Generalised Pattern Matching Revisited

Bartłomiej Dudek¹ Paweł Gawrychowski¹ Tatiana Starikovskaya²

 $$^{1}\rm{University}$ of Wrocław, Poland ${^{2}\rm{DIENS}},$ École normale supérieure, PSL Research University, France

March 20, 2020

Input: A text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$

Output (Reporting): All i such that T[i, i+m-1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i+j-1] does not match P[j].

T: abbabc

P: abc

Input: A text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$

Output (Reporting): All i such that T[i, i + m - 1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i+j-1] does not match P[j].

T: abbabc

 $P: abc \longrightarrow 1$ mismatch

Input: A text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$

Output (Reporting): All i such that T[i, i + m - 1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i+j-1] does not match P[j].

T: abbabc

 $P: \mathbf{a} \mathbf{b} \mathbf{c} \rightarrow 2 \mathbf{mismatches}$

Input: A text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$

Output (Reporting): All i such that T[i, i + m - 1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i+j-1] does not match P[j].

T: abbabc

P: **a b c** \rightarrow 3 mismatches

Input: A text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$

Output (Reporting): All i such that T[i, i + m - 1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i+j-1] does not match P[j].

T: abbabc

P: abc \rightarrow match

Generalized Pattern Matching

Input: A text $T \in (\Sigma_T)^n$, a pattern $P \in (\Sigma_P)^m$, and a **matching** relationship $\subseteq \Sigma_T \times \Sigma_P$.

Output (Reporting): All i such that T[i, i + m - 1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i + j - 1] does not match P[j].

Generalized Pattern Matching

Input: A text $T \in (\Sigma_T)^n$, a pattern $P \in (\Sigma_P)^m$, and a **matching** relationship $\subseteq \Sigma_T \times \Sigma_P$.

Output (Reporting): All i such that T[i, i+m-1] matches P. **Output (Counting):** For each i, the number of positions $j \in [m]$ such that T[i+j-1] does not match P[j].

Text: C A G T

Patterns: C A T 0 mismatches C A T 2 mismatches

Size of matching relationship

Parameters describing the matching relationship:

- D maximum number of characters that match a fixed character
- $oldsymbol{\mathcal{S}}$ number of matching pairs of characters
- \mathcal{I} number of intervals of matching characters from the pattern, $\mathcal{I} = \sum_{j \in [m]} |I(P[j])|$

$\Sigma_T \setminus \Sigma_T$	_P A	\mathbf{C}	G	Τ
A	✓		\checkmark	
В	✓	\checkmark	\checkmark	
\mathbf{C}			\checkmark	✓
D	√			✓
E	✓	\checkmark		✓
\mathbf{F}	√		\checkmark	✓
G			✓	

In the example: D = 5, S = 16, I = 2 + 2 + 2 + 1 = 7

Size of matching relationship

Parameters describing the matching relationship:

- D maximum number of characters that match a fixed character
- S number of matching pairs of characters
- \mathcal{I} number of intervals of matching characters from the pattern, $\mathcal{I} = \sum_{j \in [m]} |I(P[j])|$

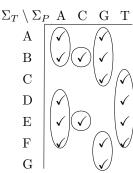
$\Sigma_T \setminus \Sigma_T$	_P A	\mathbf{C}	G	Τ
A	✓		\checkmark	
В	✓	\checkmark	\checkmark	
\mathbf{C}			\checkmark	✓
D	✓			✓
E	✓	\checkmark		\checkmark
F	✓		\checkmark	✓
G			✓	

In the example: D = 5, S = 16, I = 2 + 2 + 2 + 1 = 7

Size of matching relationship

Parameters describing the matching relationship:

- D maximum number of characters that match a fixed character
- S number of matching pairs of characters
- \mathcal{I} number of intervals of matching characters from the pattern, $\mathcal{I} = \sum_{j \in [m]} |I(P[j])|$



In the example: $\mathcal{D} = 5$, $\mathcal{S} = 16$, $\mathcal{I} = 2 + 2 + 2 + 1 = 7$

