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3-SUM
Given a set X ⊆ U of n numbers, are there distinct x1, x2, x3 ∈ X such
that x1 + x2 + x3 = 0?

Folklore O(n2) algorithm:

.

Gajentaan and Overmars 1995
Multiple geometric problems are 3-SUM-hard.
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3-SUM 

X+Y 

Colinear

GeomBase

Separator

Planar Motion
PlanningConv3-SUM

Triangle 
Enumeration

Set 
Disjointness

Dynamic 
Shortest Path

Jumbled 
Indexing

Zero Weight 
Triangle

Based on Karl Bringmann’s slide (link)

3-SUM Conjecture

3-SUM has no O(n2−ε) expected time algorithm, for any ε > 0, on
Word RAM with words of length O(log n).
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State of the art about 3-SUM

Chan 2018
O((n2/ log2 n)(log log n)O(1))-time algorithm 3-SUM on n real numbers.

Linear Decision Trees model:

Authors Year Linearity Depth
Grønlund and Pettie 2014 4 O(n1.5

√
log n)

Gold and Sharir 2015 4 O(n1.5)

Kane, Lovett, and Moran 2017 8 O(n log2 n)
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AVERAGE
Given a set X ⊆ [−n3,n3] of n integers, are there distinct x1, x2, x3 ∈ X
such that x1 + x2 = 2x3?

In other words, is X progression-free?

There exists a reduction from AVERAGE to log n instances of 3-SUM.
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What if 3-SUM is more difficult than AVERAGE?

Erickson 1999
It is not known whether AVERAGE is 3SUM-hard. [...] (Thus,
3SUM-hard problems might better be called “AVERAGE-hard”.)

JeffE on cs.stackexchange.com in 2013:

Can we reduce 3-SUM to AVERAGE?
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3-Linear Degeneracy Testing (3-LDT)

3-LDT(1, ᾱ, t) (1-partite)
Parameters: Integer coefficients α1, α2, α3 and t .
Input: Set X ⊆ {−n3, . . . ,n3} of size n.
Output: Are there distinct x1, x2, x3 ∈ X such that

∑3
i=1 αixi = t?

3-LDT(3, ᾱ, t) (3-partite)
Parameters: Integer coefficients α1, α2, α3 and t .
Input: Sets A1,A2,A3 ⊆ {−n3, . . . ,n3} of size n.
Output: Are there x1 ∈ A1, x2 ∈ A2, x3 ∈ A3 such that

∑3
i=1 αixi = t?
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Trivial and non-trivial variants

Some combinations of the parameters ᾱ and t are easy to solve:
1 any of the coefficients αi is 0, or
2 t 6= 0 and gcd(α1, α2, α3) - t .

We call all other other variants (1- and 3-partite) non-trivial.

Theorem
All non-trivial variants of 3-LDT are subquadratic-equivalent.

In particular, AVERAGE is 3-SUM-hard!
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3-partite variants

Warm-up
All non-trivial 3-partite variants are equivalent.

Proof: scale and shift each Ai appropriately:
(ᾱ,0)→ (ᾱ, t): set A′i = {x + yi : x ∈ Ai} where yi satisfy:∑

i αiyi = t (from Chinese remainder theorem)

(ᾱ,0)→ (β̄,0): set A′i = {x αi lcm(β1,β2,β3)
βi

: x ∈ Ai}

Remaining part of the talk
Equivalence between 1- and 3-partite variants with the same ᾱ and t .
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From 1-partite to 3-partite

What if we set all sets Ai equal to X?

if there is a correct solution, we would find it
in 3-SUM we could take one element twice, i.e.: 4,4,-8
in AVERAGE we could take any element 3 times: 4,4,4

We can’t set all sets Ai equal to X !

Color-coding, Alon et al. 1995

It suffices to consider O(log2 n) 3-partite instances.
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From 3-partite to 1-partite

Reduction for 3-SUM

X = (8A1 + 1) ∪ (8A2 + 3) ∪ (8A3 − 4)

Goal: any solution consisting of distinct x1, x2, x3 ∈ X should satisfy
that every xi corresponds to an element of Ai .

For an arbitrary variant of 3-LDT:

X =
⋃

i

{Ca + γi : a ∈ Ai}

We need the smaller-order parts to cancel out, so
∑

i αiγi = 0.

