Equations over sets of natural numbers.

Artur Jeż

University of Wroclaw

December 13, 2007

Part I Conjunctive Grammars

3

∃ ► < ∃ ►</p>

< (T) > <

Conjunctive grammars

Context-free grammars: Rules of the form

 $A \to \alpha$

"If w is generated by α , then w is generated by A".

Conjunctive grammars

Context-free grammars: Rules of the form

 $A \rightarrow \alpha$

"If w is generated by α , then w is generated by A".

 \checkmark Multiple rules for *A*: disjunction.

Conjunctive grammars

Context-free grammars: Rules of the form

 $A \rightarrow \alpha$

"If w is generated by α, then w is generated by A". ✓ Multiple rules for A: disjunction. Conjunctive grammars (Okhotin, 2000) Rules of the form

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$

"If w is generated by each α_i , then w is generated by A".

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$ with $A \in N$, $\alpha_i \in (\Sigma \cup N)^*$

- 2

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$ with $A \in N$, $\alpha_i \in (\Sigma \cup N)^*$

• Semantics by language equations:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \in P} \bigcap_{i=1}^m \alpha_i$$

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$ with $A \in N$, $\alpha_i \in (\Sigma \cup N)^*$

• Semantics by language equations:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \in P} \bigcap_{i=1}^m \alpha_i$$

4 / 27

• $L_G(A)$ is the A-component of the least solution.

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$ with $A \in N$, $\alpha_i \in (\Sigma \cup N)^*$

• Semantics by language equations:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \in P} \bigcap_{i=1}^m \alpha_i$$

• $L_G(A)$ is the A-component of the least solution.

• Semantics by term rewriting:

$$\varphi(A) \Longrightarrow \varphi(\alpha_1 \& \dots \& \alpha_m)$$

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$ with $A \in N$, $\alpha_i \in (\Sigma \cup N)^*$

• Semantics by language equations:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \in P} \bigcap_{i=1}^m \alpha_i$$

• $L_G(A)$ is the A-component of the least solution.

• Semantics by term rewriting:

$$\varphi(A) \Longrightarrow \varphi(\alpha_1 \& \dots \& \alpha_m)$$
$$\varphi(w \& \dots \& w) \Longrightarrow \varphi(w)$$

• Quadruple $G = (\Sigma, N, P, S)$, where $S \in N$ and rules in P are

 $A \rightarrow \alpha_1 \& \dots \& \alpha_m$ with $A \in N$, $\alpha_i \in (\Sigma \cup N)^*$

• Semantics by language equations:

$$A = \bigcup_{A \to \alpha_1 \& \dots \& \alpha_m \in P} \bigcap_{i=1}^m \alpha_i$$

L_G(A) is the A-component of the least solution.
Semantics by term rewriting:

$$\varphi(A) \Longrightarrow \varphi(\alpha_1 \& \dots \& \alpha_m)$$
$$\varphi(w \& \dots \& w) \Longrightarrow \varphi(w)$$

$$\blacktriangleright L_G(A) = \{w \mid A \Longrightarrow^* w\}$$

Part II

Unary alphabet and equations over sets of numbers

Unary: $\Sigma = \{a\}$.

3

< 🗇 🕨 🔸

number n

< 67 ▶

3

→ Ξ →

< 🗗 🕨

Unary: $\Sigma = \{a\}$.

• a ⁿ	\longleftrightarrow	number <i>n</i>
● a ⁿ · a ^m	\longleftrightarrow	n + m
 Language 	\longleftrightarrow	set of numbers

3

< 🗇 🕨 🔸

Unary: $\Sigma = \{a\}$.

• a ⁿ	\longleftrightarrow	number <i>n</i>
• a ⁿ · a ^m	\longleftrightarrow	n + m
 Language 	\longleftrightarrow	set of numbers
• K·L	$\longleftrightarrow X\boxplus Y =$	$\{x+y \mid x \in X, y \in Y\}$

3. 3

< 🗗 🕨

Unary: $\Sigma = \{a\}$.

- $a^n \qquad \longleftrightarrow \qquad \text{number } n$
- $a^n \cdot a^m \qquad \longleftrightarrow \qquad n+m$
- Language \longleftrightarrow set of numbers
- $K \cdot L \qquad \longleftrightarrow X \boxplus Y = \{x + y \mid x \in X, y \in Y\}$
- Language equations \iff Equations over subsets of $\mathbb N$

3

- ∢ ≣ →

Unary: $\Sigma = \{a\}$.

