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Context-free language

Context-free grammar is a tuple: G = (VN ,VT ,P,S) where:
VN - set of non-terminals
VT - set of terminals (alphabet)
P - production rules
S - starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]] ):

S → ε

S → SS
S → [S]

Chomsky normal form: all productions are either S → AB or S → c.
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Context-free language

Context-free grammar is a tuple: G = (VN ,VT ,P,S) where:
VN - set of non-terminals (VN = {S,O,T ,C})
VT - set of terminals (alphabet) (VT = {[, ]})
P - production rules
S - starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]] ):

S → ε O→ [

S → SS T→ SC
S → OT C→ ]

Chomsky normal form: all productions are either S → AB or S → c.

Dudek and Gawrychowski ( University of Wrocław, Poland)Online C-F Recognition in OMv Time 2 / 12



Context-free recognition problem

Input: CFG G (of constant size).

Offline
Given a string w , determine if w ∈ L(G).

Online
String w is revealed one character at a time.
For every t = 1, . . ., after seing w [t ], determine if w [1..t ] ∈ L(G).
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History of online context-free recognition

Year Authors Runtime
1961 Cocke,Younger and Kasami (CYK) O(n3)
1980 Graham, Harrison and Ruzzo O(n3/ log n)
1995 Rytter O(n3/ log2 n)
2002 Lee no comb. O(gn3−ε) ∗

2015 Abboud, Backurs and V. Williams no comb. O(n3−ε) ∗

2024 this work n3/2Ω(
√
log n)

Valiant 1975, Rytter 1995
Offline context-free recognition in O(nω) time.

∗ - holds also for the offline variant
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CYK algorithm

O(n3g) dynamic approach based on:
A ⋆→ w [i ..k ]
B ⋆→ w [k + 1..j]
(C → AB) ∈ P

=⇒ C ⋆→ w [i ..j]

for j = 1.. do
for (C → w [j]) ∈ P do

DC [j , j] := true
for i = (j − 1)..1 do

for k = i ..(j − 1) do
for (C → AB) ∈ P do

if DA[i , k ] ∧ DB[k + 1, j] then
DC [i , j] := true

Works also for the online case!
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Valiant’s approach

Calculate DP recursively for w [1..n/2] and w [(n/2 + 1)..n] and merge
the results: need to process all substrings that contain w [n/2].

Difficulty: we can extend the infix in both directions.
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Valiant’s idea (Rytter’s presentation)

Create a graph in which a node (i , j) stores all non-terminals producing
w [i ..j], for i ≤ n/2 < j and e.g. edges “down” correspond to extending
a word at the beginning (to the left).

n/2

(n/2 + 1)

(i, j)

(i′, j)

(i, j1) (i, j2)

(i′, j2)

1

n
Observation: moving from (i , j) to
(i ′, j) does not depend on j !

We only need to know the non-
terminal producing w [i ..j].

Valiant 1975
We can calculate the transitive closure of the graph in O(nω) time.
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Why matrix multiplication?

Observation
Test if we can extend (i , j) to (i ′, j) based only on the non-terminal
producing w [i ..j], independently on j .

Jumps “to the left”:

V [i ′, i]X ,Y = 1 ⇐⇒ ∃Z∈VN

(
(X → ZY ) ∈ P ∧ Z ⋆→ w [i ′..i − 1]

)
(the infix starting at i and produced by Y can be extended to an infix
starting at i ′ and produced by X )

Multiple extensions in one direction: matrix multiplications!
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Online variant

New character ≈ new column in the considered matrix/graph, so:

Online Matrix-Vector Multiplication (OMv)
Given a matrix M ∈ {0,1}n×n, and a sequence of vectors
v1, . . . , vn ∈ {0,1}n, the task is to output Mvi before seeing vi+1, for all
i = 1, . . . ,n − 1.

Larsen, Williams [SODA 2017]

OMv can be solved in n3/2Ω(
√
log n) time (w.h.p.).

OMv Hypothesis by Henzinger et al. [STOC 2015]

Every (randomized) algorithm solving OMv must take total time n3−o(1).
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Our approach
Maintain a division of the current prefix into powers of 2:

1 t = 11

8 2 1

For every interval I = [p,p + s) create a process that:
runs for s queries Qp+s,Qp+s+1, . . . ,Qp+2s−1 where
Qt = {(i ,E) : E ⋆→ w [i ..t ], i ∈ [p + s..t ]}
processes all infixes of w that start in I and end in t

(formally it computes: At = {(i ,E) : E ⋆→ w [i ..t ], i ∈ I})
is updated after every query (w [t ] becomes part of the string)
takes total s3/2Ω(

√
log s) randomized time.
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Algorithm
8 2 1

While processing the t-th character, the j-th process (for [bj ,ej)):
- gets: Qj

t = {(i ,E) : E ⋆→ w [i ..t ], i ∈ [ej ..t ]}
- computes: Aj

t = {(i ,E) : E ⋆→ w [i ..t ], i ∈ [bj ..ej)}

Note: Qj
t = Aj+1

t ∪ Aj+2
t ...

Process of length 2k is created every n/2k queries and runs for at
most 2k queries, so the total running time is :

log n∑
k=0

n
2k ·

(
2k

)3
/2Ω(

√
k) = n ·

log n∑
k=0

22k−Ω(
√

k) = n3/2Ω(
√
log n).
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Additional tool
Doubly-dynamic OMv: in every query we get next column of the matrix
and the vector to multiply with.

Theorem

We can process in s3/2Ω(
√
log s) time a sequence of s vectors

v1,q1, v2,q2, . . . where |vi | = s, |qi | = i in which we need to calculate
(v1, . . . , vi)× qi online, before seeing vi+1.

Sketch of the proof:
divide the processed matrix of size s × i into submatrices of sizes
that are (decreasing) powers of 2
divide every s × 2k submatrix into s/2k matrices of size 2k × 2k

and build OMv data structure on each of them.

Thank you!
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Sketch of the proof:
divide the processed matrix of size s × i into submatrices of sizes
that are (decreasing) powers of 2
divide every s × 2k submatrix into s/2k matrices of size 2k × 2k

and build OMv data structure on each of them.
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