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Abstract

This paper presents a short description of the PhD thesis of the author [4].
For shortness reasons, almost all technical part and proofs are omitted. Since the
goal is to accessibly present the main results and give some intuition of the proof
techniques, some of the details and subtleties are removed on purpose.

The thesis is devoted to the study of systems of equations

ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) for i = 1, . . .m ,

in which the variables X1, . . . , Xn represent sets of natural numbers. The allowed
operations are union, intersection and addition, which is defined as

X + Y = {x+ y | x ∈ X, y ∈ Y } .

Such systems can be equally interpreted as systems of language equations over
a single-letter alphabet and operations of union, intersection and concatenation.

The study begins with considering the subclass of systems of equations over sets
of numbers, consisting of systems of the resolved form, i.e.,

Xi = ϕi(X1, . . . , Xn) for i = 1, . . . , n .

The counterparts of such systems among the language equations are the resolved
systems of language equations over a single-letter alphabet. These can be also
viewed as appropriate grammars: when the allowed operations are union and con-
catenation, they correspond to context free grammars; when also intersection is
allowed, to the conjunctive grammars.

It is shown that the resolved systems of equations over sets of natural numbers
can have non-ultimately periodic sets as the least solutions. Equivalently, conjunc-
tive grammars over a single-letter alphabet can generate non-regular languages, as
opposed to context-free grammars. This claim is firstly demonstrated by giving
a simple system, which has the least solution with {4n : n ∈ N} as its first compo-
nent. This system exploits the properties of the base-4 positional notation of sets,
in particular, the aforementioned set should be viewed as the set of numbers with
base-4 notation 10

`, for some ` ≥ 0.
Then, this example is generalised. For every set S of numbers, such that base-k

positional notations of numbers from S are recognised by a certain type of a real-
time cellular automaton, an explicit construction of a resolved system with S as
the first component of the least solution is given.

Next the systems with no restrictions on the form of the equations imposed
are investigated. They are shown to be computationally universal: the class of
unique solutions of such systems coincides with the class of recursive sets. Similar
characterisations are shown for the class of least (greatest) solutions: this class
coincides with the class of recursively enumerable sets (co-recursively enumerable
sets, respectively; these sets are called r.e. and co-r.e. from now on). These results
hold even when only union and addition (or only intersection and addition) are
allowed in the system.

1



2 ARTUR JEŻ

Systems with addition as the only allowed operation are also considered, it is
shown that the obtained class of sets is computationally universal, in the sense that
their unique (least, greatest) solutions can represent encodings of all recursive (r.e.,
co-r.e., respectively) sets.

The computational complexity of decision problems for both formalisms is in-
vestigated. The membership problem for the resolved systems of equations is
EXPTIME-complete. Many other decision problems for both types of systems
are undecidable, and their exact undecidability level is settled. Most of these re-
sults hold even when the systems are restricted to the use of one equation with one
variable.

1. Introduction

Systems of equations over sets of natural numbers are among the simplest and
most intuitive mathematical formalisms. Each equation is of the form

ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn) ,

where expressions ϕ and ψ may use Boolean operations and arithmetical operations,
applied pairwise to elements of sets, for example:

A+B = {a+ b | a ∈ A, b ∈ B} .

In the thesis, equations with only union and intersection as the allowed Boolean
operations and with addition as the only arithmetical operation are studied.

Consider the following example of an equation with an unknown X ⊆ N, with
the operations of addition and union, and with two singleton constant languages.

X = (X + {2}) ∪ {0} .

This equation defines even numbers inductively, by stating that 0 is an even number,
and that an even number plus two is an even number as well. Formally, the equation
has a unique solution, which is the set of all even numbers.

Another example of a univariate equation

X + {1} = (X +X) ∪ {2}

no longer defines an explicit induction, as none of its sides is X . This equation
has multiple solutions, among them the solutions X = {1} and X = {1, 2, . . .}.
Furthermore, every solution of this equation must contain 1 and be contained in
{1, 2, . . .}, which makes these two solutions the least and the greatest solutions of
this equation.

As already shown by the above examples, an equation over sets of numbers may
have a unique solution or multiple solutions, or sometimes no solutions at all, as
in the example X = X + {1}. There is a common outlook on an equation as
a formalism for defining its solutions. An equation with a unique solution may
be seen as a definition of this solution, and in case of multiple solutions, least or
greatest solutions (provided that they exist, as in the second example above) may
be similarly considered.

All the examples considered so far define ultimately periodic sets, and in fact,
every ultimately periodic set can be easily defined by a unique solution of an equa-
tion with finite constants. However, when one tries to write any such system of
equations, its solution somehow tends to be ultimately periodic, and there seems
not to be an easy way to avoid this. Prior to the thesis [4], only one example of a
non-periodic set defined by an equation over sets of numbers has been known [6],
and no general method of constructing any further examples.

In the thesis [4] a surprising result is shown: the class of unique solutions of
equations of the general form is exactly the class of recursive sets, that is, the
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sets with an effectively decidable membership. For equations in the resolved form
X = ϕ(X), the computational power of their solutions is limited, yet still much
exceeds the class of ultimately periodic sets. Such results belong to the domain of
the theory of computations, and the methods used to establish them come from
formal language theory.

1.1. Language equations. Language equations are equations with formal lan-
guages as unknowns, their most general form can be given as





ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn) ,

where each ϕi, ψi consist of variables, constants from some given class, and oper-
ations on languages, such as concatenation, union, intersection, complementation,
and possibly others. While language equations are an old formalism, in the recent
years they have attracted new attention.

Language equations have several useful properties. Their semantics is intuitively
clear and can be mathematically well formalised. One can trim or extend them in
many ways to obtain different classes of languages or to adapt them to a particular
application. Such changes do not affect the way the semantics is given. Moreover,
grammars and automata can be translated to systems of language equations. While
this does not introduce any theoretical or practical novelty on its own, it often eases
the proofs and formalisation and provides an elegant common generalisation.

Despite all the motivation, language equations are far away from being fully,
or even partially, understood. The quest for their better understanding is crucial.
Thus even a partial progress in a simple subcase is important, as it might eventually
help in dealing with more general cases.

1.1.1. General language equations. When no restriction on the form of language
equations is imposed, they possess great computational power: Okhotin determined
that the family of sets representable by unique (least, greatest) solutions of such
equations is exactly the family of recursive languages (r.e., co-r.e., respectively). In
the general case, a solution is a vector of languages (L1, . . . , Ln), and it is greater
than another solution (K1, . . . ,Kn), if Ki ⊆ Li for each i-th coordinates. The
least (greatest) solution is the one that is less (greater, respectively) than any other
solution. Though such extremal solutions do not always exist, when they do, they
are computationally complete:

Theorem 1 (Okhotin [9, 7]). Consider a system of language equations using union,
intersection, concatenation and recursive constants that has a unique (least, great-
est) solution (L1, . . . , Ln). Then each component Li is recursive (r.e., co-r.e., re-
spectively).

