
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Complexity of equations over sets of natural numbers

Artur Jeż · Alexander Okhotin

the date of receipt and acceptance should be inserted later

Abstract Systems of equations of the form Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n) are

considered, in which the unknowns are sets of natural numbers. Expressions ϕi may

contain the operations of union, intersection and elementwise addition S+T = {m+n |

m ∈ S, n ∈ T}. A system with an EXPTIME-complete least solution is constructed in

the paper through a complete arithmetization of EXPTIME-completeness. At the same

time, it is established that least solutions of all such systems are in EXPTIME. The

general membership problem for these equations is proved to be EXPTIME-complete.

Among the consequences of the result is EXPTIME-completeness of the compressed

membership problem for conjunctive grammars.

1 Introduction

The study of expressions over sets of numbers and of the computational complexity of

their properties began in the seminal paper by Stockmeyer and Meyer [24], who con-

sidered formal languages over a one-letter alphabet as subsets of N0 = {0, 1, 2, . . .},

thus turning a concatenation of languages into an elementwise addition of sets:

S + T = {m + n | m ∈ S, n ∈ T}. Stockmeyer and Meyer established, in particular,

that the membership problem for expressions with union and addition is NP-complete,

and if the expressions may also contain complementation, then the problem becomes

PSPACE-complete. Some follow-up work was done by Yang [26], who considered cir-

cuits computing sets of numbers (that is, expressions in which subexpressions may be

shared) with an extra operation of elementwise multiplication, and established similar

A preliminary version of this paper was presented at STACS 2008 conference held in Bordeaux,
France on 21–23 February, 2008.

A. Jeż
Institute of Computer Science, University of Wroc law, Poland, E-mail: aje@ii.uni.wroc.pl
Supported by MNiSW grant N N206 259035 2008–2010.

A. Okhotin
Academy of Finland
Department of Mathematics, University of Turku, Finland, E-mail: alexander.okhotin@utu.fi
Supported by the Academy of Finland under grant 118540.

2 Artur Jeż, Alexander Okhotin

complexity results. A systematic study of complexity of expressions and circuits with

different sets of operations was recently carried out by McKenzie and Wagner [15].

This work has inspired some related studies. Breunig [2] investigated the same

formalisms defined over sets of positive integers and showed that in some cases the

membership problem becomes computationally easier. Similarly, the complexity of the

membership problem for expressions and circuits over sets of any integers was studied

by Travers [25], who found cases where the problem becomes harder and also cases

where it becomes easier. Glaßer et al. [6] determined the complexity of the equivalence

problem for the classes studied by McKenzie and Wagner [15].

This paper considers a different extension of this model: the equations over sets of

natural numbers. These are systems of equations of the resolved form





X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

in which every variable Xi represents an unknown set of nonnegative integers. The

right-hand side ϕi of each equation may contain the operations of union, intersection

and addition, as well as singleton constants. Every such system has a least solution

with respect to componentwise inclusion, which can be obtained by fixpoint iteration.

The X1-component of this least solution is regarded as the set of numbers defined by

the system, and thus the membership problem for such systems is considered similarly

to expressions and circuits.

While the expressions defined by Stockmeyer and Meyer [24] represent regular

expressions over a one-letter alphabet, equations over sets of numbers naturally cor-

respond to language equations over the same alphabet {a}. Language equations have

recently become an active area of research, with unexpected hardness results for them

obtained by Kunc [11] and by Okhotin [20,21]; for more details the reader is referred to

a recent survey by Kunc [12]. Systems of the particular form (*) using union and con-

catenation of languages are well-known to represent context-free grammars [5], while

the variant that allows intersection similarly represents conjunctive grammars, a gen-

eralization of the context-free grammars introduced by Okhotin [17]. The expressive

power of conjunctive grammars over a one-letter alphabet has been understood only

recently, with the first grammar for a non-regular language constructed by Jeż [8],

and with a large class of representable languages subsequently obtained by Jeż and

Okhotin [9]. These results, which immediately apply to systems of equations (*) over

sets of numbers, provide a technical basis for the present work.

The core result of this paper, established in Section 3, is a construction of a fixed

system of the form (*), such that testing the membership of numbers in its least

solution is an EXPTIME-hard problem, with the numbers given in binary notation.

The result is obtained by a new kind of arithmetization of an alternating linear-space

Turing machine, with numbers representing its instantaneous descriptions. It is also

shown that for every system (*), the membership of numbers in its least solution can

be tested in exponential time, which makes the constructed set the hardest. This yields

EXPTIME-completeness of the fixed membership problem, in which the system is not

a part of the input. Comparing this with circuits over sets of numbers, the latter may

only generate ultimately periodic sets (unless multiplication of sets is employed), and

thus the computational complexity of those sets is trivial.

Complexity of equations over sets of natural numbers 3

The cited results on expressions and circuits over sets of numbers [2,15,24,25,26]

were concerned with the complexity of the general membership problem, where both a

circuit and a number are given as an input. In those cases it was sufficient to encode

an instance of some hard problem in a circuit, which in most cases allows natural

reductions from existing problems. The task approached in this paper is more difficult:

a fixed system of equations representing a problem has to be constructed, and then

another problem has to be reduced to it by encoding its instances as numbers. This

requires a complete arithmetization of EXPTIME-completeness.

This result easily leads to the complexity of the general membership problem for

equations with union, intersection and addition, which is stated as follows: “Given a

system (*) and a number n > 0 in binary notation, determine whether n is in the

first component of the least solution of the system”. For integer expressions and integer

circuits with the same operations on sets, which can be regarded as an acyclic case of

systems (*), it is known from McKenzie and Wagner [15] that the membership problem

is PSPACE-complete. Another weaker model are systems (*) with union and addition,

that is, without intersection, for which the corresponding problem is NP-complete due

to the result of Huynh [7] on the commutative case of the context-free grammars. For

equations with union, intersection and addition, the general membership problem is

shown to be EXPTIME-complete in Section 4.

The results of this paper have a few implications on conjunctive grammars worked

out in Section 5. An immediate consequence is that there exists a conjunctive gram-

mar over an alphabet {a} generating unary representations of all numbers from an

EXPTIME-complete set of their binary representations. This unary conjunctive lan-

guage may be regarded as the computationally hardest of its kind; note that it is

unlikely that conjunctive grammars define any P -complete languages, as, under the

standard complexity-theoretic assumptions, no sparse P-complete languages exist [16,

3], and unary languages are sparse.

Another implication refers to the complexity of the compressed membership prob-

lem for conjunctive grammars, in which the input string w is supplied as a context-free

grammar Gw generating the singleton language {w}. For regular expressions and for

deterministic finite automata, this problem is P-complete by the results of Plandowski

and Rytter [22] and Markey and Schnoebelen [14]. For context-free grammars, it is

PSPACE-complete due to Plandowski and Rytter [22] and Lohrey [13]. Lohrey [13]

has also established the EXPSPACE-completeness of the problem for context-sensitive

grammars. In this paper, conjunctive languages are put in the context of the cited re-

search by showing that their compressed membership problem is EXPTIME-complete.

2 Language equations and conjunctive grammars

In language equations, the unknowns are formal languages over an alphabet Σ. If

|Σ| = 1, they coincide with equations over sets of numbers, while for larger alphabets

they constitute a more general notion. The main object of this study are equations

of the resolved form (*), in which variables assume values of sets of non-negative

integers, and the right-hand sides may contain the operations of union, intersection

and addition of sets, as well as singleton constant sets. These equations obviously

correspond to language equations over a one-letter alphabet with the operations of

union, intersection and concatenation, and the recent results on language equations

4 Artur Jeż, Alexander Okhotin

of this kind provide a theoretical foundation, as well as another motivation, for the

present research.

The first type of language equations to be studied were systems of the same form

Xi = ϕi(X1, . . . , Xn) (i ∈ {1, . . . , n}) containing union and concatenation, but no

intersection: Ginsburg and Rice [5] established that these equations provide a natural

semantics for the context-free grammars. To be precise, every such system has solutions,

and among them there is always a least solution, which is a componentwise intersection

of all solutions. Furthermore, the least solution can be obtained by fixpoint iteration

as ⊔

i>0

ϕi(∅, . . . ,∅), (1)

where ϕ is the right-hand side of the system as an operator on the set of n-tuples of

languages, while t denotes componentwise union of n-tuples of languages.

Equations augmented with an intersection operation inherit this property, and they

can be used to define the following generalization of the context-free grammars.

