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Word Equations

Definition
Given equation U = V , where U,V ∈ (Σ ∪ X )∗.
Is there an assignment S : X 7→ Σ∗ satisfying the solution?

Considered to be important
– unification
– equations in free semigroup
– interesting in general
– (helpful in equations in free group)

. . . and hard

Is this decidable at all?
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Makanin’s algorithm

Makanin 1977
Rewriting procedure. Difficult termination.

Improved over the years
Jaffar [1990] Schulz [1990] 4-NEXPTIME
Kościelski and Pacholski 3-NEXPTIME [1990]
Diekert to 2-EXPSPACE [unpublished]
Gutiérrez EXPSPACE [1998].

Only NP-hard.
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New approach

Theorem (Plandowski and Rytter, 1998)
Length minimal solution of length N is compressible into poly(logN).
This yields a poly(n, logN) algorithm.

N is only known to be triply exponential (from Makanin’s algorithm).

Theorem (Plandowski 1999)
The size N of the minimal solution is at most doubly exponential.
This yields a NEXPTIME algorithm.

Theorem (Plandowski 1999)
PSPACE algorithm.
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This talk

A simple and natural technique of local recompression.

Yields a non-deterministic algorithm for word equations
linear space (improving Plandowski PSPACE algorithm),
NLinSPACE(n)

poly(n, logN) time (improving Plandowski and Rytter algorithm)
can be used to prove exponential bound on exponent of periodicity
can be used to show the doubly-exponential bound on N
can be easily generalised to generator of all solutions
for one variable becomes deterministic and runs in O(n)
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Equality and Compression of Strings

a aa a bb a bc a bb a b c ab

a aa a bb a bc a bb a b c ab

Iterate!

Intuition: recompression
Think of new letters as nonterminals of a grammar
We build SLPs for both strings, bottom-up.
Everything is compressed in the same way!
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Equality and Compression of Strings

a3

d

b c a b2 c ab

a3 b c a b2 c ab

dd

d

d

d

Iterate!
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Compression

1: P ← all pairs from S(U), L← all letters from S(U)
2: for each a ∈ L do
3: replace each maximal block a` by a` . A fresh letter
4: for each ab ∈ P do
5: replace each ab by c . A fresh letter

Lemma
Each subword shortens by a constant factor (Ui , Vj , S(X ), S(U),
. . . ).

Proof.
Two consecutive letters: we tried to compress them;
fail: one is already compressed.
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Idea at work
Working example
XbaYb = ba3bab2ab has a solution S(X ) = ba3, S(Y ) = b2a

We want to replace pair ba by a new letter c. Then

XbaYb = baaababbab for S(X ) = baaa S(Y ) = bba
XcYb = caacbcb for S(X ) = caa S(Y ) = bc

And what about replacing ab by d?

XbaYb = baaababbab for S(X ) = baaa S(Y ) = bba

There is a problem with ‘crossing pairs’. We will fix!
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Pair types
Definition (Pair types)
Appearance of ab is

explicit it comes from U or V ;
implicit comes solely from S(X );
crossing in other case.

ab is crossing if it has a crossing appearance, non-crossing otherwise.

XbaYb = baaababbab with S(X ) = baaa S(Y ) = bba
baaababbab [XbaYb]
baaababbab [XbaY b]
baaababbab [XbaYb]

Lemma (Length-minimal solutions)
If ab has an implicit appearance, then it has crossing or explicit one.
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Compression of non-crossing pairs

PairComp
1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

XbaYa = baaababbaa has a solution S(X ) = baaa, S(Y ) = bba
ba is non-crossing
XcYa = caacbca has a solution S(X ) = caa, S(Y ) = bc
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Lemma
The PairComp(a, b) properly compresses noncrossing pairs.

transforms satisfiable to satisfiable,
transforms unsatisfiable to unsatisfiable,

Proof.
Every ab in S(U) = S(V ) is replaced:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)

crossing there are none

21 June 2013 11/32



Lemma
The PairComp(a, b) properly compresses noncrossing pairs.

transforms satisfiable to satisfiable,
transforms unsatisfiable to unsatisfiable,

Proof.
Every ab in S(U) = S(V ) is replaced:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)

crossing there are none

21 June 2013 11/32



Lemma
The PairComp(a, b) properly compresses noncrossing pairs.

transforms satisfiable to satisfiable,
transforms unsatisfiable to unsatisfiable,

Proof.
Every ab in S(U) = S(V ) is replaced:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)

crossing there are none

21 June 2013 11/32



Dealing with crossing pairs

ab is a crossing pair
There is X such that S(X ) = bw and aX appears in U = V
(or symmetric).

replace X with bX
(implicitly change solution S(X ) = bw to S(X ) = w)
If S(X ) = ε then remove X .