Conversely, for every recursive (r.e., co-r.e.) language L ⊆ Σ∗ (with |Σ| ≥ 2)
there exists a system using concatenation, union and singleton constants (concate-
nation, intersection and singleton constants) with the unique (least, greatest, re-
spectively) solution (L, . . .).

It is worth to mention that the lower bound demonstrated in the theorem essen-
tially uses the fact that |Σ| > 2. On the other hand, the upper bound applies to
the case of a unary alphabet.
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1.1.2. Resolved language equations. Among all language equations a particularly
useful subclass consists of resolved language equations, i.e., the one of the form:





X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn) .

Such systems possess a nice property: if the expressions ϕi are monotone, the least
solution exists.

Another property was discovered by Ginsburg and Rice [2], who gave a semantics
of context-free grammars by using resolved language equations with concatenation
and union as the only operations. In fact, this semantics is a simple (syntactic)
transformation between context-free grammars and resolved language equations
using union and concatenation. Such a transformation supports the claim that
there is a strong connection between resolved language equations and grammars.

This connection was further explored by Okhotin, who defined conjunctive gram-
mars. They can be viewed as an extension of context-free grammars by a possibility
of an unrestricted intersection in the body of every rule. The particular importance
of conjunctive grammars among other extensions of context-free grammars lies not
in the possibility of the intersection itself, but in the semantics. It can be given
not only in terms of string rewriting, but also in terms of language equations. In
fact this is the (unique) semantics generalising the one of Ginsburg and Rice to the
language equations using union, intersection and concatenation; this is the major
justification both for conjunctive grammars and for resolved systems of language
equations.

It should be noted that the conjunctive grammars inherit almost all good parsing
properties of context-free grammars, while having much larger expressive power,
stretching beyond the finite intersection of context-free languages.

1.2. Systems of equations over sets of numbers. Consider language equations
over a single letter alphabet. By a trivial isomorphism an ←→ n, unary languages
can be regarded as sets of natural numbers, and language equations over a single-
letter alphabet become equations over sets of numbers. Concatenation of languages
accordingly turns into addition (or sum) of sets

S + T = {m+ n |m ∈ S, n ∈ T } .

Such equations constitute a basic mathematical object on its own, the study of
which can be traced up to the seminal paper of Stockmeyer and Meyer [11], who
studied integer expressions, i.e., regular expressions (though with complementation)
over unary languages. These expression were generalised to integer circuits, that is
expressions which may share the subexpressions; recursive calls are still not allowed
though. As such expressions (and circuits) define only finite sets, they were studied
mainly with complexity of their decision problems in mind, while their expressive
power was not investigated, as there was virtually nothing to investigate.

Equations over sets of numbers are a more general formalism, and its expres-
sive power seems to be related to the allowed Boolean operations. For example,
it is relatively easy to see that for resolved equations using union and addition,
only ultimately periodic sets can be obtained (in terms of formal languages: unary
context-free languages are regular).

Constructing any system of equations, even an unresolved one, with a non-
periodic unique solution has proved to be a non-trivial task; the first example of
such an equation using the operations of concatenation and complementation was
presented by Leiss [6].
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Figure 1. The Leiss construction depicted graphically. The black
boxes represent the numbers from the unique solution, while the white
ones represent the numbers outside the solution.

Example 1 (Leiss [6]). For every expression ϕ, denote 2ϕ = ϕ+ ϕ. Then the set
{n|base-8 notation of n starts with 1, 2 or 3} is the unique solution of the equation

X = 2
(
2
(
2X

))
+ {1} .

Naturally, it was asked, whether unary conjunctive grammars generate non-
regular languages, or equivalently, whether there exists a non-periodic least solution
of resolved system of equations over sets of numbers using union, intersection and
addition.

This question remained open for some time and was considered as one of the
most important in the field of conjunctive grammars, until a simple construction
for a non-regular language {a4

n

| n ∈ N} was demonstrated by the author [5]; the
generalisations of this construction is the cornerstone of the thesis.

1.3. Preliminaries and notation. In this section, the basic terminology and the
general facts about language equations and equations over sets of natural numbers
are stated.

1.3.1. Systems of Equations and their Solutions. A system of equations of equations
over sets of numbers is a system of the form





ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn) ,

where the unknowns Xi are subsets of N, while ϕj and ψj are expressions using
Boolean operations and addition, as well as some constants. A solution of such
a system is a vector (S1, . . . , Sn), such that substituting Xi = Si for i = 1, . . . , n
in the system turns each equation into an equality.

When no other description is given, systems of equations are assumed (by de-
fault), to be over sets of natural numbers and to use operations ∩, ∪ and +, the
allowed constants are only singletons. If some considerations apply to different
systems, these systems will be explicitly characterised.

To simplify the notation, the following precedence of operations is assumed:
addition has the highest precedence, followed by the intersection and with the
union having the least precedence.

There is a natural partial order on the sets of solution of a given system.
A solution (S1, . . . , Sn) is greater than (S′

1, . . . , S
′
n), denoted as (S1, . . . , Sn) ⊇

(S1, . . . , Sn) if for each i = 1, . . . , n it holds that Si ⊇ S
′
i. Whenever we refer to a

least or greatest solution, this is with respect to this order.

1.3.2. Least solutions of resolved systems. With every resolved system of equations
of the form

(X1, . . . , Xn) = ϕ(X1, . . . , Xn) ,

an operator ϕ :
[
2N

]n
7→

[
2N

]n
can be associated. Then every solution is a fixpoint

of such an operator and vice-versa, in particular, the least fixpoint is the least
solution of the system.



6 ARTUR JEŻ

By the Tarski’s Fixpoint Theorem, each monotone operator has the least fixpoint.
Still, this does not give any construction of this fixpoint. An older Kleene’s Fixpoint
Theorem can be used instead. While it has stronger assumptions on the operator, it
can be routinely checked that they are satisfied in the case of systems of equations.

Proposition 1. The least fixpoint of a monotone and ∪-continuous operator is
given by

∞⋃

i=0

ϕi(∅, . . . ,∅) .

1.3.3. Representing numbers in positional notation. While all the equations defined
in the thesis deal with numbers as they are, the principal outlook on these numbers
considers their base-k positional notation, for a suitable k. For example, the very
first non-trivial example of a least solution of a resolved system of equations defines
the set {4n | n ∈ N}, i.e., the set of all numbers that, written in base-4 notation,
consist of 1 followed by some zeroes. For this reason, a special notation for sets
of natural numbers is employed. Fix a base k ≥ 2 and define the alphabet Σk =
{0, 1, 2, . . . , k − 1} of k-ary digits.

Every string w = dn−1 . . . d1d0 with di ∈ Σk represents the following number:

(w)k = (dn−1 . . . d1d0)k =
n−1∑

i=0

di · k
i .

