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Abstract—In this paper, the modal logic over classes of
structures definable by universal first-order Horn formulas is
studied. We show that the satisfiability problems for those logics
are decidable, confirming the conjecture from [1]. We provide a
full classification of logics defined by universal first-order Horn
formulas, with respect to the complexity of satisfiability of modal
formulas over the classes of frames they define. It appears, that
except for the trivial case of inconsistent formulas for which
the problem is in P, local satisfiability is either NP-complete
or PSPACE-complete, and global satisfiability is NP-complete,
PSPACE-complete, or EXPTIME-complete. While our results hold
even if we allow to use equality, we show that inequality leads
to undecidability.

I. INTRODUCTION

Modal logic for almost a hundred year has been an impor-
tant topic in many academic disciplines, including philosophy,
mathematics, linguistics and computer science. Currently it
seems to be most intensively investigated by computer scien-
tists. Among numerous branches in which modal logic, some-
times in disguise, finds applications, are hardware and software
verification, cryptography and knowledge representation.

Modal logic was introduced by philosophers to study modes
of truth. The idea was to extend propositional logic by some
new constructions, of which two most important were ♦ϕ
and �ϕ, originally read as ϕ is possible and ϕ is necessary,
respectively. A typical question was, given a set of axioms A,
corresponding usually to some intuitively acceptable aspects
of truth, what is the logic defined by A, i.e. which formulas
are provable from A in a Hilbert-style system.

One of the most important steps in the history of modal
logic was the invention of a formal semantics based on the
notion of the so-called Kripke structures. Basically, a Kripke
structure is a directed graph, called a frame, together with a
valuation of propositional variables. Vertices of this graph are
called worlds. For each world truth values of all propositional
variables can be defined independently. In this semantics, ♦ϕ
means the current world is connected to some world in which
ϕ is true; and �ϕ, equivalent to ¬♦¬ϕ, means ϕ is true in
all worlds to which the current world is connected.

It appeared that there is a beautiful connection between
syntactic and semantic approaches to modal logic [2]: logics
defined by axioms can be equivalently defined by restricting
classes of frames. E.g., the axiom ♦♦P → ♦P (if it is possible
that P is possible, then P is possible), is valid precisely in
the class of transitive frames; the axiom P → ♦P (if P is
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true, then P is possible) – in the class of reflexive frames,
P → �♦P (if P is true, then it is necessary that P is possible)
– in the class of symmetric frames, and the axiom ♦P → �♦P
(if P is possible, then it is necessary that P is possible) – in
the class of Euclidean frames.

Thus we may think that every modal formula ϕ defines a
class of frames, namely the class of those frames in which ϕ
is valid. A formula ϕ is valid in a frame K if for any possible
truth-assignment of propositional variables to the worlds of K,
ϕ is true at every world. To express this definition we require
second-order logic, since it involves quantification over sets
of elements: for each variable P and a subset V of the set of
worlds we have to consider the case in which P is true exactly
in the worlds from V . Note however, that many important
classes of frames, in particular all the classes we mentioned
above, can be defined by simple first-order formulas. For a
given first-order sentence Φ over the signature consisting of a
single binary symbol R we define KΦ to be the set of those
frames which satisfy Φ.

It is not hard to see that some modal logics defined by
a first-order formula are undecidable. A stronger result was
presented in [3]—it was shown that there exists a universal
first-order formula with the equality such that the global
satisfiability problem over the frames that satisfy this formula
is undecidable. In [4], this result was improved — it was
shown that the equality is not necessary. The proof from [4]
works also for local satisfiability. Finally, in [5] it was shown
that even a very simple formula with three variables without
the equality may lead to undecidability.

Decidability for various classes of frames can be shown by
employing the so-called standard translation of model logic to
first-order logic. Indeed, the satisfiability of a modal formula ϕ
in KΦ is equivalent to satisfiability of st(ϕ)∧Φ, where st(ϕ)
is the standard translation of ϕ. In this way, we can show that
even multimodal logic is decidable in any class defined by
two-variable logic [6], even extended with linear order [7] or
equivalence closures of two distinguished binary relations [8].
The same holds for formulas of the guarded fragment [9], even
if we allow for some restricted application of fixed-points [10]
and transitive closures [11]. The complexity bounds obtained
this way, however, are high — usually between EXPTIME and
2NEXPTIME.

