Online Context-Free Recognition in OMv Time

Barttomiej Dudek! Pawet Gawrychowski'

TUniversity of Wroctaw, Poland

Dudek and Gawrychowski Online C-F Recognition in OMv Time 1/12

Context-free language

Context-free grammar is a tuple: G = (W, V7, P, S) where:
@ Vy - set of non-terminals
@ V7 - set of terminals (alphabet)
@ P - production rules
@ S - starting non-terminal

Dudek and Gawrychowski Online C-F Recognition in OMv Time 2/12

Context-free language

Context-free grammar is a tuple: G = (W, V1, P, S) where:
@ Vy - set of non-terminals (W =1{S})
@ V7 - set of terminals (alphabet) (V7 ={[.]})
@ P - production rules
@ S - starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]]):

S—¢
S+ SS
S —[9]

Dudek and Gawrychowski Online C-F Recognition in OMv Time 2/12

Context-free language

Context-free grammar is a tuple: G = (W, V1, P, S) where:
@ Vy - set of non-terminals
@ V7 - set of terminals (alphabet)
@ P - production rules
@ S - starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]]):

S—¢
S+ SS
S —[9]

Chomsky normal form: all productions are either S — ABor S — c.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 2/12

Context-free language

Context-free grammar is a tuple: G = (W, V1, P, S) where:
@ Vy - set of non-terminals (W=1{S,0,T,C})
@ V7 - set of terminals (alphabet) (V7 ={[.]})

@ P - production rules
@ S - starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]]):
S—e O— |
S— SS T— SC
S—OoT C—]

Chomsky normal form: all productions are either S — ABor S — c.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 2/12

Context-free recognition problem

Input: CFG G (of constant size).

Dudek and Gawrychowski Online C-F Recognition in OMv Time

Context-free recognition problem

Input: CFG G (of constant size).

Offline
Given a string w, determine if w € L(G).

Dudek and Gawrychowski Online C-F Recognition in OMv Time

Context-free recognition problem

Input: CFG G (of constant size).

Offline
Given a string w, determine if w € L(G).

Online

String w is revealed one character at a time.
Forevery t =1, ..., after seing w[t], determine if w[1..f] € L(G).

Dudek and Gawrychowski Online C-F Recognition in OMv Time 3/12

History of online context-free recognition

Year | Authors | Runtime
1961 | Cocke,Younger and Kasami (CYK) | O(n®)

1980 | Graham, Harrison and Ruzzo O(n®/log n)
1995 | Rytter O(n®/ log? n)

Dudek and Gawrychowski Online C-F Recognition in OMv Time 4/12

History of online context-free recognition

Year | Authors Runtime

1961 | Cocke,Younger and Kasami (CYK) | O(n®)

1980 | Graham, Harrison and Ruzzo O(n®/log n)

1995 | Rytter O(n®/ log? n)

2002 | Lee no comb. O(gn3—¢) *
2015 | Abboud, Backurs and V. Williams | no comb. O(n3¢) *

Dudek and Gawrychowski Online C-F Recognition in OMv Time 4/12

History of online context-free recognition

Year | Authors Runtime

1961 | Cocke,Younger and Kasami (CYK) | O(n°)

1980 | Graham, Harrison and Ruzzo O(n3/ log n)

1995 | Rytter O(n®/log? n)

2002 | Lee no comb. O(gn3—¢) *
2015 | Abboud, Backurs and V. Williams | no comb. O(n3¢) *
2024 | this work n3 /29(logn)

Dudek and Gawrychowski Online C-F Recognition in OMv Time 4/12

History of online context-free recognition

Year | Authors Runtime

1961 | Cocke,Younger and Kasami (CYK) | O(n®)

1980 | Graham, Harrison and Ruzzo O(n®/log n)

1995 | Rytter O(n®/ log? n)

2002 | Lee no comb. O(gn3—¢) *
2015 | Abboud, Backurs and V. Williams | no comb. O(n3¢) *
2024 | this work n3 /29(logn)

Valiant 1975, Rytter 1995

Offline context-free recognition in O(n*) time.

