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Abstract
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repeatedly mentioned in the literature but it has only been illustrated with
one-line toy examples. Breadth-first traversal fills this vacuum.

We also point out where static delimited continuations naturally give rise
to the notion of control stack whereas dynamic delimited continuations can be
made to account for a notion of ‘control queue.’
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1 Introduction

To distinguish between the static extent and the dynamic extent of delimited con-
tinuations, we first need to review the notions of continuation and of delimited
continuation.

1.1 Background

Continuation-passing style (CPS) is a time-honored and logic-based format for func-
tional programs where all intermediate results are named, all calls are tail calls, and
programs are evaluation-order independent [38,54,61,65,73]. While this format has
been an active topic of study [5,6,9,28,35,37,40,49,51,57,59, 62,66, 69, 70, 76], it
also has been felt as a straightjacket both from a semantics point of view [28,29,31,
32,44,45,71] and from a programming point of view [18,19,21,22], where one would
like to relax the tail-call constraint and compose continuations.

In direct style, continuations are accessed with a variety of control operators such
as Landin’s J [50], Reynolds’s escape [65], Scheme’s call/cc [17,46], and Standard
ML of New Jersey’s callcc and throw [26]. These control operators give access to the
current continuation as a first-class value. Activating such a first-class continuation
has the effect of resuming the computation at the point where this continuation was
captured; the then-current continuation is abandoned. Such first-class continuations
do not return to the point of their activation—they model jumps, i.e., tail calls [73,
74].

In direct style, delimited continuations are also accessed with control operators
such as Felleisen et al.’s control (alias F) [28,31,32,71] and Danvy and Filinski’s
shift (alias &) [21-23]. These control operators also give access to the current
continuation as a first-class value; activating such a first-class continuation also has
the effect of resuming the computation at the point where this continuation was
captured; the then-current continuation, however, is then resumed. Such first-class
continuations return to the point of their activation—they model non-tail calls.

For a first-class continuation to return to the point of its activation, one must
declare its point of completion, since this point is no longer at the very end of
the overall computation, as with traditional, undelimited first-class continuations.
In direct style, this declaration is achieved with a new kind of operator, due to
Felleisen [28,29]: a control delimiter. The control delimiter corresponding to control
is called prompt (alias #). The control delimiter corresponding to shift is called
reset (alias (-)) and its continuation-passing counterpart is a classical backtracking
idiom in functional programming [1,14,16,53,67,75], one that is currently enjoying a
renewal of interest [10,24,43,48,72,78,82]. Other, more advanced, delimited-control
operators exist [27,39,42,56,58, 64]; we return to them in the conclusion.

In the present work, we focus on shift and control.

1.2 Overview

In Section 2, we present an environment-based abstract machine that specifies the
behaviors of shift and control, and we show how the extent of a shift-abstracted
delimited continuation is static whereas that of a control-abstracted delimited con-
tinuation is dynamic. We show how shift can be trivially simulated in terms of



control and prompt, which is a well-known result [11], and we review recently dis-
covered simulations of control and prompt in terms of shift and reset [12,47,68]. In
Section 3, we present a roadmap of Sections 4 and 5, where we show how the static
extent of a delimited continuation is compatible with a control stack and depth-first
traversal, and how the dynamic extent of a delimited continuation can be made to
account for a ‘control queue’ and breadth-first traversal.

Prerequisites and preliminaries: Besides some awareness of CPS and the CPS
transformation [23,61, 73], we assume a passing familiarity with defunctionalization
[25,65].

Our programming language of discourse is Standard ML [55]. In the following
sections, we will make use of the notational equivalence of expressions such as

x1 :: x2 :: Xxs
(x1 :: x2 :: nil) @ xs
[x1, x2] @ xs

where :: denotes infix list construction and @ denotes infix list concatenation. In
an environment where x1 denotes 1, x2 denotes 2, and xs denotes [3, 4, 5], each of
the three expressions above evaluates to [1, 2, 3, 4, 5].

2 An operational characterization

In our previous work [7], we derived an environment-based abstract machine for the
A-calculus with shift and reset by defunctionalizing the corresponding definitional
interpreter [22]. We use this abstract machine to explain the static extent of the
delimited continuations abstracted by shift and the dynamic extent of the delimited
continuations abstracted by control.

2.1 An abstract machine for shift and reset

The abstract machine is displayed in Figure 1; reset is noted (-) and shift is noted
S. The set of possible values consists of closures and captured contexts. The ma-
chine extends Felleisen et al.’s CEK machine [30] with a meta-context Cs, the two
transitions for (-) and S, and the transition for applying a captured context to a
value in an evaluation context and a meta-context. Intuitively, an evaluation con-
text represents the rest of the computation up to the nearest enclosing delimiter,
and a meta-context represents all of the remaining computation [20].

Given a term ¢, the machine is initialized in an eval-state with an empty environ-
ment €empty, an empty context END, and an empty meta-context o. The transitions
out of an eval-state are defined by cases on its first component:

e a variable z is looked up in the current environment and the machine switches
to a cont;-state;

e an abstraction Az.t is evaluated into a closure [z, t, e] and the machine switches
to a conti-state;



e Terms: tu=ux | Azt | toty | (t) | Skt

e Values (closures and captured continuations): v = [z, t, ] | Cy
e Environments: e = ecmpty | €[z +— v]

e Evaluation contexts: C; ::= END | ARG ((t,e), Cy) | FUN (v, C1)
e Meta-contexts: Cy :=e | Cy-Cy

e Initial transition, transition rules, and final transition:

t = (t, €cmpty, END, @)cyq
(z,e, C1, C2)evar = (C1, e(2), C2)cont,
Azt e, Cr, C2)evar = (Ch, [z, t, €], C2)cont,
(toti, e, C1, C2)evar = (to, €, ARG ((t1,€), C1), Ca)eval
(t); e, C1, Ca)evar = (t, €, END, C1 - C2) ey
(Sk.t, e, C1, C2)evar = (t, e[k — C1], END, C2) cpal