History of the reporting variant

Time	Det./Rand.	Author
$\mathcal{O}(\mathcal{D} \log^2 n(\Sigma_P \mathcal{D} + n \log n \log m))$	Det.	Indyk '97
$\mathcal{O}(\mathcal{D} n \log^6 n)$	Det.	DGS '20
$\mathcal{O}(\mathcal{D} n \log n \log m)$	Rand.	Muthukrishnan '95
$\mathcal{O}(\mathcal{D} n \log n \log m)$	Rand.	DGS '20
$\mathcal{O}((\mathcal{S}m\log^2m)^{1/3}n)$	Det.	M. and R. '95
$\mathcal{O}(\sqrt{S} n \log^{7/2} n)$	Det.	DGS '20
$\mathcal{O}(\sqrt{S} n \log m \sqrt{\log n})$	Rand.	DGS '20
$\Omega(S)$	Rand.	DGS '20
$\mathcal{O}(\mathcal{I} + (m\mathcal{I})^{1/3} n \sqrt{\log m})$	Det.	Muthukrishnan '95
$\mathcal{O}(n\sqrt{\mathcal{I}\log m}+n\log n)$	Det.	DGS '20

History of the reporting variant

Time	Det./Rand.	Author
$\tilde{\mathcal{O}}(\Sigma_P \mathcal{D}^2+\mathcal{D}n)$	Det.	Indyk '97
$\mid ilde{\mathcal{O}}(\mathcal{D} n) \mid$	Det.	DGS '20
$\mid ilde{\mathcal{O}}(\mathcal{D} n) \mid$	Rand.	Muthukrishnan '95
$\mid ilde{\mathcal{O}}(\mathcal{D} n) \mid$	Rand.	DGS '20
$\tilde{\mathcal{O}}((\mathcal{S} m)^{1/3} n)$	Det.	M. and R. '95
$ \tilde{\mathcal{O}}(\sqrt{\mathcal{S}} n) $	Det.	DGS '20
$ \tilde{\mathcal{O}}(\sqrt{\mathcal{S}} n) $	Rand.	DGS '20
$\Omega(S)$	Rand.	DGS '20
$\mathcal{ ilde{O}}(\mathcal{I}+(m\mathcal{I})^{1/3}n)$	Det.	Muthukrishnan '95
$\mathcal{ ilde{O}}(n\sqrt{\mathcal{I}})$	Det.	DGS '20

History of the counting variant

Time	Det./Rand.	Approx.	Author	
$\mathcal{O}(\varepsilon^{-2}\mathcal{D}^2 n \log^3 n)$	Det.	$(1-\varepsilon)$	Indyk '97	
$\mathcal{O}(\varepsilon^{-2}\mathcal{D} n \log^6 n)$	Det.	(1-arepsilon)	DGS '20	
$\mathcal{O}(\mathcal{D} n \log n \log m)$	Rand.	log m	Muthukrishnan '95	
$\mathcal{O}(\varepsilon^{-2}\mathcal{D} n \log^3 n)$	Rand.	(1-arepsilon)	Indyk '97	
$\mathcal{O}(\varepsilon^{-1}\mathcal{D} n \log n \log m)$	Rand.	(1-arepsilon)	DGS '20	
$\mathcal{O}(\varepsilon^{-1}\sqrt{\mathcal{S}}n\log^{7/2}n)$	Det.	$(1-\varepsilon)$	DGS '20	
$\mathcal{O}(\sqrt{\varepsilon^{-1}\mathcal{S}} n \log m \sqrt{\log n})$	Rand.	(1-arepsilon)	DGS '20	
$\mathcal{O}(\mathcal{I} + (m\mathcal{I})^{1/3} n \sqrt{\log m})$	Det.	_	Muthukrishnan '95	
$\mathcal{O}(n\sqrt{\mathcal{I}\log m} + n\log n)$	Det.	_	DGS '20	

History of the counting variant

Time	Det./Rand.	Approx.	Author	
$\tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D}^{2}n)$	Det.	$(1-\varepsilon)$	Indyk '97	
$\int \tilde{\mathcal{O}}(arepsilon^{-2}\mathcal{D}n)$	Det.	$(1-\varepsilon)$	DGS '20	
$\mid ilde{\mathcal{O}}(\mathcal{D} n) \mid$	Rand.	log m	Muthukrishnan '95	
$\int \tilde{\mathcal{O}}(arepsilon^{-2}\mathcal{D}n)$	Rand.	$(1-\varepsilon)$	Indyk '97	
$\mid ilde{\mathcal{O}}(arepsilon^{-1}\mathcal{D}n)$	Rand.	(1-arepsilon)	DGS '20	
$\tilde{\mathcal{O}}(arepsilon^{-1}\sqrt{\mathcal{S}}n)$	Det.	$(1-\varepsilon)$	DGS '20	
$\mathcal{\tilde{O}}(\sqrt{arepsilon^{-1}\mathcal{S}}n)$	Rand.	(1-arepsilon)	DGS '20	
$\mathcal{\tilde{O}}(\mathcal{I} + (m\mathcal{I})^{1/3}n)$	Det.	_	Muthukrishnan '95	
$\mathcal{\tilde{O}}(n\sqrt{\mathcal{I}})$	Det.	_	DGS '20	

Reporting variant of GPM

Recall: ${\mathcal S}$ is the total number of matching pairs $({\checkmark})$

Character $b \in \Sigma_P$ is heavy if it matches at least \sqrt{S} characters $a \in \Sigma_T$.

