
Word Equations in Nondeterministic Linear Space

Artur Je»

Stuttgart, 5.04.2017

A. Je» Word Equations in NLinSPACE 5.04.17 1 / 35

Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X)∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X) = aa,S(Y) = bb)

Extend S to a homomorphism (Σ ∪ X)∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35

Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X)∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X) = aa,S(Y) = bb)

Extend S to a homomorphism (Σ ∪ X)∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35

Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X)∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aaabaabbbbb = aaabaabbbbbb (S(X) = aa,S(Y) = bb)

Extend S to a homomorphism (Σ ∪ X)∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35

Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X)∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X) = aa,S(Y) = bb)

Extend S to a homomorphism (Σ ∪ X)∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35

Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X)∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X) = aa,S(Y) = bb)

Extend S to a homomorphism (Σ ∪ X)∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35

Main idea

Recompression algorithm [J. 2013]

Hu�man coding of letters

The proof is more complex

how letters depend on fragments of original equation

special coding � so worse than Hu�man � but only for proof

handle several possible problems:
I many letters
I many unique letters
I and many other (perhaps artefacts of the proof)

A. Je» Word Equations in NLinSPACE 5.04.17 3 / 35

Main idea

Recompression algorithm [J. 2013]

Hu�man coding of letters

The proof is more complex

how letters depend on fragments of original equation

special coding � so worse than Hu�man � but only for proof

handle several possible problems:
I many letters
I many unique letters
I and many other (perhaps artefacts of the proof)

A. Je» Word Equations in NLinSPACE 5.04.17 3 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb

aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb

aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Compression operations

Compression operations

Given a word w :

(Σ`,Σr) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V).

Occurrence can be partially in the equation and in the variable.

A. Je» Word Equations in NLinSPACE 5.04.17 4 / 35

Preliminaries: explicit word
Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v | > 1 do

2: Σ← letters in u, v
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr)
6: perform (Σ`,Σr) pair compression

7: test equality

Phase: one iteration of the main loop.

Shortening

Consider consecutive ab in u, v at the beginning of the phase

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier

A. Je» Word Equations in NLinSPACE 5.04.17 5 / 35

Preliminaries: explicit word
Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v | > 1 do

2: Σ← letters in u, v
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr)
6: perform (Σ`,Σr) pair compression

7: test equality

Phase: one iteration of the main loop.

Shortening

Consider consecutive ab in u, v at the beginning of the phase

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier

A. Je» Word Equations in NLinSPACE 5.04.17 5 / 35

Preliminaries: explicit word
Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v | > 1 do

2: Σ← letters in u, v
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr)
6: perform (Σ`,Σr) pair compression

7: test equality

Phase: one iteration of the main loop.

Shortening

Consider consecutive ab in u, v at the beginning of the phase

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier

A. Je» Word Equations in NLinSPACE 5.04.17 5 / 35

Pair Compression on word equation

In a solution word S(U) or S(V):

pair is from the equation: OK, we replace it

it is from the substitution for a variable: OK, solution changes

partially here and there: just pop the problematic letter out

PairCompression

1: for X ∈ X do

2: let b: �rst letter of S(X) . Guess
3: if b ∈ Σr then

4: replace each occurrence of X by bX . Pop

5: if S(X) = ε then . Guess
6: remove X from the equation

7: let a: last symmetrically for the last letter and Σ`

8: perform pair compression on sides of the equation

A. Je» Word Equations in NLinSPACE 5.04.17 6 / 35

Pair Compression on word equation

In a solution word S(U) or S(V):

pair is from the equation: OK, we replace it

it is from the substitution for a variable: OK, solution changes

partially here and there: just pop the problematic letter out

PairCompression

1: for X ∈ X do

2: let b: �rst letter of S(X) . Guess
3: if b ∈ Σr then

4: replace each occurrence of X by bX . Pop

5: if S(X) = ε then . Guess
6: remove X from the equation

7: let a: last symmetrically for the last letter and Σ`

8: perform pair compression on sides of the equation

A. Je» Word Equations in NLinSPACE 5.04.17 6 / 35

Pair Compression on word equation

In a solution word S(U) or S(V):

pair is from the equation: OK, we replace it

it is from the substitution for a variable: OK, solution changes

partially here and there: just pop the problematic letter out

PairCompression

1: for X ∈ X do

2: let b: �rst letter of S(X) . Guess
3: if b ∈ Σr then

4: replace each occurrence of X by bX . Pop

5: if S(X) = ε then . Guess
6: remove X from the equation

7: let a: last symmetrically for the last letter and Σ`

8: perform pair compression on sides of the equation

A. Je» Word Equations in NLinSPACE 5.04.17 6 / 35

Pair Compression on word equation

In a solution word S(U) or S(V):

pair is from the equation: OK, we replace it

it is from the substitution for a variable: OK, solution changes

partially here and there: just pop the problematic letter out

PairCompression

1: for X ∈ X do

2: let b: �rst letter of S(X) . Guess
3: if b ∈ Σr then

4: replace each occurrence of X by bX . Pop

5: if S(X) = ε then . Guess
6: remove X from the equation

7: let a: last symmetrically for the last letter and Σ`

8: perform pair compression on sides of the equation

A. Je» Word Equations in NLinSPACE 5.04.17 6 / 35

Block Compression

BlockCompression

1: for X ∈ X do

2: let S(X) = a`wbr . Guess
3: replace X with a`Xbr

4: if S(X) = ε then . Guess
5: remove X from the equation

6: perform block compression on sides of the equation

A. Je» Word Equations in NLinSPACE 5.04.17 7 / 35

The algorithm

Main algorithm

1: while sides of the equation are nontrivial do
2: Σ← letters in the equation
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr) . Important
6: perform (Σ`,Σr) pair compression

A phase is one iteration of the main loop

A. Je» Word Equations in NLinSPACE 5.04.17 8 / 35

The algorithm

Main algorithm

1: while sides of the equation are nontrivial do
2: Σ← letters in the equation
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr) . Important
6: perform (Σ`,Σr) pair compression

A phase is one iteration of the main loop

A. Je» Word Equations in NLinSPACE 5.04.17 8 / 35

Notes on analysis

A nondeterministic procedure is:

sound transforms satis�able to satis�able, regardless of choices

complete given a satis�able instance it transforms it to a satis�able one

In NLinSPACE we can analyse only �good choices�:
if we exceed the space then we reject.