<END UV, C)eont;, = (Ca, V) cont,
(ARG ((t,e), C1), v, Co)eont; = (t, e, FUN (v, C1), C3)cval
(FUN([z, t, e], C1), v, Ca)cont, = (t, e[z — 0], C1, C2)eva
(FUN(CL, C1), v, CYeonts = (Cly v, Cr - Cs)eom,

4

(Cl . 02; 'U> conty

('a U) conts = v

<Cla v, C2>cont;

Figure 1: A call-by-value environment-based abstract machine for the A-calculus
extended with shift (S) and reset ({-))

e an application gty is processed by pushing ¢; and the environment onto the
context and switching to a new ewval-state to process tg;

e a reset-expression (t) is processed by pushing the current context on the cur-
rent meta-context and switching to a new ewval-state to process t in an empty
context, as an intermediate computation;

e a shift-expression Sk.t is processed by capturing the context C; and binding
it to k, and switching to a new ewal-state to process ¢ in an empty context.

The transitions of a conti-state are defined by cases on its first component:



e an empty context END specifies that an intermediate computation is completed;
it is processed by switching to a conte-state;

e a context ARG ((t,e), Cy) specifies the evaluation of an argument; it is pro-
cessed by switching to an ewval-state to process ¢ in a new context;

e a context FUN ([z, t, e], C7) specifies the application of a closure; it is processed
by switching to an ewval-state to process the term ¢ with an extension of the
environment e;

e a context FUN (C], C1) specifies the application of a captured context; it is
processed by pushing C; on top of the meta-context and switching to a new
conti-state to process C{.

The transitions of a conts-state are defined by cases on its first component:

e an empty meta-context e specifies that the overall computation is completed;
it is processed as a final transition;

e a non-empty meta-context specifies that the overall computation is not com-
pleted; C; - C5 is processed by switching to a conti-state to process Cj.

All in all, this abstract machine is a straight defunctionalized continuation-
passing evaluator [7,22].

2.2 An abstract machine for control and prompt

Unlike shift and reset, whose definition is based on CPS, control and prompt are
specified by representing delimited continuations as a list of stack frames and their
composition as the concatenation of these representations [28,32]. Such a concate-
nation function * is defined as follows:

ENDxC] = (]
(ARG ((t,e), C1))xC; = ARG ((t,e), Cy xCY)
(FUN (v, C1))*xC; = FUN (v, C1 xCY)

It is then simple to modify the abstract machine to compose delimited continu-
ations by concatenating their representation: in Figure 1, one merely replaces the
transition that applies a captured context C] by pushing the current context C; onto
the meta-context Cs, i.e.,

<FUN (Civ Cl)a v, C2>cont1 = <C{7 v, Cl : C2>cont1

with a transition that applies a captured context C}] by concatenating it with the
current context Cy:

<FUN (Cia Cl)v v, CZ>cont1 = <Ci *017 v, CZ>cont1

This change gives S (alias shift) the behavior of F (alias control). In contrast, ()
(alias reset) and # (alias prompt) have the same definition. The rest of the machine
does not change.



In our previous work [7, Section 4.5], we have pointed out that the dynamic be-
havior of control is incompatible with CPS because the modified abstract machine
no longer corresponds to a defunctionalized continuation-passing evaluator [25]. In-
deed shift is static, whereas control is dynamic, in the following sense:

e shift captures a delimited continuation in a representation C7 that, when
applied, remains distinct from the current context C]. Consequently, the cur-
rent context C] cannot be accessed from C; by another use of shift. (An
analogy: in a statically scoped programming language, the environment of an
application remains distinct from the environment of the applied function. A
non-local variable in the function refers to the environment of its definition.
Consequently, the environment of a function application cannot be accessed
before the function completes.)

e control captures a delimited continuation in a representation C; that, when
applied, grafts itself to the current context C{. Consequently, the current con-
text C] can be accessed from C; by another use of control. (An analogy: in a
dynamically scoped programming language, the environment of an application
is extended with the environment of the applied function. A non-local vari-
able in the function refers to the environment of its application. Consequently,
the environment of a function application can be accessed before the function
completes.)

This difference of extent can be observed with delimited continuations that, when
applied, capture the current continuation [8, Section 5] [21, Section 6.1] [23, Sec-
tion 5.3] [32, Section 4]. A control-abstracted delimited continuation dynamically
captures the current continuation, above and beyond its point of activation, whereas
a shift-abstracted delimited continuation statically captures the current continua-
tion up to its point of activation.

2.3 Simulating shift in terms of control and prompt

It is simple to obtain the effect of shift using control: for each captured continuation
k, every occurrence of kv should be replaced by #(kv) when v is a value, and every
other occurrence of k should be replaced with Az.#(k ). (In ML, for each captured
continuation k, every occurrence of k v should be replaced by prompt (fn () => k
v) when v denotes a value, and every other occurrence of k should be replaced with
fn x => prompt (fn () => k x).)

This way, when k (i.e., some context C]) is applied, the context of its application
is always END and it is a consequence of the definition of x that C] x END = C7.
The two first authors have recently given a formal proof of the correctness of this
simulation [11].

2.4 Simulating control in terms of shift and reset

Recently it has been shown that control and prompt can be expressed in terms of
shift and reset, which unexpectedly proves that shift is actually as expressive as
control.



In his previous article [68], Shan presented a simulation that is based on his
observation that dynamic continuations are recursive. His simulation keeps
(as a piece of mutable state) the context in which a control-captured delim-
ited continuation is applied. This simulation is untyped and implemented in
Scheme.

In their recent article [12], Biernacki, Danvy, and Millikin presented a new sim-
ulation that is based on a ‘Dynamic Continuation-Passing Style’ (DCPS) for
dynamic delimited continuations. Their idea is to use a trail of continuations
to represent the context in which a control-captured delimited continuation is
applied, and to compose continuations by concatenating such trails of contin-
uations. This simulation is typed and implemented in ML.

In his recent article [47], Kiselyov proposed a new simulation that is based
on trampolining. In order to let a control-captured continuation access the
context where it is applied, he reifies such an access in a sum type interpreted
by prompt. This simulation is untyped and implemented in Scheme.