Accordingly, every language L ⊆ Σ∗
k defines a certain set of numbers:

(L)k =
{
(w)k

∣∣ w ∈ L
}
.

1.3.4. Simplifications. The technical lemmata presented in this paper are some-
times simplified when compared to the full statements available in the thesis [4].
This can mean that some additional properties or assumptions are not listed,
slightly more complicated construction are in fact needed, etc. This is done in
order to streamline the presentation and give the idea more clearly. In particular,
some of the lemmata may not be true as they are written here, though they resem-
ble lemmata from the thesis. Still, all the statements of the theorems are as in the
thesis and exactly these statements are proved there.

2. Toy example

D. Wotschke asked the question of the expressive power of conjunctive gram-
mars over a single letter alphabet. This question was suppose to settle, whether
conjunctive grammars possess more expressive power than context-free grammars
even in the simplest case of a single-letter alphabet. It was conjectured that only
regular languages can be generated by unary conjunctive grammars [8], similarly to
the context-free grammars. In the terms of systems of equations, it was conjectured
that the resolved systems of equations have only ultimately periodic least solutions.
The contrary claim is shown: a construction of a resolved system of equations with
non-periodic least solution is presented.

Theorem 2. The least solution of the system

(1)





X1 = X2+X2 ∩ X1+X3 ∪ {1}
X2 = X12+X2 ∩ X1+X1 ∪ {2}
X3 = X12+X12 ∩ X1+X2 ∪ {3}
X12 = X3+X3 ∩ X1+X2 ,

is ((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4).

This is the unique solution of this system in sets of positive integers.
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Proof. To see that this vector is indeed a solution, let us substitute the given values
into the equations. The proof follows by a simple principle: each sum of two sets
consists of numbers with a few non-zero digits (in base-4 notation). Intersection of
two such sum filters out numbers with unwanted base-4 notation.

The first sum can be transformed as follows:

X2 +X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4 ,

and similarly the second sum equals

X1 +X3 = (10∗)4 + (30∗)4 = (10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4 .

Then their intersection is

(X2 +X2) ∩ (X1 +X3) = (10+)4 ,

and after taking union with {1}, exactly (10∗)4 = X1 is obtained. The equations
for variables X20, X30 and X12 are verified in a similar way.

It remains to show that the given solution is the least solution in the sets of
natural numbers. This follows from the general form of the right-hand sides of this
system, in which all occurrences of variables are in sums of two variables, and no
constant set contains 0; this is only a matter of a technique, which generalises the
notion of proper system [1]. �

3. Expressive power of resolved systems

The example presented in Section 2 shows that systems of (resolved) equations
over sets of natural numbers become substantially richer in their expressive power,
when the intersection is also an allowed operation. Recall, that the construction
effectively manipulates the leading digits of the numbers. It is natural to ask, how
far this method can be extended, i.e., what sets can be constructed in this way. In
this section it is shown that the method can be greatly generalised. The goal is
obtained in stages: in each stage the previously defined sets are used as constants,
in order to ease the construction of richer class of sets. This makes the construction
much more modular and thus easier to both develop and follow.

3.1. Expressing (ij0∗)k. The example from Section 2 is naturally extended to the
sets of the form (ij0∗)k for each i ∈ Σk \ {0}, j ∈ Σk. The constructed system of
equations are variations of the (1) and the proof follows the same principle as the
proof of Theorem 2.

Theorem 3. Let k ≥ 2 be a natural number. There exists a resolved system of
equations in variables {Xi,j} for i ∈ Σk \ {0}, j ∈ Σk such that its unique solution
in the subset of positive numbers is Xi,j = (ij0∗)k for each i, j.

This solution is the least solution of this system in the natural numbers.

As an example, consider the equation which defines (ij0∗)k for i > 1, j > 2 and
k ≥ 9:

Xi,j =

2⋂

n=1

Xi−1,k−n +Xj+n,0 ∪ (ij)k .

3.2. Regular notation. In order to construct a larger class of sets the idea behind
the construction has to be changed a bit. Until now, in the sets Xi,j = (ij0∗)k the
digits i, j were crucial, while the strings of 0’es after them were just a gadget of
the construction. For the new sets it works the other way around—they are of the
form Xi,j,L = ({ijw |w ∈ L})k for some language L. So now i, j are just technical
gadgets, which are used in the construction to manipulate the leading digits, while
the important information is stored in the rest of the digits.
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The construction uses several different variables, which represent different sets L
and different two leading digits. One should imagine that for a fixed ` and varying
i, j variables Xi,j,` correspond to one language L`. Moreover, the technique, if
properly generalised, allows expanding the notations of numbers by a fixed digit.
So the intuition is that languages {L`}` should express themselves using other
languages from this group of languages and left-concatenation with a digit. This is
almost the formal definition of the class of regular languages.

Consider an arbitrary regular language L ⊆ Σ+
k \ 0Σ

∗
k. Let M = 〈Σk, Q, δ, F, q0〉

be a (deterministic) automaton recognizing Lr. A resolved system of equations
with the least solution Xi,j,q = {(ijw)k | δ(q0, w

r) = q}, for i, j ∈ Σk, i > 0 and
q ∈ Q will be presented. Then constructing a resolved equation with the least
solution (Lr)k easily follows. The reversal of the word in the definition of Xi,j,q is
for technical reasons—while the automata read the word from the left to the right,
the constructed system expands the numbers by digits to the left, i.e., by the digit
read first by the automaton.

Lemma 1. There exists a resolved system in variables Xi,j,q, i, j, ` ∈ Σk, i 6= 0
and q ∈ Q such that its unique solution in positive natural numbers is Xi,j,q =
{(ijw)k | δ(q0, w

r) = q}.
This is also the least solution in the natural numbers.

As an example of such an equation, consider the one for j < 4 and i > 1 and
k ≥ 9.

Xi,j,q =
⋃

(`,q′):
δ(q′,`)=q

4⋂

n=1

Xk−n,`,q′ + ((i− 1)(j + n)0∗)k ∪ ({ij | q0 = q})k .

The strings are generated recursively: the representation for w = ε is given
explicitly, otherwise w = w′` and so it may be assumed that the representation for
w′ were already generated. Assume that w leads to a state q and w′ to q′. Then

(ijwr)k = (ij`w′r)k = ((k−n)`w′r)k+((i−1)(j+n)0|w|)k ∈ Xk−n,`,q′+(i−1, j+n0∗)k ,

for each n ∈ {1, . . . , 4}However, the latter sums of sets may contain also some
unwanted results. Using several such representations and intersecting them allows
eliminating the unwanted sums, as in Theorem 2.

After establishing Lemma 1 the general representation theorem follows by taking
a union of appropriate sets constructed in Lemma 1.

Theorem 4. For every natural k > 1 and every regular language L ⊆ Σ∗
k the set

of numbers (L)k can be represented as a unique solution of a resolved system of
equations.