Definition 1 (Okhotin [17]) A conjunctive grammar is a quadruple G =

(Σ,N,P, S), in which Σ and N are disjoint finite non-empty sets of terminal and

nonterminal symbols respectively; P is a finite set of grammar rules, each of the form

A → α1& . . .&αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗)

while S ∈ N is a nonterminal designated as the start symbol.

The semantics of a conjunctive grammar is defined by the least solution of the

following system of language equations, in which nonterminal symbols are variables:

A =
⋃

A→α1&...&αm∈P

m⋂

i=1

αi (for all A ∈ N) (2)

Each string αi ∈ (Σ ∪N)∗ represents a concatenation of variables and singleton con-

stants. The component of the least solution corresponding to each A ∈ N is then

denoted by LG(A), and L(G) is defined as LG(S).

An equivalent definition of conjunctive grammars can be given using term rewriting

[17], which generalizes Chomsky’s string rewriting. The importance of these grammars

lies with the fact that their expressive power is substantially greater than that of the

context-free grammars, while the generated languages can still be parsed in time O(n3).

Furthermore, the practical context-free parsing algorithms, such as the generalized LR

and the recursive descent, admit generalization to conjunctive grammars without an

increase in their computational complexity.

For a one-letter alphabet Σ = {a}, a system of language equations (2) can be

regarded as a system of equations (*) over sets of natural numbers using union, in-

tersection and addition. The question of whether conjunctive grammars can generate

any non-regular unary languages has been an open problem for some years, until re-

cently solved by Jeż [8], who constructed a grammar for the language {a4
n

| n > 0}.

This grammar is given below, along with its reformulation as a resolved system of four

equations over sets of numbers:

Complexity of equations over sets of natural numbers 5

Example 1 (Jeż [8]) The following conjunctive grammar with the start symbol A1

generates the language {a4
n

| n > 0}.

A1 → A2A2&A1A3 | a

A2 → A12A2&A1A1 | aa

A3 → A12A12&A1A2 | aaa

A12 → A3A3&A1A2

X1 =
(
(X2 +X2) ∩ (X1 +X3)

)
∪ {1}

X2 =
(
(X12 +X2) ∩ (X1 +X1)

)
∪ {2}

X3 =
(
(X12 +X12) ∩ (X1 +X2)

)
∪ {3}

X12 = (X3 +X3) ∩ (X1 +X2)

The corresponding system of equations over sets of numbers has the least solution

Xi = {` | base-4 notation of ` is i0 . . . 0} for i = 1, 2, 3, 12, where X1 is the set of all

powers of 4.

Sets of this kind can be conveniently specified by regular expressions for the corre-

sponding sets of base-k notations of numbers, which in this case are 10
∗, 20∗, 30∗ and

120
∗, respectively.

Using the same technique as in the above example in a more elaborate construc-

tion, a general theorem on the expressive power of unary conjunctive grammars was

established. It can be reformulated for equations over sets of numbers as follows:

Theorem 1 (Jeż [8]) For every k > 2 and for every finite automaton M over the

alphabet {0, . . . , k− 1} there exists a resolved system of language equations over sets of

numbers using union, intersection and addition, with the least solution

(S1, S2, . . . , Sn),

where Si ⊆ N0 and S1 = {` | k-ary notation of ` is in L(M)}.

A generalization of this result to a larger family of automata recognizing positional

notations was established in a recent paper by Jeż and Okhotin [9].

In terms of language theory, representing all sets of numbers with a regular po-

sitional notation already constitutes a substantial expressive power. However, it has

no implications on the computational complexity, as all these sets are computationally

easy. The more general representation theorem of Jeż and Okhotin [9] also does not

imply any better complexity results than P-completeness, which, as the present pa-

per shows, is much below the actual complexity of these equations. Therefore, a new

method of constructing such equations is needed to understand their complexity. This

step is made in the next section, which introduces an arithmetization technique based

upon addition of sets of numbers.

3 Arithmetization of EXPTIME-completeness

The core result of this paper is a construction of a particular resolved system of equa-

tions over sets of numbers, for which testing membership of numbers in its least solution

is an EXPTIME-complete problem. It is accompanied by a matching upper bound:

Theorem 2 The family of sets of numbers representable by resolved systems of equa-

tions with union, intersection and addition, as well as singleton constants, is a subset

of EXPTIME and contains an EXPTIME-complete language.

6 Artur Jeż, Alexander Okhotin

The proof is by constructing a system of equations that encodes a computation

of any linearly bounded alternating Turing machine (ATM). It is known that such

machines recognize some EXPTIME-complete sets [4].

Furthermore, an ATM shall operate on a circular tape and move to the right at

every step. Its tape shall originally contain the input string, and the cells containing it

constitute all space available to the machine. Such a machine can simulate an arbitrary

linear-bounded ATM by marking the position of its head on the tape, and by making

one transition of the simulated ATM per each traversal of the circular tape. Hence,

these restricted ATMs are as powerful as linear-bounded ATMs of the general form.

Formally, such a machine is defined as M = (Ω,Γ,QE, QA, δ, q0, qfin), where Ω is

the input alphabet, Γ = {a0, a1, . . . , amax} ⊃ Ω is the tape alphabet, QE and QA

are disjoint sets of existential and universal states, respectively, Q = QE ∪ QA =

{q0, q1, . . . , qmax} and qfin ∈ Q. Given an input w ∈ Ω+, M starts in state q0 with

the head over the first symbol of w. The transition function is δ : Q × Γ → 2Q×Γ ,

and the head is moved one symbol to the right at every step. Once the head moves

beyond the right-most symbol, it is moved back to the first symbol of w, maintaining

its current state; this implements a circular tape. For technical reasons, assume that

(q, a′) /∈ δ(q, a) for all q ∈ Q and a, a′ ∈ Γ (that is, the machine never stays in the

same state), and that δ(q, a) 6= ∅ for all q ∈ QA and a ∈ Γ .

The construction of a system of equations over sets of numbers simulating a compu-

tation is based upon representing instantaneous descriptions of the ATM as numbers.

These numbers shall be considered in positional notation with base 8+ |Q|+max(|Q|+

7, |Γ |), and the entire argument is based upon mapping the symbols used by the ma-

chine to digits, and then using addition to manipulate individual digits in the positional

notation of numbers. It should be noted that this positional notation is only a tool for

understanding the constructions, while the actual equations, by definition, deal with

numbers as they are.

Let Σ = {0, 1, . . . , 7+ |Q|+max(|Q|+7, |Γ |)} be the alphabet of digits, and define

the mapping of symbols to digits, 〈·〉 : Q ∪ Γ → Σ, as follows:

〈qi〉 = 7 + i (for qi ∈ Q),

〈ai〉 = 7 + |Q|+ i (for ai ∈ Γ).

The notation 〈·〉 is naturally extended to strings over Q∪Γ by 〈s1 . . . s`〉 = 〈s1〉 . . . 〈s`〉.

Furthermore, let 〈Q〉 = {〈q〉 |q ∈ Q} and 〈Γ 〉 = {〈a〉 |a ∈ Γ}. Now the tape of the ATM

containing symbols ai1 . . . ain , with the head over the j-th symbol and the machine in

state q, is represented as the following string of digits:

0〈ai1〉 . . . 0〈aij−1
〉〈q〉〈aij 〉0〈aij+1

〉 . . . 0〈ain〉0 ∈ Σ∗

For technical reasons, configurations, in which the head has just moved over the last

symbol but has not yet jumped to the first position, are considered separately and will

be represented as strings of the form

0〈ai1〉 . . . 0〈ain〉〈q〉,

where q is the current state. Note that digits denoting letters are written only in even

positions, while odd positions are reserved for the states of the Turing machine. The

set of all strings of digits representing valid encodings of the tape is specified by the

following regular expression over Σ:

Tape = (0〈Γ 〉)∗〈Q〉(〈Γ 〉0)∗ \ 〈Q〉

Complexity of equations over sets of natural numbers 7

The set Tape should be considered as a formal language over Σ, which will be used later

as a part of representations of some sets of numbers. Subsets of this set representing

tapes with different states will be denoted as follows:

Tapeα = {w | w ∈ Tape, α ∈ (Γ ∪Q)∗, 〈α〉 is a substring of w},

Tape`α = {w | w ∈ Tape, α ∈ (Γ ∪Q)∗, 〈α〉 is a prefix of w}.

Besides the contents of the tape, the encoding for Turing machine configurations

uses a counter of rotations of the circular tape. This counter specifies the number

of circles through the tape the machine is still allowed to make before it must halt.