The classes of frames we mentioned earlier, i.e. transitive,
reflexive, symmetric and Euclidean are decidable. They can be
defined by first-order sentences even if we further restrict the
language to universal Horn formulas, UHF. Universal Horn



formulas were considered in [1], where a dichotomy result
was proved, that the satisfiability problem for modal logic over
the class of structures defined by an UHF formula (with an
arbitrary number of variables) is either in NP or PSPACE-hard.
The authors of [1] conjecture that the problem is decidable
in PSPACE for all universal Horn formulas. We confirm this
conjecture.

Theorem 1: Let Φ be a UHF sentence. Then the local and
the global satisfiability problems for modal logic over KΦ are
in PSPACE and EXPTIME, resp.

This theorem extends the decidability results for the classes
we mentioned earlier in this introduction, in particular for
modal logics T, B, K4, S4, S5. It also works for some
interesting classes of frames, for which, up to our knowledge,
decidability has not been established so far. An example is the
class defined by ∀xyzv(xRy ∧ yRz ∧ zRv → xRv).

To complete the discussion, we study the case of Horn
formulas with the equality (UHF=) and inequality (UHF6=).
We prove the following proposition.

Theorem 2: Let Φ be a UHF= sentence. Then the local and
the global satisfiability problems for modal logic over KΦ are
in PSPACE and EXPTIME, resp.

For the complete picture, we also study formulas with
inequality. We prove the following theorem.

Theorem 3: There exist formulas Γ ∈ UHF6=, Γ′ ∈ UHF6=

such that the global satisfiability problem for modal logic over
KΓ and the local satisfiability problem for modal logic over
KΓ′ are undecidable.

The paper is organized as follows. Section II contains
precise formulation the decision problems that we consider
and other basic definitions. Section III is devoted to our crucial
tree–based model property. In Section IV we discuss some
properties of tree-based models. Section V contains proof
of Theorem 1 followed by a discussion on the complexity.
Finally, Sections VI and VII contain proofs of Theorems 2
and 3, resp.

Related work. In [1], membership in PSPACE is shown for
a rich subclass of UHF, including in particular all formulas
which imply reflexivity. However, the problem remained open
for formulas involving variants of transitivity. In [5] it is
proved that the subclass of UHF that consists of the formulas
with three variables is decidable. The beginning of our proof is
similar to the proof in [5] — we start with a closure of a result
of some unraveling. Then, in [5] they study, in some sense,
all possible properties that can be defined — it is possible,
because there is a finite number of non-equivalent formulas
with three variables. With the unbounded number of variables
it is no longer true, and therefore a more general approach
is needed. Moreover, the paper [5] does not consider equality
and inequality.

II. PRELIMINARIES

As we work with both first-order logic and modal logic
we help the reader to distinguish them in our notation: we
denote first-order formulas with Greek capital letters, and

modal formulas with Greek small letters. We assume that the
reader is familiar with first-order logic and propositional logic.

Modal logic extends propositional logic with the operator
♦ and its dual �. Formulas of modal logic are interpreted
in Kripke structures, which are triples of the form 〈W,R, π〉,
where W is a set of worlds, 〈W,R〉 is a directed graph called
a frame, and π is a function that assigns to each world a set
of propositional variables which are true at this world. We say
that a structure 〈W,R, π〉 is based on the frame 〈W,R〉. For
a given class of frames K, we say that a structure is K-based
if it is based on some frame from K. We will use calligraphic
letters M,N to denote frames and Fraktur letters M,N to
denote structures.

For a frame 〈W,R〉 and a subset W ′ ⊆ W , we define
R�W ′ = R ∩ (W ′ ×W ′). Similarly, for a labeling function
π, we define π�W ′ to be such that π�W ′(w) = π(w) for all
w ∈ W ′ and π�X to be such that π�X(w) = π(w) ∩ X . We
define a restriction of a frame 〈W,R〉�W ′ for W ′ ⊆ W as
〈W ′, R�W ′〉.

