Sorting Signed Permutations by Reversals in Nearly-Linear Time

Bartłomiej Dudek¹ Paweł Gawrychowski¹ Tatiana Starikovskaya²

¹University of Wrocław, Poland ²DIENS, École normale supérieure, PSL Research University, France

$$4$$
 5 -2 -6 3 1

$$4 \ 5 \ -2 \ -6 \ 3 \ 1$$

Transforming cabbage into turnip

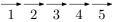
In the late 80s, Palmer et al. discovered that cabbage and turnip have almost identical gene sequence

Brassica oleracea (cabbage)

Brassica campestris (turnip)

Transforming cabbage into turnip

In the late 80s, Palmer et al. discovered that cabbage and turnip have almost identical gene sequence, but different gene order.



Brassica oleracea (cabbage)

Brassica campestris (turnip)

Early 90s: upper and lower bounds, approximation

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2 \alpha(n))$
1999	Kaplan, Shamir, Tarjan	$\mathcal{O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ empirical
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n\log^2 n/\log\log n)$

Early 90s: upper and lower bounds, approximation

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2\alpha(n))$
1999	Kaplan, Shamir, Tarjan	$\mathcal{O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ empirical
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n\log^2 n/\log\log n)$

Early 90s: upper and lower bounds, approximation

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2 \alpha(n))$
1999	Kaplan, Shamir, Tarjan	$\mathcal{O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ empirical
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n\log^2 n/\log\log n)$

Early 90s: upper and lower bounds, approximation

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2\alpha(n))$
1999	Kaplan, Shamir, Tarjan	$\mathcal{O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ empirical
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n\log^2 n/\log\log n)$

Early 90s: upper and lower bounds, approximation

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2\alpha(n))$
1999	Kaplan, Shamir, Tarjan	$\mathcal{O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ empirical
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n\log^2 n/\log\log n)$

Early 90s: upper and lower bounds, approximation

Year	Authors	Runtime
1995	Hannenhalli and Pevzner	$\mathcal{O}(n^4)$
1996	Berman and Hannenhalli	$\mathcal{O}(n^2\alpha(n))$
1999	Kaplan, Shamir, Tarjan	$\mathcal{O}(n^2)$
2001	Bader, Moret, Yan	$\mathcal{O}(n)$ only the length
2005	Kaplan and Verbin	$\mathcal{O}(n\sqrt{n\log n})$ empirical
2007	Tannier, Bergeron, Sagot	$\mathcal{O}(n\sqrt{n\log n})$
2006	Han	$\mathcal{O}(n\sqrt{n})$
2024	this work	$\mathcal{O}(n \log^2 n / \log \log n)$

The goal is to perform oriented reversals that create a new *adjacency*: i, i + 1 or -(i + 1), -i, e.g.:

The goal is to perform oriented reversals that create a new *adjacency*: i, i + 1 or -(i + 1), -i, e.g.:

5	-6	2	-4	3	-1	7	\rightarrow	5	1	-3	4	-2	6	7
5	-6	2	-4	3	-1	7	\rightarrow	-2	6	-5	-4	3	1	7

The goal is to perform oriented reversals that create a new *adjacency*: i, i + 1 or -(i + 1), -i, e.g.:

5	-6	2	-4	3	-1	7	\rightarrow	5	1	-3	4	-2	6	7
5	-6	2	-4	3	-1	7	\rightarrow	-2	6	-5	-4	3	1	7

The goal is to perform oriented reversals that create a new *adjacency*: i, i + 1 or -(i + 1), -i, e.g.:

5	-6	2	-4	3	-1	7	\rightarrow	5	1	-3	4	-2	6	7
5	-6	2	-4	3	-1	7	\rightarrow	-2	6	-5	-4	3	1	7

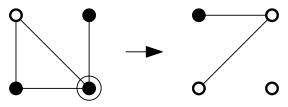
Operations on a black-white graph

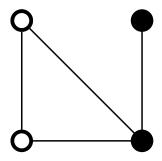
Input: Graph with nodes colored black or white Output: The shortest sequence of toggle operations that transform it to an independent set of white nodes

