

SORTING SIGNED PERMUTATIONS BY REVERSALS IN NEARLY-LINEAR TIME Bartłomiej Dudek¹, Paweł Gawrychowski¹, and Tatiana Starikovskaya² ¹University of Wrocław, Poland ²École normale supérieure, PSL Research University, France

Sorting Signed Permutation by Reversals

Input: Signed permutaion π on n elements Output: Shortest sequence of reversals sorting π 4 5 -2 -6 3 1

4	5	-2	-1	-3	6	
1	2	-5	-4	-3	6	
-1	0				0	

Properties of the graph

Node *i* is in the blue component of 0 iff *i* has the same sign in π as in π_0 , so:

Corollary

The endpoints of a red edge i - (i+1)/(i+1)' are in distinct blue components iff i and i+1 have different signs in π .

We need to implement the following operations:

Permutation

Red-blue graph

3 42 5

History of calculating the shortest sequence of reversals

Early '90s: upper and lower bounds, approximation.

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2 lpha(n))$
1999	Kaplan, Shamir, Tarjan	${\cal O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ - only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ rand.
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n\log^2 n / \log\log n)$

Caprara 1997: sorting by unsigned reversals is NP-hard.

Some insights from Hannenhalli-Pevzner theory

Perform oriented reversals that create a new *adjacency*: i, i + 1 or -(i + 1), -i:

3. find $i \in V$ s.t. i and i + 1 have different 3. find a red edge connecting distinct blue signs in π , components, 4. remove an element from V. 4. remove a red edge.

Reformulation of the problem

New goal

Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

Put weights on edges:

• 0 on blue edges • *i* on *i*-th red edge

If the graph is connected: \implies its MST has exactly one red edge \implies weight of MST gives the index of the red edge. Use algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized $\mathcal{O}(\log^4 n)$ time.

 $\implies \mathcal{O}(n \log^4 n)$ total time.

$5 - 6 \ 2 - 4 \ 3 - 1 \ 7 \rightarrow 5 \ 1 - 3 \ 4 \ - 2 \ 6 \ 7$

$5 - 6 \ 2 - 4 \ 3 - 1 \ 7 \rightarrow -2 \ 6 \ -5 \ -4 \ 3 \ 1 \ 7$

If such a reversal does not exist: run $\mathcal{O}(n)$ -time preprocessing and later focus only on finding the oriented reversals [Kaplan, Shamir, Tarjan '99].

Interface of Tannier, Bergeron and Sagot

Maintain $\pi \in S_n$ and a set $V \subseteq [n]$ under the following operations: 1. query for π_i or π_i^{-1} , (splay tree+ reverse flag)

2. apply to π a signed reversal of a given interval,

3. find $i \in V$ such that i and i + 1 have different signs in π ,

4. remove an element from V.

Note: Operations 3 and 4 were previously implemented in $\mathcal{O}(\sqrt{n})$ time.

Red-blue graph

For permutation $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$ add blue and red edges as in the example:

Faster approach

Instead of MST: maintain a spanning forest of the graph on blue and red edges in a link-cut tree in amortized $\mathcal{O}(\log^2 n)$ time using a data structure for fully-dynamic graph connectivity.

How to find a red edge connecting blue components of 0 and 0'?

Recall:

1. Node i is in the blue component of 0 iff i has the same sign in π as in π_0 . 2. We maintain π under signed reversals on a splay tree.

Solution: binary search over the path connecting 0 and 0'!

 $\implies \mathcal{O}(n \log^2 n)$ total time.

Even faster approach

In the previous approach:

1. $\mathcal{O}(n \log n)$ queries about the sign of *i* in π 2. $\mathcal{O}(n)$ updates

which turns into the following graph after the reversal of interval [2, 4]:

Idea: maintain shortcuts of length $\varepsilon \log \log n$ up the splay trees

- 1. $\mathcal{O}(\log n / \log \log n)$ time per query
- 2. $\mathcal{O}(\log^{1+\varepsilon} n)$ time per update
- $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time for all operations on splay trees.
- For the graph: use dynamic connectivity structure by Wulf-Nilsen: $\mathcal{O}(\log^2 n / \log \log n)$ amortized time per each of $\mathcal{O}(n)$ operations.

 $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time.

Image authors: wirestock at Freepik and thebittenword.com at Wikipedia