The semantics of modal logic is defined recursively. A
modal formula ϕ is (locally) satisfied in a world w of a model
M = 〈W,R, π〉, denoted as M, w |= ϕ if

(i) ϕ = p where p is a variable and ϕ ∈ π(w),
(ii) ϕ = ¬p where p is a variable and ϕ 6∈ π(w),

(iii) ϕ = ϕ1 ∨ ϕ2 and M, w |= ϕ1 or M, w |= ϕ2,
(iv) ϕ = ϕ1 ∧ ϕ2 and M, w |= ϕ1 and M, w |= ϕ2,
(v) ϕ = ♦ϕ′ and there exists a world v ∈ W such that

(w, v) ∈ R and M, v |= ϕ′,
(vi) ϕ = �ϕ′ and for all worlds v ∈W such that (w, v) ∈ R

we have M, v |= ϕ′.
Note that in this paper all formulas are in the negation normal
form. By |ϕ| denote the length of ϕ. We say that a formula
ϕ is globally satisfied in M, denoted as M |= ϕ, if for all
worlds w of M, we have M, w |= ϕ.

For a given class of frames K, we say that a formula ϕ
is locally (resp. globally) K-satisfiable if there exists a frame
K ∈ K, a structure M based on K, and a world w ∈W such
that M, w |= ϕ (resp. M |= ϕ).

For a given formula ϕ, a Kripke structure M, and a world
w ∈ W we define the type of w (with respect to ϕ) in M as
tpϕM(w) = {ψ : M, w |= ψ and ψ is subformula of ϕ}. We
write tpM(w) if the formula is clear from context. Note that
|tpϕM(w)| ≤ |ϕ|.

We say that a world w is k-followed (k-proceeded) in the
frame M, if there exists a directed path (w, u1, u2, . . . , uk)
(resp. (u1, u2, . . . , uk, w)) in M. We say that a world w is
k-inner in M if it is k-proceeded and k-followed.

The set of universal Horn formulas, UHF, is defined as the
set of those Φ over the language {R} which are of the form
∀~x.Φ1 ∧ Φ2 ∧ ... ∧ Φi, where each Φi is a Horn clause. A
Horn clause is a disjunction of literals of which at most one is
positive. We usually present Horn clauses as implications. For
example, the formula ∀xyz.(xRy ∧ yRz ⇒ xRz) ∧ (xRx⇒
⊥) defines the set of transitive and irreflexive frames. We often
skip the quantifiers and represent such formulas as a set of
clauses, e.g.: {xRy ∧ yRz ⇒ xRz, xRx ⇒ ⊥}. We assume



without loss of generality that each Horn clause consists of
variables x, y and z1, z2, . . . , and is of the form Ψ ⇒ ⊥,
Ψ ⇒ xRx, or Ψ ⇒ xRy. We define Φ(vx, vy, v1, . . . , vk) as
the instantiation of Φ with x = vx, y = vy , z1 = v1, z2 = v2,
and so on, e.g. (xRz1 ∧ z1Rz2 ∧ z2Ry ⇒ xRy)(a, b, c, d) =
aRc ∧ cRd ∧ dRb ⇒ aRb. We denote by Φp the set of the
clauses from Φ containing a positive literal, i.e. all clauses of
Φ except those of the form Ψ⇒ ⊥.

We define the local (resp. global) satisfiability problem K-
SAT (resp. global K-SAT) as follows. For a given modal
formula, is this formula locally (resp. globally) K-satisfiable?
For a given Φ ∈ UHF, we define KΦ as the class of frames
satisfying Φ. We will be interested in local and global KΦ-SAT
problems.

When considering problems KΦ-SAT and global KΦ-SAT,
formula Φ is fixed and does not depend on the input. However,
the complexity depends on this formula. To hide unnecessary
details, we often use a function g to bound the size of models
or complexity in the size of Φ. Please keep in mind that once
Φ is fixed, g(|Φ|) can be treated as a constant, and therefore
the precise value of g is not important (it will follow from the
proofs).

III. MINIMAL TREE-BASED MODELS

In this section, we show that for every UHF formula Φ and
every modal formula ϕ, if ϕ is KΦ-satisfiable then it has a
“nice” model. We start from an arbitrary M |= ϕ satisfying
Φ and unravel it (using standard unraveling technique, as in
[2] and [12]) into a model M0 whose frame is a tree with the
degree of its nodes bounded by |ϕ|. Clearly the frame of M0

is not necessarily a member of KΦ. In the next step we add
to M0 the edges implied by the Horn clauses of Φ. This is
performed in countably many stages, until the least fixed point
is reached. We observe that the resulting structure, M∞, is still
a model of ϕ, and its frame belongs to KΦ.