This solution is the least solution of this system in the natural numbers.

It should be pointed out, that after representing sets of numbers with a regular
positional notation, the task of constructing equations with specified least solutions
becomes substantially easier, as using constants with a regular positional notation
is allowed. Generally speaking, this allows modifying a specified digit in numbers
from the input set.

3.3. Sets with trellis representation. There is a natural attempt to extend the
used method—since the notations of numbers are expanded to the left by a given
digit, maybe the same can be done with the ending digit?

In order to enforce this approach, a different representation of a word is needed:
in the previous construction, a single word w was represented by a number (ijw)k, in
particular one word was represented by one number. Now a word w is represented
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by the numbers (1w1000 . . . 0)k, i.e., by the numbers with their base-k notation
consisting of 1w1 followed by a series of 0’es. The two additional 1’s are ‘sentinels’,
as they mark the beginning and the end of the word w—note that w may contain
both leading and ending 0’es. Then going from w to, say, w3 is just changing the
10 in the end into 31. Moreover, since it is not known in advance, how many ending
0’es will be consumed, w is represented as (1w10∗)k, i.e., one word is represented
by an infinite set of numbers.

Now one needs to understand what type of computational device can be simu-
lated in this way. On a high level, it is an automaton with a finite state control
and the state calculated on a word awb depends on the states calculated on aw and
on wb. Such a class of automata is well-known—these are trellis automata. Quite
surprisingly, the class of trellis languages already is connected with the conjunctive
grammars: it coincides with the class of linear conjunctive languages, which are
a strict subclass of conjunctive languages.

A trellis automaton processes an input string of length n ≥ 1 using a uniform

triangular array of n(n+1)
2 processor nodes. Each node computes a value from a fixed

finite set Q. The nodes in the bottom row obtain their values directly from the
input symbols using a function I : Σ → Q. The rest of the nodes compute the
function δ : Q×Q→ Q of the values in their predecessors. The string is accepted if
and only if the value computed by the topmost node belongs to the set of accepting
states F ⊆ Q. This is formalised in the below definition.

Definition 1. A trellis automaton is a quintuple M = (Σ, Q, I, δ, F ), in which:

• Σ is the input alphabet,
• Q is a finite non-empty set of states,
• I : Σ→ Q is a function setting the initial states,
• δ : Q×Q→ Q is the transition function,
• F ⊆ Q is the set of final states.

a1 a2 a3 a4

Extend δ to a function δ : Q+ → Q by δ(q) = q and δ(q1, . . . , qn) =
δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)), while I is extended to a homomorphism
I : Σ∗ → Q∗. Let LM (q) = {w | δ(I(w)) = q} and define L(M) =

⋃
q∈F LM (q).

A brief explanation how the informal intuition is changed into a specific encod-
ing should be given. When devising the representation for word w some possible
obstacles should be taken taken into account:

• while L(M) ∩ 0Σ∗
k = ∅ can be assumed, and hence in the end w ∈ L(M)

does not start with 0, its substring can start with 0. Thus a way of marking
the number of leading 0’es is needed;

• similar question arises for w’s ending 0’es—they should be distinguishable
from 0’es added in the end.

The natural approach is to add sentinels on both sides of the word, i.e., to represent
w as (1w10∗)k. This solves the two mentioned problems. Still it creates another:
resolved equations are ‘monotone’ in the sense that if (w)k ∈ ϕ({(w′)k}) then
(w)k ≥ (w′)k. The current encoding does not guarantee such property. This is an-
swered in the thesis by representing w not by (1w10∗)k directly, but by (1w′

10
∗)k,

where w′ represents a number smaller by 1 than w, i.e., (w′)k + 1 = (w)k. This
modified representation is properly explained and verified in the thesis, however,
this technical detail makes it harder to understand the general idea, therefore we
present a construction in a simplified way, which does not work, however is easier
to comprehend.
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For a given trellis automaton M = (Σk, Q, I, δ, F ), define a system of equations
over sets of numbers with the set of variables Xq for q ∈ Q, the desired solution of
this variable is

Sq = (1LM (q)10∗)k = {(1w10`)k | ` ≥ 0, w ∈ LM (q)} .

The main idea of the construction is to represent numbers corresponding to a string
iwj ∈ LM (q), with i, j ∈ Σk and w ∈ Σ∗

k, through numbers corresponding to the
strings iw and wj. Consider that iwj belongs to LM (q) if and only if there are
states q′, q′′ with δ(q′, q′′) = q, iw ∈ LM (q′) and wj ∈ LM (q′′). In terms of the
encodings, the number (1iwj10`)k should belong to Xq if and only if there are
states q′, q′′ with δ(q′, q′′) = q, (1iw10`+1)k ∈ Xq′ and (1wj10`)k ∈ Xq′′ .

Two expressions: λi and ρj for i, j ∈ Σk depending on the variables Xq are
devised. The purpose of λi is to take a number of the form (1wj10`)k and ap-
pend the digit i to the left of the encoded string obtaining a number (1iwj10`)k.
Similarly, ρj starts with a number (1iw10`+1)k and appends j to the right of the
string, also obtaining (1iwj10`)k. This is implemented by adding digits at some
specific positions, so that selected digits in the original number (at the left and
at the right of the encoding, respectively, whence the letters λ and ρ come from)
could be modified in the resulting number, while the rest of the digits remain the
same. This is to be done by adding a number of the form ((j − i)0`)k, where ` is
the position in which digit i is to be replaced by digit j > i. Below, we present an
example of these expression for i, j ≥ 2.

λi(X) =
⋃

i′∈Σk

((
X ∩ (1i′Σ∗

k10
∗)k

)
+(10∗)k ∩ (2i′Σ∗

k)k
)
+(1(i− 2)0∗)k ∩ (1iΣ∗

k)k ,

ρj(X) =
⋃

j′∈Σk

((
X ∩ (1Σ∗

kj
′
10

∗)k
)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k
)
+(1(j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k .

For example, the desired action of λi on a number (1w10`)k is as follows: first
it represents w as w = i′w′. Then it adds (10|w|+1+`)k to (1i′w′

10
`)k, obtaining

(2i′w′
10

`)k. As a next operation, (1(i − 2)0|w|+1+`)k is added, and the result is
(1ii′w′

10
`)k = (1iw10`)k, as desired. The additional intersections in the equations

assure that in fact everything goes as intended.
Using the functions λi and ρj , the resolved system of equations can be succinctly

represented:

Xq = Rq ∪
⋃

q′,q′′ : δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) ,

where Rq is the set of numbers which cannot be represented using the recursion.
Intuition behind this equations is as follows: the sets Rq contain the starting part
of Sq representing elements of LM (q) of a very simple form; it can be shown that
Rq is regular. All other numbers are constructed by simulating the transition of
M , as described earlier.

To obtain the main set out of this construction it is needed to extract the number
(w)k out of the set (1w10∗)k. This is done by fairly natural digit manipulation.

