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Abstract Systems of equations of the form X; = ¢;(X1,...,Xn) (1 < i < n) are
considered, in which the unknowns are sets of natural numbers. Expressions ¢; may
contain the operations of union, intersection and elementwise addition S+7 = {m+n |
m € S, n € T}. A system with an EXPTIME-complete least solution is constructed in
the paper through a complete arithmetization of EXPTIME-completeness. At the same
time, it is established that least solutions of all such systems are in EXPTIME. The
general membership problem for these equations is proved to be EXPTIME-complete.
Among the consequences of the result is EXPTIME-completeness of the compressed
membership problem for conjunctive grammars.

1 Introduction

The study of expressions over sets of numbers and of the computational complexity of
their properties began in the seminal paper by Stockmeyer and Meyer [24], who con-
sidered formal languages over a one-letter alphabet as subsets of Ng = {0,1,2,...},
thus turning a concatenation of languages into an elementwise addition of sets:
S+T={m+n|meS, ne T} Stockmeyer and Meyer established, in particular,
that the membership problem for expressions with union and addition is NP-complete,
and if the expressions may also contain complementation, then the problem becomes
PSPACE-complete. Some follow-up work was done by Yang [26], who considered cir-
cuits computing sets of numbers (that is, expressions in which subexpressions may be
shared) with an extra operation of elementwise multiplication, and established similar
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complexity results. A systematic study of complexity of expressions and circuits with
different sets of operations was recently carried out by McKenzie and Wagner [15].

This work has inspired some related studies. Breunig [2] investigated the same
formalisms defined over sets of positive integers and showed that in some cases the
membership problem becomes computationally easier. Similarly, the complexity of the
membership problem for expressions and circuits over sets of any integers was studied
by Travers [25], who found cases where the problem becomes harder and also cases
where it becomes easier. Glafler et al. [6] determined the complexity of the equivalence
problem for the classes studied by McKenzie and Wagner [15].

This paper considers a different extension of this model: the equations over sets of
natural numbers. These are systems of equations of the resolved form

X1:¢1(X17...,Xn)
: *)
anipn(Xl,,Xn)

in which every variable X; represents an unknown set of nonnegative integers. The
right-hand side ¢; of each equation may contain the operations of union, intersection
and addition, as well as singleton constants. Every such system has a least solution
with respect to componentwise inclusion, which can be obtained by fixpoint iteration.
The X -component of this least solution is regarded as the set of numbers defined by
the system, and thus the membership problem for such systems is considered similarly
to expressions and circuits.

While the expressions defined by Stockmeyer and Meyer [24] represent regular
expressions over a one-letter alphabet, equations over sets of numbers naturally cor-
respond to language equations over the same alphabet {a}. Language equations have
recently become an active area of research, with unexpected hardness results for them
obtained by Kunc [I1] and by Okhotin [20,21]; for more details the reader is referred to
a recent survey by Kunc [I2]. Systems of the particular form (#) using union and con-
catenation of languages are well-known to represent context-free grammars [5], while
the variant that allows intersection similarly represents conjunctive grammars, a gen-
eralization of the context-free grammars introduced by Okhotin [I7]. The expressive
power of conjunctive grammars over a one-letter alphabet has been understood only
recently, with the first grammar for a non-regular language constructed by Jez [§],
and with a large class of representable languages subsequently obtained by Jez and
Okhotin [9]. These results, which immediately apply to systems of equations (¥) over
sets of numbers, provide a technical basis for the present work.

The core result of this paper, established in Section [3] is a construction of a fixed
system of the form (E), such that testing the membership of numbers in its least
solution is an EXPTIME-hard problem, with the numbers given in binary notation.
The result is obtained by a new kind of arithmetization of an alternating linear-space
Turing machine, with numbers representing its instantaneous descriptions. It is also
shown that for every system (E), the membership of numbers in its least solution can
be tested in exponential time, which makes the constructed set the hardest. This yields
EXPTIME-completeness of the fixed membership problem, in which the system is not
a part of the input. Comparing this with circuits over sets of numbers, the latter may
only generate ultimately periodic sets (unless multiplication of sets is employed), and
thus the computational complexity of those sets is trivial.
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The cited results on expressions and circuits over sets of numbers [2l[15,241[25][26]
were concerned with the complexity of the general membership problem, where both a
circuit and a number are given as an input. In those cases it was sufficient to encode
an instance of some hard problem in a circuit, which in most cases allows natural
reductions from existing problems. The task approached in this paper is more difficult:
a fixed system of equations representing a problem has to be constructed, and then
another problem has to be reduced to it by encoding its instances as numbers. This
requires a complete arithmetization of EXPTIME-completeness.

This result easily leads to the complexity of the general membership problem for
equations with union, intersection and addition, which is stated as follows: “Given a
system () and a number n > 0 in binary notation, determine whether n is in the
first component of the least solution of the system”. For integer expressions and integer
circuits with the same operations on sets, which can be regarded as an acyclic case of
systems (), it is known from McKenzie and Wagner [I5] that the membership problem
is PSPACE-complete. Another weaker model are systems (#) with union and addition,
that is, without intersection, for which the corresponding problem is NP-complete due
to the result of Huynh [7] on the commutative case of the context-free grammars. For
equations with union, intersection and addition, the general membership problem is
shown to be EXPTIME-complete in Section [l

The results of this paper have a few implications on conjunctive grammars worked
out in Section Bl An immediate consequence is that there exists a conjunctive gram-
mar over an alphabet {a} generating unary representations of all numbers from an
EXPTIME-complete set of their binary representations. This unary conjunctive lan-
guage may be regarded as the computationally hardest of its kind; note that it is
unlikely that conjunctive grammars define any P-complete languages, as, under the
standard complexity-theoretic assumptions, no sparse P-complete languages exist [16],
3], and unary languages are sparse.

Another implication refers to the complexity of the compressed membership prob-
lem for conjunctive grammars, in which the input string w is supplied as a context-free
grammar G generating the singleton language {w}. For regular expressions and for
deterministic finite automata, this problem is P-complete by the results of Plandowski
and Rytter [22] and Markey and Schnoebelen [I4]. For context-free grammars, it is
PSPACE-complete due to Plandowski and Rytter [22] and Lohrey [13]. Lohrey [13]
has also established the EXPSPACE-completeness of the problem for context-sensitive
grammars. In this paper, conjunctive languages are put in the context of the cited re-
search by showing that their compressed membership problem is EXPTIME-complete.

2 Language equations and conjunctive grammars

In language equations, the unknowns are formal languages over an alphabet X. If
|| = 1, they coincide with equations over sets of numbers, while for larger alphabets
they constitute a more general notion. The main object of this study are equations
of the resolved form (), in which variables assume values of sets of non-negative
integers, and the right-hand sides may contain the operations of union, intersection
and addition of sets, as well as singleton constant sets. These equations obviously
correspond to language equations over a one-letter alphabet with the operations of
union, intersection and concatenation, and the recent results on language equations
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of this kind provide a theoretical foundation, as well as another motivation, for the
present research.