* - holds also for the offline variant

Dudek and Gawrychowski Online C-F Recognition in OMv Time

4/12

CYK algorithm
O(n®g) dynamic approach based on:

A S wli.K]
BSwlk+1.j] = C5 wli.j]
(C— AB) e P

Dudek and Gawrychowski Online C-F Recognition in OMv Time

CYK algorithm

O(n®g) dynamic approach based on:

A S wli.K]
BSwlk+1.j] = C5 wli.j]
(C— AB) e P
forj=1..do
for (C — w[j]) € Pdo
DS},] := true

fori=(—1).1do
fork=i.(j—1)do
for (C — AB) € Pdo
if DA[i, k] A DBk + 1, /] then
DCi,] := true

Dudek and Gawrychowski Online C-F Recognition in OMv Time 5/12

CYK algorithm

O(n®g) dynamic approach based on:

A% wli.K]
BSwlk+1.j] = C5 wli.j]
(C— AB) e P
forj=1..do
for (C — w[j]) € Pdo
DS},] := true

fori=(—1).1do
fork=i.(j—1)do
for (C — AB) € Pdo
if DA[i, k] A DBk + 1, /] then
DCi,] := true

Works also for the online case!)

Dudek and Gawrychowski Online C-F Recognition in OMv Time 5/12

Valiant’s approach

Calculate DP recursively for w[1..n/2] and w[(n/2 + 1)..n] and merge
the results: need to process all substrings that contain w[n/2].

Dudek and Gawrychowski Online C-F Recognition in OMv Time 6/12

Valiant’s approach

Calculate DP recursively for w[1..n/2] and w[(n/2 + 1)..n] and merge
the results: need to process all substrings that contain w[n/2].

Difficulty: we can extend the infix in both directions.

Ca

Dudek and Gawrychowski Online C-F Recognition in OMv Time 6/12

Valiant’s idea (Rytter’s presentation)

Create a graph in which a node (/,) stores all non-terminals producing
w(i..j], for i < n/2 < jand e.g. edges “down” correspond to extending
a word at the beginning (to the left).

(n/2+1) n
n/2
(i,7) (ij1) (ZIJ'Z)
()] (i, J2)
1

Dudek and Gawrychowski Online C-F Recognition in OMv Time 7/12

Valiant’s idea (Rytter’s presentation)

Create a graph in which a node (/,) stores all non-terminals producing
w(i..j], for i < n/2 < jand e.g. edges “down” correspond to extending
a word at the beginning (to the left).

Observation: moving from (i,) to

(n/2+1) n - .
/2 (/',j) does not depend on j!
(6,7) @) (i72) We only need to know the non-
terminal producing w(i..j].
(i) (i', j2)
1

Dudek and Gawrychowski Online C-F Recognition in OMv Time 7/12

Valiant’s idea (Rytter’s presentation)

Create a graph in which a node (/,) stores all non-terminals producing
w(i..j], for i < n/2 < jand e.g. edges “down” correspond to extending
a word at the beginning (to the left).

Observation: moving from (i,) to

(n/2+1) n .. :
02 (/',j) does not depend on j!
(6,7) @) (i72) We only need to know the non-
terminal producing wi..j].
(i) (i', j2)
1
Valiant 1975
We can calculate the transitive closure of the graph in O(n*) time. J

Dudek and Gawrychowski Online C-F Recognition in OMv Time 7/12

Why matrix multiplication?

Observation

Test if we can extend (/, /) to (i, j) based only on the non-terminal
producing w(i..j], independently on j.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 8/12

Why matrix multiplication?

Jumps “to the left”:

V[, %Y =1 <= 3 (3(zy : i
, = zevy (X = 2ZY)e PANZ S w[i'.i —1]

(the infix starting at i and produced by Y can be extended to an infix
starting at i’ and produced by X)

Dudek and Gawrychowski Online C-F Recognition in OMv Time 8/12

Why matrix multiplication?