Theorem 5. For every k ≥ 2 and for every trellis automaton M over Σk =
{0, . . . , k − 1}, such that L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively
constructed a resolved system of equations such that its least solution contains a
component

(L(M))k = {n | k-ary notation of n is in L(M)} .

This is the unique solution in sets of positive natural numbers.
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4. Unresolved equations over sets of natural numbers

So far, only the resolved system of equations were considered. Now the attention
is turned to the general (i.e., unresolved) case of systems of equations. As noted,
systems of equations over sets of numbers can be viewed as systems of language
equations over a unary alphabet. Thus the upper bound of Theorem 1 can be ap-
plied to systems of equations as they are, i.e., each unique (least, greatest) solution
of such system is recursive (r.e., co-r.e., respectively). The main result presented in
this section is a matching lower bound.

Theorem 6. The family of sets of natural numbers representable by unique
(least, greatest) solutions of systems of equations of the form ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) with union and addition, is exactly the family of recursive (r.e.,
co-r.e., respectively) sets. The same result holds for systems with intersection and
addition.

Then it is investigated, what happens if none Boolean operation is allowed, i.e.,
that addition is the only used operation. It is shown that the solutions are indeed
trivial, when only finite constants are allowed; however, when ultimately-periodic
can also be used, the least (greatest) solutions are r.e.-complete (co-r.e.-complete).

4.1. Sketch of proof of Theorem 1. A short sketch of the proof of lower bound
of Theorem 1 is given to present its general idea, the proof of Theorem 6 is mod-
elled on it. The main technical device used in the construction is the language of
transcription of computation of a Turing machine. In short, for every TM T over
an input alphabet Γ one can construct an alphabet Σ ⊇ Γ and an encoding of
computations CT : Γ∗ → Σ∗, so that for every w ∈ L(T ) the string CT (w) lists the
configurations of T on each step of its accepting computation on w. The language

VALC(T ) = {CT (w)\w | CT (w) is an accepting computation} ,

where \ /∈ Σ, is an intersection of two linear context-free languages. Since unre-
solved equations can directly simulate context-free grammars and are equipped with
intersection, for every Turing machine it is relatively easy to construct a system in
variables (X1, . . . , Xn) with a unique solution (L1, . . . , Ln), so that L1 = VALC(T ).

It remains to ‘extract’ L(T ) out of VALC(T ) using a language equation. Let Y
be a new variable and consider the inequality

(2) VALC(T ) ⊆ Σ∗\Y ,

which can be rewritten as an equation X1 ∪ Σ∗\Y = Σ∗\Y or an equation X1 ∩
Σ∗\Y = X1. This inequality states that for every w ∈ L(T ), the string CT (w)\w
should be in Σ∗\Y , that is, w should be in Y . This makes L(T ) the least solution
of this inequality and proves the second part of Theorem 1 with respect to r.e. sets
and least solutions. The construction for a co-r.e. set and a greatest solution is
established by a dual argument, and these two constructions can be then combined
to represent every recursive set.

4.2. Systems of equations with one Boolean operation. The construction of
the lower bound from Theorem 1 is ‘arithmetised’: each word is reinterpreted as
a number and language operations are simulated by operations on sets of numbers.
This yields a basis of the proof of Theorem 6. For starters, treat the used alphabet
Σ as a set of digits: simply assume that Σ = Σ6. There is nothing specific about
base-6, simply this is the smallest number for which the construction is easy to
present. Moreover, the used encoding CT (w) needs to be of more specific form.
This does not affect the fact that VALC(T ) is an intersection of linear CFL’s, as
CFG’s are flexible enough to express various encodings of VALC(T ).
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Trellis languages are known to properly contain linear CFL’s and are closed under
all Boolean operations, in particular, VALC(T ) is a trellis language. Therefore
(VALC(T ))6 is a unique solution of a resolved system of equations.

The next step is to simulate (2). The crucial property needed here is that there
is a set Q such that if x ∈ Q and u ∈ Σ+

6 satisfy xu ∈ QY , where Y is a variable,
then u ∈ Y . This essentially means that the partition of a string xu into strings in
Q and S is unique. Thus the equation VALC(T ) ⊆ QY extracts Y = L(T ) from
VALC(T ), as each string in VALC(T ) is partitioned in to CT (w) ∈ Q and w ∈ Y .

In our setting, this is simulated by the following lemma

Lemma 2. Let S ⊆ (Σ+
6 )6. There exists a set Q such that for all (x)6 ∈ Q and

(u)6 ∈ (Σ+
6 )6, if

(x)6 + (u)6 ∈ Q+ Y ,

then (u)6 ∈ Y .

While a little different in formulation, this is a needed reformulation of (2).
Again, this lemma is stripped out of some technical details, which are taken care
of in the thesis [4].

Using Lemma 2, the equation VALC(T ) ⊆ Q + Y has the least solution Y =
(L(T ))6. This gives a skeleton of the proof of Theorem 6.

The main idea of the encoding of setQ in the lemma above is that it the VALC(T )
encodes the transcription of TM in binary using 300 for 1 and 30 for 0, the whole
transcription ends with 1. Then Q contains ({30, 300}∗10∗)6. Then every number
in Q+ Y can be uniquely represented as a sum (x)6 + (u)6.

However, the given sketch of the proof uses both ∪ and ∩ in the construction:
these operations were in fact used at the very beginning, in the resolved systems that
generated (VALC(T ))6. To obtain the full proof of Theorem 6 this construction
needs to be redesigned, so that they use only one Boolean operation.

To simplify the process, a general translation lemma is given. It is used to
automate the redesigning process: as an input, it gets a resolved system (using
union, intersection and addition), as an output it gives an unresolved system using
addition and either intersection or union; the least solution of the input system is
the unique solution of the output system. The lemma is applied to the systems
constructed in Section 3. Note, that some modifications are needed during the
process, due to strong assumptions of the lemma.

Lemma 3. Let Xi = ϕi(X1, . . . , Xn) be a resolved system of equations with union,
intersection and addition and with finite constants. Let (S1, . . . , Sn) be its least so-
lution. Assume that for every variable Xi0 there exists a subset of variables {Xi}i∈I

containing Xi0 , such that

• the sets {Si}i∈I are pairwise disjoint and their union is a unique solution
of an unresolved system using addition and union, and

• the equations for all {Xi}i∈I are either all of the form Xi =
⋃

j αij , or all

of the form Xi =
⋂

j αij , where αij = A1 + . . . + A`, with ` ≥ 1 and with
each At being a constant or a variable.

Then there exists an unresolved system with union and addition and finite constants,
which has the unique solution (S1, . . . , Sn).

A similar construction that returns a system of equations using only intersection
and addition can be given.