Formally, we say that an edge (w,w′) is a consequence
of Φ in M = 〈W,R〉, if for some worlds v1, . . . , vk ∈ W
and Ψ1 ⇒ Ψ2 ∈ Φ we have M |= Ψ1(w,w′, v1, . . . , vk),
and Ψ2(w,w′, v1, . . . , vk) = wRw′. We denote the set of
all consequences of Φ in M by CΦ

 (M). We define the
consequence operator as follows.

CONSΦ,W (R) = R ∪ CΦ
 (〈W,R〉)

Now, the closure operator can be defined as the least fixed-
point of Cons:

CLOSUREΦ,W (R) =
⋃
i>0 CONSiΦ,W (R)

Example 4: Consider the tree 〈W,R〉 presented in Fig. 1
and Φ = {xRz ∧ zRy ⇒ yRy, xRx ∧ xRy ∧ xRz ⇒ yRz}.
Bottom part of Fig. 1 contains the closure of this tree.
Reflexive edges belong to CONSΦ,W (R), dashed edges belong
to CONS2

Φ,W (R), and dotted edges belong to CONS3
Φ,W (R).

Quick check shows that CONS3
Φ,W (R) = CONS4

Φ,W (R) and
therefore CONS3

Φ,W (R) is equal to CLOSUREΦ,W (R).

For a tree T = 〈W,R〉, we now define the T -based model
of Φ as CΦ(T ) = 〈W,CLOSUREΦ,W (R)〉. Note that CΦ(T ) is
the smallest (w.r.t. inclusion of the set of edges) model of Φp

Figure 1. A closure for Φ = {xRz ∧ zRy ⇒ yRy, xRx∧ xRy ∧ xRz ⇒
yRz}.

containing all edges from R. Of course, not all models can be
obtained in this way. The following lemma shows, however,
that we can restrict our attention to models that are T -based
for some tree T with bounded degree.

Lemma 5: Let ϕ be a modal formula and let Φ ∈ UHF. If
ϕ is KΦ-satisfiable, then there exists a tree T with the degree
bounded by |ϕ| and a labeling πT , such that

(i) 〈T , πT 〉 is a model of ϕ;
(ii) 〈CΦ(T ), πT 〉 is a model of ϕ that satisfies Φ.

The result holds for the local satisfiability and for the global
satisfiability.

IV. MODEL PROPERTIES

We study several properties of models. The following
frames will be useful.

Definition 6: We define the linear structure LZ as 〈{i : i ∈
Z}, {(i, i+ 1)|i ∈ Z}〉, and the infinite binary tree T∞ as
〈{s|s ∈ {0, 1}∗}, {(s, si)|s ∈ {0, 1}∗ ∧ i ∈ {0, 1}}〉.

The structures LZ and T∞ play a crucial role in our proofs.
We often reason in the following way. If for some T a property
P is satisfied in a world of CΦ(T ), then we show that it is
also satisfied in some world of CΦ(LZ) or CΦ(T∞). Thanks to
the uniformity of those structures we show that the property
P is satisfied in all g(|Φ|)-proceeded worlds. Then we show
that P has to be satisfied in all g(|Φ|)-inner worlds of CΦ(T ).

Now we define our most important tool. We say that a
function f fromM1 intoM2 is a morphism iff for all worlds
w,w′ if M1 |= wRw′, then M2 |= f(w)Rf(w′).



Observation 7: Let M1,M2 be frames, let Φ ∈ UHF and
let f be a function from M1 into M2. If f is a morphism
from M1 into M2, then f is a morphism from CΦ(M1) into
CΦ(M2).

We use morphisms to transfer properties between CΦ(T )
and CΦ(LZ) or CΦ(T∞). One morphism, we often use, is hT :
T → LZ defined such that for each v at the ith level of T ,
hT (v) = i. Now we define an important property that tells
us whether an UHF formula enforces edges between different
branches of a tree.

Definition 8: We say that a formula Φ ∈ UHF forks at the
level i if for all s ∈ T∞ with |s| = i and t, t′ ∈ {0, 1}∗ there
is no edge between s0t and s1t′ in CΦ(T∞). We say that Φ ∈
UHF has the tree-compatible model property (TCMP) if for
each i, Φ forks at the level i.

It is not hard to see that if Φ has the tree-compatible model
property, then in all tree-based models of Φ there are no edges
among the worlds from disjoint subtrees. Indeed, if there is
an edge between two different subtrees S1,S2 of a modelM,
one can define a morphism from M to T∞ which maps S1

and S2 into disjoint subtrees of T . This implies that some
world above S1 and S2 does not fork, and Φ does not have
the tree-compatible model property.

