, if it
begins with 20 due to a carry, then i′ = k − 1, but at the same time
the second digit of n+ n′ is 0 and hence not i′.

These wrong combinations are filtered out by an intersection with (2i′Σ∗
k)k.

Altogether the substitution of X = {n} yields
(
{(1i′w10m)k}+ (10∗)k

)
∩ (2i′Σ∗

k)k = {(2i′w10m)k} .

Since this expression is a superposition of intersection with a constant set
and addition of a constant set, by Lemma 2.2, it is distributive: that is, for
any T ⊆ (1i′Σ∗

k10
∗)k,

T + (10∗)k ∩ (2i′Σ∗
k)k =

⋃

n∈T

(
{n}+ (10∗)k ∩ (2i′Σ∗

k)k

)

= {2i′w10m | 1i′w10m ∈ T} .

It remains to substitute the value (4.1) of the inner subexpression for T ,
obtaining

κi′(Sq) =
(
Sq ∩ (1i′Σ∗

k10
∗)k

)
+ (10∗)k ∩ (2i′Σ∗

k)k (4.2)

=
(
{(1i′w10m)k |m ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}

+ (10∗)k

)
∩ (2i′Σ∗

k)k

={(2i′w10m)k |m ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)} ,

which completes the proof of Claim 4.1.

Now, knowing the value of κi′(Sq), one can evaluate λi on Sq.

Claim 4.2. For each i ∈ Σk and q ∈ Q,

λi(Sq) = {(1(iw � 1)10m)k | w ∈ LM (q) \ 0∗, m ≥ 0} .

Proof. The proof is again by evaluating each subexpression, which is first
done for singletons X = {n}. Addition followed by intersection used in λi

follows the same principle as in κi′ . The set being added has a different form
depending on i, and, according to the definition of λi, there are two cases.

Consider first the case of i ∈ {0, 1}. By Claim 4.1, every number in
κi′(Sq) is of the form

n = (2i′w′
10

m)k .

Then a number n′ = ((k + i − 2)0`)k is added to n, and it is required that
the result begins with digits 1i. Since n has 2 as the leading digit, this digit
should be modified to obtain a result of such a form.

54 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

• If the number of digits in n and n′ is the same, that is, |i′w′10m| = `,
then the digits 2 and (k + i− 2) are in the same position, and so the
result n+ n′ = (1ii′w′

10
m)k is as intended.

• If n′ has more digits than n, then the sum n+n′ has the leading digit
k + i − 2 ∈ {k − 2, k − 1}, which is not 1, because k ≥ 4. Hence,
n+ n′ /∈ (1iΣ∗

k)k.

• If n′ has fewer digits than n, then the leading digit of their sum is 2

or 3, and again the sum is not in (1iΣ∗
k)k.

After an intersection, again, only one number remains:
(
{(2i′w′

10
m)k}+ ((k + i− 2)0∗)k

)
∩ (1iΣ∗

k)k = {(1ii′w′
10

m)k} .

As in the previous case, this subexpression is distributive by Lemma 2.2,
that is, its value on any set T ⊆ (2i′Σ∗

k10
∗)k is obtained from its value on

singletons as follows:

T + ((k + i− 2)0∗)k ∩ (1iΣ∗
k)k =

⋃

n∈T

(
{n}+ ((k + i− 2)0∗)k ∩ (1iΣ∗

k)k

)

= {(1ii′w′
10

m)k | 2i
′w′

10
m ∈ T} .

The value (4.2) of the nested subexpression κi′(Sq) is known from Claim 4.1.
Substituting this value for T , one obtains

κi′(Sq)+((k + i− 2)0∗)k ∩ (1iΣ∗
k)k

={(2i′w′
10

m)k |m ≥ 0, i′w′ /∈ (k − 1)∗, i′w′
� 1 ∈ LM (q)}

+ ((k + i− 2)0∗)k ∩ (1iΣ∗
k)k

={(1ii′w′
10

m)k |m ≥ 0, i′w′ /∈ (k − 1)∗, i′w′
� 1 ∈ LM (q)} . (4.3)

Now consider the case of i ≥ 2, where a number n′ ∈ (1(i − 2)0∗)k is
added to n.

• If n′ has exactly one digit more than n, that is, the digits 2 and i− 2
are in the same position, then the sum equals n+ n′ = (1iw10m)k, as
intended.

• If n′ has exactly as many digits as n, then there are two subcases:

– if i′ + i− 2 < k, then the result is n+n′ = (3(i′ + i− 2)w10m)k /∈
(1iΣ∗

k)k;

– if i′ + i − 2 ≥ k the sum is n + n′ = (4(i′ + i− 2 − k)w10m)k /∈
(1iΣ∗

k)k.

• If the number of digits in n′ is greater than the number of digits in n
plus one, then the result is n + n′ = (1(i − 2)0t

2i′w′
10

m)k for some
t ≥ 0, and hence n+ n′ /∈ (1iΣ∗

k)k.

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 55

• Finally, if there are fewer digits in n′ than in n, then the leading digit
in n+ n′ is 2 or 3.

Thus, all unintended results are filtered by intersection with (1iΣ∗
k)k, and

the result is the same as in the previous case:

(
{(2i′w′

10
m)k}+ (1(i− 2)0∗)k

)
∩ (1iΣ∗

k)k = {(1ii′w′
10

m)k} .

Then, using Lemma 2.2 and the value (4.2) of the nested subexpression
κi′(Sq), the following is obtained for each i ≥ 2:

κi′(Sq)+(1(i− 2)0∗)k ∩ (1iΣ∗
k)k =

={(2i′w′
10

m)k |m ≥ 0, i′w′ /∈ (k − 1)∗, i′w′
� 1 ∈ LM (q)}

+ (1(i− 2)0∗)k ∩ (1iΣ∗
k)k

={(1ii′w′
10

m)k |m ≥ 0, i′w′ /∈ (k − 1)∗, i′w′
� 1 ∈ LM (q)} , (4.4)

and the result is the same as in the case of i ∈ {0, 1}.
As the whole expression λi is defined as the union of subexpressions

evaluated above, the set λi(Sq) equals the union of the values (4.3), (4.4)
for all i′ ∈ Σk. Taking a union over i′, one obtains:

λi(Sq) =
⋃

i′

{(1ii′w10m)k |m ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}

= {(1iw10m)k |m ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)}

= {(1iw10m)k |m ≥ 0, w ∈ (LM (q) \ 0∗) � 1}

= (1(i(LM (q) \ 0∗) � 1)10∗)k , (4.5)

and the claim is proved.

The expressions ρj operate in a way similar to λi. While λi modifies the
most significant digits of numbers (1w10`)k, ρ modifies the digits around
the last non-zero digit. This is also done by addition in two stages, but
instead of intersecting the result with sets of the form (xΣ∗

k10
∗)k, where

x ∈ Σ+
k are the intended digits, this time one has to use intersection with

(1Σ∗x0∗)k. The corresponding correctness statement for ρj is established
using generally the same argument as the previous Claim 4.2. First its inner
subexpression πj′ is evaluated on Sq.

Claim 4.3. For all q ∈ Q and j′ ∈ Σk,

πj′(Sq) = {(1w′j′20m)k |m ≥ 0, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} .

Proof. As in the proof of Claim 4.1, every subexpression of πj′(X) will be
evaluated on X = Sq. The inner subexpression of πj′(Sq) is

Sq∩(1Σ∗
kj

′
10

∗)k = {(1w′j′10m)k |m ≥ 0, w′j′ /∈ (k−1)∗, w′j′�1 ∈ LM (q)} .
(4.6)

56 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

Consider the next subexpression in πj′ , which is
(
X∩(1Σ∗

kj
′
10

∗)k

)
+(10∗)k∩

(1Σ∗
kj

′
20

∗)k. The first task is to evaluate it for a singleton X = {n}, where
the number is of the form

n = (1w′j′10m)k .

In this subexpression, any number n′ = (10`)k with ` ≥ 0 can be added to
n, and the results are restricted to be in (1Σ∗

kj
′
20

∗)k, that is, n+n′ has j′2
as its last non-zero digits.

• If m = `, that is, the last digit 1 in n is in the same position as the
leading digit 1 in n′, then n+ n′ = (1iw′j′20m)k.

• If these digits are not aligned, then the last non-zero digit in n+ n′ is
1, and hence n+ n′ /∈ (1Σ∗

kj
′
20

∗)k.

Thus it has been shown that

{(1w′j′10m)k}+10
∗ ∩ (1Σ∗

kj
′
20

∗)k = {(1w′j′20m)k} .

As in the previous proofs, the considered subexpression is distributive
by Lemma 2.2, that is, for any T ⊆ (1Σ∗

kj
′
10

∗)k,

T + (10∗)k ∩ (1Σ∗
kj

′
20

∗)k =
⋃

n∈T

(
{n}+ (10∗)k ∩ (1Σ∗

kj
′
20

∗)k

)

= {1w′j′20m | 1w′j′10m ∈ T} .

Now let T be the value (4.6) of the inner subexpression, which gives

πj′(Sq) =
(
Sq ∩ (1Σ∗

kj
′
10

∗)k

)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k

= {(1w′j′20m)k |m ≥ 0, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} , (4.7)

and thus proves Claim 4.3.

Claim 4.4. For each j ∈ Σk and q ∈ Q,

ρj(Sq) = {(1(w(j + 1 mod k) � 1)10m)k | w ∈ LM (q) \ 0∗, m ≥ 0} .

Proof. The evaluation of subexpressions of ρj(X) on X = Sq splits into three
cases according to the digit j. In each case the innermost subexpression is
πj′(X), and its value πj′(Sq) contains only numbers of the form

n = (1w′j′20m)k ,

with w′j′ /∈ (k − 1)∗.
The first case is j ∈ {0, 1}, where ρj has a subexpression

πj′(X)+((k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k .

Here any number n′ = ((k + j − 2)10`)k with ` ≥ 0 is added to n, and it
is required that the sum n+ n′ has j1 as its last non-zero digits. There are
several subcases depending on the number of ending zeroes in n and in n′,
which is m and `, respectively:

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 57

• If ` = m − 1, that is, the last non-zero digit 2 in n is aligned with
the leading digit (k + j − 2) of n′, and they sum up to j, with a
carry to the next digit, j′. Accordingly, the sum of two numbers is
n+n′ = (1(w′j′ �1)j10m−1)k, as it is intended to be. Note that since
w′j′ /∈ (k − 1)∗, the string w′j′ � 1 is well-defined.

• If ` < m−1, then the last two non-zero digits of n+n′ are (k+j−2)1.
As k ≥ 5 and k+j−2 6= j, the last non-zero digits of n+n′ are different
from j1, and therefore n+ n′ /∈ (1Σ∗

kj10
∗)k.

• If ` = m, then the last non-zero digit of n+ n′ is 3 and not 1, and the
sum is again not in (1Σ∗

kj10
∗)k.

• In case of ` > m, the last digit is 2 inherited from n, and again the
sum is not of the required form.

It follows that all unintended sums are filtered out by intersection, and the
result is

(1w′j′20m)k+((k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k = {(1(w′j′ � 1)j10m−1)k} ,

which, by Lemma 2.2, extends to any set T ⊆ (1Σ∗
kj

′
20

∗)k \ (1(k− 1)∗20∗)k

as follows:

T+((k+j−2)10∗)k ∩ (1Σ∗
kj10

∗)k = {(1(w′j′�1)j10m−1)k |1w
′j′20m ∈ T} .

Hence, after the addition and intersection in the subexpression for j ∈ {0, 1},
the intermediate result is

πj′(Sq)+((k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k =

= {(1(w′j′ � 1)j10m−1)k |m ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} .
(4.8)

Next, consider the case of j ∈ {2, . . . , k−2}, when ρj has inner subexpres-
sion πj′(X)+(1(j−2)10∗)k∩(1Σ∗

kj10
∗)k. Here a number n′ = (1(j−2)10`)k

is added to n, and the subsequent intersection requires that n + n′ has j1
as its last non-zero digits.

• Again, for ` = m− 1 the sum is (1(w′j′ � 1)j10m−1)k, which is of the
required form.

• If ` < m− 1, then the last two non-zero digits of n + n′ are (j − 2)1.
Since j − 2 6= j, the sum is not in (1Σ∗

kj10
∗)k.

• If ` = m, then the last non-zero digit of n+ n′ is 3.

• If ` > m, then the last non-zero digit is 2 (coming from n).

58 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

Therefore, as in the previous case, the only result that passes through the
intersection is (1(w′j′ � 1)j10m−1)k, and this subexpression evaluates to

(1w′j′20m)k+(1(j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k = {(1(w′j′ � 1)j10m−1)k} .

Hence the value of the inner subexpression for 2 ≤ j ≤ k − 2 is

πj′(Sq)+((j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k =

= {(1(w′j′ � 1)j10m−1)k |m ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} ,
(4.9)

which is the same as for j ∈ {0, 1}.
To conclude this case, as well as the previous one, it has been proved that

for all j 6= k − 1, regardless of the value of j′, ρj transforms (1w′j′10m)k

into (1(w′j′ � 1)j0m−1)k, or equivalently, (1w′j′j10m)k is obtained from
(1(w′j′ � 1)10m+1)k.

Finally, consider the case of j = k − 1. Here any number n′ = ((k −
3)10`)k with ` ≥ 0 can be added to n = (1w′j′20m)k, and their sum n+ n′

is required to have (k − 1)1 as its last non-zero digits.

• If ` = m − 1, then the sum is (1w(k − 1)10m−1)k, which passes the
intersection with (1Σ∗

k(k − 1)10∗)k.

• If ` < m− 1, then the last two digits of n+ n′ are (k − 3)1, and since
k − 3 6= k − 1, this number is not of the required form.

• If ` = m, then the last digit of n+ n′ is 3.

• If ` > m, then the last digit is 2 from n.

As all wrong values have been filtered out, the value of the expression is
again a singleton:

(1w′j′20m)k+((k−3)10∗)k ∩ (1Σ∗
k(k−1)10∗)k = {(1w′j′(k−1)10m−1)k} .

Thus the subexpression corresponding to j = k − 1 has the following value:

πj′(Sq)+((k − 3)10∗)k ∩ (1Σ∗
k(k − 1)10∗)k =

= {(1w′j′(k − 1)10m−1)k |m ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} .
(4.10)

Now the value of ρk−1 on Sq is obtained as the union of (4.10) over j′:

ρk−1(Sq)

=
⋃

j′

{(1w′j′(k − 1)10m−1)k |m ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}

= {(1w(k − 1)10m−1)k |m ≥ 1, w /∈ (k − 1)∗, w � 1 ∈ LM (q)}

= {(1(w � 1)(k − 1)10m)k |m ≥ 0, w /∈ 0
∗, w ∈ LM (q)} .

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 59

Note that (w� 1)(k− 1) = w0� 1, and so the latter set can be rewritten as

ρk−1(Sq) = {(1(w0 � 1)10m)k |m ≥ 0, w ∈ LM (q) \ 0∗} ,

which is of the form stated in the claim.

Similarly, for each j 6= k − 1, the union of (4.8) and (4.9) over j′ gives
the value of ρj :

ρj(Sq)

=
⋃

j′

{(1(w′j′ � 1)j10m−1)k |m ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM(q)}

= {(1(w � 1)j10m−1)k |m ≥ 1, w /∈ (k − 1)∗, w � 1 ∈ LM (q)}

= {(1wj10m)k |m ≥ 0, w /∈ 0
∗, w ∈ LM (q)} .

Here, since j 6= k − 1, the string wj is equal to w(j + 1) � 1, and hence the
result equals

{(1(w(j + 1) � 1)10m)k |m ≥ 0, w ∈ LM (q) \ 0∗} ,

which completes the proof of Claim 4.4.

Now the intended solution can be substituted into the system.

Proof of the Main Claim. For every i, j ∈ Σk and q′, q′′ ∈ Q, consider the
expression λi(Sq′′) ∩ ρj(Sq′). The values of λi(Sq′′) and ρj(Sq′) are known
from Claim 4.2 and Claim 4.4, and the form of the expressions can be unified
as follows (all sums j + 1 are modulo k):

λi(Sq′′) = {(1(iw(j + 1) � 1)10m)k | w(j + 1) ∈ LM (q′′) \ 0∗, m ≥ 0} ,

ρj(Sq′) = {(1(iw(j + 1) � 1)10m)k | iw ∈ LM (q′) \ 0∗, m ≥ 0} .

The intersection of these sets therefore is

λi(Sq′′) ∩ ρj(Sq′) =
{
(1(iw(j + 1) � 1)10m)k

∣∣
iw ∈ LM (q′), w(j + 1) ∈ LM (q′′), iw /∈ 0

∗, w(j + 1) /∈ 0
∗, m ≥ 0

}
.

Fix q ∈ Q. According to the definition of a trellis automaton, iw(j+1) ∈
LM (q) if and only if iw ∈ LM (q′) and w(j + 1) ∈ LM (q′′) for some q′ and
q′′ such that δ(q′, q′′) = q. Then the union of λi(Sq′′) ∩ ρj(Sq′) over all such
states q′ and q′′ equals

⋃

q′,q′′:δ(q′,q′′)=q

λi(Sq′′) ∩ ρj(Sq′) =

= {(1(iw(j+1)�1)10m)k|iw(j+1) ∈ LM (q), iw /∈ 0
∗, w(j+1) /∈ 0

∗,m ≥ 0} .

60 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

Taking another union over all digits i and j, the following expression is
obtained:

⋃

i,j∈Σk

⋃

q′,q′′:δ(q′,q′′)=q

λi(Sq′′) ∩ ρj(Sq′) =

= {(1(w � 1)10m)k | w ∈ LM (q), w /∈ Σk0
∗ ∪ 0∗Σk, m ≥ 0} .

The cases of w ∈ (Σk0
∗∪0∗Σk)\0∗ are not reflected in the above expression.

However, they are included in Rq, and therefore

Rq ∪
⋃

i,j∈Σk

⋃

q′,q′′:δ(q′,q′′)=q

λi(Sq′′) ∩ ρj(Sq′)

= {(1(w � 1)10m)k | w ∈ LM (q), w /∈ 0
∗, m ≥ 0}

= {(1w10m)k | w � 1 ∈ LM (q), w /∈ (k − 1)∗, m ≥ 0}

= Sq ,

that is, the equation for Xq turns into an equality.
As the system is proper, the least solution in sets natural numbers is also

the unique solution in sets of positive numbers. This concludes the proof of
the Main Claim and hence of the entire Lemma 4.3.

The system constructed in Lemma 4.3 represents the set (1(L(M) �

1)10∗)k for every trellis automaton M . Every number in this set represents
an encoding of a string w ∈ L(M) modified by decrementing w as well as
by introducing a pair of sentinel digits 1 and a tail of zeroes. This next step
towards representing the set (L(M))k for every M with L(M)∩ 0Σ∗

k = ∅ is
the following lemma, in which a string w ∈ Σk is encoded as a number (1w)k,
that is, using only one sentinel digit, no zeroes and no decrementation.

Lemma 4.4. For every k ≥ 5 and for every trellis automaton M over Σk

there exists and can be effectively constructed a resolved system of equations
using constants with a regular base-k notation, such that one of the compo-
nents of its least solution is (1 · L(M))k.

This is the unique solution in sets of positive natural numbers.

Proof. For every j ∈ Σk and q ∈ Q, consider the language

Lj,q = LM (q) · j−1 \ 0∗ .

By the closure properties of trellis automata, this language is recognised
by a trellis automaton Mj,q. Then, by Lemma 4.3, there exists a resolved
system of equations, such that one of its variables, Yj,q, has value

Yj,q = {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ Lj,q} .

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 61

in the least solution.
Let us combine these equations for all j into a single system, adding

a new equation

Zq = (1LM (q) ∩ 10∗Σk)k ∪
k−1⋃

j=0

(Yj,q ∩ (1Σ∗
k1)k) + (1j � 1)k .

The constant set (1LM (q) ∩ 10
∗Σk)k has a regular base-k notation by

Lemma 4.1. Since the equation for Zq does not have a self-reference, its
value in the least solution can be calculated by substituting the values of
Yj,q in the least solution into the equation for Zq.

First, the inner intersection with (1Σ∗
k1)k filters out the elements of Yj,q

with one or more zeroes in the end:

{(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ Lj,q} ∩ (1Σ∗
k1)k =

= {(1w1)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q} .

The subsequent addition of a number (1j � 1)k = k+ j − 1 to each number
(1w1)k changes the lowest digit from 1 to j and produces a carry to the
second digit, thus changing w to w � 1. Hence this subexpression has the
following value:

{(1w1)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q}+ (1j � 1)k

= {(1w1)k + (1j � 1)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q}

= {(1(w � 1)j)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q}

= (1(Lj,q \ 0
∗)j)k

= (1(LM (q) · j−1 \ 0∗)j)k

= (1(LM (q) · j−1)j)k \ (10
∗Σk)k

= (1(LM (q) ∩ Σ∗
kj))k \ (10

∗Σk)k . (4.11)

It remains to substitute these values of subexpressions into the full ex-
pression for Z, obtaining

(1LM (q) ∩ 10∗Σk)k ∪
k−1⋃

j=0

(
(1(LM (q) ∩ Σ∗

kj))k \ (10
∗Σk)k

)

= (1LM (q) ∩ 10∗Σk)k ∪
(
(1LM (q))k \ (10

∗Σk)k

)

= (1LM (q))k , (4.12)

which is accordingly the value of Zq in the least solution.
Now the equation

Z =
⋃

q∈F

Zq

62 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

has the least solution (1L(M))k.
Since the system is proper, this is also the unique solution in positive

numbers.

The last major step of the argument is eliminating the leading digit 1 in
the representation given by Lemma 4.4.

Lemma 4.5. For every k ≥ 5 and for every trellis automaton M over
Σk with L(M) ∩ 0Σ∗

k = ∅ there exists and can be effectively constructed a
system of resolved equations using constants with a regular base-k notation,
such that one of the components of its least solution is (L(M))k.

This solution is also the unique solution in positive numbers.

Proof. For every i ∈ Σk \ {0} and for every q ∈ Q, the language i−1LM(q)
is recognised by a certain trellis automaton. Then, by Lemma 4.4, there
is a resolved system of equations over sets of numbers, such that one of its
variables, Zi,q, represents the set (1(i−1LM (q)))k.

These systems are combined into one, and a new variable Tq is added,
along with the equation

Tq = (LM(q) ∩ (Σk \ {0}))k ∪ Z1,q ∪
⋃

i∈Σk\{0,1}

τi(Zi,q), where (4.13)

τi(X) =
⋃

i′∈Σk

(
(X ∩ (1i′Σ∗

k)k)+((i− 1)0∗)k ∩ (ii′Σ∗
k)k,

)
for i 6= 0, 1 .

(4.14)

The purpose of the subexpression τi is to convert a number (1w)k with
w ∈ Σ+

k to a number (iw)k. Then the right-hand side of the equation for
Tq should evaluate to Tq = (LM(q) \ 0Σ∗

k)k under the substitution Zi,q =
(1(i−1LM (q)))k.

The proof starts with evaluating τi on each Zi,q:

Claim 4.5. For every i ∈ Σk \ {0, 1} and q ∈ Q,

τi(Zi,q) = (LM (q) ∩ iΣ+
k)k .

Proof. For every i′ ∈ Σk, consider the component of the union for i′ in τi.
Clearly, the innermost subexpression has the following value:

Zi,q ∩ (1i′Σ∗
k)k = {(1w)k | iw ∈ LM (q)} ∩ (1i′Σ∗

k)k

= {(1i′w)k | ii
′w ∈ LM (q)} . (4.15)

The next subexpression involves an addition of ((i − 1)0∗)k followed
by intersection with (ii′Σk)k. This subexpression is first evaluated on a
singleton {n}. The nested intersection with (1i′Σ∗

k)k leaves only numbers of
the form

n = (1i′w)k ,

4.2. A REPRESENTATION OF TRELLIS AUTOMATA 63

with w ∈ Σ∗
k. Afterwards, any number n′ = ((i − 1)0`)k with ` ≥ 0 can be

added to n, and it is required that the sum n+ n′ starts with two digits ii′.

• If the number of digits in n and n′ is the same, that is, if |i′w| = `,
then the sum is n+ n′ = (ii′w)k, as intended.

• If n′ has more digits than n, then the sum n+n′ has the leading digit
i− 1, and hence it is not in (ii′Σ∗

k)k.

• Suppose n′ has exactly one digit fewer than n, that is, |w| = `. Then
the second digit i′ in n is aligned with the leading digit i−1 of n′, and
the second digit of the sum n+ n′ equals i′ + (i− 1) modulo k. Since
i′ < i′ + i − 1 < i′ + k, it follows that this second digit cannot be i′,
and therefore n+ n′ is not in (ii′Σ∗

k)k.

• If the number of digits in n′ is less by more than one than the number
of digits in n, there are two subcases:

– If the addition of n′ to n results in a carry to the second digit,
then the second digit of the result is i′ + 1 (mod k), hence it is
different from i′.

– If there is no carry, then the leading digit of the sum is 1 6= i. In
both cases n+ n′ /∈ (ii′Σ∗

k)k.

This concludes the case study: all wrong combinations are excluded by
an intersection, and therefore

{(1i′w)k}+((i− 1)0∗)k ∩ (ii′Σ∗
k)k = {(ii′w)k} .

Hence,

(
Zi,q ∩ (1i′Σ∗

k)k

)
+ ((i− 1)0∗)k ∩ (ii′Σ∗

k)k = {(ii′w)k | (1i
′w)k ∈ Zi,q}

= {(ii′w)k | ii
′w ∈ LM (q)}

= (LM(q) ∩ ii′Σ∗)k . (4.16)

Taking the union over i′, one obtains

τi(Zi,q) = (LM (q) ∩ iΣ+)k .

which completes the proof of the claim.

Getting back to the proof of Lemma 4.5, now the right-hand side of the
equation for each Tq can be evaluated on Zi,q = (1(i−1LM (q)))k. This is a
union of k expressions, the first of them representing a finite set, the second
being the variable Z1,q, and the rest are the subexpressions τi(Zi,q) with

64 CHAPTER 4. SETS WITH TRELLIS POSITIONAL NOTATION

i ∈ Σk \ {0, 1}, evaluated in Claim 4.5. Altogether, the value of Tq in the
least solution of the constructed system is the union of the following sets:

(LM (q) ∩ (Σk \ {0}))k ∪ (1(1−1LM (q)))k︸ ︷︷ ︸
(LM (q)∩1Σ+

k
)k

∪

k−1⋃

i=2

(LM (q) ∩ iΣ+
k)k

= (LM(q) \ 0Σ∗
k)k .

Since L(M)∩0Σ∗
k = ∅ by assumption, the least solution of the equation

T =
⋃

q∈F

Tq

is (L(M))k.
As the system is proper, this is also the unique solution in the sets of

positive numbers.

Now the proof of the theorem can be easily inferred from Lemma 4.5.

Proof of Theorem 4.2. First assume k ≥ 5. Then Lemma 4.5 gives a system
of equations over sets of numbers with the desired least solution. This system
uses constants with a regular notation. By Theorem 3.3, each of these
constants can be expressed by a separate system of equations using singleton
constants. The resulting system satisfies the statement of Theorem 4.2.

It remains to consider the cases of k = 2, 3, 4. Define the language L′

of base-k3 notations of numbers whose base-k notation is in L(M). Then,
by Lemma 4.2, L′ is generated by another trellis automaton M ′. Applying
the above argument to M ′, a system of equations specifying the given set of
numbers is obtained. This completes the proof for this remaining case.

Finally, the system of equations constructed in Theorem 4.2 can be rep-
resented as a conjunctive grammar over a unary alphabet, which yields the
following general result on the expressive power of these grammars:

Corollary 4.1. Let k ≥ 2. For every trellis automaton M over Σk,
with L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively constructed
a conjunctive grammar over the alphabet {a} that generates the language
{an | n ∈ (L(M))k}.

Part II

Unresolved equations over

sets of natural numbers

65

67

As already noted in Chapter 1, systems of equations over sets of numbers
can be viewed as systems of language equations over a unary alphabet. Thus
the upper bound of Theorem 1.1 can be applied to systems of equations
as they are, i.e., each unique (least, greatest) solution of such system is
recursive (recursively enumerable, co-recursively enumerable, respectively).
It may seem surprising, but a matching lower bound is shown in the following
chapters.

It should be noted that the original proof of Theorem 1.1 was relatively
easy in case of the lower bound and involved and difficult in case of upper
bound. Contrary to that, the proof of the new lower bound requires both
new mathematical ideas and difficult proofs.

Theorem 1.1 states that language equations are computationally com-
plete even if either union or intersection and concatenation are used. For
this reason, the tempting goal is to show the completeness of unresolved
system of equations over sets of natural numbers also with only one Boolean
operation and addition. The usage of only one operation (union) is essential
for the constructions of systems with addition only in Chapter 7; so there is
a reasonable motivation behind.

As some non-trivial results concerning the expressive power of the re-
solved systems of equations were already obtained in the previous chapters,
it would be convenient to reuse them in the following chapters. Unfortu-
nately, this is not possible straight-away, as all these constructions essen-
tially use both intersection and union. Their improvement, so that they use
only one Boolean operation, is carried out in Chapter 5. Note that the usage
of unresolved systems is crucial, as resolved systems with addition and one
Boolean operation have only ultimately-periodic sets as least solutions.

The original construction of the lower bound from Theorem 1.1 is recalled
and used as a model for a similar construction in case of systems of equations
in Chapter 6.

Further restrictions on the computational model are discussed in the last
chapter of this part. That is, systems of equations with addition only are
considered. It is shown that in such a case, the use of of finite constants
only leads to trivial least and greatest solutions. When ultimately periodic
constants are allowed, such restricted systems are computationally universal,
as shown in Chapter 7. This is achieved by a special encoding of operations
of union and addition by addition only.

68

Chapter 5

Transforming resolved to

unresolved

In the previous chapters of the thesis, resolved systems of equations were
studied, i.e., those of the form





X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ψn(X1, . . . ,Xn) .

The general systems of equations, that is:





ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn) .

clearly generalise the resolved systems, in particular Theorem 4.2 applies to
them as well.

As stated already in the introduction to this part of the thesis, the goal
is to construct systems using addition and either union or intersection. So
Theorem 4.2 cannot be applied directly, as the resolved systems constructed
in it essentially use both union and intersection. Nevertheless, due to greater
expressive power of general equations, the constructions from this theorem
can be improved so that the use of two Boolean operations is not needed.
And this is what is done in this chapter: the construction from the previous
chapters are revisited and improved, so that the constructed unresolved
systems utilise addition and either union or intersection.

To simplify the process, two general translation lemmata are given. They
are used to automate the redesigning of the constructions: they are applied
to the systems constructed in Chapter 3 and Chapter 4. As the translation
lemmata have strong assumptions, the constructions from Chapter 3 and
Chapter 4 are reinvestigated and slightly improved.

69

70 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

5.1 Two general translation lemmata

The first basic result is a simulation of a resolved system of a specific form
using union, intersection and addition by an unresolved system that does
not use intersection.

Consider resolved systems of equations over sets of numbers. They are
of the form

Xi = ϕi(X1, . . . ,Xn) (1 ≤ i ≤ n) ,

where ϕi may contain union, intersection and addition, as well as singleton
constants.

This section defines a syntactical transformation of resolved equations of
a particular kind into unresolved equations using only one Boolean operation
(that is, either union or intersection).

A resolved system of equations is said to have a chain dependency of X
from Y if the equation defining X is of the form X = Y ∩ ϕ or X = Y ∪ ϕ,
where ϕ is an arbitrary expression.

Lemma 5.1. Let Xi = ϕi(X1, . . . ,Xn) be a resolved system of equations
with union, intersection and addition and with constants from a family C,
where every constant contains only positive integers. Let (S1, . . . , Sn) be its
least solution. Assume that for every variable Xi0 there exists a subset of
variables {Xi}i∈I containing Xi0 , such that

• the sets {Si}i∈I are pairwise disjoint and their union is in C, and

• the equations for all {Xi}i∈I are either all of the form Xi =
⋃

j αij ,
or all of the form Xi =

⋂
j αij ∪ Ci, where Ci is a constant and αij =

A1 + . . . + A`, with ` ≥ 1 and with each At being a constant or a
variable.

In addition, assume that there are no cyclic chain dependencies in the sys-
tem. Then there exists an unresolved system with union and addition, with
constants from C, which has the unique solution (S1, . . . , Sn).

Proof. Such a system is given directly by replacing each equation Xi =⋂
j αij ∪ Ci, where each αi is a sum of constants and variables, by the fol-

lowing collection of inequalities:

Xi ⊆ αij ∪ Ci, for all j . (5.1)

In addition, for each group of variables {Xi}i∈I , whose union of the group
is a constant CI , the following equation is added:

⋃

i∈I

Xi = CI . (5.2)

5.1. TWO GENERAL TRANSLATION LEMMATA 71

The rest of the equations, which are of the form Xi =
⋃

j αij , with αij being
a sum of variables and constants, are left as they are. Clearly, the least
solution (S1, . . . , Sn) of the former system is a solution of the new system.
It remains to prove that no other solutions exist.

Assume for the sake of contradiction, that there is another solution
(S′

1, . . . , S
′
n). So there is a number n ∈ Si ∆S′

i for some i. Such a num-
ber is called wrong or wrong for Xi. In particular, if n ∈ S′

i \ Si, then n is
said to be an extra number for Xi, and if n ∈ Si \ S

′
i, then n is a missing

number for Xi.

Note that the supposed solution satisfies 0 /∈ S′
i for all i. Indeed, every

i belongs to some group of variables I, and then, by (5.2), S′
i ⊆ CI . Since

0 /∈ CI , zero may not be in S′
i. This, in particular, means that 0 cannot be

a wrong number: as for all j it holds that j /∈ Cj, the system is proper and
hence by Lemma 2.1 0 /∈ Si for all i.

Fix n > 0 as the smallest wrong number. Then it can be proved that if
this number is obtained as a nontrivial sum of variables and constants, it is
equally obtained under the substitution of both solutions:

Claim 5.1. If n is the smallest wrong number and α = A1 + . . .+A`, where
` ≥ 2 and all Aj are variables and constants, then n ∈ α(. . . , Si, . . .) if and
only if n ∈ α(. . . , S′

i, . . .).

Proof. If n ∈ α(. . . , Si, . . .), then n = n1+ . . .+n`, with nj ∈ Aj(. . . , Si, . . .).
As all sets Aj(. . . , Si, . . .) are 0-free, each number nj must be positive. Fur-
thermore, each of them must be less than n because ` ≥ 2. Since n is the
smallest wrong number, none of n1, . . . , n` is wrong for its respective vari-
able, and hence nj ∈ Aj(. . . , S

′
i, . . .). The same argument applies for the

converse implication.

Among all pairs (n,Xi), where n is the smallest wrong number and it is
wrong for Xi, choose a pair such that n is an extra number for Xi, and if
this is not possible, then a pair such that n is a missing number for Xi is
chosen. Let us show that n must be wrong for another variable Xi′ , with a
chain dependency of Xi′ from Xi.

Suppose that Xi has an equation Xi =
⋃

j αij in the original system,
which is preserved in the new system. So Si =

⋃
j αij(. . . , St, . . .). Hence

there exists αij , such that n ∈ αij(. . . , St, . . .) ∆αij(. . . , S
′
t, . . .). Clearly this

αij cannot be a constant. If it is a variable Xi′ then we replace Si by Si′ .
Note, that there is a chain dependency of Si from Si′ and n is wrong for S′

i′

and if n is an extra number, we can choose Si′ so that n is still an extra
number for Si′ . By Claim 5.1 αij cannot be a non-trivial sum of variables
and constants.

Suppose now that the equation for Xi in the original system is of the
form Xi =

⋂
j αij ∪Ci, and n is a missing number. We use (5.2) in this case

—let i ∈ I and
⋃

j∈I Xj = CI . Then by substituting Si into those equations

72 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

we obtain that n ∈ CI . On the other hand by substituting S′
i into those

equations we obtain that n ∈ S′
i′ for some i′ ∈ I and i′ 6= i. As n ∈ Si then

n /∈ Si′ , as i, i′ ∈ I and by assumption sets in the same group are pairwise
disjoint. Hence we obtain a contradiction, as n is an extra number for Xi′

and we are supposed to choose an extra number if there is any.
Let the equation for Xi in the original system be Xi =

⋂
j αij ∪ C and

suppose that n is an extra number. So in the new system there are equations
Xi ⊆ αij ∪ Ci for j ∈ I, hence n ∈ αij(. . . , S

′
t, . . .) ∪ Ci for j ∈ I. On the

other hand n /∈ Si =
⋂

j∈I αij(. . . , St, . . .) ∪ Ci. And so there is j′ ∈ I such
that n /∈ αij′(. . . , St, . . .) ∪ Ci. Hence n ∈ αij′(. . . , S

′
t, . . .) \ αij′(. . . , St, . . .).

Clearly αij′ cannot be a constant, assuming that it is a non-trivial sum
would again derive a contradiction by Claim 5.1. And so αij′ is a variable
Xi′ . We replace Xi by Xi′ and continue the process. Note, that there is a
chain dependency of Xi from Xi′ and n is an extra number for Xi′ .

Now the same argument applies to the pair (n,Xi′), and in this way an
infinite sequence of variables with a chain dependency to their successors is
obtained. This is a contradiction, as there are no cyclic chain dependencies
in the system.

A similar construction produces equations with intersection instead of
union. The next lemma is very similar in spirit and proof technique to
Lemma 5.1, but some technical details are different, therefore it is proved
separately.

Lemma 5.2. Under the assumptions of Lemma 5.1, there exists an un-
resolved system with intersection and addition and with constants from C,
which has a unique solution that coincides with the least solution of the given
system.