The promised equations look as follows: each equation Xi =
⋂

j αij , where
αij is a sum of constants and variables, is replaced by the following collection of
inequalities:

Xi ⊆ αij , for all j .
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In addition, for each group of variables {Xi}i∈I , whose union of the group is CI ,
the following equation is added:

(3)
⋃

i∈I

Xi = CI .

It is easy to verify, that the least solution of the resolved system is a solution of
the system constructed in Lemma 3. The technical part is showing that in fact this
is the unique solution. The idea is that each other solution has some ‘errors’ with
respect to the desired solutions and these errors propagates among variables: if the
original equation was X = Y ∪ Z or X = Y + Z and X has some error, at least
one of Y , Z has an error. The problematic case is equation X = Y ∩ Z replaced
by X ⊆ Y and X ⊆ Z: note, that we may freely remove some number from X
and keep the values of Y , Z as they were. However, this is what (3) is used for:
the error propagate from X to some other variable using this new equation. It can
be shown that we cannot propagate the errors ad infinitum, which makes the least
solution of the original system the unique solution of the new system.

The last task is to apply Lemma 3 to resolved systems constructed in the proofs
of Theorems 4 and 5. For the lemma to be applicable, these equations need to be
decomposed into smaller parts and slightly changed. There are a few details to
check, however, this is relatively straightforward and so not commented here. Then
the variables can be grouped into subsets, as required by the lemma.

This ends the sketch of proof of Theorem 6.

4.3. Systems with addition only. Further restrictions on the computational
model are now discussed, that is, systems of equations with addition only are con-
sidered. When ultimately periodic constants are allowed, such restricted systems
are computationally universal.

The idea is to take an arbitrary system using addition and union and encode it
in another system using addition only. The solutions of the two systems are not
identical, but there is a bijection between solutions based upon an encoding of sets
of numbers.

All constants in the construction are ultimately periodic; some of them are finite
and some are infinite. The last question is whether infinite constants are necessary
to specify any non-periodic sets, and an affirmative answer is given.

The general idea of the construction is as follows. Define an abstract encoding,
that is an injective function

σ : 2N → 2N .

There are two goals to be acquired by this encoding. Firstly, it should be verifiable
by an equation, meaning, that there is an equation such that X satisfies it if and

only if X = σ(X̂) for some X̂. Secondly, this encoding should allow simulating
operations, i.e., for union (addition, respectively) there is an equation such that

X = σ(X̂), Y = σ(Ŷ ) and Z = σ(Ẑ) satisfy this equation if and only if X̂ = Ŷ ∪ Ẑ

(X̂ = Ŷ + Ẑ, respectively).

An arbitrary set of numbers Ŝ ⊆ N will be represented by another set S ⊆ N,

which contains a number 16n + 13 if and only if n is in Ŝ. The membership of

numbers i with i 6= 13 (mod 16) in S does not depend on Ŝ.

Definition 2. For each i ∈ {0, 1, . . . , 15},

tracki(S) = {n | 16n+ i ∈ S}, τi(S
′) = {16n+ i | n ∈ S′} .

The subset S ∩ {16n+ i | n ≥ 0} is called the ith track of S. A set S is said to have
an empty (full) track i if tracki(S) = ∅ (tracki(S) = N, respectively).
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Figure 2. The addition of σ(X̂) + {0, 4, 11}. The following rows rep-

resent σ(X̂), σ(X̂) + {4}, σ(X̂) + {11} and finally σ(X̂) + {0, 4, 11}. It
can be seen that the last sum has only black and white cells.

In these terms a set Ŝ shall be encoded in the 13th track of a set S. The rest of
the tracks of S contain technical information needed for the below constructions to
work: track 0 contains a singleton {0}, tracks 6, 8, 9 and 12 are full and the rest of
the tracks are empty.

Definition 3. For every set Ŝ ⊆ N, its encoding is the set

S = σ(Ŝ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Ŝ) .

The first property of the encoding is that there exists an equation with the set
of all valid encodings as its set of solutions, see Fig. 2 for an illustration.

Lemma 4. A set X ⊆ N satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N+ 1) ∪ {11}

if and only if X = σ(X̂) for some X̂ ⊆ N.

The idea of the proof is that if a track t in X+ {0, 4, 11} is empty, then it can be
inferred that for each t′ ∈ {0, 4, 11} and t′′ such that t′ + t′′ = t mod 16 the track
t′′ of X is empty as well. This shows that many tracks of X are empty. Similar
considerations apply if the track t contains a singleton. On the other hand, the
equations are constructed in a way that if track t of X+ {0, 4, 11} is full then there
exists exactly one pair t′ ∈ {0, 4, 11} and t′′ such that t′ + t′′ = t mod 16 and track
t′′ of X is non-empty. Thus the t′′-th track of X is in fact full.

The second property of the encoding σ is that a sum of encodings of two sets
and a fixed constant set simulates the union of these two sets, while the addition
of a different fixed constant set simulates the sum of the two original sets.

Lemma 5. For all sets X,Y, Z ⊆ N,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X ,

σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X .

The addition of σ(Y ) + σ(Z) should be viewed as follows: first, choose a track t
from σ(Y ) and t′ from σ(Z). Add the sets encoded on these tracks and encode it on
the track t+ t′ mod16 of the result. Then take the union over all choices of t, t′. In
particular, adding a 0-th track of σ(Y ), which contains a singleton, to a 13-th track
of σ(Z), which encodes Z, gives Z encoded on 13-th track; by symmetry, addition
of a track 0 from σ(Z), which encodes singleton, and a 13-th track of σ(Y ), which
encodes Y , gives Y on track 13. It can be checked that no other information is
encoded on this track and thus the 13-th track of σ(Y ) + σ(Z) encodes Y ∪ Z.

On the other hand, when 13-th tracks of σ(Y ) and σ(Z), which encode Y and
Z, respectively, are added, their sum X + Y is encoded on 13+ 13 mod 16 = 10-th
track.
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0 16 32 48 64

+

=

0 16 32 48 64

+ {0, 1} =

0 16 32 48 64

Figure 3. The graphical illustration of addition σ(Y )+σ(Z)+{0, 1}.
The first row represents σ(Y ), with red cells encoding the elements of Y .
The second row represents σ(Z), with blue cells encoding the elements
of Z. In the sum σ(Y ) + σ(Z) the green cells are the encoded elements
of Y ∪Z, the orange cells are the encoded elements of σ(Y )+σ(Z) while
the grey cells are some auxiliary ‘junk’ numbers. Then the addition of
{0, 1} leaves only encoded numbers from σ(Y ) + σ(Z) and the numbers
not depending on Y nor Z.

Thus the sum σ(Y ) + σ(Z) encodes both Y ∪ Z and Y + Z on its tracks. It is
left to modify σ(Y ) + σ(Z) so that it contains exactly one of these sets. It turns
out that adding appropriate constant allows to ‘spam’ one of these tracks with a
full track, while preserving the other.