Corner case: some αis might be equal, we need to allow permuting xis
with equal coefficients.
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When can we find such a transformation?

Lemma
If t 6= 0 or

∑
i αi 6= 0 we can find such “good” coefficients γ1, γ2, γ3.

Proof idea: Consider the 3-dimensional space of all possible
coefficients, write down a finite set of “forbidden” planes. Show that the
plane corresponding to

∑
i αiγi = 0 contains a point with rational

coordinates that doesn’t belong to any “forbidden” plane, scale it up.

If t = 0 and
∑

i αi = 0, we cannot hope to eliminate solutions that use
three elements from the same set Aj .

Problem: some Aj contains a solution to the equation
∑

i αixi = 0.
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Problem: some Aj contains a solution to the equation
∑

i αixi = 0.
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Behrend’s set

A set S ⊆ [1,N] is progression-free if it contains no three distinct
elements a,b, c such that a + b = 2c.

Behrend 1946

There exists a progression-free set of size Ω(N/(2
√

8 log N log1/4 N)).

This can be easily generalised to avoid any fixed linear combination
γa + δb = (γ + δ)c at the expense of decreasing the size of the set to
N/2O(

√
log N). We call such set (γ, δ)-free.

The trick
Partition every Aj into not too many (γ, δ)-free subsets Ai

j . Run the

previous reduction on every triple Ai1
1 ,A

i2
2 ,A

i3
3 .
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Applying Behrend’s set

Lemma
For any N, γ, δ, there exists a collection of (γ, δ)-free sets
S1,S2, . . . ,Sc such that c = 2O(

√
log N) and

⋃
i Si = [1,N].

Proof:
By Behrend’s construction, there exists a (γ, δ)-free set Q ⊆ [1,N]

of size N/w , for w = 2O(
√

log N).
For y ∈ [1,N], P(y ∈ (Q + ∆)) ≥ 1/2w when ∆ ∈u.a.r. [−N,N] .
For c = O(w log N) we get P(y /∈ ⋃c

i (Q + ∆i)) < 1/N2.
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Technical difficulties we overcome in the paper

existence→ construction
U = [−n3,n3], so we can’t store the whole Behrend’s set→
implicit representation
random shifts→ derandomization with conditional expectations
reductions increase the size of the universe→ constant number of
smaller instances
efficiency→ the whole construction needs to be subquadratic
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Behrend’s construction
Idea

Points in P = [1,m]d can be partitioned into dm2 spheres
Pr = {x̄ ∈ P : d2(o, x̄) = r} for 1 ≤ r ≤ dm2.
On a sphere there are no 3 collinear points, so no point is the
average of two other points.
One of the spheres contains many points from P
Choose a mapping φ : P → [1,N] with “no carry”:
φ(x̄) =

∑
i xi(pm)i

Then x =
∑

i xi(pm)i ∈ [1,N] belongs to Qr = φ[Pr ] iff:∑
i x2

i = r , and
for all 0 ≤ i < d it holds that xi ∈ [1,m].

and we can check it in O(d) time.

Set d =
√

logp N,m = pd−1 to get r ≤ 2O(
√

log N) and |P| ≥ N
2O(
√

log N)
.
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Random shifts

Recap
We have compact representation of Behrend’s set Qr

There exists ∆ ∈ [−N,N] such that |Qr ∩ (A + ∆)| ≥ |A|/2O(
√

log N)

Derandomization in |A| · 2O(
√

log N) time
Use the method of conditional expectations to find bits of ∆
starting from the most significant

E[|Qr ∩ (A + ∆)|
∣∣∆ ∈ [0,2k )] =

1
2

(
E[|Qr ∩ (A + ∆)|

∣∣∆ ∈ [0,2k−1)]

+E[|(Qr ∩ (A + 2k−1 + ∆)|
∣∣∆ ∈ [0,2k−1)]

)
Calculate |Qr ∩ [x , x + 2k )| in 2O(

√
log N) time and space using

dynamic programming “over base-(pm) digits”
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Larger values of k

What can we say about k -LDT for larger values of k?

Genus of a linear equation
∑k

i=1 αixi = 0
Largest g such that [k ] can be partitioned into disjoint subsets
G1, . . . ,Gg with

∑
i∈Gj

αi = 0 for every j .

Sidon set: avoiding x1 + x2 = x3 + x4

Thank you!

Video: (link)
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