Light characters match $<\sqrt{\mathcal{S}}$ characters, so $\mathcal{D}=\sqrt{\mathcal{S}}$

Mismatches due to light characters

Run the $\tilde{\mathcal{O}}(\mathcal{D}\,n)$ -time algorithm for $\mathcal{D}=\sqrt{\mathcal{S}}$.

Reporting variant of GPM

Recall: ${\mathcal S}$ is the total number of matching pairs $({\checkmark})$

Character $b \in \Sigma_P$ is heavy if it matches at least \sqrt{S} characters $a \in \Sigma_T$.

Light characters match $<\sqrt{\mathcal{S}}\,$ characters, so $\mathcal{D}=\sqrt{\mathcal{S}}\,$

Mismatches due to light characters

Run the $\tilde{\mathcal{O}}(\mathcal{D}\,n)$ -time algorithm for $\mathcal{D}=\sqrt{\mathcal{S}}$.

Reporting variant of GPM

Recall: ${\mathcal S}$ is the total number of matching pairs $({\checkmark})$

Character $b \in \Sigma_P$ is heavy if it matches at least \sqrt{S} characters $a \in \Sigma_T$.

Light characters match $<\sqrt{\mathcal{S}}\,$ characters, so $\mathcal{D}=\sqrt{\mathcal{S}}\,$

Mismatches due to light characters

Run the $\tilde{\mathcal{O}}(\mathcal{D}\,\textit{n})$ -time algorithm for $\mathcal{D}\,=\sqrt{\mathcal{S}}\,.$

Mismatches due to heavy characters

Character $b \in \Sigma_P$ is heavy if it matches at least \sqrt{S} characters $a \in \Sigma_T$.

ightarrow there are at most $\sqrt{\mathcal{S}}$ of them

Create an instance of PATTERN MATCHING WITH DON'T CARES for every heavy character $b \in \Sigma_P$:

$$T_b[j] = egin{cases} 0 & ext{if } T[j] \not\approx b, \ ? & ext{otherwise.} \end{cases} \qquad P_b[j] = egin{cases} 1 & ext{if } P[j] = b \ ? & ext{otherwise.} \end{cases}$$

[Clifford, Clifford, '07] Pattern Matching with Don't Cares can be solved in $\tilde{\mathcal{O}}(n)$ time.

 $\tilde{\mathcal{O}}(\sqrt{\mathcal{S}}\,n)$ rand. time algorithm for reporting variant of GPM.

Mismatches due to heavy characters

Character $b \in \Sigma_P$ is heavy if it matches at least \sqrt{S} characters $a \in \Sigma_T$.

ightarrow there are at most $\sqrt{\mathcal{S}}$ of them

Create an instance of PATTERN MATCHING WITH DON'T CARES for every heavy character $b \in \Sigma_P$:

$$T_b[j] = \begin{cases} 0 & \text{if } T[j] \not\approx b, \\ ? & \text{otherwise.} \end{cases} \qquad P_b[j] = \begin{cases} 1 & \text{if } P[j] = b, \\ ? & \text{otherwise.} \end{cases}$$

$$\text{Text:} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{b} \quad \text{a} \quad \text{c} \quad a \not\approx b \qquad ? \quad 0 \quad ? \quad ? \quad 0 \quad ?$$

$$\text{Pattern:} \quad \text{b} \quad \text{b} \quad \text{a} \qquad \qquad \overrightarrow{c} \approx \overrightarrow{b} \qquad 1 \quad 1 \quad ?$$

[Clifford, Clifford, '07] PATTERN MATCHING WITH DON'T CARES can be solved in $\tilde{\mathcal{O}}(n)$ time.

 $\tilde{\mathcal{O}}(\sqrt{\mathcal{S}}\,n)$ rand. time algorithm for reporting variant of GPM.