Lemma
After performing this for all variables, ab is no longer crossing.

Compress the pair!
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Example

XbaYb = baaababbab for S(X ) = baaa S(Y ) = bba
ab is a crossing pair

replace X with Xa, Y with bYa
(new solution: S(X ) = baa, S(Y ) = b)
XababYab = baaababbab for S(X ) = baa S(Y ) = b
ab is not longer crossing, we replace it by c
XccY c = baaccbc for S(X ) = baa S(Y ) = b
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Maximal blocks

Definition (maximal block of a)
When a` appears in S(U) = S(V ) and cannot be extended.
Block appearance can be explicit, implicit or crossing.
Letter a has crossing block if there is a crossing `-block of a.

Equivalents of pairs.
Compress them similarly.
Pop whole prefixes/suffixes, not single letters

Lemma (Length-minimal solutions)
For maximal a` block: ` ≤ 2cn.
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Blocks compression

Definition (Crossing block)
maximal block is crossing iff
it is contained in S(U) (S(V )) but not in explicit words nor in any
S(X ).

When a has no crossing block
1: for all maximal blocks a` of a do
2: let a` ∈ Σ be a unused letter
3: replace each explicit maximal a` in U = V by a`
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What about crossing blocks?
Idea
change the equation
X defines a`XwarX : change it to w
replace X in equation by a`XXarX

CutPrefSuff(a)
1: for X ∈ X do
2: guess and remove a-prefix a`i and a-suffix arX of S(X )
3: replace each X in rules bodies by a`XXarX

Lemma
After CutPrefSuff(a) letter a has no crossing block.

So a’s blocks can be easily compressed.
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What about crossing blocks?
Idea
change the equation
X defines a`XwbrX : change it to w
replace X in equation by a`XXbrX

CutPrefSuff
1: for X ∈ X do
2: let X begin with a and end with b
3: calculate and remove a-prefix a`X and b-suffix brX of X
4: replace each X in rules bodies by a`XXbrX

Lemma
After CutPrefSuff no letter has a crossing block.

So all blocks can be easily compressed.
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Algorithm

while U /∈ Σ and V /∈ Σ do
L← letters from U = V
uncross the blocks
for a ∈ L do

compress a blocks

P ← noncrossing pairs of letters from U = V . Guess
P′ ← crossing pairs of letters from U = V . Guess, only O(n)
for ab ∈ P do

compress pair ab
for ab ∈ P′ do

uncross and compress pair ab
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Crucial property

Theorem (Main property: shortens the solution)
Let ab be a string in U = V or in S(X ) (for a length-minimal S).
At least one of a, b is compressed in one phase.

Proof.
a = b By block compression.
a 6= b Pair compression tries to compress ab.

Fails, when one was compressed already.

Corollary (Running time)
The algorithm has O(logN) phases.

21 June 2013 18/32



Crucial property

Theorem (Main property: shortens the solution)
Let ab be a string in U = V or in S(X ) (for a length-minimal S).
At least one of a, b is compressed in one phase.

Proof.
a = b By block compression.
a 6= b Pair compression tries to compress ab.

Fails, when one was compressed already.

Corollary (Running time)
The algorithm has O(logN) phases.

21 June 2013 18/32



Crucial property

Theorem (Main property: shortens the solution)
Let ab be a string in U = V or in S(X ) (for a length-minimal S).
At least one of a, b is compressed in one phase.

Proof.
a = b By block compression.
a 6= b Pair compression tries to compress ab.

Fails, when one was compressed already.

Corollary (Running time)
The algorithm has O(logN) phases.

21 June 2013 18/32



Space consumption

Corollary (Space consumption)
The equation has length O(n2).

Proof.
we introduce O(n) letters per uncrossing
O(n) uncrossings in one phase: O(n2) new letters
and we shorten it by a constant factor in each phase.

|U ′|+ |V ′| ≤ 2
3(|U|+ |V |) + cn2

Gives quadratic upper bound on the whole equation.
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Solution upper bound
Idea
Running time is at most (cn2)cn2 .
there are O(logN) phases

So logN ∼ (cn2)cn2 .

