Conjunctive grammars generate non-regular unary languages

Artur Jeż

August 21, 2007

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007

1 / 21

• Conjunctive grammars introduced in 2001 by A. Okhotin.

3 × 4 3

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.

-

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

• Intuition of the semantics:

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

- Intuition of the semantics:
 - w is derived such production iff it is derived by each α_i

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

- Intuition of the semantics:
 - w is derived such production iff it is derived by each α_i
 - w is derived from α_i = N₁ · N₂ · ... · N_k iff w = w₁ w₂ ... w_k and w_j is derived from N_j for each j

Example

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

- $\textbf{S} \rightarrow (\textbf{AE}) \& (\textbf{BC})$
- $A
 ightarrow aA|\epsilon$
- $B
 ightarrow aBb|\epsilon$
- $\textbf{C} \rightarrow \textbf{c}\textbf{C}|\varepsilon$
- $\textbf{\textit{E}} \rightarrow \textbf{\textit{bEc}}|\varepsilon$

2

Example

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

$S \rightarrow (AE)\&(BC)$	$\{a^nb^nc^n:n\in\mathbb{N}\}$
$oldsymbol{A} ightarrow oldsymbol{a} oldsymbol{A} \epsilon$	a *
$m{B} ightarrow m{aBb} ert arepsilon$	$\{a^nb^n:n\in\mathbb{N}\}$
$m{C} ightarrow m{c}m{C} \epsilon$	C *
$F \rightarrow bFc \epsilon$	$\{b^n c^n \cdot n \in \mathbb{N}\}$

<ロ> <同> <同> <同> <同> < 同> <

12

natural extension of CFG

э

- natural extension of CFG
- very close connection to language equations

< A

- E

- natural extension of CFG
- very close connection to language equations
- from possible extensions of CFG this keeps the meaning of language equations

- natural extension of CFG
- very close connection to language equations
- from possible extensions of CFG this keeps the meaning of language equations
- good parsing properties

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007

21, 2007 5 / 21

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

Σ is a finite alphabet

5/21

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

- Σ is a finite alphabet
- N—set of non-terminal symbols

< 6 b

3 1 4 3

5/21

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

- Σ is a finite alphabet
- N—set of non-terminal symbols
- S—starting symbol

< 6 b

3 1 4 3

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

- Σ is a finite alphabet
- N—set of non-terminal symbols
- S—starting symbol
- P-set of productions of a form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k, \quad \alpha_i \in (\Sigma \cup N)^*$$

-

э.

Semantics By term rewriting.

æ

Semantics By term rewriting.

Generalizes the Chomsky rewriting.

Artur Jeż

< E

Semantics

By term rewriting.

Generalizes the Chomsky rewriting. Drawbacks

Artur Jeż

3 × 4 3

Semantics

By term rewriting.

Generalizes the Chomsky rewriting. Drawbacks

• There are more generalizations.

Semantics

By term rewriting.

Generalizes the Chomsky rewriting. Drawbacks

- There are more generalizations.
- Slightly problematic to handle.

Semantics

With each nonterminal A we associate a language L_A .

< (17) × <

3 1 4 3

Semantics

With each nonterminal A we associate a language L_A . The rule

 $A \rightarrow B\&CD|a$

is replaced by

$$L_{A} = (L_{B} \cap L_{A} \cdot L_{D}) \cup \{a\}$$

Semantics

With each nonterminal A we associate a language L_A . The rule

A
ightarrow B&CD|a|

is replaced by

$$L_{A} = (L_{B} \cap L_{A} \cdot L_{D}) \cup \{a\}$$

The language corresponding to the component L_S in the least solution of the system is a language of the grammar.

< 6 b

Semantics

With each nonterminal A we associate a language L_A . The rule

A
ightarrow B&CD|a|

is replaced by

$$L_{A} = (L_{B} \cap L_{A} \cdot L_{D}) \cup \{a\}$$

The language corresponding to the component L_S in the least solution of the system is a language of the grammar.