٩	a ⁿ	\longleftrightarrow	number <i>n</i>
٩	$a^n \cdot a^m$	\longleftrightarrow	n+m
۲	Language	\longleftrightarrow	set of numbers
۲	K·L	\longleftrightarrow	$X \boxplus Y = \{x + y \mid x \in X, y \in Y\}$
٩	Language equations	\longleftrightarrow	Equations over subsets of $\ensuremath{\mathbb{N}}$

Resolved equations over sets of natural numbers.

$$\begin{cases} X_1 = \varphi_1(X_1, \dots, X_n) \\ \vdots \\ X_n = \varphi_n(X_1, \dots, X_n) \end{cases}$$

< 67 ▶

$$\begin{cases} X_1 = \varphi_1(X_1, \dots, X_n) \\ \vdots \\ X_n = \varphi_n(X_1, \dots, X_n) \end{cases}$$

• X_i : subset of $\mathbb{N} = \{0, 1, 2, \ldots\}$.

$$\begin{cases} X_1 = \varphi_1(X_1, \dots, X_n) \\ \vdots \\ X_n = \varphi_n(X_1, \dots, X_n) \end{cases}$$

- X_i : subset of $\mathbb{N} = \{0, 1, 2, ...\}$.
- φ_i contains variables, singleton constants, operations on sets.

$$\begin{cases} X_1 = \varphi_1(X_1, \dots, X_n) \\ \vdots \\ X_n = \varphi_n(X_1, \dots, X_n) \end{cases}$$

- X_i : subset of $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- φ_i contains variables, singleton constants, operations on sets.
- Operations : \cup, \cap, \boxplus

Definition

$$X \boxplus Y = \{x + y : x \in X, y \in Y\}$$

$$\begin{cases} X_1 = \varphi_1(X_1, \dots, X_n) \\ \vdots \\ X_n = \varphi_n(X_1, \dots, X_n) \end{cases}$$

- X_i : subset of $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- φ_i contains variables, singleton constants, operations on sets.
- Operations : \cup, \cap, \boxplus

Definition

$$X \boxplus Y = \{x + y : x \in X, y \in Y\}$$

• Example:

$$X = (X \boxplus X) \cup \{2\}$$

$$\begin{cases} X_1 = \varphi_1(X_1,\ldots,X_n) \\ \vdots \\ X_n = \varphi_n(X_1,\ldots,X_n) \end{cases}$$

- X_i : subset of $\mathbb{N} = \{0, 1, 2, ...\}.$
- φ_i contains variables, singleton constants, operations on sets.
- Operations : \cup, \cap, \boxplus

Definition

$$X \boxplus Y = \{x + y : x \in X, y \in Y\}$$

• Example:

$$X = (X \boxplus X) \cup \{2\}$$

• $EQ(\cup, \cap, \boxplus)$ —sets expressible as least solutions

Problem

✓ Expressive power?

э

▲圖▶ ▲ 国▶ ▲ 国▶

Problem

- ✓ *Expressive power?*
- ✓ Complexity of the membership problem?

Problem

- ✓ Expressive power?
- ✓ Complexity of the membership problem?

Remark

Operations $\{\cup, \boxplus\}$:

3

∃ → (∃ →

A 🖓 h

Problem

- ✓ Expressive power?
- ✓ Complexity of the membership problem?

Remark

Operations $\{\cup, \boxplus\}$:

• Context-free grammars over an alphabet $\{a\}$.

3. 3

___ ▶

Problem

- ✓ Expressive power?
- ✓ Complexity of the membership problem?

Remark

Operations $\{\cup, \boxplus\}$:

- Context-free grammars over an alphabet $\{a\}$.
- Least solutions are ultimately periodic.

-

Problem

- ✓ Expressive power?
- ✓ Complexity of the membership problem?

Remark

Operations $\{\cup, \boxplus\}$:

- Context-free grammars over an alphabet $\{a\}$.
- Least solutions are ultimately periodic.
- General membership problem: NP-complete

-

• Using base-k notation.