Lemma
There are Ω(logN)/poly(n) phases

Proof.
We do not shorten too much (at most 2cn letters into one).

logN/poly(n) ≤ (cn2)cn2
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Linear space consumption

Aim at O(n) space consumption

O(1) pair-uncrossing per variable
smarter block compression

21 June 2013 21/32



Improving pair compression

Partition of pairs
Σ` and Σr are disjoint:
we can compress pairs from Σ`Σr in parallel

choose partition that covers many appearances:
think of random partition, it covers half of pairs in equation
only O(1) uncrossing per pair

This given O(n) long equation.
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Block compression

Idea
when we replace a blocks, only equality matters, not length
pop a`X and brX from X but treat them as parameters

guess the equal blocks
check if they can be equal

replace them

Length of a block

Linear combination of {`X , rX}X∈X and constants.
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Block compression
Idea
when we replace a blocks, only equality matters, not length
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Verification

Guessed equalities ⇐⇒ system of linear Diophantine equations in
{`X , rX}X∈X

has size proportional to equation

– encode variables as in the equation
– encode constants in unary

can be verified in linear space (nondeterministically)

– iteratively guess parity

Linear space.
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Linear Space

Equation is of length O(n).
each letter may be different, so O(n log n) bits
want true linear space

Tools
special encoding of letters: represented by fragments of the
original equation

– letters representing only original letters: appropriate tree
– those representing other letters: depend only on XwY , encode them

like that
improve the pair compression (special pairing by Sakamoto)
quite technical
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Exponent of periodicity

Definition
per(w) = k ⇐⇒ uk is a substring of w but u′k+1 is not.
perΣ(w) = k ⇐⇒ ak is a substring of w but bk+1 is not.

We do not fully use per(S(U)), only perΣ(S(U)).
perΣ(S(U)) is the length of maximal block.
Those are (components of) solution of a Diophantine system in
{`X , rX}X∈X
They are at most exponential (standard algebra and analysis).
So perΣ(S(U)) is at most exponential.
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Reducing per to perΣ

Lemma
Consider S(U) and S(U ′) obtained by compression of pairs (or
blocks). Let uk be a substring of S(U). Then either

u ∈ a∗ or
u′k−1 is a substring of S ′(U ′) (for some u′)

Proof.
If uk is not a block then compression does not affect uk too much,
u′k−1 can be chosen.

There are O((cn)cn) compression steps.
In each of them per(U = V ) = perΣ(U = V ) (exponential) or
it drops by a constant.
So per(U = V ) is at most exponential.
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Univariate equations
Form of the equation A = B

A0XA1 . . .Ak−1XAk = XB1 . . .Bk−1XBk ,

where Ai ,Bi ∈ Σ∗, A0 6= ε.

Nondeterminism dissappears
only S(X ) 6= ε

first (last) letter of S(X ) is known
S(X ) ∈ a∗ are easy to check;
otherwise a-prefix of S(X ) and A0 have the same length

Whenever we pop, we test some solution.
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Generating all solutions

We want a finite (graph-like) representation of all solutions.

Not all solutions are length minimal.

Lemma (Plandowski)
It is enough to consider minimal solutions.

Minimal under homomorphism.

Lemma (Minimal solutions)
If ab has an implicit appearance in S(U) for a minimal S then ab
has crossing or explicit one.
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Transforming solutions

Definition (Transforming solutions)
An operation changing U = V to U ′ = V ′ transforms solutions if
we can associate an operator H with it such that
when S ′ is a solution of U ′ = V ′ then S = H[S ′]
each S is of this form

Lemma
All our operations transform solutions.
Operators are easy to define (morphisms).
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Transforming solutions

Definition (Transforming solutions)
A nondeterministic operation changing U = V to U ′ = V ′
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we can associate a family of operators H depending on choices with
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Representation of solutions
Definition (G)
nodes: equations,
edges: U = V is transformed to U ′ = V ′

label: operator H transforming the solution

trivial equations have simple solutions
each solution corresponds to a path in G and vice-versa

Construction
Verify the nodes’ existance.
Verify edges’ existance.
Labels are natural to deduce from the algorithm.

PSPACE [Matching Plandowski’s construction]
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Open questions, related research, etc.

Also used for
fully compressed membership problem for NFAs [in NP]
fully compressed pattern matching [quadratic algorithm]
approximation of the smallest grammar [simpler algorithm]
. . . ?

Open questions
what about two variables (it is in P, but quite complicated)?
is it in NP?
is the solution at most exponential?
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