Mismatches due to heavy characters

Character $b \in \Sigma_P$ is heavy if it matches at least \sqrt{S} characters $a \in \Sigma_T$.

ightarrow there are at most $\sqrt{\mathcal{S}}$ of them

Create an instance of PATTERN MATCHING WITH DON'T CARES for every heavy character $b \in \Sigma_P$:

$$T_b[j] = \begin{cases} 0 & \text{if } T[j] \not\approx b, \\ ? & \text{otherwise.} \end{cases} \qquad P_b[j] = \begin{cases} 1 & \text{if } P[j] = b, \\ ? & \text{otherwise.} \end{cases}$$

$$\text{Text:} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{b} \quad \text{a} \quad \text{c} \quad a \not\approx b \qquad ? \quad 0 \quad ? \quad ? \quad 0 \quad ?$$

$$\text{Pattern:} \quad \text{b} \quad \text{b} \quad \text{a} \qquad \qquad \overrightarrow{c} \approx \overrightarrow{b} \qquad 1 \quad 1 \quad ?$$

[Clifford, Clifford, '07] Pattern Matching with Don't Cares can be solved in $\tilde{\mathcal{O}}(n)$ time.

 $\tilde{\mathcal{O}}(\sqrt{\mathcal{S}}\,\textit{n})$ rand. time algorithm for reporting variant of GPM.

Use 2-wise independent hash function $h: \Sigma_T \to [\mathcal{D}]$ $h(x) \approx (a \cdot x + b) \mod \mathcal{D}$

Create a new matching relationship M':

$$M'[h(a), b] = \checkmark$$
 iff $\exists_{a \in \Sigma_T} M[a, b] = \checkmark$

Fact: If $M[a, b] \neq \checkmark$ then $Pr(M'[h(a), b] = \checkmark) \le 1/2$

Eliminate every non-occurrence of P in T with prob. $\geq 1/2$ and use PATTERN MATCHING WITH DON'T CARES to solve GPM for M'.

 $\tilde{\mathcal{O}}(\mathcal{D}\,n)$ rand. time algorithm for reporting variant of GPM.

Use 2-wise independent hash function $h: \Sigma_T \to [\mathcal{D}]$ $h(x) \approx (a \cdot x + b) \mod \mathcal{D}$

Create a new matching relationship M':

$$M'[h(a), b] = \checkmark$$
 iff $\exists_{a \in \Sigma_T} M[a, b] = \checkmark$

Fact: If $M[a, b] \neq \checkmark$ then $Pr(M'[h(a), b] = \checkmark) \le 1/2$

Eliminate every non-occurrence of P in T with prob. $\geq 1/2$ and use PATTERN MATCHING WITH DON'T CARES to solve GPM for M'.

 $\tilde{\mathcal{O}}(\mathcal{D}\,n)$ rand. time algorithm for reporting variant of GPM.

Use 2-wise independent hash function $h: \Sigma_T \to [\mathcal{D}]$ $h(x) \approx (a \cdot x + b) \mod \mathcal{D}$

Create a new matching relationship M':

$$M'[h(a), b] = \checkmark$$
 iff $\exists_{a \in \Sigma_T} M[a, b] = \checkmark$

Fact: If $M[a, b] \neq \checkmark$ then $Pr(M'[h(a), b] = \checkmark) \le 1/2$

Eliminate every non-occurrence of P in T with prob. $\geq 1/2$ and use PATTERN MATCHING WITH DON'T CARES to solve GPM for M'.

 $\tilde{\mathcal{O}}(\mathcal{D}\,n)$ rand. time algorithm for reporting variant of GPM.

Use 2-wise independent hash function $h: \Sigma_T \to [\mathcal{D}]$ $h(x) \approx (a \cdot x + b) \mod \mathcal{D}$

Create a new matching relationship M':

$$M'[h(a), b] = \checkmark$$
 iff $\exists_{a \in \Sigma_T} M[a, b] = \checkmark$

Fact: If $M[a, b] \neq \checkmark$ then $Pr(M'[h(a), b] = \checkmark) \le 1/2$

Eliminate every non-occurrence of P in T with prob. $\geq 1/2$ and use PATTERN MATCHING WITH DON'T CARES to solve GPM for M'.

 $\tilde{\mathcal{O}}(\mathcal{D}\,n)$ rand. time algorithm for reporting variant of GPM.

