
(Deterministic) Parallelism in Haskell

Marek Imieªowski

22.04.2015



Section 1

Introduction



Main reference



Basic de�nitions

Parallelism
Running (parts of) programs at the same time on multiple cores (or

nodes) in order to perform computations more quickly.

Concurrency

A technique of structuring a program as if it has many independent

threads of control.



Automatic parallelism?

Still a future goal.



Deterministic parallelism

We call a program deterministic if its result is independent of the

number of cores it is being run on and the individual run of the

program.

Deterministic parallelism is quite unique to Haskell (or, more

broadly, purely functional programming), but it extremely simpi�es

writing and reasoning about parallel programs.



The landscape of parallel Haskell

Deterministic approaches:

I semi-explicit parallelism with evaluation strategies (parallel)

I data�ow parallelism (monad-par)

I nested data parallelism (DPH)

I �at data parallelism with regular arrays (repa)

I embedded language for �at data parallelism (accelerate)

Non-deterministic approaches:

I concurrency primitives (forkIO,...)

I data�ow parallelism with side e�ects (ParIO)

I asynchronous computations (async)

I Cloud Haskell (distributed-process)



Today

1. Basic parallelism with Eval monad and a bit about toolset.

2. Evaluation strategies for Eval.

3. Data�ow parallelism with Par monad.



Section 2

Basic parallelism



The Eval monad, rpar, and rseq

The module Control.Parallel.Strategies provides the

following inteface:

data Eval a

instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a

rseq :: a -> Eval a



Let's see this in practice!



Compilation and running

Compile with:

$ ghc -O2 -threaded -rtsopts -eventlog rpar.hs

Run with:

$ ./rpar 1 +RTS -N2 -s -l



Flags explanation

Compiler �ags:

I -O2 enables optimisation

I -threaded links in the threaded run-time system

I -rtsopts allows con�guration of run-time system at run-time

I -eventlog allows eventlog generation for debugging and

threadscope

Run-time system �ags:

I -Nx runs on x cores (-N runs on all available ones)

I -s produces run-time statistics

I -l generates an eventlog for debugging



Section 3

Evaluation Strategies



Basic Strategies

Evaluation Strategies is an abstraction built on top of the Eval

monad, that allows larger parallel speci�cations to be built in a

compositional way.

type Strategy a = a -> Eval a

Some simple strategies:

rseq :: Strategy a

rpar :: Strategy a

r0 :: Strategy a

r0 x = return x

rdeepseq :: NFData a = > Strategy a

rdeepseq x = rseq (deep x)



Basic Strategies, cont.

Ideally we would like to separate algorithm and description of

parallelism:

using :: a -> Strategy a -> a

x `using` s = runEval (s x)

See article: P. W. Trinder et al., Algorithm + Strategy =

Parallelism.



A Strategy for evaluating list in parallel

A function parMap that would map a function over a list in parallel

can be expressed as this type of composition:

parMap f xs = map f xs `using` parList rseq

Where a Strategy on lists is de�ened as follows:

parList :: Strategy a -> Strategy [a]

parList strat [] = return []

parList strat (x:xs) = do

x' <- rpar (x `using` strat)

xs' <- parList strat xs

return (x':xs')



Example: K-Means problem

The goal is to partition a set of data points into clusters.

The most well-known heuristic �nds a solution by iteratively

improving an initial guess, as follows:

1. Pick an initial set of clusters by randomly assigning each point

in the data set to a cluster.

2. Find the centroid of each cluster (the average of all the points

in the cluster).

3. Assign each point to the cluster to which it is closest, this

gives a new set of clusters.

4. Repeat steps 2�3 until the set of clusters stabilises.



Haskell code for K-Means



Parallelising K-Means



Section 4

Data�ow Parallelism with Par monad



Data�ow Parallelism with Par monad

The interface of monad-par library is based around a following

monad:

newtype Par a

instance Applicative Par

instance Monad Par

runPar :: Par a -> a

We can create parallel tasks with fork:

fork :: Par () -> Par ()



IVar type

Values can be passed between Par computations using the IVar

type:

data IVar a -- instance Eq

new :: Par (IVar a)

put :: NFData a => IVar a -> a -> Par ()

get :: IVar a -> Par a

See article: S. Marlow, A monad for deterministic parallelism.



parMap with Par monad

First we build a simple abstraction for a parallel computation that

returns a result:

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

i <- new

fork (do x <- p; put i x)

return i



parMap with Par monad

Parallel map consists of calling spawn to apply the function to each

element of the list and then waiting for the results:

parMapM :: NFData b => (a -> b) -> [a] -> Par [b]

parMapM f as = do

ibs <- mapM (spawn . return . f) as

mapM get ibs



Parallelising K-Means

(now with Par monad)



Questions?


	Introduction
	Basic parallelism
	Evaluation Strategies
	Dataflow Parallelism with Par monad