- Using base-k notation.
- $\Sigma_k = \{0, 1, \dots, k-1\}.$

- Using base-k notation.
- $\Sigma_k = \{0, 1, \dots, k-1\}.$
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.

- Using base-k notation.
- $\Sigma_k = \{0, 1, \dots, k-1\}.$
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.
- Sets of numbers \longleftrightarrow formal languages over Σ_k .

- Using base-k notation.
- $\Sigma_k = \{0, 1, \dots, k-1\}.$
- Numbers \longleftrightarrow strings in $\Sigma_k^* \setminus 0\Sigma_k^*$.
- Sets of numbers \longleftrightarrow formal languages over Σ_k .

Example

$$(10^*)_4 = \{4^n \mid n \ge 0\}$$

3

→ < ∃ →</p>
Example of non-periodic solution (k = 4)

Solution

$$L_1 = 10^*$$
,
 $L_2 = 20^*$,
 $L_3 = 30^*$,
 $L_{12} = 120^*$.

∃ →

< 67 ▶

Example of non-periodic solution (k = 4)

Solution	Equations
$L_1 = 10^*$.	$B_1 = (B_2 \boxplus B_2 \cap B_1 \boxplus B_3) \cup \{1\},$
$L_2 = 20^*$,	$B_2 = (B_{12} \boxplus B_2 \cap B_1 \boxplus B_1) \cup \{2\},$
$L_3 = 30^*$,	$B_3 \hspace{0.2cm} = \hspace{0.2cm} \left(B_{12} \boxplus B_{12} \cap B_1 \boxplus B_2 \right) \cup \left\{ 3 \right\} ,$
$L_{12} = 120^*$.	$B_{12} = (B_3 \boxplus B_3 \cap B_1 \boxplus B_2) \ .$

3

- < ∃ →

< (17) × <

• By general knowledge there is a unique ε -free solution.

- By general knowledge there is a unique ε -free solution.
- Vector of sets $(\ldots, i0^*, \ldots)$ is ε -free.

3

- By general knowledge there is a unique ε -free solution.
- Vector of sets $(\ldots, i0^*, \ldots)$ is ε -free.
- We need to show that it is a solution.

- By general knowledge there is a unique ε -free solution.
- Vector of sets $(\ldots, i0^*, \ldots)$ is ε -free.
- We need to show that it is a solution.

Example

For example 10^{*}, the rule is

$$B_1=(B_2\boxplus B_2\cap B_1\boxplus B_3)\cup\{1\}$$

So we want to prove that

 $10^* = 20^* \boxplus 20^* \cap 10^* \boxplus 30^* \cup \{1\}$

Rule:

$B_1 = (B_2 \boxplus B_2 \cap B_1 \boxplus B_3) \cup \{1\}$

→ Ξ →

3

Rule:

$B_1 = (B_2 \boxplus B_2 \cap B_1 \boxplus B_3) \cup \{1\}$

- 34

Rule:

$$B_1 = (B_2 \boxplus B_2 \cap B_1 \boxplus B_3) \cup \{1\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Rule:

$$B_1=(B_2\boxplus B_2\cap B_1\boxplus B_3)\cup\{1\}$$

Proof.

Rule:

$$B_1 = (B_2 \boxplus B_2 \cap B_1 \boxplus B_3) \cup \{1\}$$

Proof.

Rule:

$$B_1 = (B_2 \boxplus B_2 \cap B_1 \boxplus B_3) \cup \{1\}$$

Proof.

Remark

Similar proof for $ij0^*$ in base-k notation.

Artur Jeż (University of Wroclaw)

3

イロト イポト イヨト イヨト

Theorem (Jeż, DLT 2007)

For every k and $R \subset \{0, \ldots, k-1\}^*$ if R is regular then $R \in EQ(\cap, \cup, \boxplus)$.

3

Theorem (Jeż, DLT 2007)

For every k and $R \subset \{0, \ldots, k-1\}^*$ if R is regular then $R \in EQ(\cap, \cup, \boxplus)$.

Idea

Let $\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$ recognize R.

Theorem (Jeż, DLT 2007)

For every k and $R \subset \{0, \ldots, k-1\}^*$ if R is regular then $R \in EQ(\cap, \cup, \boxplus)$.

