
LATEX TikZposter

Sorting Signed Permutations by Reversals
in Nearly-Linear Time

Bart lomiej Dudek1, Pawe l Gawrychowski1, and Tatiana Starikovskaya2

1University of Wroc law, Poland 2École normale supérieure, PSL Research University, France

Sorting Signed Permutations by Reversals
in Nearly-Linear Time

Bart lomiej Dudek1, Pawe l Gawrychowski1, and Tatiana Starikovskaya2

1University of Wroc law, Poland 2École normale supérieure, PSL Research University, France

Sorting Signed Permutation by Reversals

Input: Signed permuation π on n elements
Output: Shortest sequence of reversals sorting π

4 5 -2 -6 3 1

4 5 -2 -1 -3 6

1 2 -5 -4 -3 6

1 2 3 4 5 6

History of calculating the shortest sequence of reversals

Early ’90s: upper and lower bounds, approximation.

Year Authors Runtime

1995 Hannenhalli and Pevzner O(n4)
1996 Berman and Hannenhalli O(n2α(n))
1999 Kaplan, Shamir, Tarjan O(n2)
2001 Bader, Moret, Yan O(n) - only the length
2005 Kaplan and Verbin O(n

√
n log n) rand.

2007 Tannier, Bergeron, Sagot O(n
√
n log n)

2006 Han O(n
√
n)

2024 this work O(n log2 n/ log log n)

Caprara 1997: sorting by unsigned reversals is NP-hard.

Some insights from Hannenhalli-Pevzner theory

Perform oriented reversals that create a new adjacency : i, i + 1 or −(i + 1),−i:

5 -6 2 -4 3 -1 7 → 5 1 -3 4 -2 6 7

5 -6 2 -4 3 -1 7 → -2 6 -5 -4 3 1 7

If such a reversal does not exist: run O(n)-time preprocessing and later focus only on
finding the oriented reversals [Kaplan, Shamir, Tarjan ’99].

Interface of Tannier, Bergeron and Sagot

Maintain π ∈ Sn and a set V ⊆ [n] under the following operations:

1. query for πi or π−1
i , (splay tree+ reverse flag)

2. apply to π a signed reversal of a given interval,

3. find i ∈ V such that i and i + 1 have different signs in π,

4. remove an element from V .

Note: Operations 3 and 4 were previously implemented in O(
√
n) time.

Red-blue graph

For permutation π = (0,−2,−5, 1,−4, 6,−3, 7) add blue and red edges as in the example:

0 2 5 1 4 6 3 7

0′ 2′ 5′ 1′ 4′ 6′ 3′ 7′

which turns into the following graph after the reversal of interval [2, 4]:

0 2 4 1 5 6 3 7

0′ 2′ 4′ 1′ 5′ 6′ 3′ 7′

Properties of the graph

Node i is in the blue component of 0 iff i has the same sign in π as in π0, so:

Corollary

The endpoints of a red edge i− (i+ 1)/(i+ 1)′ are in distinct blue components iff i and
i + 1 have different signs in π.

We need to implement the following operations:

Permutation

3. find i ∈ V s.t. i and i + 1 have different
signs in π,

4. remove an element from V .

Red-blue graph

3. find a red edge connecting distinct blue
components,

4. remove a red edge.

Reformulation of the problem

New goal

Find a red edge connecting distinct blue components under insertions and deletions of
blue edges and deletions of red edges.

Put weights on edges:

• 0 on blue edges

• i on i-th red edge 5

3

7

000 0 0
If the graph is connected:
=⇒ its MST has exactly one red edge
=⇒ weight of MST gives the index of the red edge.

Use algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized O(log4 n)
time.

=⇒ O(n log4 n) total time.

Faster approach

Instead of MST: maintain a spanning forest of the graph on blue and red edges in a
link-cut tree in amortized O(log2 n) time using a data structure for fully-dynamic graph
connectivity.

How to find a red edge connecting blue components of 0 and 0′?

Recall:

1. Node i is in the blue component of 0 iff i has the same sign in π as in π0.

2. We maintain π under signed reversals on a splay tree.

Solution: binary search over the path connecting 0 and 0′!

=⇒ O(n log2 n) total time.

Even faster approach

In the previous approach:

1.O(n log n) queries about the sign of i in π

2.O(n) updates

Idea: maintain shortcuts of length ε log log n up the splay trees

1.O(log n/ log log n) time per query

2.O(log1+ε n) time per update

=⇒ O(n log2 n/ log log n) total time for all operations on splay trees.

For the graph: use dynamic connectivity structure by Wulf-Nilsen: O(log2 n/ log log n)
amortized time per each of O(n) operations.

=⇒ O(n log2 n/ log log n) total time.

-5 4 -3 21 2 3 4 51

Brassica oleracea (cabbage) Brassica campestris (turnip)

Cabbage & turnip explained:

Image authors: wirestock at Freepik and thebittenword.com at Wikipedia