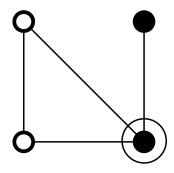
(for black v) toggle(v): negate color of nodes from $N^+(v)$ and edges between them

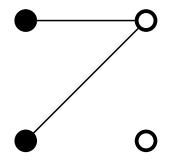
Operations on a black-white graph

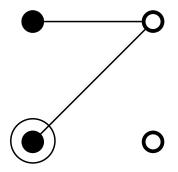
Input: Graph with nodes colored black or white


Output: The shortest sequence of toggle operations that transform it to an independent set of white nodes

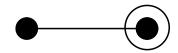

(for black *v*) toggle(*v*): negate color of nodes from $N^+(v)$ and edges between them

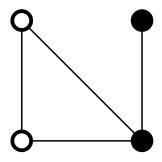

Operations on a black-white graph

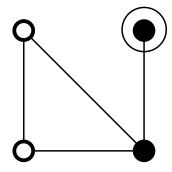

- Input: Graph with nodes colored black or white
- Output: The shortest sequence of toggle operations that transform it to an independent set of white nodes


(for black *v*) toggle(*v*): negate color of nodes from $N^+(v)$ and edges between them

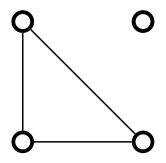





0 O


0 O

0 0 0 0


But sometimes...

But sometimes...

But sometimes...

Algorithm of Tannier, Bergeron and Sagot

1: function PROCESS(graph G with no non-singleton all-white connected components) 2: S := ()G' := G3. while there is a black node v in G' do 4. apply toggle(v) to G'5: S := S.v6: 7: while there is a non-singleton all-white connected component in G/S do U := set of nodes from non-singleton all-white connected components in G/S8. $S_1, S_2 := S$ for the longest S_1 s.t. G/S_1 has a node of U in a not-all-white component 9: $G_1 := G/S_1$ 10. 11. $S_3 := ()$ while there is a black node v from U in G_1 do 12: apply toggle(v) to G_1 13 14: $S_3 := S_3, v$ if $S_2[1]$ is white in G_1 then 15 remove the last element w from S_3 16: undo toggle(w) in G_1 17: $S := S_1, S_3, S_2$ 18: 19 return S

We need to efficiently maintain $\pi \in S_n$ and a set $V \subseteq [n]$ under the following operations:

• query for π_i or π_i^{-1} ,

 $\mathcal{O}(\log n)$ time: splay tree + reverse flag

- ② apply to π a signed reversal of a given interval,
- ③ find $i \in V$ such that *i* and i + 1 have different signs in π ,
- remove an element from V.

We need to efficiently maintain $\pi \in S_n$ and a set $V \subseteq [n]$ under the following operations:

- query for π_i or π_i^{-1} ,
- 2 apply to π a signed reversal of a given interval,
- ③ find $i \in V$ such that i and i + 1 have different signs in π ,
- I remove an element from V.

We need to efficiently maintain $\pi \in S_n$ and a set $V \subseteq [n]$ under the following operations:

• query for π_i or π_i^{-1} ,

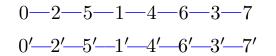
 $\mathcal{O}(\log n)$ time: splay tree + reverse flag

- 2 apply to π a signed reversal of a given interval,
- ③ find $i \in V$ such that *i* and i + 1 have different signs in π ,
- I remove an element from V.

We need to efficiently maintain $\pi \in S_n$ and a set $V \subseteq [n]$ under the following operations:

- query for π_i or π_i^{-1} ,
- 2 apply to π a signed reversal of a given interval,
- **③** find $i \in V$ such that *i* and i + 1 have different signs in π ,
- remove an element from V.