Proof. Here the new system is obtained by the following transformation.
For every equation Xi =

⋃
j αij in the original system, where each αij is a

sum of constants and variables, the new system contains inequalities

αij ⊆ Xi , for each j . (5.3)

For every subset of variables {Xi}i∈I , with union CI , the following equations
are added:

Xi ∩Xj = ∅, for each i, j ∈ I with i 6= j , (5.4)

Xi ⊆ CI , for each i ∈ I . (5.5)

The rest of the equations are of the form Xi =
⋂

j αij ∪ Ci, where Ci is a
constant and αij = A1+. . .+Ak, with k ≥ 1 and each At being a constant or
a variable. They are changed in the way similar to the equations for union,
i.e., are replaced by inequalities

Ci ⊆ Xi and
⋂

j

αi,j ⊆ Xi .

5.1. TWO GENERAL TRANSLATION LEMMATA 73

Clearly, the least solution (. . . , Si, . . .) of the former system is still a
solution. It should be proved that no other solution exists.

As in Lemma 5.1, Lemma 2.1 is used to show that the least solution
(. . . , Si, . . .) of the resolved system is 0-free. Also, since the assumptions of
the lemma are the same as those of Lemma 5.1, then Claim 5.1 holds.

Suppose that there is another solution (. . . , S′
i, . . .). Note that 0 may not

be in any S′
i by the equation (5.5).

Define wrong numbers, missing numbers and extra numbers as in the
proof of Lemma 5.1. Let n be the smallest wrong number with n ∈ Si ∆S′

i

for some i. By the above arguments, n must be positive. Among all pairs
(n,Xi), such that n is the smallest wrong number and it is wrong for Xi,
choose the one in which n is a missing number, if there is any such pair. If
there is none, then choose a pair (n,Xi), where n is an extra number for Xi.
As in the proof of the previous lemma, the idea is to show that there must
be another variable Xi′ which has a chain dependence on Xi, such that n is
a wrong number of Xi′ .

Suppose first that n is an extra number.We use the (5.4) and (5.5) in
this case: substituting (. . . , St, . . .) into (5.5) one obtains that n ∈ CI , where
i ∈ I. On the other hand, by the assumption of the Lemma

⋃
j∈I Sj = CI ,

hence there exists i′ 6= i such that n ∈ Si′ . But by (5.4): n /∈ S′
i′ , as

S′
i∩S

′
i′ = ∅. Hence n is a missing number for i′, a contradiction, as we were

supposed to choose a missing number if there was any.
Assume now that n is a missing number and in the original resolved sys-

tem the equation defining Si is of the from Xi =
⋃

j αij . By the construction
there are equations αij ⊆ Xi for j ∈ I, hence n /∈ αij(. . . , S

′
t, . . .) for j ∈ I.

On the other hand n ∈ Si =
⋃

j∈I αij(. . . , St, . . .). Hence there is i′ ∈ I such
that n ∈ αi′j(. . . , St, . . .) and therefore n ∈ αi′j(. . . , St, . . .)\αi′j(. . . , S

′
t, . . .).

By Claim 5.1 αi′j cannot be a non-trivial sum. Clearly it cannot be a con-
stant, hence it is a variable. And so αi′j = Xi′ . We swap Si for Si′ . Note
that there is a chain dependency of Xi from Xi′ and n is a missing number
for X ′

i′ .
Suppose now that n is a missing number and in the original system the

equation for Si is of the form Xi =
⋂
αij ∪ Ci. The construction assures

that there are equations
⋂

j αij ⊆ Xi and Ci ⊆ Xi in the new system.
Then n /∈

⋂
j αij(. . . , S

′
t, . . .) and n /∈ Ci. On the other hand, as n ∈

Si, it holds that n ∈
⋂

j αij(. . . , St, . . .) ∪ Ci. Since n /∈ Ci by previous
observation, n ∈

⋂
j αij(. . . , St, . . .). Thus there exists i′ ∈ I such that n ∈

αi′j(. . . , St, . . .) \ αi′j(. . . , S
′
t, . . .). Similarly to the analysis in the previous

case, αi′j cannot be a constant and by Claim 5.1 it cannot be a non-trivial
sum as well. Hence αi′j = Xi′ , for some variable Xi′ , i.e., there is a chain
dependency of Xi from Xi′ . We replace Si with Si′ , note that n is a missing
number for Xi′ .

And so for every n and Xi for which it is wrong another Xi′ can be found
such that n is wrong for it as well and there is a chain dependency of Si

74 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

from Si′ . Contradiction, as there are no cyclic chain dependencies in the
system.

The next task is to apply Lemmata 5.1 and 5.2 to resolved systems
constructed in the proofs of Theorems 3.3 and 4.2. For the lemmata to be
applicable, these equations need to be decomposed into smaller parts and
slightly changed. Then the variables can be grouped into subsets, as required
by the lemmata.

5.2 Sets with regular positional notation

Using the lemmata from the previous section, the resolved equations from
Chapter 3 and Chapter 4 will now be converted to unresolved equations with
sum and either union or intersection. The first task is to reformulate them
so that Lemmata 5.1 and 5.2 are applicable.

Now the first result on the expressive power of equations with one
Boolean operation asserts representability of finite and co-finite sets of num-
bers.

Lemma 5.3. Every finite or co-finite subset of N is representable by a unique
solution of a resolved system with union and addition, as well as by a unique
solution of an unresolved system with intersection and addition.

Proof. The case of union follows from the fact that every ultimately periodic
unary language can be specified by a resolved system of language equations
with union, one-sided concatenation and constants {a} and {ε}.

Let us prove the lemma in the case of intersection, where the use of
unresolved equations becomes essential. Let K = {n1, n2, . . . , nm}, with
0 ≤ n1 < . . . < nm, be any finite set of numbers. First define the following
equations for a variable X:

nm + 1 ⊆ X , (5.6a)

X + 1 ⊆ X , (5.6b)

nm ∩X = ∅ . (5.6c)

Here (5.6b) ensures that the solution is of the form {n | n ≥ k} for some k
(or empty), (5.6a) states that nm + 1 is in X, while (5.6c) ensures that n is
not in X. Thus the unique solution of these equations is X = {n | n > nm}.
Using this variable, define three more equations for a new variable Y :

X ∩ Y = ∅ , (5.6d)

ni ⊆ Y, for i ∈ {1, 2, . . . ,m} , (5.6e)

n ∩ Y = ∅, for each n < nm with n /∈ K . (5.6f)

5.2. SETS WITH REGULAR POSITIONAL NOTATION 75

By (5.6d), Y must be a subset of {0, . . . , nm}. The next two equations state
the membership of every number between 0 and nm in Y : it should be in
Y if and only if it is in K. Hence, the unique solution is Y = K. Finally,
define one more variable Z, with the following equations:

X ⊆ Z , (5.6g)

ni ∩ Z = ∅, for i = 1, 2, . . . ,m , (5.6h)

ni ⊆ Z, for ni < nm, ni /∈ {n1, . . . , nm} . (5.6i)

The equation (5.6g) states that every number greater than nm must be in
Z. The next two equations define, similarly to the equations for Y , for each
number not exceeding nm, that it should be in Z if and only if it is not
in K. Altogether these equations specify Z = N \ K, which completes the
proof.

Consider a set (ij0∗)k for i 6= 0. It was shown in Chapter 3 how to
construct a system of resolved equations such that this set is a component
of the least solution of this system. This result will now be reconstructed
to use only one Boolean operation, at the expense of turning the resolved
equations into unresolved ones.

Theorem 5.1. For every k ≥ 9, there exists an unresolved system with
union (intersection), sum and singleton constants, which has a unique solu-
tion with some of its components being

(ij0∗)k (for all i, j ∈ Σk with i > 0) .

Proof. A resolved system using union, intersection and addition was already
constructed in Theorem 3.2, (3.2)–(3.4). However, the obtained sets cannot
be grouped to match the conditions of Lemmata 5.1 and 5.2. The proposed
solution relies on representing both these sets and the complementary sets
S̃ij = (ij(Σ∗

k \ 0
∗))k. Then all sets Sij and S̃ij will be pairwise disjoint and

their union will be co-finite, making the lemmata applicable.

Define the set of variables Xi,j , Yi,j, Xi,j,` and Yi,j,`, with i, j, ` ∈ Σk and

76 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

i 6= 0, and consider the following resolved system of equations:

X1,j =
2⋂

n=1

Xk−n,0+Xj+n,0 ∪ (1j)k, for j = 0, 1, 2 ,

Xi,j =
2⋂

n=1

Xi−1,k−n+Xj+n,0 ∪ (ij)k, for j = 0, 1, 2, i ≥ 2 ,

Xi,j =
(2⋂

n=1

Xi,j−n+Xn,0

)

∩ Xi,0+Xj,0 ∪ (ij)k, for j ≥ 3 ,

Xi,j,` =

3⋂

n=0

Xi,n+Xj−n,`, for j ≥ 4, i 6= 0, ` ∈ Σk ,

Xi,j,` =

4⋂

n=1

Xi−1,j+n+Xk−n,`, for j ≤ 3, i 6= 0, 1, ` ∈ Σk ,

X1,j,` =
4⋂

n=1

Xk−n,0+Xj+n,`, for j ≤ 3, ` ∈ Σk ,

Yi,j =
⋃

` 6=0

Xi,j,` ∪
⋃

`∈Σk

Yi,j,`, for j ∈ Σk, i 6= 0 ,

Yi,j,` =

3⋂

n=0

Xi,n+Yj−n,`, for j ≥ 4, i 6= 0, ` ∈ Σk ,

Yi,j,` =

4⋂

n=1

Xi−1,j+n+Yk−n,`, for j ≤ 3, i 6= 0, 1, ` ∈ Σk ,

Y1,j,` =

4⋂

n=1

Xk−n,0+Yj+n,`, for j ≤ 3, ` ∈ Σk .

It is claimed that the least solution of those equations is:

Xi,j = (ij0∗)k ,

Xi,j,` = (ij`0∗)k ,

Yi,j = (ij(Σ∗
k \ 0

∗))k ,

Yi,j,` = (ij`(Σ∗
k \ 0

∗))k .

The equations for Xi,j are equations (3.2)–(3.4) taken directly from The-
orem 3.2 and this theorem asserted that their least solution is (ij0∗)k, as
claimed.

The rest of the equations occur in (3.5)–(3.8), yet some explanations are
due in order to recognise them in the above system. This is in fact the system
(3.5)–(3.8) constructed in Chapter 3 used in Theorem 3.3, to represent a set

5.2. SETS WITH REGULAR POSITIONAL NOTATION 77

of numbers (L(M))k for a given finite automaton M . Consider that Σ∗
k\0

∗ is
a regular language recognised by a finite automaton M0 = 〈Σk, Q0, δ0, F0, q0〉
reading the string of digits from the right to the left. The automaton has
two states, q0 and q1; it is in state q0 while all digits encountered so far are
zeroes, and once any non-zero digit is read, it enters state q1 and remains
there.

The construction (3.5)–(3.8) specified to this automaton gives a system
in variables Xi,j, Xi,j,` and Yi,j, Yi,j,`, with the X-variables corresponding
to the state q0 and with the Y -variables representing the state q0.

From Lemmata 3.2, 3.3 and 3.4 one may infer that the least solution of
this system satisfies

Xi,j,` = ({ij`w | δ0(q0, w
r) = q0})k = (ij`0∗)k ,

Yi,j,` = ({ij`w | δ0(q0, w
r) = q1})k = (ij`(Σ∗

k \ 0
∗))k ,

regardless of the actual equation defining Xi,j,` or Yi,j,`. Moreover, by
Lemma 3.5, the value of Yi,j in the least solution is

Yi,j = ({ijw | δ0(q0, w
r) = q1})k = (ij(Σ∗

k \ 0
∗))k .

It remains to show that these equations satisfy the assumptions of Lem-
mata 5.1 and 5.2, with the variables separated into the following two groups:

{Xi,j , Yi,j | i, j ∈ Σk, i 6= 0}, {Xi,j,`, Yi,j,` | i, j, ` ∈ Σk, i 6= 0} .

The unions of the corresponding sets in the least solution for the former
group is {n | n ≥ k}, and for the latter group it is {n | n ≥ k2}; both
are co-finite sets. Clearly, in either group all the components are pairwise
disjoint. The only chain dependencies are those of variables Xi,j on (some)
variables Xi,j,`, as well as of Yi,j on some Yi,j,`; hence there are no cyclic chain
dependencies. And so by Lemma 5.1 and Lemma 5.2 there exist unresolved
systems with union (intersection), sum and finite and co-finite constants,
whose unique solution has the requested components. Co-finite and finite
constants are eliminated by expressing them according to Lemma 5.3.

Now the construction of Theorem 3.3 can be remade using unresolved
equations with only one Boolean operation.

Lemma 5.4. For every deterministic finite automaton M = (Σ, Q, q0, δ, F)
there exists an unresolved system of equations using union (intersection),
sum and singleton constants, in which some of the components of the unique
solution are

Si,j,q := {(ijw)k | δ(q0, w
r) = q} , for i, j ∈ Σk, i 6= 0, q ∈ Q .

78 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

Proof. Let us recall the construction (3.5)–(3.8), with constants of the form
(ij0∗)k:

Xi,j,`,q =

3⋂

n=0

(in0∗)k +Xj−n,`,q , for j ≥ 4, i ≥ 1 ,

Xi,j,`,q =
4⋂

n=1

((i− 1)(j + n)0∗)k +Xk−n,`,q , for j ≤ 3, i ≥ 2 ,

X1,j,`,q =
4⋂

n=1

((k − n)00∗)k +Xj+n,`,q , for j ≤ 3 ,

Xi,j,q =
⋃

(`,q′):δ(q′,`)=q

Xi,j,`,q′ ∪ {(ij)k | if q = q0} , for i, j ∈ Σk, i ≤ 1 .

Lemmata 3.2, 3.3 and 3.4. asserted that in the least solution those variables
were assigned values

Xi,j,`,q = {(ij`w)k | δ(q0, w
r) = q} .

Similarly, Lemma 3.5 assured that in the least solution the values of variables
Xi,j,q is

Xi,j,q = {(ijw)k | δ(q0, w
r) = q} .

The plan is to apply Lemmata 5.1 and 5.2 to the above system. To this
end, the variables of the system have to be grouped. There are two groups:

{Xi,j,q | i, j ∈ Σk, i 6= 0, q ∈ Q} and {Xi,j,`,q | i, j, ` ∈ Σk, i 6= 0, q ∈ Q} .

The union of the least solution in the former group is {n | n ≥ k}, and
{n | n ≥ k2} for the latter. The sets within each group are clearly disjoint.

The resulting system uses two co-finite constants obtained as unions
of the groups, as well as constants of the form (ij0∗)k. The former are
expressed as in Lemma 5.3, while the latter are replaced by references to
equations from Theorem 5.1.

Theorem 5.2. For every k ≥ 2 and for every regular language L ⊆ Σ∗
k\0Σ∗

k

there exists an unresolved system of equations with union (intersection),
addition and singleton constants, which has a unique solution with (L)k as
one of its components.

Proof. First consider the case of 2 ≤ k < 9. Then, by Lemma 3.1, there
exists a regular language L′ ⊆ Σ∗

k′ for k′ = k4 > 9, such that (L′)k′ = (L)k.
Hence it is sufficient to establish the theorem for k ≥ 9.

Let M = (Σ, Q, q0, δ, F) be a deterministic finite automaton recognizing
Lr. By Lemma 5.4, there exists an unresolved system of the specified form, in

5.3. SETS TRELLIS POSITIONAL NOTATION 79

which every variable Xi,j,q in the unique solution equals {(ijw)k |δ(q0, w
r) =

q}. Then the set (L)k can be obtained as the following union:

(L)k =
(
(L)k ∩ {n | n < k}︸ ︷︷ ︸

finite constant

)
∪

⋃

i,j,q:
δ(q,ji)∈F

{(ijw)k | δ(q0, w
r) = q}︸ ︷︷ ︸

Xi,j,q

. (5.7)

In the case of unresolved equations with union, the equality (5.7) can be
directly specified by introducing a new variable Y and adding the following
equation:

Y =
(
(L)k ∩ {n | n < k}

)
∪

⋃

i,j,q:
δ(q,ji)∈F

Xi,j,q .

The finite constant (L)k ∩{n | n < k} is expressed according to Lemma 5.3.
For the case of intersection, consider that the sets {(ijw)k |δ(q0, w

r) = q},
along with the finite set {n | n < k}, form a partition of N. Then a new
variable Y is added, and its intersection with every element of this partition
is expressed:

Y ∩ {n | n < k} = (L ∩ Σ≤1
k)k ,

Y ∩Xi,j,q = ∅ , for (i, j, q) such that δ(q, ji) /∈ F ,

Y ∩Xi,j,q = Xi,j,q , for (i, j, q) such that δ(q, ji) ∈ F .

Because these equalities state the membership of every natural number in
Y , this representation is equivalent to (5.7), and hence the system has a
unique solution with Y = (L)k. Both finite constants are again replaced
according to Lemma 5.3.

5.3 Sets trellis positional notation

The next task is to remake construction form Chapter 4 using only one
Boolean operation. As stated in Theorem 4.2, for every trellis automaton
M with L(M) ⊆ Σ+

k \ 0Σ∗
k, there exists a resolved system of equations over

sets of natural numbers with (L(M))k as one of the components of its least
solution. This construction essentially uses both union and intersection, and
the goal is again to refine it so that Lemmata 5.1 and 5.2 could be applied
to it.

We follow the three stages of the construction : first, the set (1(L(M) �

1)10∗)k was represented (Lemma 4.3); next, (1 · L(M))k (Lemma 4.4); and
finally, a system for (L(M))k was obtained (Lemma 4.5). This composition
will be followed in the below proof, and each part of the construction will
be carefully remade.

Lemma 5.5. For every k ≥ 5 and for every trellis automaton M over
Σk = {0, . . . , k−1} with L(M)∩0Σ∗

k = ∅, there exists and can be effectively

80 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

constructed an unresolved system of equations over sets of natural numbers
using union and addition (or intersection and addition) and singleton con-
stants, such that the unique solution of this system contains a component

(1(LM (q) � 1)10∗)k = {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} .

Proof. Let M = (Σk, Q, I, δ, F) be any trellis automaton. Let us recall
the resolved system representing the given sets of numbers introduced in
Lemma 4.3. It uses variables Xq over all q ∈ Q and contains the equations

Xq = Rq ∪
⋃

q′,q′′:δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) (, for all q ∈ Q) ,

where

Rq = {(1(w � 1)10∗)k | w ∈ 0
∗(Σk \ 0) ∪ (Σk \ 0)0∗, w ∈ LM (q)} ,

κi′(X) =
(
X ∩ (1i′Σ∗

k10
∗)k

)
+(10∗)k ∩ (2i′Σ∗

k)k,

for all i′ ∈ Σk ,

λi(X) =
⋃

i′∈Σk

(
κi′(X) + ((k + i− 2)0∗)k ∩ (1iΣ∗

k)k

)
,

for i = 0, 1 ,

λi(X) =
⋃

i′∈Σk

(
κi′(X) + (1(i− 2)0∗)k ∩ (1iΣ∗

k)k

)
,

for i ≥ 2 ,

πj′(X) =
(
X ∩ (1Σ∗

kj
′
10

∗)k

)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k,

for j′ ∈ Σk ,

ρj(X) =
⋃

j′∈Σk

(
πj′(X) + ((k + j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
,

for j = 0, 1 ,

ρj(X) =
⋃

j′∈Σk

(
πj′(X) + (1(j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
,

for 2 ≤ j ≤ k − 2 ,

ρk−1(X) =
⋃

j′∈Σk

(
πj′(X) + ((k − 3)10∗)k ∩ (1Σ∗

k(k − 1)10∗)k

)
.

All constants used in the system have regular base-k notation.
The least solution is Xq = Sq by Main Claim from Section 4.2, where

Sq = (1((LM (q) \ 0∗) � 1)10∗)k

= {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} .

5.3. SETS TRELLIS POSITIONAL NOTATION 81

These sets are pairwise disjoint and their union is a set with a regular base-k
notation. In order to prove this, let us establish a more general statement
that will be used several times in the following:

Claim 5.2. Let x ∈ Σ∗
k \ 0Σ∗

k and y ∈ Σ+
k \ 0

∗ be strings of digits, let
K1, . . . ,Km ⊆ Σ+

k be any pairwise disjoint languages. Let S1, . . . , Sm be sets
of numbers defined by

St = {(xuy0`)k | ` ≥ 0, u ∈ Kt} .

Then these sets are pairwise disjoint and their union is

m⋃

t=1

St = (x(
⋃m

t=1Kt)y0
∗)k .

Proof. Consider any two sets St and St′ with t 6= t′, and suppose there is
a number n belonging to both sets. Then n = (xuy0`)k for some u ∈ Kt

and n = (xu′y0`′)k with u′ ∈ Kt′ . Since y contains a non-zero digit, the
length of the tail of zeroes in n is independent of u and u′, and therefore
` = `′. Then u and u′ must be the same string, which is impossible since
Kt ∩Kt′ = ∅ by assumption. This proves that St ∩ St′ = ∅.

The union of these sets is

⋃

t

St =
⋃

t

(xKty0
∗)k = (x(

⋃
tKt)y0

∗)k ,

as stated.

Now Claim 5.2 can be applied to the particular case of the sets Sq to
obtain the following result:

Claim 5.3. The sets of numbers Sq with different q ∈ Q are pairwise dis-
joint, and their union is

⋃

q

Sq = (1(Σ+
k \ (k − 1)∗)10∗)k .

Proof. Since a trellis automaton computes a uniquely determined state
δ(I(w)) ∈ Q on each string w ∈ Σ+

k , it induces a partition of Σ+
k into

classes corresponding to different states. Define Kq = (LM (q) \ 0∗) � 1;
these sets are pairwise disjoint and their union for all q ∈ Q is Σ∗

k \ (k− 1)∗,
since every string w ∈ Σ+

k belongs to some LM (q). The rest is given by
Claim 5.2 with x = y = 1.

Though the values of the variables Xq as they are already satisfy
Lemma 5.1 and Lemma 5.2, the equations defining them are not of the
required simple form. Now the goal is to transform the system, splitting the

82 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

existing equations into smaller parts and introducing new variables, so that
it satisfies the assumptions of the lemmata.

The first step is to construct equations of the required form representing
λ and ρ. Each occurrence of λi(Xq) will be replaced by a new variable Zλ

i,q,

and similarly κi′(Xq) is replaced by W λ
i′,q, where the new variables have the

following equations:

Uλ
i′,q = Xq ∩ (1i′Σ∗

k10
∗)k , (5.8)

W λ
i′,q = Uλ

i′,q + (10∗)k ∩ (2i′Σ∗
k)k , (5.9)

Y λ
i,i′,q = W λ

i′,q + (1(i− 2)0∗)k ∩ (1iΣ∗
k)k , for i ≥ 3 , (5.10)

Y λ
i,i′,q = W λ

i′,q + ((k + i− 2)0∗)k ∩ (1iΣ∗
k)k , for i ≤ 2 , (5.11)

Zλ
i,q =

⋃

i′

Y λ
i,i′,q . (5.12)

Since the equation for Zλ
i,q represents the expression λi(Xq) broken into

pieces, the ‘old variables’ {Xq} have the same values in the least solution
of the new system as in the least solution of the old system. The newly
introduced variables are arranged into the following four groups:

{Uλ
i′,q | i

′ ∈ Σk, q ∈ Q}, {W λ
i′,q | i

′ ∈ Σk, q ∈ Q} ,

{Y λ
i,i′,q | i, i

′ ∈ Σk, q ∈ Q} {Z
λ
i,q | i ∈ Σk, q ∈ Q} .

Let us calculate the values of these variables in the least solution. For
every variable V , let V be the set corresponding to V in the least solution
of the new system of equations.

Claim 5.4. Consider the least solution of (5.8)–(5.12). For all (i′1, q1) 6=
(i′2, q2) sets Uλ

i′
1
,q1

and Uλ
i′
2
,q2

are disjoint and and their union is

⋃

i′,q

Uλ
i′,q = (1(Σ+

k \ (k − 1)∗)10∗)k .

Proof. By (4.1)

Uλ
i′,q = {(1i′w10`)k | ` ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)} .

These sets are obtained from the languages Kλ
i′,q = ((LM (q) \0∗)�1)∩ i′Σ∗

k

with i′ ∈ Σk and q ∈ Q as in the statement of Claim 5.2. To see that the
sets Kλ

i′,q are pairwise disjoint, consider Kλ
i′
1
,q1

and Kλ
i′
2
,q2

: if i′1 6= i′2, then the

words in these sets start from different digits, and if q1 6= q2, then Kλ
i′
1
,q1
⊆

LM (q1) � 1 and Kλ
i′
2
,q2
⊆ LM (q2) � 1. In both cases, Kλ

i1,q1
∩Kλ

i2,q2
= ∅.

5.3. SETS TRELLIS POSITIONAL NOTATION 83

Therefore, Claim 5.2 with x = y = 1 asserts that Uλ
i′,q are pairwise

disjoint and the union of this group of sets is
⋃

i′,q

Uλ
i′,q = (1(

⋃
i′,q Ki′,q)10∗)k

= (1
(⋃

i′,q((LM (q) \ 0∗) � 1) ∩ i′Σ∗
k

)
10

∗)k

= (1((
⋃

q LM (q) \ 0∗) � 1)10∗)k

= (1((Σ∗
k \ 0

∗) � 1)10∗)k

= (1(Σ+
k \ (k − 1)∗)10∗)k ,

which completes the proof.

Similar statements will now be proved for the other three groups of
variables.

Claim 5.5. Consider the least solution of (5.8)–(5.12). For all (i1, q1) 6=
(i2, q2) the sets W λ

i′
1
,q1

and W λ
i′
2
,q2

are disjoint and the union of all sets in the
group is: ⋃

i′,q

W λ
i′,q = (2(Σ+

k \ (k − 1)∗)10∗)k .

Proof. By (4.2)

W λ
i′,q = {(2i′w10`)k | ` ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)} .

These sets are induced by Kλ
i′,q = ((LM (q) \ 0∗) � 1) ∩ i′Σ∗

k with i′ ∈ Σk

and q ∈ Q as in Claim 5.2 with x = 2 and y = 1. It has been proved in
Claim 5.4 that Kλ

i′,q are pairwise disjoint and their union is Σ+
k \ (k − 1)+.

Both statements of the present claim follow.

Claim 5.6. Consider the least solution of (5.8)–(5.12). For all (i1, i
′
1, q1) 6=

(i2, i
′
2, q2) it holds that Y λ

i1,i′
1
,q1
∩ Y λ

i1,i′
1
,q1

= ∅. Their union is:

⋃

i,i′,q

Y λ
i,i′,q = (1Σk(Σ+

k \ (k − 1)∗)10∗)k .

Proof. By (4.3)–(4.4)

Y λ
i,i′,q = {(1ii′w10`)k | ` ≥ 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)} .

Then, for each fixed i, those sets are obtained from the languages Kλ
i′,q =

((LM (q)\0∗)�1)∩i′Σ∗
k as in Claim 5.2 with x = 1i and y = 1. It was shown

in Claim 5.4 that Kλ
i′,q are pairwise disjoint and their union is Σ+

k \ (k− 1)∗.
Thus, for each i,

⋃

i′,q

Y λ
i,i′,q = (1i(Σ+

k \ (k − 1)∗)10∗)k ,

84 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

and for all (i′1, q1) 6= (i′2, q2) the sets Y λ
i,i′

1
,q1

and Y λ
i,i′

2
,q2

are disjoint. Then,

clearly,

⋃

i,i′,q

Y λ
i,i′,q =

⋃

i

(1i(Σ+
k \ (k − 1)∗)10∗)k = (1Σk(Σ+

k \ (k − 1)∗)10∗)k ,

What is left to show is that for (i1, i
′
1, q1) 6= (i2, i

′
2, q2), the sets Yi1,i′

1
,q1

and
Yi2,i′

2
,q2

are disjoint. If i1 = i2, then (i′1, q1) 6= (i′2, q2), and such sets were
already shown to have empty intersection. If i1 6= i2, then these sets consist
of numbers with a different second leading digit, and are bound to be disjoint
as well.

Claim 5.7. Consider the least solution of (5.8)–(5.12). For all (i1, q1) 6=
(i2, q2), the sets Zλ

i1,q1
and Zλ

i2,q2
are disjoint, and their union equals

⋃

i,q

Zλ
i,q = (1Σk(Σ+

k \ (k − 1)∗)10∗)k .

Proof. The equation (5.12) defines Zλ
i,q as the union of Y λ

i,i′,q over all i′, and
the values of the latter variables are known from Claim 5.6. Then the value
of Zλ

i,q is calculated as follows:

⋃

i,q

Zλ
i,q =

⋃

i,q

(
⋃

i′ Y
λ
i,i′,q)

=
⋃

i,i′,q

Y λ
i,i′,q

= (1Σ(Σ+
k \ (k − 1)∗)10∗)k .

The sets Zλ
i,q are pairwise disjoint as disjoint unions of pairwise disjoint

sets.

The equations for ρ will now undergo a similar reconstruction. Every
ρj(Xq) is replaced by Uρ

j,q and each πj′(Xq) by W ρ
j′,q(Xq). The new variables

are defined by the following resolved equations:

Uρ
j′,q = Xq ∩ (1Σ∗

kj
′
10

∗)k , (5.13)

W ρ
j′,q = Uρ

j′,q+(10∗)k ∩ (1Σ∗
kj

′
20

∗)k , (5.14)

Y ρ
j,j′,q = W ρ

j′,q+(1(k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k , for j < 2 , (5.15)

Y ρ
j,j′,q = W ρ

j′,q+(1(j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k , for 2 ≤ j < k − 1 ,

(5.16)

Y ρ
k−1,j′,q = W ρ

j′,q+((k − 3)10∗)k ∩ (1Σ∗
k(k − 1)10∗)k , (5.17)

Zρ
j,q =

⋃

j′

Y ρ
j,j′,q . (5.18)

5.3. SETS TRELLIS POSITIONAL NOTATION 85

As the new equations represent the subexpressions of ρj(Xq), the values of
the variables Xq in the least solution of the new system are the same as in
the least solution of the old system.

These variables are grouped as follows:

{Uρ
j′,q | j

′ ∈ Σk, q ∈ Q}, {W ρ
j′,q | j

′ ∈ Σk, q ∈ Q} ,

{Y ρ
j,j′,q | j, j

′ ∈ Σk, q ∈ Q}, {Zρ
j,q | j ∈ Σk, q ∈ Q} .

As in the case of λ, the values of the variables in each group are pairwise
disjoint, and the union of each group is a set with a regular notation.

Claim 5.8. Consider the least solution of (5.13)–(5.18). For all (j′1, q1) 6=
(j′2, q2), the sets Uρ

j′
1
,q1

and Uρ

j′
2
,q2

are disjoint, and their union is

⋃

j′,q

Uρ
j′,q = (1(Σ+

k \ (k − 1)∗)10∗)k .

Proof. By (4.6) in the least solution

Uρ
j′,q = {(1wj′10`)k | ` ≥ 0, wj′ /∈ (k − 1)∗, wj′ � 1 ∈ LM (q)} .

These sets can be obtained from the languages Kρ
j′,q = (LM (q) � 1) ∩ Σ∗

kj
′

as in Claim 5.2 with x = 1 and y = 1. The languages Kρ

j′
1
,q1

and Kρ

j′
2
,q2

are

disjoint for all (j′1, q1) 6= (j′2, q2), as for j′1 6= j′2 their last digits are different,
while for q1 6= q2 it holds that Kρ

j′
1
,q1
⊆ LM (q1)�1 and Kρ

j′
2
,q2
⊆ LM (q2)�1,

and the supersets are disjoint. Then, by Claim 5.2, Uρ

j′
1
,q1
∩ Uρ

j′
2
,q2

= ∅ for

(j′1, q1) 6= (j′2, q2), while the union of these sets is

⋃

j′∈Σk,q∈Q

Uρ
j′,q = (1(

⋃
j′∈Σk,q∈QK

ρ
j′,q)10∗)k

= (1(
⋃

j′∈Σk,q∈Q

(LM (q) � 1) ∩ Σ∗
kj

′
)
10

∗)k

= (1(
⋃

q∈Q(LM (q) � 1) ∩ Σ+
k)10∗)k

= (1((Σ∗
k \ 0

∗) � 1)10∗)k

= (1(Σ+
k \ (k − 1)∗)10∗)k ,

and the claim follows.

Claim 5.9. Consider the least solution of (5.13)–(5.18). For (j′1, q1) 6=
(j′2, q2), the sets W ρ

j′
1
,q1

abd W ρ

j′
2
,q2

are disjoint, and

⋃

j′,q

W ρ
j′,q = (1(Σ+

k \ (k − 1)∗)20∗)k .

86 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

Proof. By (4.7) the value of this variable in the least colution is

W ρ
j′,q = {(1wj′20`)k | wj

′
� 1 ∈ LM (q), wj′ /∈ (k − 1)∗, ` ≥ 0} .

These sets are induced by the languages Kρ
j′,q = (LM (q) � 1) ∩ Σ∗

kj
′ as in

Claim 5.2 with x = 1 and y = 2. These languages appeared already in
Claim 5.8, where it was shown that they are pairwise disjoint and their
union is Σ+

k \ (k− 1)∗. Then, by Claim 5.2, for all (j′1, q1) 6= (j′2, q2), the sets
W ρ

j′
1
,q1

and W ρ

j′
2
,q2

are disjoint, and

⋃

j′,q

W ρ
j′,q = (1(

⋃
j′,q K

ρ
j′,q)20

∗)k = (1(Σ+
k \ (k − 1)∗)20∗)k ,

which completes the proof.

Claim 5.10. Consider the least solution of (5.13)–(5.18). The sets Y ρ

j1,j′
1
,q1

and Y ρ

j2,j′
2
,q2

are disjoint for all (j1, j
′
1, q1) 6= (j2, j

′
2, q2), and the union in the

group equals ⋃

j,j′,q

Y ρ
j,j′,q = (1((Σ∗

k \ 0
∗)Σk � 1)10∗)k.

Proof. By (4.8) and (4.9)

Y ρ
j,j′,q = {(1(w′j′ � 1)j10`−1)k |

` ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} ,

for all j 6= k − 1, and by (4.10)

Y ρ
k−1,j′,q = {(1w′j′(k − 1)10`−1)k |

` ≥ 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} .

Fix any j 6= k− 1. Then the sets Y ρ
j,j′,q are obtained from the languages

Kρ
j,j′,q = (LM (q) \ 0∗) ∩ (Σ∗

kj
′
� 1) as in Claim 5.2 with x = 1 and y = j1.

Then, for all (j′1, q1) 6= (j′2, q2), the languages Kρ

j,j′
1
,q1

andKρ

j,j′
2
,q2

are disjoint,

as for q1 6= q2 K
ρ

j,j′
1
,q1
⊆ LM (q1) and Kρ

j,j′
2
,q2
⊆ LM (q2), and the supersets

are disjoint. If j′1 6= j′2, then the strings from these languages differ in the
last digit. Therefore, by Claim 5.2,

⋃

j′,q

Y ρ
j,j′,q = (1(

⋃
j′,q K

ρ
j,j′,q)j10

∗)k

= (1(
⋃

j′,q

(LM (q) \ 0∗) ∩ (Σ∗
kj

′
� 1))j10∗)k

= (1(
⋃

j′(Σ
+
k \ 0

∗) ∩ (Σ∗
kj

′
� 1))j10∗)k

= (1((Σ+
k \ 0

∗) ∩ (Σ+
k � 1))j10∗)k

= (1(Σ+
k \ 0

∗)j10∗)k

= (1((Σ+
k \ 0

∗)(j + 1) � 1)10∗)k ,

5.3. SETS TRELLIS POSITIONAL NOTATION 87

and Y ρ

j,j′
1
,q1
∩ Y ρ

j,j′
2
,q2

= ∅ for all (j′1, q1) 6= (j′2, q2).

Next, consider the case of j = k − 1 and recall the languages Kρ
j′,q =

(LM (q) � 1) ∩ Σ∗
kj introduced in Claim 5.8, where it was shown that these

languages are pairwise disjoint and their union is
⋃

j′,q

Kρ
j′,q = Σ+

k \ (k − 1)∗ .

Now the sets Y ρ

k−1,j′
1
,q1

can be obtained from the languages Kρ
j′,q by the

method of Claim 5.2 with x = 1 and y = (k − 1)1. Therefore,
⋃

j′,q

Y ρ

k−1,j′
1
,q1

= (1(Σ+
k \ (k − 1)∗)(k − 1)10∗)k

= (1((Σ+
k \ 0

∗)0 � 1)10∗)k ,

where the the first equality comes from Claim 5.2 and the second one is a
simple calculation. Also, for different (j′1, q1) 6= (j′2, q2), the sets Y ρ

k−1,j′
1
,q1

and Y ρ

k−1,j′
2
,q2

are disjoint.

Finally, in order to prove the claim, consider any two sets Y ρ

j1,j′
1
,q1

and

Y ρ

j2,j′
2
,q2

with (j1, j
′
1, q1) 6= (j2, j

′
2, q2). If j1 6= j2, then these sets are disjoint,

as their elements differ in the second from the last non-zero digit. If j1 = j2
and (j′1, q1) 6= (j′2, q2), then these two sets have been proved to be disjoint
in one of the cases above.

The union of all these sets is
⋃

j,j′,q

Y ρ
j,j′,q =

⋃

j 6=k−1

⋃

j′,q

Y ρ
j,j′,q ∪

⋃

j′,q

Y ρ
k−1,j′,q

=
⋃

j 6=k−1

(1((Σ+
k \ 0

∗)(j + 1) � 1)10∗)k ∪ (1((Σ+
k \ 0

∗)0 � 1)10∗)k

= (1((Σ+
k \ 0

∗)Σk � 1)10∗)k ,

which establishes the claim.