It is represented in binary notation using digits {0, 1}, and the set of valid counter

representations is

Counter = 1{0, 1}∗,

where the digits are still in base-|Σ| notation. Normally, the counter uses only digits

{0, 1}, but in order to implement the incrementation of the counter, strings with one

digit 2 representing zero with carry shall be used as well. The set of valid representations

of counters with a carry is

Counter′ = 1{0, 1}∗20∗ ∪ 20
∗.

For every string ck−1 . . . c0 ∈ Counter∪Counter′, define its value as

Value(ck−1 . . . c0) =

k−1∑

j=0

cj · 2
j .

Now define the mapping from configurations of the Turing machine to numbers.

A configuration with the tape contents, the head position and the current state given

by a string of digits w ∈ Tape and with the counter value given by x ∈ Counter is

represented by a string of digits

x55w,

where two marker digits 55 separate the counter from the tape. This string of digits in

base-|Σ| positional notation specifies a certain number, which accordingly represents

the configuration.

The key property of this encoding is that every transition of the machine reduces

the numerical value of its configuration. Indeed, if the head is moved to the right, then a

digit 〈q〉 is replaced with 0 and all other modifications are done on less significant digits.

If the head jumps from the end to the beginning, then the counter is decremented, and

since the counter occupies higher positions in the notation of the number than the tape,

this transition decreases the value of the configuration as well. Such a monotonicity

allows encoding the dependence of configurations on each other by using addition of

nonnegative numbers only. This dependence is inductively expressed in the equations

defined below.

The construction of a system of equations representing the computation of the ATM

begins with some expressions that will be used in the right-hand sides of equations.

These expressions contain some constant sets of numbers given as regular languages

over the alphabet Σ. Every such language represents the set of all numbers with |Σ|-ary

notation of the given form. According to Theorem 1, every such set can be represented

by a separate system of equations using only singleton constants. All these subsystems

8 Artur Jeż, Alexander Okhotin

are assumed to be included in the constructed system, and each of the regular expres-

sions in the system can be formally regarded as a reference to one of the auxiliary

variables.

Definitions of a few of these regular languages incorporate positional notations of

numbers obtained by subtracting one number from another. For convenience, these

values are given in the form u � v, with u, v ∈ Σ∗ being positional notations of two

numbers (the former shall be greater or equal to the latter). One can write, e.g.,

(u � v)0∗ for the set of all numbers with their |Σ|-ary notation beginning with the

fixed digits determined by the given difference, followed with any number of zeroes.

Under these conventions, the following four expressions are defined, each represent-

ing a function of one set argument:

Step(X) =
⋃

q∈QE

a∈Γ

⋃

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)

∪
⋃

q∈QA

a∈Γ

⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)

Moveq′,a′,q,a(X) =
[
(X ∩ Counter 55Tapea′q′) +

(
〈q〉〈a〉0� 〈a′〉〈q′〉

)
(00)∗

]

∩ Counter 55Tapeqa

Jump(X) =
⋃

q

[(
X ∩ Counter 55Tape`q

)
+ (1000� 〈q〉)(00)+ + 〈q〉

]

∩ (Counter∪Counter′)55Tapeq

Carry(Y) =
[([(

Y ∩ {0, 1}∗2{0, 1}∗ 55Tape
)
+ 10

∗] ∩ {0, 1}∗3{0, 1}∗ 55Tape
)

+
(
10� 3

)
0
∗
]
∩
(
{0, 1}+ ∪ {0, 1}∗2{0, 1}∗

)
55Tape

Whenever the functions Moveq′,a′,q,a and Jump are applied to a set of configurations

X, they manipulate the symbols in each configuration in this set in order to reconstruct

the configuration at the previous step (one with a larger numerical value). In particular,

Jump moves the head back over the edge of the tape, incrementing the counter, while

Moveq′,a′,q,a reverses a transition from (q, a) to (q′, a′) by moving the head by one

position to the left, restoring the letter a and returning to the state q. The function

Step transcribes the logic of a single step of the ATM, taking the transition table and the

alternation into account, while the function Carry is used to implement incrementation

of the counter.

The set of final configurations of the machine is defined as follows:

Final = Counter 55Tapeqfin .

The system of equations uses two variables, X and Y . Either variable repre-

sents the set of proper configurations of the machine, starting from which the ma-

chine accepts. The difference between these variables is that X represents configu-

rations belonging to the set Counter 55Tape, while Y represents configurations from

(Counter∪Counter′)55Tape, in which the counter may contain one carry digit 2 that

needs to be propagated to higher positions. The equations, using the above auxiliary

functions, are as follows:
{
X = Final∪ Step(X) ∪

(
Y ∩ Counter 55Tape

)

Y = Jump(X) ∪ Carry(Y)
(3)

Complexity of equations over sets of natural numbers 9

Intuitively, the equation for X states that a configuration leads to acceptance if

and only if it is itself accepting (Final), or one can directly proceed from it to a

configuration leading to acceptance (Step(X)), or that it is a configuration obtained

in Y . The equation for Y specifies circular rotation of the tape by Jump(X) and

implements iterated carry propagation by a self-reference Carry(Y).

In order to determine the least solution of this system, let us first establish some

properties of the auxiliary functions. The first quite elementary property is their dis-

tributivity over infinite union, which allows studying these operations as operations on

individual numbers, and then infer their action on sets of numbers.

Lemma 1 (Distributivity) Each function f ∈ {Moveq′,a′,q,a, Jump,Carry} is dis-

tributive over infinite union, in the sense that f(S) =
⋃

n∈S f({n}), for every S ⊆ N0.

In the following, singleton arguments {n} for the functions Moveq′,a′,q,a, Jump and

Carry shall be denoted without braces, as in Jump(n).

Lemma 1 follows from the fact that each of these expressions consists of intersections

with constant sets, sums with constant sets and unions, for which this property holds

in general:

Proposition 1 (Jeż, Okhotin [9]) Let ϕ(X) be an expression defined as a composi-

tion of the following operations: (i) the variable X; (ii) constant sets; (iii) union; (iv)

intersection with a constant set; (v) addition of a constant set. Then ϕ is distributive

over infinite union, that is, ϕ(X) =
⋃

n∈X ϕ({n}).

On the other hand, note that if an expression contains an intersection or a sum of two

expressions involving X, then it is not necessarily distributive over infinite union. In

particular, Step need not be distributive.

A common expression used in these functions is addition of a constant set of num-

bers with |Σ|-ary notation u0∗ (that is, a set
{
m · |Σ|i

∣∣ i > 0
}
) with one, two or

three non-zero leading digits in u. The following lemma establishes that this addition

can never rewrite the double markers 55, that is, every sum in which these markers

are altered does not represent a valid tape contents. This means that such additions

manipulate the counter and the tape separately, and the changes do not mix.

Lemma 2 (Marker preservation) For every x, x′ ∈ {0, 1, 2, 3}∗ \ 0Σ∗ and w,w′ ∈

Tape, if x′55w′ ∈ x55w + (Σ3 ∪Σ2 ∪Σ)0∗, then |w| = |w′|.

Proof Let y = ijk0`, with i, j, k ∈ Σ, be a string representing a number, and assume

that x′55w′ = x55w + y. The ` least significant digits of x55w and of x′55w′ are then

the same.

Consider the (`+4)-th digit of x55w, let it be c. Since y has fewer than `+4 digits,

any change at this position can only be due to a carry from the position `+ 3. As the

digit |Σ| − 1 is not used in any proper encoding, c < |Σ| − 1. Because the carry digit

is at most 1, the (`+ 4)-th digit in x′55w′ is less or equal to c+ 1, that is, it is less or

equal to |Σ| − 1. Therefore, there is no carry to the position `+5 in x55w+ y, and all

digits in positions higher than `+4 in x55w+y are the same as in x55w. Hence, x′55w′

has at most four digits different from x55w, which may be at the positions `+1, `+2,

`+ 3 and `+ 4.

Assume for the sake of contradiction that |w| 6= |w′|. Since w and w′ are both of

odd length, the positions of 5 in the strings x55w and x′55w′ are different. Hence x55w

and x′55w′ differ at exactly four positions, which are the positions of 5 in them.