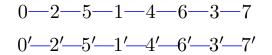
Interface of Tannier, Bergeron and Sagot

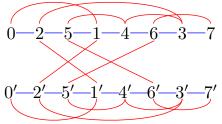

We need to efficiently maintain $\pi \in S_n$ and a set $V \subseteq [n]$ under the following operations:

- query for π_i or π_i^{-1} ,
- 2 apply to π a signed reversal of a given interval,
- **③** find $i \in V$ such that *i* and i + 1 have different signs in π ,
- remove an element from V.

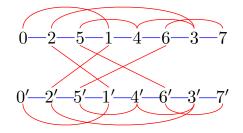
Operations 3 and 4 were previously implemented in $\mathcal{O}(\sqrt{n})$ time.

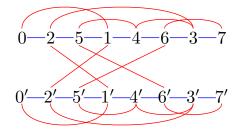
Red-blue graph

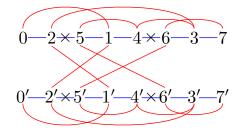

For permutation $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$ add the following nodes and blue edges:

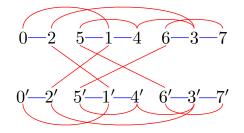

Add red edges $\{i, (i + 1)\}$ and $\{i', (i + 1)'\}$ if *i* and i + 1 have the same sign in π and $\{i, (i + 1)'\}$ and $\{i', (i + 1)\}$ otherwise.

Red-blue graph

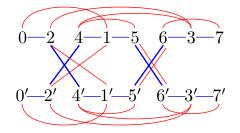

For permutation $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$ add the following nodes and blue edges:

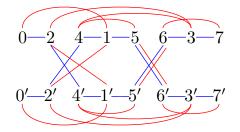

Add red edges $\{i, (i + 1)\}$ and $\{i', (i + 1)'\}$ if *i* and i + 1 have the same sign in π and $\{i, (i + 1)'\}$ and $\{i', (i + 1)\}$ otherwise.

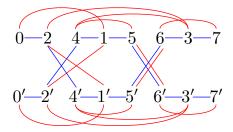

Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2,4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:


Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2, 4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:

Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2, 4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:

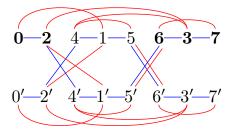

Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2, 4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:


Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2, 4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:


Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2, 4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:

Signed reversal of an interval can be simulated by reattaching 4 blue edges, e.g. consider reversing [2, 4] on $\pi = (0, -2, -5, 1, -4, 6, -3, 7)$:

Properties of the graph

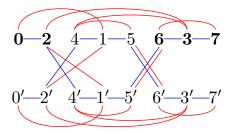

Property

Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .

Corollary

The endpoints of a red edge i - (i + 1)/(i + 1)' are in distinct blue components iff *i* and i + 1 have different signs in π .

Properties of the graph


Property

Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .

Corollary

The endpoints of a red edge i - (i + 1)/(i + 1)' are in distinct blue components iff *i* and i + 1 have different signs in π .

Properties of the graph

Property

Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .

Corollary

The endpoints of a red edge i - (i + 1)/(i + 1)' are in distinct blue components iff *i* and i + 1 have different signs in π .

Recall

We need to implement the following operations:

If ind *i* ∈ *V* such that *i* and *i* + 1 have different signs in π,
remove an element from *V*.

In our red-blue graph they translate to:

Ind a red edge connecting distinct blue components,

remove a red edge.

Recall

We need to implement the following operations:

ind *i* ∈ *V* such that *i* and *i* + 1 have different signs in π ,
remove an element from *V*.

In our red-blue graph they translate to:

find a red edge connecting distinct blue components,remove a red edge.

Recall

We need to implement the following operations:

ind *i* ∈ *V* such that *i* and *i* + 1 have different signs in π ,
remove an element from *V*.

In our red-blue graph they translate to:

- Ind a red edge connecting distinct blue components,
- remove a red edge.

New goal

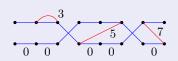
Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

Algorithm

Put weights on edges:

- 0 on blue edges
- i on i-th red edge
- If the graph is connected:
- \implies its MST has exactly one red edge
- \implies weight of MST gives the index of the red edge.

