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Model

zmienne Xi ⊆ N

operacje ∩,∪,+, {n}

X + Y = {x + y | x ∈ X , y ∈ Y }

Równania postaci

ψi(X1, . . . ,Xn) = ϕi(X1, . . . ,Xn) dla i = 1, . . . , k
Xi = ϕi(X1, . . . ,Xn) dla i = 1, . . . ,n

rozwiązania
1 najmniejsze, największe, jedyne
2 najmniejsze ( EQ )
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2 najmniejsze ( EQ )
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Artur Jeż (UWr) Równania nad zbiorami liczb naturalnych 19.04.2008 2 / 11



Model

zmienne Xi ⊆ N
operacje ∩,∪,+, {n}

X + Y = {x + y | x ∈ X , y ∈ Y }

Równania postaci

ψi(X1, . . . ,Xn) = ϕi(X1, . . . ,Xn) dla i = 1, . . . , k
Xi = ϕi(X1, . . . ,Xn) dla i = 1, . . . ,n

rozwiązania
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Przykład

X = X + {2} ∪ {0}

{2n | n ≥ 0}

Motywacja
gramatyki koniunkcyjne unarne
obwody arytmetyczne
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Notacja i techniki

narzędzie: notacja k -pozycyjna

liczba n ⇔ jej notacja (w)k

zbiór liczb ⇔ zbiór notacji liczb
podstawa konstrukcji i dowodu

Przykład

{4n | n ≥ 0} ⇔ (10∗)4
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Wyniki

Stare

Twierdzenie
Dla każdego k naturalnego i każdego R — regularnego nad
{0, . . . k − 1} zbiór liczb (R)k jest w EQ.

Nowe

1 szersza klasa zbiorów (trellis automata)
2 EXPTIME-zupełność dla EQ
3 uniwersalność w ogólnym przypadku
4 jedna zmienna i jedno równanie
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{0, . . . k − 1} zbiór liczb (R)k jest w EQ.

Nowe

1 szersza klasa zbiorów (trellis automata)

2 EXPTIME-zupełność dla EQ
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Artur Jeż (UWr) Równania nad zbiorami liczb naturalnych 19.04.2008 5 / 11



Wyniki

Stare

Twierdzenie
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Poprzedni wynik

Przykład
Zbiory (10∗)4, (20∗)4, (30∗)4, (120∗)4
Konstruujemy jednocześnie

Np. (10∗)4(
(10∗)4 + (30∗)

)
∩

(
(20∗)4 + (20∗)

)
=(

(10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4
)
∩

(
(10+)4 ∪ (20∗20∗)4

)
=

(10+)4

Pozostałe zbiory analogicznie
Języki regularne — więcej pracy
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Moc wyrażania
Definicja
Trellis automaton: M = (Σ,Q, I, δ,F )

Σ: alfabet wejściowy;
Q: zbiór stanów;
I : Σ → Q ustawia stan
początkowy;
δ : Q ×Q → Q, funkcja przejścia
F ⊂ Q: stany akceptujące.

Zamknięte na ∪,∩, ∼, nie zamknięte na konkatenację.
Rozpoznaje {wcw : w ∈ {a,b}∗}, {anbncn}, {anb2n

}, VALC.

Twierdzenie
Dla każdego języka L ⊆ {0, . . . k − 1}∗ rozpoznawanego przez M —
trellis automata zbiór liczb (L)k należy do klasy EQ.
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F ⊂ Q: stany akceptujące.
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Rozpoznaje {wcw : w ∈ {a,b}∗}, {anbncn}, {anb2n

}, VALC.

Twierdzenie
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Idea konstrukcji
Zbiór zmiennych {Xq | q ∈ Q}, reprezentuje {(LM(q))k | q ∈ Q}.

Dokładniej Xq = {(1w10∗)k | w ∈ LM(q)}

aub ∈ LM(q)

wtw
∃q ′,q ′′ : δ(q ′,q ′′) = q,
au ∈ LM(q ′),
ub ∈ LM(q ′′).

Niech (1au10∗)k ⊆ Xq ′ ,
(1ub10∗)k ⊆ Xq ′′ .

Xq =
⋃

q ′,q ′′:δ(q ′,q ′′)=q
a,b∈Σk

ρb(Xq ′)∩λa(Xq ′′)

λa((1w10`)k ) = (1aw10`)k

ρb((1w10`)k ) = (1wb10`−1)k
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Złożoność obliczeniowa

Twierdzenie
EQ zawiera zbiory EXPTIME-trudne.

Uwaga
Bez ∩ — NP trudne
zawarte w EXPTIME

Idea
kodowanie ATM
liczba — konfiguracja
∩, ∪ — alternacja
problem — liczby rosną — licznik
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Równania ψi(X1, . . . ,Xn) = ϕi(X1, . . . ,Xn)

Fakt (Z ogólnej teorii równań języków)
Rozwiązania najmniejsze(największe, jedyne) są RE (co-RE,
rekurencyjne).

Twierdzenie
Każdy zbiór RE (co-RE, rekurencyjny) jest rozwiązaniem
najmniejszym (największym, jedynym) układu równań postaci
ψi(X1, . . . ,Xn) = ϕi(X1, . . . ,Xn), gdzie ϕ,ψ używają ∩,+ (∪,+).

Idea
M — maszyna Turinga
tworzymy VALC(M) ∈ EQ
ogólne równania z jedynym rozwiązaniem VALC(M)

odzyskujemy słowa z L(M)
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Artur Jeż (UWr) Równania nad zbiorami liczb naturalnych 19.04.2008 10 / 11



Równania ψi(X1, . . . ,Xn) = ϕi(X1, . . . ,Xn)

Fakt (Z ogólnej teorii równań języków)
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Jedna zmienna

Problem
Ile zmiennych potrzeba do uzyskania tych wyników.

Idea
Kodowanie

(S1, . . . ,Sk ) → k⋃
i=1

p · Si − di .

EXPTIME trudność należenia do minimalnego rozwiązania
X = ϕ(X )

najmniejsze rozwiązanie ϕ(X ) = ψ(X ) — RE-trudne
problemy decyzyjne, itd.

Artur Jeż (UWr) Równania nad zbiorami liczb naturalnych 19.04.2008 11 / 11



Jedna zmienna

Problem
Ile zmiennych potrzeba do uzyskania tych wyników.

Idea
Kodowanie

(S1, . . . ,Sk ) → k⋃
i=1

p · Si − di .
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