Claim 5.11. Consider the least solution of (5.13)–(5.18). The sets assigned
to Zρ

j1,q1
and Zρ

j2,q2
are disjoint for (j1, q1) 6= (j2, q2). Their union equals
⋃

j,q

Zρ
j,q = (1((Σ∗

k \ 0
∗)Σk � 1)10∗)k .

Proof. The variable Zρ
j,q is defined by (5.18) as the union of Y ρ

j,j′,q for all j′.
Then

⋃

j,q

Zρ
j,q =

⋃

j,q

⋃

j′

Y ρ
j,j′,q

=
⋃

j,j′,q

Y ρ
j,j′,q

= (1((Σ∗
k \ 0

∗)Σk � 1)10∗)k ,

88 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

where the second equality is given by Claim 5.10. The latter claim also
states that the sets Y ρ

j,j′,q are pairwise disjoint, and hence so are the sets

Zρ
j,q.

Thus the expressions λi(Xq) and ρj(Xq) have been expressed by equa-
tions of the form satisfying the assumptions of Lemma 5.1 and Lemma 5.2.
It remains to transform the equation defining Xq to the same form. The
original equation was

Xq = Rq ∪
⋃

q′,q′′: δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) ,

The subexpression corresponding to every i, q′′, j and q′ shall be represented
by a new variable Xi,q′′,j,q′ with the equation

Xi,q′′,j,q′ = Zλ
i,q′′ ∩ Z

ρ
j,q′ , (5.19)

while the equation for Xq is accordingly replaced by

Xq = Rq ∪
⋃

q′,q′′: δ(q′,q′′)=q
i,j∈Σk

Xi,q′′,j,q′ . (5.20)

The variables are divided into two groups,

{Xi,q′′,j,q′ | i, j ∈ Σk, q
′, q′′ ∈ Q}, {Xq | q ∈ Q}

and it remains to show the required properties of the variables in each group.

Claim 5.12. Consider the least solution of (5.13)–(5.18). For all
(i1, q

′′
1 , j1, q

′
1) 6= (i2, q

′′
2 , j2, q

′
2), the sets Xi1,q′′

1
,j1,q′

1
and Xi2,q′′

2
,j1,q′

2
are dis-

joint, and the union of all these sets is

⋃

i,q′′,j,q′

Xi,q′′,j,q′ = (1((Σ∗
k \ 0

∗) � 1)10∗)k \
⋃

q Rq .

Proof. According to (5.19), Xi,q′′,j,q′ = Zλ
i,q′′ ∩ Z

ρ
j,q′ . By Claim 5.7, Zλ

i1,q′′
1

∩

Zλ
i2,q′′

2

= ∅ for (i1, q
′′
1) 6= (i2, q

′′
2). Similarly, by Claim 5.11, Zρ

j1,q′
1

∩Zρ

j2,q′
2

= ∅

for (j1, q
′
1) 6= (j2, q

′
2). Thus for (i1, q

′′
1 , j1, q

′
1) 6= (i2, q

′′
2 , j2, q

′
2) it holds that

Xi1,q′′
1
,j1,q′

1
∩Xi2,q′′

2
,j2,q′

2
= ∅.

By (5.19), the union of all these sets is

⋃

i,q′′,j,q′

Xi,q′′,j,q′ =
⋃

i,q′′,j,q′

Zλ
i,q′′ ∩ Z

ρ
j,q′

=
(⋃

i,q′′

Zλ
i,q′′

)
∩
(⋃

j,q′

Zρ
j,q′

)
,

5.3. SETS TRELLIS POSITIONAL NOTATION 89

and using the values of both unions given by Claim 5.7 and Claim 5.11, this
can be calculated as follows:

(1Σk(Σ+
k \ (k − 1)∗)10∗)k ∩ (1((Σ+

k \ 0
∗)Σk � 1)10∗)k

= (1(Σk(Σ+
k \ 0

∗) � 1)10∗)k ∩ (1((Σ+
k \ 0

∗)Σk � 1)10∗)k

= (1((Σ+
k \ 0

∗) � 1)10∗)k \ (1((Σk0
∗ ∪ 0∗Σk) � 1)10∗)k

= (1((Σ+
k \ 0

∗) � 1)10∗)k \
⋃

q∈QRq ,

which concludes the proof.

Since the new equations represent the subexpressions of the original sys-
tem, the value of the least solution of the common variables (i.e., Xq) remains
the same, that is Xq = Sq. Moreover, Claim 5.3 asserts that the sets Sq are
pairwise disjoint and that their union is a set with a regular notation. Thus
the only thing remaining to be checked is that there are no cyclic chain
dependencies in the defined system.

Claim 5.13. There are no cyclic chain dependencies in the equations (5.8)–
(5.20).

Proof. The constructed system contains the following chain dependencies:

• there may be a chain dependency of Uλ
i′,q from Xq or Uρ

j′,q from Xq

• of Xq from (some) Xi,q′′,j,q′

• of Xi,q′′,j,q′ from Zλ
i,q′′ and from Zρ

i,q′

• of Zλ
i,q from Y λ

i,i′,q

• of Zρ
j,q from Y ρ

j,j′,q

Consider the following groups of variables:

G1 = {Uλ
i′,q, U

ρ
j′,q | q ∈ Q; i′, j′′ ∈ Σk} ,

G2 = {Xq | q ∈ Q} ,

G3 = {Xi,q′′,j,q′ | q
′, q′′ ∈ Q; i, j ∈ Σk} ,

G4 = {Zλ
i,q, Z

ρ
j,q | q ∈ Q; i, j ∈ Σk} ,

G5 = {Y λ
i,i′,q, Y

ρ
j,j′,q | q ∈ Q; i, j, i′, j′ ∈ Σk} .

Then it can be easily seen that if a variable from a group Gm depends
from a variable in a group Gn, then m < n. Therefore, there are no chain
dependencies in the system.

90 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

According to the Claims 5.2–5.13, there exists a resolved system of equa-
tions satisfying the assumption of Lemma 5.1 and Lemma 5.2, such that one
of the components in its least solution is

(1(LM (q) � 1)10∗)k = {(1w10`)k | ` ≥ 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} .

Then, by the aforementioned lemmata, there exist unresolved systems either
with union and addition, or with intersection and addition, which have the
same unique solution. Finally, using Theorem 5.2, regular constants used
in these systems are replaced by singleton constants, which completes the
proof of Lemma 5.5.

The next task is to represent the set (1LM (q))k as a unique solution of
systems of equations. for any trellis automaton M and its state q. Similarly
to Lemma 5.5, this will be done by transforming an existing construction
introduced in Lemma 4.4.

Lemma 5.6. For every k ≥ 5 and for every trellis automaton M over
Σk there exists and can be effectively constructed an unresolved system of
equations over sets of numbers using the operations of union (or intersection)
and addition, as well as singleton constants, such that its unique solution
contains a component (1LM (q))k for each state q of this automaton.

Proof. The argument will use a simple technical claim, similar to Claim 5.2
from the proof of Lemma 5.5.

Claim 5.14. Let x ∈ Σ∗
k \ 0Σ∗

k and y ∈ Σ∗
k be a string of digits (possibly

empty), let K1, . . . ,Km ⊆ Σ+
k be any pairwise disjoint languages, and let

S1, . . . , Sm be sets of numbers defined by

St = {(xuy)k | u ∈ Kt} .

Then these sets are pairwise disjoint and their union is

m⋃

t=1

St = (x
⋃m

t=1Kty)k .

The proof is nearly obvious and is omitted. A stronger statement will
be proved in the following as Claim 5.17.

Consider the trellis automaton M over Σk. For every state q and for every
digit j ∈ Σk, construct a trellis automaton Mq,j with the set of states Qq,j

recognizing the language LM (q){j}−1, by the (effective) closure properties
of trellis languages. Then, by Lemma 5.5, there is a system of equations
using addition and either union or intersection, which contains a variable
Yq,j,p for each state p of Mq,j, and has a unique solution, in which Yq,j,p =
(1((LMq,j

(p) \ 0∗) � 1)10∗)k.

5.3. SETS TRELLIS POSITIONAL NOTATION 91

The first goal is to combine these systems into a larger system of equa-
tions containing variables Yq,j for each state q of M and for each digit j, so
that it has Yq,j = (1((L(Mq,j) \ 0∗) � 1)10∗)k in its unique solution.

When union and addition are allowed, the construction is immediate: if
Fq,j is the set of accepting states of Mq,j, then

Yq,j =
⋃

p∈Fq,j

Yq,j,p (5.21)

merged with subsystems defining Yq,j,p satisfies the goal.
If the allowed operations are intersection and addition, then the following

system is constructed:

Yq,j ∩ Yq,j,p = ∅ , for p 6∈ Fq,j , (5.22)

Yq,j ∩ Yq,j,p = Yq,j,p , for p ∈ Fq,j , (5.23)

Yq,j ∩
[
N \ (1((Σ∗

k \ 0
∗) � 1)10∗)k

]
= ∅ , (5.24)

where the variables Yq,j,p are defined in subsystems. As the sets
{(1((LMq,j

(p)\0∗)�1)10∗)k}p∈Qq,j
together with N\ (1((Σ+

k \0
∗)�1)10∗)k

form a partition of natural numbers, these equations effectively represent
the union of Yq,j,p over all p. The additional constant (1((Σ∗

k \ 0
∗) � 1)10∗)k

used in the construction is a set of numbers with a regular base-k notation,
and hence it can be expressed by Theorem 5.2.

The sets (1(((LM (q){j}−1) \ 0∗) � 1)10∗)k are used in Lemma 4.4 to
represent the set (1 · LM (q))k. This equation is of the form

Zq = Cq ∪

k−1⋃

j=0

(Yq,j ∩ (1Σ∗
k1)k) + (1j � 1)k ,

which uses the constant Cq = (1LM (q))k ∩ (10∗Σk)k with a regular base-k
notation. These constants are similar to the constants Rq in Lemma 5.5, in
the sense that they represent strings of digits of a simple form not handled
by the main formula. This equation also refers to variables Yq,j defined in
their own subsystems, so that their least solution satisfies

Yq,j = (1(((LM (q){j}−1) \ 0∗) � 1)10∗)k .

By (4.12) this equation, together with the aforementioned subsystems
for variables Yq,j, has a least solution with

Zq = (1 · LM (q))k .

Then, by Proposition 2.1, the equation for Zq with variables Yq,j replaced
by constants Yq,j = (1(((LM (q){j}−1) \ 0∗) � 1)10∗)k has the least solution
with Zq = (1 · LM (q))k. The equations for Zq for all q ∈ Q can be turned

92 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

into a system satisfying the assumption of Lemma 5.1 and Lemma 5.2 by
introducing new variables Zq,j and rewriting the equations as:

Zq,j = Yq,j ∩ (1Σ∗
k1)k ,

Zq = Cq ∪

k−1⋃

j=0

Zq,j + (1j � 1)k ,

The grouping of variables required by Lemmata 5.1 and 5.2 is

{Zq | q ∈ Q}, {Zq,j | q ∈ Q}j∈Σk
.

It has to be proved that the sets in each group form a disjoint partition of
a certain set with a regular notation.

Claim 5.15. Consider the least solution of the system defining Zq,j and Zq.
Then for every j ∈ Σk and q1 6= q2, the sets Zq1,j and Zq2,j are disjoint and

⋃

q

Zq,j = (1(Σ∗
k \ (k − 1)∗)1)k .

Proof. The value of Zq,j is determined from its equation as follows:

Zq,j = Yq,j ∩ (1Σ∗
k1)k

= (1(((LM (q){j}−1) \ 0∗) � 1)10∗)k ∩ (1Σ∗
k1)k

= (1(((LM (q){j}−1) \ 0∗) � 1)10∗ ∩ 1Σ∗
k1)k

= (1(((LM (q){j}−1) \ 0∗) � 1)1)k .

Fix any digit j. The sets Zq,j satisfy the assumption of Claim 5.14 with Kq =
((LM (q){j}−1)\0∗)�1 and x = y = 1. For q1 6= q2 the languages LM (q1) and
LM (q2) are disjoint, and hence the sets also Kq1

= ((LM (q1){j}−1) \ 0∗) � 1

andKq2
= ((LM (q2){j}−1)\0∗)�1 are disjoint as well. ThusZq1,j∩Zq2,j = ∅

by Claim 5.14. Also

⋃

q

Zq,j = (1(
⋃

q Kq)1)k = (1Σ+
k \ (k − 1)∗1)k ,

since every string not in (k − 1)∗ belongs to some Kq.

Claim 5.16. Consider the least solution of the system defining Zq,j and Zq.
For all q1 6= q2, the sets Zq1

and Zq2
are disjoint and

⋃

q

Zq = (1Σ+
k)k .

5.3. SETS TRELLIS POSITIONAL NOTATION 93

Proof. By Proposition 2.3, the value assigned to Zq remains the same as in
the original system, i.e., Zq = (1LM (q))k. Thus Zq’s satisfy the assumption
of Claim 5.14 with K ′

q = LM (q), x = 1 and y = ε. Clearly, the languages
{K ′

q} are pairwise disjoint, as trellis automata are deterministic. Also each

non-empty string belongs to some K ′
q, hence

⋃
q∈QK

′
q = Σ+

k . Therefore, by
Claim 5.14, Zq1

∩ Zq2
= ∅ for q1 6= q2 and

⋃

q

Zq = (1(
⋃

q∈QK
′
q))k = (1Σ+

k)k .

as claimed.

Lemma 5.1 and Lemma 5.2 require that there are no chain cyclic depen-
dencies in the constructed system. As the only chain dependencies are those
of Zq from (some) Zq,j, there are no cycles among them.

Therefore, the new system satisfies the assumption of the Lemma 5.1
and Lemma 5.2, and accordingly, there exists an unresolved system using
addition and either union or intersection, which has a unique solution with
(1 · LM (q))k as one of its components. The system uses regular constants,
which can be eliminated using Theorem 5.2, and constants Yq,j, which are
represented in (5.21) in the case of union and addition, and in (5.22)–(5.24)
using intersection and addition.

The final step of the construction from Chapter 4 was to specify the set
(L(M))k with minimal assumptions on the language L(M). This step will
now be similarly replicated using unresolved systems.

Theorem 5.3. For every k ≥ 2 and for every trellis automaton M over Σk,
such that L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively constructed
an unresolved system of equations over sets of numbers using the operations
of union (or intersection) and addition, as well as singleton constants, such
that its unique solution contains a component (L(M))k.

Proof. First of all note that by Lemma 4.2 it is enough to consider k ≥ 9. For
smaller k, let k′ = k4 > 9, L = L(M) and S = (L)k. Consider L′ ⊆ Σ+

k′\0Σ∗
k′

such that (L′)k′ = S. By Lemma 4.2 L′ is recognised by a trellis automaton.
The following slightly more complicated version of Claim 5.14 will be

used in the proof:

Claim 5.17. Let x ∈ Σ+
k \ 0Σ∗

k and y, z ∈ Σ∗
k be strings of digits (possibly

empty), let K1, . . . ,Km ⊆ Σ+
k be any pairwise disjoint languages, and let

S1, . . . , Sm be sets of numbers defined by

St = (x(z−1Kt)y)k .

Then these sets are pairwise disjoint and their union is
m⋃

t=1

St = (x(z−1(
⋃m

t=1Kt))y)k .

94 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

Proof. Let St and St′ be any two sets with t 6= t′ and suppose there is
a number n belonging to both of them. Then n = (x(z−1u)y)k for some
u ∈ Kt and n = (x(z−1u′)y)k with u′ ∈ Kt′ . Clearly, z is a prefix of both
u and u′, that is, u = zv and u′ = zv′. Then n = (x(z−1u)y)k = (xvy)k

and n = (x(z−1u′)y)k = (xv′y)k, and therefore v′ = v and u = u′. It is a
contradiction, as Kt and Kt′ are disjoint. This proves that St ∩ St′ = ∅.

The union of these sets is

⋃

t

St =
⋃

t

(x(z−1Kt)y)k = (x(z−1⋃
tKt)y)k ,

as desired.

The proof of Lemma 4.5 begins with the following system of equa-
tions (4.13)–(4.14):

Tq = (LM (q) ∩ Σk)k ∪ Z1,p ∪
⋃

i∈Σk\{0,1}

τi(Zi,q), where

τi(X) =
⋃

i′∈Σk

(
(X ∩ (1i′Σ∗

k)k)+((i− 1)0∗)k ∩ (ii′Σ∗
k)k

)
, for i 6= 0, 1 .

The system refers to the variables Zi,p; the values of these variables are
defined in their own subsystems with the solution Zi,q = (1{i}−1LM(q))k.

By Claim 4.5

τi(Zi,q) = (LM(q) ∩ iΣ+
k)k .

for i > 1 and q ∈ Q. The system of equations formed by the above equation
for Tq and the subsystems for all variables Zi,p has a least solution with

Tq = (LM (q) \ 0∗)k .

Consider the following decomposition of this equation:

Ui,i′,q = Zi,q ∩ (1i′Σ∗
k)k , for i ≥ 2, i′ ∈ Σk ,

Wi,i′,q = Ui,i′,q + ((i− 1)0∗)k ∩ (ii′Σ∗
k)k , for i ≥ 2, i′ ∈ Σk ,

Tq =
⋃

i≥2
i′∈Σk

Wi,i′,q ∪ Z1,q ∪ (LM (q) ∩Σk)k .

Let the set of variables be split into the following 2k − 3 groups:

{Ui,i′,q | i
′ ∈ Σk, q ∈ Q}2≤i<k, {Wi,i′,q | i, i

′ ∈ Σk, q ∈ Q}2≤i<k, {Tq | q ∈ Q} .

As in the previous proofs, it is claimed that the union of the sets from each
group is a set with a regular base-k notation, and that the sets in each group
are pairwise disjoint.

5.3. SETS TRELLIS POSITIONAL NOTATION 95

By (4.15)
Ui,i′,q = {(1i′w)k | ii

′w ∈ LM (q)} .

Fix i ≥ 2. Then the sets {Ui,i′,q} for all i′ ∈ Σk and q satisfy the assumption
of Claim 5.17 with Ki′,q = ii′Σ∗

k ∩ LM(q), x = 1, y = ε and z = i. The
intersection Ki′

1
,q1
∩Ki′

2
,q2

is empty for (i′1, q1) 6= (i′2, q2), as for i′1 6= i′2 it holds
that 1i′1Σ∗

k∩1i
′
2Σ∗

k = ∅, and for q1 6= q2 it holds that LM (q1)∩LM (q2) = ∅,
as trellis automata are deterministic. Hence,

⋃

i′,q

Ui,i′,q = (1(i−1
⋃

i′,q

Ki′,q))k

= (1(i−1iΣ+
k))k

= (1Σ+
k)k ,

for each i ≥ 2.
Also, by (4.16)

Wi,i′,q = {(ii′w)k | ii
′w ∈ LM (q)} = (LM (q))k ∩ (ii′Σ∗

k)k .

Consider any two variables Wi1,i′
1
,q1

andWi2,i′
2
,q2

with (i1, i
′
1, q1) 6= (i2, i

′
2, q2).

If q1 6= q2, then LM(q1) ∩ LM (q2) = ∅. If (i1, i
′
1) 6= (i2, i

′
2) then i1i

′
1Σ∗

k ∩
i2i

′
2Σ∗

k = ∅. In both cases Wi1,i′
1
,q1
∩Wi2,i′

2
,q2

= ∅. The union of these sets
equals: ⋃

i,i′,q

Wi,i′,q =
⋃

i,i′,q

(LM (q))k ∩ (ii′Σ∗
k)k = (Σ≥2

k)k .

The proof that any sets Tq1
and Tq2

with q1 6= q2 are disjoint is immediate,
as the new equations represent subexpressions of the former system, hence
in the least solution Tq = (LM (q) \ 0∗)k. Thus for all q1 6= q2

Tq1
∩ Tq2

⊆ (LM (q1))k ∩ (LM(q2))k = ∅ ,

while the union of all these sets is

⋃

q

Tq =
⋃

q

(LM(q) \ 0∗)k = (Σ+
k \ 0

∗)k .

The only chain dependency in the constructed system is that of Tq from
Wi,i′,q. Hence there are no cyclic chain dependencies and the system ob-
tained satisfies the assumptions of Lemma 5.1 and Lemma 5.2 with constants
Zi,q and regular constants.

Hence there exists an unresolved system of the required form with one
of the components of its unique solution equal to (L(M))k. This system
uses constants Zi,q and regular constants. The former are expressed using
Lemma 5.6 and the latter by Theorem 5.2.

96 CHAPTER 5. TRANSFORMING RESOLVED TO UNRESOLVED

Chapter 6

Completeness of systems of

equations

In this chapter the computational completeness of systems of equations over
sets of natural numbers using addition and either union or intersection is
shown:

Theorem 6.1. The family of sets of natural numbers representable by
unique (least, greatest) solutions of systems of equations of the form
ϕi(X1, . . . ,Xn) = ψi(X1, . . . ,Xn) with union and addition, is exactly the
family of recursive (recursively enumerable, co-recursively enumerable, re-
spectively) sets. The same result holds for systems with intersection and
addition.

These solutions are recursive (recursively enumerable, co-recursively enu-
merable, respectively) because so are the solutions of language equations
with union, intersection and concatenation, as asserted by Theorem 1.1.
So the task is to take any recursive (recursively enumerable, co-recursively
enumerable) set of numbers and to construct two systems of equations rep-
resenting this set by a solution of the corresponding kind: one system with
union and addition, and the other using intersection and addition.

The general plan of proving Theorem 6.1 for systems of equations is as
follows. The starting point is, just as in the case of Theorem 1.1, the con-
struction of two (linear) context-free-grammars, such that their intersection
is VALC(T)—the language of transcriptions of a TM T . This is a trel-
lis language, as the class of trellis languages includes all linear context-free
languages and is closed under intersection. By Theorem 4.2, there exists
a resolved system of equations using union, intersection and addition such
that (VALC(T))k is one of the components of the least solution. It remains
to extract ST out of VALC(T): the the actual set of numbers recognised by
TM. To this end, VALC(T) is represented as an addition of two sets, with
the intention that one of them is ST and the other is a slightly modified

97

98 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

(VALC(T))k. Moreover, some additional conditions on the base-k notations
of those two sets are imposed. Using the base-k notation properties of these
three sets it is shown that such a representation is unique and so ST is
extracted.

The proposed plan has a little flaw, though. It uses two Boolean op-
erations, while it was intended to use only one. In fact two operations
have been used from the very beginning: in the construction of the resolved
system specifying VALC(T). Nevertheless, for the clarity of presentation,
Theorem 6.1 is first established in a weaker version, with the constructed
systems using both union and intersection. This is to streamline the proof.
It turns out that both union and intersection are used only twice: firstly
in the construction of the language of computation of the TM, secondly in
one particular equation in the construction. The former is dealt with using
methods developed in Chapter 5, the latter by an ad-hoc solution in the last
section of this chapter.

6.1 Sketch

A short sketch of the proof of lower bound of Theorem 1.1 is given to present
its general idea; in the next sections proof of Theorem 6.1 is modelled on
it. The main technical device used in the construction is the language of
transcription of computation of a Turing machine, as defined and used by
Hartmanis [16]. In short, for every TM T over an input alphabet Γ one can
construct an alphabet Σ ⊇ Γ and an encoding of computations CT : Γ∗ →
Σ∗, so that for every w ∈ L(T) the string CT (w) lists the configurations of
T on each step of its accepting computation on w. The language

VALC(T) = {CT (w)\w | CT (w) is an accepting computation} ,

where \ /∈ Σ, is an intersection of two linear context-free languages [43].
Since unresolved equations can directly simulate context-free grammars and
are equipped with intersection, for every Turing machine it is relatively
easy to construct a system in variables (X1, . . . ,Xn) with a unique solution
(L1, . . . , Ln), so that L1 = VALC(T).

It remains to ‘extract’ L(T) out of VALC(T) using a language equation.
Let Y be a new variable and consider the inequality

VALC(T) ⊆ Σ∗\Y,

which can be formally rewritten as an equation X1 ∪ Σ∗\Y = Σ∗\Y . This
inequality states that for every w ∈ L(T), the string CT (w)\Y should be
in Σ∗\Y , that is, w should be in Y . This makes L(T) the least solution of
this inequality and proves the second part of Theorem 1.1 with respect to
recursively enumerable sets and least solutions. The construction for a co-
recursively enumerable set and a greatest solution is established by a dual

6.2. UNRESOLVED SYSTEMS WITH {∪,∩,+} 99

argument, and these two constructions can be then combined to represent
every recursive set [41].

At the first glance, the idea that the same result holds if the alphabet
consists of a single letter sounds odd. However, this is proved in the following
sections, and, moreover, the general plan of the argument remains essentially
the same.

6.2 Unresolved systems with {∪,∩,+}

The construction for Theorem 6.1 is based upon an arithmetisation of Turing
machines, which proceeds in several stages. First, valid accepting computa-
tions of a Turing machine are represented as numbers, so that these numbers
could be recognised by a trellis automaton working on base-6 positional no-
tation of these numbers, which are regarded as strings over the alphabet
Σ6 = {0, 1, 2, 3, 4, 5}. There is nothing specific about base-6, simply this is
the smallest number for which the construction is relatively easy to present.

While trellis automata are rather flexible and could accept many different
encodings of such computations, the subsequent constructions require a set
of numbers of a very specific form. This form will now be defined.

Consider the following standard encoding of computations as strings:

Definition 6.1. Let T be a Turing machine recognizing numbers given to
it in base-6 notation. Let V ⊃ Σ6 be its tape alphabet, let Q be its set of
states, and define Γ = V ∪ Q ∪ {]}. Let S(T) ⊆ N be the set of numbers
accepted by T .

For every number n ∈ S(T), denote the instantaneous description of T
after i steps of computation on n as a string IDi = αqaβ ⊆ V ∗QV V ∗, where
T is in state q scanning a ∈ Γ and the tape contains αaβ. Define

C̃T (n) = ID0·]·ID1·]·. . .·]·ID`−1·]·ID`·]]·
(
ID`

)r
·]·. . .·]·

(
ID1

)r
·]·
(
ID0

)r
.

Next, consider any code h : Γ∗ → Σ∗
6, under which every codeword is in

{30, 300}+. Define CT (n) = h(C̃T (n))300.

The language {C̃T (n) | n ∈ S(T)} ⊆ Γ∗ is an intersection of two linear
context-free languages [43] and hence is recognised by a trellis automaton [11,
40]. By the known closure of trellis automata under codes [45], the language
{CT (n) | n ∈ S(T)} ⊆ Σ+

6 is recognised by a trellis automaton as well.
Now the set of accepting computations of a Turing machine is represented

as the following six sets of numbers:

Definition 6.2. Let T be a Turing machine recognizing numbers given in
base-6 notation. For every i ∈ {1, 2, 3, 4, 5}, the valid accepting computa-
tions of T on numbers n ≥ 6 with their base-6 notation beginning with the
digit i is

VALCi(T) = {(CT (n)1w)6 | n = (iw)6, n ∈ S(T)} .

100 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

The computations of T on numbers n ∈ {0, 1, 2, 3, 4, 5}, provided that they
are accepting, are represented by the following finite set of numbers:

VALC0(T) = {(CT (n))6 + n | n ∈ {0, 1, 2, 3, 4, 5} and n ∈ S(T)} .

For example, under this encoding, the accepting computation
on a number n = (543210)6 will be represented by a number
(30300300 . . . 30300143210)6 ∈ VALC5(T), where the whole computation
is encoded by blocks of digits 30 and 300, the digit 1 acts as a separator and
the lowest digits 43210 represent n with its leading digit cut.

A crucial property of this encoding is that it allows simulating concatena-
tion of strings of digits representing the computation and the input number,
which is simulated by adding these numbers to each other. Clearly, the num-
ber representing the computation of T on (iw)6 ∈ L(T) is representable as
a sum of (1w)6 and an appropriate number in ({30, 300}∗3000∗)6. What
is important is that the converse statement holds as well: that is, whenever
the sum of a number (1w)6 and any number in ({30, 300}∗3000∗)6 is of
the form (x1u)6 with x ∈ {30, 300}∗300, the string u must be equal to w.
The following lemma rules out the hypothetical possibility that the number
(x1u)6 could be obtained in any other way.

Lemma 6.1. Let S ⊆ (1Σ+
6)6. Then for all strings x ∈ {30, 300}∗300 and

u ∈ Σ+
6 , if

(x1u)6 ∈ ({30, 300}∗3000∗)6 + S ,

then (1u)6 ∈ S.

Proof. Let (x1u)6 = (y0`)6 + (1v)6, where y ∈ {30, 300}∗300, ` ≥ 0 and
(1v)6 ∈ S. The goal is to show that u = v, x = y and |1v| = `, that is, the
only way by obtaining (x1u)6 is by adding (x0|u|+1)6 to (1u)6, and no other
numbers from ({30, 300}∗3000∗)6 and S could be used to fake this number.
Depending on the number of digits in |1v|, consider the following cases:

• |1v| < `. Then (y0`)6 + (1v)6 = (y0`−|1v|
1v)6, which is a number with

a base-6 notation containing at least three consecutive zeroes to the
left of the leftmost digit 1. Since (x1u)6 has two zeroes to the left of
the leftmost 1, it follows that (y0`)6 + (1v)6 6= (1u)6, which makes
this case impossible.

• |1v| = `. This is the case of addition done as intended. Then (y0`)6 +
(1v)6 = (y1v)6, and thus (y1v)6 = (x1u)6. The leftmost instance
of 1 in (y1v)6 and in (x1u)6 is at the first position of 1v and 1u,
respectively. Therefore, y = x and v = u.

• ` < |1v| ≤ |y|+ `. Then the leading 1 from 1v is at the same position
as some digit of y in y10`. Let y = y1iy2, where |y2| + ` = |v|. The
digit i is either 0 or 3.

6.2. UNRESOLVED SYSTEMS WITH {∪,∩,+} 101

– If i = 0, then y1 ends with 3 or 30. The sum (y1iy20
`)6 + (1v)6

is thus of the form (y1i
′z)6, where i′ ∈ {1, 2} (2 can appear due

to a possible carry from the earlier position), and the prefix y1i
′

is in {30, 300}∗{31, 32, 301, 302}. On the other hand, in (x1u)6,
the leftmost occurrence of digits outside of {3, 0} must be of the
form 3001.

– If i = 3, then the sum (y1iy20
`)6 + (1v)6 is of the form (y1i

′z)6,
where |z| = |v| and i′ ∈ {4, 5} (5 can appear due to a possible
carry from the earlier position). Consider the leftmost digits of
the numbers (y1i

′z)6 and (x1u)6 different from 0 and 3. For
(x1u)6 it is 1, while for (y1i

′z)6 it is 4 or 5, and thus these
numbers cannot be the same.

In both cases it follows that (y1iy20
`)6 + (1v)6 and (x1u)6 must be

different, and the case is impossible.

• |1v| > |y|+`. Then the leading digit of (y0`)6 +(1v)6 is 1 or 2 (due to
a possible carry). As the leading digits are different, (y0`)6 + (1v)6 6=
(x1u)6, which rules out this case.

It has thus been established that y = x and 1v = 1u in the only possible
case, which yields the claim.

A trellis automaton recognizing the base-6 notation of numbers in
VALCi(T), by Theorem 4.2, can be used to obtain a system of equations
with union, intersection and addition representing VALCi(T) as the unique
solution in the positive numbers.

The system given by Theorem 4.2 is actually resolved; casting away that
property and adding additional equations of the formX ⊆ {1, 2, 3, . . .}, gives
a new system with a unique solution. The co-finite constant {1, 2, 3, . . .}
an be expressed as a unique solution of a subsystem of equations using
Lemma 5.3.

This result can be proved in the following stronger form using only one
Boolean operation:

Lemma 6.2. For every TM T recognizing numbers there exists a system of
equations

ϕj(Y,X1, . . . ,Xm) = ψj(Y,X1, . . . ,Xm)

over sets of natural numbers using union and addition (intersection and
addition), such that its least solution is (S0, S1, . . . , S5, S6, . . . , Sn) with Si =
VALCi(T) for 0 ≤ i ≤ 5.

Proof, although short, is deferred to the next section. At the time be-
ing the weaker for of this lemma, which asserts representability of the sets
VALCi(T) by equations with union, intersection and addition.

102 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

The next task is to use these sets of numbers as constants in order to
construct equations representing S(T). The first case to be established is
the one of least solutions and recursively enumerable sets.

Lemma 6.3. For every TM T accepting a set S0 ⊆ N there exists a system
of equations of the form

ϕj(Y,X1, . . . ,Xm) = ψj(Y,X1, . . . ,Xm)

with union and addition (or equally with intersection and addition), which
has the set of solutions

{
(S, f1(S), . . . , fm(S))

∣∣ S0 ⊆ S
}
,

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to S0. In particular, there is the least solution with
Y = S0.

The below argument proves a weaker form of Lemma 6.3, with the con-
structed system using both union and intersection. Most of the given equa-
tions are stated as inclusions of the form V ⊆ V ′ or V ⊆ V ′ + V ′′, and
thus can be equally expressed using union and using intersection. There is
only one equation in the proof that explicitly uses both union and intersec-
tion, and it will be shown in Section 6.3 that this equation can be rephrased
using either intersection (Lemma 6.6), or union (Lemma 6.7). With that
correction, the below proof will establish Lemma 6.3 in its full form stated
above.

Proof of Lemma 6.3 (weaker form). The proof is by constructing a system
in variables (Y, Y1, . . . , Y5, Y0,X7, . . . ,Xm), where the number m will be de-
termined below, and the set of solutions of this system is defined by the
following conditions, which ensure that the statement of the lemma is ful-
filled:

S(T) ∩ {0, 1, 2, 3, 4, 5} ⊆ Y0 ⊆ {0, 1, 2, 3, 4, 5} , (6.1a)

{(1w)6 | w ∈ Σ+
6 , (iw)6 ∈ S(T)} ⊆ Yi ⊆ (1Σ+

6)6, for 1 ≤ i ≤ 5 , (6.1b)

Y = Y0 ∪

5⋃

i=1

{(iw)6 | (1w)6 ∈ Yi} , (6.1c)

Xj = Kj, for 7 ≤ j ≤ m . (6.1d)

The sets K7, . . . ,Km are some constants needed for the construction to work.
These constants and the equations needed to specify them will be implicitly
obtained in the proof. The constructed system will use inequalities of the
form ϕ ⊆ ψ, which can be equivalently rewritten as equations ϕ ∪ ψ = ψ or
ϕ ∩ ψ = ϕ.

6.2. UNRESOLVED SYSTEMS WITH {∪,∩,+} 103

For each i ∈ {1, 2, 3, 4, 5}, consider the above definition of VALCi(T),
which can be constructed by Lemma 6.2, and define a variable Yi with the
equations

Yi ⊆ (1Σ+
6)6 , (6.2a)

VALCi(T) ⊆ ({30, 300}∗3000∗)6 + Yi . (6.2b)

Both constants are given by regular languages of base-6 representations,
and therefore can be specified by equations according to Theorem 5.2, using
only sum and union (sum and intersection). It is claimed that this system
is equivalent to (6.1b).

Suppose (6.1b) holds for Yi. Then (6.2a) immediately follows. To check
(6.2b), consider any (Ci

T (iw)1w)6 ∈ VALCi(T). Since this number repre-
sents the computation of T on (iw)6, this implies (iw)6 ∈ S(T), and hence
(1w)6 ∈ Yi by (6.1b). Then (Ci

T (iw)1w)6 ∈ ({30, 300}∗3000|1w|)6+(1w)6 ⊆
({30, 300}∗3000)6 + Yi, which proves the inclusion (6.2b).

Conversely, assuming (6.2), it has to be proved that for every (iw)6 ∈
S(T), where w ∈ Σ+

6 , the number (1w)6 is in Yi. Since (iw)6 ∈ S(T), there
exists an accepting computation of T : (Ci

T (iw)1w)6 ∈ VALCi(T). Hence,
(Ci

T (iw)1w)6 ∈ ({30, 300}∗3000∗)6 + Yi due to the inclusion (6.2b), and
therefore (1w)6 ∈ Yi by Lemma 6.1.

Define one more variable Y0 with the equations

Y0 ⊆ {0, 1, 2, 3, 4, 5} , (6.3a)

VALC0(T) ⊆ ({30, 300}∗300)6 + Y0 . (6.3b)

The claim is that (6.3) holds if and only if (6.1a).
Assume (6.1a). Then (6.3a) follows automatically. Consider (6.3b)

and any number (CT (n))6 + n ∈ VALC0(T), where n ∈ {0, 1, 2, 3, 4, 5}
by definition. Then n is accepted by T , and, by (6.1a), n ∈ Y0. As
(CT (w))6 +n ∈ ({30, 300}∗300)6 +n ⊆ ({30, 300}∗300)6 + Y0. This proves
(6.3b).

The converse claim is that (6.3) implies that every n ∈ S(T) ∩
{0, 1, 2, 3, 4, 5} must be in Y0, The corresponding (CT (n))6 +n ∈ VALC0(T)
is in ({30, 300}∗300)6 +n by (6.3b). Since n is represented by a single digit,
the number (CT (n))6+n ends with this digit. The set ({30, 300}∗300)6+Y0

contains a number of such a form only if n ∈ Y0.
Next, combine the above six systems together and add a new variable Y

with the following equation:

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
i′∈Σ6

(
(Yi ∩ (1i′Σ∗

6)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗
6)6

)
. (6.4)

This equation is in fact (4.13) from Lemma 4.5, where it was proved equiva-
lent to Y = Y0∪{(iw)6 |(1w)6 ∈ Yi}, that is, to (6.1c). Note that this is the

104 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

only equation in this proof that uses explicit union or intersection; it will
be shown later, in Lemmata 6.6–6.7, that this equation can be equivalently
represented using only one Boolean operation.