10 Artur Jeż, Alexander Okhotin

Note that if four digits are modified by adding y, then the digit in the position `+4

can only be incremented by 1 due to a carry from the previous position. Since one of

the strings x55w, x′55w′ has the digit 5 in the position `+ 4, the other string should

have a digit 4 or 6 in the same position. Because the latter digits are not encodings of

any symbols, this yields a contradiction. ut

The next statement describes the operation of Carry: when applied to a configura-

tion x55w with the counter x having a single carry digit 2, Carry changes this digit to

0 and increments the next digit, turning it to 1 or 2. The tape contents is not altered,

only the carry digit is propagated to the next higher position. Note that all operations

are in |Σ|-ary notation.

Lemma 3 (Carry propagation) For every x ∈ Counter′ and for every w ∈ Tape,

Carry(x55w) = {x′55w} for some x′ ∈ Counter∪Counter′ with Value(x′) = Value(x).

For every string α ∈ Σ∗ of any different form, Carry(α) = ∅.

Proof The inner intersection with {0, 1}∗2{0, 1}∗ 55Tape ensures that the set Carry(α)

is non-empty only for α = x55w with x ∈ Counter′ and w ∈ Tape.

The goal is to prove that if x = 2x̃ ∈ Counter′ and w ∈ Tape, then

Carry(2x̃55w) = {10x̃55w},

and if x = x̂c2x̃ ∈ Counter′ and w ∈ Tape, then

Carry(x̂c2x̃55w) = {x̂(c+ 1)0x̃55w}.

If a string x55w, with x ∈ Counter′ ∪Counter and w ∈ Tape, is substituted into

the expression Carry, then the first subexpression produces all strings of the form

u ∈ (x55w + 10
∗) ∩ {0, 1}∗3{0, 1}∗ 55Tape .

Consider the possible changes made to x55w to obtain u. As 1 is added only to one

digit, there cannot be a carry, because the digit |Σ| − 1 is not used for encoding.

Therefore, only one digit is modified in x55w. Since x55w does not contain the digit 3

that occurs in u, the unique digit 2 in x must be replaced by 3. Denote u = x̃55w.

Consider the string u′ (any such string if it is not unique) obtained in the next

subexpression:

u′ ∈
(
u+ (10� 3)0∗

)
∩

(
{0, 1}+ ∪ {0, 1}∗2{0, 1}∗

)
55Tape .

Let u′ = u + y, with y ∈ (10 � 3)0∗ = (|Σ| − 3)0∗. By Lemma 2, u′ = x′55w′ and

|w′| = |w|.

Consider the changes in x′55w′ as compared to x̃55w. Since there is a digit 3 in x̃

and there is no such digit in x′, the position of 3 in x̃ is one of the modified positions.

Denote the number of this position by k. Because the addition of y has modified the

digit 3, this means that the unique non-zero digit in y is in position k or k − 1. If it is

in the position k−1, then the digit 3 can only be modified by adding 1 as a carry from

the position k − 1. This cannot be the case, as the digit 4 is not used in the encoding.

Therefore, the non-zero digit in y is in the position k; then adding y to x̃55w replaces

3 with 0 and results in a carry, thus increasing the digit in the position k + 1 by 1.

Note that, in particular, no changes were made to w, and hence w′ = w.

Complexity of equations over sets of natural numbers 11

Finally, consider the values of the counters x and x′. The value of x is
∑

ci2
i, where

ci is the digit in the i-th position. If x has no digit in the position k + 1, then assume

for the purposes of calculation that ck+1 = 0 (this does not influence the value of the

counter). In x′, the digit 2 was replaced by 0, hence c′k = 0. In the position k + 1, the

digit ck+1 was replaced with ck+1 + 1. If there was no actual digit ck+1 in x, then a

new digit c′k+1 = 1 has been created. In any case x′ contains the digit c′k+1 = ck+1 +1

in this position. All other digits of the counters are left intact. Then the difference of

the values of the counters is determined by the positions k and k + 1, and

Value(x)− Value(x′) = (ck+1 · 2k+1 + 2 · 2k)− ((ck+1 + 1) · 2k+1 + 0 · 2k) = 0,

that is, the value of the counter has been preserved. ut

According to Lemma 3, Carry basically moves the carry higher by one position. The

next lemma shows that sufficiently many iterations of Carry always eliminate the carry

digit: given a counter with the notation x′ = x̃01k−1
2 ∈ Counter′, Carryk transforms

it to x = x̃10k−1
0 ∈ Counter.

Lemma 4 (Termination of carry propagation) For every x′ ∈

Counter∪Counter′ and w ∈ Tape there exist x ∈ Counter and a number k > 0, such

that Carryk(x′55w) = {x55w} and Value(x) = Value(x′).

Proof If x′ ∈ Counter, then statement of the lemma is satisfied for k = 0 and x = x′.

Let x′ ∈ Counter′ and construct a sequence x0, x1, . . . , xk, with xi ∈ Counter′ and

Value(xi) = Value(x′), where k shall be determined below, as follows. Let x0 = x′. For

every i > 1, consider Carry(xi−155w), which, by Lemma 3, equals {xi55w} for some

xi ∈ Counter′ ∪Counter with Value(xi) = Value(xi−1). If xi ∈ Counter, then k = i

and x = xi satisfy the statement of the lemma. Otherwise, if xi ∈ Counter′, then the

construction of the sequence continues.

Note that the numerical value of each configuration xi+155w (as a number in base-

|Σ| notation) is strictly greater than in xi55w, and hence all elements of the sequence

are distinct. Since there exist only finitely many elements of Counter′ with the same

value, the sequence cannot be infinite and eventually xi ∈ Counter is obtained. ut

The next lemma determines the operation of Jump, which can be described as

follows. This function is applicable to configurations in which the head scans the first

symbol, and the result of Jump on every such configuration is the previous configu-

ration, in which the head is at the right-most position beyond the end of the string,

while the value of the counter x is greater by 1.

Lemma 5 Let x = x̃c ∈ Counter with c ∈ {0, 1} and let w = 〈q〉w̃0 ∈ Tape with q ∈ Q,

that is, w is a configuration with the head over the first symbol. Then Jump(x55w) =

{x̃(c+ 1)550w̃〈q〉}.

For any string α ∈ Σ∗ of a different form, Jump(α) = ∅.

Proof The inner subexpression of Jump(x55w),

{x55w} ∩ Counter 55Tape`q,

ensures that w = 〈q〉w̃0 for some w̃ ∈ 〈Γ 〉(0〈Γ 〉)∗, that is, that the digit specifying

the state of the machine is in the left-most position. If w is of a different form, then

12 Artur Jeż, Alexander Okhotin

Jump(x55w) = ∅. Fix an arbitrary state q ∈ Q; as the outermost operation in Jump,

a union over all q will be taken.

The next subexpression performs an addition

x55〈q〉w̃0+ (1000� 〈q〉)(00)+ + 〈q〉,

which is meant to remove q from the beginning of the tape, increment the counter and

place q in the end of the tape. Consider an arbitrary y = (1000� 〈q〉)(00)k + 〈q〉, with

k > 1. Denote u = x55w + y and assume that

u ∈ (Counter′ ∪Counter)55Tapeq ,

as the subsequent operation in Jump is an intersection with this set. Let u = x′55w′

with x′ ∈ Counter∪Counter′ and w′ ∈ Tape. Also note that w′ = 0w̃′〈q〉, as the right-

most digit in y is 〈q〉 and the right-most digit in w is 0, and there is only one digit

from 〈Q〉 in w′.

Since y has non-zero digits only in the positions 2k+1, 2k+2, 2k+3 and 1, and the

digit |Σ| − 1 does not encode any symbol, adding y cannot change any digit in x55w

in positions higher than 2k + 4. Let 2` = |w̃0|. Then adding y to w modifies the digit

in the position 2`+ 1, which is 〈q〉. Hence, 2`+ 1 = 2k + 1 or 2`+ 1 = 2k + 3.

If 2`+1 = 2k+3, then there is either 〈q〉 or 〈q〉−1 in the position 2`+1 in x55w+y.

Moreover, the digit 5 in the position 2` + 3 = 2k + 5 in x55w was not modified by

adding y. Since the position 2` + 1 is to the right of 55 in x′55w′, it contains 0. This

is a contradiction, as 〈q〉 > 〈q〉 − 1 > 0.