A. Je» Word Equations in NLinSPACE 5.04.17 9 / 35

Notes on analysis

A nondeterministic procedure is:

sound transforms satis�able to satis�able, regardless of choices

complete given a satis�able instance it transforms it to a satis�able one

In NLinSPACE we can analyse only �good choices�:
if we exceed the space then we reject.

A. Je» Word Equations in NLinSPACE 5.04.17 9 / 35

Solutions

Solution

If there is a solution, there is one over Σ = letters in the equation:
Map all letters outside Σ to a �xed one in Σ.

Done at the beginning of the phase.

Then stick with corresponding solution.

Corresponding nondeterministic choices

Given S the nondeterministic choices correspond to S , if they are done as if
the algorithm knew S .

the �rst/last letter of S(X)

length of a-pre�x/su�x

whether S(X) = ε.

Not: the choice of a partition.

A. Je» Word Equations in NLinSPACE 5.04.17 10 / 35

Solutions

Solution

If there is a solution, there is one over Σ = letters in the equation:
Map all letters outside Σ to a �xed one in Σ.

Done at the beginning of the phase.

Then stick with corresponding solution.

Corresponding nondeterministic choices

Given S the nondeterministic choices correspond to S , if they are done as if
the algorithm knew S .

the �rst/last letter of S(X)

length of a-pre�x/su�x

whether S(X) = ε.

Not: the choice of a partition.

A. Je» Word Equations in NLinSPACE 5.04.17 10 / 35

Solutions

Solution

If there is a solution, there is one over Σ = letters in the equation:
Map all letters outside Σ to a �xed one in Σ.

Done at the beginning of the phase.

Then stick with corresponding solution.

Corresponding nondeterministic choices

Given S the nondeterministic choices correspond to S , if they are done as if
the algorithm knew S .

the �rst/last letter of S(X)

length of a-pre�x/su�x

whether S(X) = ε.

Not: the choice of a partition.

A. Je» Word Equations in NLinSPACE 5.04.17 10 / 35

Solutions

Solution

If there is a solution, there is one over Σ = letters in the equation:
Map all letters outside Σ to a �xed one in Σ.

Done at the beginning of the phase.

Then stick with corresponding solution.

Corresponding nondeterministic choices

Given S the nondeterministic choices correspond to S , if they are done as if
the algorithm knew S .

the �rst/last letter of S(X)

length of a-pre�x/su�x

whether S(X) = ε.

Not: the choice of a partition.

A. Je» Word Equations in NLinSPACE 5.04.17 10 / 35

Pair Compression: correctness

Lemma

PairCommpression is sound and complete.

To be more precise: If U = V
has a solution S then after PairCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X) and performing pair compression on S(X).

Proof.

Soundness: let U ′ = V ′ have a solution S ′. Create S : take S ′(X), replace
cab with ab and reattach the popped letters; this is S(X). Then S(U) is
S ′(U ′) with cab replaced with ab.
Completeness: for those choices after popping each ab is either within
variable or outside it. So the compression works.

A. Je» Word Equations in NLinSPACE 5.04.17 11 / 35

Pair Compression: correctness

Lemma

PairCommpression is sound and complete. To be more precise: If U = V
has a solution S then after PairCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X) and performing pair compression on S(X).

Proof.

Soundness: let U ′ = V ′ have a solution S ′. Create S : take S ′(X), replace
cab with ab and reattach the popped letters; this is S(X). Then S(U) is
S ′(U ′) with cab replaced with ab.
Completeness: for those choices after popping each ab is either within
variable or outside it. So the compression works.

A. Je» Word Equations in NLinSPACE 5.04.17 11 / 35

Pair Compression: correctness

Lemma

PairCommpression is sound and complete. To be more precise: If U = V
has a solution S then after PairCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X) and performing pair compression on S(X).

Proof.

Soundness: let U ′ = V ′ have a solution S ′. Create S : take S ′(X), replace
cab with ab and reattach the popped letters; this is S(X). Then S(U) is
S ′(U ′) with cab replaced with ab.

Completeness: for those choices after popping each ab is either within
variable or outside it. So the compression works.

A. Je» Word Equations in NLinSPACE 5.04.17 11 / 35

Pair Compression: correctness

Lemma

PairCommpression is sound and complete. To be more precise: If U = V
has a solution S then after PairCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X) and performing pair compression on S(X).

Proof.

Soundness: let U ′ = V ′ have a solution S ′. Create S : take S ′(X), replace
cab with ab and reattach the popped letters; this is S(X). Then S(U) is
S ′(U ′) with cab replaced with ab.
Completeness: for those choices after popping each ab is either within
variable or outside it. So the compression works.

A. Je» Word Equations in NLinSPACE 5.04.17 11 / 35

Block Compression: correctness

Lemma

BlockCompression is sound and complete. To be more precise: If U = V
has a solution S then after BlockCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X) and performing block compression on S(X).

Proof.

Proof as in the case of Pair Compression.

A. Je» Word Equations in NLinSPACE 5.04.17 12 / 35

Shortening property

Lemma

For S over Σ and the corresponding choices after one phase among each
two consecutive letters in S(U) at least one is compressed.

