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Part I

Conjunctive Grammars
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Conjunctive grammars

Context-free grammars: Rules of the form

A→ α

“If w is generated by α, then w is generated by A”.

X Multiple rules for A: disjunction.

Conjunctive grammars (Okhotin, 2000) Rules of the form

A→ α1& . . .&αm

“If w is generated by each αi , then w is generated by A”.
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Definition of conjunctive grammars

Quadruple G = (Σ,N,P,S), where S ∈ N and rules in P are

A→ α1& . . .&αm with A ∈ N, αi ∈ (Σ ∪ N)∗

Semantics by language equations:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi

I LG (A) is the A-component of the least solution.

Semantics by term rewriting:

ϕ(A) =⇒ ϕ(α1& . . .&αm)

ϕ(w& . . .&w) =⇒ ϕ(w)

I LG (A) = {w | A =⇒∗ w}
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Part II

Unary alphabet and equations over sets of numbers
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The case of a unary alphabet

Unary: Σ = {a}.

an ←→ number n

an · am ←→ n + m

Language ←→ set of numbers

K · L ←→ X � Y = {x + y | x ∈ X , y ∈ Y }
Language equations ←→ Equations over subsets of N

Resolved equations over sets of natural numbers.
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Equations over sets of numbers


X1 = ϕ1(X1, . . . ,Xn)

...
Xn = ϕn(X1, . . . ,Xn)

Xi : subset of N = {0, 1, 2, . . .}.
ϕi contains variables, singleton constants, operations on sets.

Operations : ∪,∩,�

Definition

X � Y = {x + y : x ∈ X , y ∈ Y }

Example:
X = (X � X ) ∪ {2}

EQ(∪,∩,�)—sets expressible as least solutions
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Questions

Problem

X Expressive power?

X Complexity of the membership problem?

Remark

Operations {∪,�}:

Context-free grammars over an alphabet {a}.
Least solutions are ultimately periodic.

General membership problem: NP-complete
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Tool: positional notation

Using base-k notation.

Σk = {0, 1, . . . , k − 1}.
Numbers ←→ strings in Σ∗k \ 0Σ∗k .

Sets of numbers ←→ formal languages over Σk .

Example

(10∗)4 = {4n | n > 0}
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Example of non-periodic solution (k = 4)

Solution

L1 = 10∗ ,

L2 = 20∗ ,

L3 = 30∗ ,

L12 = 120∗ .

Equations

B1 = (B2 � B2 ∩ B1 � B3) ∪ {1} ,
B2 = (B12 � B2 ∩ B1 � B1) ∪ {2} ,
B3 = (B12 � B12 ∩ B1 � B2) ∪ {3} ,

B12 = (B3 � B3 ∩ B1 � B2) .
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What needs to be proved

By general knowledge there is a unique ε-free solution.

Vector of sets (. . . , i0∗, . . .) is ε-free.

We need to show that it is a solution.

Example

For example 10∗, the rule is

B1 = (B2 � B2 ∩ B1 � B3) ∪ {1}

So we want to prove that

10∗ = 20∗ � 20∗ ∩ 10∗ � 30∗ ∪ {1}
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Calculations

Rule:
B1 = (B2 � B2 ∩ B1 � B3) ∪ {1}

Proof.

20∗ � 20∗ = 10+ ∪ 20∗20∗

10∗ � 30∗ = 10+ ∪ 10∗30∗ ∪ 30∗10∗

20∗ � 20∗ ∩ 10∗ � 30∗ = 10+

20∗ � 20∗ ∩ 10∗ � 30∗ ∪ {1} = 10∗

Remark

Similar proof for ij0∗ in base-k notation.
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Any regular language

Theorem (Jeż, DLT 2007)

For every k and R ⊂ {0, . . . , k − 1}∗ if R is regular then R ∈ EQ(∩,∪,�).

Idea

Let 〈{0, . . . , k − 1},Q, q0,F , δ〉 recognize R.
We introduce variable Bi ,j ,q for set

{ijw : δ(q0,w) = q}

Information the indices carry:

leading symbol i

second leading symbol j

q—the computation of M on the rest of the word
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Equations for Bi ,j ,q

Example

Bi ,j ,q =
⋃

(x ,q′):q∈δ(q′,x)

4⋂
n=1

Bi−1,j+n � Bk−n,x ,q′ ∪ . . .

k − n x
state q′︷︸︸︷. . .