The final step of the construction is to express constants used in the above
systems through singleton constants, which can be done by Theorem 5.2 and
Lemma 6.2. The variables needed to specify these languages are denoted
(X7, . . . ,Xn), and the equations for these variables have a unique solution
Xj = Kj for all j.

This completes the description of the set of solutions of the system. It
is easy to see that there is a least solution in this set, with Y = S(T),
Y0 = S(T) ∩ {0, 1, 2, 3, 4, 5}, Yi = {(1w)6 | w ∈ Σ+

6 , (iw)6 ∈ S(T)} and
Xj = Kj .

The representation of co-recursively enumerable sets by greatest solu-
tions is dual to the case of least solutions and is established by an analogous
argument.

Denote the complements of the languages VALCi(T) (0 ≤ i ≤ 5) by
INVALCi(T). Base-6 notations of numbers in these sets are recognised by
trellis automata due to the closure of trellis automata under complemen-
tation. Therefore, analogously to Lemma 6.2, the sets INVALCi(T) are
representable as unique solutions of systems of resolved equations.

Lemma 6.4. For every TM T recognizing a recursively enumerable set of
numbers S0 ⊆ N there exists a system of equations of the form

ϕj(Z,X1, . . . ,Xm) = ψj(Z,X1, . . . ,Xm)

with union and addition (or equally with intersection and addition), which
has the set of solutions

{
(S, f1(S), . . . , fm(S))

∣∣ S ⊆ S0

}
,

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to S0. In particular, there is a greatest solution with
Z = S0.

As in the previous lemma, only a weaker form of Lemma 6.4 is proved
at the moment, with the system using both union and intersection. The full
version will follow by improving one of the equations in the below argument
according to the later established Lemmata 6.6–6.7.

proof of weaker version of Lemma 6.4. The system has a set of variables
(Z,Z1, . . . , Z5, Z0,X7, . . . ,Xm), and its set of solutions is characterised by

6.2. UNRESOLVED SYSTEMS WITH {∪,∩,+} 105

the following conditions:

Z0 ⊆ S0 ∩ {0, 1, 2, 3, 4, 5} , (6.5a)

Zi ⊆ {(1w)6 | w ∈ Σ+
6 , (iw)6 /∈ S0} (1 ≤ i ≤ 5) , (6.5b)

Z = Z0 ∪

5⋃

i=1

{(iw)6 | (1w)6 ∈ Zi} , (6.5c)

Xj = Kj (7 ≤ j ≤ n) . (6.5d)

The number m and the vector of languages (K7, . . . ,Km) will be determined
below. This set of solutions will satisfy the statement of the lemma.

The equations defining the value of each Zi (1 ≤ i ≤ 5) are as follows:

Zi ⊆ (1Σ+
6)6 , (6.6a)

({30, 300}∗3000∗)6 + Zi ⊆ INVALCi(T) . (6.6b)

It is claimed that (6.6) holds if and only if (6.5b).
If Zi satisfies (6.5b), then (6.6a) follows immediately, and in order to

prove (6.6b), one has to consider any number not in INVALCi(T) and show
that it is not in ({30, 300}∗3000∗)6 + Zi. By definition, a number is not
in INVALCi(T) if it is in VALCi(T), so take any number n = (iw)6 ∈ S0,
for which (CT (n)1w)6 ∈ VALCi(T) with CT (iw) ∈ {30, 300}∗300. Suppose
(CT (iw)1w)6 ∈ ({30, 300}∗3000∗)6 +Zi. Then, by Lemma 6.1, (1w)6 ∈ Zi,
hence (iw)6 /∈ S0 by (6.5b), which yields a contradiction.

The converse is established as follows. Assuming (6.6), consider any
number n ∈ S0 and let n = (iw)6 for some i ∈ {1, 2, 3, 4, 5} and w ∈ Σ+

6 . It is
sufficient to prove that (1w)6 /∈ Zi. Suppose (1w)6 ∈ Zi, then (CT (n)w)6 ∈
({30, 300}∗3000∗)6 + Zi ⊆ INVALCi(T) by (6.6b). However, (CT (n)w)6

is in VALCi(T) and thus cannot be in INVALCi(T). The contradiction
obtained proves this case.

Define the following equations for the variable Z0:

Z0 ⊆ {0, 1, 2, 3, 4, 5} , (6.7a)

({30, 300}∗300)6 + Z0 ⊆ INVALC0(T) . (6.7b)

Again, the claim is that these equations are equivalent to (6.5a).
Let Z0 be a subset of {0, 1, 2, 3, 4, 5}\S0 , as stated in (6.5a). This imme-

diately implies (6.7a). Consider any number not in INVALC0(T); proving
that it is not in ({30, 300}∗300)6 + Z0 will establish (6.7b). A number not
in INVALC0(T) must be in VALC0(T), so let CT (n) + n ∈ VALC0(T) for
any n ∈ {0, 1, 2, 3, 4, 5}, and suppose CT (n) + n ∈ ({30, 300}∗300)6 + Z0.
The last digit of CT (n) + n is n, and hence n ∈ Z0. Therefore, by (6.5a),
n /∈ S0, which contradicts the accepting computation CT (n).

Conversely, assume (6.7) and suppose there exists n ∈ {0, 1, 2, 3, 4, 5},
which is at the same time in S0 and in Z0. Then there exists an ac-
cepting computation CT (n) + n ∈ VALC0(T), that is, CT (n) + n /∈

106 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

INVALC0(T). However, CT (n) + n ∈ ({30, 300}∗300)6 + Z0, because
CT (n) ∈ ({30, 300}∗300)6 and w ∈ Z0 by assumption, which contradicts
(6.7b). The contradiction obtained proves that no such w exists, which
establishes (6.5a).

The equation for Z is the same as (6.4) in Lemma 6.3:

Z = Z0 ∪ Z1 ∪
⋃

i∈{2,3,4,5}
i′∈Σ6

(
(Zi ∩ (1i′Σ∗

6)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗
6)6

)
. (6.8)

As in Lemma 6.3, this equation is equivalent to (6.5c). Again, this is the
only equation using union and intersection, which will later be replaced by
simpler equations given in Lemmata 6.6–6.7.

To conclude the proof, trellis constants are expressed by Theorem 5.3,
using extra variables (X7, . . . ,Xn) and only one boolean operation. The
set of solutions has been described, and, clearly, the greatest of them is
Z0 = S0 ∩ {0, 1, 2, 3, 4, 5}, Zi = {(1w)6 | w ∈ Σ+

6 , (iw)6 /∈ S0}, Z = S0.

Finally, the case of recursive languages and unique solutions can be es-
tablished by combining the constructions of Lemmata 6.3 and 6.4 as follows:

Lemma 6.5. For every TM T halting on every input and recognizing a
recursive set of numbers S ⊆ N there exists a system of equations of the
form ϕi(Y,Z,X1, . . . ,Xn) = ψi(Y,Z,X1, . . . ,Xn) with union, intersection
and addition, such that its unique solution is Y = Z = S, Xi = Ki, where
(K1, . . . ,Kn) is some vector of sets.

Proof. A TM T ′ recognizing S is easily constructed out of T . Then
Lemma 6.3 is applied to T and Lemma 6.4 is applied to T ′. Consider both
systems of language equations given by these lemmata, let Y be the variable
from Lemma 6.3, let Z be the variable from Lemma 6.4, and let X1, . . . ,Xn

be the rest of the variables in these systems combined. The set of solutions
of the system obtained is

{
(Y,Z, f1(Y,Z), . . . , fn(Y,Z))

∣∣ S ⊆ Y and Z ⊆ S
}
,

that is {
(Y,Z, f1(Y,Z), . . . , fn(Y,Z))

∣∣ Z ⊆ S ⊆ Y
}
.

Adding one more equation
Y = Z

to the system collapses the bounds Z ⊆ S ⊆ Y to Z = S = Y , and the
resulting system has the unique solution

{
(S, S, f1(S, S), . . . , fn(S, S))

}
,

which completes the proof.

6.3. EQUATIONS WITH ∪, + OR ∩, + 107

The weaker form of the above three lemmata yields a weaker form of
Theorem 6.1, which asserts computational completeness of equations with
union, intersection and addition.

6.3 Equations with ∪, + or ∩, +

We now refine the construction of the previous section so that only one
boolean operation is used.

Firstly we give a proof of Lemma 6.2 and then show how to remake the
construction.

proof of Lemma 6.2. As already stated, VALC(T) is an intersection of two
linear context-free grammars [43]. Although VALCi(T)’s are slightly modi-
fied versions of VALC(T):

VALC(T) = {CT (w)\w | w ∈ S(T)} ,

as compared to

VALCi(T) = {(CT (iw)1w)6 | n = (iw)6, n ∈ S(T)} ,

it can be easily verified that the original construction of VALC(T) can be
improved to generate VALCi(T). Then VALCi(T) is an intersection of linear
context-free grammars, and so it is recognised by some trellis automaton.

Theorem 5.3 assures that (VALCi(T))6 is the unique solution of a system
of equations using union and sum (or intersection and sum).

The next (and final) step of the argument is to modify the systems
defined in the proofs of Lemmata 6.3 and 6.4 to use these sets of operations.

The only equations using Boolean operations in those proofs are (6.4) and
(6.8), and since they are identical, it is sufficient to rephrase a single equation
(6.4). Its reformulation using addition and intersection is immediate:

Lemma 6.6. Let Yi ⊆ (1Σ+
6)6 for 1 ≤ i ≤ 5 and let Y0 ⊆ {0, 1, 2, 3, 4, 5}.

Then, for every set Y ⊆ N,

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
. (6.9)

if and only if

Y ∩ (ijΣ∗
6)6 = (Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6, for i, j ∈ Σ6, i > 1 ,

Y0 = Y ∩ {0, 1, 2, 3, 4, 5} ,

Y1 = Y ∩ (1Σ+
6)6 .

108 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

Proof. ⇐© Assume that the sets Yi satisfy the latter three equations. Then,
since N = {0, . . . , 5} ∪ (1Σ+

6)6 ∪
⋃

i>1,j(ijΣ
∗
6)6,

Y = Y ∩ N

= Y ∩ ({0, . . . , 5} ∪ (1Σ+
6)6)

= (Y ∩ {0, . . . , 5}) ∪ (Y ∩ (1Σ+
6)6) ∪

⋃

i>1,j

(Y ∩ (ijΣ∗
6)6)

= Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
.

⇒© Conversely, assume that (6.9) holds. Then, intersecting both sides of
(6.9) with (ijΣ∗

6)6, {0, . . . 5} and (1Σ+
6)6, one obtains:

Y ∩ (ijΣ∗
6)6 = (Yi ∩ (1jΣ∗

6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6 ,

Y ∩ {0, . . . 5} = Y0 ,

Y ∩ (1Σ+
6)6 = Y1 .

An analogous result for addition and union requires introducing new
variables, and so the statement looks more complicated:

Lemma 6.7. There exist monotone functions fi,j, gi,j , hi,j : 2N → 2N, with
i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5} and a system of equations in variables
{Y, Y0, . . . , Y5} ∪ {Yi,j , Y

′
i,j, Y

′′
i,j | 2 ≤ i ≤ 5, 0 ≤ j ≤ 5} using the operations

of union and addition, such that the two following conditions are equivalent

1. Y = S, Yi = Si, Yi,j = Si,j, Y
′
i,j = S′

i,j, Y
′′
i,j = S′′

i,j with i ∈ {2, . . . , 5}
and j ∈ {0, . . . , 5} is a solution of that system

2. S0 ⊆ {0, 1, 2, 3, 4, 5}, S1, S2, S3, S4, S5 ⊆ (1Σ+
6)6, and Y = S, Yi = Si

is a solution of the equation

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
,

and Si,j = fi,j(Si), S
′
i,j = gi,j(Si) and S′′

i,j = hi,j(Si) for i ∈ {2, . . . , 5}
and j ∈ {0, . . . , 5}.

Proof. Define

fi,j(X) = X ∩ (1jΣ∗
6)6 ,

gi,j(X) = fi,j(X)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6 ,

hi,j(X) = fi,j(X)+((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ

∗
6)6 .

6.3. EQUATIONS WITH ∪, + OR ∩, + 109

Note that these are monotone functions. The system of equations is con-
structed as follows:

Y = Y0 ∪ Y1 ∪
⋃

i,j

Y ′
i,j , (6.10)

Y0 ⊆ {0, 1, 2, 3, 4, 5} , (6.11a)

Y1 ⊆ (1Σ+
6)6 , (6.11b)

5⋃

j=0

Yi,j = Yi, for 2 ≤ i ≤ 5 , (6.12a)

Yi,j ⊆ (1jΣ∗
6)k, for 2 ≤ i ≤ 5; 0 ≤ j ≤ 5 , (6.12b)

Y ′
i,j ⊆ Yi,j + ((i− 1)0∗)6, for 2 ≤ i ≤ 5; 0 ≤ j ≤ 5 , (6.13a)

Y ′
i,j ⊆ (ijΣ∗

6)6, for 2 ≤ i ≤ 5; 0 ≤ j ≤ 5 , (6.13b)

Y ′′
i,j ⊆ Yi,j + ((i− 1)0∗)6, for 2 ≤ i ≤ 5; 0 ≤ j ≤ 5 , (6.13c)

Y ′′
i,j ⊆ (Σ∗

6 \ ijΣ
∗
6)6, for 2 ≤ i ≤ 5; 0 ≤ j ≤ 5 , (6.13d)

Y ′
i,j ∪ Y

′′
i,j = Yi,j + ((i− 1)0∗)6, for 2 ≤ i ≤ 5; 0 ≤ j ≤ 5 . (6.13e)

The statement of the lemma is proved separately in two directions.

⇒© Suppose (S, S0 . . . , S5, . . . , Si,j , S
′
i,j, S

′′
i,j, . . .) is a solution of the system

(6.10)–(6.13). Then, by (6.12b), for each i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5},

Si,j ⊆ (1jΣ∗
6)k ,

and taking into account that
⋃5

j=0 Si,j = Si for 2 ≤ i ≤ 5, by (6.12a),

it follows that Si ⊆ (1Σ+
6)k holds for i = 2, . . . , 5. The inclusions S0 ⊆

{0, 1, 2, 3, 4, 5} and S1 ⊆ (1Σ+
6)6 are explicitly stated in the system as (6.11a)

and (6.11b).

To see that Si,j = fi,j(Si), consider that, by (6.12a), Si =
⋃

j Si,j, and
further, by (6.12a) and (6.12b), for each j it holds that Si,j ⊆ Si ∩ (1jΣ∗

6)6.
Taking the union over j:

⋃
j Si,j ⊆

⋃
j Si ∩ (1jΣ∗

6)6. The latter is, clearly, a
subset of Si, and thus

Si
(6.12a)

=
⋃

j

Si,j

(6.12b)

⊆
⋃

j

Si ∩ (1jΣ∗
6)6 ⊆ Si .

hence the inequalities are in fact equalities. Since Si,j ⊆ (1jΣ∗
6)6 and for

j 6= j′ the sets (1jΣ∗
6)6 and (1j′Σ∗

6)6 are disjoint, for each j it holds that
Si,j = Si ∩ (1jΣ∗

6)6, that is Si,j = fi,j(Si).

110 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

The proof of equalities S′
i,j = gi,j(Si) and S′′

i,j = hi,j(Si) is done by a
similar chain of inclusions:

Si,j + ((i− 1)0∗)6
(6.13e)

= S′
i,j ∪ S

′′
i,j

(6.13a)–(6.13d)

⊆
(
Si,j +((i− 1)0∗)6 ∩ (ijΣ∗

k)6

)

∪
(
Si,j +((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ
∗
k)6

)

=
(
Si,j +((i− 1)0∗)6

)
∩
(
(ijΣ∗

k)6 ∪ (Σ∗
6 \ ijΣ

∗
k)6

)

=Si,j + ((i− 1)0∗)6 .

Therefore, the inequalities turn into equalities:

S′
i,j = Si,j + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6

= gi,j(Si) ,

S′′
i,j = Si,j + ((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ
∗
6)6

= hi,j(Si) .

Since (S, . . . , Si, . . . , Si,j , . . . , S
′
i,j, . . . , S

′′
i,j, . . .) satisfies (6.10),

S = S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

S′
i,j ,

and it can be concluded that

S = S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

S′
i,j

= S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

gi,j(Si)

= S0 ∪ S1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Si ∩ (1jΣ∗

6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
.

Hence (S, S0, . . . , S5) is a solution of the equation.

⇐© Conversely, assume that (S, S0 . . . , S5) with S0 ⊆ {0, 1, 2, 3, 4, 5},
S1, S2, S3, S4, S5 ⊆ (1Σ+

6)6 is a solution of the former equation. To show
that (S, S0 . . . , S5, . . . , fi,j(Si), . . . , gi,j(Si), . . . , hi,j(Si), . . .) is a solution of
the latter system, these values should be substituted into (6.10)–(6.13). The
equality (6.10) follows by the assumption that (S, S0, . . . , S5) is a solution

6.3. EQUATIONS WITH ∪, + OR ∩, + 111

of the original system:

S0 ∪ S1 ∪
⋃

i,j

gi,j(Si) = S0 ∪ S1 ∪
⋃

i,j

fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

= S0 ∪ S1 ∪
⋃

i,j

(Si ∩ (1jΣ∗
6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6

= S .

The next equation, (6.11), is explicitly stated in the former system, so it
holds.

For (6.12), the equality holds by the following calculations:

⋃

j

fi,j(Si) =
⋃

j

Si ∩ (1jΣ∗
6)6

= Si ∩
⋃

j

(1jΣ∗
6)6

= Si ∩ (1jΣ∗
6)6

= Si ,

fi,j(Si) = Si ∩ (1jΣ∗
6)6

⊆ (1jΣ∗
6)6 .

In the same manner, all five equations in (6.13) hold true:

gi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

⊆ fi,j(Si) + ((i− 1)0∗)6 ,

gi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

⊆ (ijΣ∗
6)6 ,

hi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ

∗
6)6

⊆ fi,j(Si) + ((i− 1)0∗)6 ,

hi,j(Si) = fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ

∗
6)6

⊆ (Σ∗
6 \ ijΣ

∗
6)6 ,

gi,j(Si) ∪ hi,j(Si) =
(
fi,j(Si) + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6

)

∪
(
fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ
∗
6)6

)

= fi,j(Si) + ((i− 1)0∗)6 ∩
(
(ijΣ∗

6)6 ∪ (Σ∗
6 \ ijΣ

∗
6)6

)

= fi,j(Si) + ((i− 1)0∗)6 ∩ (Σ∗
6)6

= fi,j(Si) + ((i− 1)0∗)6 .

Hence the whole system holds.

112 CHAPTER 6. COMPLETENESS OF SYSTEMS OF EQUATIONS

Using these equivalent reformulations of equations (6.4) and (6.8), the
constructions in the proofs of Lemmata 6.3 and 6.4 can be modified to use
either union only or intersection only, thus proving those lemmata in their
full form. This completes the proof of Theorem 6.1 in its full statement.

Chapter 7

Equations with addition only

It is already known that the systems of equations with union and sum (or
intersection and sum) are computationally complete, which is the strongest
possible result for such equations. Still, in case of language equations, even
simpler types of equations are known to be computationally universal: for
example Kunc [29] has shown that the greatest solution of the equation
XL = LX for a finite L can be co-recursively enumerable hard. The con-
sidered alphabet was {a, b}, and using at least two letters was essential.

In case of equations over sets of natural numbers, the set of allowed
operations can be limited in a similar way: this chapter is concerned with
equations over sets of numbers that use only addition and no Boolean oper-
ations. These are systems of equations of the form

Xi1 + . . . +Xik + C = Xj1 + . . .+Xj`
+D

in variables (X1, . . . ,Xn), where C,D ⊆ N are ultimately periodic constants.
This is the simplest form of equations, and at the first glance it seems out of
question that such equations could have any non-trivial solutions. However,
it is shown that they can have not only non-periodic solutions, but in fact
are computationally universal.

The idea is to take an arbitrary system using addition and union and
encode it in another system using addition only. The solutions of the two
systems are not identical, but there is a (linear) bijection between solutions
based upon an encoding of sets of numbers.

All constants in the construction are ultimately periodic; some of them
are finite and some are infinite. The last question is whether infinite con-
stants are necessary to specify any non-periodic sets, and an affirmative
answer is given.

113

114 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

7.1 Overview of the argument

The general idea of the construction is as follows. Define an abstract encod-
ing, that is an injective function

σ : 2N → 2N .

There are two goals to be acquired by this encoding. Firstly, it should be
verifiable by an equation, meaning, that there is an equation such that X
satisfies it if and only if X = σ(X̂) for some X̂. Secondly, this encoding
should allow simulating operations, i.e., for union (addition, respectively)
there is a system of equations such that X = σ(X̂), Y = σ(Ŷ) and Z = σ(Ẑ)
satisfy this system of equations if and only if X̂ = Ŷ ∪ Ẑ (X̂ = Ŷ + Ẑ,
respectively).

More precisely, the encoding is expected to be of the general form

X = {pn+ i | n ∈ N, i ∈ I} ∪ {pn+ j | n ∈ X̂} ∪ C ,

for some fixed p, j ∈ N and I, C ⊆ N. The exact values are given in the
next section.

On the basis of this encoding it is demonstrated how an arbitrary system
of equations with union and addition can be simulated using addition only.
Each variable Xi of the original system will be represented in the new system
by a variable X ′

i, and the solutions of the new system will be of the form
X ′

i = σ(Si) for all variables X ′
i, where Xi = Si is a solution of the original

system.

7.2 Encoding of sets

An arbitrary set of numbers Ŝ ⊆ N will be represented by another set S ⊆ N,
which contains a number 16n+ 13 if and only if n is in Ŝ. The membership
of numbers i with i 6= 13 (mod 16) in S does not depend on Ŝ and will
be defined below. Since many constructions in the following will be done
modulo 16, the following notation shall be adopted:

Definition 7.1. For each i ∈ {0, 1, . . . , 15},

tracki(S) = {n | 16n + i ∈ S} ,

τi(S
′) = {16n + i | n ∈ S′} .

The subset S ∩ {16n + i | n ≥ 0} is called the ith track of S. A set S is
said to have an empty (full) track i if tracki(S) = ∅ (tracki(S) = N,
respectively).

In these terms, it can be said that a set Ŝ shall be encoded in the 13th

track of a set S. The rest of the tracks of S contain technical information
needed for the below constructions to work: track 0 contains a singleton
{0}, tracks 6, 8, 9 and 12 are full and the rest of the tracks are empty.

7.2. ENCODING OF SETS 115

0 16 32 48 64

Figure 7.1: The encoding σ(Ŝ). The red cells represent numbers that not
necessarily belong to σ(Ŝ). The black cells represent the numbers that
certainly are in σ(Ŝ); the white cells represent the numbers which cannot
be in σ(Ŝ).

Figure 7.2: The addition of σ(X̂) + {0, 4, 11}. The following rows represent
σ(X̂), σ(X̂) + {4}, σ(X̂) + {11} and finally σ(X̂) + {0, 4, 11}. It can be seen
that the last sum has only black and white cells.

Definition 7.2. For every set Ŝ ⊆ N, its encoding is the set

S = σ(Ŝ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Ŝ) .

The first property of the encoding announced in the beginning of this
chapter is that there exists an equation with the set of all valid encodings
as its set of solutions. Such an equation will now be constructed.

Lemma 7.1. A set X ⊆ N satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}

if and only if X = σ(X̂) for some X̂ ⊆ N.

Proof. For an illustration, see Fig. 7.2.
⇒© Let X be any set that satisfies the equation. Then X + {0, 4, 11} has

empty tracks 2, 5, 14 and 15:

track2(X + {0, 4, 11}) = track5(X + {0, 4, 11})

= track14(X + {0, 4, 11})

= track15(X + {0, 4, 11})

= ∅ .

For this condition to hold, X must have many empty tracks as well. To be
precise, each track t with t, t + 4 or t + 11 (mod 16) in {2, 5, 14, 15} is an

116 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

empty track in X. Calculating such set of tracks, {2, 5, 14, 15} − {0, 4, 11}
(mod 16) = {1, 2, 3, 4, 5, 7, 10, 11, 14, 15} are the numbers of tracks that must
be empty in X.

Similar considerations apply to track 11, as track11(X + {0, 4, 11}) =
{0}. For every track t with t = 11, t + 4 = 11 (mod 16) or t + 11 = 11
(mod 16), it must hold that the tth track of X is either an empty track or
trackt(X) = {0}. The latter must hold for at least one such t. Let us
calculate all such tracks t: these are tracks with numbers {11} − {0, 4, 11}
(mod 16) = {0, 7, 11}. Since tracks number 7 and 11 are already known to
be empty, it follows that track0(X) = {0}.

In order to prove that X is a valid encoding of some set, it remains
to prove that tracks number 6, 8, 9, 12 in X are full. Consider first that
track3(X + {0, 4, 11}) = N + 1. Let us calculate the track numbers t
such that there is t′ ∈ {0, 4, 11} with (t + t′) (mod 16) = 3: these are
{3} − {0, 4, 11} (mod 16) = {3, 8, 15}. Since tracks 3, 15 are known to be
empty, then

N + 1 = track3(X + {0, 4, 11})

= track3(X) ∪ (track15(X) + 1) ∪ (track8(X) + 1)

= ∅ ∪∅ ∪ (track8(X) + 1)

= track8(X) + 1 ,

and thus track 8 of X is full. The analogous argument is used to prove that
tracks 12, 9, 6 are full. Consider track7(X + {0, 4, 11}) = N + 1. Then
{7} −{0, 4, 11} (mod 16) = {7, 3, 12}. Since it is already known that tracks
3, 7 are empty, the track 12 is full:

N + 1 = track7(X + {0, 4, 11})

= track7(X) ∪ track3(X) ∪ (track12(X) + 1)

= ∅ ∪∅ ∪ (track12(X) + 1)

= track12(X) + 1 .

In the same way consider track9(X+{0, 4, 11}) = N. Then {9}−{0, 4, 11}
(mod 16) = {9, 5, 14} and tracks 5, 14 are empty, thus track 9 is full:

N = track9(X + {0, 4, 11})

= track9(X) ∪ track5(X) ∪ (track14(X) + 1)

= track9(X) ∪∅ ∪∅

= track9(X) .

Now let us inspect track10(X + {0, 4, 11}). Then {10} − {0, 4, 11}
(mod 16) = {10, 6, 15}. Since the tracks 10, 15 are empty, then the 6th

7.2. ENCODING OF SETS 117

track is full:

N = track10(X + {0, 4, 11})

= track10(X) ∪ track6(X) ∪ (track15(X) + 1)

= ∅ ∪ track6(X) ∪∅

= track6(X) .

Thus it has been proved that X = σ(track13(X)).

⇐© It remains to show the converse, that is, that if X = σ(X̂), then

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11} .

Since X =
⋃15

i=0 τi(tracki(X)), then

X + {0, 4, 11} =
(⋃

i

τi(tracki(X)) + 0
)
∪
(⋃

i

τi(tracki(X)) + 4
)

∪
(⋃

i

τi(tracki(X)) + 11
)
,

and Table 7.1 presents the form of each particular term in this union. Each
ith row represents track number i in X, and each column labelled +j for
j ∈ {0, 4, 11} corresponds to the addition of a number j. The cell (i, j)
gives the set tracki(X) + j and the number of the track in which this set
appears in the result (this is track i + j (mod 16)). Then each `th track
of X + {0, 4, 11} is obtained as a union of all the appropriate sets in the
Table 7.1.

According to the table, the values of the set X̂ are reflected in three
tracks of the sum X + {0, 4, 11}: in tracks 13, 1 and 8 (in the last two cases,
with offset 1). However, at the same time the sum contains full tracks 8
and 13, as well as N + 1 in track 1, and the contributions of X̂ to the sum
are subsumed by these numbers, as τ13(X̂) ⊆ τ13(N), τ1(X̂ + 1) ⊆ τ1(N + 1)
and τ8(X̂ + 1) ⊆ τ8(N). Therefore, the value of the expression does not
depend on X̂ . Taking the union of all entries of the Table 7.1 proves that
X + {0, 4, 11} equals

⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11} ,

as stated in the lemma.

118 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

+0 +4 +11

0: {0} 0: {0} 4: {0} 11: {0}
6: N 6: N 10: N 1: N + 1
8: N 8: N 12: N 3: N + 1
9: N 9: N 13: N 4: N + 1
12: N 12: N 0: N + 1 7: N + 1

13: X̂ 13: X̂ 1: X̂ + 1 8: X̂ + 1

Table 7.1: Tracks in the sum σ(X̂) + {0, 4, 11}, only non-empty tracks of
σ(X̂) are included.

7.3 Simulating operations

The goal of this section is to establish the second property of the encoding σ,
that is, that a sum of encodings of two sets and a fixed constant set effectively
encodes the union of these two sets, while the addition of a different fixed
constant set allows encoding the sum of the two original sets. This property
is formally stated in the following lemma, along with the actual constant
sets:

Lemma 7.2. For all sets X,Y,Z ⊆ N,

σ(Y) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

and

σ(Y) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X .

Proof. The goal is to show that for all Y,Z ⊆ N, the sum

σ(Y) + σ(Z) + {0, 1}

encodes the set Y +Z+1 on one of its tracks, while the contents of all other
tracks do not depend on Y or on Z, see Fig. 7.3 for an example. Similarly,
the sum

σ(Y) + σ(Z) + {0, 2}

has a track that encodes Y ∪Z, while the rest of its tracks also do not depend
on Y and Z.

The common part of both of the above sums is σ(Y) + σ(Z), so let us
calculate it first. Since

σ(Y) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Y) and

σ(Z) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Z) ,

by the distributivity of union over addition, the sum σ(Y) +σ(Z) is a union
of 36 terms, each being a sum of two individual tracks. Every such sum is

7.3. SIMULATING OPERATIONS 119

0 16 32 48 64

+

=

0 16 32 48 64

+ {0, 1} =

0 16 32 48 64

Figure 7.3: The graphical illustration of addition σ(Y)+σ(Z)+{0, 1}. The
first row represents σ(Y), with red cells encoding the elements of Y . The
second row represents σ(Z), with blue cells encoding the elements of Z. In
the sum σ(Y) +σ(Z) the green cells are the encoded elements of Y ∪Z, the
orange cells are the encoded elements of σ(Y) + σ(Z) while the grey cells
are some auxiliary “junk” numbers. Then the addition of {0, 1} leaves only
encoded numbers from σ(Y) + σ(Z) and the numbers not depending on Y
nor Z.

contained in a single track as well, and Table 7.2 gives a case inspection of
the form of all these terms. Each of its six rows corresponds to one of the
nonempty tracks of σ(Y), while its six columns refer to the nonempty tracks
in σ(Z). Then the cell gives the sum of these tracks, in the form of the track
number and track contents: that is, for row representing tracki(σ(Y))
and for column representing trackj(σ(Z)), the cell (i, j) represents the
set tracki(σ(Y)) + trackj(σ(Z)), which is bound to be on track i + j
(mod 16). For example, the sum of track 8 of σ(Y) and track 9 of σ(Z) falls
onto track 1 = 8 + 9 (mod 16) and equals

τ8(N) + τ9(N) = {8 + 9 + 16(m + n) |m,n ≥ 0}

= {1 + 16n | n ≥ 1}

= τ1(N + 1) ,

while adding track 13 of σ(Y) to track 13 of σ(Z) results in

τ13(Y) + τ13(Z) = {26 + 16(m + n) |m ∈ Y, n ∈ Z}

= τ10(Y + Z + 1) ,

which is reflected in the table. Each question mark denotes a track with
unspecified contents. Though this contents can be calculated, it is actually
irrelevant, because it does not influence the value of the subsequent sums
σ(Y) + σ(Z) + {0, 1} and σ(Y) + σ(Z) + {0, 2}. What is important is that
none of these tracks contain 0.

120 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

0: {0} 6: N 8: N 9: N 12: N 13: Z

0: {0} 0: {0} 6: N 8: N 9: N 12: N 13: Z

6: N 6: N 12: N 14: N 15: N 2: N + 1 3: ?

8: N 8: N 14: N 0: N + 1 1: N + 1 4: N + 1 5: ?

9: N 9: N 15: N 1: N + 1 2: N + 1 5: N + 1 6: ?

12: N 12: N 2: N + 1 4: N + 1 5: N + 1 8: N + 1 9: ?

13: Y 13: Y 3: ? 5: ? 6: ? 9: ? 10: (Y +Z)+1

Table 7.2: Tracks in the sum σ(Y) + σ(Z). Question marks denote subsets
of N + 1 that depend on Y or Z and whose actual values are unimportant.

σ(Y) σ(Z) σ(Y)+σ(Z) σ(Y)+σ(Z)+{0, 1} σ(Y)+σ(Z)+{0, 2}

0 {0} {0} N N N
1 ∅ ∅ N + 1 N N + 1

2 ∅ ∅ N + 1 N + 1 N
3 ∅ ∅ ? N + 1 N + 1

4 ∅ ∅ N + 1 N + 1 N + 1

5 ∅ ∅ N + 1 N + 1 N + 1

6 N N N N N
7 ∅ ∅ ∅ N N + 1

8 N N N N N
9 N N N N N
10 ∅ ∅ Y + Z + 1 N N
11 ∅ ∅ ∅ Y + Z + 1 N
12 N N N N N
13 Y Z Y ∪ Z N Y ∪ Z

14 ∅ ∅ N N N
15 ∅ ∅ N N N

Table 7.3: Tracks in the sums of σ(Y) + σ(Z) with constants.

Now the value of each ith track of σ(Y) + σ(Z) is obtained as the union
of all sums in Table 7.2 that belong to the ith track. The final values of
these tracks are presented in the corresponding column of Table 7.3.

Now the contents of the tracks in σ(Y)+σ(Z)+{0, 1} can be completely
described. The calculations are given in Table 7.3, and the result is that for
all Y and Z,

track11(σ(Y) + σ(Z) + {0, 1}) = Y + Z + 1 ,

tracki(σ(Y) + σ(Z) + {0, 1}) = N + 1 , for i = 2, 3, 4, 5 ,

tracki(σ(Y) + σ(Z) + {0, 1}) = N , for all other i .

It easily follows that
X = Y + Z

7.4. SIMULATING A SYSTEM OF EQUATIONS 121

if and only if

σ(X) + σ({0}) + {0, 1} = σ(Y) + σ(Z) + {0, 1} ,

as, clearly, X = X + {0}.

For the set σ(Y) + σ(Z) + {0, 2}, in the same way, for all Y and Z,

track13(σ(Y) + σ(Z) + {0, 2}) = Y ∪ Z ,

trackj(σ(Y) + σ(Z) + {0, 2}) = N + 1 , for j = 1, 3, 4, 5, 7 ,

trackj(σ(Y) + σ(Z) + {0, 2}) = N , for all other j .

and therefore for all X,Y,Z,

X = Y ∪ Z

if and only if

σ(X) + σ(X) + {0, 2} = σ(Y) + σ(Z) + {0, 2} ,

since X = X ∪X.

Both claims of the lemma follow.

7.4 Simulating a system of equations

Using the encoding defined above, it is now possible to represent a system
with union and addition by a system with addition only. Since Lemma 7.2
on the simulation of individual operations is applicable only to equations of
a simple form, the first task is to convert a given system to such a form:

Lemma 7.3. For every system of equations over sets of numbers in variables
(X1, . . . ,Xn) using union, addition and constants from a set C there exists a
system in variables (X1, . . . ,Xn,Xn+1, . . . ,Xn+m) with all equations of the
form Xi = Xj +Xk, Xi = Xj ∪Xk or Xi = C with C ∈ C, such that the set
of solutions of this system is

{
(S1, . . . , Sn, f1(S1, . . . , Sn), . . . , fm(S1, . . . , Sn))

∣∣
(S1, . . . , Sn) is a solution of the original system

}
,

for some monotone functions f1, . . . , fm.

The construction is by a straightforward decomposition of equations,
with new variables representing subexpressions of the sides of the original
equations. Once the equations are thus transformed, the system can be
encoded as follows.

122 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

Lemma 7.4. For every system of equations over sets of numbers in variables
(. . . ,X, . . .) and with all equations of the form X = Y +Z, X = Y ∪Z and
X = C, there exists a system in variables (. . . ,X ′, . . .), using only addition
and constants {0, 1}, {0, 2}, {0, 4, 11}, σ({0}), σ(C) with C used in the
original system and the ultimately periodic constant from Lemma 7.1, such
that (. . . , S′

X , . . .) is a solution of the latter system if and only if S′
X = σ(SX)

for each variable X, for some solution (. . . , SX , . . .) of the former system.

Proof. The proof is by a direct transformation of this system according to
Lemmata 7.1 and 7.2. First, the new system contains the following equation
for each variable X ′:

X ′ + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11} . (7.1)

Next, for each equation X = Y + Z in the original system, there is a corre-
sponding equation

X ′ + σ({0}) + {0, 1} = Y ′ + Z ′ + {0, 1} (7.2)

in the new system. Similarly, for each equation of the form X = Y ∪Z, the
new system contains an equation

X ′ +X ′ + {0, 2} = Y ′ + Z ′ + {0, 2} . (7.3)

Finally, every equation X = C in the original system is represented in the
new system by the following equation:

X ′ = σ(C) . (7.4)

By Lemma 7.1, (7.1) ensures that each solution (. . . , S′
X , . . .) of the con-

structed system satisfies S′
X = σ(SX) for some sets SX . It is claimed that

(. . . , SX , . . .) satisfies each equation of the original system if and only if
(. . . , σ(SX), . . .) satisfies the corresponding equation (7.2)–7.4 of the con-
structed system. Consider each pair of corresponding equations:

• Consider an equation X = Y +Z from the original system. Then there
is a corresponding equation (7.2), and, by Lemma 7.2, (. . . , SX , . . .)
satisfies the original equation if and only if (. . . , σ(SX), . . .) satisfies
(7.2).