Proof: as in the word case

Consider consecutive ab in the solution word:

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier

A. Je» Word Equations in NLinSPACE 5.04.17 13 / 35

Shortening property

Lemma

For S over Σ and the corresponding choices after one phase among each
two consecutive letters in S(U) at least one is compressed.

Proof: as in the word case

Consider consecutive ab in the solution word:

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier

A. Je» Word Equations in NLinSPACE 5.04.17 13 / 35

Space consumption: initial notes

Block compression

Long blocks are a problem; a �x is already known:

we do not guess explicit lengths, rather denote them as integer
variables

we calculate the blocks; lengths depends on those variables

we identify the same lengths: equalities of linear expressions in terms
of variables

verify the system of such integer-equations

compress

Lemma

Block compression can be implemented in space linear in the size of the
stored equation.

A. Je» Word Equations in NLinSPACE 5.04.17 14 / 35

Space consumption: initial notes

Block compression

Long blocks are a problem; a �x is already known:

we do not guess explicit lengths, rather denote them as integer
variables

we calculate the blocks; lengths depends on those variables

we identify the same lengths: equalities of linear expressions in terms
of variables

verify the system of such integer-equations

compress

Lemma

Block compression can be implemented in space linear in the size of the
stored equation.

A. Je» Word Equations in NLinSPACE 5.04.17 14 / 35

Space consumption: initial notes

Hu�man coding

We need to recalculate Hu�man coding.

we build a labelled tree, labels to a leaf give the encoding

calculate frequencies

merge two least common symbols

create a new node with two edges to those symbols, labelled with 0
and 1

This can be computed in space linear in the input.
Space bound is OK, just �delayed� by one step.

A. Je» Word Equations in NLinSPACE 5.04.17 15 / 35

Dependency interval

For a letter in the equation we de�ne a factor of the original equation, on
which it depends.

De�nition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint); basic depint has 1 position.
We associate a depint to each symbol in the equation; D = dep(i).

D ∼ D ′: the corresponding factors of initial equation are equal:
UV [D] = UV [D ′] (as sequence of letters and variables)

we take their unions (only when result is an interval) dep(i) ∪ dep(j)

use ⊇,⊆ have standard meaning (dep(i) ⊇ dep(j))

A. Je» Word Equations in NLinSPACE 5.04.17 16 / 35

Dependency interval

For a letter in the equation we de�ne a factor of the original equation, on
which it depends.

De�nition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint); basic depint has 1 position.
We associate a depint to each symbol in the equation; D = dep(i).

D ∼ D ′: the corresponding factors of initial equation are equal:
UV [D] = UV [D ′] (as sequence of letters and variables)

we take their unions (only when result is an interval) dep(i) ∪ dep(j)

use ⊇,⊆ have standard meaning (dep(i) ⊇ dep(j))

A. Je» Word Equations in NLinSPACE 5.04.17 16 / 35

Dependency interval

For a letter in the equation we de�ne a factor of the original equation, on
which it depends.

De�nition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint); basic depint has 1 position.
We associate a depint to each symbol in the equation; D = dep(i).

D ∼ D ′: the corresponding factors of initial equation are equal:
UV [D] = UV [D ′] (as sequence of letters and variables)

we take their unions (only when result is an interval) dep(i) ∪ dep(j)

use ⊇,⊆ have standard meaning (dep(i) ⊇ dep(j))

A. Je» Word Equations in NLinSPACE 5.04.17 16 / 35

Depints: idea

Depints

assign to each letter in the equation a factor of the initial equation
UV [D]

letters with this fragment assigned are numbered 1, 2, . . . , k

we assign to them codes UV [D]#1,UV [D]#2, . . . ,UV [D]#k

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

worse than Hu�man coding; enough to estimate its bit-size

A. Je» Word Equations in NLinSPACE 5.04.17 17 / 35

Depints: idea

Depints

assign to each letter in the equation a factor of the initial equation
UV [D]

letters with this fragment assigned are numbered 1, 2, . . . , k

we assign to them codes UV [D]#1,UV [D]#2, . . . ,UV [D]#k

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

worse than Hu�man coding; enough to estimate its bit-size

A. Je» Word Equations in NLinSPACE 5.04.17 17 / 35

Depints: idea

Depints

assign to each letter in the equation a factor of the initial equation
UV [D]

letters with this fragment assigned are numbered 1, 2, . . . , k

we assign to them codes UV [D]#1,UV [D]#2, . . . ,UV [D]#k

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

worse than Hu�man coding; enough to estimate its bit-size

A. Je» Word Equations in NLinSPACE 5.04.17 17 / 35

How are dependency factors de�ned

dep(j) for j : position in the current equation

initially: dep(UV [i]) = {i}

should be the same for compressed strings:
when we compress a` inside ba`c with depints Db,D1,D2, . . . ,D`,Dc

then each a gets a depint Db ∪ D1 ∪ D2 ∪ · · · ∪ D` ∪ Dc .

(Σ`,Σr) compression: a = UV [i] ∈ Σ` with dep(i) = D1 and
dep(i + 1) = D2 gets a depint D1 ∪ D2

symmetrically for Σr .

A. Je» Word Equations in NLinSPACE 5.04.17 18 / 35

How are dependency factors de�ned

dep(j) for j : position in the current equation

initially: dep(UV [i]) = {i}
should be the same for compressed strings:
when we compress a` inside ba`c with depints Db,D1,D2, . . . ,D`,Dc

then each a gets a depint Db ∪ D1 ∪ D2 ∪ · · · ∪ D` ∪ Dc .

(Σ`,Σr) compression: a = UV [i] ∈ Σ` with dep(i) = D1 and
dep(i + 1) = D2 gets a depint D1 ∪ D2

symmetrically for Σr .