The first type of language equations to be studied were systems of the same form
X; = ¢i(X1,...,Xn) (2 € {1,...,n}) containing union and concatenation, but no
intersection: Ginsburg and Rice [5] established that these equations provide a natural
semantics for the context-free grammars. To be precise, every such system has solutions,
and among them there is always a least solution, which is a componentwise intersection
of all solutions. Furthermore, the least solution can be obtained by fixpoint iteration
as

|_|¢i(®,...7®), (1)

i>0

where ¢ is the right-hand side of the system as an operator on the set of n-tuples of
languages, while LI denotes componentwise union of n-tuples of languages.

Equations augmented with an intersection operation inherit this property, and they
can be used to define the following generalization of the context-free grammars.

Definition 1 (Okhotin [I7]) A conjunctive grammar is a quadruple G =
(¥,N,P,S), in which ¥ and N are disjoint finite non-empty sets of terminal and
nonterminal symbols respectively; P is a finite set of grammar rules, each of the form

A= o&...&an (where A€ N,n>1and ay,...,an € (ZUN)Y)

while S € N is a nonterminal designated as the start symbol.
The semantics of a conjunctive grammar is defined by the least solution of the
following system of language equations, in which nonterminal symbols are variables:

A= U ﬁ a; (for all A€ N) (2)

A—o &.. . &ameP i=1

Each string a; € (XU N)* represents a concatenation of variables and singleton con-
stants. The component of the least solution corresponding to each A € N is then
denoted by Lg(A), and L(G) is defined as Lg(S).

An equivalent definition of conjunctive grammars can be given using term rewriting
[I7], which generalizes Chomsky’s string rewriting. The importance of these grammars
lies with the fact that their expressive power is substantially greater than that of the
context-free grammars, while the generated languages can still be parsed in time O(n?’).
Furthermore, the practical context-free parsing algorithms, such as the generalized LR
and the recursive descent, admit generalization to conjunctive grammars without an
increase in their computational complexity.

For a one-letter alphabet X = {a}, a system of language equations (2) can be
regarded as a system of equations (E) over sets of natural numbers using union, in-
tersection and addition. The question of whether conjunctive grammars can generate
any non-regular unary languages has been an open problem for some years, until re-
cently solved by Jez [8], who constructed a grammar for the language {a4n |n > 0}.
This grammar is given below, along with its reformulation as a resolved system of four
equations over sets of numbers:
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Example 1 (Jez [8]) The following conjunctive grammar with the start symbol Aj
generates the language {a*" |n > 0}.

Ap — AgAs&A1A3 | a X1 = (X2 + X2) N (X1 + X3)) U {1}
Ay = A19A2& A1 A7 | aa Xo = ((X12 + X2) N (X1 + Xl)) U {2}
Az = A12A412&A1As | aaa X3 = ((X12 + X12) N (X1 + X2)) U {3}
A1g — A3Az&A1 Ay X12 = (X3 + X3) N (X1 + Xo)

The corresponding system of equations over sets of numbers has the least solution
X; = {¢| base-4 notation of £ is 0...0} for i = 1,2,3,12, where X7 is the set of all
powers of 4.

Sets of this kind can be conveniently specified by regular expressions for the corre-
sponding sets of base-k notations of numbers, which in this case are 10*, 20*, 30* and
120%, respectively.

Using the same technique as in the above example in a more elaborate construc-
tion, a general theorem on the expressive power of unary conjunctive grammars was
established. It can be reformulated for equations over sets of numbers as follows:

Theorem 1 (Jez [8]) For every k > 2 and for every finite automaton M over the
alphabet {0, ...,k — 1} there exists a resolved system of language equations over sets of
numbers using union, intersection and addition, with the least solution

(S1,852,...,5n),

where S; C Ng and S1 = {{€| k-ary notation of £ is in L(M)}.

A generalization of this result to a larger family of automata recognizing positional
notations was established in a recent paper by Jez and Okhotin [9].

In terms of language theory, representing all sets of numbers with a regular po-
sitional notation already constitutes a substantial expressive power. However, it has
no implications on the computational complexity, as all these sets are computationally
easy. The more general representation theorem of Jez and Okhotin [9] also does not
imply any better complexity results than P-completeness, which, as the present pa-
per shows, is much below the actual complexity of these equations. Therefore, a new
method of constructing such equations is needed to understand their complexity. This
step is made in the next section, which introduces an arithmetization technique based
upon addition of sets of numbers.

3 Arithmetization of EXPTIME-completeness

The core result of this paper is a construction of a particular resolved system of equa-
tions over sets of numbers, for which testing membership of numbers in its least solution
is an EXPTIME-complete problem. It is accompanied by a matching upper bound:

Theorem 2 The family of sets of numbers representable by resolved systems of equa-
tions with union, intersection and addition, as well as singleton constants, is a subset
of EXPTIME and contains an EXPTIME-complete language.
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The proof is by constructing a system of equations that encodes a computation
of any linearly bounded alternating Turing machine (ATM). It is known that such
machines recognize some EXPTIME-complete sets [4].

Furthermore, an ATM shall operate on a circular tape and move to the right at
every step. Its tape shall originally contain the input string, and the cells containing it
constitute all space available to the machine. Such a machine can simulate an arbitrary
linear-bounded ATM by marking the position of its head on the tape, and by making
one transition of the simulated ATM per each traversal of the circular tape. Hence,
these restricted ATMs are as powerful as linear-bounded ATMs of the general form.

Formally, such a machine is defined as M = (2,I',Qg,Q 4,9, 90, ¢fin), Where (2 is
the input alphabet, I' = {ag,a1,...,amax} D {2 is the tape alphabet, Qp and Q4
are disjoint sets of existential and universal states, respectively, Q@ = Qr U Q4 =
{90, 41, -- -, @maz} and qp, € Q. Given an input w € 021, M starts in state gy with
the head over the first symbol of w. The transition function is § : Q x I' — 29%T"
and the head is moved one symbol to the right at every step. Once the head moves
beyond the right-most symbol, it is moved back to the first symbol of w, maintaining
its current state; this implements a circular tape. For technical reasons, assume that
(g,a") ¢ 6(q,a) for all ¢ € Q and a,a’ € I" (that is, the machine never stays in the
same state), and that 6(q,a) # @ forall g € Q4 and a € I'.

The construction of a system of equations over sets of numbers simulating a compu-
tation is based upon representing instantaneous descriptions of the ATM as numbers.
These numbers shall be considered in positional notation with base 8+ |Q|+max(|Q|+
7,1I]), and the entire argument is based upon mapping the symbols used by the ma-
chine to digits, and then using addition to manipulate individual digits in the positional
notation of numbers. It should be noted that this positional notation is only a tool for
understanding the constructions, while the actual equations, by definition, deal with
numbers as they are.