• Similarly, by Lemma 7.2, an equation of the form X = Y ∪ Z is
satisfied by (. . . , SX , . . .) if and only if (. . . , σ(SX), . . .) satisfies the
corresponding equation (7.3).

7.5. SYSTEMS WITH FINITE CONSTANTS 123

• For each equation of the form X = C it is claimed that a
set SX satisfies it if and only if σ(SX) satisfies the correspond-
ing equation (7.4). Indeed, σ(SX) = σ(C) if and only if
track13(σ(SX)) = track13(σ(C)), and since track13(σ(SX)) = SX

and track13(σ(C)) = C, this is equivalent to SX = C.

This shows that (. . . , SX , . . .) satisfies the original system if and only if
(. . . , σ(SX), . . .) satisfies the constructed system, which proves the correct-
ness of the construction.

Note that σ is a bijection between the sets of solutions of the two systems.
Then, in particular, if the original system has a unique solution, then the
constructed system has a unique solution as well, which encodes the solution
of the original system.

Furthermore, it is important that the encoding σ respects inclusion, that
is, if X ⊆ Y , then σ(X) ⊆ σ(Y). If one solution of the original system is
less than another, then the corresponding solutions of the constructed system
maintain this relation. Therefore, if the original system has a least (greatest)
solution then so does the new one, and its least (greatest) solution is the
image of the least (greatest) solution of the original system.

These observations allow applying Lemmata 7.3 and 7.4 to encode each
system in Theorem 6.1 (in case of sum and addition) within a system using
addition only.

Theorem 7.1. For every recursive (recursively enumerable, co-recursively
enumerable) set S ⊆ N there exists a system of equations





ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn) ,

with ϕj , ψj using the operation of addition and ultimately periodic constants,
which has a unique (least, greatest, respectively) solution with X1 = T , where
S = {n | 16n+ 13 ∈ T}.

7.5 Systems with finite constants

The constructions above essentially use three infinite ultimately peri-
odic constants: one of them is the right-hand side of the equation from
Lemma 7.1, and the other two are the sets σ({0}) and σ({1}) used in
Lemma 7.4 to represent constants {0} and {1}. It will now be shown that
the use of such constants is necessary, and systems using only addition and
finite constants cannot specify any non-trivial infinite sets.

This is done by demonstrating that every solution (. . . , S, . . .) of such a
system can be pruned in the sense that each of its infinite components can
be replaced by an empty set and the resulting vector remains a solution.

124 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

Lemma 7.5. If a system of equations in variables (. . . ,Xj , . . . , Yi, . . .) using
addition and only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where
each Fj is finite and each Si infinite, then (. . . , Fj , . . . ,∅, . . .) is a solution
of this system.

Proof. Let (. . . , Fj , . . . , Si, . . .) be a solution and consider its substitution
into each equation

ϕ(. . . ,Xj , . . . , . . . , Yi, . . .) = ψ(. . . ,Xj , . . . , . . . , Yi, . . .) .

If both sides equal ∅ under this substitution, then another substitution
Xj = Fj , Yi = ∅ produces ∅ on both sides as well.

If both sides produce a finite set, this means that neither ϕ nor ψ refer to
any variables Yi. Therefore, the substitution of Xj = Fj , Yi = ∅ produces
the same value of both sides.

Finally, assume that the substitution yields an infinite set. As there are
no infinite constants and all Xj have finite values, this means that each side
contains some Y -variable. Hence, under the substitution Xj = Fj , Yi = ∅
both sides evaluate to ∅.

This completes the proof that (. . . , Fj , . . . ,∅, . . .) is a solution.

In a similar way, infinite components of a solution can be augmented to
co-finite sets. For every nonempty set S ⊆ N, consider its upward closure
S + N, which is always co-finite.

Lemma 7.6. If a system of equations in variables (. . . ,Xj , . . . , Yi, . . .) using
addition and only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where
each Fj is finite and each Si infinite, then (. . . , Fj , . . . , Si + N, . . .) is a
solution as well.

Proof. As in the previous lemma, let (. . . ,Xj , . . . , Yi, . . .) be a solution,
which is substituted into each equation

ϕ(. . . ,Xj , . . . , . . . , Yi, . . .) = ψ(. . . ,Xj , . . . , . . . , Yi, . . .) .

If both sides evaluate to ∅ or to any finite nonempty set, these cases are
handled as in Lemma 7.5.

Assume that the value of both sides under the substitution Xj = Fj ,
Yi = Si is an infinite set S. Then both sides must contain occurrences of
some Y -variables. Then the substitution Xj = Fj , Yi = Si + N produces
S + N on both sides. This completes the proof that (. . . , Fj , . . . , Si + N, . . .)
is a solution.

Theorem 7.2. If a system of equations using addition and finite constants
has a least (greatest, unique) solution (. . . , Si, . . .), then each Si is finite
(finite or co-finite, finite, respectively).

7.6. AFTERTHOUGHT 125

7.6 Afterthought

One may wonder, how this particular encoding was devised and what is the
idea behind it. The sad truth is, that while there is an idea in using an
encoding in general, there is none behind this particular encoding.

The idea that such an encoding can be made was born during the discus-
sion on possible simplifications of the unresolved systems devised so forth.
It was proposed by A. Okhotin that maybe an encoding of such a type can
be constructed. The needed properties were identified and formalised. Then
an exhaustive search by means of a computer programme was made, and
the exact encoding used in this chapter was found. In particular, this is the
encoding with the smallest number of tracks that was found, as the number
of tracks was increased one by one in the search. Note, that no guarantee
that such numbers actually exist was given beforehand. I must admit that I
was quite sceptical about their existence until I verified their properties by
hand.

Taking this into account, it would be nice to remove the element of blind
luck out of this construction. So the question is, whether it is possible to
devise an encoding, in which the number of tracks and their contents are
specified by a means of some external combinatorial properties and not by
an explicit construction (found by an exhaustive search).

126 CHAPTER 7. EQUATIONS WITH ADDITION ONLY

Part III

Decision Problems

127

129

Each formalism defining sets of numbers or languages is judged from two
main perspectives. On one hand, its expressive power is measured, i.e., how
complicated and useful sets can be defined. This was addressed already in
Chapter I and Chapter II. On the other hand, one wants to know the diffi-
culty of the decision problems for such a formalism, or, informally speaking,
how hard is to check the properties of a given instance of a formalism. It is
natural to expect some trade-off between those two.

In this part of the thesis we focus on the decision problems for both
unresolved and resolved systems of equations and even unary conjunctive
grammars. All usual problems, such as emptiness, equivalence, membership
etc., are considered. It is natural to expect that in all cases majority of the
decision problems are hard, as these systems define a rich class of sets. It is
the case—most of the results presented here will calculate the exact level of
undecidability, or at least narrow down the position of the problem in the
arithmetical hierarchy.

The complexity of decision problems usually decrease when some re-
strictions on the systems are imposed. This restrictions can be, for example,
limiting the number of the equations or variables. Contrary to this intuition,
it is shown that almost all considered problems are equally hard for a single
equation with single variable.

This first two chapters of this parts deal with reductions of the number
of variables. Afterwards only the decision problems are considered. Special
place is reserved for the complexity of the membership problem for resolved
equations as, on one hand, it looks as the most important problem considered
in this part of the thesis. On the other hand this result is much more
technically involved than the other.

130

Chapter 8

Single nonterminal grammars

For each formalism describing languages in formal language theory, one can
introduce its descriptional complexity —a number of states for automata,
length for the regular expressions, use of some particular operation, etc. For
grammars, the number of its nonterminals is usually used. Its usefulness is
proved in the theorem claiming that for each k the class of languages gener-
ated by the context-free grammars using at most k+1 nonterminals properly
contains the class of languages generated using at most k nonterminals [15].
For the language equations, the most natural measures are the number of
used variables and the amount of the equations in the system.

Already in my first paper on unary conjunctive grammars [19], the ques-
tion of minimising the number of non-terminals required to describe a non-
regular language was raised. In particular, it was somehow expected that
one non-terminal symbol is not enough to obtain non-regular solution. It
should be noted that I failed in both attempts: minimising the number of
non-terminals as well as proving that only regular languages can be obtained.

Surprisingly, Okhotin and Rondogiannis [46] gave a construction of a one
non-terminal unary conjunctive grammar with a non-regular solution. It will
be given and described later in the chapter, it is enough to note now that
it was based on encoding of the system (3.1) in one non-terminal using
tracks, in a way similar to the one in the Chapter 7. Moreover, Okhotin
and Rondogiannis presented two classes of conjunctive languages that are
not representable by any conjunctive grammar with a single nonterminal.

The goal of this chapter is to generalise the example of a nonregular lan-
guage given by Okhotin and Rondogiannis [46] to a representability theorem:
for every unary conjunctive grammar the languages generated by all of its
nonterminal symbols can be encoded together in a single unary language
generated by a one-nonterminal conjunctive grammar. This allows proving
the claims on complexity of decision problems for unary conjunctive gram-
mars in much stronger form, i.e., even for grammars with one non-terminal.

131

132 CHAPTER 8. SINGLE NONTERMINAL GRAMMARS

8.1 First example

The first example of non-regular language generated by a conjunctive gram-
mar (3.1), essentially use all four nonterminal symbols, and there seems to
be no apparent way to replicate it using a single nonterminal. The same can
be said also for all other systems devised so far. However, this was achieved
in the following example:

Example 8.1 (Okhotin, Rondogiannis [46]). The conjunctive grammar

S → a22SS&a11SS | a9SS&aSS | a7SS&a12SS |

a13SS&a14SS | a56 | a113 | a181

generates the language {a4n−8 |n ≥ 3}∪{a2·4n−15 |n ≥ 3}∪{a3·4n−11 |n ≥ 3}
∪{a6·4n−9 | n ≥ 3}.

This grammar is actually derived from (3.1), and the language it gener-
ates encodes the languages of all four nonterminals of this grammar. Each
of the four components in the generated language represents one of the non-
terminals of (3.1) with a certain offset (8, 15, 11 and 9).

Note that the language of the grammar from Example 8.1 has exponential
growth. At the same time, it has been proved that if a language grows faster
than exponentially (for example, {an! | n ≥ 1}), then it is not representable
by univariate equations:

Proposition 8.1 (Okhotin, Rondogiannis [46]). Let L =
{an1 , an2 , . . . , ani , . . .} with 0 ≤ n1 < n2 < . . . < ni < . . . be an infi-
nite language, for which lim infi→∞

ni

ni+1
= 0. Then L is not the generated

by a conjunctive grammar with a single non-terminal.

On the other hand, it is known that unary conjunctive grammars can
generate a set that grows much faster: for example consider a language

L = {1n
2

2n
3
22

n

| n ∈ N}. It is recognised by a trellis automata and hence
{an | n ∈ (L)k} is generated by some unary conjunctive grammar.

Thus one-nonterminal conjunctive grammars are weaker in power than
conjunctive grammars of an arbitrary form. However, even though one-
nonterminal conjunctive grammars cannot generate all unary conjunctive
languages, it is now demonstrated that they can represent a certain encoding
of every conjunctive language.

8.2 One-nonterminal conjunctive grammars

The goal is to simulate an arbitrary conjunctive grammar over {a} by a
conjunctive grammar with a single nonterminal symbol. The construction
elaborates and formalises the intuitive idea of Example 8.1, making it prov-
ably work for any grammar.

8.2. ONE-NONTERMINAL CONJUNCTIVE GRAMMARS 133

The intended encoding of languages (L1, . . . Lm) is the language of the
form L =

⋃m
i=1{a

pn−di | an ∈ Li}, for some properly chosen numbers p and
d1, . . . , dm. This encoding use the idea of tracks: for a langauge L ⊆ a∗, its
subset of the form L ∩ {apn−t | n ∈ N} will be called its tth track, where t is
the offset of the track. The langauge L′ is encoded on the tth track of L if
L′ = {an | apn−t ∈ L}. Similar notation is used for sets of numbers.

Let us shortly compare this encoding with the one used in Chapter 7.
First of all, the offset is of opposite sign. While it may cause some initial
confusion, it is much easier to handle hear. Secondly, no tracks are filled
with gadgets. Moreover, several tracks of the single non-terminal are used
to encode many non-terminals of the original grammar, while in Chapter 7
only one track per variable was meaningful.

The second step towards the construction is a small refinement of the
known normal form for conjunctive grammars. It is already known by The-
orem 2.2 that every conjunctive language L ⊆ Σ+ over any alphabet Σ can
be generated by a conjunctive grammar in the binary normal form. The
following stronger form is required by construction given later on.

Lemma 8.1. For every conjunctive grammar G = (Σ, N, P, S) with ε /∈
L(G) there exists a conjunctive grammar G′ = (Σ, N ′, P ′, S′) generating the
same language, in which every rule is of the form A→ a with a ∈ Σ, or

A→ B1C1& . . .&BnCn with n ≥ 2 ,

in which the sets {B1, C1}, . . . , {Bn, Cn} are pairwise disjoint.

Proof. This stronger form is obtained from the ordinary binary normal form
by making multiple copies of each nonterminal.

Assume, without loss of generality, that the grammar G is already in the
binary normal form. If there is a non-terminating rule with no intersection,
that is, A → α for some nonterminal A and α ∈ N2, it can be replaced by
a trivial intersection A→ α&α.

Let m be the greatest number of conjuncts in the rules in P . Define m
copies of every nonterminal: N ′ = N × {1, . . . ,m}. Replace every rule

A→ B1C1& . . .&B`C`

with

(A, i)→ (B1, 1)(C1, 1)& . . .&(B`, `)(C`, `)

for all i ∈ {1, . . . ,m}. For every rule A→ a in the original grammar, define
new rules (A, i) → a, again for each i ∈ {1, . . . ,m}. Let S′ = (S, 1) be the
new start symbol. The resulting grammar generates the same language.

The next theorem is the main result of this chapter.

134 CHAPTER 8. SINGLE NONTERMINAL GRAMMARS

Theorem 8.1. For every conjunctive grammar G = ({a}, {A1, . . . , Am},
P,A1) of the form given in Lemma 8.1 there exist numbers 0 < d1 <
. . . < dm < p depending only on m and a conjunctive grammar G′ =
({a}, {B}, P ′, B) generating the language L(G′) = {anp−di | 1 ≤ i ≤ m, an ∈
LG(Ai)}.

Accordingly, the corresponding equation X = ϕ(X) over sets of natural
numbers has a unique solution S =

⋃m
i=1 Si, where Si = {np − di | a

n ∈
LG(Ai)}.

Let p = 4m+2 and let di = p
4 + 4i for every nonterminal Ai. For every

number t ∈ {0, . . . , p}, the set {np− t | n ≥ 0} is called track number t. The
goal of the construction is to represent each set Si in the track di. The rest
of the tracks should be empty.

For every rule Ai → Aj1Ak1
& . . .&Aj`

Ak`
in G, the new grammar G′

contains the rule

B → adj1
+dk1

−diBB& . . .&adj`
+dk`

−diBB , (8.1)

and for every rule Ai → a in G, let G′ have a rule

B → ap−di .

The proof of correctness of the construction shall be done in terms of equa-
tions over sets of numbers. Consider the equation X = ϕ(X) corresponding
to G′, with the unknown X ⊆ N. Every “long” rule A → A in G, where
A = Aj1Ak1

& . . .&Aj`
Ak`

, is represented in the new grammar by a rule
(8.1), which contributes the following subexpression to ϕ:

ϕi,A (S) =
⋂̀

t=1

(djt + dkt
− di) + S + S .

Altogether, the equation X = ϕ(X) takes the following form:

X =
⋃

Ai→A ∈P

ϕi,A (X) ∪
⋃

Ai→a∈P

{p − di} .

Now the task is to prove that the unique solution of this equation is S =⋃
i Si, where Si = {np− di | a

n ∈ LG(Ai)}.

Each time X appears in the right-hand side of the equation, it is used in
the context of an expression ψi,A (X) = X +X + (di + dj − dk). The proof
of the theorem is based upon the following property of these expressions.

Lemma 8.2. Let i, j, k, ` ∈ {1, . . . ,m} with {i, j} ∩ {k, `} = ∅. Then

(S+S+di +dj)∩(S+S+dk +d`) = (Si +Sj +di +dj)∩(Sk +S` +dk +d`) .

8.2. ONE-NONTERMINAL CONJUNCTIVE GRAMMARS 135

Proof. As addition is distributive over union and union is distributive over
intersection,

(S + S + di + dj) ∩ (S + S + dk + d`)

=
⋃

i′,j′,k′,`′

(Si′ + Sj′ + di + dj) ∩ (Sk′ + S`′ + dk + d`) .

It is sufficient to prove that if {i′, j′} 6= {i, j} or {k′, `′} 6= {k, `}, then the
intersection is empty. Consider any such intersection

(Si′ + Sj′ + di + dj) ∩ (Sk′ + S`′ + dk + d`) =

=
(
{np | an ∈ L(Ai′)} − di′ + {np | an ∈ L(Aj′)} − dj′ + di + dj

)

∩
(
{np | an ∈ L(Ak′)} − dk′ + {np | an ∈ L(A`′)} − d`′ + dk + d`

)
,

and suppose it contains any number, which must consequently be equal to
di + dj − di′ − dj′ modulo p and to dk + d` − dk′ − d`′ modulo p. As each
dt satisfies p

4 < dt ≤
p
2 , both offsets are strictly between −p

2 and p
2 , and

therefore they must be equal to each other:

di + dj − di′ − dj′ = dk + d` − dk′ − d`′ .

Equivalently,

di + dj + dk′ + d`′ = dk + d` + di′ + dj′ ,

and since each dt is defined as p
4 + 4t, this holds if and only if

4i + 4j + 4k′

+ 4`′ = 4k + 4` + 4i′ + 4j′ .

Consider the largest of these eight numbers, let its value be d. Without
loss of generality, assume that it is on the left-hand side. Then the left-hand
side is greater than d. On the other hand, if no number on the right-hand
side is d, then the sum is at most 4 · d4 = d. Thus at least one number on the
right-hand side must be equal to d as well. Removing those two numbers
and giving the same argument for the sum of 3, 2 and 1 summands yields
that

{di, dj , dk′ , d`′} = {dk, d`, di′ , dj′} .

Then, by the assumption that {i, j} ∩ {k, `} = ∅,

{di, dj} = {di′ , dj′} and {dk′ , d`′} = {dk, d`},

and since the addition is commutative, without loss of generality one can
take

i = i′, j = j′, k = k′ and ` = `′ .

136 CHAPTER 8. SINGLE NONTERMINAL GRAMMARS

Therefore,

(S + S + di + dj) ∩ (S + S + dk + d`)

=
⋃

i′,j′,k′,j′

(
Si′ + Sj′ + di + dj

)
∩ (Sk′ + S`′ + dk + d`)

= (Si + Sj + di + dj) ∩ (Sk + S` + dk + d`) ,

which completes the proof of the lemma.

With this property established, it can be verified that every rule for every
Ai in G is correctly simulated by the corresponding rule of G′, and that the
data from different tracks is never mixed.

Proof of Theorem 8.1. Let P = P1 ∪ P0, where P0 contains rules of the
form Ai → a, while P1 consists of multiple-conjunct rules. The associated
equation is strict and thus has a unique solution, so it is enough to show
that S is a solution, that is,

S = ϕ(S) =
⋃

Ai→A ∈P1

ϕi,A (S) ∪
⋃

Ai→a∈P0

{p− di} .

Consider first each “long” rule of the grammar: Ai → A ∈ P1, where
A = Aj1Ak1

& . . .&AjtAkt
. Then

ϕi,A (S) =

⋂̀

t=1

(djt + dkt
− di) + S + S =

⋂̀

t=1

(djt + dkt
− di) + Sjt + Skt

.

by Lemma 8.2, and it is easy to calculate that

⋂̀

t=1

(djt + dkt
− di) + Sjt + Skt

= {np− di | a
n ∈ LG(A)} ,

8.2. ONE-NONTERMINAL CONJUNCTIVE GRAMMARS 137

as

⋂̀

t=1

(djt + dkt
− di) + Sjt + Skt

=
⋂̀

t=1

(djt + dkt
− di) + {pnj − djt | a

nj ∈ L(Ajt)}

+ {pnk − dkt
| ank ∈ L(Akt

)}

=
⋂̀

t=1

{p(nj + nk)− di | a
nj ∈ L(Ajt), a

nk ∈ L(Akt
)}

=
⋂̀

t=1

{np− di | a
n ∈ L(Ajt ·Akt

)}

={np− di | a
n ∈ L(A)} .

Similarly, for a “short” rule Ai → a,

{p − di} = {np− di | a
n ∈ LG({a})} .

Substituting this to the equation for ϕ(S): and altogether,

ϕ(S) =
⋃

i




⋃

Ai→A ∈P1

ϕi,A)(S) ∪
⋃

Ai→a∈P0

{p − di}




=
⋃

i

(⋃

Ai→A ∈P1

ϕi,A (S) ∪
⋃

Ai→a∈P0

{p− di}
)

=
⋃

i

(⋃

Ai→A ∈P1

{np− di | a
n ∈ L(A)} ∪ {np− di | a

n ∈ L(a)}
)

=
⋃

i

⋃

Ai→B∈P

{np− di | a
n ∈ L(B)}

=
⋃

i

{np− di | a
n ∈ L(Ai)}

=
⋃

i

Si

= S .

This completes the proof of Theorem 8.1.

138 CHAPTER 8. SINGLE NONTERMINAL GRAMMARS

Chapter 9

Equation with one variable

In the previous chapter it was shown that one non-terminal unary conjunc-
tive grammar can encode an arbitrary unary conjunctive grammar. Know-
ing this result it is natural to ask, how many variables and equations in
unresolved system of equations are necessary to attain computational uni-
versality. In this chapter it is shown that a single equation

ϕ(X) = ψ(X) ,

with a unique variable X is already sufficient to represent a certain encoding
of every recursive (recursively enumerable, co-recursively enumerable) set.
This encoding is similar to the one used in Chapter 8, in the sense that it
uses tracks of one variable to simulate several variables. Still, the details of
the encoding as well as the construction of the equation are quite different
and are described in full in the rest of this chapter.

For the sake of clarity, this result is presented in two stages. First it is
established in the weaker form: in Section 9.1 it is shown that every system
of unresolved equations can be encoded in a single univariate equation using
ultimately periodic constants. This construction is improved in Section 9.2
to use singleton constants only.

9.1 Equations ϕ(X) = ψ(X) with periodic con-

stants

The first goal is to replicate Theorem 6.1 using a unique equation with
a unique variable. This is achieved by taking an arbitrary system of equa-
tions with solutions of the form X1 = S1, . . . , Xm = Sm, and constructing
an equation whose solutions is the set S =

⋃m
i=1{pn− di | n ∈ Si}, for some

properly chosen numbers p and d1, . . . , dm. This is essentially the same en-
coding as the one used in the Chapter 8, differing only in the choice of p and
di’s.

139

140 CHAPTER 9. EQUATION WITH ONE VARIABLE

The encoding of multiple sets on tracks of one set requires constructing
a new equation out of the old system. This equation extracts the tracks con-
tents out of a single variable and performs the operations on them, avoiding
mixing the contents of several tracks. Also it checks that all tracks of the
variable that should be empty according to the encoding are indeed empty,
which ensures a bijection between the solutions of the original system and
the solutions of the constructed equation. Such an encoding is defined in
the following theorem.

Theorem 9.1. For every system of equations over sets of numbers
Ej(Y1, . . . , Ym) = Fj(Y1, . . . , Ym) with j ∈ {1, . . . , `}, in which every ex-
pression Ej and Fj is of the form

Yi ∩ Yi′ or Yi ∪ Yi′ or Yi + Yi′ or {1},

there exist numbers 0 ≤ d1 < . . . < dm < p and an equation

ϕ(X) = ψ(X)

using singleton constants and the constant {kp | k ≥ 0}, such that a set S
is its solution if and only if S =

⋃m
i=1{kp − di | k ∈ Si} for some solution

(S1, . . . , Sm) of the original system.

The numbers di are offsets of tracks for X, and the statement of the
theorem already specifies that S is split into tracks. That is, each set Si is
represented in a track S ∩ {kp − di | k ≥ 1}. For each variable Yi, a unique
offset di is assigned. Define T = {0, . . . , p− 1} \ {d1, . . . , dm}; each tth track
of S with t ∈ T should be empty.

The set ϕ(S) = ψ(S) is as well split into tracks of its own, which are not
directly related to the tracks of S. These tracks correspond to equations of
the original system. A track {kp− ej | k ≥ 1} of ϕ(S) = ψ(S) with a unique
offset ej is assigned to an equation number j. Some additional care is taken
to ensure that the designated empty tracks of S are in fact empty. This is
checked in designated tracks of ϕ(S) = ψ(S).

Let p = 2(m + `+ 3). Then di and ej can be defined so that

• 1 < di <
p
2 − 1 and 1 < ej <

p
2 − 1 for all i and j;

• variable offsets are greater than equation offsets, that is, di > ej for
all i, j.

Define the following expression, which extracts the track t from X:

ft(X) =

{
X ∩ {kp | k ≥ 0}, if t = 0 ,
X ∩

(
{kp | k ≥ 0}+ (p− t)

)
, if 1 ≤ t ≤ p− 1 .

Provided that X ⊆ N, this definition is equivalent to

ft(X) = X ∩ {kp− t | k ≥ 0} .

9.1. EQUATIONS ϕ(X) = ψ(X) WITH PERIODIC CONSTANTS 141

Define the encoding of the system into a single equation. First the left- and
right-hand sides of each equation are to be translated. For every expression
E as in the statement, define ϕE as follows:

ϕj,{1}(X) = {p− ej} ,

ϕj,Xi+Xi′
(X) = fdi

(X) + fdi′
(X) + (di + di′ − ej) ,

ϕj,Xi∪Xi′
(X) =

(
fdi

(X)+(di − ej)
)
∪
(
fdi′

(X)+(di′ − ej)
)
,

ϕj,Xi∩Xi′
(X) =

(
fdi

(X)+(di − ej)
)
∩
(
fdi′

(X)+(di′ − ej)
)
.

Next, these translated expressions are used to define a single equation:

⋃̀

j=1

ϕj,Ej
(X) =

⋃̀

j=1

ϕj,Fj
(X) ∪

⋃

t∈T

(
ft(X) + t+ 1

)
. (9.1)

Its left-hand side and the first big union on its right-hand side encode the
equations of the original system, while the second big union on the right
ensures that there is no “garbage” on any other track of X.

Before proceeding with the main proof, let us state some technical prop-
erties of this construction. The constructed expressions ϕj,Ej

simulate the
original expressions Ej as follows:

Lemma 9.1. Let S ⊆ N and S1, . . . , Sm ⊆ N satisfy

S =
⋃

t∈T

Ct ∪

m⋃

i=1

{kp − di | k ∈ Si} , (9.2)

for some constants {Ct}t∈T . Let Ej be as defined in Theorem 9.1, i.e., the
left-hand side of equation number j in the original system.. Then

ϕj,Ej
(S) = {kp− ej | k ∈ Ej(S1, . . . , Sm)} .

Similar correspondence holds for Fj .

Proof. Since the definitions of Ej and Fj are similar, it is enough to consider
Ej. Suppose that Ej(X1, . . . ,Xm) = Xi ∪ Xi′ . The value of ϕj,Ej

(S) is
calculated as follows:

ϕj,Xi∪Xi′
(S) = [fdi

(S) + di − ej] ∪ [fdi′
(S) + di′ − ej]

=
[
(S ∩ {kp− di | k ≥ 0}) + di − ej

]

∪
[
(S ∩ {kp− di′ | k ≥ 0}) + di′ − ej

]

= {kp − di + di − ej | k ∈ Si} ∪ {kp − di′ + di′ − ej | k ∈ Si′}

= {kp − ej | k ∈ Si} ∪ {kp − ej | k ∈ Si′}

= {kp − ej | k ∈ Si ∪ Si′} .

142 CHAPTER 9. EQUATION WITH ONE VARIABLE

Similar straightforward calculations yield

ϕj,{1}(S) = {p− ej} ,

ϕj,Xi∩Xi′
(S) = {kp − ej | k ∈ Si ∩ Si′} ,

ϕj,Xi+Xi′
(S) = {kp − ej | k ∈ Si + Si′} .

It follows that the equations formed from the new expressions simulate
the original equations:

Lemma 9.2. Let S ⊆ N and S1, . . . , Sm ⊆ N satisfy (9.2). Then for every
j

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm) if and only if ϕj,Ej
(S) = ϕj,Fj

(S) .

Proof. By Lemma 9.1,

ϕj,Ej
(S) = {pk − ej | k ∈ Ej(S1, . . . , Sm)}

and
ϕj,Fj

(S) = {pk − ej | k ∈ Fj(S1, . . . , Sm)} .

Thus an equality

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm)

holds if and only if
ϕj,Ej

(S) = ϕj,Fj
(S) .

Then the original system of equations is represented by the following
system of equations:

Lemma 9.3. Let a system of equations

Ej(X1, . . . ,Xm) = Fj(X1, . . . ,Xm) , for j = 1, . . . , `

be as in Theorem 9.1, denote T = {0, . . . , p − 1} \ {d1, . . . , dm}, and let
Ct ⊆ {kp− t | k ≥ 0}, for all t ∈ T , be any constant sets. Then a system of
equations

X ∩ {kp− t | k ≥ 0} = Ct , for t ∈ T , (9.3)

ϕj,Ej
(X) = ϕj,Fj

(X) , for j = 1, . . . , ` (9.4)

has a solution S if and only if

S =
⋃

t∈T

Ct ∪

m⋃

i=1

{kp− di | k ∈ Si} , (9.5)

for some solution (S1, . . . , Sm) of the original system.

9.1. EQUATIONS ϕ(X) = ψ(X) WITH PERIODIC CONSTANTS 143

Proof. ⇒© Let (S1, . . . , Sm) be a solution of the original system, construct
the set S as in (9.5). Then S clearly satisfies (9.3). Then, since every jth

equation Ej(X1, . . . ,Xm) = Fj(X1, . . . ,Xm) is satisfied by (S1, . . . , Sm), it
follows by Lemma 9.2 that S satisfies the jth equation (9.4).
⇐© Suppose now that S satisfies (9.3)–(9.4). Then, for every t ∈ T ,

S ∩ {kp − t | k ≥ 0} = Ct ,

by (9.3). Let Si = {k | kp − di ∈ S} for i = 1, . . . ,m. Then S is obtained
from Si as in (9.5). It remains to show that (S1, . . . , Sm) is a solution of the
first system, that is,

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm) .

for each j. This follows from Lemma 9.2, as by (9.4)

ϕj,Ej
(X) = ϕj,Fj

(X) , for j = 1, . . . , `

and by Lemma 9.2 this implies

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm) , for j = 1, . . . , ` .

Note that the actual equation (9.1) mixes the statements (9.3),(9.4) in
a single equality. Showing that they are indeed equivalent yields the proof
of the theorem.

Proof of Theorem 9.1. Assume that S is a solution of (9.1) and consider
intersections of both sides of (9.1) with {kp+1 |k ≥ 0}. Since by Lemma 9.1
ϕj,Ej

(S) ⊆ {kp − j | k ≥ 0}, there is ∅ on the left-hand side, and for the
same reason the first big union in the right-hand side vanishes. Thus the
equation turns into

∅ = ∅ ∪
⋃

t∈T

(
S ∩ {kp− t | k ≥ 0}

)
+ t+ 1 ,

and therefore
S ∩ {kp− t | k ≥ 0} = ∅ , for t ∈ T . (9.6)

Consider the intersection of (9.1) with the set {kp − ej | k ≥ 0}. As by
Lemma 9.1, ϕj′,E(S) ⊆ {kp − ej′ | k ≥ 1} then on the left-hand side only
ϕj,Ej

(S) remains and on the right-hand side only ϕj,Fj
(S), as for each t ∈ T :

ft(S) + t + 1 ⊆ {kp + 1 | k ≥ 0}. Thus the following system of equations is
obtained

ϕj,Ej
(S) = ϕj,Fj

(S) , for j = 1, . . . , ` . (9.7)

Hence every solution S also satisfies the system (9.6)–(9.7).

144 CHAPTER 9. EQUATION WITH ONE VARIABLE

Conversely, consider any S satisfying both (9.6) and (9.7). Then S clearly
satisfies (9.1), as it is obtained as a union of sides of (9.6) (with additional
+ t+ 1 at both sides of the equation for t) and (9.7).

As (9.6) and (9.7) satisfy the assumptions of Lemma 9.3 with constants

Ct = ∅ , for t ∈ T ,

every solution of (9.1) is of the form

S =

m⋃

i=1

{kp − di | k ∈ Si} ,

for some solution S1, . . . , Sm of the system

Ej(X1, . . . ,Xm) = Fj(X1, . . . ,Xm) , for j = 1, . . . , ` ,

which completes the proof of the theorem.

9.2 Equations ϕ(X) = ψ(X) with singleton con-

stants

The construction from the previous section will now be refined by elimi-
nating infinite periodic constants from the equation: that is, only singleton
constants will be used.

Theorem 9.2. For every system of equations Ej(Y1, . . . , Ym) =
Fj(Y1, . . . , Ym) with j ∈ {1, . . . , `}, in which every expression Ej and Fj

are as in Theorem 9.1, there exist numbers 0 ≤ d1 < . . . < dm < p and an
equation λ(X) = ρ(X) using singleton constants, such that a set S ⊆ N is
its solution if and only if

S = {kp, kp + p
2 + 1 | k ≥ 0} ∪

m⋃

i=1

{kp− di | k ∈ Si} ,

for some solution (S1, . . . , Sm) of the original system.

The definitions and the assumptions on di and ej are as in Theorem 9.1.
Similarly to previous section, denote the set of offsets of unused tracks by

T = {0, . . . , p− 1} \ {0, d1, . . . , dm,
p
2 − 1} .

The equation (9.1) uses only one infinite constant, {kp | k ≥ 0}. So the
first step of the construction is to encode this constant in S and define
expression extracting it out of S. The former was already explicitly stated
in Theorem 9.2, as S contains {kp, kp + p

2 + 1 | k ≥ 0}. So it is left to

9.2. EQUATIONS ϕ(X) = ψ(X) WITH SINGLETON CONSTANTS 145

define the expression that extract these constants out of S. These are the
following:

π(X) = X ∩ (X + p
2 − 1) ,

π′(X) = X ∩ (X + p
2 + 1) .

Indeed, from the intended form of solutions stated in the theorem, π(S) =
{kp | k ≥ 1} and π′(S) = {kp − (p

2 − 1) | k ≥ 1}.

Using these subexpressions, the expressions ft(X) from the previous con-
struction is replaced by the following:

f ′t(X) =

{
X ∩ (π′(X) + p

2 − 1− t) , for 0 ≤ t ≤ p
2 − 1 ,(

X ∩ (π(X) + p− t)
)
∪
(
X ∩ {p− t}

)
, for p

2 ≤ t ≤ p− 1 .

The goal is to construct such an equation that f ′i(S) = fi(S) for each of
its solutions S, which allows reusing parts of the construction and the proof
from Theorem 9.1. In particular, the expressions ϕ′

j,E are defined in the
same way as ϕj,E in Theorem 9.1, this time using f ′i(X) instead of fi(X).
Furthermore, define the following three new expressions:

ψ(X) = {p
2 + 1} ∪ (π′(X) + p

2 − 1) ∪ (π(X) + p
2 + 1) ,

ψ′(X) = π(X) ∪ π′(X) ,

θ(X) =
⋃̀

j=1

(
f ′ej

(X) + ej − 1
)
∪

⋃

t∈T\{e1,...,e`}

f ′t(X) .

The expressions ψ(X) and ψ′(X) are used to generate the sets {kp | k ≥
1}∪ {kp− (p

2 − 1) | k ≥ 1}. The expression θ(X) deals with the “garbage” in
the same way as the second part of the right-hand side of (9.1).

Now the new equation is constructed the follows:

ψ(X) ∪
⋃̀

j=1

(
ϕ′

j,Ej
(X) + p

)
= ψ′(X) ∪

⋃̀

j=1

(
ϕ′

j,Fj
(X) + p

)
∪ θ(X) . (9.8)

The main technical property of this equation is that in each of its solu-
tions the tracks 0 and p

2 − 1 are full, while all tracks besides these two and
d1, . . . , dm are empty.

Lemma 9.4. If S is a solution of (9.8), then

{kp | k ≥ 0} ⊆ S ,

{kp− (p
2 − 1) | k ≥ 1} ⊆ S ,

S ∩ {kp− t | k ≥ 1} = ∅ , for all t ∈ T .

146 CHAPTER 9. EQUATION WITH ONE VARIABLE

Proof. The following terminology for any deviations from this rule is
adopted. For any set of numbers S0, a number n ∈ S0 is said to be ex-
tra if n = kp− t for t ∈ T . A number n is missing if n /∈ S0 and n = kp− t
for t ∈ {0, p

2 − 1}. Then it has to be proved that there cannot be any extra
or missing numbers in any solution of the equation (9.8).

The proof begins with the following technical claim:

Claim 9.1. Let S0 ⊆ N be any set that has no extra numbers. Then, for
every expression E ∈ {Ej , Fj} in every jth equation, it holds that

ϕ′
j,E(S0) ⊆ {kp − ej | k ≥ 1} .