Idea

Let $\langle \{0, \dots, k-1\}, Q, q_0, F, \delta \rangle$ recognize R. We introduce variable $B_{i,j,q}$ for set

 $\{ijw:\delta(q_0,w)=q\}$

Theorem (Jeż, DLT 2007)

For every k and $R \subset \{0, \ldots, k-1\}^*$ if R is regular then $R \in EQ(\cap, \cup, \boxplus)$.

Idea

Let $\langle \{0, \dots, k-1\}, Q, q_0, F, \delta \rangle$ recognize R. We introduce variable $B_{i,j,q}$ for set

$$\{ijw:\delta(q_0,w)=q\}$$

Information the indices carry:

- leading symbol i
- second leading symbol j
- q—the computation of M on the rest of the word

< 回 ト < 三 ト < 三 ト

Equations for $B_{i,j,q}$

Example

$$B_{i,j,q} = \bigcup_{(x,q'):q\in\delta(q',x)}\bigcap_{n=1}^{4}B_{i-1,j+n}\boxplus B_{k-n,x,q'}\cup\ldots$$

<ロ> (日) (日) (日) (日) (日)

Equations for $B_{i,j,q}$

Example

<ロ> (日) (日) (日) (日) (日)

3

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

Definition (Culik, Gruska, Salomaa, 1981)

- A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where:
 - Σ: input alphabet;
 - Q: finite set of states;

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

- ∢ ≣ →

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

- ∢ ≣ →

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

Definition (Culik, Gruska, Salomaa, 1981) A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where: • Σ : input alphabet; • Q: finite set of states; • $I : \Sigma \rightarrow Q$ sets initial states; • $\delta : Q \times Q \rightarrow Q$, transition function; a_1 a_2 a_3 a_4

- ∢ ≣ →

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

Definition (Culik, Gruska, Salomaa, 1981) A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where: • Σ : input alphabet; • Q: finite set of states; • $I : \Sigma \rightarrow Q$ sets initial states; • $\delta : Q \times Q \rightarrow Q$, transition function; • $F \subseteq Q$: accepting states.

- 4 週 ト - 4 三 ト - 4 三 ト

(one-way real-time cellular automata)

Theorem (Jeż, Okhotin, CSR 2007)

 \forall trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, set L(M) is in $EQ(\cap, \cup, \boxplus)$.

Definition (Culik, Gruska, Salomaa, 1981) A trellis automaton is a $M = (\Sigma, Q, I, \delta, F)$ where: • Σ : input alphabet; • Q: finite set of states; • $I : \Sigma \rightarrow Q$ sets initial states; • $\delta : Q \times Q \rightarrow Q$, transition function; • $F \subseteq Q$: accepting states. a_1 a_2 a_3 a_4

Closed under ∪, ∩, ~, not closed under concatenation.

Main lemma

Lemma

For every trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, there exists a system of equations in $EQ = (\cup, \cap, \boxplus)$ with least solution

$$\{1w10^* \mid w+1 \in L(M)\}, \ldots,$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Main lemma

Lemma

For every trellis automaton M over Σ_k with $L(M) \subseteq \Sigma_k^* \setminus 0\Sigma_k^*$, there exists a system of equations in $EQ = (\cup, \cap, \boxplus)$ with least solution

$$\{1w10^* \mid w+1 \in L(M)\}, \ldots,$$

• $1w10^*$ represents w.

3

• Set of variables $\{X_q \mid q \in Q\}$.

∃ →

< 67 ▶

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$

3

∃ ⇒

< 67 ▶

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_M(q)$

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_M(q) \Leftrightarrow$

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_{\mathcal{M}}(q) \Leftrightarrow \exists q', q'' : \delta(q', q'') = q,$

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_M(q) \Leftrightarrow \exists q', q'' : \delta(q', q'') = q, \\ au \in L_M(q'),$

The construction

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_M(q) \Leftrightarrow$ $\exists q', q'' : \delta(q', q'') = q,$ $au \in L_M(q'),$ $ub \in L_M(q'').$

The construction

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_M(q) \Leftrightarrow$ $\exists q', q'' : \delta(q', q'') = q,$ $au \in L_M(q'),$ $ub \in L_M(q'').$
- Let $1au10^* \subseteq X_{q'}$, $1ub10^* \subseteq X_{q''}$.