Using the encoding defined above, it is now possible to represent a system with
union and addition by a system with addition only.

Theorem 7. For every recursive (r.e., co-r.e.) set S ⊆ N there exists a system of
equations 




ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn) ,

with ϕj , ψj using the operation of addition and ultimately periodic constants, which
has a unique (least, greatest, respectively) solution withX1 = T , where S = {n|16n+
13 ∈ T }.

To construct the system it is enough to decompose the input system into simple
equations and translate each of them using Lemma 5. Then a copy of the equation
from Lemma 4 is added for each variable.

The constructions above essentially use infinite ultimately periodic constants. It
is shown that the use of such constants is necessary, and systems using only addition
and finite constants cannot specify any non-trivial infinite sets: every solution
(. . . , S, . . .) of such a system can be pruned in the sense that each of its infinite
components can be replaced by an empty set and the resulting vector remains
a solution. In a similar way, infinite components of a solution can be augmented to
co-finite sets.

Lemma 6. If a system of equations in variables (. . . , Xj , . . . , Yi, . . .) using addi-
tion and only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is
finite and each Si infinite, then (. . . , Fj , . . . ,∅, . . .) and (. . . , Fj , . . . , Si+N, . . .) are
solutions of this system as well.

Using this lemma, the following theorem is obtained.
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Theorem 8. If a system of equations using addition and finite constants has a least
(greatest, unique) solution (. . . , Si, . . .), then each Si is finite (finite or co-finite,
finite, respectively).

5. Univariate Equations

It is quite natural to ask, how many variables are needed to obtain any non-trivial
solution using systems of equations, both the resolved and unresolved ones. Quite
surprisingly, Okhotin and Rondogiannis [10] gave a construction of a univariate
resolved equation with a non-periodic solution. In this section their example is
generalised to a representability theorem: for every resolved system of equations
the sets assigned to its variables can be encoded together in a single set that is
a solution of a univariate resolved equation over set of numbers. The techniques
used are not specific to resolved equations and are therefore applied to unresolved
equations, and similar results for them are obtained.

5.1. Resolved univariate equation. The goal is to simulate an arbitrary resolved
system by a univariate one. The intended encoding of a single set Si is S′

i =
{pn−di |n ∈ Si}, for some properly chosen numbers p and d1, . . . , dm; all these sets
are encoded in one by taking a union over i: S =

⋃m

i=1 S
′
i. This encoding use the

idea of tracks, similarly to the previous section: for a set S its subset of the form
S ∩ {pn− t | n ∈ N} will be called its tth track, where t is the offset of the track.
Thus, the set S encodes Si on the i-th track.

Let us shortly compare this encoding with the one used in Section 4.3. First
of all, the offset is of opposite sign. Secondly, no tracks are filled with gadgets.
Moreover, several tracks of the single variable are used to encode many variables
of the original resolved system, while in the previous section only one track per
variable was meaningful.

First, we describe the transformation of the system with a least solution
(S1, . . . , Sm) into a system with a solution (S′

1, . . . , S
′
m). Consider the equation

X` = ϕ`(X1, . . . , Xn). To obtain the new equation ϕ′
` out of ϕ`, it is enough

to replace each constant {n} in ϕ` by {np − d`} and each addition Xi + Xj by
Xi + Xj + (di + dj − d`). Indeed, when S′

i and S′
j are substituted into the new

equation, the value of the addition is

(4) {np− di | n ∈ Si}+ {np− di | n ∈ Sj}+ (di + dj − d`) =

= {np+ n′p− d` | n ∈ Si, n
′ ∈ Sj} = {np− d` | n ∈ Si + Sj} .

By easy calculations, similar values are obtained for the Boolean operations, and
in the end it is obtained that ϕ′

`(S
′
1, . . . , S

′
n) has value

{np− d` | n ∈ ϕ(S1, . . . , Sn)} = {np− d` | n ∈ S`} = S′
` .

To obtain a single equation using ϕ′
`’s, it is ‘enough’ to takeX =

⋃m

`=1 ϕ
′
`(X, . . . , X).

However, in this way the contents of the tracks may mix: it needs to be assured
that (4) holds, when S′

i and S
′
j are both replaced by S. In general, this is not true.

However, it is possible to extract the contents of a track: we modify the original
system of equations, so that whenever an addition Xi + Xj appears in it, it is in
fact in a subequation Xi +Xj ∩Xi′ +Xj′ . When the offsets di, dj , di′ and dj′ are
chosen properly, it holds that

S + S + (di + dj − d`) ∩ S + S + (di′ + dj′ − d`) =

= S′
i + S′

j + (di + dj − d`) ∩ S
′
i′ + S′

j′ + (di′ + dj′ − d`) ,
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i.e., the addition works as in (4). Having established this basic property, it can be
shown by a trivial induction that the input system is properly simulated by the
constructed resolved equation.

Theorem 9. For every resolved system of equations in variables X1, . . . , Xm there
exist numbers 0 < d1 < . . . < dm′ < p depending only on m and an equation
X = ϕ(X) with the least solution S = {np− di | 1 ≤ i ≤ m′, n ∈ Si}, where
(S1, . . . , Sm) is the least solution of the original system and Sm+1, . . . , Sm′ are
functionally dependent on (S1, . . . , Sm).

5.2. General univariate equation. It was shown that a resolved system of equa-
tions can be encoded in one resolved equation. Now a similar result is shown for
general (that is, unresolved) systems of equations. The first goal is to replicate The-
orem 6 using a unique equation with a unique variable. This is achieved by taking
an arbitrary system of equations with solutions of the formX1 = S1, . . . , Xm = Sm,
and constructing an equation whose solutions is the set S =

⋃m

i=1{pn−di |n ∈ Si},
for some properly chosen numbers p and d1, . . . , dm, as in Section 5.1.

The encoding of multiple sets on tracks of one set requires constructing a new
equation out of the old system. This equation extracts the tracks contents out of
a single variable and performs the operations on them, avoiding mixing the contents
of several tracks. Also it checks that all tracks of the variable that should be empty
according to the encoding are indeed empty, which ensures a bijection between the
solutions of the original system and the solutions of the constructed equation.

Theorem 10. For every system of equations Ej(Y1, . . . , Ym) = Fj(Y1, . . . , Ym) with
j ∈ {1, . . . , `}, where each expression Ej and Fj is of the form Y ∪ Y ′ or Y ∩ Y ′

or {1}, there exist numbers 0 ≤ d1 < . . . < dm < p and an equation ϕ(X) = ψ(X)
using singleton constants, such that a set S ⊆ N is its solution if and only if

S = {kp, kp+ p
2 + 1 | k ≥ 0} ∪

m⋃

i=1

{kp− di | k ∈ Si}

for some solution (S1, . . . , Sm) of the original system.

Accordingly, solutions of the resulting equation encode solutions of the original
equation as follows. The numbers di are offsets of tracks for X : each set Si is
represented in a track S ∩ {kp− di | k ≥ 1}. For each variable Yi, a unique offset di
is assigned. The rest of the tracks should be empty.