Hence, 2`+1 = 2k+1. Let x = x̃c. Then x55w+y = x̃(c+1)550w̃〈q〉, and therefore

x′ = x̃(c+ 1) and w′ = 0w̃〈q〉, as stated in the lemma. ut

The next operation is Move, which represents symbol manipulation, head move-

ment and state change of a Turing machine according to the transitions specified in

δ. Generally, when Moveq′,a′,q,a is applied to a valid configuration, it computes the

preceding configuration of the machine. This configuration is unique because of the

restriction built in Moveq′,a′,q,a: the intersections therein ensure that in the current

configuration the machine is in the state q′ and the symbol to the left rewritten at the

previous step is a′, while in the previous configuration the machine was in the state q

and used to scan the symbol a. For all other configurations and in all other cases, the

function produces the empty set.

Lemma 6 Let q, q′ ∈ Q with q 6= q′, and let a, a′ ∈ Γ . Let x ∈ Counter

and w = ŵ0〈a′〉〈q′〉w̃ ∈ Tape for some ŵ ∈ (0〈Γ 〉)∗ and w̃ ∈ (〈Γ 〉0)∗. Then

Moveq′,a′,q,a(x55w) = {x55ŵ〈q〉〈a〉0w̃}.

For every string α ∈ Σ∗ of a different form, Moveq′,a′,q,a(α) = ∅.

Proof Fix a′, q′, a and q. The inner subexpression of Moveq′,a′,q,a,

x55w ∩ Counter 55Tapea′q′ ,

ensures that w = ŵ0〈a′〉〈q′〉w̃ for some ŵ ∈ (0〈Γ 〉)∗ and w̃ ∈ (〈Γ 〉0)∗. For any w of a

different form, Moveq′,a′,q,a(x55w) is empty.

The next subexpression performs the operation

x55w +
(
〈q〉〈a〉0� 〈a′〉〈q′〉

)
(00)∗ ∩ Counter 55Tapeqa,

Complexity of equations over sets of natural numbers 13

which is designed to replace the digits 0〈a′〉〈q′〉 in w with the digits 〈q〉〈a〉0. The task

is to show that the addition always proceeds according to this plan.

Let

y =
(
〈q〉〈a〉0� 〈a′〉〈q′〉

)
0
2k ∈

(
〈q〉〈a〉0� 〈a′〉〈q′〉

)
(00)∗

and consider the string x′55w′ = x55w + y, where x′ ∈ Counter and w′ ∈ Tape. By

Lemma 2, |w′| = |w|.

As y has non-zero digits only in positions 2k + 1, 2k + 2, 2k + 3, while the digit

|Σ| − 1 is not a valid encoding of any symbol, adding y cannot change any digits in

x55w in positions higher than 2k + 4.

Let 2` = |w̃|. Since q 6= q′, w and w′ must differ in the position 2` + 1, where w

has the digit 〈q′〉. Therefore, 2`+ 1 = 2k + 3 or 2`+ 1 = 2k + 1.

Suppose 2`+ 1 = 2k + 3, that is, the digit 〈q′〉 in w is added to 〈q〉 or 〈q〉 − 1 in y,

with a possible carry from the lower digits. Then x55w+ y has a digit (〈q〉+ 〈q′〉 − 1),

(〈q〉 + 〈q′〉) or (〈q〉 + 〈q′〉 + 1) (modulo |Σ| in each case) in the position 2` + 1. Since

〈q〉, 〈q′〉 6 6+ |Q| and q 6= q′, it follows that 〈q〉+ 〈q′〉 6 11+ 2|Q| and 〈q〉+ 〈q′〉+1 6

12 + 2|Q|. Each sum is smaller than |Σ| and is therefore represented by a single digit.

However, each of these digits is greater than 〈q〉, and hence all of them are filtered out

by the intersection with Counter 55Tapeqa.

In the other case of 2`+1 = 2k+1, the addition proceeds as expected, and x′ = x

and w′ = ŵ〈q〉〈a〉0w̃, as stated in the lemma. ut

The flow control of an alternating Turing machine includes existential and universal

nondeterminism in the corresponding states, and a single step is in fact a disjunction

or conjunction of several transitions as specified in Move. This logic is transcribed in

the expression Step(X), which computes the set of all previous configurations, from

which machines in a universal state make all their transitions to configurations in X

and machines in an existential state make at least one of their transitions to some

configuration in X. This implements one step of the computation of the machine,

backwards.

Lemma 7 Let x ∈ Counter and w ∈ Tape, let q ∈ Q be the state encoded in w. Let

X ⊆ N. Then x55w ∈ Step(X) if and only if the following conditions hold:

– the configuration w has the head not in the position beyond the right-most symbol,

that is, w = ŵ〈q〉〈a〉0w̃ for some ŵ ∈ (0〈Γ 〉)∗ and w̃ ∈ (〈Γ 〉0)∗ and a ∈ Γ ;

– if q ∈ QE , then x55w′ ∈ X for some configuration w′ among successors to w;

– if q ∈ QA, then x55w′ ∈ X for every configuration w′ among successors to w.

Proof ⇒© Consider the definition of Step:

Step(X) =

=
(⋃

q̂∈QE

â∈Γ

⋃

(q′,a′)∈δ(q̂,â)

Moveq′,a′,q̂,â(X)
)
∪
(⋃

q̂∈QA

â∈Γ

⋂

(q′,a′)∈δ(q̂,â)

Moveq′,a′,q̂,â(X)
)
.

Assume that x55w ∈ Step(X), let a ∈ Γ be the symbol scanned by the head of the

machine in the configuration w, and let q ∈ Q be the current state. Then, according to

Lemma 6, x55w ∈ Moveq′,a′,q̂,â(X) only if (q̂, â) = (q, a), and hence the subexpressions

Moveq′,a′,q̂,â(X) with (q̂, â) 6= (q, a) need not be taken into account.

14 Artur Jeż, Alexander Okhotin

First suppose that q is an existential state. Then

x55w ∈
⋃

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X),

that is, there exist q′ ∈ Q and a′ ∈ Γ with x55w ∈ Moveq′,a′,q,a(X) for some (q′, a′) ∈

δ(q, a). Note that q 6= q′ by the technical assumption that the machine changes its

state upon every transition. Since Moveq′,a′,q,a is distributive over infinite union by

Lemma 1, there exists a number n ∈ X with x55w ∈ Moveq′,a′,q,a(n). Then, by

Lemma 6, n must be of the form x55w′ with w′ = ŵ0〈a′〉〈q′〉w̃ for some ŵ ∈ (0〈Γ 〉)∗

and ŵ ∈ (〈Γ 〉0)∗, and with w = ŵ〈q〉〈a〉0w̃. Since (q′, a′) ∈ δ(q, a), w′ is a successor

configuration to w, and x55w′ ∈ X. The position of the head in w is to the left of the

right-most symbol.

The case of q ∈ QA is similar. It follows from x55w ∈ Step(X) that

x55w ∈
⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X),

that is, for all q′ ∈ Q and a′ ∈ Γ with (q′, a′) ∈ δ(q, a) it holds that x55w ∈

Moveq′,a′,q,a(X). As in the previous case, this implies that w = ŵ〈q〉〈a〉0w̃ and there

is x55w′
q′,a′ ∈ X with w′

q′,a′ = ŵ0〈a′〉〈q′〉w̃. These are consecutive configurations, and

every successor configuration to w is of this form for some (q′, a′) ∈ δ(q, a). Then the

required element x55ŵ0〈a′〉〈q′〉w̃ is in X for all q′ and a′ with (q′, a′) ∈ δ(q, a). Also

note that δ(q, a) 6= ∅ by assumption, and hence there is at least one such pair (q′, a′).

Hence, w is of the required form with the head not beyond the right-most symbol.
⇐© Let w = ŵ〈q〉〈a〉0w̃ and first consider the case of q ∈ QE . Let w′ be one of the

next configurations of the machine with x55w′ ∈ X. Then w′ = ŵ0〈a′〉〈q′〉w̃ for some

(q′, a′) ∈ δ(q, a), and it is known that q 6= q′. By Lemma 6, Moveq′,a′,q,a(x55w
′) =

{x55w}. Since Moveq′,a′,q,a(x55w
′) ⊆ Step(X), this shows that x55w ∈ Step(X).

If q ∈ QA, then, by assumption, x55w′ ∈ X for all configurations w′ immedi-

ately following w. That is, for all (q′, a′) ∈ δ(q, a), x55w′
q′,a′ ∈ X, where w′

q′,a′ =

ŵ0〈a′〉〈q′〉w̃. For every such pair, by Lemma 6, x55w ∈ Moveq′,a′,q,a(x55w
′
q′,a′). Hence,

x55w ∈
⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X),

and therefore x55w ∈ Step(X). ut

Thus the formal meaning of all auxiliary operations has been established, and the

equations can now be analyzed. The equation for X states that a configuration leads

to acceptance if and only if it is itself accepting (Final), or one can directly proceed

from it to a configuration leading to acceptance (Step(X)), or that it is a configuration

obtained in Y . The equation for Y specifies circular rotation of the tape by Jump(X)

and implements iterated carry propagation as in Lemma 4 by a self-reference Carry(Y).