Use the algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized $O(\log^4 n)$ time.


New goal

Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

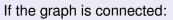
Algorithm

Put weights on edges:

- o on blue edges
- i on i-th red edge

If the graph is connected: \implies its MST has exactly one red edge \implies weight of MST gives the index of the red edge. Jse the algorithm by Holm, Lichtenberg and Thorup for dyr

in amortized $\mathcal{O}(\log^4 n)$ time


New goal

Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

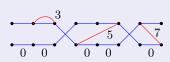
Algorithm

Put weights on edges:

- o on blue edges
- i on i-th red edge

 \implies its MST has exactly one red edge

⇒ weight of MST gives the index of the red edge. Use the algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized $\mathcal{O}(\log^4 n)$ time.


New goal

Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

Algorithm

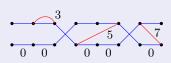
Put weights on edges:

- o on blue edges
- i on i-th red edge

If the graph is connected:

- \implies its MST has exactly one red edge
- \implies weight of MST gives the index of the red edge.

Use the algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized $\mathcal{O}(\log^4 n)$ time.


New goal

Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

Algorithm

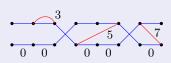
Put weights on edges:

- o on blue edges
- i on i-th red edge

If the graph is connected:

- \implies its MST has exactly one red edge
- \implies weight of MST gives the index of the red edge.

Use the algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized $O(\log^4 n)$ time.


New goal

Find a red edge connecting distinct blue components under insertions and deletions of blue edges and deletions of red edges.

Algorithm

Put weights on edges:

- o on blue edges
- i on i-th red edge

If the graph is connected:

- \implies its MST has exactly one red edge
- \implies weight of MST gives the index of the red edge.

Use the algorithm by Holm, Lichtenberg and Thorup for dynamic MST in amortized $O(\log^4 n)$ time.

$$\Rightarrow \mathcal{O}(n \log^4 n)$$
 total time.

Instead of MST: maintain a spanning forest of the graph on blue and red edges in a link-cut tree in amortized $O(\log^2 n)$ time (using a data structure for fully-dynamic graph connectivity).

How to find a red edge connecting blue components of 0 and 0'?

Recall:

- Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .
- ② We maintain π under signed reversals on a splay tree.

Solution: binary search over the path connecting 0 and 0'!

Instead of MST: maintain a spanning forest of the graph on blue and red edges in a link-cut tree in amortized $O(\log^2 n)$ time (using a data structure for fully-dynamic graph connectivity).

How to find a red edge connecting blue components of 0 and 0'?

Recall:

- Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .
- **2** We maintain π under signed reversals on a splay tree.

Solution: binary search over the path connecting 0 and 0'!

Instead of MST: maintain a spanning forest of the graph on blue and red edges in a link-cut tree in amortized $O(\log^2 n)$ time (using a data structure for fully-dynamic graph connectivity).

How to find a red edge connecting blue components of 0 and 0'?

Recall:

- Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .
- 2 We maintain π under signed reversals on a splay tree.

Solution: binary search over the path connecting 0 and 0'!

Instead of MST: maintain a spanning forest of the graph on blue and red edges in a link-cut tree in amortized $O(\log^2 n)$ time (using a data structure for fully-dynamic graph connectivity).

How to find a red edge connecting blue components of 0 and 0'?

Recall:

- Node *i* is in the blue component of 0 if and only if *i* has the same sign in π as in π_0 .
- 2 We maintain π under signed reversals on a splay tree.

Solution: binary search over the path connecting 0 and 0'!

Even faster approach

In the previous approach:

• $\mathcal{O}(n \log n)$ queries about the sign of *i* in π

2 $\mathcal{O}(n)$ updates

Idea: maintain shortcuts of length $\varepsilon \log \log n$ up the splay trees

- $\mathcal{O}(\log n / \log \log n)$ time per query
- 2 $\mathcal{O}(\log^{1+\varepsilon} n)$ time per update

 $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time for all operations on splay trees.