Concomitant with each solution is a CPS transformation for control and prompt that
conservatively extends the usual call-by-value CPS transformation for the A-calculus,
with the requirement that continuations be recursive (or more precisely, that their
answer type be higher-order and recursive).

In Appendix B, we present Shan’s implementation of control and prompt in Stan-
dard ML of New Jersey [68]. This implementation is based on Filinski’s implemen-
tation of shift and reset in SML [34], which we present in Appendix A. Filinski’s
implementation takes the form of a functor mapping the type of intermediate answers
to a structure containing an instance of shift and reset at that type:

signature SHIFT_AND_RESET

= sig

type intermediate_answer
val shift : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a
val reset : (unit -> intermediate_answer) -> intermediate_answer

end

Likewise, our implementation takes the form of a functor mapping the type of inter-
mediate answers to a structure containing an instance of control and prompt at that

type:

signature CONTROL_AND_PROMPT

= sig

type intermediate_answer
val control : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a
val prompt : (unit -> intermediate_answer) -> intermediate_answer

end

2.5

Three examples in ML

Using the implementation of shift and reset (Appendix A), and of control and
prompt (Appendix B), we present three simple examples illustrating the difference
between shift and control. Let us fix the type of intermediate answers to be int:



local structure SR = Shift_and_Reset (type intermediate_answer = int)
in val shift = SR.shift

val reset = SR.reset
end

local structure CP = Control_and_Prompt (type intermediate_answer = int)
in val control = CP.control

val prompt = CP.prompt
end

The following ML expression

reset
(fn () => shift (fn k => 10 + (k 100))
+ shift (fn k’ => 1))

evaluates to 11, whereas (replacing reset by prompt and shift by control)

prompt
(fn () => control (fn k => 10 + (k 100))
+ control (fn k’ => 1))

evaluates to 1 and (delimiting the application of k with prompt)

prompt
(fn () => control (fn k => 10 + prompt (fn () => k 100))
+ control (fn k’ => 1))

evaluates to 11.

In the first case, shift (fn k => 10 + (k 100)) is evaluated with a continuation
that could be written functionally as fn v => v + shift (fn k’ => 1). When k is
applied, the expression shift (fn k’ => 1) is evaluated in a context that could be
represented functionally as fn v => 100 + v and in a meta-context that could be
represented as (fn v => 10 + v) :: nil; this context is captured and discarded, and
the intermediate answer is 1; this intermediate answer is plugged into the top context
from the meta-context, i.e., fn v => 10 + v is applied to 1; the next intermediate
answer is 11; and it is the final answer since the meta-context is empty.

In the second case, control (fn k => 10 + (k 100)) is evaluated with a continua-
tion that could be written functionally as fn v => v + control (fn k’ => 1). When
k is applied, the expression control (fn k’ => 1) is evaluated in a context that re-
sults from composing fn v => 10 + v and fn v => 100 + v (and therefore could be
represented functionally as fn v => 10 + (100 + v)), and in a meta-context which
is empty; this context is captured and discarded, and the intermediate answer is 1;
and it is the final answer since the meta-context is empty.

In the third case, control (fn k => 10 + prompt (fn () => k 100)) is evaluated
with a continuation that could be written functionally as fn v => v + control (fn

> => 1). When k is applied, the expression control (fn k’ => 1) is evaluated in a
context that results from composing fn v => v and fn v => 100 + v (and therefore
could be represented functionally as fn v => 100 + v), and in a meta-context which
could be represented as (fn v => 10 + v) :: nil; this context is captured and dis-
carded, and the intermediate answer is 1; this intermediate answer is plugged into



the top context from the meta-context, i.e., fn v => 10 + v is applied to 1; the next
intermediate answer is 11; and it is the final answer since the meta-context is empty.
The CPS counterpart of the first ML expression above reads as follows:

let val k = fn v => let val k’ = fn v’ => v + v’
in 1
end

in 10 + (k 100)

end

No such simple functional encoding exists for the second and third ML expressions
above [12].

3 Programming with delimited continuations

In Section 4, we present an array of solutions to the traditional samefringe example
and to its breadth-first counterpart. In Section 5, we present an array of solutions to
Okasaki’s breadth-first numbering pearl and to its depth-first counterpart. In both
sections, the presentation is structured according to the following diagram:

depth-first breadth-first
direct-style direct-style
program program
using using
shift & reset control & prompt
A
CPS direct-style :

transformation transformation

thunk
depth-first elimination  depth-first

direct-style continuation-based eureka
eager program thunk lazy program
introduction
defunct- refunct-
ionalization| |ionalization
depth-first breadth-first
stack-based < — — — — — — > queue-based
program switch program

e Our starting point here is a direct-style eager program (left side of the diagram).
We can make this program lazy by using thunks, i.e., functions of type unit
-> ’a (center of the diagram).

e We can then defunctionalize the thunks in the lazy program, obtaining a stack-
based program (bottom center of the diagram).



e Alternatively, we can view the type unit -> ’a not as a functional device to
implement laziness but as a delimited continuation. The lazy program is then,
in actuality, a continuation-based one, and one that is the CPS counterpart of
a direct-style program using shift and reset (top center of the diagram).

e The stack-based program (bottom center of the diagram) implements a depth-
first traversal. Replacing the stack with a queue yields a program implementing
a breadth-first traversal (bottom right of the diagram).

e By analogy with the rest of the diagram, we infer the direct-style program
using control and prompt (top right of the diagram) from this queue-based
program.

The three nodes in the center of the diagram—the CPS program, its direct-style
counterpart, and its defunctionalized counterpart—follow the transformational tra-
dition established in Reynolds’s and Wand’s seminal articles about continuations
[65,80]. In particular the ‘data-structure continuation’ [80, page 179] of the depth-
first program is a stack. By analogy, the data-structure continuation of the breadth-
first program is a queue. We conjecture that the queue-based program could be
mechanically obtained from the direct-style one by some kind of ‘abstract CPS
transformation’ [32,63], but fleshing out this conjecture falls out of the scope of
the present article [12].