Jumps “to the left”:

7 i j
V[i/,i]X’Y — 1 <> EIZEVN ((X — ZY) S P/\Z :> W[III_ 1])

(the infix starting at i and produced by Y can be extended to an infix
starting at i’ and produced by X)

Multiple extensions in one direction: matrix multiplications!)

Dudek and Gawrychowski Online C-F Recognition in OMv Time 8/12

Online variant

New character ~ new column in the considered matrix/graph, so:

Dudek and Gawrychowski Online C-F Recognition in OMv Time

Online variant

New character ~ new column in the considered matrix/graph, so:

Online Matrix-Vector Multiplication (OMv)

Given a matrix M € {0,1}™", and a sequence of vectors
Vi,...,vp € {0,1}", the task is to output Mv; before seeing v;+, for all
i=1,....,n—1.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 9/12

Online variant

Online Matrix-Vector Multiplication (OMv)

Given a matrix M € {0,1}™", and a sequence of vectors

Vi,...,vp € {0,1}", the task is to output Mv; before seeing v;+, for all
i=1,...,n—1.

Larsen, Williams [SODA 2017]
OMv can be solved in n®/22(vioe") time (w.h.p.).

Dudek and Gawrychowski Online C-F Recognition in OMv Time 9/12

Online variant

Online Matrix-Vector Multiplication (OMv)

Given a matrix M € {0,1}™", and a sequence of vectors
Vi,...,vp € {0,1}", the task is to output Mv; before seeing v;+, for all
i=1,....,n—1.

Larsen, Williams [SODA 2017]
OMv can be solved in n®/22(vioe") time (w.h.p.).

OMv Hypothesis by Henzinger et al. [STOC 2015]
Every (randomized) algorithm solving OMv must take total time n®—°(1).

v

Dudek and Gawrychowski Online C-F Recognition in OMv Time 9/12

Our approach
Maintain a division of the current prefix into powers of 2:

8 2 1

1 t=11

Dudek and Gawrychowski Online C-F Recognition in OMv Time 10/12

Our approach
Maintain a division of the current prefix into powers of 2:

8 2 1

1 t=11

For every interval Z = [p, p + s) create a process that:
@ runs for s queries Qpts, Qoisi1;-- -, Qoras—1 Where
Qi ={(,E): ES wli.f],ic[p+s.1]}

Dudek and Gawrychowski Online C-F Recognition in OMv Time

10/12

Our approach
Maintain a division of the current prefix into powers of 2:

8 2 1

1 t=11

For every interval Z = [p, p + s) create a process that:
@ runs for s queries Qpis, Qoist1;-- -, Qoyas—1 Where
Qi ={(,E): ES wli.f],ic[p+s.1]}

@ processes all infixes of w that startin Z and end in t
p (p+s-1) ¢

wl(p+s—1).1]

w[p..ti]
(formally it computes: A; = {(i,E) : E 5 wli..t],i € T})

Dudek and Gawrychowski Online C-F Recognition in OMv Time 10/12

Our approach
Maintain a division of the current prefix into powers of 2:

8 2 1

1 t=11

For every interval Z = [p, p + s) create a process that:
@ runs for s queries Qpis, Qoist1;-- -, Qoyas—1 Where
Qi ={(,E): ES wli.f],ic[p+s.1]}

@ processes all infixes of w that startin Z and end in t
p (p+s-1) ¢

wl(p+s—1).1]

w[p..ti]
(formally it computes: A; = {(i,E) : E = wli..t],i € T})
@ is updated after every query (w|[t] becomes part of the string)

Dudek and Gawrychowski Online C-F Recognition in OMv Time 10/12

Our approach
Maintain a division of the current prefix into powers of 2:

8 2 1

1 t=11

For every interval Z = [p, p + s) create a process that:
@ runs for s queries Qpis, Qoist1;-- -, Qoyas—1 Where
Qi ={(,E): ES wli.f],ic[p+s.1]}