Use 2-wise independent hash function $h: \Sigma_T \to [\mathcal{D}]$ $h(x) \approx (a \cdot x + b) \mod \mathcal{D}$

Create a new matching relationship M':

$$M'[h(a), b] = \checkmark$$
 iff $\exists_{a \in \Sigma_T} M[a, b] = \checkmark$

Fact: If $M[a, b] \neq \checkmark$ then $Pr(M'[h(a), b] = \checkmark) \le 1/2$

Eliminate every non-occurrence of P in T with prob. $\geq 1/2$ and use PATTERN MATCHING WITH DON'T CARES to solve GPM for M'.

 $\tilde{\mathcal{O}}(\mathcal{D}\,\textit{n})$ rand. time algorithm for reporting variant of GPM.

Use 2-wise independent hash function $h: \Sigma_T \to [\mathcal{D}]$ $h(x) \approx (a \cdot x + b) \mod \mathcal{D}$

Create a new matching relationship M':

$$M'[h(a), b] = \checkmark$$
 iff $\exists_{a \in \Sigma_T} M[a, b] = \checkmark$

Fact: If $M[a, b] \neq \checkmark$ then $Pr(M'[h(a), b] = \checkmark) \le 1/2$

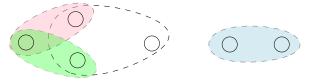
Eliminate every non-occurrence of P in T with prob. $\geq 1/2$ and use PATTERN MATCHING WITH DON'T CARES to solve GPM for M'.

 $\tilde{\mathcal{O}}(\mathcal{D}\,\textit{n})$ rand. time algorithm for reporting variant of GPM.

Discrepancy

Consider a family \mathcal{F} of z sets $S_i \subseteq U$, $i \in [z]$. We call a function $\chi: U \to \{-1, +1\}$. The *discrepancy* of a set S_i is defined as $\chi(S_i) = \sum_{u \in S_i} \chi(u)$.

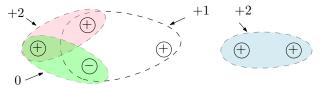
Goal: minimize $\max_{i \in [z]} |\chi(S_i)|$



Discrepancy

Consider a family \mathcal{F} of z sets $S_i \subseteq U$, $i \in [z]$. We call a function $\chi: U \to \{-1, +1\}$. The *discrepancy* of a set S_i is defined as $\chi(S_i) = \sum_{u \in S_i} \chi(u)$.

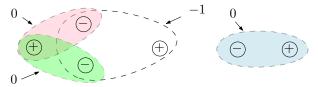
Goal: minimize $\max_{i \in [z]} |\chi(S_i)|$



Discrepancy

Consider a family \mathcal{F} of z sets $S_i \subseteq U$, $i \in [z]$. We call a function $\chi: U \to \{-1, +1\}$. The *discrepancy* of a set S_i is defined as $\chi(S_i) = \sum_{u \in S_i} \chi(u)$.

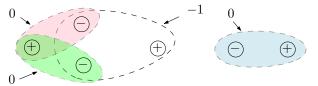
Goal: minimize $\max_{i \in [z]} |\chi(S_i)|$



Discrepancy

Consider a family \mathcal{F} of z sets $S_i \subseteq U$, $i \in [z]$. We call a function $\chi: U \to \{-1, +1\}$. The *discrepancy* of a set S_i is defined as $\chi(S_i) = \sum_{u \in S_i} \chi(u)$.

Goal: minimize $\max_{i \in [z]} |\chi(S_i)|$



Derandomization [Chazelle, Beck, Fiala]

Assign $\chi(u_1), \chi(u_2), \ldots$ without ever backtracking.

$$\varepsilon$$
 satisfies $\log \frac{1+\varepsilon}{1-\varepsilon} = \Theta(\sqrt{\log(z)/k})$. Minimize $G = \sum_{i \in [z]} G_i$ where:

$$G_i = (1+arepsilon)^{p_i} (1-arepsilon)^{n_i} + (1+arepsilon)^{n_i} (1-arepsilon)^{p_i}$$

To assign $\chi(u_j)$ compare G^+ and G^- (note: $G^+ + G^- = 2G$).