4 The samefringe problem

We present a spectrum of solutions to the traditional depth-first samefringe problem
and its breadth-first counterpart. We work on Lisp-like binary trees of integers
(S-expressions):

datatype tree = LEAF of int
| NODE of tree * tree

The samefringe problem is traditionally stated as follows. Given two trees of
integers, one wants to know whether they have the same sequence of leaves when
read from left to right. For example, the two trees NODE (NODE (LEAF 1, LEAF 2),
LEAF 3) and NODE (LEAF 1, NODE (LEAF 2, LEAF 3)) have the same fringe [1, 2, 3]
(representing it as a list) even though they are shaped differently:

and

Computing a fringe is done by traversing a tree depth-first and from left to right.
By analogy, we also address the breadth-first counterpart of the samefringe prob-

lem. Given two trees of integers, we want to know whether they have the same fringe

when traversed in left-to-right breadth-first order. For example, the breadth-first



fringe of the left tree just above is [3, 1, 2] and that of the right tree just above is
1, 2, 3.

We express the samefringe function generically by abstracting the representation
of sequences of leaves with a data type sequence and a notion of computation (to
compute the next element in a sequence):

signature GENERATOR
= sig
type ’a computation
datatype sequence = END
| NEXT of int * sequence computation

val make_sequence : tree -> sequence
val compute : sequence computation -> sequence
end

The following functor maps a representation of sequences of leaves to a structure
containing the samefringe function. Given two trees, same_fringe maps them into two
sequences of integers (with make_sequence) and iteratively traverses these sequences
with an auxiliary loop function. This function stops as soon as one of the two
sequences is exhausted or two differing leaves are found:

functor make_Same_Fringe (structure G : GENERATOR)
= struct
(* same_fringe : tree * tree -> bool *)
fun same_fringe (t1, t2)
= let (* loop : G.sequence * G.sequence -> bool *)
fun loop (G.END, G.END)
= true
| loop (G.NEXT (i1, al), G.NEXT (i2, a2))
= il = i2 andalso loop (G.compute al, G.compute a2)
| loop _
= false
in loop (G.make_sequence tl1l, G.make_sequence t2)
end
end

In the remainder of this section, we review a variety of generators.

4.1 Depth first

4.1.1 An eager traversal

The simplest solution is to represent sequences as a data type isomorphic to that of
lists. To this end, we define make_sequence as an accumulator-based flatten function:

structure Eager_generator : GENERATOR
= struct
datatype sequence = END
| NEXT of int * sequence computation

withtype ’a computation = ’a

10



(* visit : tree * sequence computation -> sequence *)
fun visit (LEAF i, a)
= NEXT (i, a)
| visit (NODE (t1, t2), a)
= visit (t1, visit (£2, a))

fun make_sequence t
= visit (t, END)

fun compute value
= value
end

In this solution, the sequence of leaves is built eagerly and therefore completely
before any comparison takes place. This choice is known to be inefficient because
if two leaves differ, the remaining two sequences are not used and therefore did not
need to be built.

4.1.2 A lazy traversal

A more efficient solution—and indeed a traditional motivation for lazy evaluation [36,
41]—is to construct the sequences lazily and to traverse them on demand. In the
following generator, the data type sequence implements lazy sequences; the con-
struction of the rest of the lazy sequence is delayed with a thunk of type unit ->
sequence; and make_sequence is defined as an accumulator-based flatten function:

structure Lazy_generator : GENERATOR
= struct
datatype sequence = END
| NEXT of int * sequence computation
withtype ’a computation = unit -> ’a

(* wvisit : tree * sequence computation -> sequence *)
fun visit (LEAF i, a)
= NEXT (i, a)
| visit (NODE (t1, t2), a)
= visit (t1, fn () => visit (t2, a))

fun make_sequence t
= visit (t, fn () => END)

fun compute thunk
= thunk ()
end

Unlike in the eager solution, the construction of the sequence in Lazy_generator and
the comparisons in same_fringe are interleaved. This choice is known to be more
efficient because if two leaves differ, the remaining two sequences are not built at all.

11



4.1.3 A continuation-based traversal

Alternatively to viewing the thunk of type unit -> sequence, in the lazy traversal
of Section 4.1.2, as a functional device to implement laziness, we can view it as a
delimited continuation that is initialized in the initial call to visit in make_sequence,
extended in the induction case of visit, captured in the base case of visit, and
resumed in compute. From that viewpoint, the lazy traversal is also a continuation-
based one.

4.1.4 A direct-style traversal with shift and reset

In direct style, the delimited continuation a of Section 4.1.3 is initialized with the con-
trol delimiter reset, extended by functional sequencing, captured by the delimited-
control operator shift, and resumed by function application.

Using Filinski’s functor Shift_and Reset defined in Appendix A, one can therefore
define the lazy generator in direct style as follows:

structure Lazy_generator_with_shift_and_reset : GENERATOR
= struct
datatype sequence = END
| NEXT of int * sequence computation
withtype ’a computation = unit -> ’a

local structure SR = Shift_and_Reset
(type intermediate_answer = sequence)
in val shift SR.shift
val reset = SR.reset
end

(* visit : tree -> unit *)
fun visit (LEAF i)
= shift (fn a => NEXT (i, a))
| visit (NODE (t1, t2))
= let val () = visit t1
in visit t2
end
fun make_sequence t
= reset (fn () => let val () = visit t

in END
end)

fun compute thunk
= thunk ()

end

CPS-transforming visit and make_sequence yields the definitions of Section 4.1.2.