$$X_q = \bigcup_{\substack{q',q'':\delta(q',q'')=q\\a,b\in\Sigma_k}} \rho_b(X_{q'}) \cap \lambda_a(X_{q''})$$

The construction

- Set of variables $\{X_q \mid q \in Q\}$.
- Actually, $X_q = \{1w10^* \mid w+1 \in L_M(q)\}$
- $aub \in L_M(q) \Leftrightarrow$ $\exists q', q'' : \delta(q', q'') = q,$ $au \in L_M(q'),$ $ub \in L_M(q'').$
- Let $1au10^* \subseteq X_{q'}$, $1ub10^* \subseteq X_{q''}$.

$$X_q = \bigcup_{\substack{q',q'':\delta(q',q'')=q\\a,b\in\Sigma_k}} \rho_b(X_{q'}) \cap \lambda_a(X_{q''})$$

 α

$$\lambda_a(1w10^k) = 1aw10^k$$
$$\rho_b(1w10^k) = 1wb10^{k-1}$$

<20 ≥ 3

Part III

Complexity of equations with $\{\cup, \cap, \boxplus\}$

3. 3

< 67 ▶

• Fix $X \subseteq \mathbb{N}_0$.

3 x 3

< 行

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.

3

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x

3

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- *n* = log *x*: length of notation of *x*
- Time complexity: in t(n) elementary steps.

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x
- Time complexity: in t(n) elementary steps.
- Space complexity: using s(n) elementary memory cells.

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x
- Time complexity: in t(n) elementary steps.
- Space complexity: using s(n) elementary memory cells.

P polynomial time.

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x
- Time complexity: in t(n) elementary steps.
- Space complexity: using s(n) elementary memory cells.

P polynomial time.

NP nondeterministic polynomial time (may guess).

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x
- Time complexity: in t(n) elementary steps.
- Space complexity: using s(n) elementary memory cells.

P polynomial time.

NP nondeterministic polynomial time (may guess). PSPACE polynomial space.

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x
- Time complexity: in t(n) elementary steps.
- Space complexity: using s(n) elementary memory cells.

P polynomial time.

NP nondeterministic polynomial time (may guess).

PSPACE polynomial space.

EXPTIME exponential time.

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

- Fix $X \subseteq \mathbb{N}_0$.
- Determine algorithmically whether $x \in X$.
- $n = \log x$: length of notation of x
- Time complexity: in t(n) elementary steps.
- Space complexity: using *s*(*n*) elementary memory cells.

P polynomial time.

NP nondeterministic polynomial time (may guess).

PSPACE polynomial space.

EXPTIME exponential time.

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

• C-complete set X: every problem in C can be reduced to X.

• Trellis automata recognize P-complete languages.

- Trellis automata recognize P-complete languages.
- P-complete sets of numbers.

- Trellis automata recognize P-complete languages.
- P-complete sets of numbers.
- NP-complete sets: relatively easy.

- Trellis automata recognize P-complete languages.
- P-complete sets of numbers.
- NP-complete sets: relatively easy.
- PSPACE-complete sets: requires some efforts.

- Trellis automata recognize P-complete languages.
- P-complete sets of numbers.
- NP-complete sets: relatively easy.
- PSPACE-complete sets: requires some efforts.
- Upper bound:

Theorem (Okhotin, 2001)

Every conjunctive language can be recognized in time $O(n^3)$.

- Trellis automata recognize P-complete languages.
- P-complete sets of numbers.
- NP-complete sets: relatively easy.
- PSPACE-complete sets: requires some efforts.
- Upper bound:

Theorem (Okhotin, 2001)

Every conjunctive language can be recognized in time $O(n^3)$.

Corollary

Every set of numbers in $EQ(\cup, \cap, \boxplus)$ is in EXPTIME.

- Trellis automata recognize P-complete languages.
- P-complete sets of numbers.
- NP-complete sets: relatively easy.
- PSPACE-complete sets: requires some efforts.
- Upper bound:

Theorem (Okhotin, 2001)

Every conjunctive language can be recognized in time $O(n^3)$.

Corollary

Every set of numbers in $EQ(\cup, \cap, \boxplus)$ is in EXPTIME.