Let ¥ ={0,1,...,7+|Q|+ max(|Q|+7,|'|)} be the alphabet of digits, and define
the mapping of symbols to digits, (-) : QU I" — X, as follows:

(g;y =T+ (for ¢; € Q),

(a;) =7+1Q|+¢ (for a; € T).
The notation (-) is naturally extended to strings over QUI" by (s1...5p) = (s1)...(s¢).
Furthermore, let (Q) = {{(¢)|q € Q} and (I') = {(a) |a € I'}. Now the tape of the ATM

containing symbols a;, ...a;, , with the head over the j-th symbol and the machine in
state g, is represented as the following string of digits:

0as, ) - 0(as;_, ){(q)(as;)0(as,, ) - .- 0{as,)0 € x*

For technical reasons, configurations, in which the head has just moved over the last
symbol but has not yet jumped to the first position, are considered separately and will
be represented as strings of the form

0(a;, ) ... 0{a;, )(q),

where ¢ is the current state. Note that digits denoting letters are written only in even
positions, while odd positions are reserved for the states of the Turing machine. The
set of all strings of digits representing valid encodings of the tape is specified by the
following regular expression over X:

Tape = (0(I"))"(Q)({1")0)" \ (@)
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The set Tape should be considered as a formal language over X', which will be used later
as a part of representations of some sets of numbers. Subsets of this set representing
tapes with different states will be denoted as follows:

Tape,, = {w | w € Tape, a € (I'UQ)", (a) is a substring of w},
Tapeﬁl = {w|w € Tape, a € ("'UQ)", {a) is a prefix of w}.

Besides the contents of the tape, the encoding for Turing machine configurations
uses a counter of rotations of the circular tape. This counter specifies the number
of circles through the tape the machine is still allowed to make before it must halt.
It is represented in binary notation using digits {0,1}, and the set of valid counter
representations is

Counter = 1{0, 1}*,

where the digits are still in base-|X| notation. Normally, the counter uses only digits
{0, 1}, but in order to implement the incrementation of the counter, strings with one
digit 2 representing zero with carry shall be used as well. The set of valid representations
of counters with a carry is

Counter’ = 1{0,1}"20" U 20™.
For every string c;_1 . ..cp € Counter U Counter’, define its value as

k—1

Value(ck,l PN CQ) = Z Cj - 2j.
7=0

Now define the mapping from configurations of the Turing machine to numbers.
A configuration with the tape contents, the head position and the current state given
by a string of digits w € Tape and with the counter value given by z € Counter is
represented by a string of digits
55w,

where two marker digits 55 separate the counter from the tape. This string of digits in
base-|X| positional notation specifies a certain number, which accordingly represents
the configuration.

The key property of this encoding is that every transition of the machine reduces
the numerical value of its configuration. Indeed, if the head is moved to the right, then a
digit (g) is replaced with 0 and all other modifications are done on less significant digits.
If the head jumps from the end to the beginning, then the counter is decremented, and
since the counter occupies higher positions in the notation of the number than the tape,
this transition decreases the value of the configuration as well. Such a monotonicity
allows encoding the dependence of configurations on each other by using addition of
nonnegative numbers only. This dependence is inductively expressed in the equations
defined below.

The construction of a system of equations representing the computation of the ATM
begins with some expressions that will be used in the right-hand sides of equations.
These expressions contain some constant sets of numbers given as regular languages
over the alphabet X. Every such language represents the set of all numbers with | X|-ary
notation of the given form. According to Theorem [T} every such set can be represented
by a separate system of equations using only singleton constants. All these subsystems
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are assumed to be included in the constructed system, and each of the regular expres-
sions in the system can be formally regarded as a reference to one of the auxiliary
variables.

Definitions of a few of these regular languages incorporate positional notations of
numbers obtained by subtracting one number from another. For convenience, these
values are given in the form « B v, with u,v € X* being positional notations of two
numbers (the former shall be greater or equal to the latter). One can write, e.g.,
(u B v)0* for the set of all numbers with their |X|-ary notation beginning with the
fixed digits determined by the given difference, followed with any number of zeroes.

Under these conventions, the following four expressions are defined, each represent-
ing a function of one set argument:

Step(X) = U U Moveg a7,g,a(X)
9€QE (¢',a’)€d(q,a)
acl’

U U ﬂ Movey q,q,0(X)

q€Qa4 (¢',a’)€d(q,a)
acl’

Movey o g.a(X) = {(x N Counter 56 Tapeq/o) + ((g)(a)0 B (a')(q'}) (oo)*]
N Counter 55 Tape,,

Jump(X) = U [(X N Counter 55 Tapeg) + (1000 B (¢))(00)" + (q)}
q
N (Counter U Counter’)55 Tape,

Carry(Y) = [( [(Y n{o,1}"2{0,1}" 55 Tape) + 10| N {0,1}"3{0,1}" 55 Tape)
+ (108 3)0*} N ({0,1}* U {o0,1}*2{0,1}*) 55 Tape

Whenever the functions Movey 4/ 4., and Jump are applied to a set of configurations
X, they manipulate the symbols in each configuration in this set in order to reconstruct
the configuration at the previous step (one with a larger numerical value). In particular,
Jump moves the head back over the edge of the tape, incrementing the counter, while
Movey 4/ q,a Teverses a transition from (q,a) to (¢',a’) by moving the head by one
position to the left, restoring the letter a and returning to the state ¢q. The function
Step transcribes the logic of a single step of the ATM, taking the transition table and the
alternation into account, while the function Carry is used to implement incrementation
of the counter.
The set of final configurations of the machine is defined as follows:

Final = Counter 55 Tapeqﬁn .

The system of equations uses two variables, X and Y. Either variable repre-
sents the set of proper configurations of the machine, starting from which the ma-
chine accepts. The difference between these variables is that X represents configu-
rations belonging to the set Counter 55 Tape, while Y represents configurations from
(Counter U Counter’)55 Tape, in which the counter may contain one carry digit 2 that
needs to be propagated to higher positions. The equations, using the above auxiliary
functions, are as follows:

X = Final UStep(X) U (Y N Counter 55 Tape ) 3)
Y = Jump(X) U Carry(Y)
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Intuitively, the equation for X states that a configuration leads to acceptance if
and only if it is itself accepting (Final), or one can directly proceed from it to a
configuration leading to acceptance (Step(X)), or that it is a configuration obtained
in Y. The equation for Y specifies circular rotation of the tape by Jump(X) and
implements iterated carry propagation by a self-reference Carry(Y').

In order to determine the least solution of this system, let us first establish some
properties of the auxiliary functions. The first quite elementary property is their dis-
tributivity over infinite union, which allows studying these operations as operations on
individual numbers, and then infer their action on sets of numbers.

Lemma 1 (Distributivity) Each function f € {Movey o/ 4.4, Jump, Carry} is dis-
tributive over infinite union, in the sense that f(S) = J, cg f({n}), for every S C Ny.

In the following, singleton arguments {n} for the functions Movey 4/ 4,4, Jump and
Carry shall be denoted without braces, as in Jump(n).

Lemma/[Ilfollows from the fact that each of these expressions consists of intersections
with constant sets, sums with constant sets and unions, for which this property holds
in general:

Proposition 1 (Jez, Okhotin [9]) Let o(X) be an expression defined as a composi-
tion of the following operations: (i) the variable X; (i1) constant sets; (i) union; (iv)
intersection with a constant set; (v) addition of a constant set. Then ¢ is distributive
over infinite union, that is, o(X) = |, cx ¢({n})-

On the other hand, note that if an expression contains an intersection or a sum of two
expressions involving X, then it is not necessarily distributive over infinite union. In
particular, Step need not be distributive.