12



The key points of this CPS transformation are as follows:

e the clause

visit (NODE (t1, t2))

= let val () = visit t1
in visit t2
end

is transformed into:

visit (NODE (t1, t2), a)
= visit (t1, fn () => visit (t2, a))

e the clause

visit (LEAF i)
= shift (fn a => NEXT (i, a))

is transformed into:

visit (LEAF i, a)
= NEXT (i, a)

e and the expression

reset (fn () => let val () = visit t
in END
end)

is transformed into:

visit (t, fn () => END)

4.1.5 A stack-based traversal

Alternatively to writing the lazy solution in direct style, we can defunctionalize
its computation (which has type sequence computation, i.e., unit -> sequence) and
obtain a first-order solution [25,65]. The inhabitants of the function space unit ->
sequence are instances of the function abstractions in the initial call to visit (i.e.,
fn () => END) and in the induction case of visit (i.e., fn () => visit (t2, a)). We
therefore represent this function space by (1) a sum corresponding to these two
possibilities, and (2) the corresponding apply function, continue, to interpret each
of the summands. We represent this sum with an ML data type, which is recursive
because of the recursive call to visit. This data type is isomorphic to that of a list
of subtrees, which we use for simplicity in the code below. The result is essentially
McCarthy’s solution [52]:

structure Lazy_generator_stack_based : GENERATOR
= struct
datatype sequence = END
| NEXT of int * sequence computation
withtype ’a computation = tree list

13



(* visit : tree * tree list -> sequence *)
fun visit (LEAF i, a)
= NEXT (i, a)
| visit (NODE (t1, t2), a)
= visit (t1, t2 :: a)
(* continue : tree list * unit -> sequence *)
and continue (nil, ())
= END
| continue (t :: a, ()
= visit (t, a)

fun make_sequence t
= visit (¢, nil)

fun compute a
= continue (a, ()
end

This solution traverses a given tree incrementally by keeping a stack of its subtrees.
To make this point more explicit, and as a stepping stone towards breadth-first
traversal, let us fold the definition of continue in the induction case of visit so that
visit always calls continue:

| visit (NODE (t1, t2), a)
= continue (t1 :: t2 :: a, ())

(Unfolding the call to continue gives back the definition above.)

We now clearly have a stack-based definition of depth-first traversal, and further-
more we have shown that this stack corresponds to the continuation of a function
implementing a recursive descent. (Such a stack is referred to as a ‘data-structure
continuation’ in the literature [80, page 179].)

4.2 Breadth first

4.2.1 A queue-based traversal

Replacing the (last-in, first-out) stack, in the definition of Section 4.1.5, by a (first-
in, first-out) queue yields a definition that implements breadth-first, rather than
depth-first, traversal:

structure Lazy_generator_queue_based : GENERATOR
= struct
datatype sequence = END
| NEXT of int * sequence computation
withtype ’a computation = tree list

(* visit : tree * tree list -> sequence *)
fun visit (LEAF i, a)
= NEXT (i, a)
| visit (NODE (t1, t2), a)
= continue (a @ [t1, t2], ()

14



(* continue : tree list * unit -> sequence *)
and continue (nil, ())
= END
| continue (t :: a, ()
= visit (t, a)

fun make_sequence t
= visit (t, nil)

fun compute a
= continue (a, ()
end

In contrast to Section 4.1.5, where the clause for nodes was (essentially) concatenat-
ing the two subtrees in front of the list of subtrees:

| visit (NODE (t1, t2), a)
= continue ([t1, t2] @ a, ()) (* then *)

the clause for nodes is concatenating the two subtrees in the back of the list of
subtrees:

| visit (NODE (t1, t2), a)
= continue (a @ [t1, t2], ()) (* now *)

Nothing else changes in the definition of the generator. In particular, subtrees are
still removed from the front of the list of subtrees by continue. With this last-in,
first-out policy, the generator yields a sequence in breadth-first order.

Because the ::-constructors of the list of subtrees are not solely consumed by
continue but also by @, this definition is not in the range of defunctionalization [25].
Therefore, even though visit is tail-recursive and constructs a data structure that
is interpreted in continue, it does not correspond to a continuation-passing function.
And indeed, traversing an inductive data structure breadth-first does not mesh well
with compositional recursive descent: how would one write a breadth-first traversal
with a fold function?

4.2.2 A direct-style traversal with control and prompt

The critical operation in the definition of visit, in Section 4.2.1, is the enqueuing of
the subtrees t1 and t2 to the current queue a, which is achieved by the list concate-
nation a @ [t1, t2]. We observe that this concatenation matches the concatenation
of stack frames in the specification of control in Section 2.2.

Therefore—and this is a eureka step—one can write visit in direct style using
control and prompt. To this end, we represent both queues a and [t1, t2] as dy-
namic delimited continuations in such a way that their composition represents the
concatenation of a and [t1, t2]. The direct-style traversal reads as follows:

structure Lazy_generator_with_control_and_prompt : GENERATOR
= struct
datatype sequence = END
| NEXT of int * sequence computation
withtype ’a computation = unit -> ’a
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local structure CP = Control_and_Prompt
(type intermediate_answer = sequence)
in val control = CP.control
val prompt = CP.prompt
end

(* visit : tree -> unit *)
fun visit (LEAF i)
= control (fn a => NEXT (i, a))
| visit (NODE (t1, t2))
= control (fn a => let val END = a ()

val () = visit t1
val () = visit t2

in END

end)

fun make_sequence t
= prompt (fn () => let val () = visit t
in END
end)

fun compute a = prompt (fn () => a ()
end

In the induction case, the current delimited continuation (representing the current
control queue) is captured, bound to a, and applied to (). The implicit continuation
of this application visits t1 and then t2, and therefore represents the queue [t1, t2].
Applying a seals it to the implicit continuation so that any continuation captured by
a subsequent recursive call to visit in a captures both the rest of a and the traversal
of t1 and t2, i.e., the rest of the new control queue.

4.3 Summary and conclusion

We first have presented a spectrum of solutions to the traditional depth-first same-
fringe problem. Except for the defunctionalized ones, all the solutions are composi-
tional in the sense of denotational semantics (i.e., visiting each subtree is defined as
the composition of visiting its own subtrees). The one using shift and reset is new.
We believe that connecting the lazy solution with McCarthy’s stack-based solution
by defunctionalization is new as well.