Theorem (Jeż, Okhotin, STACS 2008)

 $EQ(\cup, \cap, \boxplus)$ contains an EXPTIME-complete set.

Artur Jeż (University of Wroclaw)

< 67 ▶

• Tape alphabet Γ , set of states $Q = Q_E \cup Q_A \cup \{q_{acc}\}$.

3

- Tape alphabet Γ , set of states $Q = Q_E \cup Q_A \cup \{q_{acc}\}$.
- Transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}}$.

3

- Tape alphabet Γ , set of states $Q = Q_E \cup Q_A \cup \{q_{acc}\}$.
- Transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}}$.
- If $q = q_{acc}$, accepts from here.

- 3

- Tape alphabet Γ , set of states $Q = Q_E \cup Q_A \cup \{q_{acc}\}$.
- Transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}}$.
- If $q = q_{acc}$, accepts from here.
- If $q \in Q_E$, accepts from here if accepts from some next conf.

- Tape alphabet Γ , set of states $Q = Q_E \cup Q_A \cup \{q_{acc}\}$.
- Transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}}$.
- If $q = q_{acc}$, accepts from here.
- If $q \in Q_E$, accepts from here if accepts from some next conf.
- If $q \in Q_A$, accepts from here if accepts from every next conf.

- Tape alphabet Γ , set of states $Q = Q_E \cup Q_A \cup \{q_{acc}\}$.
- Transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{\leftarrow, \downarrow, \rightarrow\}}$.
- If $q = q_{acc}$, accepts from here.
- If $q \in Q_E$, accepts from here if accepts from some next conf.
- If $q \in Q_A$, accepts from here if accepts from every next conf.

Theorem (A. Chandra, D. Kozen, L. Stockmeyer 1981)

APSPACE = EXPTIME APTIME = PSPACE

B 🖌 🖌 B 🖒 🛛 B

21 / 27

Artur Jeż (University of Wroclaw) Equations over sets of natural numbers. December 13, 2007

Problem

How to encode a configuration?

3

Problem

How to encode a configuration?

Idea

• Arithmetization of a configuration

Problem

How to encode a configuration?

- Arithmetization of a configuration
- Define final accepting configurations

Problem

How to encode a configuration?

Idea

- Arithmetization of a configuration
- Define final accepting configurations
- Calculate previous accepting configurations

Problem

How to encode a configuration?

- Arithmetization of a configuration
- Define final accepting configurations
- Calculate previous accepting configurations
- Alternation is not a problem

Problem

How to encode a configuration?

- Arithmetization of a configuration
- Define final accepting configurations
- Calculate previous accepting configurations
- Alternation is not a problem
- Problem: numbers increase with every step, encodings not

Problem

How to encode a configuration?

- Arithmetization of a configuration
- Define final accepting configurations
- Calculate previous accepting configurations
- Alternation is not a problem
- Problem: numbers increase with every step, encodings not
- Solution: restricting the model and adding a counter

Restrictions of the model

• Circular tape.

- 一司

3

Restrictions of the model

- Circular tape.
- Moving to the right at every step.
- Circular tape.
- Moving to the right at every step.
- Next configuration:

- Circular tape.
- Moving to the right at every step.
- Next configuration:

 $(q',a')\in\delta(q,a)$

- Circular tape.
- Moving to the right at every step.
- Next configuration:

 $(q',a')\in\delta(q,a)$

- Circular tape.
- Moving to the right at every step.
- Next configuration:

- Circular tape.
- Moving to the right at every step.
- Next configuration:

Remark

Still APSPACE = EXPTIME.

• Tape alphabet $\Gamma = \{a_0, \dots, a_{|\Gamma|-1}\}.$

3

• Tape alphabet
$$\Gamma = \{a_0, \ldots, a_{|\Gamma|-1}\}.$$

• Let $k = 8 + |Q| + \max(|Q| + 7, |\Gamma|)$, let $\Sigma = \{0, \dots, k - 1\}$.

3

• Tape alphabet
$$\Gamma = \{a_0, ..., a_{|\Gamma|-1}\}.$$

• Let $k = 8 + |Q| + \max(|Q| + 7, |\Gamma|)$, let $\Sigma = \{0, ..., k - 1\}.$
• $\langle \cdot \rangle : Q \cup \Gamma \to \Sigma.$

• Instantaneous description:

- Instantaneous description:
 - Tape containing $a_{i_1} \dots a_{i_n}$

- Instantaneous description:
 - Tape containing $a_{i_1} \dots a_{i_n}$
 - ▶ In state q over a_{i_i} .