In the next section, we study the linear structure LZ, which
turns out to be a good approximation of paths in trees.
The formulas without the tree-compatible model property are
discussed in Section IV-B.

A. The closures of linear structures

Now we study the shapes of CΦ(LZ). We say that the edge
(i, j) is forward if i < j, backward if i > j, short if |i−j| < 2,
and long if |i − j| ≥ 2. We say that Φ forces long (resp.
backward) edges if there is a long (resp. backward) edge in
CΦ(LZ) and that Φ forces only long forward edges if it forces
long edges but it does not force backward edges.

Definition 9: We say that Φ ∈ UHF satisfies
S1 if Φ does not force long edges,
S2 if Φ forces only long forward edges and there exist

l, a1, a2, . . . , al ∈ N bounded by g(|Φ|) such that for all
worlds i, i+ b, there is an edge from i to i+ b in CΦ(LZ)
if and only if b ≥ 0 and b− 1 is in the additive closure of
{a1, a2, . . . , al}.

S3 if Φ forces long and backward edges and there exists m
bounded by g(|Φ|) such that for all worlds i, i+ b, there
is an edge from i to i+ b in CΦ(LZ) if and only if m
divides |b− 1|.

Properties S2 and S3 look complicated, so we present a
few examples. Below we abbreviate xRu1 ∧ u1Ru2 ∧ · · · ∧
ui−2Rui−1 ∧ ui−1Ry by xRiy.

Example 10: Consider a formula xR2y ⇒ yRx. Here,
Property S3 is satisfied for m = 3. For example, 0 is connected
to 1, 4, 7 and so on, while 2, 5, 8 and so on are connected to
0 (see Fig. 2a). In general, a formula xRiy ⇒ yRx satisfies
Property S3 with m = i+ 1.

Example 11: Consider a formula ϕ3 ∧ ϕ4, where ϕi =
xRiy ⇒ xRy. Here, Property S2 is satisfied for l = 2, a1 = 2
and a2 = 3. For example, 0 is connected to 1 (as in L∞), 3
(because of ϕ3), 4 (because of ϕ4), 5 (because of ϕ3, 0R3,
3R4, and 4R5), and so on (see Fig. 2b). In general, for a
formula of the form ϕi ∧ ϕj Property S2 is satisfied with
l = 2, a1 = i− 1 and a2 = j − 1.

It turns out that Properties S1, S2, and S3 cover all possible
formulas.

Lemma 12: Each Φ ∈ UHF satisfies S1, S2, or S3.
Now we show why these linear structures are important. In

the tree-compatible case, along each path almost all worlds
are connected as in the linear structure. The only exception is
for the worlds that are close to the “end” of the model.

Lemma 13: Let Φ ∈ UHF, T be a tree and vi, vj be g(|Φ|)-
inner worlds at the same path. Then there is an edge from vi
to vj in CΦ(T ) if and only if there is an edge from hT (vi) to
hT (vj) in CΦ(LZ).

B. Forks
In this section, we study models of formulas without the

tree-compatible model property.
Lemma 14: If Φ ∈ UHF forks at level g(|Φ|), then it has

the tree-compatible model property.
This lemma shows that if there is a world that does not fork,

then all worlds below some level do not fork. We say that two
worlds w,w′ of a frame M are equivalent if for each world
u we have uRw iff uRw′. Now we argue that if Φ does not
fork at the level i, then in structures reachable from worlds at
the level i such equivalence is very common.

Lemma 15: Let Φ ∈ UHF be a formula that does not fork,
T be a tree with a bounded degree and w be a world at
level g(|Φ|) in CΦ(T ). Then for all i, all the g(|Φ|)-followed
descendants of w at level 2g(|Φ|) + i are equivalent in the
frame CΦ(T ).

Example 16: Consider the formula Φ = {ϕ1, ϕ2}, where
ϕ1 = xRz∧zRy ⇒ yRy and ϕ2 = xRx∧xRy∧xRz ⇒ yRz,
and the tree at the top of Fig. 1. The formula ϕ1 enforces the
following property: each world that has a predecessor that has
a predecessor is reflexive. The formula ϕ2 makes the relation
R Euclidean except for the non-reflexive worlds. Formula Φ
forks at the first two levels.