A common expression used in these functions is addition of a constant set of num-
bers with |X|-ary notation w0* (that is, a set { m- |2 } 120 }) with one, two or
three non-zero leading digits in u. The following lemma establishes that this addition
can never rewrite the double markers 55, that is, every sum in which these markers
are altered does not represent a valid tape contents. This means that such additions
manipulate the counter and the tape separately, and the changes do not mix.

Lemma 2 (Marker preservation) For every z,2’ € {0,1,2,3}* \ 05* and w,w’ €
Tape, if 2'55w’ € 255w + (X3 U X2 U X)0*, then |w| = |v'].

Proof Let y = ijkOE, with ¢, j,k € X, be a string representing a number, and assume
that '65w’ = £55w + y. The £ least significant digits of 55w and of /55w’ are then
the same.

Consider the (¢4 4)-th digit of £55w, let it be c. Since y has fewer than £+ 4 digits,
any change at this position can only be due to a carry from the position £ + 3. As the
digit | Y] — 1 is not used in any proper encoding, ¢ < |¥| — 1. Because the carry digit
is at most 1, the (¢ + 4)-th digit in 2'55w’ is less or equal to ¢ + 1, that is, it is less or
equal to |¥| — 1. Therefore, there is no carry to the position £+ 5 in 55w + y, and all
digits in positions higher than £+4 in 55w +y are the same as in £55w. Hence, 55w’
has at most four digits different from x55w, which may be at the positions £+ 1, £+ 2,
£+ 3 and ¢ + 4.

Assume for the sake of contradiction that |w| # |w’|. Since w and w’ are both of
odd length, the positions of 5 in the strings 55w and z’55w’ are different. Hence z55w
and z'55w’ differ at exactly four positions, which are the positions of 5 in them.
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Note that if four digits are modified by adding y, then the digit in the position £+4
can only be incremented by 1 due to a carry from the previous position. Since one of
the strings 255w, «'55w’ has the digit 5 in the position £+ 4, the other string should
have a digit 4 or 6 in the same position. Because the latter digits are not encodings of
any symbols, this yields a contradiction. O

The next statement describes the operation of Carry: when applied to a configura-
tion z55w with the counter x having a single carry digit 2, Carry changes this digit to
0 and increments the next digit, turning it to 1 or 2. The tape contents is not altered,
only the carry digit is propagated to the next higher position. Note that all operations
are in |X|-ary notation.

Lemma 3 (Carry propagation) For every x € Counter’ and for every w € Tape,
Carry (z55w) = {2'55w} for some x’ € Counter U Counter’ with Value(z') = Value(z).
For every string o € * of any different form, Carry(a) = @.

Proof The inner intersection with {0,1}*2{0, 1}* 55 Tape ensures that the set Carry ()
is non-empty only for o = x55w with = € Counter’ and w € Tape.
The goal is to prove that if z = 2 € Counter’ and w € Tape, then

Carry(2255w) = {10z55w},
and if z = Zc2% € Counter’ and w € Tape, then
Carry(zc2255w) = {Z(c + 1)0z55w}.

If a string 255w, with € Counter’ U Counter and w € Tape, is substituted into
the expression Carry, then the first subexpression produces all strings of the form

u € (55w + 10%) N {0,1}*3{0,1}* 55 Tape.

Consider the possible changes made to 55w to obtain u. As 1 is added only to one
digit, there cannot be a carry, because the digit |X| — 1 is not used for encoding.
Therefore, only one digit is modified in #55w. Since 55w does not contain the digit 3
that occurs in u, the unique digit 2 in z must be replaced by 3. Denote u = T55w.

Consider the string u’ (any such string if it is not unique) obtained in the next
subexpression:

v € (u+(1083)0%) n ({0,1}" U{o,1}*2{0,1}") 55 Tape.

Let v = u 4y, with y € (108 3)0* = (|X| — 3)0*. By Lemma P v’ = 2’55w’ and
w'| = Jwl.

Consider the changes in /55w’ as compared to £55w. Since there is a digit 3 in &
and there is no such digit in &, the position of 3 in Z is one of the modified positions.
Denote the number of this position by k. Because the addition of y has modified the
digit 3, this means that the unique non-zero digit in y is in position k£ or k — 1. If it is
in the position k£ — 1, then the digit 3 can only be modified by adding 1 as a carry from
the position k — 1. This cannot be the case, as the digit 4 is not used in the encoding.
Therefore, the non-zero digit in y is in the position k; then adding y to 55w replaces
3 with 0 and results in a carry, thus increasing the digit in the position £ + 1 by 1.
Note that, in particular, no changes were made to w, and hence w’ = w.
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Finally, consider the values of the counters = and z’. The value of x is > ci2i, where
¢; is the digit in the i-th position. If  has no digit in the position k + 1, then assume
for the purposes of calculation that cx41 = 0 (this does not influence the value of the
counter). In z’, the digit 2 was replaced by 0, hence cﬁc = 0. In the position k + 1, the
digit cj4; was replaced with cj4; + 1. If there was no actual digit ciyq in z, then a
new digit ¢} ; = 1 has been created. In any case &’ contains the digit ¢, = cj41+1
in this position. All other digits of the counters are left intact. Then the difference of
the values of the counters is determined by the positions k£ and k£ + 1, and

Value(z) — Value(z') = (cppq - 287 +2-28) — ((cpy +1) - 2" +0-2%) =0,
that is, the value of the counter has been preserved. O

According to Lemma[3] Carry basically moves the carry higher by one position. The
next lemma shows that sufficiently many iterations of Carry always eliminate the carry
digit: given a counter with the notation =’ = 701*~12 € Counter’, Carryk transforms
it to z = 710"710 € Counter.

Lemma 4 (Termination of carry propagation) For every ' €
Counter U Counter’ and w € Tape there exist © € Counter and a number k > 0, such
that Carry® (2/55w) = {z55w} and Value(z) = Value(z').

Proof If 2’ € Counter, then statement of the lemma is satisfied for £k = 0 and z = .

Let ' € Counter’ and construct a sequence g, 21, . .., Tx, with z; € Counter’ and
Value(z;) = Value(z'), where k shall be determined below, as follows. Let zg = z’. For
every i > 1, consider Carry(z;_155w), which, by Lemma B] equals {z;55w} for some
x; € Counter’ UCounter with Value(z;) = Value(x;_1). If 2; € Counter, then k = i
and & = z; satisfy the statement of the lemma. Otherwise, if z; € Counter’, then the
construction of the sequence continues.

Note that the numerical value of each configuration z;1 155w (as a number in base-
| 2| notation) is strictly greater than in z;55w, and hence all elements of the sequence
are distinct. Since there exist only finitely many elements of Counter’ with the same
value, the sequence cannot be infinite and eventually x; € Counter is obtained. O

The next lemma determines the operation of Jump, which can be described as
follows. This function is applicable to configurations in which the head scans the first
symbol, and the result of Jump on every such configuration is the previous configu-
ration, in which the head is at the right-most position beyond the end of the string,
while the value of the counter z is greater by 1.