Remark

In the CFG case the only allowed operations are \cup and $\cdot.$

4 6 1 1 4

∃ ► < ∃ ►</p>

Example revisited

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

- $S \to (AE) \& (BC)$
- $\textbf{\textit{A}} \rightarrow \textbf{\textit{aA}}|\varepsilon$
- $\textbf{B} \rightarrow \textbf{aBb}|\varepsilon$
- $\textbf{C} \rightarrow \textbf{c}\textbf{C}|\varepsilon$
- $E
 ightarrow \textit{bEc}|\epsilon$

・ロト ・ 四ト ・ ヨト ・ ヨト

2

Example revisited

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

$S \rightarrow (AE)\&(BC)$	L
$oldsymbol{A} ightarrow oldsymbol{a} oldsymbol{A} \epsilon$	L,
$m{B} ightarrow m{aBb} \epsilon$	L
$m{C} ightarrow m{c}m{C} \epsilon$	L
$m{E} ightarrow m{b} m{E} m{c} \epsilon$	L_{l}

$$L_{S} = (L_{A} \cdot L_{E}) \cap (L_{B} \cdot L_{C})$$
$$L_{A} = \{a\} \cdot L_{A} \cup \{\epsilon\}$$
$$L_{B} = \{a\} \cdot L_{B} \cdot \{b\} \cup \{\epsilon\}$$
$$L_{C} = \{c\} \cdot L_{C} \cup \{\epsilon\}$$
$$L_{E} = \{b\} \cdot L_{E} \cdot \{c\} \cup \{\epsilon\}$$

Artur Jeż

2

Example revisited

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

$\textbf{S} \rightarrow (\textbf{AE}) \& (\textbf{BC})$	$L_{\mathcal{S}} = (L_{\mathcal{A}} \cdot L_{\mathcal{E}}) \cap (L_{\mathcal{B}} \cdot L_{\mathcal{C}})$	$\{a^nb^nc^n:n\in\mathbb{N}\}$
$oldsymbol{A} ightarrow oldsymbol{a} oldsymbol{A} \epsilon$	$L_{A} = \{a\} \cdot L_{A} \cup \{\epsilon\}$	a*
$m{B} ightarrow m{aBb} ert arepsilon$	$L_{B} = \{a\} \cdot L_{B} \cdot \{b\} \cup \{\epsilon\}$	$\{a^nb^n:n\in\mathbb{N}\}$
$m{C} ightarrow m{c}m{C} ert \epsilon$	$L_{C} = \{c\} \cdot L_{C} \cup \{\epsilon\}$	C *
$E ightarrow bEc \epsilon$	$L_{\boldsymbol{E}} = \{\boldsymbol{b}\} \cdot L_{\boldsymbol{E}} \cdot \{\boldsymbol{c}\} \cup \{\boldsymbol{\epsilon}\}$	$\{b^n c^n : n \in \mathbb{N}\}$

æ

Positive results

• Resolved language equations with \cup , \cap and \cdot

< A

- E

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form

ъ

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK
- High expressive power

Example

```
{wcw : w \in \{a, b\}^*}
```

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK
- High expressive power

Example

```
\{wcw: w \in \{a, b\}^*\}
```

Negative results

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK
- High expressive power

Example

```
\{wcw: w \in \{a, b\}^*\}
```

Negative results

Mainly open questions

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages?

A

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

A

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

< 6 b

3 x 4 3

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Intuition

This should be true since regular sets are closed under

concatenation

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007

< 6 b

3 + 4 = +

10/21

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Intuition

This should be true since regular sets are closed under

- concatenation
- intersection

Artur Jeż

< 6 b

3 + 4 = +

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Intuition

This should be true since regular sets are closed under

- concatenation
- intersection
- union

Artur Jeż

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

< 6 b

3 1 4 3

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

$$\{a^{4^n}:n\in\mathbb{N}\}$$

A

3 1 4 3

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

$$\{a^{4^n}:n\in\mathbb{N}\}$$

Theorem (Extension)

For every regular language $R \subseteq \{0, 1, \dots, k-1\}^*$ language

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

(B) (A) (B) (A)

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

$$\{a^{4^n}:n\in\mathbb{N}\}$$

Theorem (Extension)

For every regular language $R \subseteq \{0, 1, \dots, k-1\}^*$ language

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language. Positional notation.

A B F A B F

Remark

We identify a^n with *n* and work with sets of integers.

< 17 ▶

4 3 > 4 3

Language

Remark

We identify a^n with *n* and work with sets of integers.