Technical details

- ullet compute arepsilon with fixed basic operations
- 2 use only addition and multiplication
- never operate on too small numbers
- o run the procedure efficiently

Derandomization [Chazelle, Beck, Fiala]

Assign $\chi(u_1), \chi(u_2), \ldots$ without ever backtracking.

$$\varepsilon$$
 satisfies $\log \frac{1+\varepsilon}{1-\varepsilon} = \Theta(\sqrt{\log(z)/k})$. Minimize $G = \sum_{i \in [z]} G_i$ where:

$$G_i = (1 + \varepsilon)^{p_i} (1 - \varepsilon)^{n_i} + (1 + \varepsilon)^{n_i} (1 - \varepsilon)^{p_i}$$

To assign $\chi(u_j)$ compare G^+ and G^- (note: $G^+ + G^- = 2G$).

Technical details:

- $oldsymbol{0}$ compute arepsilon with fixed basic operations
- use only addition and multiplication
- never operate on too small numbers
- o run the procedure efficiently

Derandomization [Chazelle, Beck, Fiala]

Assign $\chi(u_1), \chi(u_2), \ldots$ without ever backtracking.

$$\varepsilon$$
 satisfies $\log \frac{1+\varepsilon}{1-\varepsilon} = \Theta(\sqrt{\log(z)/k})$. Minimize $G = \sum_{i \in [z]} G_i$ where:

$$G_i = (1 + \varepsilon)^{p_i} (1 - \varepsilon)^{n_i} + (1 + \varepsilon)^{n_i} (1 - \varepsilon)^{p_i}$$

To assign $\chi(u_j)$ compare G^+ and G^- (note: $G^+ + G^- = 2G$).

Technical details:

- $oldsymbol{0}$ compute arepsilon with fixed basic operations
- use only addition and multiplication
- never operate on too small numbers
- un the procedure efficiently

Derandomization [Chazelle, Beck, Fiala]

Assign $\chi(u_1), \chi(u_2), \ldots$ without ever backtracking.

$$\varepsilon$$
 satisfies $\log \frac{1+\varepsilon}{1-\varepsilon} = \Theta(\sqrt{\log(z)/k})$. Minimize $G = \sum_{i \in [z]} G_i$ where:

$$G_i = (1+\varepsilon)^{p_i}(1-\varepsilon)^{n_i} + (1+\varepsilon)^{n_i}(1-\varepsilon)^{p_i}$$

To assign $\chi(u_j)$ compare G^+ and G^- (note: $G^+ + G^- = 2G$).

Technical details:

- $oldsymbol{0}$ compute arepsilon with fixed basic operations
- use only addition and multiplication
- never operate on too small numbers
- o run the procedure efficiently

Derandomization [Chazelle, Beck, Fiala]

Assign $\chi(u_1), \chi(u_2), \ldots$ without ever backtracking.

$$\varepsilon$$
 satisfies $\log \frac{1+\varepsilon}{1-\varepsilon} = \Theta(\sqrt{\log(z)/k})$. Minimize $G = \sum_{i \in [z]} G_i$ where:

$$G_i = (1+\varepsilon)^{p_i}(1-\varepsilon)^{n_i} + (1+\varepsilon)^{n_i}(1-\varepsilon)^{p_i}$$

To assign $\chi(u_j)$ compare G^+ and G^- (note: $G^+ + G^- = 2G$).

Technical details:

- $oldsymbol{0}$ compute arepsilon with fixed basic operations
- 2 use only addition and multiplication
- never operate on too small numbers
- run the procedure efficiently

Derandomization

Derandomization [Chazelle, Beck, Fiala]

Assign $\chi(u_1), \chi(u_2), \ldots$ without ever backtracking.

$$\varepsilon$$
 satisfies $\log \frac{1+\varepsilon}{1-\varepsilon} = \Theta(\sqrt{\log(z)/k})$. Minimize $G = \sum_{i \in [z]} G_i$ where:

$$G_i = (1 + \varepsilon)^{p_i} (1 - \varepsilon)^{n_i} + (1 + \varepsilon)^{n_i} (1 - \varepsilon)^{p_i}$$

To assign $\chi(u_j)$ compare G^+ and G^- (note: $G^+ + G^- = 2G$).

Technical details:

- ullet compute arepsilon with fixed basic operations
- 2 use only addition and multiplication
- never operate on too small numbers
- run the procedure efficiently

For a family of z sets of at most k elements we can find in deterministic $\mathcal{O}(zk\log z)$ time a colouring χ such that $\max_{i\in[z]}|\chi(S_i)|\leq \mathcal{O}(\sqrt{k\log z})$

Superimposed codes

Superimposed code

Let S_1, \ldots, S_z be subsets of a universe U. A family of bitstrings $\{C_u, u \in U\}$ of length ℓ with w ones, is called an $(\{S_i\}, \tau)$ -superimposed code if for every S_i and $u \notin S_i$ we have $|C_u - \bigcup_{v \in S_i} C_v| \ge \tau$.

