
Word Equations in Nondeterministic Linear Space

Artur Je»

Stuttgart, 5.04.2017

A. Je» Word Equations in NLinSPACE 5.04.17 1 / 35



Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X )∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X ) = aa,S(Y ) = bb)

Extend S to a homomorphism (Σ ∪ X )∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35



Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X )∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X ) = aa,S(Y ) = bb)

Extend S to a homomorphism (Σ ∪ X )∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35



Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X )∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aaabaabbbbb = aaabaabbbbbb (S(X ) = aa,S(Y ) = bb)

Extend S to a homomorphism (Σ ∪ X )∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35



Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X )∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X ) = aa,S(Y ) = bb)

Extend S to a homomorphism (Σ ∪ X )∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35



Word Equations

De�nition

Given equation U = V , where U,V ∈ (Σ ∪ X )∗;
Is there a substitution S : X → Σ∗ satisfying the equation?

aXbXYbbb = XabaabYbY (S(X ) = aa,S(Y ) = bb)

Extend S to a homomorphism (Σ ∪ X )∗ → Σ∗, an identity on Σ.
Solution word: S(U)

Known algorithms

Makanin 77 3NEXPTIME → EXPSPACE [Gutierrez 98]

Plandowski 99 PSPACE

J. 13 PSPACE

A. Je» Word Equations in NLinSPACE 5.04.17 2 / 35



Main idea

Recompression algorithm [J. 2013]

Hu�man coding of letters

The proof is more complex

how letters depend on fragments of original equation

special coding � so worse than Hu�man � but only for proof

handle several possible problems:
I many letters
I many unique letters
I and many other (perhaps artefacts of the proof)
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Compression operations

Compression operations

Given a word w :

(Σ`,Σr ) pair compression (Σ`,Σr are disjoint)
replace each ab ∈ Σ`Σr in w with a fresh cab

Σ block compression replace each maximal block a` ∈ Σ∗ in w by a
fresh a`. (maximal block: a` that cannot be extended).

{b, c} block compression

aaabbcccbbcccbbb
aaab2 c3 b2 c3 b3

{a, c}, {b} pair compression

aaabbcccbbcccbbb
aa d bcc e bcc e bb

We want to perform it on S(U) and S(V ).

Occurrence can be partially in the equation and in the variable.
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Preliminaries: explicit word
Checking equality of two explicit words

Require: two words u, v to be tested for equality
1: while |u| > 1 or |v | > 1 do

2: Σ← letters in u, v
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr )
6: perform (Σ`,Σr ) pair compression

7: test equality

Phase: one iteration of the main loop.

Shortening

Consider consecutive ab in u, v at the beginning of the phase

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier
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Pair Compression on word equation

In a solution word S(U) or S(V ):

pair is from the equation: OK, we replace it

it is from the substitution for a variable: OK, solution changes

partially here and there: just pop the problematic letter out

PairCompression

1: for X ∈ X do

2: let b: �rst letter of S(X ) . Guess
3: if b ∈ Σr then

4: replace each occurrence of X by bX . Pop

5: if S(X ) = ε then . Guess
6: remove X from the equation

7: let a: last . . . . symmetrically for the last letter and Σ`

8: perform pair compression on sides of the equation
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Block Compression

BlockCompression

1: for X ∈ X do

2: let S(X ) = a`wbr . Guess
3: replace X with a`Xbr

4: if S(X ) = ε then . Guess
5: remove X from the equation

6: perform block compression on sides of the equation
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The algorithm

Main algorithm

1: while sides of the equation are nontrivial do
2: Σ← letters in the equation
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr ) . Important
6: perform (Σ`,Σr ) pair compression

A phase is one iteration of the main loop

A. Je» Word Equations in NLinSPACE 5.04.17 8 / 35



The algorithm

Main algorithm

1: while sides of the equation are nontrivial do
2: Σ← letters in the equation
3: perform Σ-block compression
4: while some pair in Σ2 was not considered do

5: guess partition of Σ to (Σ`,Σr ) . Important
6: perform (Σ`,Σr ) pair compression

A phase is one iteration of the main loop

A. Je» Word Equations in NLinSPACE 5.04.17 8 / 35



Notes on analysis

A nondeterministic procedure is:

sound transforms satis�able to satis�able, regardless of choices

complete given a satis�able instance it transforms it to a satis�able one

In NLinSPACE we can analyse only �good choices�:
if we exceed the space then we reject.
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Solutions

Solution

If there is a solution, there is one over Σ = letters in the equation:
Map all letters outside Σ to a �xed one in Σ.