Lemma 5 Letx = zc € Counter with ¢ € {0,1} and let w = (q)w0 € Tape with q € Q,
that is, w is a configuration with the head over the first symbol. Then Jump(z55w) =
{z(c+ 1)550w(q)}.

For any string a € X* of a different form, Jump(a) = @.

Proof The inner subexpression of Jump(z55w),
{z55w} N Counter 55 Tapeg,

ensures that w = (g)w0 for some w € (I')(0(I'))*, that is, that the digit specifying
the state of the machine is in the left-most position. If w is of a different form, then
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Jump(z55w) = @. Fix an arbitrary state ¢ € Q; as the outermost operation in Jump,
a union over all ¢ will be taken.
The next subexpression performs an addition

255(q)w0 + (1000 B (¢))(00) + (¢),

which is meant to remove ¢ from the beginning of the tape, increment the counter and
place ¢ in the end of the tape. Consider an arbitrary y = (10008 (q))(00)* + (¢), with
k > 1. Denote u = 55w + y and assume that

u € (Counter’ U Counter)55 Tape,,

as the subsequent operation in Jump is an intersection with this set. Let u = z’55w’
with 2’ € Counter U Counter’ and w’ € Tape. Also note that w’ = 0w'(g), as the right-
most digit in y is (g) and the right-most digit in w is 0, and there is only one digit
from (Q) in w'.

Since y has non-zero digits only in the positions 2k+ 1,2k + 2,2k +3 and 1, and the
digit |X| — 1 does not encode any symbol, adding y cannot change any digit in 55w
in positions higher than 2k + 4. Let 2¢ = |w0|. Then adding y to w modifies the digit
in the position 2¢ 4+ 1, which is (¢). Hence, 20+ 1 =2k + 1 or 20+ 1 = 2k + 3.

If 2041 = 2k+3, then there is either (g) or (¢) —1 in the position 2¢+1 in z55w+y.
Moreover, the digit 5 in the position 2¢ + 3 = 2k + 5 in 55w was not modified by
adding y. Since the position 2¢ + 1 is to the right of 55 in z’55w’, it contains 0. This
is a contradiction, as (g) > (¢) — 1 > 0.

Hence, 20+1 = 2k+1. Let = Tc. Then x55w+y = z(c+1)550w(q), and therefore
' =Z(c+1) and w’ = 0w(q), as stated in the lemma. O

The next operation is Move, which represents symbol manipulation, head move-
ment and state change of a Turing machine according to the transitions specified in
0. Generally, when Movey 4/ 4, is applied to a valid configuration, it computes the
preceding configuration of the machine. This configuration is unique because of the
restriction built in Movey 4/ 4 4: the intersections therein ensure that in the current
configuration the machine is in the state ¢’ and the symbol to the left rewritten at the
previous step is a’, while in the previous configuration the machine was in the state g
and used to scan the symbol a. For all other configurations and in all other cases, the
function produces the empty set.

Lemma 6 Let q,¢ € Q with ¢ # ¢, and let a,a’ € I'. Let x € Counter
and w = wo{a')(¢Yw € Tape for some @ € (O(I'))* and w € ((I')0)*. Then
Movey ¢/.q,0(€55w) = {x55W(g)(a)0w}.

For every string o € X* of a different form, Movey o/ q.a(0) = @.

Proof Fix a’, ¢', a and ¢. The inner subexpression of Movey’ 4/ ¢ a;

55w N Counter 55 Tape/
ensures that w = w0{a’)(q')w for some w € (0(I'))* and w € ({I")0)*. For any w of a
different form, Movey 4/ q.q(55w) is empty.

The next subexpression performs the operation

xB5w + ((q) (a)o & (a/>(q/>) (00)* N Counter 55 Tape,,,
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which is designed to replace the digits 0(a’)(¢’) in w with the digits (¢)(a)0. The task
is to show that the addition always proceeds according to this plan.
Let

y = ((@)()0 B (a')(d'))0*" € ((a)(a)0 B (a'){g"))(00)*

and consider the string 255w’ = z55w + y, where &' € Counter and w’ € Tape. By
Lemma[d |w'| = |w].

As y has non-zero digits only in positions 2k + 1,2k + 2,2k + 3, while the digit
|X] — 1 is not a valid encoding of any symbol, adding y cannot change any digits in
55w in positions higher than 2k + 4.

Let 2¢ = |w|. Since ¢ # ¢', w and w’ must differ in the position 2¢ + 1, where w
has the digit (¢'). Therefore, 2 +1 =2k +3 or 2 + 1 = 2k + 1.

Suppose 2 + 1 = 2k + 3, that is, the digit (¢') in w is added to (g) or {g) — 1 in v,
with a possible carry from the lower digits. Then 255w 4 y has a digit ({g) + (¢') — 1),
({q) + (¢")) or ({(¢) + {(¢’) + 1) (modulo |X| in each case) in the position 2¢ 4 1. Since
(9),(¢') <6+1]Q| and g # ¢/, it follows that (g) + (¢') < 11+2[Q| and (g) + (¢') +1 <
12 4 2|Q|. Each sum is smaller than |X| and is therefore represented by a single digit.
However, each of these digits is greater than (g), and hence all of them are filtered out
by the intersection with Counter 55 Tape,,.

In the other case of 2¢ 4+ 1 = 2k + 1, the addition proceeds as expected, and z’ = z
and w’ = w(q){a)0w, as stated in the lemma. O

The flow control of an alternating Turing machine includes existential and universal
nondeterminism in the corresponding states, and a single step is in fact a disjunction
or conjunction of several transitions as specified in Move. This logic is transcribed in
the expression Step(X), which computes the set of all previous configurations, from
which machines in a universal state make all their transitions to configurations in X
and machines in an existential state make at least one of their transitions to some
configuration in X. This implements one step of the computation of the machine,
backwards.

Lemma 7 Let x € Counter and w € Tape, let ¢ € Q be the state encoded in w. Let
X CN. Then x55w € Step(X) if and only if the following conditions hold:

— the configuration w has the head not in the position beyond the right-most symbol,
that is, w = w(g){a)ow for some W € (0(I'))* and w € ((I')0)* and a € T';

— ifqg € Qp, then z55w’ € X for some configuration w' among successors to w;

— if g€ Qy4, then x55w’ € X for every configuration w' among successors to w.