Proof. The main step towards establishing the claim is showing that, under
the assumptions, π′(S0) ⊆ {kp − (p

2 − 1) | k ≥ 1}.

Consider any n ∈ π′(S0) = S0 ∩ (S0 + (p
2 + 1)). Then n ∈ S0 and

n′ = n − p
2 − 1 ∈ S0. Let n = kp − t, then, as there are no extra numbers

in S0, t and (t + p
2 + 1 mod p) are in {0, d1, . . . , dm,

p
2 − 1}, which is only

possible if t = p
2 −1. Hence n = kp− (p

2 −1) and n′ = (k−1)p, which shows
that

π′(S0) = S0 ∩ (S0 + (p
2 + 1)) ⊆ {kp− (p

2 − 1) | k ≥ 0} .

Then the definition of f ′di
can be expanded as

f ′di
(S0) = S0 ∩ (π′(S0) + p

2 − 1− di)

⊆ π′(S0) + p
2 − 1− di

⊆ {kp − (p
2 − 1) | k ≥ 1}+ p

2 − 1− di

= {kp − di | k ≥ 1} ,

and therefore, for an expression E = Xi ∩Xi′ ,

ϕ′
j,E(S0) =

(
f ′di

(S0) + di − ej
)
∩
(
f ′di′

(S0) + di′ − ej

)

⊆ f ′di
(S0) + di − ej

⊆ {kp − di | k ≥ 1}+ di − ej

= {kp − ej | k ≥ 1} .

Similar calculations can be made for E = Xi ∪ Xi′ , E = Xi + Xi′ and
E = {1}.

Let S be any solution of the equation. The first claim is that there are
no extra or missing numbers in S that are smaller than p.

Claim 9.2. It holds that 0, p
2 + 1 ∈ S and p− t /∈ S for all t ∈ T .

9.2. EQUATIONS ϕ(X) = ψ(X) WITH SINGLETON CONSTANTS 147

Proof. Firstly the small numbers are considered, i.e., smaller than p belong-
ing to both sides of (9.8). The properties of such numbers are used as a base
for considerations of larger numbers.

Consider a number n < p appearing on the left-hand side of (9.8) under
the substitution X = S. Then n ∈ ψ(S), as the rest of the left-hand
side cannot produce any number less than p. As ψ(S) is a union of three
subexpressions, consider each of them. First suppose that n ∈ π(S) + p

2 + 1,
that is, n− p

2 −1 ∈ π(S). Then, by the definition of π, n− p
2 −1 ∈ S+ p

2 −1,
and so n ≥ p. Next, suppose that n ∈ π′(S) + p

2 − 1. Then n− p
2 + 1 ∈ π′(S)

and thus, by the definition of π′, n − p
2 + 1 ∈ S + p

2 + 1, and again n ≥ p.
The only remaining possibility is n = p

2 + 1.
Therefore, the only number smaller than p that appears on the right-

hand side is p
2 + 1. Based on this fact, it will be shown which small numbers

must belong to S in order to obtain p
2 + 1 on the right-hand side, and which

may not belong to S, as they would produce other small numbers on the
right-hand side.

First, note that the only number n′ ≤ p
2 that may be in S is 0, as

otherwise n′ would be in S ∩ (p− t) for some p
2 ≤ t ≤ p− 1, which is a part

of θ(S), and clearly n′ does not occur on the left-hand side.
Let us now consider how the number p

2 + 1 is obtained on the right-hand
side of (9.8). Every number in ϕ′

j,Fj
(S) + p for any j is at least p and hence

is of no concern. Consider θ(S) and suppose that p
2 + 1 ∈ θ(S). Then it

belongs to one of the subexpressions in θ(S).

• Suppose that p
2 + 1 ∈ f ′ej

(S) + ej − 1 for some j. Let n′ ∈ f ′ej
(S) be

such that p
2 + 1 = n′ + (ej − 1). Then

n′ ∈ S ∩ (π′(S) + p
2 − 1− ej)

⊇ π′(S) + p
2 − 1− ej

= (S ∩ (S + p
2 + 1)) + p

2 − 1− ej

⊇ S + p
2 + 1 + p

2 − 1− ej

⊇ S + p− ej

and so n′ ≥ p−ej. Hence p
2−1 = n′+(ej−1) ≥ p−1, a contradiction.

• Suppose p
2 + 1 ∈ f ′t(S) for t ∈ T \ {e1, . . . , e`}. According to the

definition of f ′t(S), there are two cases.

– If 0 ≤ t ≤ p
2 − 1, then p

2 + 1 ∈ π′(S) + p
2 − 1 − t and hence

t+ 2 ∈ π′(S), which implies that t− p
2 + 1 ∈ S. As t ≤ p

2 − 1 by
case assumption, we obtain that t = p

2 − 1 /∈ T , which is not an
appropriate value of t.

– In the second case of p
2 ≤ t ≤ p − 1, p

2 + 1 ∈ f ′t(S) means that
p
2 + 1 ∈ π(S) + p − t or p

2 = p − t. Consider the former. Then

148 CHAPTER 9. EQUATION WITH ONE VARIABLE

t ∈ π(S) + p
2 − 1. As t is not p

2 − 1,

t− p
2 + 1 ∈ π(S) ⊂ S ,

which is impossible because 1 ≤ t− p
2 + 1 ≤ p

2 and it was shown
before that 0 is the only number smaller than p

2 that can be in S.

Consider the latter, i.e., the number p
2 + 1 = (p − t) for some

t ∈ T \ {e1, . . . , e`}. This cannot hold, as t = p
2 − 1 /∈ T .

Thus we have shown that p
2 + 1 /∈ θ(S)

The only remaining possibility is p
2 + 1 ∈ ψ′(S), that is, p

2 + 1 ∈ π(S) ∪
π′(S). If

p
2 + 1 ∈ π(S) = S ∩ (S + p

2 − 1) ,

then 2 ∈ S, which is not the case, as it is smaller than p
2 + 1. Thus p

2 + 1 ∈
π′(S) = S∩(S+ p

2 +1), and therefore 0, p
2 +1 ∈ S. Hence the goal of showing

that those two numbers are in S has been obtained.

The only thing left to show is that for each t ∈ T , the number p− t is not
in S. If t ≥ p

2 , this has already been proved above. Suppose that p− t ∈ S
for any t ∈ T with t < p

2 and t /∈ {e1, . . . , e`}. As 0 ∈ S and p
2 + 1 ∈ S,

p
2 + 1 ∈ π′(S). Consequently

p− t ∈ π′(S) + (p
2 − 1− t)

and hence p− t ∈ f ′t(S) ⊆ θ(S) is on the right-hand side. However, there is
no corresponding number on the left-hand side, which is a contradiction.

Finally, suppose p−ej ∈ S for some j. Then, as 0, p
2 +1 ∈ S, p

2 +1 ∈ π′(S)
and accordingly

p− ej = (p
2 + 1) + (p

2 − 1− ej)

∈ π′(S) + p
2 − 1− ej

= f ′ej
(S) .

Therefore, p− ej + ej −1 = p−1 ∈ θ(S), and thus, again, p−1 must appear
on the left-hand side, which is a contradiction.

In order to show that there are no missing or extra numbers, the smallest
among them is considered. Then it is proved that for every extra number
there is a smaller missing one and for each extra number, there is a smaller
extra one. Thus there is no such a number at all.

Claim 9.3. Let n /∈ S be the least missing number. Then there exists a
number n′ < n that is extra.

Proof. Let n be the least missing number.

9.2. EQUATIONS ϕ(X) = ψ(X) WITH SINGLETON CONSTANTS 149

• If it is of the form n = kp, then n ≥ p, since 0 ∈ S by Claim 9.2.
The numbers n − p and n − p

2 + 1 are in S, because, by assumption,
there are no missing numbers less than n. Therefore, n− p

2 +1 ∈ π′(S)
and hence n = (n − p

2 + 1) + p
2 − 1 ∈ ψ(S), that is, n belongs to the

left-hand side of (9.8).

• A similar analysis applies for n = kp − p
2 + 1. By Claim 9.2, n ≥

3p
2 + 1, since there are no missing numbers less than p. The numbers
n − p and n − p

2 − 1 must be in S, because they are smaller than
the least missing number. Then n − p

2 − 1 ∈ π(S) and, accordingly,
n = (n− p

2 − 1) + p
2 + 1 ∈ ψ(S).

In both cases, since n appears on the left-hand side of (9.8), it should
also appear on the right-hand side. Consider the subexpression in which n
is obtained.

First suppose that n ∈ ϕ′
j,Fj

(S) + p for some j, and define the finite set

S0 = S ∩ {n′ |n′ ≤ n− p}. Then n ∈ ϕ′
j,Fj

(S0) + p, because the membership

of numbers larger than n− p in the argument of ϕ′
j,Fj

does not influence the

value of this expression. If S0 contains an extra number n′, this establishes
the claim, as n′ < n. So suppose, for the sake of a contradiction, that S0

contains no extra numbers. Thus ϕ′
j,Fj

(S0) + p ⊆ {kp − ej | k ≥ 2} by

Claim 9.1. It follows that n ∈ {kp− ej | k ≥ 2}, which contradicts the form
of missing numbers. Hence S0 contains an extra number.

Suppose that n ∈ ψ′(S), then n ∈ π(S) ∪ π′(S), but as π(S) ⊆ S and
π′(S) ⊆ S then n ∈ S and this is not possible, as n is a missing number. For
the same reason n cannot belong to the second part of θ(S), as f ′t(S) ⊆ S
by the definition of f ′t(X).

Therefore, n must belong to the first part of θ(S). Then there exists
equation number j, such that n ∈ f ′ej

(S) + ej − 1. This implies

n ∈ f ′ej
(S) + ej − 1

⊆ (π′(S) + p
2 − 1− ej) + ej − 1

= π′(S) + p
2 − 2

⊆ S + p
2 − 2 ,

from whence it follows that n− p
2 + 2 ∈ S. To see that this is the promised

extra number in S, consider two cases of n: if n = kp, then n− p
2 +2 belongs

to track p
2 − 2 ∈ T , and if n = kp− p

2 + 1, then n− p
2 + 2 = kp− p+ 3 is in

track p− 3 ∈ T .

Claim 9.4. If n ∈ S is the least extra number, then there exists a number
n′ < n that is missing.

Proof. As it has already been shown that there are no extra numbers smaller
than p, and p cannot be an extra number, it follows that n > p.

150 CHAPTER 9. EQUATION WITH ONE VARIABLE

Let n = kp − t and suppose there are no missing numbers smaller than
n. Then it can be inferred that n ∈ f ′t(S).

• If 0 < t < p
2 − 1, then n+ t− (p

2 − 1), n+ t− p ∈ S (as they are smaller
than n). Hence n+ t− (p

2 − 1) ∈ π′(S) and thus

n =
(
n+ t− (p

2 − 1)
)

+ p
2 − 1− t ∈ f ′t(S) .

• The second case is that p
2 ≤ t < p. Since there are no missing numbers

smaller than n, then n+t−p, n+t−p−(p
2−1) ∈ S. Thus n+t−p ∈ π(S)

and hence
n = n+ t− p+ (p− t) ∈ f ′t(S) .

The rest of the proof is split into two cases depending on t.
Let t ∈ T \ {e1, . . . , e`}. Then n ∈ f ′t(S) ⊆ θ(S). Therefore, n is present

on the right-hand side of (9.8), and so it should appear on the left-hand
side of (9.8). Consider the expressions on the left-hand side from which n is
obtained.

• If n ∈ ψ(S), then, in particular, n ∈ S + p. But this means that
n − p ∈ S, which is a contradiction, as n was supposed to be the
smallest extra number.

• If n ∈ f ′ej
(S) + p for some j. Let S0 = S ∩ {n′′ | n′′ ≤ n − p}. Then

n ∈ f ′ej
(S0) + p. Since there are no extra numbers in S0, by Claim 9.1,

f ′ej
(S0) + p contains only numbers on the equation tracks, and thus

n /∈ f ′ej
(S0) + p. Contradiction.

Consider now the other case of t ∈ {e1, . . . e`}. Then n = kp − ej for
some j. Since n ∈ f ′ej

(S), the number n′ = n+ ej − 1 is in θ(S), hence n′ is
on the right-hand side of (9.8). Note, that there is no extra number smaller
than n′ − p

2 .

• Suppose that n′ ∈ ψ(S). Then, in particular n′ ∈ S + p. But this
means that n′ − p is an extra number, which is a contradiction, there
is no extra number smaller than n′ − p

2 . Thus n′ is not in ψ(S).

• Suppose that n′ ∈ f ′ej
(S)+p for some ej . Let S0 = S∩{n′′|n′′ ≤ n′−p}.

Then n′ ∈ f ′ej
(S0) + p. As there are no extra numbers in S0, by

Claim 9.1 f ′ej
(S0) + p contains only numbers on the equation tracks,

and thus n′ /∈ f ′ej
(S0) + p. Contradiction.

Hence, by Claim 9.2, Claim 9.3 and Claim 9.4, there are no missing
and extra numbers. Then the first and second inclusions in the statement
of Lemma 9.4 hold, as they state that there are no missing numbers. The
third inclusion states that there is no extra numbers, which completes the
proof of Lemma 9.4.

9.2. EQUATIONS ϕ(X) = ψ(X) WITH SINGLETON CONSTANTS 151

Lemma 9.4 has established the basic structure of any solution S, which
must contain all numbers in tracks 0 and p

2−1 and no elements of any tracks
besides these two and the tracks d1, . . . , dm ∈ {2, . . . ,

p
2−2}. Because of this,

S can be shifted and intersected with itself to obtain a certain periodic set.
This is what is done in the expressions π and π′:

Lemma 9.5. If S is a solution of (9.8), then

π(S) = {kp | k ≥ 1} ,

π′(S) = {kp − (p
2 − 1) | k ≥ 1} .

Proof. The proof is based upon Lemma 9.4, which assures that if n = kp−t ∈
S, then t ∈ {0, d1, . . . , dm,

p
2 − 1}.

Consider any n ∈ π(S) = S∩(S+(p
2−1)). Then n ∈ S and n− p

2 +1 ∈ S.
Let n = kp− t, then t and (t+ p

2 − 1 mod p) ∈ {0, d1, . . . , dm,
p
2 − 1}, which

is only possible if t = 0. Hence n = kp and n′ = kp− (p
2 − 1), which shows

that S ∩ (S + (p
2 − 1)) ⊆ {kp | k ≥ 0}.

Conversely, let n = kp for some k ≥ 1. Then n, n − (p
2 − 1) ∈ S by

Lemma 9.4, and thus n ∈ π(S).

A similar calculation can be done for the second equality. If n ∈ π′(S) =
S ∩ (S + (p

2 + 1)), then n ∈ S and n− (p
2 + 1) ∈ S. By the same argument,

n = −(p
2 − 1) (mod p), and hence it belongs to the given set. In the other

direction, if n = kp− (p
2 − 1) for some k ≥ 1, then n ∈ S and n− (p

2 + 1) =
(k − 1)p ∈ S by Lemma 9.4, which shows that n ∈ π′(S).

Now the values of the auxiliary expressions ψ(X), ψ′(X) and θ(X) can
be determined by direct calculations based on the result of Lemma 9.5:

Lemma 9.6. If π(S) = {kp | k ≥ 1} and π′(S) = {kp − (p
2 − 1) | k ≥ 1},

then

ψ(S) = ψ′(S) = {kp | k ≥ 0} ∪ {kp− (p
2 − 1) | k ≥ 1} ,

f ′t(S) = ft(S) , for all t ∈ {0, . . . , p− 1} ,

ϕ′
j,E(S) = ϕj,E(S) 1 ≤ j ≤ `, E ∈ {Ej , Fj} .

Moreover, if S ∩ {kp− t | k ≥ 0} = ∅ for t ∈ T then also

θ(S) = ∅ .

Proof. Using Lemma 9.5, the following direct calculations are carried out:

ψ(S) = {p
2 + 1} ∪ (π′(S) + p

2 − 1) ∪ (π(S) + p
2 + 1)

= {p
2 + 1} ∪ ({kp − (p

2 − 1) | k ≥ 1}+ p
2 − 1) ∪ ({kp | k ≥ 1}+ p

2 + 1)

= {kp | k ≥ 1} ∪ {kp+ p
2 + 1 | k ≥ 0} .

152 CHAPTER 9. EQUATION WITH ONE VARIABLE

Similarly,

ψ′(S) = π(S) ∪ π′(S)

= {kp − p
2 − 1 | k ≥ 1} ∪ {kp | k ≥ 1} .

Consider now f ′t(S). For 0 ≤ t ≤ p
2 − 1,

f ′t(S) = S ∩ (π′(S) + p
2 − 1− t)

= S ∩ ({kp − (p
2 − 1) | k ≥ 1}+ p

2 − 1− t)

= S ∩ ({kp − t | k ≥ 1}

= ft(S) ,

and for p
2 ≤ t ≤ p− 1, similarly,

f ′t(S) = S ∩ (π(S) + p− t) ∪ S ∩ ({p− t})

=
(
S ∩ ({kp | k ≥ 1}+ p− t)

)
∪
(
S ∩ {p− t}

)

= S ∩ {kp − t | k ≥ 1}

= ft(S) .

When additionally S ∩ {kp− t | k ≥ 0} = ∅ for t ∈ T , by Lemma 9.5 the
value of θ(S) is calculated as: recall that

θ(S) =
⋃̀

j=1

(
f ′ej

(S) + ej − 1
)
∪

⋃

t∈T\{e1,...,e`}

f ′t(S)

=
⋃̀

j=1

(
fej

(S) + ej − 1
)
∪

⋃

t∈T\{e1,...,e`}

ft(S)

=
⋃̀

j=1

∅ ∪
⋃

t∈T\{e1,...,e`}

∅

= ∅ .

As ϕ′ is defined analogously to ϕ, with ft(X) replaced by f ′t(X), and
as it has already been proved that f ′t(S) = ft(S), it follows that ϕ′

j,E(S) =
ϕj,E(S) for E ∈ {Ej , Fj}.

The proof of Theorem 9.2 is generally similar to the proof of Theo-
rem 9.1, though there are more details to consider. Roughly speaking, once
Lemma 9.5 and Lemma 9.6 determine the values of the auxiliary expressions
and establish the equality of ϕ′ with the earlier expression ϕ, Lemma 9.3
from the previous section becomes applicable, and it yields the equivalence.

9.2. EQUATIONS ϕ(X) = ψ(X) WITH SINGLETON CONSTANTS 153

proof of Theorem 9.2. ⇒© Suppose S satisfies the equation (9.8). Then, by
Lemma 9.4, it satisfies the following system of equations as well:

X ∩ {kp, kp + p
2 + 1 | k ≥ 0} = {kp, kp + p

2 + 1 | k ≥ 0} , (9.9)

X ∩ {kp− t | k ≥ 0} = ∅ , for t ∈ T . (9.10)

Let us substitute S into (9.8) and intersect both of its sides with the set
{kp− ej | k ≥ 0}. According to Lemma 9.6,

ψ(S) ∩ {kp − ej | k ≥ 0} = ψ′(S) ∩ {kp − ej | k ≥ 0} = θ(S) = ∅ .

On the other hand, by Lemma 9.6 and by Lemma 9.1,

ϕ′
j,E(S) = ϕj,E(S) ⊆ {kp − ej | k ≥ 1} . (9.11)

This gives the following equality:

ϕj,Ej
(S) + p = ϕj,Fj

(S) + p, for j = 1, . . . , ` . (9.12)

Then (9.9), (9.10), (9.12) satisfy the assumptions of Lemma 9.3 with
constants

C0 = {kp | k ≥ 0} ,

Cp
2−1

= {kp − (p
2 − 1) | k ≥ 0} ,

Ct = ∅ , for t ∈ T ,

and Lemma 9.3 states that S is of the form

S = {kp, kp + p
2 + 1 | k ≥ 0} ∪

m⋃

i=1

{kp− di | k ∈ Si} ,

where (S1, . . . , Sm) is a solution of the original system.
⇐© Conversely, assume that (S1, . . . , Sm) is a solution of the original

system, and let

S = {kp, kp + p
2 + 1 | k ≥ 0} ∪

m⋃

i=1

{kp− di | k ∈ Si} .

Then S satisfies (9.9), (9.10), (9.12) by Lemma 9.3. Under these premises,
π(S) and π′(S) can be calculated in the same way as in Lemma 9.5, resulting
in

π(S) = {kp | k ≥ 1} and π′(S) = {kp − (p
2 − 1) | k ≥ 1} .

Then, by Lemma 9.6,

ψ(S) = ψ′(S) , (9.13)

ϕ′
j,E(S) = ϕj,E(S), (for 1 ≤ j ≤ `, E ∈ {Ej , Fj}) , (9.14)

θ(S) = ∅ . (9.15)

154 CHAPTER 9. EQUATION WITH ONE VARIABLE

Now it can be verified that a substitution X = S turns (9.8) into an
equality:

ψ(S) ∪
⋃̀

j=1

(ϕ′
j,Ej

(S)) = ψ(S) ∪
⋃̀

j=1

(ϕj,Ej
(S)) ∪∅

= ψ′(S) ∪
⋃̀

j=1

(ϕj,Fj
(S)) ∪ θ(S)

= ψ′(S) ∪
⋃̀

j=1

(ϕ′
j,Fj

(S)) ∪ θ(S) .

by Lemma 9.2 and equations (9.13), (9.15) and (9.14). Hence S is a solution.

Now the constructions from of systems of equations representing recur-
sive, recursively enumerable and co-recursively enumerable sets from Chap-
ter 6 by their unique, least and greatest solutions are immediately extended
to univariate equations:

Corollary 9.1. For every recursive (recursively enumerable, co-recursively
enumerable) set S0 ⊆ N there exist numbers 0 ≤ d < p and an equation
ϕ(X) = ψ(X) using union, intersection, addition and singleton constants,
such that its unique (least, greatest) solution S satisfies

S ∩ {kp − d | k ≥ 1} = {kp − d | k ∈ S0} .

In particular, there exists an equation ϕ(X) = ψ(X) with an recursively
enumerable complete least solution, as well as one with a co-recursively
enumerable complete greatest solution.

Chapter 10

Membership for resolved

equations

Each formalism defining subsets of natural numbers is made with one goal
in mind—to describe sets. As such, the most important question that can
be asked about it, is the complexity of its membership problem. In this
chapter the complexity of the membership problem for resolved systems of
equations is studied. It is shown that it is EXPTIME-complete and this
result is put in the general context of similar and related studies. It shall
be used later as a building block for the considerations of the membership
problem for unary conjunctive grammars.

10.1 Related work

The resolved equations over sets of natural numbers can be seen as a con-
tinuation and generalisation of long chain of studies of expressions over nat-
ural numbers. This study began in the seminal paper by Stockmeyer and
Meyer [51]. Stockmeyer and Meyer established that the membership prob-
lem for expressions with union and addition is NP-complete, and if the
expressions may also contain complementation, then the problem becomes
PSPACE-complete. Some follow-up work was done by Yang [56], who con-
sidered circuits computing sets of numbers (that is, expressions in which
subexpressions may be shared) with an extra operation of elementwise mul-
tiplication, and established similar complexity results. A systematic study
of complexity of expressions and circuits with different sets of operations
was carried out by McKenzie and Wagner [34].

This work has inspired some related studies. Breunig [5] investigated the
same formalisms defined over sets of positive integers and showed that in
some cases the membership problem becomes computationally easier. Simi-
larly, the complexity of the membership problem for expressions and circuits
over sets of any integers was studied by Travers [54], who found cases where

155

156 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

the problem becomes harder and also cases where it becomes easier. Glaßer
et al. [14] determined the complexity of the equivalence problem for the
classes studied by McKenzie and Wagner [34].

It is expected that the membership problem for resolved equations with
union, intersection and addition should be harder, as it allows a larger set
of operations. This intuition is also supported that it was already shown
(Theorem 4.2), that resolved systems with these operations define much
larger class of sets than resolved systems with addition and union only, i.e.,
the class of ultimately periodic sets.

10.1.1 Fixed membership problem

The core result of this chapter, established in Section 10.2, is a construc-
tion of a fixed resolved system, such that testing the membership of num-
bers in its least solution is an EXPTIME-hard problem, with the numbers
given in binary notation. The result is obtained by an arithmetisation of
an alternating linear-space Turing machine, i.e., encoding the description of
a configuration of such machine by a number and construction of equations
which simulate the transition by manipulating the encoding numbers. It is
also shown that for every system of resolved equations, the membership of
numbers in its least solution can be tested in exponential time, which makes
the constructed set the hardest. This yields EXPTIME-completeness of the
fixed membership problem, in which the system is not a part of the input.
Comparing this with circuits over sets of numbers, the latter may only gen-
erate ultimately periodic sets (unless multiplication of sets is employed), and
thus the computational complexity of those sets is trivial.

10.1.2 General membership problem

This result easily leads to the complexity of the general membership problem
for resolved equations with union, intersection and addition, which is stated
as follows: “Given a resolved system of equations and a number n ≥ 0 in
binary notation, determine whether n is in the first component of the least
solution of the system”. For integer expressions and integer circuits with
the same operations on sets, which can be regarded as an acyclic case of
systems of resolved equations, it is known from McKenzie and Wagner [34]
that the membership problem is PSPACE-complete. Another weaker model
are systems of resolved equations with union and addition, that is, without
intersection, for which the corresponding problem is NP-complete due to the
result of Huynh [17] on the commutative case of the context-free grammars.
For equations with union, intersection and addition, the general membership
problem is shown to be EXPTIME-complete in Section 10.3.

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 157

10.2 Arithmetisation of EXPTIME-completeness

In this section a construction of a particular resolved system of equations
over sets of numbers is given. Testing membership of numbers in its least so-
lution of this system is an EXPTIME-complete problem. This construction
is accompanied by a matching upper bound:

Theorem 10.1. The family of sets of numbers representable by resolved sys-
tems of equations with union, intersection and addition, as well as singleton
constants, is a subset of EXPTIME and contains an EXPTIME-complete
language.

An EXPTIME-complete language can be generated even by a single equa-
tion using one variable.

The proof is by constructing a system of equations that encodes a com-
putation of any linearly bounded alternating Turing machine (ATM). It is
known that such machines recognise some EXPTIME-complete sets [7].

Furthermore, an ATM shall operate on a circular tape and move to the
right at every step. Its tape shall originally contain the input string, and
the cells containing it constitute all space available to the machine. Such
a machine can simulate an arbitrary linear-bounded ATM by marking the
position of its head on the tape, and by making one transition of the sim-
ulated ATM per each traversal of the circular tape. Hence, these restricted
ATMs are as powerful as linear-bounded ATMs of the general form.

Formally, such a machine is defined as M = (Ω,Γ, QE , QA, δ, q0, qfin),
where Ω is the input alphabet, Γ = {a0, a1, . . . , amax} ⊇ Ω is the tape
alphabet, QE and QA are disjoint sets of existential and universal states,
respectively, Q = QE ∪ QA = {q0, q1, . . . , qmax} and qfin ∈ Q. Given an
input w ∈ Ω+, M starts in state q0 with the head over the first symbol of
w. The transition function is δ : Q × Γ → 2Q×Γ, and the head is moved
one symbol to the right at every step. Once the head moves beyond the
right-most symbol, it is moved back to the first symbol of w, maintaining its
current state; this implements a circular tape. For technical reasons, assume
that (q, a′) /∈ δ(q, a) for all q ∈ Q and a, a′ ∈ Γ (that is, the machine never
stays in the same state), and that δ(q, a) 6= ∅ for all q ∈ QA and a ∈ Γ. Such
a change can be easily done by duplicating the set of states and naming the
original ones as odd and the new ones as even; then each transition from odd
state is to an even one and vice versa. Universal states with no successor
for a should lead to a rejecting state.

The construction of a system of equations over sets of numbers simu-
lating a computation is based upon representing instantaneous descriptions
of the ATM as numbers. These numbers shall be considered in positional
notation with base 8 + |Q| + max(|Q| + 7, |Γ|), and the entire argument is
based upon mapping the symbols used by the machine to digits, and then
using addition to manipulate individual digits in the positional notation of

158 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

numbers. As usually, this positional notation is only a tool for understand-
ing the constructions, while the actual equations, deal with numbers as they
are.

Let Σ = {0, 1, . . . , 7 + |Q|+ max(|Q| + 7, |Γ|)} be the alphabet of digits
and k = |Σ|. Define the mapping of symbols to digits,

〈·〉 : Q ∪ Γ→ Σ ,

as follows:

〈qi〉 = 7 + i, for qi ∈ Q ,

〈ai〉 = 7 + |Q|+ i, for ai ∈ Γ .

The notation 〈·〉 is naturally extended to strings over Q ∪ Γ by 〈s1 . . . s`〉 =
〈s1〉 . . . 〈s`〉. Furthermore, let 〈Q〉 = {〈q〉 | q ∈ Q} and 〈Γ〉 = {〈a〉 | a ∈ Γ}.
We identify the tape of the ATM containing symbols ai1 . . . ain and the head
in state q over the jth symbol with the following string of digits:

0〈ai1〉 . . . 0〈aij−1
〉〈q〉〈aij 〉0〈aij+1

〉 . . . 0〈ain〉0 ∈ Σ∗ ,

and denote both of them as a configuration. For technical reasons, configu-
rations, in which the head has just moved over the last symbol but has not
yet jumped to the first position, are considered separately. These are the
strings:

0〈ai1〉 . . . 0〈ain〉〈q〉 ,

where q is the current state. Note that digits denoting letters are written
only in even positions, while odd positions are reserved for the states of
the Turing machine. The set of all valid configurations is specified by the
following regular expression over Σ:

Tape = (0〈Γ〉)∗〈Q〉(〈Γ〉0)∗ \ 〈Q〉 .

The set Tape should be considered as a formal language over Σ, which will
be used later as a part of representations by some sets of numbers. Subsets
of this set of tapes with different states will be denoted using the following
notation:

Tapeα = {w | w ∈ Tape, α ∈ (Γ ∪Q)∗, 〈α〉 is a substring of w} ,

Tape`
α = {w | w ∈ Tape, α ∈ (Γ ∪Q)∗, 〈α〉 is a prefix of w} .

Besides the configuration, we include in the description of a Turing ma-
chine a counter of rotations of the circular tape. This counter specifies the
number of circles through the tape the machine is still allowed to make be-
fore it must halt. It is given in binary notation using zeroes and ones, and
the set of valid counters is

Counter = 1{0, 1}∗ ,

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 159

where the digits are still in base-k notation. Normally, the counter uses only
digits {0, 1}, but in order to implement its incrementation, strings containing
a single digit 2, which is a zero with carry, shall be used as well. The set of
valid counters with a carry is

Counter′ = 1{0, 1}∗20∗ ∪ 20∗ .

For every string ck−1 . . . c0 ∈ Counter∪Counter′ , define its value as

Value(ck−1 . . . c0) =
k−1∑

j=0

cj · 2
j .

Now define the mapping from descriptions of the Turing machines to
numbers. A description with configuration given by w ∈ Tape and counter
value given by x ∈ Counter is encoded by a string of digits

x55w ,

where two marker digits 55 separate the counter from the tape. This string
of digits specifies a number

(x55w)k ,

which accordingly represents the description.

The key property of this representation is that every transition of the
machine reduces the numerical value of its representation. Indeed, if the
head is moved to the right, then a digit 〈q〉 is replaced with 0 and all other
modifications are done on less significant digits. If the head jumps from the
end to the beginning, then the counter is decremented, and since the counter
occupies higher positions in the notation of the number than the tape, this
transition decreases the value of the description as well. Such a monotonicity
allows encoding the dependence of descriptions on each other by using addi-
tion of nonnegative numbers only. This dependence is inductively expressed
in the equations defined below.

The construction of a system of equations representing the computation
of the ATM begins with some expressions that will be used in the right-hand
sides of equations. These expressions contain some constant sets of numbers
given as regular languages over the alphabet Σ. Every such language is
used to denote the set of all numbers with k-ary notation of the given form.
According to Theorem 3.3, every such set can be represented by a separate
system of equations using only singleton constants. All these subsystems are
assumed to be included in the constructed system, and each of the regular
expressions in the system can be formally regarded as a reference to one of
the auxiliary variables.

160 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

Under these conventions, the following four expressions are defined, each
representing a function of one set argument:

Step(X) =
⋃

q∈QE
a∈Γ

⋃

(q′,a′)∈
δ(q,a)

Moveq′,a′,q,a(X)

∪
⋃

q∈QA
a∈Γ

⋂

(q′,a′)∈
δ(q,a)

Moveq′,a′,q,a(X) ,

Moveq′,a′,q,a(X) =
[
(X ∩ (Counter 55Tapea′q′)k)

+
(
(〈q〉〈a〉0 � 〈a′〉〈q′〉

)
(00)∗)k

]
∩ (Counter 55Tapeqa)k ,

Jump(X) =
⋃

q

[(
X ∩ (Counter 55Tape`

q)k

)

+ ((1000� 〈q〉)(00)+)k + (〈q〉)k

]

∩ ((Counter∪Counter′)55Tapeq)k ,

Carry(Y) =
[([(

Y ∩ ({0, 1}∗2{0, 1}∗ 55Tape)k

)
+ (10∗)k

]

∩ ({0, 1}∗3{0, 1}∗ 55Tape)k

)
+ (
(
10 � 3

)
0
∗)k

]

∩ (
(
{0, 1}+ ∪ {0, 1}∗2{0, 1}∗

)
55Tape)k .

Whenever the functions Moveq′,a′,q,a and Jump are applied to a set of X rep-
resenting the descriptions, they manipulate the symbols in each description
in this set in order to reconstruct the description at the previous step (one
with a larger numerical value). In particular, Jump moves the head back
over the edge of the tape, incrementing the counter, while Moveq′,a′,q,a re-
verses a transition from (q, a) to (q′, a′) by moving the head by one position
to the left, restoring the letter a and returning to the state q. The function
Step transcribes the logic of a single step of the ATM, taking the transition
table and the alternation into account, while the function Carry is used to
implement incrementation of the counter.

The set of final descriptions of the machine is defined as follows:

Final = (Counter 55Tapeqfin
)k .

The system of equations uses two variables, X and Y . Either variable
represents the set of proper descriptions of the machine, starting from which
the machine accepts. The difference between these variables is that X repre-
sents descriptions belonging to the set Counter 55Tape, while Y represents
descriptions from (Counter∪Counter′)55Tape, in which the counter may
contain one carry digit 2 that needs to be propagated to higher positions.

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 161

The equations, using the above auxiliary functions, are as follows:

{
X = Final∪ Step(X) ∪

(
Y ∩ (Counter 55Tape)k

)

Y = Jump(X) ∪ Carry(Y) .
(10.1)

The equation for X inductively defines representation of descriptions of
Turing machines leading to acceptance as either having accepting descrip-
tion, or descriptions from which the machine can go to a description with
representation in X. Once the head is moved over the edge of the tape and
the counter in incremented, the equation for Y is used to propagate the
carry digit.

In order to determine the least solution of this system, let us estab-
lish some properties of the auxiliary functions. First of all, by Lemma 2.2,
Moveq′,a′,q,a, Jump and Carry are distributive. On the other hand, as Step
contains an intersection of two expressions involving X, then it need not be
distributive.

A common expression used in these functions is an addition of a constant
set of numbers (u0∗)k with one, two or three non-zero leading digits in u.
The following lemma establishes that this addition can never rewrite the
double markers 55, that is, every sum in which these markers are altered does
not represent a valid description. This means that such additions manipulate
the counter and the tape separately, and the changes do not mix.

Lemma 10.1 (Marker preservation). For every x, x′ ∈ {0, 1, 2, 3}∗\0Σ∗ and
w,w′ ∈ Tape, if (x′55w′)k ∈ (x55w)k + ((Σ3∪Σ2∪Σ)0∗)k, then |w| = |w′|.

Proof. Let y = ijτ0`, with i, j, τ ∈ Σ, be a string representing a number,
and assume that (x′55w′)k = (x55w)k + (y)k. The ` least significant digits
of x55w and of x′55w′ are then the same.

Consider the (`+ 4)th digit of x55w, let it be c. Since y has fewer than
` + 4 digits, any change at this position can only be due to a carry from
the position ` + 3. As the digit k − 1 is not used in any proper encoding,
c < k− 1. Because the carry digit is at most 1, the (`+ 4)th digit in x′55w′

is less or equal to c+ 1, that is, it is less or equal to k− 1. Therefore, there
is no carry to the position `+5 in (x55w)k +(y)k, and all digits in positions
higher than ` + 4 in (x′55w′)k are the same as in (x55w)k. Hence, x′55w′

has at most four digits different from x55w, which may be at the positions
`+ 1, `+ 2, `+ 3 and `+ 4.

Assume for the sake of contradiction that |w| 6= |w′|. Since w and w′ are
both of odd length, the 5’s in the strings x55w and x′55w′ occur in different
positions. Hence x55w and x′55w′ differ at exactly four positions, which are
the positions of 5s in them.

Note that if four digits are modified by adding (y)k, then the digit in
the position ` + 4 can only be incremented by 1 due to a carry from the
previous position. Since one of the strings x55w, x′55w′ has the digit 5 in

162 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

the position ` + 4, the other string should have a digit 4 or 6 in the same
position. Because the latter digits are not encodings of any symbols, this
yields a contradiction.

The next statement describes the operation of Carry: when applied to
number representing a description x55w with the counter x having a single
carry digit 2, Carry changes this digit to 0 and increments the next digit,
turning it to 1 or 2. The tape contents is not altered, only the carry digit
is propagated to the next higher position. Note that all operations are in
k-ary notation.