Solution $\begin{array}{rcl} L_1 &=& \{1 \cdot 4^n : n \in \mathbb{N}\}, \\ L_2 &=& \{2 \cdot 4^n : n \in \mathbb{N}\}, \\ L_3 &=& \{3 \cdot 4^n : n \in \mathbb{N}\}, \\ L_{12} &=& \{6 \cdot 4^n : n \in \mathbb{N}\}. \end{array}$

< ∃ >

Language

Remark

We identify a^n with *n* and work with sets of integers.

Solutio	on	
L ₁	=	$\{1\cdot4^{n}:n\in\mathbb{N}\},$
L ₂	=	$\{2\cdot4^{n}:n\in\mathbb{N}\}$,
L ₃	=	$\{3\cdot4^{n}:n\in\mathbb{N}\}$,
L ₁₂	=	$\{6\cdot4^{n}:n\in\mathbb{N}\}$.

Equations								
B ₁	=	$(B_2B_2\cap B_1B_3)\cup\{1\},$						
B ₂	=	$(B_{12}B_2 \cap B_1B_1) \cup \{2\},\$						
B_3	=	$(B_{12}B_{12}\cap B_1B_2)\cup\{3\},\$						
B ₁₂	=	$(B_3B_3\cap B_1B_2)$.						

A

< E

Language

Remark

We identify a^n with *n* and work with sets of integers.

Solution	Equations
$L_1 = \{1 \cdot 4^n : n \in \mathbb{N}\},\$	$B_1 = (B_2 B_2 \cap B_1 B_3) \cup \{1\},$
$L_2 = \{2 \cdot 4^n : n \in \mathbb{N}\},\$	$B_2 = (B_{12}B_2 \cap B_1B_1) \cup \{2\},$
$L_3 \hspace{0.2cm} = \hspace{0.2cm} \{ 3 \cdot 4^n : n \in \mathbb{N} \} , \qquad$	$B_3 = (B_{12}B_{12} \cap B_1B_2) \cup \{3\},$
$L_{12} = \{ 6 \cdot 4^n : n \in \mathbb{N} \} .$	$B_{12} = (B_3 B_3 \cap B_1 B_2)$.

This effectively manipulates the positional notation.

・ 同 ト ・ ヨ ト ・ ヨ

• By general knowledge there is a unique ϵ -free solution.

- By general knowledge there is a unique ϵ -free solution.
- Vector of sets (\ldots, L_i, \ldots) is ϵ -free.

- By general knowledge there is a unique ϵ -free solution.
- Vector of sets (\ldots, L_i, \ldots) is ϵ -free.
- We need to show that it is a solution.

- By general knowledge there is a unique ϵ -free solution.
- Vector of sets (\ldots, L_i, \ldots) is ϵ -free.
- We need to show that it is a solution.

Example

For example L_1 , the rule is

$$B_1 = (B_2 B_2 \cap B_1 B_3) \cup \{1\}$$

So we want to prove that

 $L_1 = (L_2 L_2 \cap L_1 L_3) \cup \{1\}$

Proof.

What are the possible non-zero symbols in B_2B_2 ?

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 14 / 21

Proof.

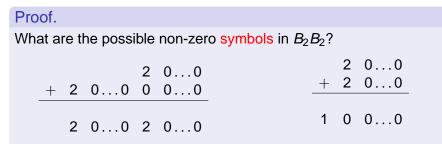
What are the possible non-zero symbols in B_2B_2 ?

2 0...0 2 0...0

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 14 / 21

< 17 ▶



Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 14 / 21

< 6 b

(B)

Proof.	
What are the possible non-zero symbols in B_2B_2 ?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 00 2 00 1 0 00	
Either only 1 or $\{2, 2\}$.	

<ロ> <同> <同> <同> <同> < 同>

æ

Proof.

What are the possible non-zero symbols in B_1B_3 ?

4 3 > 4 3

Proof.

What are the possible non-zero symbols in B_1B_3 ?

 $1 \quad 0 \dots 0 \quad 3 \quad 0 \dots 0$

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 15 / 21

< 🗇 🕨

Proof.

What are the possible non-zero symbols in B_1B_3 ?

+	1	00		00 00
	1	00	3	00

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 15 / 21

Proof.

What are the possible non-zero symbols in B_1B_3 ?

	+	1	00		00 00		+		00	_
		1	00	3	00		1	0	00	
Eith	ier c	only	1 or {1,	3 }.						

Artur Jeż

< 6 b

4 3 > 4 3

Proof.

