Computing Quartet Distance IS Equivalent to Counting 4-Cycles

Bartłomiej Dudek* and Paweł Gawrychowski

University of Wrocław, Poland

* Supported by the National Science Centre, Poland, under grant number 2017/27/N/ST6/02719.

History of quartet distance

Year & Venue	Authors	Runtime	Arbitrary degree
	Folklore	$\mathcal{O}(n^4)$	\checkmark
SystBiol 1993	Steel and Penny	$\mathcal{O}(n^3)$	×
SODA 2000	Bryant et al.	$\mathcal{O}(n^2)$	×
ISAAC 2001	Brodal et al.	$\mathcal{O}(n\log^2 n)$	×
ISAAC 2004	Brodal et al.	$\mathcal{O}(n\log n)$	×
APBC 2007	Stissing et al.	$\mathcal{O}(d^9n\log n)$	\checkmark
AlMoB 2011	Nielsen et al.	$\mathcal{O}(n^{2.688})$	\checkmark
SODA 2013	Brodal et al.	$\mathcal{O}(dn\log n)$	\checkmark
Our contribution			

 \implies probably no $\mathcal{O}(n^{4/3-\varepsilon})$ -time algorithm for QD

2. Counting 4-cycles in simple graphs in $\mathcal{O}(m^{\delta})$ time gives $\tilde{\mathcal{O}}(n^{\delta})$ -time algorithm for quartet distance.

 \implies an $\mathcal{O}(n^{1.48})$ -time algorithm for QD

Two types of 4-edge shapes

Shapes counted in linear time: \leqslant, \leq, \leq and \leq :

$$\# \leqslant = \sum_{v \in V_1} \begin{pmatrix} \deg(v) \\ 4 \end{pmatrix}$$
$$\# \leqslant = \sum_{(u,v) \in E} \binom{d(u) - 1}{2} (d(v) - 1)$$

STOC 2019

Counting 4-cycles

Shapes equivalent to 4-cycles: $\leq, \leq, \leq, \leq, \leq$

 $\# \ge = \ldots - 2 \cdot \# \boxtimes$ $\# \equiv = \ldots + 1 \cdot \# \boxtimes$

simple, undirected graph Input: number of simple cycles of length 4 Output:

#X (bipartite graphs) \rightarrow quartet distance

 $\begin{pmatrix} \# \text{ of leaves} \\ 4 \end{pmatrix} - \mathsf{QD}(T_1, T_2) = (\# \swarrow) + (\# \nearrow) + (\# \swarrow) + (\# \swarrow) + (\# \boxtimes) +$ $QD(T_1, T_2) = \ldots + (\# \boxtimes)$

History of 2k-cycles

Year & Venue Authors Runtime $\mathcal{O}(n^3)$ Folklore $|m \ge 100kn^{1+1/k}|$ JCombTheory 1974 Bondy and Simonovits Algorithmica 1997 Alon et al. $\mathcal{O}(n^{\omega})$ $\mathcal{O}(m^{4/3})$

JDiscrMath 1997 Yuster and Zwick SODA 2015 Vassilevska Williams et al. STOC 2017 Dahlgaard et al.

Variant \implies exists 2k-cycle count 4-cycles find a 4-cycle find a 2k-cycle $\mathcal{O}(m^{1.48})$ count 4-cycles $\mathcal{O}(m^{2k/(k+1)})$ find a 2k-cycle

Conjecture [Dahlgaard et al., STOC'17]

 $\mathcal{O}(n^2)$

For every $\varepsilon > 0$ no algorithm detects 4-cycles in $\mathcal{O}(m^{4/3-\varepsilon})$ time.

Quartet distance $\rightarrow (\# \equiv)$ (multigraphs)

Shared $\rightarrow \langle : \mathcal{O}(n \log n) \text{ algorithm by Brodal et al. [SODA'13]}.$ Shared X: consider all pairs (c_1, c_2) of central nodes and count 4-matchings \equiv .

Counting all shared $X \implies$ many instances of $(\# \equiv)$ in multigraphs of total size $\mathcal{O}(n)$.

LAT_EX TikZposter