A. Je» Word Equations in NLinSPACE 5.04.17 18 / 35

How are dependency factors de�ned

dep(j) for j : position in the current equation

initially: dep(UV [i]) = {i}
should be the same for compressed strings:
when we compress a` inside ba`c with depints Db,D1,D2, . . . ,D`,Dc

then each a gets a depint Db ∪ D1 ∪ D2 ∪ · · · ∪ D` ∪ Dc .

(Σ`,Σr) compression: a = UV [i] ∈ Σ` with dep(i) = D1 and
dep(i + 1) = D2 gets a depint D1 ∪ D2

symmetrically for Σr .

A. Je» Word Equations in NLinSPACE 5.04.17 18 / 35

Crucial properties

For a depint D call Pos(D) = {i | dep(i) = D} (in the current
equation)

[i , j] ≤ [i ′, j ′] ⇐⇒ i ≤ i ′ and j ≤ j ′

(D1) Pos(D) is an interval (in the current equation).

(D2) For D,D ′ that have symbols in the equation, either:
D ≤ D ′ or D ≥ D ′.

(D3) If D ∼ D ′ then UV [Pos(D)] = UV [Pos(D ′)].

A. Je» Word Equations in NLinSPACE 5.04.17 19 / 35

Crucial properties

For a depint D call Pos(D) = {i | dep(i) = D} (in the current
equation)

[i , j] ≤ [i ′, j ′] ⇐⇒ i ≤ i ′ and j ≤ j ′

(D1) Pos(D) is an interval (in the current equation).

(D2) For D,D ′ that have symbols in the equation, either:
D ≤ D ′ or D ≥ D ′.

(D3) If D ∼ D ′ then UV [Pos(D)] = UV [Pos(D ′)].

A. Je» Word Equations in NLinSPACE 5.04.17 19 / 35

Dual view

Pos⊇(D) = {j | dep(j) ⊇ D}
Pos⊆(D) = {j | dep(j) ⊆ D}

We focus on Pos⊇(D).

Lemma

Pos⊇(D) is an interval.

Proof.

We prove it together with D1�D3. Everything is easy induction except D3:
D ∼ D ′ ⇒ UV [Pos(D)] = UV [Pos(D ′)].
The proof is simple with appropriate approach: through Pos⊆(D)

A. Je» Word Equations in NLinSPACE 5.04.17 20 / 35

Dual view

Pos⊇(D) = {j | dep(j) ⊇ D}
Pos⊆(D) = {j | dep(j) ⊆ D}

We focus on Pos⊇(D).

Lemma

Pos⊇(D) is an interval.

Proof.

We prove it together with D1�D3. Everything is easy induction except D3:
D ∼ D ′ ⇒ UV [Pos(D)] = UV [Pos(D ′)].
The proof is simple with appropriate approach: through Pos⊆(D)

A. Je» Word Equations in NLinSPACE 5.04.17 20 / 35

Dual view

Pos⊇(D) = {j | dep(j) ⊇ D}
Pos⊆(D) = {j | dep(j) ⊆ D}

We focus on Pos⊇(D).

Lemma

Pos⊇(D) is an interval.

Proof.

We prove it together with D1�D3. Everything is easy induction except D3:
D ∼ D ′ ⇒ UV [Pos(D)] = UV [Pos(D ′)].
The proof is simple with appropriate approach: through Pos⊆(D)

A. Je» Word Equations in NLinSPACE 5.04.17 20 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:

I intervals: we only loose letters from both ends and perhaps gain from
variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:

I intervals: we only loose letters from both ends and perhaps gain from
variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:

I intervals: we only loose letters from both ends and perhaps gain from
variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables
I inside: everything is the same

I interaction with outside: (proof by example)
dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables
I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables
I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35

Encoding

De�nition (Encoding)

Fix depint D, encode letters with this depint as
U0V0[D]#1#,U0V0[D]#2#, . . .

i in binary

U0V0[D] as in the input equation

for D ∼ D ′ the encoding is the same

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

is worse than Hu�man coding
enough to estimate its bit-size

A. Je» Word Equations in NLinSPACE 5.04.17 22 / 35

Encoding

De�nition (Encoding)

Fix depint D, encode letters with this depint as
U0V0[D]#1#,U0V0[D]#2#, . . .

i in binary

U0V0[D] as in the input equation

for D ∼ D ′ the encoding is the same

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

is worse than Hu�man coding
enough to estimate its bit-size

A. Je» Word Equations in NLinSPACE 5.04.17 22 / 35

Idea

Ensure that

each variable pops O(1) letters per phase

each Pos⊇(D) expands by O(1) positions per phase

Then for a basic depint |Pos⊇(D)| = O(1) :

old Pos⊇(D) looses 1/3 of its positions (everything is compressed)

k ′ ≤ 2

3
k + c ⇒ bound 3c

The space is linear

i occurs 3c times in all depints ⇒ letter from the input occurs 3c
times in the encodings

each depint has length ≤ 3c ⇒ numbers in the encoding are
constant-length

Make this in expectation.

A. Je» Word Equations in NLinSPACE 5.04.17 23 / 35

Idea

Ensure that

each variable pops O(1) letters per phase

each Pos⊇(D) expands by O(1) positions per phase

Then for a basic depint |Pos⊇(D)| = O(1) :

old Pos⊇(D) looses 1/3 of its positions (everything is compressed)

k ′ ≤ 2

3
k + c ⇒ bound 3c

The space is linear

i occurs 3c times in all depints ⇒ letter from the input occurs 3c
times in the encodings

each depint has length ≤ 3c ⇒ numbers in the encoding are
constant-length

Make this in expectation.

A. Je» Word Equations in NLinSPACE 5.04.17 23 / 35

Idea

Ensure that

each variable pops O(1) letters per phase

each Pos⊇(D) expands by O(1) positions per phase

Then for a basic depint |Pos⊇(D)| = O(1) :

old Pos⊇(D) looses 1/3 of its positions (everything is compressed)

k ′ ≤ 2

3
k + c ⇒ bound 3c

The space is linear

i occurs 3c times in all depints ⇒ letter from the input occurs 3c
times in the encodings

each depint has length ≤ 3c ⇒ numbers in the encoding are
constant-length

Make this in expectation.