For the graph: use dynamic connectivity structure by Wulff-Nilsen: $\mathcal{O}(\log^2 n / \log \log n)$ amortized time per each of $\mathcal{O}(n)$ operations.

 $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time.

Even faster approach

In the previous approach:

- $\mathcal{O}(n \log n)$ queries about the sign of *i* in π
- **2** $\mathcal{O}(n)$ updates

Idea: maintain shortcuts of length $\varepsilon \log \log n$ up the splay trees

- $\mathcal{O}(\log n / \log \log n)$ time per query
- 2 $\mathcal{O}(\log^{1+\varepsilon} n)$ time per update
- $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time for all operations on splay trees.

For the graph: use dynamic connectivity structure by Wulff-Nilsen: $\mathcal{O}(\log^2 n / \log \log n)$ amortized time per each of $\mathcal{O}(n)$ operations.

 $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time.

Even faster approach

In the previous approach:

- $\mathcal{O}(n \log n)$ queries about the sign of *i* in π
- 2 $\mathcal{O}(n)$ updates

Idea: maintain shortcuts of length $\varepsilon \log \log n$ up the splay trees

- $\mathcal{O}(\log n / \log \log n)$ time per query
- 2 $\mathcal{O}(\log^{1+\varepsilon} n)$ time per update
- $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time for all operations on splay trees.

For the graph: use dynamic connectivity structure by Wulff-Nilsen: $\mathcal{O}(\log^2 n / \log \log n)$ amortized time per each of $\mathcal{O}(n)$ operations.

 $\implies \mathcal{O}(n \log^2 n / \log \log n)$ total time.

Can we improve the time complexity even further?

– Our solution runs in $\mathcal{O}(n \log^2 n / \log \log n)$ but counting the numer of reversals takes $\mathcal{O}(n)$ time

- Swenson [arXiv '24]: $\mathcal{O}(n \log n)$

② Does randomization help?

- Can we utilize the $O(n \log n \log^2 \log n)$ time algorithm for dynamic connectivity by Huang, Huang, Kopelowitz, Pettie, and Thorup?

Can we improve the time complexity even further?
 – Our solution runs in O(n log² n/ log log n) but counting the numer of reversals takes O(n) time

- Swenson [arXiv '24]: $\mathcal{O}(n \log n)$

② Does randomization help?

- Can we utilize the $O(n \log n \log^2 \log n)$ time algorithm for dynamic connectivity by Huang, Huang, Kopelowitz, Pettie, and Thorup?

Can we improve the time complexity even further?

 Our solution runs in O(n log² n/ log log n) but counting the numer of reversals takes O(n) time
 Swenson [arXiv '24]: O(n log n)

Obes randomization help?

- Can we utilize the $O(n \log n \log^2 \log n)$ time algorithm for dynamic connectivity by Huang, Huang, Kopelowitz, Pettie, and Thorup?

Can we improve the time complexity even further?

 Our solution runs in O(n log² n/ log log n) but counting the numer of reversals takes O(n) time
 Swenson [arXiv '24]: O(n log n)

2 Does randomization help?

- Can we utilize the $O(n \log n \log^2 \log n)$ time algorithm for dynamic connectivity by Huang, Huang, Kopelowitz, Pettie, and Thorup?

Can we improve the time complexity even further?

 Our solution runs in O(n log² n/ log log n) but counting the numer of reversals takes O(n) time
 Swenson [arXiv '24]: O(n log n)

- 2 Does randomization help?
 - Can we utilize the $O(n \log n \log^2 \log n)$ time algorithm for dynamic connectivity by Huang, Huang, Kopelowitz, Pettie, and Thorup?

Can we improve the time complexity even further?

 Our solution runs in O(n log² n/ log log n) but counting the numer of reversals takes O(n) time
 Swenson [arXiv '24]: O(n log n)

- 2 Does randomization help?
 - Can we utilize the $O(n \log n \log^2 \log n)$ time algorithm for dynamic connectivity by Huang, Huang, Kopelowitz, Pettie, and Thorup?