Superimposed codes

Superimposed code

Let S_1, \ldots, S_z be subsets of a universe U. A family of bitstrings $\{C_u, u \in U\}$ of length ℓ with w ones, is called an $(\{S_i\}, \tau)$ -superimposed code if for every S_i and $u \notin S_i$ we have $|C_u - \bigcup_{v \in S_i} C_v| \ge \tau$.

Code for
$$S_1 = \{2, 4, 5\}, \tau = 2, \ell = 8, w = 5$$
:
 $C_1 = 01101110$
 $C_2 = 11110001$
 $C_3 = 11001010$
 $C_4 = 10110100$
 $C_5 = 01100101$
 $C_5 = 01100101$

Superimposed codes

Superimposed code

Let S_1, \ldots, S_z be subsets of a universe U. A family of bitstrings $\{C_u, u \in U\}$ of length ℓ with w ones, is called an $(\{S_i\}, \tau)$ -superimposed code if for every S_i and $u \notin S_i$ we have $|C_u - \bigcup_{v \in S_i} C_v| \ge \tau$.

Code for
$$S_1=\{2,4,5\}, \tau=2, \ell=8, w=5$$
:
$$C_1=01101110$$

$$C_2=11110001$$

$$C_3=11001010$$

$$C_4=10110100$$

$$C_5=01100101$$

$$C_0$$

[FOCS '97, Indyk]

Is there a deterministic algorithm computing in $\tilde{\mathcal{O}}((zk)/\varepsilon^{\mathcal{O}(1)})$ -time an $(\{S_i\}, (1-\varepsilon)w)$ -superimposed code with $\ell = \tilde{\mathcal{O}}(k/\varepsilon^{\mathcal{O}(1)})$?

Our approach:

- recursively partition the universe using discrepancy minimization \rightarrow after $\log k + \mathcal{O}(\log^* k)$ steps, parts $X_c \colon |X_c \cap S_i| \le \mathcal{O}(\log z)$
- ② combine it with a family of hash functions $h_p(u) = \text{POL}(u) \mod p$ for all $\Theta(\frac{2^d}{d})$ irreducible polynomials $p \in \mathcal{P}_d$ of degree $d = \Theta(\log \frac{t \log z}{\varepsilon})$

Our approach:

- recursively partition the universe using discrepancy minimization \rightarrow after $\log k + \mathcal{O}(\log^* k)$ steps, parts $X_c \colon |X_c \cap S_i| \le \mathcal{O}(\log z)$
- ② combine it with a family of hash functions $h_p(u) = \text{POL}(u) \mod p$ for all $\Theta(\frac{2^d}{d})$ irreducible polynomials $p \in \mathcal{P}_d$ of degree $d = \Theta(\log \frac{t \log z}{\varepsilon})$

Our approach:

- recursively partition the universe using discrepancy minimization \rightarrow after $\log k + \mathcal{O}(\log^* k)$ steps, parts $X_c \colon |X_c \cap S_i| \le \mathcal{O}(\log z)$
- ② combine it with a family of hash functions $h_p(u) = \text{POL}(u) \mod p$ for all $\Theta(\frac{2^d}{d})$ irreducible polynomials $p \in \mathcal{P}_d$ of degree $d = \Theta(\log \frac{t \log z}{\varepsilon})$

Our approach:

- recursively partition the universe using discrepancy minimization \rightarrow after $\log k + \mathcal{O}(\log^* k)$ steps, parts $X_c \colon |X_c \cap S_i| \le \mathcal{O}(\log z)$
- ② combine it with a family of hash functions $h_p(u) = \text{POL}(u) \mod p$ for all $\Theta(\frac{2^d}{d})$ irreducible polynomials $p \in \mathcal{P}_d$ of degree $d = \Theta(\log \frac{t \log z}{\varepsilon})$

Application of superimposed codes

Deterministic $(1-\varepsilon)$ -approximation of counting variant of GPM

Construct $(\{S_b\}, (1-\varepsilon)w)$ -superimposed code for universe Σ_T and sets S_b with $\ell = \tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D})$.

Create:

- ullet text $T'[1,n\ell]$ by replacing characters from T with their codes
- pattern $P'[1, m\ell]$ where every b from P is replaced with $\bigcup_{a \in S_b} C_a$

Replace 1's in P' with ? and run $\tilde{\mathcal{O}}(n\ell)$ -time algorithm for counting mismatches between T' and P'.