+ i − 1 j + n 00 . . . 0

i j x . . . . . .︸ ︷︷ ︸
state q
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Trellis automata
(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

∀ trellis automaton M over Σk with L(M) ⊆ Σ∗k \ 0Σ∗k ,
set L(M) is in EQ(∩,∪,�).

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M = (Σ,Q, I , δ,F ) where:

Σ: input alphabet;

Q: finite set of states;

I : Σ→ Q sets initial states;

δ : Q × Q → Q, transition function;

F ⊆ Q: accepting states.

Closed under ∪,∩,∼, not closed under concatenation.
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Artur Jeż ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 15 / 27



Trellis automata
(one-way real-time cellular automata)
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Main lemma

Lemma

For every trellis automaton M over Σk with L(M) ⊆ Σ∗k \ 0Σ∗k ,
there exists a system of equations in EQ = (∪,∩,�)
with least solution

{1w10∗ | w + 1 ∈ L(M)}, . . . ,

1w10∗ represents w .
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The construction

Set of variables {Xq | q ∈ Q}.

Actually, Xq = {1w10∗ | w + 1 ∈ LM(q)}

aub ∈ LM(q)

⇔
∃q′, q′′ : δ(q′, q′′) = q,
au ∈ LM(q′),
ub ∈ LM(q′′).

Let 1au10∗ ⊆ Xq′ , 1ub10∗ ⊆ Xq′′ .

Xq =
⋃

q′,q′′:δ(q′,q′′)=q
a,b∈Σk

ρb(Xq′)∩λa(Xq′′)

λa(1w10k) = 1aw10k

ρb(1w10k) = 1wb10k−1
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Part III

Complexity of equations with {∪,∩,�}
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Computational complexity: basic notions

Fix X ⊆ N0.

Determine algorithmically whether x ∈ X .

n = log x : length of notation of x

Time complexity: in t(n) elementary steps.

Space complexity: using s(n) elementary memory cells.

P polynomial time.

NP nondeterministic polynomial time (may guess).

PSPACE polynomial space.

EXPTIME exponential time.

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

C -complete set X : every problem in C can be reduced to X .
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Complexity of solutions

Trellis automata recognize P-complete languages.

P-complete sets of numbers.

NP-complete sets: relatively easy.

PSPACE-complete sets: requires some efforts.

Upper bound:

Theorem (Okhotin, 2001)

Every conjunctive language can be recognized in time O(n3).

Corollary

Every set of numbers in EQ(∪,∩,�) is in EXPTIME.

Theorem (Jeż, Okhotin, STACS 2008)

EQ(∪,∩,�) contains an EXPTIME-complete set.
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Alternating Turing machines

Tape alphabet Γ, set of states Q = QE ∪ QA ∪ {qacc}.

Transition function δ : Q × Γ→ 2Q×Γ×{←,↓,→}.

If q = qacc , accepts from here.

If q ∈ QE , accepts from here if accepts from some next conf.

If q ∈ QA, accepts from here if accepts from every next conf.

Theorem (A. Chandra, D. Kozen, L. Stockmeyer 1981)

APSPACE = EXPTIME

APTIME = PSPACE
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Theorem (A. Chandra, D. Kozen, L. Stockmeyer 1981)

APSPACE = EXPTIME

APTIME = PSPACE

Artur Jeż ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 21 / 27



Alternating Turing machines

Tape alphabet Γ, set of states Q = QE ∪ QA ∪ {qacc}.
Transition function δ : Q × Γ→ 2Q×Γ×{←,↓,→}.

If q = qacc , accepts from here.

If q ∈ QE , accepts from here if accepts from some next conf.

If q ∈ QA, accepts from here if accepts from every next conf.

Theorem (A. Chandra, D. Kozen, L. Stockmeyer 1981)

APSPACE = EXPTIME

APTIME = PSPACE
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Idea of encoding

Problem

How to encode a configuration?

Idea

Arithmetization of a configuration

Define final accepting configurations

Calculate previous accepting configurations

Alternation is not a problem

Problem: numbers increase with every step, encodings not

Solution: restricting the model and adding a counter
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Artur Jeż ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 22 / 27



Idea of encoding

Problem

How to encode a configuration?

Idea

Arithmetization of a configuration

Define final accepting configurations

Calculate previous accepting configurations

Alternation is not a problem

Problem: numbers increase with every step, encodings not

Solution: restricting the model and adding a counter
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Restrictions of the model

Circular tape.