Altogether, the least solution of these equations corresponds to the computation of the

machine as follows:

Lemma 8 Let (LX , LY) be the least solution of the system (3).

I. Let x ∈ Counter, w ∈ Tape and x55w ∈ LX . Then M accepts starting from the

configuration w.

Complexity of equations over sets of natural numbers 15

II. Conversely, if M accepts starting from a configuration w ∈ Tape, and the longest

path in the tree of the accepting computation has length `, then x55w ∈ LX for

each x ∈ Counter with Value(x) > `.

Proof As the least solution of the system is computed by fixpoint iteration (1), denote

by L
(k)
X

and L
(k)
Y

the X- and Y -components of the vector ϕk(∅, . . . ,∅) obtained after

k > 0 iterations. Then x55w ∈ LX if and only if x55w ∈ L
(k)
X

for some k > 1.

(I) Assume that x55w ∈ L
(k)
X

. It has to be proved that the Turing machine accepts

starting from the configuration w. The proof is an induction on k.

By the equation for X, x55w ∈ L
(k)
X

means that either x55w ∈ Final, or x55w ∈

Step(L
(k−1)
X), or x55w ∈ L

(k−1)
Y . If x55w ∈ Final, then w is an accepting configuration,

as the Turing machine is already in an accepting state. Consider the other two cases.

Let x55w ∈ Step(L
(k−1)
X

), and let w = ŵ〈q〉〈a〉0w̃; the configuration is of this form

by Lemma 7. Consider the set of numbers S = {x55ŵ0〈a′〉〈q′〉w̃ | (q′, a′) ∈ δ(q, a)}

representing all possible next configurations of the machine. Suppose first that q ∈ QA.

Then, by Lemma 7, all numbers in S are in L
(k−1)
X , and by the induction hypothesis, all

numbers in L
(k−1)
X

represent configurations from which the machine accepts. Hence the

machine accepts starting from all successor configurations to w, and then, by definition,

it accepts starting from w.

The case of q ∈ QE is treated similarly. Again, by Lemma 7, at least one number

from S is in L
(k−1)
X , and every number in L

(k−1)
X represents a configuration from which

the machine accepts, by the induction hypothesis. Accordingly, the machine accepts

starting from the configuration w, because it accepts starting from one of its successor

configurations.

Consider the other case of x55w ∈ L
(k−1)
Y , that is, of x55w obtained by processing

the carry in the counter. This processing may be reconstructed as a finite sequence

xk−1, xk−2, . . . , xk0
∈ Counter∪Counter′, where the number k0 > 0 is determined

later, and, for all i ∈ {k − 1, k − 2, . . . , k0},

Value(xi) = Value(x),

xi55w ∈ L
(i)
Y

,

xi55w = Carry(xi−155w) (unless i = k0).

Let xk−1 = x. Each string of digits xi for i = k− 2, k− 3, . . . is defined by a backward

induction as follows.

Assume that xi55w ∈ L
(i)
Y

, and hence xi55w ∈ Carry(L
(i−1)
Y

) or xi55w ∈

Jump(L
(i−1)
X

). In the former case, by Lemma 1, there exists a number n ∈ L
(i−1)
Y

with xi55w ∈ Carry(n). Then, by Lemma 3, n must be of the form x′55w for some

x′ with Value(x′) = Value(xi), and it holds that Carry(x′55w) = {xi55w}. Then

xi−1 = x′ forms the next element of the sequence.

In the latter case, xi55w ∈ Jump(L
(i−1)
X

). Again, Lemma 1 implies that there is a

number n ∈ L
(i−1)
X

with xi55w ∈ Jump(n). Then, according to Lemma 5, n = x′55w′,

where x′ ∈ Counter′ with Value(x′) = Value(xi) − 1 = Value(x) − 1, w′ = 〈q〉w̃0 and

w = 0w̃〈q〉; that is, Jump(x′55w′) = {xi55w}. Then k0 is defined as i, which completes

the construction of the sequence.

It has been shown that there exists x′55w′ ∈ L
(k0−1)
X

with Valuex′ = Valuex− 1,

such that the machine goes from the configuration w to the configuration w′. By

16 Artur Jeż, Alexander Okhotin

the induction hypothesis for x′55w′, the machine accepts from the configuration w′.

Therefore, the machine accepts starting from w, as claimed.

It is left to mention that the case of xi55w ∈ Jump(L
(i−1)
X

) in the above proof

eventually occurs, because otherwise the sequence would continue until x055w ∈ L
(0)
Y

=

∅, which is impossible.

(II) For the converse statement, let w be a configuration, and assume that there

is an accepting computation starting from w, with the longest path of length `. The

claim is that x55w ∈ LX holds for every x ∈ Counter with the value at least `. This is

proved by induction on `.

If ` = 0, then w is a configuration in the accepting state, and therefore, by the

equation for X in the system, x55w ∈ Final ⊆ LX for all x ∈ Counter.

Assume there is an accepting computation starting from w with the longest path

of length ` + 1. Suppose first that w = ŵ〈q〉〈a〉0w̃ with ŵ, w̃ ∈ Σ∗, a ∈ Γ and q ∈ Q,

that is, the configuration w has the head anywhere except in the position beyond the

right-most symbol. Consider the case of q ∈ QA. Then the machine accepts from each

successor configuration to w, and longest path in each of these accepting computations

is of length at most `. Hence all strings of the form x55w′, where w′ is a successor

configuration to w and x ∈ Counter represents a counter of value at least `, are in LX

by the induction hypothesis. Then, by Lemma 7, x55w ∈ Step(LX). By the equation

for X, x55w ∈ LX , which proves this case.

Now consider the case when q ∈ QE . Fix any x ∈ Counter of value at least `. At

least for one successor configuration to w, the Turing machine accepts starting from it,

with the longest path of length at most `. Accordingly, at least one string of the form

x55w′, where w′ is one of the successor configurations to w, is in LX by the induction

hypothesis. Therefore, by Lemma 7, x55w ∈ Step(LX), and, by the equation for X,

x55w ∈ LX , as stated in the lemma.

Finally, consider the case where the head of the Turing machine is in the po-

sition beyond the right-most symbol, and let w = 0w̃〈q〉. Let w′ = 〈q〉w̃0 be the

next configuration, from which the machine accepts with the longest path of length

`. Let x′ ∈ Counter be a counter of value at least `. By the induction hypothesis,

x′55w′ ∈ LX . Then, by Lemma 5, there is a string x′′55w ∈ Jump(LX) ⊆ LY , where

x′′ ∈ Counter′ ∪Counter and Value(x′′) = Value(x′) + 1. Hence, by Lemma 4, there

exists k > 0, for which x55w ∈ Carryk(LY), where x is the unique element of Counter

with Value(x′′) = Value(x). By the equation for Y in the system, Carry(LY) ⊆ LY ,

and since Carry is monotone, this implies the following chain of inclusions:

Carryk(LY) ⊆ Carryk−1(LY) ⊆ Carryk−2(LY) ⊆ . . . ⊆ Carry(LY) ⊆ LY .

Therefore, x55w ∈ LY , which, by the equation for X in the system (3), implies x55w ∈

LX , as claimed. ut

It remains to observe that the number of steps made by the machine is exponentially

bounded, and hence the acceptance of a string by the machine is represented by the

following number in the least solution of the constructed system:

Main Claim The ATM M accepts a string a1 . . . an ∈ Ω+ if and only if

10
n log(|Γ |)+log(n+1)+log(|Q|)

55〈q0〉〈a1〉0〈a1〉0 . . . 〈an〉0 ∈ LX .

Complexity of equations over sets of natural numbers 17

Proof The initial configuration of M on a1 . . . an is represented by the sequence of

digits w = 〈q0〉〈a1〉0〈a2〉0 . . . 〈an〉0 ∈ Tape.

⇒© If M accepts starting from this configuration, then the longest path in the

accepting computation consists of at most

(n+ 1) · |Q| · |Γ |n 6 2log(n+1) · 2log |Q|+n log |Γ |

steps, since all configurations forming this path must be different. Then, by Lemma 8,

for x = 10
log(n+1)+n log |Γ |+log |Q| with Value(x) = 2log(n+1)+n log |Γ |+log |Q| it holds

that x55w ∈ LX .