Proof & Consider the definition of Step:

Step(X) =

= ( U U Moveql’a/@a(X)) U ( U m Moveql’a/@a(X)).
4€Qr (¢'.0")€3(3,a) 4€Qa (¢',a)€8(3.0)
acl’ acl’

Assume that z55w € Step(X), let a € I" be the symbol scanned by the head of the
machine in the configuration w, and let ¢ € @ be the current state. Then, according to
LemmalB, 55w € Movey 4/ 5 5(X) only if (g, @) = (g, a), and hence the subexpressions
Movey o 5.5(X) with (g,@) # (¢, a) need not be taken into account.
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First suppose that ¢ is an existential state. Then

55w € U Moveys ¢/.q,a(X),
(¢’,a’)€5(q,a)

that is, there exist ¢ € Q and o’ € I" with z55w € Movey q/,q,a(X) for some (¢,d") e
5(q,a). Note that ¢ # ¢’ by the technical assumption that the machine changes its
state upon every transition. Since Movey 4/ 4 o is distributive over infinite union by
Lemma [I there exists a number n € X with 55w € Movey 4/ q.4(n). Then, by
Lemma [B n must be of the form x55w’ with w’ = @0(a'){¢’)w for some w € (0(I"))*
and w € ({I")0)*, and with w = @(g)(a)0ow. Since (¢’,a’) € §(q,a), w’ is a successor
configuration to w, and 55w’ € X. The position of the head in w is to the left of the
right-most symbol.
The case of ¢ € Q 4 is similar. It follows from x55w € Step(X) that

55w € ﬂ Moveys ¢/,q,a(X),
(¢’,a’)€d(q,a)

that is, for all ¢ € Q and o' € I' with (¢’,a’) € (q,a) it holds that x55w €
Movey ¢/.q,0(X). As in the previous case, this implies that w = w(g){a)0w and there
is x55w;,7a/ € X with w;/’a, = w0(a')(¢")w. These are consecutive configurations, and
every successor configuration to w is of this form for some (¢, a’) € §(g,a). Then the
required element 255w0({a’){¢’)w is in X for all ¢ and o’ with (¢’,a’) € §(q,a). Also
note that 6(g,a) # @ by assumption, and hence there is at least one such pair (¢’,a’).
Hence, w is of the required form with the head not beyond the right-most symbol.

& Let w = @(g)(a)0w and first consider the case of ¢ € Q. Let w’ be one of the
next configurations of the machine with 55w’ € X. Then w’ = ©0(a’){¢')w for some
(¢',a’) € 6(q,a), and it is known that ¢ # ¢'. By Lemma [6] Movey 4/ 4 o(z55w") =
{z55w}. Since Movey 4/ 4 o(255w") C Step(X), this shows that 255w € Step(X).

If ¢ € Qa, then, by assumption, 55w’ € X for all configurations w’ immedi-
ately following w. That is, for all (¢’,a’) € (g, a), x55w;,’a/ € X, where w;/,a, =
w0{a"){q")w. For every such pair, by Lemmal[B] 255w € Moveq/,a/,q,a(x55w/q/,a,). Hence,

255w € [l Moveg arga(X),
(¢',a’)€6(q,a)

and therefore 255w € Step(X). O

Thus the formal meaning of all auxiliary operations has been established, and the
equations can now be analyzed. The equation for X states that a configuration leads
to acceptance if and only if it is itself accepting (Final), or one can directly proceed
from it to a configuration leading to acceptance (Step(X)), or that it is a configuration
obtained in Y. The equation for Y specifies circular rotation of the tape by Jump(X)
and implements iterated carry propagation as in Lemmal by a self-reference Carry(Y).
Altogether, the least solution of these equations corresponds to the computation of the
machine as follows:

Lemma 8 Let (Lx,Ly) be the least solution of the system (3.

I. Let x € Counter, w € Tape and z55w € Lx. Then M accepts starting from the
configuration w.
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1. Conversely, if M accepts starting from a configuration w € Tape, and the longest
path in the tree of the accepting computation has length ¢, then x55w € Lx for
each x € Counter with Value(z) > £.

Proof As the least solution of the system is computed by fixpoint iteration (), denote

by Lg?) and Lgf) the X- and Y-components of the vector ¥ (&,..., @) obtained after

(k)

k > 0 iterations. Then 85w € Lx if and only if 265w € L’ for some k > 1.

Assume that z55w € L(k). It has to be proved that the Turing machine accepts
X
starting from the configuration w. The proof is an induction on k.

By the equation for X, z55w € Lg?) means that either 55w € Final, or 55w €

Step(Lglgil)), or zb5w € Lgfil). If 255w € Final, then w is an accepting configuration,
as the Turing machine is already in an accepting state. Consider the other two cases.

Let 255w € Step(Lg];il)), and let w = w({g){a)0w; the configuration is of this form
by Lemma [7l Consider the set of numbers S = {255w0(a’)(¢"}w | (¢,a’) € §(q,a)}
representing all possible next configurations of the machine. Suppose first that ¢ € Q 4.

Then, by Lemmal7, all numbers in S are in Lg?_l), and by the induction hypothesis, all

) represent configurations from which the machine accepts. Hence the
machine accepts starting from all successor configurations to w, and then, by definition,
it accepts starting from w.

The case of ¢ € QF is treated similarly. Again, by Lemma [7] at least one number
from S is in Lg?_l), and every number in Lg];_l) represents a configuration from which
the machine accepts, by the induction hypothesis. Accordingly, the machine accepts
starting from the configuration w, because it accepts starting from one of its successor
configurations.

numbers in Lg’;il

Consider the other case of z55w € Lgffl), that is, of 55w obtained by processing
the carry in the counter. This processing may be reconstructed as a finite sequence
Th—1s The2y -+ Ty € Counter U Counter’, where the number ky > 0 is determined
later, and, for alls € {k — 1,k —2,...,ko},

Value(z;) = Value(z),
;55w € L(i),
x;55w = Carry(z;_155w) (unless i = ko).
Let x;._1 = z. Each string of digits z; for i = k — 2, £k — 3, ... is defined by a backward

induction as follows.

Assume that z;55w € Lgi), or r;55w €
Jump(ngil)). In the former case, by Lemma [I there exists a number n € Lgﬁil)
with ;65w € Carry(n). Then, by Lemma B n must be of the form z'55w for some
x’ with Value(z’) = Value(z;), and it holds that Carry(z'55w) = {x;55w}. Then

x;_1 = 2’ forms the next element of the sequence.

and hence z;55w € Carry(Lgi_l))

In the latter case, ;55w € Jump(ngil)). Again, Lemma [ implies that there is a
number n € ng_l) with ;565w € Jump(n). Then, according to Lemma[5, n = z'55w’,
where ' € Counter’ with Value(z') = Value(z;) — 1 = Value(z) — 1, w’ = (¢)w0 and
w = 0w(g); that is, Jump(2'65w’) = {x;565w}. Then kg is defined as i, which completes
the construction of the sequence.

It has been shown that there exists /55w’ € Lg?oil) with Valuez’ = Valuez — 1,
such that the machine goes from the configuration w to the configuration w’. By
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the induction hypothesis for 2'55w’, the machine accepts from the configuration w’.
Therefore, the machine accepts starting from w, as claimed.

It is left to mention that the case of z;55w € Jump(ng_l)) in the above proof
eventually occurs, because otherwise the sequence would continue until xg55w € ng) =
&, which is impossible.

(@) For the converse statement, let w be a configuration, and assume that there
is an accepting computation starting from w, with the longest path of length ¢. The
claim is that 55w € Lx holds for every x € Counter with the value at least £. This is
proved by induction on £.

If £ = 0, then w is a configuration in the accepting state, and therefore, by the
equation for X in the system, 255w € Final C Lx for all z € Counter.