Deterministic $(1-\varepsilon)$ -approximation in $\tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D}\,n)$ time.

Application of superimposed codes

Deterministic $(1-\varepsilon)$ -approximation of counting variant of GPM

Construct $(\{S_b\}, (1-\varepsilon)w)$ -superimposed code for universe Σ_T and sets S_b with $\ell = \tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D})$.

Create:

- ullet text $T'[1,n\ell]$ by replacing characters from T with their codes
- pattern $P'[1, m\ell]$ where every b from P is replaced with $\bigcup_{a \in S_b} C_a$

Replace 1's in P' with ? and run $\tilde{\mathcal{O}}(n\ell)$ -time algorithm for counting mismatches between T' and P'.

Deterministic $(1-\varepsilon)$ -approximation in $\tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D}\,n)$ time.

Application of superimposed codes

Deterministic $(1-\varepsilon)$ -approximation of counting variant of GPM

Construct $(\{S_b\}, (1-\varepsilon)w)$ -superimposed code for universe Σ_T and sets S_b with $\ell = \tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D})$.

Create:

- ullet text $T'[1,n\ell]$ by replacing characters from T with their codes
- pattern $P'[1, m\ell]$ where every b from P is replaced with $\bigcup_{a \in S_b} C_a$

Replace 1's in P' with ? and run $\tilde{\mathcal{O}}(n\ell)$ -time algorithm for counting mismatches between T' and P'.

Deterministic $(1-\varepsilon)$ -approximation in $\tilde{\mathcal{O}}(\varepsilon^{-2}\mathcal{D}\,\mathbf{n})$ time.

Let b be a parameter, $S=\{x_1,x_2,\ldots,x_\ell\}$ be a sequence of integers, and $s=\sum_{i\in [\ell]}x_i$. Then S can be partitioned into $\mathcal{O}(s/b+1)$ ranges S_1,S_2,\ldots such that, for every i, either $|S_i|=1$ or $\sum_{x\in S_i}x\leq b$.

Approach

- ullet divide characters from $\Sigma_{\mathcal{T}}$ based on their counts
- use Subset Pattern Matching and Pattern Matching with Don't Cares

Det. algorithm for counting variant of GPM in $\mathcal{O}(n\sqrt{\mathcal{I}\log m} + n\log n)$.

Let b be a parameter, $S=\{x_1,x_2,\ldots,x_\ell\}$ be a sequence of integers, and $s=\sum_{i\in [\ell]}x_i$. Then S can be partitioned into $\mathcal{O}(s/b+1)$ ranges S_1,S_2,\ldots such that, for every i, either $|S_i|=1$ or $\sum_{x\in S_i}x\leq b$.

Approach:

- ullet divide characters from $\Sigma_{\mathcal{T}}$ based on their counts
- use Subset Pattern Matching and Pattern Matching with Don't Cares

Det. algorithm for counting variant of GPM in $\mathcal{O}(n\sqrt{\mathcal{I}\log m} + n\log n)$.

Let b be a parameter, $S=\{x_1,x_2,\ldots,x_\ell\}$ be a sequence of integers, and $s=\sum_{i\in [\ell]}x_i$. Then S can be partitioned into $\mathcal{O}(s/b+1)$ ranges S_1,S_2,\ldots such that, for every i, either $|S_i|=1$ or $\sum_{x\in S_i}x\leq b$.

Approach:

- ullet divide characters from $\Sigma_{\mathcal{T}}$ based on their counts
- use Subset Pattern Matching and Pattern Matching with Don't Cares

Det. algorithm for counting variant of GPM in $\mathcal{O}(n\sqrt{\mathcal{I}\log m} + n\log n)$.

Let b be a parameter, $S=\{x_1,x_2,\ldots,x_\ell\}$ be a sequence of integers, and $s=\sum_{i\in [\ell]}x_i$. Then S can be partitioned into $\mathcal{O}(s/b+1)$ ranges S_1,S_2,\ldots such that, for every i, either $|S_i|=1$ or $\sum_{x\in S_i}x\leq b$.

Approach:

- ullet divide characters from $\Sigma_{\mathcal{T}}$ based on their counts
- use Subset Pattern Matching and Pattern Matching with Don't Cares

Det. algorithm for counting variant of GPM in $\mathcal{O}(n\sqrt{\mathcal{I}\,\log m} + n\log n)$.