⇐© Conversely, if there exists x ∈ Counter with x55w ∈ LX , then, according to

Lemma 8, M accepts starting from the configuration w. ut

Proof (Proof of Theorem 2) The system of equations constructed above has an

EXPTIME-hard least solution. It uses constant sets of numbers with a regular base-

|Σ| notation, which are expressed in additional equations for additional variables con-

structed according to Theorem 1.

To see that the least solution of every system is in EXPTIME, it is sufficient to

represent it as a conjunctive grammar over a unary alphabet. Then, given a number

n, its membership in the least solution can be tested by supplying the string an to a

known cubic-time parsing algorithm for conjunctive grammars [17]. Its time is cubic in

n, hence exponential in the length of the binary notation of n. ut

This establishes the computational complexity of sets of numbers specified by re-

solved systems of equations with union, intersection and addition, which is the main

result of this paper.

4 The membership problem

Consider the general membership problem for these equations, stated as follows: “Given

a system Xi = ϕi(X1, . . . , Xm) and given a number n in binary notation, determine

whether n is in the first component of the least solution of the system”.

Theorem 3 The general membership problem for resolved systems of equations over

sets of numbers with the operations of union, intersection and addition is EXPTIME-

complete.

Proof Membership in EXPTIME. The existence of such an algorithm can be in-

ferred from the known polynomial-time algorithm for solving the membership problem

for conjunctive grammars [18]. It is sufficient to represent the given system as a con-

junctive grammar over a unary alphabet, with a linearly bounded blow-up, and then

represent the given number n as a string an, with an exponential blow-up.

An exponential-time algorithm for equations over sets of numbers can be con-

structed directly as follows. Given a number n and a resolved system with m variables,

the algorithm will simulate fixpoint iteration as in (1), but all sets will be computed

as subsets of {0, . . . , n}. The algorithm thus uses variables Xi ⊆ {0, . . . , n}, which are

initially empty, and which are updated at every step by substituting their values into

the right-hand side of the system. Up to m(n + 1) such iterations can be done until

the sets stabilize, when the algorithm can answer whether n is in X1. Each iteration

18 Artur Jeż, Alexander Okhotin

Representable sets Membership problem Equivalence problem

expressions Finite NP-complete [24] ΠP

2
-complete [6]

{∪,+} circuits Finite NP-complete [7,15] ΠP

2
-complete [6]

equations Ult. periodic [5] NP-complete [7,22] ?

expressions Finite PSPACE-complete [15] ΠP

2
-complete [6]

{∪,∩,+} circuits Finite PSPACE-complete [15] PSPACE-complete [6]

equations (EXPTIME EXPTIME-complete Π0

1
-complete [9]

Table 1 Comparison of formalisms over sets of integers.

is polynomial in n + m, and so is the entire algorithm. Since n is given to the algo-

rithm in binary notation, the size of the instance of the general membership problem is

log n+m, and hence the algorithm makes at most exponentially many iterations each

working in exponential time.

The EXPTIME-hardness of the general membership problem immediately fol-

lows from Theorem 2 by fixing the system of equations. ut

Recalling that equations over sets of numbers are a generalization of circuits and

expressions over sets of numbers, Theorem 3 can be directly compared to the existing

results on the complexity of these formalisms. If the allowed operations are addition and

union only, then, according to Stockmeyer and Meyer [24, Thm. 5.1], the membership

problem is NP-hard for expressions. At the same time, for equations with these opera-

tions it can be solved by an NP algorithm due to Huynh [7] (or by a more specialized

NP algorithm of Plandowski and Rytter [22, Thm.8]), and hence the problem is NP-

complete for all three models. Once the operation of intersection is added, the complex-

ity increases: McKenzie and Wagner [15] showed the problem to be PSPACE-complete

for expressions and circuits alike, and Theorem 3 states its EXPTIME-completeness

for equations.

These results are summarized in the middle column of Table 1. The left column

of the table characterizes the families of sets representable by each of these six for-

malisms. Obviously, expressions and circuits can represent only finite sets, as any

Boolean combinations and sums of finite sets are finite. The sets represented by equa-

tions with union and addition are bound to be ultimately periodic, because all context-

free languages over a unary alphabet are regular [5]. The contribution of this paper is

that equations with union, intersection and addition can represent some EXPTIME-

complete sets. At the same time, these equations cannot represent the whole class

EXPTIME =
⋃

k>1 DTIME(2n
k

), because their solutions lie in DTIME(2n
2

), which is

a proper subset of EXPTIME due to the time hierarchy theorem. This case stands out

of the rest of the formalisms in Table 1, as these equations are not only able to represent

non-periodic sets, but can actually represent sets as hard as the general membership

problem for this family.

Another important decision problem is the equivalence problem, which constitutes

testing whether two given systems (expressions, circuits, etc.) define the same set.

For expressions and circuits over sets of numbers this problem has been studied by

Glaßer et al. [6], who proved, in particular, that testing equivalence of expressions or

circuits with union and addition isΠP
2 -complete, and if intersection is also allowed, then

the problem remains ΠP
2 -complete for expressions but becomes PSPACE-complete for

circuits. To compare, the equivalence problem for equations over sets of numbers with

Complexity of equations over sets of natural numbers 19

union, intersection and addition was proved to be undecidable by the authors [9]; to

be precise, it is Π0
1 -complete, and it remains Π0

1 -complete even if one of the systems

is arbitrarily fixed [9, Thm.4]. These results are summarized in the right column of

Table 1.

5 Implications on conjunctive grammars

The complexity of equations over sets of numbers established above has direct impli-

cations on the complexity of conjunctive grammars over a one-letter alphabet.

Every conjunctive language can be parsed by a cubic-time algorithm and thus is in

P [17], and some conjunctive languages over a multiple-letter alphabet are known to be

P-complete [19]. The case of a unary alphabet is special, as it is known that no sparse

language, in particular no unary language, can be P-complete unless DLOGSPACE = P

[16,3], that is, unless the notion of P-completeness is trivial. However, from Theorem 2

one can infer the following result slightly weaker than P-completeness:

Corollary 1 There exists an EXPTIME-complete set of numbers S ⊆ N, such that

the language L = {an | n ∈ S} of unary notations of numbers from S is generated by a

conjunctive grammar.

Note that for every unary language generated by a conjunctive grammar, the cor-

responding set of numbers is in EXPTIME. The set constructed in Corollary 1 can

thus be regarded as the computationally hardest among unary conjunctive languages.

This has a straightforward consequence referring to the complexity of parsing for

conjunctive grammars. For context-free languages, it is known each of them is in NC2,

that is, can be parsed by a polynomial-size circuit of depth O(log2 n), which was

discovered independently by Brent and Goldschlager [1] and by Rytter [23]. The known

examples of P-complete conjunctive languages imply that, unless P = NC, there are

no polylogarithmic-time parallel parsing algorithm for conjunctive languages [19]. Now

a similar result can be claimed with respect to grammars over a one-letter alphabet.

Corollary 2 Unless PSPACE = EXPTIME, there is no logarithmic-space parsing

algorithm for conjunctive languages over a unary alphabet.

Indeed, having such an algorithm for the particular language L from Corollary 1 would

give a polynomial-space algorithm for the EXPTIME-complete set S.

Let us now consider the complexity of the compressed membership problem for con-

junctive grammars. This is a problem of testing whether a string w is generated by a

grammar G, but unlike the ordinary membership problem, here the string w is given

in a compressed form constructed by a data compression algorithm. The standard ab-

straction for data compression, which captures algorithms such as LZ78, LZW and the

Huffman coding, is the notion of a straight-line program (SLP). Following Plandowski

and Rytter [22], a straight-line program over the alphabet Σ is a context-free gram-

mar Gw = (Σ,N,P, S) with L(Gw) = {w}, and Gw is considered as a compressed

representation of w. Note that the length of w may be exponentially larger than the

description of the grammar Gw.

The compressed membership problem is defined as follows: “given a conjunctive

grammar G = (Σ,N, P, S) and a context-free grammar Gw = (Σ,N,P, S) generating

a singleton language {w}, determine whether w ∈ L(G)”. The complexity of this

20 Artur Jeż, Alexander Okhotin

Membership problem Compressed membership problem

Deterministic finite automata DLOGSPACE-complete P-complete [14,22]

Regular expressions NLOGSPACE-complete P-complete [14,22]

Linear context-free grammars NLOGSPACE-complete PSPACE-complete [13,22]

Context-free grammars P-complete [10] PSPACE-complete [13,22]

Linear conjunctive grammars P-complete [18,19] ?