A. Je» Word Equations in NLinSPACE 5.04.17 23 / 35

Idea

Ensure that

each variable pops O(1) letters per phase

each Pos⊇(D) expands by O(1) positions per phase

Then for a basic depint |Pos⊇(D)| = O(1) :

old Pos⊇(D) looses 1/3 of its positions (everything is compressed)

k ′ ≤ 2

3
k + c ⇒ bound 3c

The space is linear

i occurs 3c times in all depints ⇒ letter from the input occurs 3c
times in the encodings

each depint has length ≤ 3c ⇒ numbers in the encoding are
constant-length

Make this in expectation.

A. Je» Word Equations in NLinSPACE 5.04.17 23 / 35

Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X) is outside Σ (or |S(X)| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.

A. Je» Word Equations in NLinSPACE 5.04.17 24 / 35

Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X) is outside Σ (or |S(X)| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.

A. Je» Word Equations in NLinSPACE 5.04.17 24 / 35

Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X) is outside Σ (or |S(X)| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.

A. Je» Word Equations in NLinSPACE 5.04.17 24 / 35

Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X) is outside Σ (or |S(X)| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.

A. Je» Word Equations in NLinSPACE 5.04.17 24 / 35

Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X) is outside Σ (or |S(X)| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.

A. Je» Word Equations in NLinSPACE 5.04.17 24 / 35

Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X) is outside Σ (or |S(X)| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.

A. Je» Word Equations in NLinSPACE 5.04.17 24 / 35

Strategy

Our only nondeterministic choice is the partition.

Strategy

Choose the partition to alternatively halve the sums below:∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

∑
D: basic depint
left-unblocked

1 +
∑

D: basic depint
right-unblocked

1

the �rst limits the number of letters popped from equations

the second: extensions of Pos⊇(D)

A. Je» Word Equations in NLinSPACE 5.04.17 25 / 35

Strategy

Our only nondeterministic choice is the partition.

Strategy

Choose the partition to alternatively halve the sums below:∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

∑
D: basic depint
left-unblocked

1 +
∑

D: basic depint
right-unblocked

1

the �rst limits the number of letters popped from equations

the second: extensions of Pos⊇(D)

A. Je» Word Equations in NLinSPACE 5.04.17 25 / 35

Strategy

Our only nondeterministic choice is the partition.

Strategy

Choose the partition to alternatively halve the sums below:∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

∑
D: basic depint
left-unblocked

1 +
∑

D: basic depint
right-unblocked

1

the �rst limits the number of letters popped from equations

the second: extensions of Pos⊇(D)

A. Je» Word Equations in NLinSPACE 5.04.17 25 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.
Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.
Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.
Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.
Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.

Go for expectation over all variables.
Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.

Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.
Similarly for basic depints.

A. Je» Word Equations in NLinSPACE 5.04.17 26 / 35

Upper-bounding the size of the equation

Lemma

The depint-encoding of an equation U,V is not larger than H(U,V).

The proof works for arbitrary encoding of the input.
From now on we use only �x-size for each symbol (streamlining).

Let e is the bit-size of the initial encoding.

Hd(U,V) = e ·
∑

D:basic depint

|Pos⊇(D)|

Hn(U,V) =
∑

D:basic depint

2|Pos⊇(D)| · log(|Pos⊇(D)|+ 1) ,

H(U,V) = Hd(U,V) + Hn(U,V)

the �rst upper bounds the bits used by UV [D]

the second upper-bounds the bits used by numbers in UV [D]#i

A. Je» Word Equations in NLinSPACE 5.04.17 27 / 35

Upper-bounding the size of the equation

Lemma

The depint-encoding of an equation U,V is not larger than H(U,V).

The proof works for arbitrary encoding of the input.
From now on we use only �x-size for each symbol (streamlining).

Let e is the bit-size of the initial encoding.

Hd(U,V) = e ·
∑

D:basic depint

|Pos⊇(D)|

Hn(U,V) =
∑

D:basic depint

2|Pos⊇(D)| · log(|Pos⊇(D)|+ 1) ,

H(U,V) = Hd(U,V) + Hn(U,V)

the �rst upper bounds the bits used by UV [D]

the second upper-bounds the bits used by numbers in UV [D]#i

A. Je» Word Equations in NLinSPACE 5.04.17 27 / 35

Upper-bounding the size of the equation

Lemma

The depint-encoding of an equation U,V is not larger than H(U,V).

The proof works for arbitrary encoding of the input.
From now on we use only �x-size for each symbol (streamlining).

Let e is the bit-size of the initial encoding.

Hd(U,V) = e ·
∑

D:basic depint

|Pos⊇(D)|

Hn(U,V) =
∑

D:basic depint

2|Pos⊇(D)| · log(|Pos⊇(D)|+ 1) ,

H(U,V) = Hd(U,V) + Hn(U,V)

the �rst upper bounds the bits used by UV [D]

the second upper-bounds the bits used by numbers in UV [D]#i

A. Je» Word Equations in NLinSPACE 5.04.17 27 / 35

Upper-bounding the size of the equation

Lemma

The depint-encoding of an equation U,V is not larger than H(U,V).

The proof works for arbitrary encoding of the input.
From now on we use only �x-size for each symbol (streamlining).

Let e is the bit-size of the initial encoding.