Lemma 10.2 (Carry propagation). For every x ∈ Counter′ and for every
w ∈ Tape, Carry((x55w)k) = {(x′55w)k} for some x′ ∈ Counter∪Counter′

with Value(x′) = Value(x).
For every string α ∈ Σ∗ of any different form, Carry((α)k) = ∅.

Proof. The inner intersection with ({0, 1}∗2{0, 1}∗ 55Tape)k ensures that
the set Carry((α)k) is non-empty only for α = x55w with x ∈ Counter′ and
w ∈ Tape.

The goal is to prove that if x = 2x̃ ∈ Counter′ and w ∈ Tape, then

Carry((2x̃55w)k) = {(10x̃55w)k} ,

and if x = x̂c2x̃ ∈ Counter′ and w ∈ Tape, then

Carry((x̂c2x̃55w)k) = {(x̂(c+ 1)0x̃55w)k} .

If a number (x55w)k, with x ∈ Counter′ ∪Counter and w ∈ Tape, is
substituted into the expression Carry, then the first subexpression produces
all numbers of the form

(u)k ∈ ((x55w)k + (10∗)k) ∩ ({0, 1}∗3{0, 1}∗ 55Tape)k .

Consider the possible changes made to x55w to obtain u. As 1 is added only
to one digit, there cannot be a carry, because the digit k− 1 is not used for
encoding. Therefore, only one digit is modified in x55w. Since x55w does
not contain the digit 3 that occurs in u, the unique digit 2 in x must be
replaced by 3. Denote u = x̃55w.

Consider u′ (any such string if it is not unique) such that:

(u′)k ∈
(
(u)k + ((10 � 3)0∗)k

)
∩ (
(
{0, 1}+ ∪ {0, 1}∗2{0, 1}∗

)
55Tape)k .

Let (u′)k = (u)k + (y)k, with y ∈ (10 � 3)0∗ = (k − 3)0∗. By Lemma 10.1,
u′ = x′55w′ and |w′| = |w|.

Consider the changes in x′55w′ as compared to x̃55w. Since there is
a digit 3 in x̃ and there is no such digit in x′, the position of 3 in x̃ is one
of the modified positions. Denote the number of this position by `. Because

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 163

the addition of (y)k has modified the digit 3, this means that the unique
non-zero digit in y is in position ` or `− 1. If it is in the position `− 1, then
the digit 3 can only be modified by adding 1 as a carry from the position
` − 1. This cannot be the case, as the digit 4 is not used in the encoding.
Therefore, the non-zero digit in y is in the position `; then adding (y)k to
(x̃55w)k replaces 3 with 0 and results in a carry, thus increasing the digit
in the position `+ 1 by 1. Note that, in particular, no changes were made
to w, and hence w′ = w.

Finally, consider the values of the counters x and x′. The value of x
is
∑
ci2

i, where ci is the digit in the ith position. If x has no digit in the
position `+1, then assume for the purposes of calculation that c`+1 = 0 (this
does not influence the value of the counter). In x′, the digit 2 was replaced
by 0, hence c′` = 0. In the position ` + 1, the digit c`+1 was replaced with
c`+1 + 1. If there was no actual digit c`+1 in x, then a new digit c′`+1 = 1

has been created. In any case x′ contains the digit c′`+1 = c`+1 + 1 in this
position. All other digits of the counters are left intact. Then the difference
of the values of the counters is determined by the positions ` and `+ 1, and

Value(x)−Value(x′) = (c`+1 · 2
`+1 + 2 · 2`)− ((c`+1 + 1) · 2`+1 + 0 · 2`) = 0 ,

that is, the value of the counter has been preserved.

According to Lemma 10.2, Carry basically moves the carry digit higher
by one position. The next lemma shows that sufficiently many iterations of
Carry always eliminate the carry digit: given a counter with the notation
x′ = x̃01`−1

2 ∈ Counter′, Carry` transforms it to x = x̃10`−1
0 ∈ Counter.

Lemma 10.3 (Termination of carry propagation). For every x′ ∈
Counter∪Counter′ and w ∈ Tape there exist x ∈ Counter and a number
` ≥ 0, such that Carry`((x′55w)k) = {(x55w)k} and Value(x) = Value(x′).

Proof. If x′ ∈ Counter, then the statement of the lemma is satisfied for ` = 0
and x = x′.

Let x′ ∈ Counter′ and construct a sequence x0, x1, . . . , x`, with xi ∈
Counter′ and Value(xi) = Value(x′), where ` shall be determined below, as
follows. Let x0 = x′. For every i ≥ 1, consider Carry((xi−155w)k), which,
by Lemma 10.2, equals {(xi55w)k} for some xi ∈ Counter′ ∪Counter with
Value(xi) = Value(xi−1). If xi ∈ Counter, then ` = i and x = xi satisfy the
statement of the lemma. Otherwise, if xi ∈ Counter′, then the construction
of the sequence continues.

Note that (xi+155w)k > (xi55w)k and hence all elements of the sequence
are distinct. Since there exist only finitely many elements of Counter′ with
the same value, the sequence cannot be infinite and eventually xi ∈ Counter
is obtained.

164 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

The next lemma determines the operation of Jump, which can be de-
scribed as follows. This function is applicable to numbers representing de-
scriptions in which the head scans the first symbol, and the result of Jump
on every such number is the number representing the previous description,
in which the head is at the right-most position beyond the end of the string,
while the value of the counter x is greater by 1.

Lemma 10.4. Let x = x̃c ∈ Counter with c ∈ {0, 1} and let w = 〈q〉w̃0 ∈
Tape with q ∈ Q, that is, w is a configuration with the head over the first
symbol. Then

Jump((x55w)k) = {(x̃(c+ 1)550w̃〈q〉)k} .

For any string α ∈ Σ∗ of a different form, Jump((α)k) = ∅.

Proof. The inner subexpression of Jump((α)k),

{(α)k} ∩ Counter 55Tape`
q ,

ensures that α = x55w where w = 〈q〉w̃0 for some w̃ ∈ 〈Γ〉(0〈Γ〉)∗, that is,
that the digit specifying the state of the machine is in the left-most position.
If w is of a different form, then Jump(x55w) = ∅. Fix an arbitrary state
q ∈ Q; as the outermost operation in Jump, a union over all q will be taken.

The next subexpression performs an addition

(x55〈q〉w̃0)k + ((1000� 〈q〉)(00)+)k + (〈q〉)k ,

which is meant to remove q from the beginning of the tape, increment the
counter and place q in the end of the tape. Consider an arbitrary (y)k =
((1000 � 〈q〉)(00)`)k + (〈q〉)k, with ` ≥ 1. Denote (u)k = (x55w)k + (y)k

and assume that

u ∈ (Counter′ ∪Counter)55Tapeq ,

as the subsequent operation in Jump is an intersection with
((Counter′ ∪Counter)55Tapeq)k. Let u = x′55w′ with x′ ∈
Counter∪Counter′ and w′ ∈ Tape. Also note that w′ = 0w̃′〈q〉, as
the right-most digit in y is 〈q〉 and the right-most digit in w is 0, and there
is only one digit from 〈Q〉 in w′.

Since y has non-zero digits only in the positions 2`+ 1, 2`+ 2, 2`+ 3 and
1, and the digit k − 1 does not occur in x55w, adding y cannot change any
digit in x55w in positions higher than 2`+ 4. Let 2`′ = |w̃0|. Then adding
y to w modifies the digit in the position 2`′ + 1, which is 〈q〉. Hence, either
2`′ + 1 = 2`+ 1 or 2`′ + 1 = 2`+ 3.

If 2`′ +1 = 2`+3, then there is either 〈q〉 or 〈q〉−1 in the position 2`′ +1
in x55w+y. Moreover, the digit 5 in the position 2`′+3 = 2`+5 in (x55w)k

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 165

was not modified by adding (y)k. Since the position 2`′ + 1 is to the right
of 55 in x′55w′, it contains 0. This is a contradiction, as 〈q〉 > 〈q〉 − 1 > 0.

Hence, 2`′ + 1 = 2`+ 1. Let x = x̃c. Then

(x55w)k + (y)k = (x̃(c+ 1)550w̃〈q〉)k ,

and therefore x′ = x̃(c+ 1) and w′ = 0w̃〈q〉, as stated in the lemma.

The next operation is Move, which represents symbol manipulation, head
movement and state change of a Turing machine according to the transitions
specified in δ. Generally, when Moveq′,a′,q,a is applied to a valid descrip-
tion, it computes the preceding description of the machine. This description
is unique because of the restriction built in Moveq′,a′,q,a: the intersections
therein ensure that in the current description the machine is in the state q′

and the symbol to the left rewritten at the previous step is a′, while in the
previous description the machine was in the state q and used to scan the
symbol a. Then the previous description is obtained simply by rewriting the
three digits 0〈a′〉〈q′〉 with 〈q〉〈a〉0. For all other descriptions and in all other
cases, the function produces the empty set.

Lemma 10.5. Let q, q′ ∈ Q with q 6= q′, and let a, a′ ∈ Γ. Let x ∈ Counter
and w = ŵ0〈a′〉〈q′〉w̃ ∈ Tape for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗. Then

Moveq′,a′,q,a((x55w)k) = {(x55ŵ〈q〉〈a〉0w̃)k} .

For every string α ∈ Σ∗ of a different form, Moveq′,a′,q,a(α) = ∅.

Proof. Fix a′, q′, a and q. The inner subexpression of Moveq′,a′,q,a,

(α)k ∩ (Counter 55Tapea′q′)k ,

ensures that α = x55w and w = ŵ0〈a′〉〈q′〉w̃ for some ŵ ∈ (0〈Γ〉)∗ and
w̃ ∈ (〈Γ〉0)∗. For any α of a different form Moveq′,a′,q,a((α)k) is empty,
similarly for w of a different form, Moveq′,a′,q,a((x55w)k) is empty.

The next subexpression performs the operation

(x55w)k + (
(
〈q〉〈a〉0 � 〈a′〉〈q′〉

)
(00)∗)k ∩ (Counter 55Tapeqa)k ,

which is designed to replace the digits 0〈a′〉〈q′〉 in w with the digits 〈q〉〈a〉0.
The task is to show that the addition always proceeds according to this plan.

Let

(y)k =
(
(〈q〉〈a〉0 � 〈a′〉〈q′〉

)
0

2`)k ∈ (
(
〈q〉〈a〉0 � 〈a′〉〈q′〉

)
(00)∗)k

and consider the string (x′55w′)k = (x55w)k + (y)k, where x′ ∈ Counter
and w′ ∈ Tape. By Lemma 10.1, |w′| = |w|.

As y has non-zero digits only in positions 2` + 1, 2` + 2, 2` + 3, while
the digit k − 1 is not a valid encoding of any symbol and may not occur in

166 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

x55w, adding (y)k cannot change any digits in (x55w)k in positions higher
than 2`+ 4.

Let 2`′ = |w̃|. Since q 6= q′, w and w′ must differ in the position 2`′ + 1,
where w has the digit 〈q′〉. Therefore, 2`′ + 1 = 2`+ 3 or 2`′ + 1 = 2`+ 1.

Suppose 2`′ + 1 = 2` + 3, that is, the digit 〈q′〉 in w is added to 〈q〉 or
〈q〉−1 in y, with a possible carry from the lower digits. Then (x55w)k +(y)k

has a digit (〈q〉+ 〈q′〉 − 1), (〈q〉+ 〈q′〉) or (〈q〉+ 〈q′〉+ 1) (modulo k in each
case) in the position 2`′ + 1. Since (〈q〉)k, (〈q

′〉)k ≤ 6 + |Q| and q 6= q′, it
follows that (〈q〉+〈q′〉)k ≤ 11+2|Q| < k and (〈q〉+〈q′〉+1)k ≤ 12+2|Q| < k.
Each sum is smaller than k and is therefore represented by a single digit.
However, each of these digits is greater than (〈q〉)k, and hence all of them
are filtered out by the intersection with (Counter 55Tapeqa)k.

In the other case of 2`′ + 1 = 2`+ 1, the addition proceeds as expected,
and x′ = x and w′ = ŵ〈q〉〈a〉0w̃, as stated in the lemma.

The flow control of an alternating Turing machine includes existential
and universal nondeterminism in the corresponding states, and a single step
is in fact a disjunction or a conjunction of several transitions as specified in
Move. This logic is transcribed in the expression Step(X), which computes
the set of all previous descriptions, from which machines in a universal state
make all their transitions to descriptions in X, and machines in an existential
state make at least one of their transitions to some description in X. This
implements one step of the computation of the machine, backwards.

Lemma 10.6. Let x ∈ Counter and w ∈ Tape, let q ∈ Q be the state
encoded in w. Let X ⊆ N. Then (x55w)k ∈ Step(X) if and only if the
following conditions hold:

• the configuration w has the head not in the position beyond the right-
most symbol, that is, w = ŵ〈q〉〈a〉0w̃ for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈
(〈Γ〉0)∗ and a ∈ Γ;

• if q ∈ QE, then (x55w′)k ∈ X for some configuration w′ among suc-
cessors to w;

• if q ∈ QA, then (x55w′)k ∈ X for every configuration w′ among suc-
cessors to w.

Proof. ⇒© Consider the definition of Step:

Step(X) =
(⋃

q̂∈QE

â∈Γ

⋃

(q′,a′)∈
δ(q̂,â)

Moveq′,a′,q̂,â(X)
)

∪
(⋃

q̂∈QA

â∈Γ

⋂

(q′,a′)∈
δ(q̂,â)

Moveq′,a′,q̂,â(X)
)
.

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 167

Assume that (x55w)k ∈ Step(X), let a ∈ Γ be the symbol scanned by
the head of the machine in the configuration w, and let q ∈ Q be the
current state. Then, according to Lemma 10.5, (x55w)k ∈ Moveq′,a′,q̂,â(X)
only if (q̂, â) = (q, a), and hence the subexpressions Moveq′,a′,q̂,â(X) with
(q̂, â) 6= (q, a) need not be taken into account.

First suppose that q is an existential state. Then

(x55w)k ∈
⋃

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X) ,

that is, there exist q′ ∈ Q and a′ ∈ Γ with x55w ∈ Moveq′,a′,q,a(X)
for some (q′, a′) ∈ δ(q, a). Note that q 6= q′ by the technical assump-
tion that the machine changes its state upon every transition. Since
Moveq′,a′,q,a is distributive over union there exists a number n ∈ X with
(x55w)k ∈Moveq′,a′,q,a({n}). Then, by Lemma 10.5, n must be of the form
(x55w′)k with w′ = ŵ0〈a′〉〈q′〉w̃ for some ŵ ∈ (0〈Γ〉)∗ and ŵ ∈ (〈Γ〉0)∗, and
with w = ŵ〈q〉〈a〉0w̃. Since (q′, a′) ∈ δ(q, a), w′ is a successor configuration
to w, and (x55w′)k ∈ X. The position of the head in w is to the left of the
right-most symbol.

The case of q ∈ QA is similar. It follows from (x55w)k ∈ Step(X) that

(x55w)k ∈
⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X) ,

that is, for all q′ ∈ Q and a′ ∈ Γ with (q′, a′) ∈ δ(q, a) it holds that
(x55w)k ∈ Moveq′,a′,q,a(X). As in the previous case, this implies that
w = ŵ〈q〉〈a〉0w̃ and there is (x55w′

q′,a′)k ∈ X with w′
q′,a′ = ŵ0〈a′〉〈q′〉w̃.

These are consecutive configurations, and every successor configuration to
w is of this form for some (q′, a′) ∈ δ(q, a). Then the required element
(x55ŵ0〈a′〉〈q′〉w̃)k is in X for all q′ and a′ with (q′, a′) ∈ δ(q, a). Also note
that δ(q, a) 6= ∅ by assumption, and hence there is at least one such pair
(q′, a′). So w is of the required form with the head not beyond the right-most
symbol.
⇐© Let w = ŵ〈q〉〈a〉0w̃ and first consider the case of q ∈ QE. Let

w′ be one of the next configurations of the machine with (x55w′)k ∈ X.
Then w′ = ŵ0〈a′〉〈q′〉w̃ for some (q′, a′) ∈ δ(q, a), and it is known that
q 6= q′. By Lemma 10.5, Moveq′,a′,q,a((x55w′)k) = {(x55w)k}. Since
Moveq′,a′,q,a((x55w′)k) ⊆ Step(X), this shows that (x55w)k ∈ Step(X).

If q ∈ QA, then, by assumption, (x55w′)k ∈ X for all configurations
w′ that are immediate successors to the configuration w. That is, for all
(q′, a′) ∈ δ(q, a), (x55w′

q′,a′)k ∈ X, where w′
q′,a′ = ŵ0〈a′〉〈q′〉w̃. For every

such pair, by Lemma 10.5, (x55w)k ∈ Moveq′,a′,q,a((x55w′
q′,a′)k). Hence,

(x55w)k ∈
⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X) ,

168 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

and therefore (x55w)k ∈ Step(X).

Thus the formal meaning of all auxiliary operations has been established,
and the equations can now be analysed. The equation for X states that a
description leads to acceptance if and only if it is itself accepting (Final),
or one can directly proceed from it to a description leading to acceptance
(Step(X)), or that it is a description obtained in Y . The equation for Y
specifies circular rotation of the tape by Jump(X) and implements iterated
carry propagation as in Lemma 10.3 by a self-reference Carry(Y). Alto-
gether, the least solution of these equations corresponds to the computation
of the machine as follows:

Lemma 10.7. Let (SX , SY) be the least solution of the system (10.1).

I. Let x ∈ Counter, w ∈ Tape and (x55w)k ∈ SX . Then M accepts
starting from the configuration w.

II. Conversely, if M accepts starting from a configuration w ∈ Tape, and
the longest path in the tree of the accepting computation has length m,
then (x55w)k ∈ SX for each x ∈ Counter with Value(x) ≥ m.

Proof. As the least solution of the system is computed by fixpoint itera-

tion (2.2), denote by S
(`)
X and S

(`)
Y the X- and Y -components of the vector

ϕ`(∅, . . . ,∅) obtained after ` ≥ 0 iterations. Then (x55w)k ∈ SX if and

only if (x55w)k ∈ S
(`)
X for some ` ≥ 1.

(I) Assume that (x55w)k ∈ S
(`)
X . It has to be proved that the Turing

machine accepts starting from the configuration w. The proof is an induction
on `.

By the equation for X, (x55w)k ∈ S
(`)
X means that either (x55w)k ∈

(Final)k, or (x55w)k ∈ Step(S
(`−1)
X), or (x55w)k ∈ S

(`−1)
Y . If (x55w)k ∈

(Final)k, then w is an accepting configuration, as the Turing machine is
already in an accepting state. Consider the other two cases.

Let (x55w)k ∈ Step(S
(`−1)
X), and let w = ŵ〈q〉〈a〉0w̃; the config-

uration is of this form by Lemma 10.6. Consider the set of numbers
S = {(x55ŵ0〈a′〉〈q′〉w̃)k | (q

′, a′) ∈ δ(q, a)} representing all possible next
descriptions of the machine. Suppose first that q ∈ QA. Then, by Lemma

10.6, S ⊆ S
(`−1)
X , and by the induction hypothesis, all numbers in S

(`−1)
X

represent descriptions with configurations from which the machine accepts.
Hence the machine accepts starting from all successor configurations to w,
and then, by definition, it accepts starting from w.

The case of q ∈ QE is treated similarly. Again, by Lemma 10.6, at

least one number from S is in S
(`−1)
X , and every number in S

(`−1)
X repre-

sents a description with configuration from which the machine accepts, by
the induction hypothesis. Accordingly, the machine accepts starting from

10.2. ARITHMETISATION OF EXPTIME-COMPLETENESS 169

the configuration w, because it accepts starting from one of its successor
configurations.

Consider the other case of (x55w)k ∈ S
(`−1)
Y , that is, of x55w obtained by

processing the carry in the counter. This processing may be reconstructed
as a finite sequence x`−1, x`−2, . . . , x`0 ∈ Counter∪Counter′, where the
number `0 ≥ 0 is determined later, and, for all i ∈ {`− 1, `− 2, . . . , `0},

Value(xi) = Value(x) ,

(xi55w)k ∈ S
(i)
Y ,

(xi55w)k = Carry((xi−155w)k), unless i = `0 .

Let x`−1 = x. Each string of digits xi for i = ` − 2, ` − 3, . . . is defined by
a backward induction as follows.

Assume that (xi55w)k ∈ S
(i)
Y , and hence (xi55w)k ∈ Carry(S

(i−1)
Y) or

(xi55w)k ∈ Jump(S
(i−1)
X). In the former case, as Carry is distributive,

there exists a number n ∈ S
(i−1)
Y with (xi55w)k ∈ Carry(n). Then, by

Lemma 10.2, n = (x′55w)k for some x′ with Value(x′) = Value(xi), and it
holds that Carry((x′55w)k) = {(xi55w)k}. Then xi−1 = x′ forms the next
element of the sequence.

In the latter case, (xi55w)k ∈ Jump(S
(i−1)
X). As Jump is distribu-

tive, there is a number n ∈ S
(i−1)
X with (xi55w)k ∈ Jump(n). Then,

according to Lemma 10.4, n = (x′55w′)k, where x′ ∈ Counter′ with
Value(x′) = Value(xi) − 1 = Value(x) − 1, w′ = 〈q〉w̃0 and w = 0w̃〈q〉;
that is, Jump((x′55w′)k) = {(xi55w)k}. Then `0 is defined as i, which
completes the construction of the sequence.

It has been shown that there exists (x′55w′)k ∈ S
(`0−1)
X with Value(x′) =

Value(x) − 1, such that the machine goes from the configuration w to the
configuration w′. By the induction hypothesis for x′55w′, the machine ac-
cepts from the configuration w′. Therefore, the machine accepts starting
from w, as claimed.

It is left to mention that the case of (xi55w)k ∈ Jump(S
(i−1)
X) in the

above proof eventually occurs, because otherwise the sequence would con-

tinue until (x055w)k ∈ S
(0)
Y = ∅, which is impossible.

(II) For the converse statement, let w be a configuration, and assume
that there is an accepting computation starting from w, with the longest
path of length `. The claim is that x55w ∈ SX holds for every x ∈ Counter
with the value at least `. This is proved by induction on `.

If ` = 0, then w is a configuration in the accepting state, and therefore,
by the equation for X in the system, (x55w)k ∈ (Final)k ⊆ SX for all
x ∈ Counter.

Assume there is an accepting computation starting from w with the
longest path of length `+ 1. Suppose first that w = ŵ〈q〉〈a〉0w̃ with ŵ, w̃ ∈
Σ∗, a ∈ Γ and q ∈ Q, that is, the configuration w has the head anywhere

170 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

except in the position beyond the right-most symbol. Consider the case of
q ∈ QA. Then the machine accepts from each successor configuration to w,
and longest path in each of these accepting computations is of length at most
`. Hence all strings of the form x55w′, where w′ is a successor configuration
to w and x ∈ Counter is a counter of value at least `, are in SX by the
induction hypothesis. Then, by Lemma 10.6, (x55w)k ∈ Step(SX). By the
equation for X, (x55w)k ∈ SX , which proves this case.

Now consider the case when q ∈ QE. Fix any x ∈ Counter of value
at least `. At least for one successor configuration to w, the Turing ma-
chine accepts starting from it, with the longest path of length at most `.
Accordingly, at least one number of the form (x55w′)k, where w′ is one
of the successor configurations to w, is in SX by the induction hypothesis.
Therefore, by Lemma 10.6, (x55w)k ∈ Step(SX), and, by the equation for
X, (x55w)k ∈ SX , as stated in the lemma.

Finally, consider the case where the head of the Turing machine is in the
position beyond the right-most symbol, and let w = 0w̃〈q〉. Let w′ = 〈q〉w̃0
be the next configuration, from which the machine accepts with the longest
path of length `. Let x′ ∈ Counter be a counter of value at least `. By
the induction hypothesis, (x′55w′)k ∈ SX . Then, by Lemma 10.4, there
is a string (x′′55w)k ∈ Jump(SX) ⊆ SY , where x′′ ∈ Counter′ ∪Counter
and Value(x′′) = Value(x′) + 1. Hence, by Lemma 10.3, there exists
` ≥ 0, for which (x55w)k ∈ Carry`(SY), where x is the unique element of
Counter with Value(x′′) = Value(x). By the equation for Y in the system,
Carry(SY) ⊆ SY , and since Carry is monotone, this implies the following
chain of inclusions:

Carry`(SY) ⊆ Carry`−1(SY) ⊆ Carry`−2(SY) ⊆ . . . ⊆ Carry(SY) ⊆ SY .

Therefore, (x55w)k ∈ SY , which, by the equation for X in the system (10.1),
implies (x55w)k ∈ SX , as claimed.

It remains to observe that the number of steps made by the machine is
exponentially bounded, and hence the acceptance of a string by the machine
is represented by the following number in the least solution of the constructed
system:

Main Claim. The ATM M accepts a string a1 . . . an ∈ Ω+ if and only if

(10n log(|Γ|)+log(n+1)+log(|Q|)
55〈q0〉〈a1〉0〈a2〉0 . . . 〈an〉0)k ∈ SX .

Proof. The initial configuration of M on a1 . . . an is

w = 〈q0〉〈a1〉0〈a2〉0 . . . 〈an〉0 ∈ Tape .

⇒© If M accepts starting from this configuration, then the longest path
in the accepting computation consists of at most

(n + 1) · |Q| · |Γ|n ≤ 2log(n+1) · 2log |Q|+n log |Γ|

10.3. THE MEMBERSHIP PROBLEM 171

steps, since all configurations forming this path must be different. Then,
by Lemma 10.7, for x = 10

log(n+1)+n log |Γ|+log |Q| with Value(x) =
2log(n+1)+n log |Γ|+log |Q| it holds that (x55w)k ∈ SX .

⇐© Conversely, if there exists x ∈ Counter with x55w ∈ SX , then, ac-
cording to Lemma 10.7, M accepts starting from the configuration w.

Proof of Theorem 10.1. The system of equations constructed above has an
EXPTIME-hard least solution. It uses constant sets of numbers with a
regular base-k notation, which are expressed in additional equations for ad-
ditional variables constructed according to Theorem 3.3.

Theorem 8.1 is used to show that one terminal is enough to define an
EXPTIME-complete set. It follows from it that one can efficiently construct
an equation Z = ψ(Z) with a least solution S and numbers p, d ≥ 1 such
that n ∈ SX if and only if pn − d ∈ S. Hence the membership problem for
SX is polynomially reducible to the membership problem to S, and hence S
is EXPTIME-hard.

To see that the least solution of every system is in EXPTIME, it is
sufficient to represent it as a conjunctive grammar over a unary alphabet.
Then, given a number n, its membership in the least solution can be tested
by supplying the string an to a known cubic-time parsing algorithm for
conjunctive grammars [36]. Its time is cubic in n, hence exponential in the
length of the binary notation of n.

This establishes the computational complexity of sets of numbers speci-
fied by resolved systems of equations with union, intersection and addition,
which is the main technical result of this chapter.

10.3 The membership problem

Consider the general membership problem for these equations, stated as fol-
lows: “Given a system Xi = ϕi(X1, . . . ,Xm) and given a number n in binary
notation, determine whether n is in the first component of the least solution
of the system”.

Theorem 10.2. The general membership problem for resolved systems of
equations over sets of numbers with the operations of union, intersection and
addition is EXPTIME-complete.

It remains EXPTIME-complete for instances with a single equation using
a single variable.

Proof. Membership in EXPTIME. The existence of such an algorithm
can be inferred from the known polynomial-time algorithm for solving the
membership problem for conjunctive grammars [37]. It is sufficient to rep-
resent the given system as a conjunctive grammar over a unary alphabet,

172 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

Representable sets Membership problem

expressions Finite NP-complete [51]

{∪,+} circuits Finite NP-complete [17, 34]

equations Ult. periodic [13] NP-complete [17, 48]

expressions Finite PSPACE-complete [34]

{∪,∩,+} circuits Finite PSPACE-complete [34]

equations (EXPTIME EXPTIME-complete

Table 10.1: Comparison of formalisms over sets of nonnegative integers.

with a linearly bounded blow-up, and then represent the given number n as
a string an, with an exponential blow-up.

An exponential-time algorithm for equations over sets of numbers can
be constructed directly as follows. Given a number n and a resolved system
with m variables, the algorithm will simulate fixpoint iteration as in (2.2),
but all sets will be computed as subsets of {0, . . . , n}. The algorithm thus
uses variables Xi ⊆ {0, . . . , n}, which are initially empty, and which are
updated at every step by substituting their values into the right-hand side
of the system. Up to m(n + 1) such iterations can be done until the sets
stabilise, when the algorithm can answer whether n is in X1. Each iteration
is polynomial in n + m, and so is the entire algorithm. Since n is given
to the algorithm in binary notation, the size of the instance of the general
membership problem is log n + m, and hence the algorithm makes at most
exponentially many iterations each working in exponential time.

The EXPTIME-hardness of the general membership problem imme-
diately follows from Theorem 10.1 by fixing the system of equations. As this
theorem in fact assures that one equation with a single variable is enough,
similar claim holds in the general case.

Recalling that equations over sets of numbers are a generalisation of cir-
cuits and expressions over sets of numbers, Theorem 10.2 can be directly
compared to the existing results on the complexity of these formalisms, sum-
marised in the right column of Table 10.1. The left column of the table char-
acterises the families of sets representable by each of these six formalisms.
Obviously, expressions and circuits can represent only finite sets, as any
Boolean combinations and sums of finite sets are finite. The sets represented
by equations with union and addition are bound to be ultimately periodic,
because all context-free languages over a unary alphabet are regular [13]. By
Theorem 10.1 and Theorem 10.2 that equations with union, intersection and
addition represent some EXPTIME-complete sets. At the same time, these
equations cannot represent the whole class EXPTIME =

⋃
k≥1 DTIME(2nk

),

10.3. THE MEMBERSHIP PROBLEM 173

because their solutions lie in DTIME(2n2

), which is a proper subset of EX-
PTIME due to the time hierarchy theorem.

174 CHAPTER 10. MEMBERSHIP FOR RESOLVED EQUATIONS

Chapter 11

Conjunctive grammars

In general, undecidability results are obtained by simulations of Turing Ma-
chines. As languages of computations of Turing Machines can be encoded
in languages generated by unary conjunctive grammars, it looks that some
decision problems for them must be undecidable. In this chapter, the exact
levels of undecidability of the decision problems are calculated as well. Then
the same problems are considered when only one non-terminal is allowed.
In such a setting, some of them retain their complexity, while others become
much simpler. For example, equality to a constant language for conjunctive
grammars with one variable is shown to be decidable for a large class of con-
stants, in contrast to the multiple-nonterminal case where it is undecidable
for every fixed conjunctive constant.

We consider the standard decisions problems for grammars:

• the (fixed) compressed membership problem—for a fixed grammar G
and a word w = an, given by a context-free grammar Ga such that
L(Gw) = {w}, decide, whether an ∈ L(G).

• the general compressed membership problem—for a given pair G and
context free grammar Gw it is asked, whether w ∈ L(G)

• equivalence problem—for two given grammars G, G′ it is asked,
whether L(G) = L(G′)

• equivalence to a fixed (finite/regular) language—for a fixed (fi-
nite/regular) language L0 test if L(G) = L0

• finiteness problem—for a given grammar G check, whether L(G) is
finite

• co-finiteness problem—for a given grammar G decide, whether L(G)
is co-finite

175

176 CHAPTER 11. CONJUNCTIVE GRAMMARS

11.1 Membership

Among all decision problems, the membership problem is the most impor-
tant and prominent one. Formalism are devised to define languages and one
needs to know if a word in in the constructed languages.

Luckily, the complexity of equations over sets of numbers established in
Chapter 10 has direct implications on the complexity of conjunctive gram-
mars over a one-letter alphabet.

Every conjunctive language can be parsed by a cubic-time algorithm
and thus is in P [36], and some conjunctive languages over a multiple-letter
alphabet are known to be P-complete [38]. The case of a unary alphabet
is special, as it is known that no sparse language, in particular no unary
language, can be P-complete unless DLOGSPACE = P [35, 6], that is,
unless the notion of P-completeness is trivial. However, from Theorem 10.1
one can infer the following result slightly weaker than P-completeness:

Corollary 11.1. There exists an EXPTIME-complete set of numbers S ⊆
N, such that the language L = {an | n ∈ S} of unary notations of numbers
from S is generated by a conjunctive grammar.

Note that for every unary language generated by a conjunctive grammar,
the corresponding set of numbers is in EXPTIME. The set from in Corol-
lary 11.1 can thus be regarded as the computationally hardest among unary
conjunctive languages.

This has a straightforward consequence referring to the complexity of
parsing for conjunctive grammars. For context-free languages, it is known
each of them is in NC2, that is, can be parsed by a polynomial-size circuit
of depth O(log2 n), which was discovered independently by Brent and Gold-
schlager [4] and by Rytter [50]. The known examples of P-complete conjunc-
tive languages imply that, unless P = NC, there are no polylogarithmic-time
parallel parsing algorithm for conjunctive languages [38]. Now a similar re-
sult can be claimed with respect to grammars over a one-letter alphabet.

Corollary 11.2. Unless PSPACE = EXPTIME, there is no logarithmic-
space parsing algorithm for conjunctive languages over a unary alphabet.

Indeed, having such an algorithm for the particular language L from
Corollary 11.1 would give a polynomial-space algorithm for the EXPTIME-
complete set S.

Let us now consider the complexity of the compressed membership prob-
lem for conjunctive grammars. This is a problem of testing whether a string
w is generated by a grammar G, but unlike the ordinary membership prob-
lem, here the string w is given in a compressed form constructed by a data
compression algorithm. The standard abstraction for data compression,
which captures algorithms such as LZ77 and LZW, is the notion of a straight-
line program (SLP). Following Plandowski and Rytter [48], a straight-line

11.1. MEMBERSHIP 177

program over the alphabet Σ is a context-free grammar Gw = (Σ, N, P, S)
with L(Gw) = {w}, and Gw is considered as a compressed representation of
w. Note that the length of w may be exponentially larger than the descrip-
tion of the grammar Gw.

The compressed membership problem is defined as follows:

(Membership problem). Given a conjunctive grammar G = (Σ, N, P, S) and
a context-free grammar Gw = (Σ, N, P, S) generating a singleton language
{w}, determine whether w ∈ L(G).

The complexity of this problem for the common families of languages
is known from the literature. For regular expressions, as well as for deter-
ministic finite automata, the problem was shown to be in P by Plandowski
and Rytter [48], while Markey and Schnoebelen [33] demonstrated its P-
hardness already for a fixed regular language. Plandowski and Rytter [48]
also showed that the compressed membership problem for context-free gram-
mars is in PSPACE, and Lohrey [32] proved that it is PSPACE-hard even for
a fixed deterministic linear context-free language. Furthermore, Lohrey [32]
established the EXPSPACE-completeness of the same problem for context-
sensitive grammars, showing that it is EXPSPACE-hard already for a fixed
language.

Theorem 10.1 and Theorem 10.2 can be used to establish the complexity
of the same problem for conjunctive grammars.

Theorem 11.1. The compressed membership problem for conjunctive gram-
mars is EXPTIME-complete. It remains EXPTIME-complete for a fixed
conjunctive language L0 ⊆ a

∗ and one non-terminal unary conjunctive gram-
mar.

Proof. An exponential-time algorithm for this problem is straightforward.
Given a conjunctive grammar G and a context-free grammar Gw with
L(Gw) = {w}, the algorithm first decompresses the string w, that is, con-
structs it explicitly. Its length is at most exponential in the size of Gw. Then
the known polynomial-time algorithm for solving the membership problem
for a conjunctive grammar [37] is applied.

To show the EXPTIME-hardness of the problem for a particular lan-
guage, let S ⊆ N be the set of numbers represented in Theorem 10.1. This
theorem asserts that we may assume that S is the least solution of a sin-
gle equation using one variable. Define L0 = {an | n ∈ S}, by the duality
between unary conjunctive grammars and systems of equations over natu-
ral numbers, it is a conjunctive language generated by a unary conjunctive
grammar with a single non-terminal.

Then the problem of testing whether a number n is in S can be reduced
to the compressed membership problem in L0 as follows.

Let b`−1 . . . b1b0 with bi ∈ {0, 1} be the binary notation of n, that is,
n =

∑`−1
i=0 bi2

i. Let i1 < . . . < ik be all numbers with bij = 1. Then the

178 CHAPTER 11. CONJUNCTIVE GRAMMARS

Membership Compressed membership

Regular languages

DFA DLOGSPACE-comp. P-comp. [33, 48]

Regular expressions NLOGSPACE-comp. P-comp. [33, 48]

Grammars

Linear context-free NLOGSPACE-comp. PSPACE-comp. [32, 48]

Context-free P-comp. [27] PSPACE-comp. [32, 48]

Linear conjunctive P-comp. [37, 38] ?

Conjunctive P-comp. [37] EXPTIME-comp.

Context-sensitive PSPACE-comp. EXPSPACE-comp. [32]

Table 11.1: Complexity of membership problems for automata and gram-
mars.

singleton language {an} is generated by the following context-free grammar
Gn:

S → Ai1 . . . Aik

A0 → a

Ai+1 → AiAi , for 0 ≤ i < ik .

Accordingly, the description of Gn is a yes-instance of the compressed mem-
bership problem for L0 if and only if n ∈ S, which completes the reduc-
tion.

This result is compared to the similar earlier cited results on other fam-
ilies of formal grammars in Table 11.1.

11.2 Equivalence

We begin with making some technical assumptions on the encoding of lan-
guage of the transition of TM. Recall the language VALC(T) defined in the
beginning of Part II as:

VALC(T) = {CT (w)\w | CT (w) is an accepting computation} .