By replacing the stack with a queue in the stack-based program, we have then ob-
tained a solution to the breadth-first counterpart of the samefringe problem. Viewing
this queue as a ‘data-structure continuation,” we have observed that the operations
upon it correspond to the operations induced by the composition of a dynamic de-
limited continuation and the current (delimited) continuation. We have then written
this program compositionally and in direct style using control and prompt.
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In the induction clause of visit in Section 4.2.2, if we returned after visiting t1
and t2 instead of before,

| visit (NODE (t1, t2))

= control (fn a => let val () = visit t1
val () = visit t2
in a O
end)

we would obtain depth-first traversal. This modified clause can be simplified into

| visit (NODE (t1, t2))
= let val () = visit t1
in visit t2
end
which coincides with the corresponding clause in Section 4.1.4. The resulting pattern
of use of control and prompt in the modified definition is the traditional one used to
simulate shift and reset [11].

It is therefore simple to program depth-first traversal with control and prompt.
But conversely, obtaining a breadth-first traversal using shift and reset would re-
quire a far less simple encoding of control and prompt in terms of shift and reset,
such as those discussed in Section 2.4.

5 Numbering a tree

We now turn to Okasaki’s problem of numbering a tree in breadth-first order with
successive numbers [60]. We express it in direct style with control and prompt, and
we then outline its depth-first counterpart. Okasaki considers fully-labeled binary
trees:

datatype tree = LEAF of int
| NODE of tree * int * tree
5.1 Breadth-first numbering

Given a tree T containing |T'| labels, we want to create a new tree of the same
shape, but with the values in the nodes and leaves replaced by the numbers 1...|T|
in breadth-first order. For example, the tree

NODE (NODE (LEAF O, O, LEAF 0), O, LEAF 0)

contains 5 labels and should be transformed into

NODE (NODE (LEAF 4, 2, LEAF 5), 1, LEAF 3)

© hould O
ol o g o

d

ie., @

the tree \ transformed /
w "W @
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5.1.1 A queue-based traversal

In his solution [60], Okasaki relabels a tree by mapping it recursively into a first-in,
first-out list of subtrees at call time and constructing the result at return time by
reading this queue. To this end, he needs an auxiliary function

last_two_and_before : int list -> int list * int * int

such that applying it to the list [xn, ..., x3, x2, x1] yields the triple ([xn, ...,
x3], x2, x1).
Okasaki’s solution reads as follows:

(* breadth_first_label : tree -> tree *)
fun breadth_first_label t
= let (* visit : tree * int * tree list -> tree list *)
fun visit (LEAF _, i, k)
= (LEAF i) :: (continue (k, i+1))
| visit (NODE (t1, _, t2), i, k)
= let val (rest, t1’, t27?)
= last_two_and_before
(continue (k @ [t1, t2], i+1))
in (NODE (t1’, i, t2’)) :: rest
end
(* continue : tree list * int -> tree list *)
and continue (nil, _)
= nil
| continue (t :: k, i)
= visit (t, i, k)
in last (visit (t, 1, nil))
end

where last is a function mapping a non-empty list to its last element.
The above algorithm uses two queues of trees:

e the input queue, with function visit processing its front element, and with
function continue processing its tail, and

e the output backwards queue, which is enqueued in both clauses of function
visit, and which is dequeued by functions last_two_and before and last.

5.1.2 A direct-style traversal with control and prompt

As in Section 4.2.2, we observe that the concatenation, in the definition of visit
just above, matches the concatenation of stack frames in the specification of control
in Section 2.2. One can therefore write the above function in direct style, using
control and prompt. However, the solution requires a change of representation of the
intermediate answer type of delimited continuations, i.e., the output queue, from
tree list to tree list * int in order to unify the type int of the threaded index
and the type tree 1list of the computation.
The direct-style breadth-first numbering program reads as follows:
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local structure CP = Control_and_Prompt
(type intermediate_answer = tree list * int)
in val control = CP.control
val prompt = CP.prompt
end

(*x Dbreadth_first_label’ : tree -> tree *)
fun breadth_first_label’ t
= let (* visit : tree * int -> int *)
fun visit (LEAF _, i)
= control
(fn k =>
let val (ts, i’) = prompt (fn () => k (i+1))
in ((LEAF i) :: ts, i’)

end)
| visit (NODE (t1, _, t2), i)
= control
(fn k =>
let val (ts, i’)

= prompt
(fn O => let val (nil, i1) = k (i+1)
val i2 = visit (t1, i1)
val i3 = visit (t2, i2)
in (nil, i3)
end)
val (rest, t1’, t2’) = last_two_and_before ts
in ((NODE (t1’, i, t2’)) :: rest, i’)
end)
in last (#1 (prompt (fn () => let val i = visit (t, 1)
in (nil, i)
end)))
end

Again, the queuing effect is obtained in the induction case, where the current delim-
ited continuation (of visit) is captured, bound to k, and applied to the increased
index i+1. The implicit continuation of this application visits t1 and then t2. Ap-
plying k seals it to the implicit continuation so that any continuation captured by
an ulterior recursive call to visit in k captures both the rest of k and the visit of t1
and t2.

In the program above, before the last leaf in the tree is visited, the intermediate
results represent the current value of the index. After the last leaf in the tree is
visited, the intermediate results represent the current output queue. Therefore, we
need to fix the intermediate answer type to tree list * int so that the intermediate
results are represented as pairs, where, depending on the stage of the computation,
one of the components contains significant information. Before the last leaf in the tree
is visited, the significant information (i.e., the index) is contained only in the second
component, and the first component is irrelevant and always equal to nil. After the
last leaf in the tree is visited, the significant information (i.e., the output queue) is
contained only in the first component, and the second component is irrelevant and
always equal to |[T'|4+1 (where T is the input tree and |T'| is the number of its labels).
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5.2 Depth-first numbering

We now turn to the depth-first counterpart of Okasaki’s pearl, and present a spec-
trum of solutions to the problem of depth-first tree numbering. Given a tree T
containing |T'| labels, we want to create a new tree of the same shape, but with the
values in the nodes and leaves replaced by the numbers 1...|T| in depth-first order.
For example, the tree