Hd(U,V) = e ·
∑

D:basic depint

|Pos⊇(D)|

Hn(U,V) =
∑

D:basic depint

2|Pos⊇(D)| · log(|Pos⊇(D)|+ 1) ,

H(U,V) = Hd(U,V) + Hn(U,V)

the �rst upper bounds the bits used by UV [D]

the second upper-bounds the bits used by numbers in UV [D]#i
A. Je» Word Equations in NLinSPACE 5.04.17 27 / 35

Proof
Size of all depints:
Let D = i be a basic depint. U0V0[i] has size e and occurs in code for
|Pos⊇(D)| many symbols. This gives∑

D:basic depint

e · |Pos⊇(D)| = Hd(U,V)

Size of numbers:
When depint D ′ has k positions, they use ≤ 2k log k = h(k) bits.

∑
D′: depint

h(|#Pos(D ′)|) ≤
∑

D:basic depint

h(|Pos⊇(D)|) = Hn(U,V)

Easier to calculate:

D ′ = D1 ∪ D2 ∪ · · · ∪ D`︸ ︷︷ ︸
basic depints

⇒ log |#Pos(D)| ≤ log |Pos⊇(Di)|

A. Je» Word Equations in NLinSPACE 5.04.17 28 / 35

Proof
Size of all depints:
Let D = i be a basic depint. U0V0[i] has size e and occurs in code for
|Pos⊇(D)| many symbols. This gives∑

D:basic depint

e · |Pos⊇(D)| = Hd(U,V)

Size of numbers:
When depint D ′ has k positions, they use ≤ 2k log k = h(k) bits.∑

D′: depint

h(|#Pos(D ′)|)

≤
∑

D:basic depint

h(|Pos⊇(D)|) = Hn(U,V)

Easier to calculate:

D ′ = D1 ∪ D2 ∪ · · · ∪ D`︸ ︷︷ ︸
basic depints

⇒ log |#Pos(D)| ≤ log |Pos⊇(Di)|

A. Je» Word Equations in NLinSPACE 5.04.17 28 / 35

Proof
Size of all depints:
Let D = i be a basic depint. U0V0[i] has size e and occurs in code for
|Pos⊇(D)| many symbols. This gives∑

D:basic depint

e · |Pos⊇(D)| = Hd(U,V)

Size of numbers:
When depint D ′ has k positions, they use ≤ 2k log k = h(k) bits.∑

D′: depint

h(|#Pos(D ′)|)

≤
∑

D:basic depint

h(|Pos⊇(D)|) = Hn(U,V)

Easier to calculate:

D ′ = D1 ∪ D2 ∪ · · · ∪ D`︸ ︷︷ ︸
basic depints

⇒ log |#Pos(D)| ≤ log |Pos⊇(Di)|

A. Je» Word Equations in NLinSPACE 5.04.17 28 / 35

Proof
Size of all depints:
Let D = i be a basic depint. U0V0[i] has size e and occurs in code for
|Pos⊇(D)| many symbols. This gives∑

D:basic depint

e · |Pos⊇(D)| = Hd(U,V)

Size of numbers:
When depint D ′ has k positions, they use ≤ 2k log k = h(k) bits.∑

D′: depint

h(|#Pos(D ′)|) ≤
∑

D:basic depint

h(|Pos⊇(D)|) = Hn(U,V)

Easier to calculate:

D ′ = D1 ∪ D2 ∪ · · · ∪ D`︸ ︷︷ ︸
basic depints

⇒ log |#Pos(D)| ≤ log |Pos⊇(Di)|

A. Je» Word Equations in NLinSPACE 5.04.17 28 / 35

Outline of the proof

Let

(U,V) equation at the beginning of the phase

(U ′,V ′) equation at the end of the phase

(U0,V0): input eqaution

We show that the strategy guarantees that

Hd(U ′,V ′) =
5

6
Hd(U,V) + αHd(U0,V0)

By induction, this gives an O(Hd(U0,V0)) bound on Hd .
And H(U0,V0) = Hd(U0,V0) + Hn(U0,V0) = O(e|U0V0|).
Similar bound is shown for Hn(U,V).
So the encoding is linear-size.

A. Je» Word Equations in NLinSPACE 5.04.17 29 / 35

Outline of the proof

Let

(U,V) equation at the beginning of the phase

(U ′,V ′) equation at the end of the phase

(U0,V0): input eqaution

We show that the strategy guarantees that

Hd(U ′,V ′) =
5

6
Hd(U,V) + αHd(U0,V0)

By induction, this gives an O(Hd(U0,V0)) bound on Hd .
And H(U0,V0) = Hd(U0,V0) + Hn(U0,V0) = O(e|U0V0|).
Similar bound is shown for Hn(U,V).
So the encoding is linear-size.

A. Je» Word Equations in NLinSPACE 5.04.17 29 / 35

Outline of the proof

Let

(U,V) equation at the beginning of the phase

(U ′,V ′) equation at the end of the phase

(U0,V0): input eqaution

We show that the strategy guarantees that

Hd(U ′,V ′) =
5

6
Hd(U,V) + αHd(U0,V0)

By induction, this gives an O(Hd(U0,V0)) bound on Hd .
And H(U0,V0) = Hd(U0,V0) + Hn(U0,V0) = O(e|U0V0|).
Similar bound is shown for Hn(U,V).
So the encoding is linear-size.

A. Je» Word Equations in NLinSPACE 5.04.17 29 / 35

Limiting Hd : new letters

Bit-size of letters popped in one pair compression

At most 1 per not blocked side of occurrence of variable, bitsize e.

e

 ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX


At the beginning of the phase: at most 2e|U0V0| = 2n.
By strategy: at least halved every other step, so at most

2n + 2n + n + n + . . . ≤ 8n

A. Je» Word Equations in NLinSPACE 5.04.17 30 / 35

Limiting Hd : new letters

Bit-size of letters popped in one pair compression

At most 1 per not blocked side of occurrence of variable, bitsize e.

e

 ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX



At the beginning of the phase: at most 2e|U0V0| = 2n.
By strategy: at least halved every other step, so at most

2n + 2n + n + n + . . . ≤ 8n

A. Je» Word Equations in NLinSPACE 5.04.17 30 / 35

Limiting Hd : new letters

Bit-size of letters popped in one pair compression

At most 1 per not blocked side of occurrence of variable, bitsize e.

e

 ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX


At the beginning of the phase: at most 2e|U0V0| = 2n.