Done at the beginning of the phase.

Then stick with corresponding solution.

Corresponding nondeterministic choices

Given S the nondeterministic choices correspond to S , if they are done as if
the algorithm knew S .

the �rst/last letter of S(X )

length of a-pre�x/su�x

whether S(X ) = ε.

Not: the choice of a partition.
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Pair Compression: correctness

Lemma

PairCommpression is sound and complete.

To be more precise: If U = V
has a solution S then after PairCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X ) and performing pair compression on S(X ).

Proof.

Soundness: let U ′ = V ′ have a solution S ′. Create S : take S ′(X ), replace
cab with ab and reattach the popped letters; this is S(X ). Then S(U) is
S ′(U ′) with cab replaced with ab.
Completeness: for those choices after popping each ab is either within
variable or outside it. So the compression works.
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Block Compression: correctness

Lemma

BlockCompression is sound and complete. To be more precise: If U = V
has a solution S then after BlockCompression with corresponding
nondeterministic choices the equation has a solution obtained by removing
popped letters from S(X ) and performing block compression on S(X ).

Proof.

Proof as in the case of Pair Compression.
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Shortening property

Lemma

For S over Σ and the corresponding choices after one phase among each
two consecutive letters in S(U) at least one is compressed.

Proof: as in the word case

Consider consecutive ab in the solution word:

a = b compressed as a block

a 6= b considered and compressed, or
one of them was compressed earlier
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Space consumption: initial notes

Block compression

Long blocks are a problem; a �x is already known:

we do not guess explicit lengths, rather denote them as integer
variables

we calculate the blocks; lengths depends on those variables

we identify the same lengths: equalities of linear expressions in terms
of variables

verify the system of such integer-equations

compress

Lemma

Block compression can be implemented in space linear in the size of the
stored equation.
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Space consumption: initial notes

Hu�man coding

We need to recalculate Hu�man coding.

we build a labelled tree, labels to a leaf give the encoding

calculate frequencies

merge two least common symbols

create a new node with two edges to those symbols, labelled with 0
and 1

This can be computed in space linear in the input.
Space bound is OK, just �delayed� by one step.
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Dependency interval

For a letter in the equation we de�ne a factor of the original equation, on
which it depends.

De�nition (Dependency interval)

An interval of positions in the input equation is called a dependency
interval (depint); basic depint has 1 position.
We associate a depint to each symbol in the equation; D = dep(i).

D ∼ D ′: the corresponding factors of initial equation are equal:
UV [D] = UV [D ′] (as sequence of letters and variables)

we take their unions (only when result is an interval) dep(i) ∪ dep(j)

use ⊇,⊆ have standard meaning (dep(i) ⊇ dep(j))
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Depints: idea

Depints

assign to each letter in the equation a factor of the initial equation
UV [D]

letters with this fragment assigned are numbered 1, 2, . . . , k

we assign to them codes UV [D]#1,UV [D]#2, . . . ,UV [D]#k

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

worse than Hu�man coding; enough to estimate its bit-size
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worse than Hu�man coding; enough to estimate its bit-size
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How are dependency factors de�ned

dep(j) for j : position in the current equation

initially: dep(UV [i ]) = {i}

should be the same for compressed strings:
when we compress a` inside ba`c with depints Db,D1,D2, . . . ,D`,Dc

then each a gets a depint Db ∪ D1 ∪ D2 ∪ · · · ∪ D` ∪ Dc .

(Σ`,Σr ) compression: a = UV [i ] ∈ Σ` with dep(i) = D1 and
dep(i + 1) = D2 gets a depint D1 ∪ D2

symmetrically for Σr .
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Crucial properties

For a depint D call Pos(D) = {i | dep(i) = D} (in the current
equation)

[i , j ] ≤ [i ′, j ′] ⇐⇒ i ≤ i ′ and j ≤ j ′

(D1) Pos(D) is an interval (in the current equation).

(D2) For D,D ′ that have symbols in the equation, either:
D ≤ D ′ or D ≥ D ′.

(D3) If D ∼ D ′ then UV [Pos(D)] = UV [Pos(D ′)].
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Dual view

Pos⊇(D) = {j | dep(j) ⊇ D}
Pos⊆(D) = {j | dep(j) ⊆ D}

We focus on Pos⊇(D).