- Instantaneous description:
 - Tape containing a_{i1}...a_{in}
 - ▶ In state q over a_{i_i} .
 - At most r rotations over the tape, with $r = \sum_{i=0}^{\ell} 2^i c_i$, $c_i \in \{0, 1\}$.

- Instantaneous description:
 - Tape containing a_{i1}...a_{in}
 - ln state q over a_{i_i} .
 - At most r rotations over the tape, with $r = \sum_{i=0}^{\ell} 2^i c_i$, $c_i \in \{0, 1\}$.
- As a number in base-k notation:

$$\underbrace{1 c_{\ell-1} \dots c_1 c_0}_{counter} 55 \underbrace{0 \langle a_{i_1} \rangle \dots 0 \langle a_{i_{j-1}} \rangle \langle q \rangle \langle a_{i_j} \rangle 0 \langle a_{i_{j+1}} \rangle \dots 0 \langle a_{i_n} \rangle 0}_{tape} \in \Sigma^*$$

- Instantaneous description:
 - Tape containing a_{i1}...a_{in}
 - ln state q over a_{i_i} .
 - At most r rotations over the tape, with $r = \sum_{i=0}^{\ell} 2^i c_i$, $c_i \in \{0, 1\}$.
- As a number in base-k notation:

$$\underbrace{1 c_{\ell-1} \dots c_1 c_0}_{counter} 55 \underbrace{0 \langle a_{i_1} \rangle \dots 0 \langle a_{i_{j-1}} \rangle \langle q \rangle \langle a_{i_j} \rangle 0 \langle a_{i_{j+1}} \rangle \dots 0 \langle a_{i_n} \rangle 0}_{tape} \in \Sigma^*$$

• Decreases at every step of computation.

• $Move_{q',a',q,a}(X)$: transition of the ATM.

3

- $Move_{q',a',q,a}(X)$: transition of the ATM.
- $Move_{q',a',q,a}(X)$ contains all IDs

 $1c_{\ell-1}\ldots c_1c_0550\langle a_{i_1}\rangle\ldots 0\langle a_{i_{j-1}}\rangle\langle q\rangle\langle a\rangle 0\langle a_{i_{j+1}}\rangle\ldots 0\langle a_{i_n}\rangle 0,$

for which

医水子医水 医

- $Move_{q',a',q,a}(X)$: transition of the ATM.
- $Move_{q',a',q,a}(X)$ contains all IDs

$$1c_{\ell-1}\ldots c_1c_0550\langle a_{i_1}\rangle\ldots 0\langle a_{i_{j-1}}\rangle\langle q\rangle\langle a\rangle 0\langle a_{i_{j+1}}\rangle\ldots 0\langle a_{i_n}\rangle 0,$$

for which

$$1c_{\ell-1}\ldots c_1c_0550\langle a_{i_1}
angle\ldots 0\langle a_{i_{j-1}}
angle 0\langle a'
angle\langle q'
angle\langle a_{i_{j+1}}
angle\ldots 0\langle a_{i_n}
angle 0\in X$$

3

- $Move_{q',a',q,a}(X)$: transition of the ATM.
- $Move_{q',a',q,a}(X)$ contains all IDs

$$1c_{\ell-1}\ldots c_1c_0550\langle a_{i_1}\rangle\ldots 0\langle a_{i_{j-1}}\rangle\langle q\rangle\langle a\rangle 0\langle a_{i_{j+1}}\rangle\ldots 0\langle a_{i_n}\rangle 0,$$

for which

$$1c_{\ell-1}\ldots c_1c_0550\langle a_{i_1}\rangle\ldots 0\langle a_{i_{j-1}}\rangle 0\langle a'\rangle\langle q'\rangle\langle a_{i_{j+1}}\rangle\ldots 0\langle a_{i_n}\rangle 0\in X$$