By strategy: at least halved every other step, so at most

2n + 2n + n + n + . . . ≤ 8n

A. Je» Word Equations in NLinSPACE 5.04.17 30 / 35

Limiting Hd : new letters

Bit-size of letters popped in one pair compression

At most 1 per not blocked side of occurrence of variable, bitsize e.

e

 ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX


At the beginning of the phase: at most 2e|U0V0| = 2n.
By strategy: at least halved every other step, so at most

2n + 2n + n + n + . . . ≤ 8n

A. Je» Word Equations in NLinSPACE 5.04.17 30 / 35

Extending Pos⊇(D)

Similar analysis for extension of basic depint.

Bit size of new Pos⊇(D) letters?

At most 1 per not blocked side of basic depint.

e

 ∑
D basic depint
left-unblocked

1 +
∑

D basic depint
right-unblocked

1


At the beginning of the phase this is at most 2e|U0V0| = 2n.
The rest is similar as before.

A. Je» Word Equations in NLinSPACE 5.04.17 31 / 35

Extending Pos⊇(D)

Similar analysis for extension of basic depint.

Bit size of new Pos⊇(D) letters?

At most 1 per not blocked side of basic depint.

e

 ∑
D basic depint
left-unblocked

1 +
∑

D basic depint
right-unblocked

1



At the beginning of the phase this is at most 2e|U0V0| = 2n.
The rest is similar as before.

A. Je» Word Equations in NLinSPACE 5.04.17 31 / 35

Extending Pos⊇(D)

Similar analysis for extension of basic depint.

Bit size of new Pos⊇(D) letters?

At most 1 per not blocked side of basic depint.

e

 ∑
D basic depint
left-unblocked

1 +
∑

D basic depint
right-unblocked

1


At the beginning of the phase this is at most 2e|U0V0| = 2n.

The rest is similar as before.

A. Je» Word Equations in NLinSPACE 5.04.17 31 / 35

Extending Pos⊇(D)

Similar analysis for extension of basic depint.

Bit size of new Pos⊇(D) letters?

At most 1 per not blocked side of basic depint.

e

 ∑
D basic depint
left-unblocked

1 +
∑

D basic depint
right-unblocked

1


At the beginning of the phase this is at most 2e|U0V0| = 2n.
The rest is similar as before.

A. Je» Word Equations in NLinSPACE 5.04.17 31 / 35

Shortening of Pos⊇(D)

Recall

Hd(U,V) =
∑

D: basic depint

e|Pos⊇(D)|

Consider Pos⊇(D) at the beginning of the phase.

By Lemma, among two positions in Pos⊇(D) at least 1 is compressed.

So Pos⊇(D) looses 1/3 of its positions due to compression.

Hd(U ′,V ′) ≤ 2

3
Hd(U,V) +O(Hd(U0,V0))

A. Je» Word Equations in NLinSPACE 5.04.17 32 / 35

Shortening of Pos⊇(D)

Recall

Hd(U,V) =
∑

D: basic depint

e|Pos⊇(D)|

Consider Pos⊇(D) at the beginning of the phase.

By Lemma, among two positions in Pos⊇(D) at least 1 is compressed.

So Pos⊇(D) looses 1/3 of its positions due to compression.

Hd(U ′,V ′) ≤ 2

3
Hd(U,V) +O(Hd(U0,V0))

A. Je» Word Equations in NLinSPACE 5.04.17 32 / 35

Shortening of Pos⊇(D)

Recall

Hd(U,V) =
∑

D: basic depint

e|Pos⊇(D)|

Consider Pos⊇(D) at the beginning of the phase.

By Lemma, among two positions in Pos⊇(D) at least 1 is compressed.

So Pos⊇(D) looses 1/3 of its positions due to compression.

Hd(U ′,V ′) ≤ 2

3
Hd(U,V) +O(Hd(U0,V0))

A. Je» Word Equations in NLinSPACE 5.04.17 32 / 35

Hn

pD , eD , kD : popped Pos⊇(D), extended Pos⊇(D), Pos⊇(D) from the
beginning of the phase

previously

Hd(U,V) = e
∑
D

kD → e
∑
D

(
2

3
kD + pD + eD

)
= Hd(U ′,V ′)

where
∑
D

eD + pD = O(|U0V0|)

now

Hn(U,V) =
∑
D

h (kD)→
∑
D

h

(
2

3
kd + pD + eD

)
= Hn(U ′,V ′),

where

Something more is needed (true, but separate analysis):

∞∑
i=1

i

2i
= 2, h is almost linear

.

A. Je» Word Equations in NLinSPACE 5.04.17 33 / 35

Hn

pD , eD , kD : popped Pos⊇(D), extended Pos⊇(D), Pos⊇(D) from the
beginning of the phase

previously

Hd(U,V) = e
∑
D

kD → e
∑
D

(
2

3
kD + pD + eD

)
= Hd(U ′,V ′)

where
∑
D

eD + pD = O(|U0V0|)

now

Hn(U,V) =
∑
D

h (kD)→
∑
D

h

(
2

3
kd + pD + eD

)
= Hn(U ′,V ′),

where

Something more is needed (true, but separate analysis):

∞∑
i=1

i

2i
= 2, h is almost linear

.