Conjunctive grammars P-complete [18] EXPTIME-complete

Context-sensitive grammars PSPACE-complete EXPSPACE-complete [13]

Table 2 Complexity of membership problems for grammars and automata.

problem for the common families of languages is known from the literature. For regular

expressions, as well as for deterministic finite automata, the problem was shown to be in

P by Plandowski and Rytter [22], while Markey and Schnoebelen [14] demonstrated its

P-hardness already for a fixed regular language. Plandowski and Rytter [22] also showed

that the compressed membership problem for context-free grammars is in PSPACE, and

Lohrey [13] proved that it is PSPACE-hard even for a fixed deterministic linear context-

free language. Furthermore, Lohrey [13] established the EXPSPACE-completeness of

the same problem for context-sensitive grammars, showing that it is EXPSPACE-hard

already for a fixed language.

Now the results of this paper can be used to establish the complexity of the same

problem for conjunctive grammars.

Theorem 4 The compressed membership problem for conjunctive grammars is

EXPTIME-complete. It remains EXPTIME-complete for a fixed conjunctive language

L0 ⊆ a∗.

Proof An exponential-time algorithm for this problem is straightforward. Given a con-

junctive grammar G and a context-free grammar Gw with L(Gw) = {w}, the algorithm

first decompresses the string w, that is, constructs it explicitly. Its length is at most

exponential in the size of Gw. Then the known polynomial-time algorithm for solving

the membership problem for a conjunctive grammar [18] is applied.

To show the EXPTIME-hardness of the problem for a particular language, let

S ⊆ N be the set of numbers represented in Theorem 2. Define L0 = {an | n ∈ S},

which is a conjunctive language by Corollary 1. Then the problem of testing whether

a number n is in S can be reduced to the compressed membership problem in L0 as

follows.

Let b`−1 . . . b1b0 with bi ∈ {0, 1} be the binary notation of n, that is, n =
∑`−1

i=0 bi2
i.

Let i1 < . . . < ik be all numbers with bij = 1. Then the singleton language {an} is

generated by the following context-free grammar Gn:

S → Ai1 . . . Aik

A0 → a

Ai+1 → AiAi (0 6 i < ik)

Accordingly, the description of Gn is a yes-instance of the compressed membership

problem for L0 if and only if n ∈ S, which completes the reduction. ut

This result is compared to the similar earlier cited results on other families of formal

grammars in Table 2.

Complexity of equations over sets of natural numbers 21

6 Conclusion

The first examples of non-periodic sets represented by equations over sets of numbers

with union, intersection and addition have been discovered only recently [8,9], and

now these equations were shown to be powerful enough to define EXPTIME-complete

sets. At the same time, it remains an open question what is the exact family of sets

of natural numbers defined by these equations. Besides the general knowledge that all

representable sets are contained in DTIMESPACE(2n
2

, 2n), no methods of showing

non-representability of particular sets are known. For instance, is it possible to define

the set of all primes?

The related work on the complexity of expressions and circuits over sets of num-

bers [2,6,15,24,25,26] naturally suggests some further questions to study. In particular,

by analogy to expressions and circuits over sets of integers (including negative num-

bers) studied by Travers [25], one can consider equations over sets of integers. No such

equations have been studied before, and perhaps this research direction is worth being

investigated.

References

1. R. P. Brent, L. M. Goldschlager, “A parallel algorithm for context-free parsing”, Australian

Computer Science Communications, 6:7 (1984), 7.1–7.10.
2. H.-G. Breunig, “The complexity of membership problems for circuits over sets of positive

numbers”, Fundamentals of Computation Theory (FCT 2007, Budapest, Hungary, August
27–30, 2007), LNCS 4639, 125–136.

3. J.-Y. Cai, D. Sivakumar, “Sparse hard sets for P: resolution of a conjecture of Hartmanis”.
Journal of Computer and System Sciences, 58:2 (1999), 280–296.

4. A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM, 28:1
(1981), 114–133.

5. S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the

ACM, 9 (1962), 350–371.
6. C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, M. Waldherr, “Equivalence problems

for circuits over sets of natural numbers”, Computer Science in Russia (CSR 2007, Eka-
terinburg, Russia, September 3–7, 2007), LNCS 4649, 127–138.

7. D. T. Huynh, “Commutative grammars: the complexity of uniform word problems”, In-
formation and Control, 57:1 (1983), 21–39.

8. A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, International
Journal of Foundations of Computer Science, 19:3 (2008), 597–615.

9. A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability and
unbounded growth”, Theory of Computing Systems, to appear.

10. N. D. Jones, W. T. Laaser, “Complete problems for deterministic polynomial time”, The-

oretical Computer Science, 3:1 (1976), 105–117.
11. M. Kunc, “The power of commuting with finite sets of words”, Theory of Computing

Systems, 40:4 (2007), 521–551.
12. M. Kunc, “What do we know about language equations?”, Developments in Language

Theory (DLT 2007, Turku, Finland, July 3–6, 2007), LNCS 4588, 23–27.
13. M. Lohrey, “Word problems and membership problems on compressed words”, SIAM

Journal on Computing, 35:5 (2006), 1210–1240.
14. N. Markey, Ph. Schnoebelen, “A PTIME-complete matching problem for SLP-compressed

words”, Information Processing Letters, 90:1 (2004), 3–6.
15. P. McKenzie, K. Wagner, “The complexity of membership problems for circuits over sets

of natural numbers”, Computational Complexity, 16:3 (2007), 211–244.
16. M. Ogihara, “Sparse hard sets for P yield space-efficient algorithms”, Chicago Journal of

Theoretical Computer Science, 1996, article 2.
17. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combina-

torics, 6:4 (2001), 519–535.

http://dx.doi.org/10.1007/978-3-540-74240-1_12
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1007/978-3-540-77050-3_21
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1007/s00224-006-1321-z
http://dx.doi.org/10.1007/978-3-540-73208-2_3
http://dx.doi.org/10.1137/S0097539704445950
http://dx.doi.org/10.1016/j.ipl.2004.01.002
http://dx.doi.org/10.1007/s00037-007-0229-6

22 Artur Jeż, Alexander Okhotin

18. A. Okhotin, “A recognition and parsing algorithm for arbitrary conjunctive grammars”,
Theoretical Computer Science, 302 (2003), 365–399.

19. A. Okhotin, “The hardest linear conjunctive language”, Information Processing Letters,
86:5 (2003), 247–253.

20. A. Okhotin, “Decision problems for language equations”, Journal of Computer and System
Sciences, to appear.

21. A. Okhotin, “Unresolved systems of language equations: expressive power and decision
problems”, Theoretical Computer Science, 349:3 (2005), 283–308.

22. W. Plandowski, W. Rytter, “Complexity of language recognition problems for compressed
words”, in: J. Karhumäki, H. A. Maurer, G. Păun, G. Rozenberg (Eds.), Jewels are For-
ever, Springer, 1999, 262–272.

23. W. Rytter, “On the recognition of context-free languages”, Fundamentals of Computation

Theory (FCT 1985, Cottbus, Germany), LNCS 208, 315–322.
24. L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”, 5th Annual

ACM Symposium on Theory of Computing (STOC 1973, Austin, USA, April 30–May 2,
1973), 1–9.

25. S. D. Travers, “The complexity of membership problems for circuits over sets of integers”,
Theoretical Computer Science, 369:1–3 (2006), 211–229.

26. K. Yang, “Integer circuit evaluation is PSPACE-complete”, Journal of Computer and

Systems Sciences, 63:2 (2001), 288–303.

http://dx.doi.org/10.1016/S0304-3975(02)00853-8
http://dx.doi.org/10.1016/S0020-0190(02)00511-2
http://dx.doi.org/10.1016/j.jcss.2009.08.002
http://dx.doi.org/10.1016/j.tcs.2005.07.037
http://dx.doi.org/10.1007/3-540-16066-3_26
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/j.tcs.2006.08.017
http://dx.doi.org/10.1006/jcss.2001.1768

	Introduction
	Language equations and conjunctive grammars
	Arithmetization of EXPTIME-completeness
	The membership problem
	Implications on conjunctive grammars
	Conclusion