NODE (NODE (LEAF O, O, LEAF 0), O, LEAF 0)

should be transformed into

NODE (NODE (LEAF 3, 2, LEAF 4), 1, LEAF 5)

(0) (D
' \ should W
the tree @/@<@ © tranisE(nged @/@/\@ ©

5.2.1 A stack-based traversal

It is trivial to write the depth-first counterpart of Okasaki’s solution: one should
just replace the queue with a stack, and instead of using last_two_and_before, use
the auxiliary function

first_two_and_after : int list -> int * int * int list

such that applying it to the list [x1, x2, x3, ..., xn] yields the triple (x1, x2,
[x3, ..., xn]).
The depth-first solution reads as follows:

(* depth_first_label : tree -> tree *)
fun depth_first_label t

= let (* visit : tree * int * tree list -> tree list *)
fun visit (LEAF _, i, ts)
= (LEAF i) :: (continue (ts, i+1))
| visit (NODE (t1, _, t2), i, ts)

= let val (t1’, t2’, rest)
= first_two_and_after
(continue (t1 :: t2 :: ts, i+1))
in (NODE (t1’, i, t2’)) :: rest
end
(* continue : tree list * int -> tree list *)
and continue (nil, _)
= nil
| continue (t :: k, i)
= visit (t, i, k)
in hd (visit (t, 1, nil))
end
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In contrast to Section 5.1.1, where the clause for nodes was concatenating the
two subtrees in the back of the list of subtrees, in a first-in, first-out fashion,

last_two_and_before
(continue (k @ [t1, t2], i+1)) (* then *)

the clause for nodes is (essentially) concatenating the two subtrees in front of the
list of subtrees, in a last-in, first-out fashion:

first_two_and_after
(continue ([t1, t2] @ ts, i+1)) (* now *)

We can see that the algorithm uses two stacks of trees:

e the input stack, with function visit processing its top element, and with func-
tion continue processing its tail, and

e the output stack, which is pushed on in both clauses of function visit, and
which is popped off by functions first_two_and_after and hd.

5.2.2 A continuation-based traversal

In the induction case of visit, let us unfold the call to continue to obtain the
following clause:

| visit (NODE (t1, _, t2), i, ts)
= let val (t1’, t2’, rest)
= first_two_and_after
(visit (t1, i+1, t2 :: ts))
in (NODE (t1’, i, t2’)) :: rest
end

The modified definition is in defunctionalized form: the data type is that of lists and
continue is the corresponding apply function. The higher-order counterpart of this
defunctionalized definition reads as follows:

(* depth_first_label’ : tree -> tree *)
fun depth_first_label’ t
= let (* visit : tree * int * (int -> tree list) -> tree list *)
fun visit (LEAF _, i, k)
= (LEAF i) :: (k (i+1))
| visit (NODE (t1, _, t2), i, k)
= let val (t1’, t2’, rest)
= first_two_and_after
(visit (¢1, i+1, fn i’ => visit (£2, i’, k)))
in (NODE (t1’, i, t2’)) :: rest
end
in hd (visit (t, 1, fn i => nil))
end
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5.2.3 A direct-style traversal with shift and reset

We view the function of type int -> tree list, in the definition just above, as a
delimited continuation. This delimited continuation is initialized in the initial call
to visit, extended in the induction case, and captured and resumed in both clauses
of visit. In direct style, the initialization is obtained with reset, the extension
is obtained by functional sequencing, the capture is obtained with shift, and the
activation is obtained by function application. The result is another new example of
programming with static delimited-control operators:

local structure SR = Shift_and_Reset
(type intermediate_answer = tree list)
in val shift SR.shift
val reset = SR.reset

end
(* depth_first_label’’ : tree -> tree *)
fun depth_first_label’’ t
= let (* visit : tree * int -> tree list *)
fun visit (LEAF _, i)
= shift
(fn k =>
(LEAF i) :: (k (i+1)))
| visit (NODE (t1, _, t2), i)
= shift
(fn k =>

let val (t1’, t2’, rest)
= first_two_and_after
(reset
(fn ) => k (let val i’ = visit (t1, i+1)
in visit (t2, i’)

end)))
in (NODE (t1’, i, t2’)) :: rest
end)
in hd (reset (fn () => let val i = visit (t, 1)
in nil
end))

end

CPS-transforming visit yields the definition of Section 5.2.2.

5.3 Summary and conclusion

Okasaki’s solution relabels its input tree in breadth-first order and uses a queue.
We have expressed it in direct style using control and prompt. In so doing, we have
internalized the explicit data operations on the queue into implicit control operations.
These control operations crucially involve delimited continuations whose extent is
dynamic.

The stack-based counterpart of Okasaki’s solution relabels its input tree in depth-
first order. We have mechanically refunctionalized this program into another one,
which is continuation-based, and we have expressed this continuation-based program
in direct style using shift and reset. These control operators crucially involve
delimited continuations whose extent is static.
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6 Conclusion and issues

Over the last 15 years, it has been repeatedly claimed that control has more ex-
pressive power than shift. Even though this claim is now disproved [12,47,68], it is
still unclear how to program with control-like dynamic delimited continuations. In
fact, in 15 years, only toy examples have been advanced to illustrate the difference
between static and dynamic delimited continuations, such as the one in Section 2.5.

In this article, we have filled this vacuum by using dynamic delimited contin-
uations to program breadth-first traversal. We have accounted for the dynamic
queuing mechanism inherent to breadth-first traversal with the dynamic concatena-
tion of stack frames that is specific to control and that makes it go beyond what is
traditionally agreed upon as being continuation-passing style (CPS). We have pre-
sented two examples of breadth-first traversal: the breadth-first counterpart of the
traditional samefringe function and Okasaki’s breadth-first numbering pearl. We
have recently proposed yet another example that exhibits the difference between
shift and control [7, Section 4.6] [11, page 5].