What are the possible non-zero symbols in B_1B_3 ?

+ 1	00	00 00	+		00
	00	 	1	0	00

Either only 1 or $\{1, 3\}$. We compare this with 1 or $\{2, 2\}$ from B_2B_2 .

< 6 b

4 3 > 4 3

Proof.

What are the possible non-zero symbols in B_1B_3 ?

	+	1	00		00 00	+		00
		1	00	3	00	1	0	00
Eith	er or	ıly	1 or {1,	3}.				

We compare this with 1 or $\{2, 2\}$ from B_2B_2 . The only possibility is only 1.

A

The Sec. 74

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$ $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$ $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

Nonterminal B_{i,j} for each language.

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$

 $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

- Nonterminal B_{i,j} for each language.
- We focus on the leading symbols—the only non-zero symbols in ij0*, that is i and j.

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$

 $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

- Nonterminal B_{i,j} for each language.
- We focus on the leading symbols—the only non-zero symbols in ij0*, that is i and j.
- Intersections of concatenations filter out wrong combination of leading symbols.

16/21

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

< 6 b

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

Idea

Let
$$\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$$
 recognizes *R*.

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

Idea

Let $\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$ recognizes *R*. We introduce nonterminal $B_{i,j,q}$ for language

 $\{ijw:\delta(q_0,w)=q\}$

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

Idea

Let $\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$ recognizes *R*. We introduce nonterminal $B_{i,j,q}$ for language

 $\{ijw:\delta(q_0,w)=q\}$

Information the indices carry:

- Ieading symbol i
- second leading symbol j
- *q*—the computation of *M* on the rest of the word

Artur Jeż

Conjunctive grammars generate non-regular unary languages

Productions for $B_{i,j,q}$

Example

$$B_{i,j,q} \rightarrow \left(\&_{n=1}^4 B_{i-1,j+n} B_{k-n,x,q'} \right)$$

where x, q' such that $q \in \delta(q', x)$

Image: A matrix and a matrix

э

Productions for $B_{i,j,q}$

Example

$$B_{i,j,q} \rightarrow \left(\&_{n=1}^4 B_{i-1,j+n} B_{k-n,x,q'} \right)$$

where x, q' such that $q \in \delta(q', x)$

$$\begin{array}{cccc} k-n & x & \overbrace{\cdots}^{\text{state } q'} \\ + & i-1 & j+n & 00 \dots 0 \\ i & j & \underbrace{x \dots }_{\text{state } q} \end{array}$$

Image: A matrix and a matrix

æ

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Theorem

For every regular language $R \subseteq \{0, 1, \dots, k-1\}$ language

 $\{a^n : \exists w \in R \text{ wread as a number is } n\}$

is a unary conjunctive language.

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Theorem

For every regular language $R \subseteq \{0, 1, \dots, k-1\}$ language

 $\{a^n : \exists w \in R \text{ wread as a number is } n\}$

is a unary conjunctive language.

In particular it generates non-regular languages.

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Theorem

For every regular language $R \subseteq \{0, 1, \dots, k-1\}$ language

 $\{a^n : \exists w \in R \text{ wread as a number is } n\}$

is a unary conjunctive language.

In particular it generates non-regular languages. We effectively manipulate positional notation. Related topics and following work

 Unambiguity of the language. The construction for R = ij0* can be made unambiguous. What happens in general?

Related topics and following work

- Unambiguity of the language. The construction for R = ij0* can be made unambiguous. What happens in general?
- The result can be extended to a larger class of languages [A. Jez, A. Okhotin, CSR 2007].

Related topics and following work

- Unambiguity of the language. The construction for R = ij0* can be made unambiguous. What happens in general?
- The result can be extended to a larger class of languages [A. Jez, A. Okhotin, CSR 2007].
- Instead of grammars we can focus on sets of integers. Equations on sets of integers using ∩, ∪ and + defined as

$$A + B = \{a + b : a \in A, b \in B\}.$$

[A. Jez, A. Okhotin, TALE 2007].

• General properties of conjunctive grammars

- General properties of conjunctive grammars
 - closure under complementation

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)
 - inherent ambiguity

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)
 - inherent ambiguity
- Unambiguity of the constructed unary languages

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)
 - inherent ambiguity
- Unambiguity of the constructed unary languages
- Closure under complementation in the unary case.