The set ϕ(S) = ψ(S) is as well split into tracks of its own, which are not directly
related to the tracks of S. The tracks of ϕ(S) = ψ(S) correspond to equations of
the original system. A track {kp− ej | k ≥ 1} with a unique offset ej is assigned to
an equation number j.

First, a simplified version of the theorem is explained, in which also a usage
of an infinite ultimate periodic constant {pn | n ∈ N} is allowed, note, that the
constants {pn− d | n ∈ N} can be expressed using it. These constants are used to
extract the track contents of a variable X . To encode one of the original equations
of the system, say j-th, first all of the used sets are extracted and, by an addition of
a singleton, moved to the ej-th track, which corresponds to this equation. Then the
equation is rewritten, taking into the account that the sets are written on tracks.
For example, the equation number j of the form Xi ∪Xi′ = {1, 2} is transformed
into((
X∩{pn−di|n ∈ N}

)
+{di−ej}

)
∪
((
X∩{pn−di′|n ∈ N}+

)
+{di′−ej}

)
= {p−ej, 2p−ej} .

In order to show the full statement of the theorem it is needed to eliminate
the usage of the constant {np | n ∈ N}. To this end, a copy of such constant is
also encoded in the solution S. Properly devised equation allows making sure that
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equiv. to a ult. periodic set equivalence finiteness co-finiteness
general Π1-complete Π1-complete Σ1 ≤ · ≤ Σ2 Σ1 ≤ · ≤ Σ2

univariate decidable Π1-complete Σ1-complete Σ1-complete

Table 1. Decision problems for resolved systems of equations over sets
of numbers.

satisfiability unique satisfiability finite satisfiability
general Π1-complete Π2-complete Σ3-complete
univariate Π1-complete Π2-complete Σ3-complete

Table 2. Decision problems for general systems of equations over sets
of numbers.

indeed one track is full. It is only left to merge the equation simulating the system
and the equation generating the constant.

6. Decision Problems

Each formalism defining sets of numbers or languages is judged from two main
perspectives. On one hand, its expressive power is measured, i.e., how complicated
and useful sets can be defined. This was addressed already in the previous sections.
On the other hand, one wants to know the difficulty of the decision problems for
such a formalism, or, informally speaking, how hard is to check the properties of
a given instance of a formalism. It is natural to expect some trade-off between those
two.

In this section we discuss the decision problems for both unresolved and resolved
systems of equations. All usual problems, such as emptiness, equivalence, member-
ship etc., are considered. It is natural to expect that in all cases majority of the
decision problems are hard, as these systems define a rich class of sets. It is the case
—most of the results presented here will establish the exact level of undecidability,
or at least narrow down the position of the problem in the arithmetical hierarchy.

The complexity of decision problems usually decrease when some restrictions on
the systems are imposed. This restrictions can be, for example, limiting the number
of the equations or variables. Contrary to this intuition, it is shown that almost all
considered problems are equally hard for a single equation with a single variable.

6.1. Properties of the Solutions. Since the resolved systems of equations can
simulate trellis automata and unresolved equations can simulate Turing Machines,
it is no wonder that hardness of their decision problems can be naturally inferred.
Tables 1 and 2 summarise the findings. The results are proved in a relatively
simple way, therefore no sketches are provided. The equivalence, finiteness and
co-finiteness problems for unresolved equations have the same complexity as the
corresponding problems for resolved equations.

6.2. Membership problem. Each formalism defining subsets of natural numbers
is made with one goal in mind—to describe sets. As such, the most important
question that can be asked about it, is the complexity of its membership problem.
Since the unresolved equations can specify all r.e. sets as least solutions, their
membership problem is hard. The situation is different for resolved equations: in
this section its complexity is studied: it is shown that this problem is EXPTIME-
complete.

Stockmeyer and Meyer [11] established that the membership problem for expres-
sions with union and addition is NP-complete. The problem remains in NP when
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systems of equations with union and addition is considered, as shown by Huynh [3].
Note, that in both of these cases the obtained sets are regular and the NP-hardness
happens only for the general membership problem, i.e., if the system is part of the
input.

It is expected that the membership problem for resolved systems of equations
with union, intersection and addition should be harder, as it allows a larger set
of operations. This intuition is also supported by the fact that resolved systems
with these operations define much larger class of sets than resolved systems with
addition and union only, i.e., the class of ultimately periodic sets.

In this section a construction of a fixed resolved system is given, such that testing
the membership of numbers in its least solution is an EXPTIME-hard problem, with
the numbers given in binary notation. The result is obtained by an arithmetisation
of an alternating linear-space Turing Machine (ATM). It is relatively easy to show
that the membership problem for resolved equations is in EXPTIME, even for the
general membership problem, which makes the constructed set computationally
hardest in its class.

Theorem 11. The family of sets of numbers representable by resolved systems of
equations with union, intersection and addition, as well as singleton constants, is
a subset of EXPTIME and contains an EXPTIME-complete language.

An EXPTIME-complete language can be generated even by a single equation
using one variable.

The proof is by constructing a system of equations that encodes a computation
of any linearly bounded ATM. It is known that such machines recognise some
EXPTIME-complete sets.

The ATM operates on a circular tape and move to the right at every step. Such
a machine can simulate an arbitrary linear-bounded ATM by marking the position
of its head on the tape, and by making one transition of the simulated ATM.

The construction of a system of equations over sets of numbers simulating a com-
putation is based upon representing instantaneous descriptions of the ATM as num-
bers considered in some positional notation. The entire argument is based upon
mapping the symbols used by the machine to digits, and then using addition to
manipulate individual digits in the positional notation of numbers. As usually, this
positional notation is only a tool for understanding the constructions, while the
actual equations, deal with numbers as they are.

Besides the configuration, we include in the description of an ATM a counter of
rotations of the circular tape. This counter specifies the number of circles through
the tape the machine is still allowed to make before it must halt. The key property
of this representation is that every transition of the machine reduces the numerical
value of its representation. This is relatively easy to assure for the transitions of
the head to the right, but hard for the jump to the beginning of the tape. In this
case the counter of rotations is essentially used, i.e., it is decreased and hence the
whole numerical value of the representation decreases.

It is left to define the descriptions of the ATM that lead to an accepting compu-
tation. For sure, if the head is in the accepting state, the ATM accepts, set of such
positions can be described by a constant set (with regular notation). Otherwise,
a position is accepting if all of its successor positions (or at least one of its successor
positions) is accepting. Such a recursive definition can be performed in two steps.
Firstly, an equation which constructs the set of all previous configurations to the
given one is presented. This is implemented by a simple digit manipulation on the
encodings. Then the logic of the ATM, which includes a universal and existential
transition, is simulated by intersection (union, respectively) of sets of such previous
configurations.
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