Lemma

Pos⊇(D) is an interval.

Proof.

We prove it together with D1�D3. Everything is easy induction except D3:
D ∼ D ′ ⇒ UV [Pos(D)] = UV [Pos(D ′)].
The proof is simple with appropriate approach: through Pos⊆(D)
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Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:

I intervals: we only loose letters from both ends and perhaps gain from
variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:

I intervals: we only loose letters from both ends and perhaps gain from
variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:

I intervals: we only loose letters from both ends and perhaps gain from
variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables

I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables
I inside: everything is the same

I interaction with outside: (proof by example)
dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables
I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Proof�ctd.

Proof.

Fix depint D ∼ D ′; consider Pos⊆(D) and Pos⊆(D ′)

Claim: Those are intervals, corresponding letters are the same,
corresponding depints are similar.

Induction:
I intervals: we only loose letters from both ends and perhaps gain from

variables
I inside: everything is the same
I interaction with outside: (proof by example)

dep(a) ∈ D ′ ⊆ D1 is left-most with this property, and in Σr

its depint is extended ⇒ we no longer care about it
it works the same for D2.

some inclusion-exclusion and intersections

A. Je» Word Equations in NLinSPACE 5.04.17 21 / 35



Encoding

De�nition (Encoding)

Fix depint D, encode letters with this depint as
U0V0[D]#1#,U0V0[D]#2#, . . .

i in binary

U0V0[D] as in the input equation

for D ∼ D ′ the encoding is the same

formally not encoding: assigns di�erent codes to the same letter

never assigns the same code to di�erent letters

is worse than Hu�man coding
enough to estimate its bit-size
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Idea

Ensure that

each variable pops O(1) letters per phase

each Pos⊇(D) expands by O(1) positions per phase

Then for a basic depint |Pos⊇(D)| = O(1) :

old Pos⊇(D) looses 1/3 of its positions (everything is compressed)

k ′ ≤ 2

3
k + c ⇒ bound 3c

The space is linear

i occurs 3c times in all depints ⇒ letter from the input occurs 3c
times in the encodings

each depint has length ≤ 3c ⇒ numbers in the encoding are
constant-length

Make this in expectation.
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Blocking

Recall

Σ: letters in the equation at the beginning of the phase.

Letters outside Σ (ones replacing compressed strings) are not popped.

A variable is left/right blocked when the left/right-most or second
left/right most letter in S(X ) is outside Σ (or |S(X )| = 1).

Positions with letters outside Σ do not have their depint changed.

A depint D is left/right blocked when the letter one or two to the left/right
of Pos⊇(D) is outside Σ (or there is one only one letter to the left/right).

Lemma

When a variable (depint) becomes left/right blocked then it stays so in this
phase and pops (extends to) at most one letter.
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Strategy

Our only nondeterministic choice is the partition.

Strategy

Choose the partition to alternatively halve the sums below:∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

∑
D: basic depint
left-unblocked

1 +
∑

D: basic depint
right-unblocked

1

the �rst limits the number of letters popped from equations

the second: extensions of Pos⊇(D)
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Strategy exists

Proof. ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX

A random partition reduces this sum by 1/2: S(X ) = abc . . .

a /∈ Σ or b /∈ Σ or no b X is left-blocked

c /∈ Σ or no c 1/2 probability that a is left-popped

a, b, c ∈ Σ 1/2 probability that b is compressed.

Symmetrically for the right-hand side.
Go for expectation over all variables.
Similarly for basic depints.
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Upper-bounding the size of the equation

Lemma

The depint-encoding of an equation U,V is not larger than H(U,V ).

The proof works for arbitrary encoding of the input.
From now on we use only �x-size for each symbol (streamlining).

Let e is the bit-size of the initial encoding.

Hd(U,V ) = e ·
∑

D:basic depint

|Pos⊇(D)|

Hn(U,V ) =
∑

D:basic depint

2|Pos⊇(D)| · log(|Pos⊇(D)|+ 1) ,

H(U,V ) = Hd(U,V ) + Hn(U,V )

the �rst upper bounds the bits used by UV [D]

the second upper-bounds the bits used by numbers in UV [D]#i
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Proof
Size of all depints:
Let D = i be a basic depint. U0V0[i ] has size e and occurs in code for
|Pos⊇(D)| many symbols. This gives∑

D:basic depint

e · |Pos⊇(D)| = Hd(U,V )

Size of numbers:
When depint D ′ has k positions, they use ≤ 2k log k = h(k) bits.