Assume there is an accepting computation starting from w with the longest path
of length ¢ + 1. Suppose first that w = w{q)(a)0w with w,w € ¥*, a € I" and q € Q,
that is, the configuration w has the head anywhere except in the position beyond the
right-most symbol. Consider the case of ¢ € @ 4. Then the machine accepts from each
successor configuration to w, and longest path in each of these accepting computations
is of length at most £. Hence all strings of the form z55w’, where w’ is a successor
configuration to w and x € Counter represents a counter of value at least ¢, are in Lx
by the induction hypothesis. Then, by Lemma [7] 255w € Step(Lx ). By the equation
for X, 55w € Lx, which proves this case.

Now consider the case when ¢ € Q. Fix any « € Counter of value at least £. At
least for one successor configuration to w, the Turing machine accepts starting from it,
with the longest path of length at most £. Accordingly, at least one string of the form
255w, where w’ is one of the successor configurations to w, is in Lx by the induction
hypothesis. Therefore, by Lemma [l 255w € Step(Lx), and, by the equation for X,
xb5w € L, as stated in the lemma.

Finally, consider the case where the head of the Turing machine is in the po-
sition beyond the right-most symbol, and let w = 0w(q). Let w’' = {(q)w0 be the
next configuration, from which the machine accepts with the longest path of length
0. Let ' € Counter be a counter of value at least £. By the induction hypothesis,
265w’ € Lx. Then, by Lemma[5] there is a string /65w € Jump(Lx) C Ly, where
x'" € Counter’ UCounter and Value(z”) = Value(z’) + 1. Hence, by Lemma @] there
exists k > 0, for which 255w € Carry”C (Ly), where z is the unique element of Counter
with Value(z”) = Value(z). By the equation for Y in the system, Carry(Ly) C Ly,
and since Carry is monotone, this implies the following chain of inclusions:

Carryk(Ly) - Carrykil(Ly) C CarrykiQ(Ly) C...CCarry(Ly) C Ly.

Therefore, x55w € Ly, which, by the equation for X in the system (@3], implies 55w €
Lx, as claimed. O

It remains to observe that the number of steps made by the machine is exponentially
bounded, and hence the acceptance of a string by the machine is represented by the

following number in the least solution of the constructed system:

Main Claim The ATM M accepts a string aj ...an € 27 if and only if

10™ 18T +log(nt1)+10e(1QD g5 (44 (41)0(a1)0. . . (an)0 € L.
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Proof The initial configuration of M on aj...an is represented by the sequence of
digits w = (go)(a1)0(a2)0... (an)0 € Tape.

& If M accepts starting from this configuration, then the longest path in the
accepting computation consists of at most

(n+1)- Q- I|" < 28D . glog Qlmlog T

steps, since all configurations forming this path must be different. Then, by Lemma [
for z = 10'8(nHD+nlog I+ Q] with Value(x) = 2los(n+h)+nlogllI+og|Ql ¢ 0]ds
that 55w € Lx.

& Conversely, if there exists x € Counter with 55w € Ly, then, according to
Lemma [8] M accepts starting from the configuration w. O

Proof (Proof of Theorem [2) The system of equations constructed above has an
EXPTIME-hard least solution. It uses constant sets of numbers with a regular base-
| 2| notation, which are expressed in additional equations for additional variables con-
structed according to Theorem [Il

To see that the least solution of every system is in EXPTIME, it is sufficient to
represent it as a conjunctive grammar over a unary alphabet. Then, given a number
n, its membership in the least solution can be tested by supplying the string a” to a
known cubic-time parsing algorithm for conjunctive grammars [I7]. Its time is cubic in
n, hence exponential in the length of the binary notation of n. ]

This establishes the computational complexity of sets of numbers specified by re-
solved systems of equations with union, intersection and addition, which is the main
result of this paper.

4 The membership problem

Consider the general membership problem for these equations, stated as follows: “Given
a system X; = ¢;(X1,...,Xm) and given a number n in binary notation, determine
whether n is in the first component of the least solution of the system”.

Theorem 3 The general membership problem for resolved systems of equations over
sets of numbers with the operations of union, intersection and addition is EXPTIME-
complete.

Proof Membership in EXPTIME. The existence of such an algorithm can be in-
ferred from the known polynomial-time algorithm for solving the membership problem
for conjunctive grammars [I8]. It is sufficient to represent the given system as a con-
junctive grammar over a unary alphabet, with a linearly bounded blow-up, and then
represent the given number n as a string a", with an exponential blow-up.

An exponential-time algorithm for equations over sets of numbers can be con-
structed directly as follows. Given a number n and a resolved system with m variables,
the algorithm will simulate fixpoint iteration as in (), but all sets will be computed
as subsets of {0,...,n}. The algorithm thus uses variables X; C {0,...,n}, which are
initially empty, and which are updated at every step by substituting their values into
the right-hand side of the system. Up to m(n + 1) such iterations can be done until
the sets stabilize, when the algorithm can answer whether n is in X;. Each iteration
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Representable sets Membership problem  Equivalence problem
expressions Finite NP-complete [24] I1F-complete [6]
{U,+} circuits Finite NP-complete [7[I5] I1F-complete [6]
equations Ult. periodic [5] NP-complete [71[22] ?
expressions Finite PSPACE-complete [15] I1F-complete [6]
{U,N,+} circuits Finite PSPACE-complete [1I5] PSPACE-complete [6]
equations C EXPTIME EXPTIME-complete H?-Complete 1]

Table 1 Comparison of formalisms over sets of integers.

is polynomial in n + m, and so is the entire algorithm. Since n is given to the algo-
rithm in binary notation, the size of the instance of the general membership problem is
log n 4+ m, and hence the algorithm makes at most exponentially many iterations each
working in exponential time.

The EXPTIME-hardness of the general membership problem immediately fol-
lows from Theorem [2] by fixing the system of equations. a

Recalling that equations over sets of numbers are a generalization of circuits and
expressions over sets of numbers, Theorem [3] can be directly compared to the existing
results on the complexity of these formalisms. If the allowed operations are addition and
union only, then, according to Stockmeyer and Meyer [24] Thm. 5.1], the membership
problem is NP-hard for expressions. At the same time, for equations with these opera-
tions it can be solved by an NP algorithm due to Huynh [7] (or by a more specialized
NP algorithm of Plandowski and Rytter [22] Thm.8]), and hence the problem is NP-
complete for all three models. Once the operation of intersection is added, the complex-
ity increases: McKenzie and Wagner [15] showed the problem to be PSPACE-complete
for expressions and circuits alike, and Theorem [3] states its EXPTIME-completeness
for equations.

These results are summarized in the middle column of Table [l The left column
of the table characterizes the families of sets representable by each of these six for-
malisms. Obviously, expressions and circuits can represent only finite sets, as any
Boolean combinations and sums of finite sets are finite. The sets represented by equa-
tions with union and addition are bound to be ultimately periodic, because all context-
free languages over a unary alphabet are regular [5]. The contribution of this paper is
that equations with union, intersection and addition can represent some EXPTIME-
complete sets. At the same time, these equations cannot represent the whole class
EXPTIME = [J,, DTIME(2""), because their solutions lie in DTIME(2""), which is
a proper subset of EXPTIME due to the time hierarchy theorem. This case stands out
of the rest of the formalisms in Table[I] as these equations are not only able to represent
non-periodic sets, but can actually represent sets as hard as the general membership
problem for this family.