@ processes all infixes of w that startin Z and end in t
p (p+s-1) ¢

wl(p+s—1).1]

w(p..t]

(formally it computes: A; = {(i,E) : E 5 wli..t],i € T})
@ is updated after every query (w|[t] becomes part of the string)
o takes total s3/2%V1°g5) randomized time.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 10/12

Algorithm

Dudek and Gawrychowski Online C-F Recognition in OMv Time

Algorithm

8 2 1
| [|
S
While processing .the t-th character, the j-th process (for [b;, €))):
- gets: Q= {(i,E): E S wli..t],i € [g..1]}

Dudek and Gawrychowski Online C-F Recognition in OMv Time 11/12

Algorithm

8 2 1
| [|
S
While processing ‘the t-th character, the j-th process (for [b;, €))):
- gets: Q ={(i,E): ES wli.t],i € [e.1]}

-computes: A, = {(i,E): E 5 wli.t],i € [bj..€)}

Note: @ = A U A2 |

Dudek and Gawrychowski Online C-F Recognition in OMv Time 11/12

Algorithm

8 2 1
| [|
S
While processing ‘the t-th character, the j-th process (for [b;, €))):
- gets: Q ={(i,E): ES wli.t],i € [e..1]}

- computes: A, = {(i,E): E 5 wli..t],i € [bj..€})}

Note: @ = A U A2 J

Process of length 2% is created every n/2% queries and runs for at
most 2% queries, so the total running time is :

iﬂk <2k> /QQW)_n Iozg:nzzk Q(\f)_ns/zsz\/@)
k=0 k=0

Dudek and Gawrychowski Online C-F Recognition in OMv Time 11/12

Additional tool

Doubly-dynamic OMv: in every query we get next column of the matrix
and the vector to multiply with.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 12/12

Additional tool

Doubly-dynamic OMv: in every query we get next column of the matrix
and the vector to multiply with.

Theorem

We can process in s2/2%V1g39) time a sequence of s vectors

Vi, Q1, Vo, Qo, . .. Where |v;| = s, |q;| = i in which we need to calculate
(v1,...,V;) x g; online, before seeing v, 1.

Dudek and Gawrychowski Online C-F Recognition in OMv Time 12/12

Additional tool

Theorem

We can process in s2/2%V1g39) time a sequence of s vectors

Vi, Q1, Vo, Qo, . .. Where |vj| = s, |q;| = i in which we need to calculate
(v1,...,V;) x g; online, before seeing v;, 1.

Sketch of the proof:

@ divide the processed matrix of size s x i into submatrices of sizes
that are (decreasing) powers of 2

Dudek and Gawrychowski Online C-F Recognition in OMv Time 12/12

Additional tool

Theorem

We can process in s2/2%V1g39) time a sequence of s vectors

Vi, Q1, Vo, Qo, . .. Where |vj| = s, |q;| = i in which we need to calculate
(v1,...,V;) x g; online, before seeing v;, 1.

Sketch of the proof:

@ divide the processed matrix of size s x i into submatrices of sizes
that are (decreasing) powers of 2

e divide every s x 2% submatrix into s/2% matrices of size 2k x 2k
and build OMv data structure on each of them.

Dudek and Gawrychowski

Online C-F Recognition in OMv Time 12/12

Additional tool

Theorem

We can process in s2/2%V1g39) time a sequence of s vectors

Vi, Q1, Vo, Qo, . .. Where |vj| = s, |q;| = i in which we need to calculate
(v1,...,V;) x g; online, before seeing v;, 1.

Sketch of the proof:

@ divide the processed matrix of size s x i into submatrices of sizes
that are (decreasing) powers of 2

e divide every s x 2% submatrix into s/2% matrices of size 2k x 2k
and build OMv data structure on each of them.

Thank you!

Dudek and Gawrychowski

Online C-F Recognition in OMv Time 12/12