Without loss of generality, VALC(T) it is defined over an alphabet of digits
Σk = {0, . . . , k−1}, for a suitable k, and w ∈ (Σk\{0})

∗, so that no string in
VALC(T) has a leading zero. Define the language INVALC(T) as (Σ∗

k\0Σ∗
k)\

VALC(T). These elaborations do not affect the fact that both VALC(T) and
INVALC(T) are intersection of linear context-free grammars [43] and thus

11.2. EQUIVALENCE 179

are recognised by trellis automata, so that Theorem 4.2 is still applicable
and can be used to obtain the following result:

Corollary 11.3. For every Turing machine T there exist and can be ef-
fectively constructed conjunctive grammars G and G′ over the alphabet
{a}, such that L(G) = {an | n ∈ (VALC(T))k} and L(G′) = {an | n ∈
(INVALC(T))k}, where k is the size of the alphabet used for encoding the
computations.

This result is used in the rest of this chapter while proving the undecid-
ability of various decision problems.

It is first applied to the fixed equivalence problem stated as:

(Fixed equivalence problem). Given a conjunctive grammar determine
whether L(G) = L0.

Theorem 11.2. For every fixed unary conjunctive language L0 ⊆ a∗, the
fixed equivalence problem is Π1-complete.

Proof. The containment of the problem in Π1 is evident, since the equiv-
alence problem for two given recursive languages is in Π1. It is the Π1-
hardness that has to be established.

We reduce the problem of the emptiness of TM, a known Π1-complete
problem. Let G0 = (Σ, N0, P0, S0) be a fixed conjunctive grammar generat-
ing L0. Depending on the form of L0, let us consider two cases.

Case I: L0 contains no subset of the form a`(ap)∗, where ` ≥ 0 and
p ≥ 1. Given a Turing machine T , construct a conjunctive grammar GT =
({a}, NT , PT , ST) for {an | n ∈ (VALC(T))k}. On the basis of GT and G0,
construct a new conjunctive grammar G = ({a}, NT ∪N0∪{S,A}, PT ∪P0∪
P, S), where P contains the following new rules:

S → S0 | STA

A→ aA | ε

ST → . . . (rules generating {an | n ∈ (VALC(T))k})

S0 → . . . (rules generating L0)

Now, if L(T) = ∅, then L(GT) = ∅, the rule S → STA in G generates
nothing, and therefore L(G) = L(G0) = L0.

Suppose L(T) 6= ∅. Then there is a string CT (w)\w ∈ VALC(T), and
accordingly there exists an ∈ L(GT). Hence the rule S → STA in G can be
used to generate all strings in ana∗, and therefore L(G) contains the subset
a`(ap)∗ for ` = n and p = 1. As L0 contains no such subset by assumption,
L(G) 6= L0.

It has been proved that L(G) = L0 if and only if L(T) = ∅, which
completes the reduction for this form of L0.

180 CHAPTER 11. CONJUNCTIVE GRAMMARS

Case II: L0 contains a subset a`(ap)∗, where ` ≥ 0 and p ≥ 1. As-
sume that p ≥ k, i.e., it is larger than the cardinality of the alpha-
bet used for INVALC(T) (if p is too small, any of its multiples can be
taken). Define INVALC(T) over a p-letter alphabet, consider the set of
numbers (INVALC(T) · 0)p, and construct a conjunctive grammar G′

T =
({a}, N ′

T , P
′
T , S

′
T) generating {an | n ∈ (INVALC(T) · 0)p}. Using G0 and

G′
T , construct a new grammar G = ({a}, N ′

T ∪N0∪{S,B,C}, PT ∪P0∪P, S),
where the new rules in P are as follows:

S → S0&B | a`S′
T

B → ai (for all 0 ≤ i < `)

B → a`+iC (for all 1 ≤ i < p)

C → apC | ε

S′
T → . . . (rules generating {an | n ∈ (INVALC(T) · 0)p})

S0 → . . . (rules generating L0)

Note that LG(B) = a∗ \ a`(ap)∗ and therefore LG(S0&B) = L0 \ a
`(ap)∗.

Thus

L(G) = L0 ⇐⇒ LG(a`S′
T) ⊇ a`(ap)∗

and as LG(S′
T) ⊆ (ap)∗

⇐⇒ LG(S′
T) = (ap)∗

⇐⇒ {an | n ∈ (INVALC(T) · 0)p} ⊇ (ap)∗

⇐⇒ {an | n ∈ (INVALC(T))p} ⊇ a
∗

⇐⇒ INVALC(T) = Σ∗
p \ 0Σ∗

p

⇐⇒ VALC(T) = ∅

⇐⇒ L(T) = ∅ .

Therefore, again, L(G) = L0 if and only if L(T) = ∅, which proves the
Π1-hardness of the problem.

If L0 is not generated by a conjunctive grammar, then the problem of
testing whether a given conjunctive grammar generates L0 becomes trivial.
Hence, the following characterisation is obtained:

Corollary 11.4. For every fixed language L0 ⊆ a∗, the problem of testing
whether a given conjunctive grammar over {a} generates L0 is either Π1-
complete or trivial.

11.2. EQUIVALENCE 181

In contrast, in the case of one-nonterminal grammars, the equality to any
fixed ultimately periodic set is clearly decidable: it is sufficient to substitute
it into the equation and check whether it is turned into an equality. This
approach extends to a larger class of fixed languages:

Theorem 11.3. There exists an algorithm, which, given a unary con-
junctive grammar with one non-terminal symbol and a finite automa-
ton M over an alphabet Σk = {0, 1, . . . , k − 1}, determines whether
{an | the k-ary notation of n is in L(M)} is the language generated by the
given grammar.

The algorithm works by substituting the set of numbers defined by M
into the equation corresponding to the given conjunctive grammar. The
value of each subexpression is computed in the form of a finite automa-
ton over Σk representing base-k notation. For Boolean operations this is
clearly possible, while the addition of sets can be done symbolically on finite
automata for their base-k representation according to the following lemma:

Proposition 11.1 (Jirásková, Okhotin [26]). Let L1 and L2 be regular lan-
guages over an alphabet Σ = {0, 1, . . . , k−1}, with L1∩0Σ∗ = L2∩0Σ∗ = ∅.
Then the language

L1 � L2 = {w1 � w2 | w1 ∈ L1, w2 ∈ L2} ⊆ Σ∗

is regular.

This shows that equality to a fixed language is decidable for one-
nonterminal conjunctive grammars for a fairly large class of constants.

Consider now the general equivalence problem, formulated as:

(General equivalence problem). Given two grammars G1, G2 decide,
whether L(G1) = L(G2).

While the fixed equivalence problem is tractable for one non-terminal
symbol and hard for many non-terminal symbols, the general equivalence
problem is hard already for one non-terminal unary conjunctive grammars

Theorem 11.4. The general equivalence problem for one-nonterminal
unary conjunctive grammars is Π1-complete.

Proof. The proof is by reduction from the equivalence problem for unary
conjunctive grammars with multiple nonterminals. Two grammars are com-
bined into one, the construction of Theorem 8.1 is applied, and then the
start symbols of the two grammars are exchanged and the construction is
applied again. The two resulting one-nonterminal grammars are equivalent
if and only if the original grammars generate the same language.

Before approaching the equivalence problem for one-nonterminal con-
junctive grammars, let us establish the undecidability of the following tech-
nical problem:

182 CHAPTER 11. CONJUNCTIVE GRAMMARS

Claim 11.1. The problem of testing whether for a given conjunctive gram-
mar G = ({a}, N, P, S) with two designated nonterminals S and S′, LG(S) =
LG(S′), is undecidable.

Proof. Theorem 11.2 states that the problem of whether two unary con-
junctive grammars generate the same language is Π1-complete. Let G1 =
({a}, P1, N1, S1) and G2 = ({a}, P2, N2, S2) be any two conjunctive gram-
mars over {a}. Assume, without loss of generality, that N1 ∩N2 = ∅. Con-
struct a new conjunctive grammar G = ({a}, P1 ∪ P2, N1 ∪ N2, S1). Then
LG(S1) = L(G1) and LG(S2) = L(G2), and therefore testing the equality of
LG(S1) and LG(S2) solves the equivalence problem for G1 and G2.

Now this technical problem may be easily reduced to the equivalence
problem for one-nonterminal conjunctive grammars over {a}. Let a gram-
mar G = ({a}, {A1, A2, . . . , Am}, P,A1) be given, and assume without loss
of generality that it is of the form required in Lemma 8.1; it is asked whether
LG(A1) = LG(A2). Construct a one-nonterminal unary conjunctive gram-
mar G′ that encodes G according to Theorem 8.1, with

L(G′) = {anp−d1 | an ∈ LG(A1)} ∪ {anp−d2 | an ∈ LG(A2)}

∪
⋃

i≥3

{anp−di | an ∈ LG(Ai)} .

Next, the same transformation is applied to the grammar G =
({a}, {A2, A1, A3, . . . , Am}, P,A2), with nonterminals A1 and A2 exchanged.
The values of p, d1, . . . , dm are the same, as they depend only on m, so the
generated language is

L(G′′) = {anp−d2 | an ∈ LG(A1)} ∪ {anp−d1 | an ∈ LG(A2)}

∪
⋃

i≥3

{anp−di | an ∈ LG(Ai)} .

Clearly, the two languages are the same if and only if LG(A1) = LG(A2).

11.3 Finiteness

The grammar finiteness problem is now investigated.

(Grammar finiteness). Given a grammar G decide, whether L(G) is finite.

The the finiteness problem is Σ1-hard already for the one-non-terminal
case. For the general case only a trivial Σ2 upper bound is supplied.

Theorem 11.5. The finiteness problem for one-nonterminal unary conjunc-
tive grammars is Σ1-complete.

11.3. FINITENESS 183

Proof. To see that the problem is in Σ1 consider the following nondeter-
ministic Turing machine that tests whether a given conjunctive grammar
G = ({a}, {S}, P, S) generates a finite language. The machine starts with
guessing a finite language F ⊂ a∗ and then uses the method of Theorem 11.3
to check whether L(G) = F .

The Σ1-hardness is shown by reduction from the problem of whether a
given unary conjunctive grammar G = ({a}, {A1, . . . , An}, P,A1) generates
a language other than a+. This problem is Σ1-complete by Theorem 11.2.

Assume without loss of generality that G contains a nonterminal that
generates an infinite language and that G is of the form given in Lemma 8.1.
By Theorem 8.1, there exist numbers 1 ≤ d1 < . . . < dn < p, and
a one-nonterminal grammar G1 = ({a}, {S}, P1 , S) generating the language
{anp−di | an ∈ LG(Ai)} can be constructed. Accordingly, {anp−d1 | n ≥ 1} ⊆
L(G1) if and only if L(G) = a+.

Note that, according to the theorem, for each rule

S → a`1SS& . . .&a`kSS (11.1)

of this grammar there exists a number i with L(a`1SS& . . .&a`kSS) ⊆
{anp−di | n ≥ 1}. Let such a rule be called an i-rule. Also note that L(G1)
is always infinite, because of a nonterminal generating an infinite language.

Now construct a new grammar G2 = ({a}, {S}, P2 , S), where P2 contains
all rules of the form S → am from G1, as well as a rule of the form

S → a`1SS& . . .&a`kSS&ap+d1−diS (11.2)

for each i-rule (11.1).
Clearly, L(G2) ⊆ L(G1), as every rule in P2 is a more restrictive version

of some rule from P1 containing an extra conjunct, and thus every derivation
in G2 can be simplified down to a derivation of the same string in G1. Fur-
thermore, the grammar G2 inherits the property of G1 that each rule (11.2)
generates a subset of {anp−di | n ≥ 1}, for di given in the last conjunct. The
purpose of the additional conjunct in (11.2) is to make the membership of
anp−d1 in L(G2) a necessary condition for generating the number a(n+1)p−di .
In this way, if any number in track d1 is missing, then no larger numbers
will be generated, and the language will be finite.

Formally, it is claimed that G2 generates an infinite language if and only
if {anp−d1 | n ≥ 1} ⊆ L(G1).
⇐© Assume that {anp−d1 | n ≥ 1} ⊆ L(G1), that is, every string anp−d1

with n ≥ 1 is in L(G1). It is claimed that L(G1) ⊆ L(G2), and as L(G1) is
infinite, this would prove that so is L(G2).

Suppose the contrary, that L(G1)\L(G2) 6= ∅, and let anp−di with n ≥ 1
and 1 ≤ i ≤ m be the shortest string in L(G1) that is not in L(G2). This
string must be produced by a long rule ofG1 (because all the short rules of G1

are in G2 as well), and therefore n ≥ 2. Consider the i-rule (11.1) by which

184 CHAPTER 11. CONJUNCTIVE GRAMMARS

anp−di is generated. Then anp−di ∈ a`jL(G1)2 and hence anp−di ∈ a`jL(G2)2,
as `j ≥ 1 and L(G1) and L(G2) do not differ on strings shorter than anp−di .
For the same reason, a(n−1)p−d1 ∈ L(G1) implies a(n−1)p−d1 ∈ L(G2) (note
that (n− 1)p− d1 > 0, as n ≥ 2), and, accordingly, anp−di ∈ ap+d1−diL(G1).
Therefore, anp−di is generated in G2 by the rule (11.2) corresponding to
(11.1), which contradicts the assumption that anp−di /∈ L(G2).
⇒© Conversely, if {anp−d1 |n ≥ 1} * L(G1), then there is a number n ≥ 1

with anp−d1 /∈ L(G1), and hence with anp−d1 /∈ L(G2) (as L(G2) ⊆ L(G1)).
Now the claim is that no string longer than anp−d1 is in L(G2).

Let an′p−di ∈ L(G2) for some n′ > n and 1 ≤ i ≤ m be the shortest
string of length greater than np − d1 generated by G2, and let an′p−di be
generated by an i-rule (11.2). According to the last conjunct of this rule,
an′p−di ∈ ap+d1−diL(G2) and hence a(n′−1)p−d1 ∈ L(G2). Now if n′ − 1 = n,
then this does not hold by assumption, and if n′− 1 > n, then a(n′−1)p−d1 is
a string shorter than an′p−di satisfying the assumptions, and in both cases
a contradiction is obtained.

The above claims imply that L(G2) is finite if and only if L(G) 6= a+,
which completes the reduction.

Fact 11.1. The grammar finiteness problem for unary conjunctive grammar
is in Σ2.

Proof. This can expressed as a formula

∃n∀mm > n⇒ am /∈ L(G) .

Since checking whether an ∈ L(G) can be done in polynomial time, the
whole problem is in Σ2.

11.4 Co-finiteness

As opposed to the grammar finiteness problem, now the complementary
grammar co-finiteness problem is inspected.

(Grammar co-finiteness problem). Given a grammar G determine, whether
L(G) is co-finite.

The results for the co-finiteness problem are similar as for the finiteness.
Already in the one-nonterminal case the problem is Σ1-complete, while in
case of many nonterminals only a trivial Σ2 upper bound is provided.

Theorem 11.6. The grammar co-finiteness problem for one-nonterminal
unary conjunctive grammars is Σ1-complete.

Proof. The problem is in Σ1 by Theorem 11.3: an algorithm solving this
problem can nondeterministically guess an DFA M recognizing a co-finite
language and test whether the grammar generates L(M).

11.4. CO-FINITENESS 185

The Σ1-hardness of the co-finiteness problem is established by a reduc-
tion from the emptiness problem for unary conjunctive grammars with unre-
stricted number of nonterminals, which is Σ1-hard by Theorem 11.2. With-
out loss of generality, assume that all the words produced by the given unary
conjunctive grammar are of length at least one: it is enough to introduce a
new start symbol A′ and a production A′ → Aa, where A is the old start
symbol. The proof is given in terms of equations over sets of numbers.

Let G0 be a unary conjunctive grammar with a start symbol A1, and
assume ε /∈ L(G0). Construct a grammar G by introducing an additional
non-terminal A2 with the same set of productions as A1. It is easy to see
that LG(A1) = LG(A2) = LG0

(A1). Then, according to Theorem 8.1, G is
transformed into a univariate equation over sets of natural numbers X =
ϕ(X) with a unique solution S =

⋃
i Si, where Si = {np− di | n ∈ LG(Ai)}.

Now construct a new expression ϕ′ by introducing another term to ϕ:

ϕ′(X) = ϕ(X) ∪

p−1⋃

i=0

(X+d1+i ∩ X+d2+i) .

In other words, the following p extra rules are added to G′:

S → ad1+iS&ad2+iS , for 0 ≤ i ≤ p− 1

The idea of the construction is that if any string appears on track d1, these
rules will generate all longer strings, thus ‘spamming’ the language to make
it co-finite.

Let S′ be the unique solution of the equation X = ϕ′(X).

Claim 11.2. If L(G0) = ∅, then S′ = S, and accordingly S′ is not co-finite.

Proof. It is easy to see that S ⊆ S′, since ϕ(X) ⊆ ϕ′(X) for all X. Thus it
remains to show that S′ \ S = ∅.

Suppose the contrary and consider the smallest number n ∈ S′ \S. Then
also n ∈ ϕ′(S′)\ϕ(S). But n ∈ ϕ′(S′) implies that n ∈ ϕ′(S), as the numbers
used to obtain n in ϕ′(S′) are smaller than n. Since ϕ′(S) = ϕ(S)∪

⋃p−1
t=0 (S+

d1 + t ∩ S + d2 + t), it follows that n ∈
⋃p−1

t=0 (S + d1 + t ∩ S + d2 + t). It is
shown that if n ∈ S + d1 + t∩ S + d2 + t, then n ∈ S1 + d1 + t∩ S2 + d2 + t,
similarly as in Lemma 8.2. By distributivity,

S+d1 ∩ S+d2 =
⋃

i

(Si + d1) ∩
⋃

j

(Sj + d2)

=
⋃

i,j

(Si + d1) ∩ (Sj + d2) ,

and the value of each subexpression is

(Si + d1) ∩ (Sj + d2) =
(
{np | n ∈ LG(Ai)} − di + d1

)

∩
(
{np | n ∈ LG(Aj)} − dj + d2

)
.

186 CHAPTER 11. CONJUNCTIVE GRAMMARS

Since d1, d2, di, dj ∈ {
p
4 + 1, . . . , p

2}, the differences −di + d1, −dj + d2 are
in {−p

4 + 1, −p
4 + 2, . . . , p

4 − 1}, and thus any number that belongs to this
intersection is equal modulo p both to d1 − di and to d2 − dj . Accordingly,
the latter two numbers must be equal, that is,

41 − 4i = 42 − 4j ,

which is true only for i = 1 and j = 2. Therefore, both S1 and S2 are
nonempty, which yields a contradiction, as S1 = S2 = ∅ by the assumption.

The contradiction obtained proves that S = S′. For the definition of S
according to Theorem 8.1, it is easy to see that it is never co-finite, as by
definition it has empty tracks.

Claim 11.3. If an ∈ L(G0) for n ≥ 1, then every number greater or equal
to pn is in S′, and thus S′ is co-finite.

Proof. By Theorem 8.1, pn− d1, pn− d2 ∈ S, and accordingly pn− d1, pn−
d2 ∈ S

′, since S ⊆ S′.
Let m = pn′ + i for some 0 ≤ i < p and n′ ≥ n. By an induction

on n′ it will be proved that m ∈ S′. If n′ = n then, as stated above,
pn′ − d1, pn

′ − d2 ∈ S
′, and if n′ > n, then pn′ − d1, pn

′ − d2 ∈ S by the
induction assumption. In each case m is produced by the subexpression
X+d1+i ∩ X+d2+i as follows:

pn′ + i = (pn′ − d1) + d1 + i ∈ S′ + d1 + i ,

pn′ + i = (pn′ − d2) + d2 + i ∈ S′ + d2 + i ,

and thus

m ∈ (S′ + d1 + i) ∩ (S′ + d2 + i)

⊆ ϕ′(S′) = S′ .

It follows from Claim 11.2 and Claim 11.3 that L(G0) is non-empty if and
only if the solution of X = ϕ(X) is co-finite, which shows the correctness of
the reduction.

Fact 11.2. The grammar co-finiteness problem for unary conjunctive gram-
mars is in Σ2

Proof. This can be expressed as a formula

∃n∀m m > n⇒ am /∈ L(G) .

And as testing whether am /∈ L(G) can be done in polynomial time, the
whole problem is in Σ2.

11.4. CO-FINITENESS 187

equiv. to reg. L0 equivalence finiteness co-finiteness

any N Π1-complete Π1-complete Σ1 ≤ · ≤ Σ2 Σ1 ≤ · ≤ Σ2

N = {S} decidable Π1-complete Σ1-complete Σ1-complete

Table 11.2: Decision problems for conjunctive grammars over {a}.

The decidability status of decision problems for one-nonterminal and
multiple-nonterminal unary conjunctive grammars is summarised in Ta-
ble 11.2.

188 CHAPTER 11. CONJUNCTIVE GRAMMARS

Chapter 12

General systems of equations

Consider basic properties of unresolved equations, such as the existence and
the uniqueness of solutions. For the more general case of language equations
it is known that these properties, as well as a few others, are undecidable
[47, 41, 42], and their exact position in the arithmetical hierarchy has been
determined. These results will now be re-created for equations over sets of
numbers, based upon the constructions from the previous chapters.

All the corollaries follow from straightforward application of Lemma 7.4
to the systems mentioned in the construction of the appropriate theorems.

Theorem 12.1. The problem of whether a system of equations
ϕi(X1, . . . ,Xn) = ψi(X1, . . . ,Xn) over sets of natural numbers has a so-
lution is Π1-complete.

It remains Π1-hard if there is only one equation with single variable al-
lowed and the used operations are union and addition, or intersection and
addition.

Proof. The problem is in Π1 in the more general case of language equations
[47].

Its Π1-hardness is proved by a reduction from the emptiness problem for
Turing machines. Let T be a TM and construct a system of equations in
variables (Y0, . . . , Y5,X1, . . . ,Xm) with the unique solution Yi = VALCi(T),
Xj = Kj ⊆ N as described in Lemma 6.3. Since S(T) = ∅ if and only⋃5

i=0 VALCi(T) = ∅, it is sufficient to add six new equations Yi = ∅ for
i ∈ {0, 1, . . . , 5}, so that the resulting system has a solution if and only if
S(T) = ∅.

Then Theorem 9.2 is applied and a single equation with a single variable
is obtained. According to this theorem, it has a solution if and only if the
original system has a solution.

Corollary 12.1. Testing whether system of equations ϕi(X1, . . . ,Xn) =
ψi(X1, . . . ,Xn) over sets of natural numbers, where ϕi, ψi use ultimately
periodic constants and addition only, has a solution is Π1-complete.

189

190 CHAPTER 12. GENERAL SYSTEMS OF EQUATIONS

Theorem 12.2. Testing whether a system ϕi(X1, . . . ,Xn) =
ψi(X1, . . . ,Xn) over sets of natural numbers has a unique solution is
a Π2-complete problem.

It is still Π2-hard if the operations are limited to union (intersection)
and addition and there is a single equation using one variable.

Proof. The Π2 upper bound is known from the case of language equations
[47].

Π2-hardness is proved by a reduction from the known Π2-complete Tur-
ing machine universality problem [49, §14.8], which can be stated as follows:
“Given a TM M working on natural numbers, determine whether it accepts
every n ∈ N0”. Given M , construct the system of equations as in Lemma 6.3.
It has a unique solution if and only if the bounds S(T) ⊆ S ⊆ N are tight,
that is, if and only if the TM accepts every number.

We apply Theorem 9.2 to this system. Thus a single equation with a
single variable is obtained. According to Theorem 9.2, the obtained equation
has a unique solution if and only if the original system has a unique solution.
This completes the reduction.

Corollary 12.2. For a system ϕi(X1, . . . ,Xn) = ψi(X1, . . . ,Xn) using only
ultimately periodic constants and addition the problem of having a unique
solution is Π2-complete

Theorem 12.3. The problem whether a system ϕi(X1, . . . ,Xn) =
ψi(X1, . . . ,Xn) over sets of natural numbers has finitely many solutions is
Σ3-complete. Its Σ3-hardness is maintained in the case of a single equation
using one variable and the operations of union (intersection) and addition.

Proof. The problem is in Σ3 for language equations [42].
To prove Σ3-hardness, consider the co-finiteness problem for Turing ma-

chines, which is stated as “Given a TM T working on natural numbers,
determine whether N \ S(T) is finite”, which is known to be Σ3-complete
[49, Cor. 14-XVI]. Given M , use Lemma 6.3 to construct the system of
equations with the set of solutions {(S, f1(S), . . . , fk(S)) | S(T) ⊆ S}. This
set is finite if and only if N \ S(T) is finite.

Theorem 9.2 is applied to this system of equations and a single equation
with one variable is obtained. Since solutions of the constructed equation
are in bijective correspondence with the solutions of the original system,
testing whether this single equation has finitely many solution is Σ3-hard as
well. This completes the reduction.

Corollary 12.3. For a system ϕi(X1, . . . ,Xn) = ψi(X1, . . . ,Xn) using only
ultimately periodic constants and addition testing whether it has finitely
many solutions is Σ3-complete

Bibliography

[1] J. Autebert, J. Berstel, L. Boasson, “Context-free languages and push-
down automata”, in: Rozenberg, Salomaa (Eds.), Handbook of Formal
Languages, Vol. 1, Springer-Verlag, 1997, 111–174.

[2] J. W. Backus, “The syntacs and semantics of the proposed of the
proposed international algebraic language of the Zurich ACM-GAMM
conference” Proceedings of the International Conference on Information
Processing, UNESCO, 1959, 125–132.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wi-
jngaarden, M. Woodger, “Revised report on the algorithm language AL-
GOL 60”, Communications of ACM, 6:1 (1963) 1–17.

[4] R. P. Brent, L. M. Goldschlager, “A parallel algorithm for context-free
parsing”, Australian Computer Science Communications, 6:7 (1984), 7.1–
7.10.

[5] H.-G. Breunig, “The complexity of membership problems for circuits over
sets of positive numbers”, Fundamentals of Computation Theory (FCT
2007, Budapest, Hungary, August 27–30, 2007), LNCS 4639, 125–136.

[6] J.-Y. Cai, D. Sivakumar, “Sparse hard sets for P: resolution of a con-
jecture of Hartmanis”. Journal of Computer and System Sciences, 58:2
(1999), 280–296.

[7] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal
of the ACM, 28:1 (1981), 114–133.

[8] W. Charatonik, “Set constraints in some equational theories”, Informa-
tion and Computation, 142:1 (1998), 40–75.

[9] N. Chomsky, “Three models for the description of language” IRE Trans-
actions on Information Theory, 2:3 (1956), 113–124.

[10] J. H. Conway, Regular Algebra and Finite Machines, Chapman and
Hall, 1971.

191

http://home.comcast.net/~jhorning4/backus-proposed-ial.pdf
http://doi.acm.org/10.1145/366193.366201
http://doi.acm.org/10.1145/181577.181586
http://dx.doi.org/10.1007/978-3-540-74240-1_12
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1006/inco.1997.2692
http://dx.doi.org/10.1109%2FTIT.1956.1056813

192 BIBLIOGRAPHY

[11] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I and
II, International Journal of Computer Mathematics, 15 (1984), 195–212,
and 16 (1984), 3–22.

[12] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata: stability,
decidability and complexity”, Information and Control, 71 (1984), 218–
230.

[13] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”,
Journal of the ACM, 9 (1962), 350–371.

[14] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, M. Waldherr,
“Equivalence problems for circuits over sets of natural numbers”, Com-
puter Science in Russia (CSR 2007, Ekaterinburg, Russia, September
3–7, 2007), LNCS 4649, 127–138.

[15] J. Gruska, “Descriptional complexity of context-free languages”, Math-
ematical Foundations of Computer Science (MFCS 1973, Strbské Pleso,
Czechoslovakia, September 3–8, 1973), Mathematical Institute of the
Slovak Academy of Sciences, 71–83.

[16] J. Hartmanis, “Context-free languages and Turing machine computa-
tions”, Proceedings of Symposia in Applied Mathematics, Vol. 19, AMS,
Providence, RI, 1967, 42–51.

[17] D. T. Huynh, “Commutative grammars: the complexity of uniform
word problems”, Information and Control, 57:1 (1983), 21–39.

[18] O. H. Ibarra, S. M. Kim, “Characterisations and computational com-
plexity of systolic trellis automata”, Theoretical Computer Science, 29
(1984), 123–153.

[19] A. Jeż, “Conjunctive grammars can generate non-regular unary
languages”, International Journal of Foundations of Computer Science,
19:3 (2008), 597–615.

[20] A. Jeż, A. Okhotin, “Complexity of equations over sets of natural
numbers”, 25th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2008, Bordeaux, France, 21–23 February, 2008), 373–
383, to appear in Theory of Computing Systems, .

[21] A. Jeż, A. Okhotin, “On the computational completeness of equations
over sets of natural numbers” 35th International Colloquium on Au-
tomata, Languages and Programming (ICALP 2008, Reykjavik, Iceland,
July 7–11, 2008), LNCS 5126, 63–74.

[22] A. Jeż, A. Okhotin, “Equations over sets of natural numbers with ad-
dition only”, STACS 2009 (Freiburg, Germany, 26–28 February, 2009),
577–588.

http://dx.doi.org/10.1016/S0019-9958(86)80011-0
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1007/978-3-540-77050-3_21
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/0304-3975(84)90015-X
http://dx.doi.org/10.1142/S012905410800584X
http://drops.dagstuhl.de/opus/volltexte/2008/1319/
http://dx.doi.org/10.1007/s00224-009-9246-y
http://dx.doi.org/10.1007/978-3-540-70583-3_6
http://drops.dagstuhl.de/opus/volltexte/2009/1806

BIBLIOGRAPHY 193

[23] A. Jeż, A. Okhotin, “One-nonterminal conjunctive grammars over a
unary alphabet”, Computer Science in Russia (CSR 2009, Novosibirsk,
Russia, 18–23 August, 2009), LNCS 5675, 191–202.

[24] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet:
undecidability and unbounded growth”, Theory of Computing Systems,
46:1 (2010) 27–58.

[25] A. Jeż, A. Okhotin,“Univariate equations over sets of natural numbers”,
Fundamenta Informaticae, accepted for publication.

[26] G. Jirásková, A. Okhotin, “Nondeterministic state complexity of posi-
tional addition”, DCFS 2009.

[27] N. D. Jones, W. T. Laaser, “Complete problems for deterministic poly-
nomial time”, Theoretical Computer Science, 3:1 (1976), 105–117.

[28] S. C. Kleene, Introduction to metamathematics, North-Holland, Ams-
terdam, (1952).

[29] M. Kunc, “The power of commuting with finite sets of words”, Theory
of Computing Systems, 40:4 (2007), 521–551.

[30] M. Kunc,“What do we know about language equations?”, Developments
in Language Theory (DLT 2007, Turku, Finland, July 3–6, 2007), LNCS
4588, 23–27.

[31] E. L. Leiss, “Unrestricted complementation in language equations over
a one-letter alphabet”, Theoretical Computer Science, 132 (1994), 71–93.

[32] M. Lohrey, “Word problems and membership problems on compressed
words”, SIAM Journal on Computing, 35:5 (2006), 1210–1240.

[33] N. Markey, Ph. Schnoebelen, “A PTIME-complete matching problem
for SLP-compressed words”, Information Processing Letters, 90:1 (2004),
3–6.

[34] P. McKenzie, K. Wagner, “The complexity of membership problems for
circuits over sets of natural numbers”, Computational Complexity, 16:3
(2007), 211–244.

[35] M. Ogihara, “Sparse hard sets for P yield space-efficient algorithms”,
Chicago Journal of Theoretical Computer Science, 1996, article 2.

[36] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[37] A. Okhotin,“A recognition and parsing algorithm for arbitrary conjunc-
tive grammars”, Theoretical Computer Science, 302 (2003), 365–399.

http://dx.doi.org/10.1007/978-3-642-03351-3
http://dx.doi.org/10.1007/s00224-008-9139-5
http://arxiv.org/abs/0907.5072
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1007/s00224-006-1321-z
http://dx.doi.org/10.1007/978-3-540-73208-2_3
http://dx.doi.org/10.1016/0304-3975(94)90227-5
http://dx.doi.org/10.1137/S0097539704445950
http://dx.doi.org/10.1016/j.ipl.2004.01.002
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1016/S0304-3975(02)00853-8

194 BIBLIOGRAPHY

[38] A. Okhotin, “The hardest linear conjunctive language”, Information
Processing Letters, 86:5 (2003), 247–253.

[39] A. Okhotin, “Boolean grammars”, Information and Computation. 194:1
(2004) 19–48.

[40] A. Okhotin, “On the equivalence of linear conjunctive grammars to
trellis automata”, Informatique Théorique et Applications, 38:1 (2004),
69–88.

[41] A. Okhotin, “Unresolved systems of language equations: expressive
power and decision problems”, Theoretical Computer Science, 349:3
(2005), 283–308.

[42] A. Okhotin, “Strict language inequalities and their decision problems”,
Mathematical Foundations of Computer Science (MFCS 2005, Gdańsk,
Poland, August 29–September 2, 2005), LNCS 3618, 708–719.

[43] A. Okhotin, “Language Equations with Symmetric Difference”, First
International Computer Science Symposium in Russia (CSR 2006, St.
Petersburg, Russia, June 8–12, 2006) LNCS 3967, 292–303

[44] A. Okhotin, “Nine open problems for conjunctive and Boolean gram-
mars”, Bulletin of the EATCS, 91 (2007), 96–119.

[45] A. Okhotin, “Homomorphisms Preserving Linear Conjunctive Lan-
guages”, Journal of Automata, Languages and Combinatorics, 13:3-4
(2008), 299–305.

[46] A. Okhotin, P. Rondogiannis, “On the expressive power of univariate
equations over sets of natural numbers”, IFIP Intl. Conf. on Theoretical
Computer Science (TCS 2008, Milan, Italy, 8–10 September, 2008), IFIP
vol. 273, 215–227.

[47] A. Okhotin, “Decision problems for language equations”, Journal of
Computer and System Sciences, to appear.

[48] W. Plandowski, W. Rytter, “Complexity of language recognition prob-
lems for compressed words”, in: J. Karhumäki, H. A. Maurer, G. Păun,
G. Rozenberg (Eds.), Jewels are Forever, Springer, 1999, 262–272.

[49] H. Rogers, Jr., Theory of Recursive Functions and Effective Com-
putability, McGraw-Hill, 1967.

[50] W. Rytter, “On the recognition of context-free languages”, Fundamen-
tals of Computation Theory (FCT 1985, Cottbus, Germany), LNCS 208,
315–322.

http://dx.doi.org/10.1016/S0020-0190(02)00511-2
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1051/ita:2004004
http://dx.doi.org/10.1016/j.tcs.2005.07.037
http://dx.doi.org/10.1007/11549345_61
http://dx.doi.org/10.1007/11753728_30
http://dx.doi.org/10.1007/978-0-387-09680-3_15
http://dx.doi.org/10.1016/j.jcss.2009.08.002
http://dx.doi.org/10.1007/3-540-16066-3_26

BIBLIOGRAPHY 195

[51] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential
time”, STOC 1973, 1–9.

[52] A. Tarski, “A lattice theoretical fixpoint theorem and its applications”,
Pacific Journal of Mathematics, 5 (1955), 285–310.

[53] Véronique Terrier“On Real Time One-Way Cellular Array”, Theoretical
Computer Science, 141:1&2 (1995), 331–335.

[54] S. D. Travers,“The complexity of membership problems for circuits over
sets of integers”, Theoretical Computer Science, 369:1–3 (2006), 211–229.

[55] D. Wotschke, personal communication to A. Okhotin, August 2000.

[56] K. Yang, “Integer circuit evaluation is PSPACE-complete”, Journal of
Computer and Systems Sciences, 63:2 (2001), 288–303.

http://dx.doi.org/10.1145/800125.804029
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.pjm/1103044538&view=body&content-type=pdf_1
http://dx.doi.org/10.1016/0304-3975(94)00212-2
http://dx.doi.org/10.1016/j.tcs.2006.08.017
http://dx.doi.org/10.1006/jcss.2001.1768

	Introduction
	Formal languages
	Language equations
	General language equations
	Resolved language equations

	Systems of equations over sets of numbers
	Outline of the results

	Basic terminology and notation
	General notation conventions
	Formal languages
	Natural numbers

	Semantics of conjunctive grammars
	Solutions of systems of equations
	Least solutions of resolved systems
	Solutions from natural numbers and positive natural numbers

	Constants and solutions
	Representing numbers in positional notation
	From strings to numbers
	Symbolic addition and subtraction

	Distributivity

	I Resolved equations over sets of natural numbers
	Sets with regular positional notation
	Toy example
	Regular notation
	Sets of numbers with two leading digits fixed
	Any regular language

	Sets with trellis positional notation
	Definition of trellis automata
	A representation of trellis automata

	II Unresolved equations over sets of natural numbers
	Transforming resolved to unresolved
	Two general translation lemmata
	Sets with regular positional notation
	Sets trellis positional notation

	Completeness of systems of equations
	Sketch
	Unresolved systems with {, , +}
	Equations with , + or , +

	Equations with addition only
	Overview of the argument
	Encoding of sets
	Simulating operations
	Simulating a system of equations
	Systems with finite constants
	Afterthought

	III Decision Problems
	Single nonterminal grammars
	First example
	One-nonterminal conjunctive grammars

	Equation with one variable
	Equations (X)=(X) with periodic constants
	Equations (X)=(X) with singleton constants

	Membership for resolved equations
	Related work
	Fixed membership problem
	General membership problem

	Arithmetisation of EXPTIME-completeness
	The membership problem

	Conjunctive grammars
	Membership
	Equivalence
	Finiteness
	Co-finiteness

	General systems of equations