• Equation:

$$\mathsf{Move}_{q,a,q',a'}(X) = (X \cap \mathsf{Counter\,55\,Tape}_{q'a'}) \\ \boxplus (\langle q \rangle \langle a \rangle 0 \boxminus \langle a' \rangle \langle q' \rangle) (00)^* \\ \cap \mathsf{Counter\,55\,Tape}_{aq}$$

$$X = Final \cup Step(X) \cup (Y \cap Counter 55 Tape)$$
$$Y = Jump(X) \cup Carry(Y)$$

• Final: the set of accepting configurations.

$$X = Final \cup Step(X) \cup (Y \cap Counter 55 Tape)$$
$$Y = Jump(X) \cup Carry(Y)$$

- Final: the set of accepting configurations.
- Counter 55 Tape: the set of valid IDs.

$$X = Final \cup Step(X) \cup (Y \cap Counter 55 Tape)$$

 $Y = Jump(X) \cup Carry(Y)$

- Final: the set of accepting configurations.
- Counter 55 Tape: the set of valid IDs.
- Step $(X) = \{n \mid \exists m \in X : m \vdash n\}$: to the next square.

 $X = \text{Final} \cup \text{Step}(X) \cup (Y \cap \text{Counter 55 Tape})$ $Y = \text{Jump}(X) \cup \text{Carry}(Y)$

- Final: the set of accepting configurations.
- Counter 55 Tape: the set of valid IDs.
- Step $(X) = \{n \mid \exists m \in X : m \vdash n\}$: to the next square.
- $Jump(X) = \{n \mid \exists m \in X : m \vdash' n\}$: to the first symbol.

 $X = \text{Final} \cup \text{Step}(X) \cup (Y \cap \text{Counter 55 Tape})$ $Y = \text{Jump}(X) \cup \text{Carry}(Y)$

- Final: the set of accepting configurations.
- Counter 55 Tape: the set of valid IDs.
- Step $(X) = \{n \mid \exists m \in X : m \vdash n\}$: to the next square.
- $Jump(X) = \{n \mid \exists m \in X : m \vdash' n\}$: to the first symbol.
- Carry(X): processing the carry in the counter.

$$X = Final \cup Step(X) \cup (Y \cap Counter 55 Tape)$$

 $Y = Jump(X) \cup Carry(Y)$

- Final: the set of accepting configurations.
- Counter 55 Tape: the set of valid IDs.

11

- Step $(X) = \{n \mid \exists m \in X : m \vdash n\}$: to the next square.
- $Jump(X) = \{n \mid \exists m \in X : m \vdash' n\}$: to the first symbol.
- Carry(X): processing the carry in the counter.

$$\mathsf{Step}(X) = \Big(\bigcup_{q \in Q_E, a \in \Gamma} \bigcup_{(q',a') \in \delta(q,a)} \mathsf{Move}_{q',a',q,a}(X)\Big) \cup$$

$$X = Final \cup Step(X) \cup (Y \cap Counter 55 Tape)$$

 $Y = Jump(X) \cup Carry(Y)$

- Final: the set of accepting configurations.
- Counter 55 Tape: the set of valid IDs.
- Step $(X) = \{n \mid \exists m \in X : m \vdash n\}$: to the next square.
- $Jump(X) = \{n \mid \exists m \in X : m \vdash' n\}$: to the first symbol.
- Carry(X): processing the carry in the counter.

$$\begin{aligned} \mathsf{Step}(X) &= \Big(\bigcup_{q \in Q_E, a \in \Gamma} \bigcup_{(q', a') \in \delta(q, a)} \mathsf{Move}_{q', a', q, a}(X) \Big) \cup \\ &\cup \Big(\bigcup_{q \in Q_A, a \in \Gamma} \bigcap_{(q', a') \in \delta(q, a)} \mathsf{Move}_{q', a', q, a}(X) \Big) \end{aligned}$$

• A basic mathematical object.

-

< 67 ▶

3

- A basic mathematical object.
- Using methods of theoretical computer science.

- A basic mathematical object.
- Using methods of theoretical computer science.
- High expressive power and hard recognition

- A basic mathematical object.
- Using methods of theoretical computer science.
- High expressive power and hard recognition
- Any number-theoretic methods?

- A basic mathematical object.
- Using methods of theoretical computer science.
- High expressive power and hard recognition
- Any number-theoretic methods?

Problem

Construct a set not representable by equations with $\{\cup, \cap, \boxplus\}$.