Moving to the right at every step.

Next configuration:

Remark

Still APSPACE = EXPTIME .
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Artur Jeż ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 23 / 27



Restrictions of the model

Circular tape.

Moving to the right at every step.

Next configuration:

Remark

Still APSPACE = EXPTIME .
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Arithmetization of alternating Turing machines

Tape alphabet Γ = {a0, . . . , a|Γ|−1}.

Let k = 8 + |Q|+ max(|Q|+ 7, |Γ|), let Σ = {0, . . . , k − 1}.
〈·〉 : Q ∪ Γ→ Σ.

I 〈qi 〉 = 7 + i for qi ∈ Q.
I 〈aj〉 = 7 + |Q|+ j for ai ∈ Γ,

Instantaneous description:

I Tape containing ai1 . . . ain
I In state q over aij .

I At most r rotations over the tape, with r =
∑`

i=0 2ici , ci ∈ {0, 1}.

As a number in base-k notation:

1c`−1 . . . c1c0︸ ︷︷ ︸
counter

55 0〈ai1〉 . . . 0〈aij−1
〉〈q〉〈aij 〉0〈aij+1

〉 . . . 0〈ain〉0︸ ︷︷ ︸
tape

∈ Σ∗

Decreases at every step of computation.
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Constructing equations: lower level

Moveq′,a′,q,a(X ): transition of the ATM.

Moveq′,a′,q,a(X ) contains all IDs

1c`−1 . . . c1c0550〈ai1〉 . . . 0〈aij−1
〉〈q〉〈a〉0〈aij+1

〉 . . . 0〈ain〉0,

for which

1c`−1 . . . c1c0550〈ai1〉 . . . 0〈aij−1
〉0〈a′〉〈q′〉〈aij+1

〉 . . . 0〈ain〉0 ∈ X

Equation:

Moveq,a,q′,a′(X ) = (X ∩ Counter 55Tapeq′a′)

�
(
〈q〉〈a〉0� 〈a′〉〈q′〉

)
(00)∗

∩Counter 55Tapeaq
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Constructing equations: upper level

X = Final∪Step(X ) ∪
(
Y ∩ Counter 55Tape

)
Y = Jump(X ) ∪ Carry(Y )

Final: the set of accepting configurations.

Counter 55Tape: the set of valid IDs.

Step(X ) = {n | ∃m ∈ X : m ` n}: to the next square.

Jump(X ) = {n | ∃m ∈ X : m `′ n}: to the first symbol.

Carry(X ): processing the carry in the counter.

Step(X ) =
( ⋃

q∈QE ,a∈Γ

⋃
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X )
)
∪

∪

( ⋃
q∈QA,a∈Γ

⋂
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X )
)
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X = Final∪Step(X ) ∪
(
Y ∩ Counter 55Tape

)
Y = Jump(X ) ∪ Carry(Y )

Final: the set of accepting configurations.

Counter 55Tape: the set of valid IDs.

Step(X ) = {n | ∃m ∈ X : m ` n}: to the next square.

Jump(X ) = {n | ∃m ∈ X : m `′ n}: to the first symbol.

Carry(X ): processing the carry in the counter.

Step(X ) =
( ⋃

q∈QE ,a∈Γ

⋃
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X )
)
∪

∪

( ⋃
q∈QA,a∈Γ

⋂
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X )
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Artur Jeż ( University of Wroclaw ) Equations over sets of natural numbers. December 13, 2007 26 / 27



Constructing equations: upper level

X = Final∪Step(X ) ∪
(
Y ∩ Counter 55Tape

)
Y = Jump(X ) ∪ Carry(Y )

Final: the set of accepting configurations.

Counter 55Tape: the set of valid IDs.

Step(X ) = {n | ∃m ∈ X : m ` n}: to the next square.

Jump(X ) = {n | ∃m ∈ X : m `′ n}: to the first symbol.

Carry(X ): processing the carry in the counter.

Step(X ) =
( ⋃

q∈QE ,a∈Γ

⋃
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X )
)
∪

∪

( ⋃
q∈QA,a∈Γ

⋂
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X )
)
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Conclusion

A basic mathematical object.

Using methods of theoretical computer science.

High expressive power and hard recognition

Any number-theoretic methods?

Problem

Construct a set not representable by equations with {∪,∩,�}.
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