∑
D′: depint

h(|#Pos(D ′)|) ≤
∑

D:basic depint

h(|Pos⊇(D)|) = Hn(U,V )

Easier to calculate:

D ′ = D1 ∪ D2 ∪ · · · ∪ D`︸ ︷︷ ︸
basic depints

⇒ log |#Pos(D)| ≤ log |Pos⊇(Di )|
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Outline of the proof

Let

(U,V ) equation at the beginning of the phase

(U ′,V ′) equation at the end of the phase

(U0,V0): input eqaution

We show that the strategy guarantees that

Hd(U ′,V ′) =
5

6
Hd(U,V ) + αHd(U0,V0)

By induction, this gives an O(Hd(U0,V0)) bound on Hd .
And H(U0,V0) = Hd(U0,V0) + Hn(U0,V0) = O(e|U0V0|).
Similar bound is shown for Hn(U,V ).
So the encoding is linear-size.
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Limiting Hd : new letters

Bit-size of letters popped in one pair compression

At most 1 per not blocked side of occurrence of variable, bitsize e.

e

 ∑
X∈X

left-unblocked

nX +
∑
X∈X

right-unblocked

nX


At the beginning of the phase: at most 2e|U0V0| = 2n.
By strategy: at least halved every other step, so at most

2n + 2n + n + n + . . . ≤ 8n
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Extending Pos⊇(D)

Similar analysis for extension of basic depint.

Bit size of new Pos⊇(D) letters?

At most 1 per not blocked side of basic depint.

e

 ∑
D basic depint
left-unblocked

1 +
∑

D basic depint
right-unblocked

1


At the beginning of the phase this is at most 2e|U0V0| = 2n.
The rest is similar as before.
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Shortening of Pos⊇(D)

Recall

Hd(U,V ) =
∑

D: basic depint

e|Pos⊇(D)|

Consider Pos⊇(D) at the beginning of the phase.

By Lemma, among two positions in Pos⊇(D) at least 1 is compressed.

So Pos⊇(D) looses 1/3 of its positions due to compression.

Hd(U ′,V ′) ≤ 2

3
Hd(U,V ) +O(Hd(U0,V0))
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Hn

pD , eD , kD : popped Pos⊇(D), extended Pos⊇(D), Pos⊇(D) from the
beginning of the phase

previously

Hd(U,V ) = e
∑
D

kD → e
∑
D

(
2

3
kD + pD + eD

)
= Hd(U ′,V ′)

where
∑
D

eD + pD = O(|U0V0|)

now

Hn(U,V ) =
∑
D

h (kD)→
∑
D

h

(
2

3
kd + pD + eD

)
= Hn(U ′,V ′),

where

Something more is needed (true, but separate analysis):

∞∑
i=1

i

2i
= 2, h is almost linear

.
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Idea

Estimate
∑
D

h

(
2

3
kd + pD + eD

)
�rst estimate

∑
D h (pD) ,

∑
D h (eD) as O(|U0,V0|)

h(pD + eD) ≤ 4h(pD) + 4h(pD)∑
D h (pD + eD) = O(|U0,V0|)

if 2
3kD + pD + eD ≤ 5

6kd : OK

otherwise 2
3kd + pD + eD > 5

6kd ⇒:

2

3
kD + pD + eD ≤ 5(pD + eD)

∑
D

h

(
2

3
kD + pD + eD

)
≤ 5

6

∑
D

h (kD) +
∑
D

h (5pD + 5eD)

≤ 5

6
Hn(U,V ) +O(|U0,V0|)
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∑
D h (pD) (

∑
D h (eD) is similar)

This is only for D corresponding to a variable. Let D: position of X .

h(pD) = 2pD log pD ≤ 25 +
∑
i≥1

i · ([X left-unbl. in Ii ] + [X right-unbl. in Ii ]) .

right side is Ω(p2D): some side was unblocked for pD/2 partitions.

25 just for small pD

∑
X∈X

25nX +
∑
i≥1

i ·

 ∑
X∈X

left-unblocked in Ii

nX +
∑
X∈X

right-unblocked in Ii

nX

 .

value in braces is |U0,V0| initially and halves every other partition

we sum-up a series ∼
∑

i
i
2i

= 2.
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