A. Je» Word Equations in NLinSPACE 5.04.17 33 / 35

Hn

pD , eD , kD : popped Pos⊇(D), extended Pos⊇(D), Pos⊇(D) from the
beginning of the phase
previously

Hd(U,V) = e
∑
D

kD → e
∑
D

(
2

3
kD + pD + eD

)
= Hd(U ′,V ′)

where
∑
D

eD + pD = O(|U0V0|)

now

Hn(U,V) =
∑
D

h (kD)→
∑
D

h

(
2

3
kd + pD + eD

)
= Hn(U ′,V ′),

where
∑
D

h(pD + eD) = O(|U0V0|)

Something more is needed (true, but separate analysis):

∞∑
i=1

i

2i
= 2, h is almost linear

.

A. Je» Word Equations in NLinSPACE 5.04.17 33 / 35

Hn

pD , eD , kD : popped Pos⊇(D), extended Pos⊇(D), Pos⊇(D) from the
beginning of the phase
previously

Hd(U,V) = e
∑
D

kD → e
∑
D

(
2

3
kD + pD + eD

)
= Hd(U ′,V ′)

where
∑
D

eD + pD = O(|U0V0|)

now

Hn(U,V) =
∑
D

h (kD)→
∑
D

h

(
2

3
kd + pD + eD

)
= Hn(U ′,V ′),

where
∑
D

h(pD + eD) = O(|U0V0|)

Something more is needed (true, but separate analysis):

∞∑
i=1

i

2i
= 2, h is almost linear

.

A. Je» Word Equations in NLinSPACE 5.04.17 33 / 35

Hn

pD , eD , kD : popped Pos⊇(D), extended Pos⊇(D), Pos⊇(D) from the
beginning of the phase
previously

Hd(U,V) = e
∑
D

kD → e
∑
D

(
2

3
kD + pD + eD

)
= Hd(U ′,V ′)

where
∑
D

eD + pD = O(|U0V0|)

now

Hn(U,V) =
∑
D

h (kD)→
∑
D

h

(
2

3
kd + pD + eD

)
= Hn(U ′,V ′),

where
∑
D

h(pD + eD) = O(|U0V0|)

Something more is needed (true, but separate analysis):
∞∑
i=1

i

2i
= 2, h is almost linear.

A. Je» Word Equations in NLinSPACE 5.04.17 33 / 35

Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V) +O(|U0,V0|)

A. Je» Word Equations in NLinSPACE 5.04.17 34 / 35

Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)

∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V) +O(|U0,V0|)

A. Je» Word Equations in NLinSPACE 5.04.17 34 / 35

Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V) +O(|U0,V0|)

A. Je» Word Equations in NLinSPACE 5.04.17 34 / 35

Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V) +O(|U0,V0|)

A. Je» Word Equations in NLinSPACE 5.04.17 34 / 35

Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V) +O(|U0,V0|)

A. Je» Word Equations in NLinSPACE 5.04.17 34 / 35

Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V) +O(|U0,V0|)

A. Je» Word Equations in NLinSPACE 5.04.17 34 / 35

∑
D h (pD) (

∑
D h (eD) is similar)

This is only for D corresponding to a variable. Let D: position of X .

h(pD) = 2pD log pD ≤ 25 +
∑
i≥1

i · ([X left-unbl. in Ii] + [X right-unbl. in Ii]) .

right side is Ω(p2D): some side was unblocked for pD/2 partitions.

25 just for small pD

∑
X∈X

25nX +
∑
i≥1

i ·

 ∑
X∈X

left-unblocked in Ii

nX +
∑
X∈X

right-unblocked in Ii

nX

 .

value in braces is |U0,V0| initially and halves every other partition

we sum-up a series ∼
∑

i
i
2i

= 2.

A. Je» Word Equations in NLinSPACE 5.04.17 35 / 35

∑
D h (pD) (

∑
D h (eD) is similar)

This is only for D corresponding to a variable. Let D: position of X .

h(pD) = 2pD log pD ≤ 25 +
∑
i≥1

i · ([X left-unbl. in Ii] + [X right-unbl. in Ii]) .

right side is Ω(p2D): some side was unblocked for pD/2 partitions.

25 just for small pD

∑
X∈X

25nX +
∑
i≥1

i ·

 ∑
X∈X

left-unblocked in Ii

nX +
∑
X∈X

right-unblocked in Ii

nX

 .

value in braces is |U0,V0| initially and halves every other partition

we sum-up a series ∼
∑

i
i
2i

= 2.

A. Je» Word Equations in NLinSPACE 5.04.17 35 / 35

∑
D h (pD) (

∑
D h (eD) is similar)

This is only for D corresponding to a variable. Let D: position of X .

h(pD) = 2pD log pD ≤ 25 +
∑
i≥1

i · ([X left-unbl. in Ii] + [X right-unbl. in Ii]) .

right side is Ω(p2D): some side was unblocked for pD/2 partitions.

25 just for small pD

∑
X∈X

25nX +
∑
i≥1

i ·

 ∑
X∈X

left-unblocked in Ii

nX +
∑
X∈X

right-unblocked in Ii

nX

 .

value in braces is |U0,V0| initially and halves every other partition

we sum-up a series ∼
∑

i
i
2i

= 2.

A. Je» Word Equations in NLinSPACE 5.04.17 35 / 35

∑
D h (pD) (

∑
D h (eD) is similar)

This is only for D corresponding to a variable. Let D: position of X .

h(pD) = 2pD log pD ≤ 25 +
∑
i≥1

i · ([X left-unbl. in Ii] + [X right-unbl. in Ii]) .

right side is Ω(p2D): some side was unblocked for pD/2 partitions.

25 just for small pD

∑
X∈X

25nX +
∑
i≥1

i ·

 ∑
X∈X

left-unblocked in Ii

nX +
∑
X∈X

right-unblocked in Ii

nX

 .

value in braces is |U0,V0| initially and halves every other partition

we sum-up a series ∼
∑

i
i
2i

= 2.

A. Je» Word Equations in NLinSPACE 5.04.17 35 / 35