Another important decision problem is the equivalence problem, which constitutes
testing whether two given systems (expressions, circuits, etc.) define the same set.
For expressions and circuits over sets of numbers this problem has been studied by
Glafler et al. [6], who proved, in particular, that testing equivalence of expressions or
circuits with union and addition is I7. QP -complete, and if intersection is also allowed, then
the problem remains HQP -complete for expressions but becomes PSPACE-complete for
circuits. To compare, the equivalence problem for equations over sets of numbers with
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union, intersection and addition was proved to be undecidable by the authors [9]; to
be precise, it is IT ?—complete, and it remains [T ?—complete even if one of the systems
is arbitrarily fixed [9, Thm.4]. These results are summarized in the right column of
Table [l

5 Implications on conjunctive grammars

The complexity of equations over sets of numbers established above has direct impli-
cations on the complexity of conjunctive grammars over a one-letter alphabet.

Every conjunctive language can be parsed by a cubic-time algorithm and thus is in
P [I7], and some conjunctive languages over a multiple-letter alphabet are known to be
P-complete [19]. The case of a unary alphabet is special, as it is known that no sparse
language, in particular no unary language, can be P-complete unless DLOGSPACE = P
[16.[3], that is, unless the notion of P-completeness is trivial. However, from Theorem [2]
one can infer the following result slightly weaker than P-completeness:

Corollary 1 There exists an EXPTIME-complete set of numbers S C N, such that
the language L = {a" | n € S} of unary notations of numbers from S is generated by a
conjunctive grammar.

Note that for every unary language generated by a conjunctive grammar, the cor-
responding set of numbers is in EXPTIME. The set constructed in Corollary [I can
thus be regarded as the computationally hardest among unary conjunctive languages.

This has a straightforward consequence referring to the complexity of parsing for
conjunctive grammars. For context-free languages, it is known each of them is in NC2,
that is, can be parsed by a polynomial-size circuit of depth O(log?n), which was
discovered independently by Brent and Goldschlager [I] and by Rytter [23]. The known
examples of P-complete conjunctive languages imply that, unless P = NC, there are
no polylogarithmic-time parallel parsing algorithm for conjunctive languages [19]. Now
a similar result can be claimed with respect to grammars over a one-letter alphabet.

Corollary 2 Unless PSPACE = EXPTIME, there is no logarithmic-space parsing
algorithm for conjunctive languages over a unary alphabet.

Indeed, having such an algorithm for the particular language L from Corollary [l would
give a polynomial-space algorithm for the EXPTIME-complete set S.

Let us now consider the complexity of the compressed membership problem for con-
junctive grammars. This is a problem of testing whether a string w is generated by a
grammar (G, but unlike the ordinary membership problem, here the string w is given
in a compressed form constructed by a data compression algorithm. The standard ab-
straction for data compression, which captures algorithms such as LZ78, LZW and the
Huffman coding, is the notion of a straight-line program (SLP). Following Plandowski
and Rytter [22], a straight-line program over the alphabet X is a context-free gram-
mar Gy = (X,N, P,S) with L(Gw) = {w}, and Gy is considered as a compressed
representation of w. Note that the length of w may be exponentially larger than the
description of the grammar Go.

The compressed membership problem is defined as follows: “given a conjunctive
grammar G = (X, N, P, S) and a context-free grammar Gy = (X, N, P, S) generating
a singleton language {w}, determine whether w € L(G)”. The complexity of this
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Membership problem Compressed membership problem
Deterministic finite automata | DLOGSPACE-complete P-complete [141[22]
Regular expressions NLOGSPACE-complete P-complete [14,22]
Linear context-free grammars | NLOGSPACE-complete PSPACE-complete [13/[22]
Context-free grammars P-complete [10] PSPACE-complete [131[22]
Linear conjunctive grammars P-complete [1819] ?
Conjunctive grammars P-complete [18] EXPTIME-complete
Context-sensitive grammars PSPACE-complete EXPSPACE-complete [13]

Table 2 Complexity of membership problems for grammars and automata.

problem for the common families of languages is known from the literature. For regular
expressions, as well as for deterministic finite automata, the problem was shown to be in
P by Plandowski and Rytter [22], while Markey and Schnoebelen [14] demonstrated its
P-hardness already for a fixed regular language. Plandowski and Rytter [22] also showed
that the compressed membership problem for context-free grammars is in PSPACE, and
Lohrey [I3] proved that it is PSPACE-hard even for a fixed deterministic linear context-
free language. Furthermore, Lohrey [13] established the EXPSPACE-completeness of
the same problem for context-sensitive grammars, showing that it is EXPSPACE-hard
already for a fixed language.

Now the results of this paper can be used to establish the complexity of the same
problem for conjunctive grammars.

Theorem 4 The compressed membership problem for conjunctive grammars 1is
EXPTIME-complete. It remains EXPTIME-complete for a fized conjunctive language
Lo C a*.

Proof An exponential-time algorithm for this problem is straightforward. Given a con-
junctive grammar G and a context-free grammar G with L(Gw) = {w}, the algorithm
first decompresses the string w, that is, constructs it explicitly. Its length is at most
exponential in the size of G. Then the known polynomial-time algorithm for solving
the membership problem for a conjunctive grammar [I8] is applied.

To show the EXPTIME-hardness of the problem for a particular language, let
S C N be the set of numbers represented in Theorem [2 Define Ly = {a" | n € S},
which is a conjunctive language by Corollary [l Then the problem of testing whether
a number n is in S can be reduced to the compressed membership problem in L as
follows.

Let by ... bibo with b; € {0,1} be the binary notation of n, that is, n = >t_0 b;2".
Let i3 < ... < i} be all numbers with b;; = 1. Then the singleton language {a"} is
generated by the following context-free grammar Gp:

S—)Ail...A
Ag—a
Appr = A A (00 <)

ik

Accordingly, the description of Gy, is a yes-instance of the compressed membership
problem for Lg if and only if n € S, which completes the reduction. a

This result is compared to the similar earlier cited results on other families of formal
grammars in Table



Complexity of equations over sets of natural numbers 21

6 Conclusion

The first examples of non-periodic sets represented by equations over sets of numbers
with union, intersection and addition have been discovered only recently [8l9], and
now these equations were shown to be powerful enough to define EXPTIME-complete
sets. At the same time, it remains an open question what is the exact family of sets
of natural numbers defined by these equations. Besides the general knowledge that all
representable sets are contained in DTIMESPACE(Q"Z,Q"), no methods of showing
non-representability of particular sets are known. For instance, is it possible to define
the set of all primes?

The related work on the complexity of expressions and circuits over sets of num-
bers [2[6[15124,251[26] naturally suggests some further questions to study. In particular,
by analogy to expressions and circuits over sets of integers (including negative num-
bers) studied by Travers [25], one can consider equations over sets of integers. No such
equations have been studied before, and perhaps this research direction is worth being
investigated.
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