One lesson we have learned here is how helpless one can feel when going be-
yond CPS. Unlike with shift and reset, there is no infrastructure for transforming
programs that use control and prompt. We have therefore relied on CPS and on
defunctionalization as guidelines, and we have built on the vision of data-structure
continuations (stacks for depth-first traversals and queues for breadth-first traver-
sals) proposed by Friedman 25 years ago [80, page 179] to infer the breadth-first
traversals. We would have been hard pressed to come up with these examples only
by groping for delimited continuations in direct style.!

Since control, even more dynamic delimited-control operators (some of which
generate control delimiters dynamically) have been proposed [27,39,42,56, 58, 64],
all of which go beyond CPS but only two of which, to the best of our knowledge,
come with motivating examples illustrating their specificity:

e In his PhD thesis [2], Balat uses the extra expressive power of Gunter, Rémy,
and Riecke’s control operators set and cupto over that of shift and reset
to prototype a type-directed partial evaluator for the lambda-calculus with
sums [3,4].

e In his PhD thesis [58], Nanevski introduces two new dynamic delimited-control
operators, mark and recall, and illustrates them with a function partitioning a
natural number into the lists of natural numbers that add to it. He considers
both depth-first and breadth-first generation strategies, and conjectures that
the latter cannot be written using shift and reset. As such, his is our closest
related work.

These applications are rare and so far they tend to be daunting. Dynamic delim-
ited continuations need simpler examples, more reasoning tools, and more program
transformations.

1“You are not Superman.” — Aunt May (2002)
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A An implementation of shift and reset

In his seminal article [34], Filinski has presented an ML implementation of shift and
reset in terms of callcc and mutable state, along with its correctness proof. This
implementation takes the form of a functor Shift_and Reset, which maps a type of
intermediate answers into a structure providing instances of shift and reset at that

type:

signature ESCAPE
= sig
type void
val coerce : void -> ’a
val escape : ((’a -> void) -> ’a) -> ’a
end

structure Escape : ESCAPE

= struct
datatype void = VOID of void
fun coerce (VOID v) = coerce v
local open SMLofNJ.Cont
in fun escape £

= callcc (fn k => £ (fn x => throw k x))
end
end

signature SHIFT_AND_RESET
= sig
type intermediate_answer
val shift : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a
val reset : (unit -> intermediate_answer) -> intermediate_answer
end
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functor Shift_and_Reset (type intermediate_answer) : SHIFT_AND_RESET
= struct
open Escape

exception MISSING_RESET

val mk : (intermediate_answer -> void) ref
= ref (fn _ => raise MISSING_RESET)

fun abort x
= coerce (!mk x)

type intermediate_answer = intermediate_answer

fun reset thunk
= escape (fn k => let val m = !mk
inmk := (fn r => (mk :=m; k r));
abort (thunk ())
end)

fun shift function
= escape
(fn k => abort (function (fn v => reset
(fn () => coerce (k v)))))

end

B An implementation of control and prompt

The functor Control_and Prompt maps a type of intermediate answers into a structure
providing instances of control and prompt at that type:

signature CONTROL_AND_PROMPT
= sig
type intermediate_answer
val control : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a
val prompt : (unit -> intermediate_answer) -> intermediate_answer
end

functor Control_and_Prompt (type intermediate_answer)
: CONTROL_AND_PROMPT
= struct
datatype (°t, ’w) context’
= CONTEXT of ’t -> (’w, ’w) context’ option -> ’w

fun send v NONE
=v
| send v (SOME (CONTEXT mc))
= mc v NONE

fun compose’ (CONTEXT c, NONE)
= CONTEXT c
| compose’ (CONTEXT c, SOME mcl)
= CONTEXT (fn v => fn mc2 => ¢ v (SOME (compose’ (mcl, mc2))))
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fun compose (CONTEXT c, NONE)
= CONTEXT c
| compose (CONTEXT c, SOME mcl)
= CONTEXT (fn v => fn mc2 => c¢ v (SOME (compose’ (mcl, mc2))))

structure SR
= Shift_and_Reset
(type intermediate_answer
= (intermediate_answer, intermediate_answer) context’ option
-> intermediate_answer)
val shift = SR.shift
val reset = SR.reset

type intermediate_answer = intermediate_answer

fun prompt thunk
= reset (fn () => send (thunk ())) NONE

exception MISSING_PROMPT

fun control function

= shift
(fn c1 =>
fn mcl =>
let val k
= fn x =>
shift
(fn c2 =>
fn mc2 =>

let val (CONTEXT c1’) = compose (CONTEXT cl, mcl)
in c1’ x (SOME (compose (CONTEXT c2, mc2)))
end)
in reset (fn () => send (function k)) NONE
end) handle MISSING_RESET => raise MISSING_PROMPT
end

A delimited continuation captured by control may capture the context in which
it is subsequently activated. To simulate this dynamic extent, the captured continu-
ation (of type (’t, ’w) context’) takes as arguments not just the value (of type ’t)
with which it is activated, but also the context (of type (’w, ’w) context’ option) in
which it is activated. Hence the recursive definition of datatype (’t, ’w) context’.

Such a captured continuation can no longer be activated by mere function ap-
plication; instead we define send v ¢ to activate the captured continuation ¢ with
the value v. Such a captured continuation can also no longer be composed by mere
function composition; instead we define compose c¢ mc to concatenate the captured
continuation ¢ with the outer continuation (activation context) mec.

A direct transliteration of Shan’s Scheme macros into ML results in an imple-
mentation with overly restrictive types. Due to the lack of polymorphic recursion in
ML, the function compose would have the type:

(°w, ’w) context’ * (’w, ’w) context’ option -> (’w, ’w) context’
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and consequently, the inferred type of control would be:

((intermediate_answer -> intermediate_answer) -> intermediate_answer)
-> intermediate_answer

The third author has therefore cloned the function compose so that it has the following
type:

(°t, ’w) context’ * (’w, ’w) context’ option -> (’t, ’w) context’

Consequently, the inferred type of control is the same as that of shift in Filinski’s
implementation:

((’a -> intermediate_answer) -> intermediate_answer) -> ’a
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