C. Boundedness
The properties defined above are enough to prove the

decidability, but not to obtain the optimal complexity.
We say that a formula Φ is bounded if CΦ(LZ) is not

a model of Φ, and unbounded otherwise. If the formula is
bounded, then there is a k such that the length of each path in
each model of Φ is bounded by k, and the value of k depends
only on Φ. Recall that in problems KΦ-SAT and global KΦ-
SAT formula Φ is not a part of input. Hence the exact value
of k is irrelevant, since it is regarded as a constant.

Now we prove the polynomial model property for bounded
formulas. The following argument works for local and global
satisfiability.



Figure 2. Some closures for the linear structure.

Let Φ be a bounded formula and ϕ be a modal formula.
Then for any model M = 〈W,R, π〉 of ϕ and Φ, we can
find a W ′ ⊆ W such that M�W ′ is a model of ϕ and |W ′|
is polynomial in |ϕ|. At first, we add an arbitrary world that
satisfies ϕ to W ′. Then, recursively, for each world w in W ′

and each subformula ♦ψ of ϕ, if w has a witness for ♦ψ
in W but not in W ′, then we add one such witness to W ′.
We proceed until a fixed-point is reached. Observe that since
the length of each path is bounded by k, then this procedure
takes at most k recursive steps, and in each it adds at most
|ϕ| worlds for each element of W ′. Therefore, at the end we
have |W ′| = |ϕ|k and M�W ′ is a model of ϕ, so indeed we
find a polynomial model of ϕ. Of course, since Φ is universal,
〈W ′, R�W ′〉 satisfies Φ.

V. PROOF OF THEOREM 1

A well known result shows that every satisfiable modal
formula is satisfied in a finite tree. This tree-model property
is crucial for the robust decidability of modal logics. Standard
restrictions of classes of frames lead to similar results, stating
that some “nice” models exists for all satisfiable formulas.
Here we generalize those results for the classes of models
that are definable by the Horn formulas.

For the case of inconsistent Horn formulas, the satisfiability
problem is in P (the answer is always “no”), and for the case of
consistent bounded formulas the satisfiability is NP-complete
— we can simply guess a polynomial model, and the lower
bound comes from a trivial reduction from SAT. Below we
study consistent and unbounded formulas.

A. Tree-compatible case

Formulas that do not force long edges. Assume that
all edges in CΦ(LZ) are short. Here we can use standard
approaches to satisfiability of modal logic over the class of
all models. For local satisfiability we can bound the depth of
tree-models and the degree of their worlds linearly in ϕ and
then check the existence of such models in a depth-first search
manner in PSPACE (see e.g. [13]; please note that while the
cited result does not consider reflexivity and symmetry, there
are only some minor changes needed to cover these cases).

For global satisfiability we can enforce models of depth
exponential with respect to the length of the modal formula
ϕ. The existence of models can be checked by an alternating
procedure which first guesses the type of the root and then
guesses types of its children and universally repeats the
procedure for the children. This algorithm works in alternating
polynomial space, and thus the problem is in EXPTIME. The
corresponding lower bound can be obtained by encoding the
halting problem for alternating Turing machine with polyno-
mial space.

Formulas that force only long forward edges. Assume
that the condition S2 holds for some l, a1, . . . , al.

This case can be treated similarly to the case of satisfiability
over the class of transitive models, i.e. the case of logic K4
(see [13] or Section 6.7 in [12]). Let A be the additive closure
of {a1, . . . , al} and c be the product of all positive ai (c =∏

1≤i≤l,ai>0 ai).
Let PM(v) be a set of proper k-inner predecessors of v in

M and Wi = {j|j ≤ i}. We have the following properties.

For all a ∈ A and i, PLZ(i) ⊆ PLZ(i+ a) (1)
For all a ∈ A and i, PLZ(i+ a) ∩Wi−c ⊆ PLZ(i) (2)

For the (1) note that for any j ∈ PLZ(i) we have i−j−1 ∈ A
and a ∈ A, and therefore j+ a− i− 1 ∈ A simply because A
is closed under addition. Property (2) follows from property
S2 and fact that for each a ∈ A there exists a′ ∈ A such
that a = a′ mod c and a′ < c (which follows from Chinese
remainder theorem).

For i ≥ k, PLZ(i) =
⋃

a∈A,a<2c

PLZ(i− a) ∪ {i− 1} (3)

The inclusion “⊇” comes from property (1). For the “⊆”
case, consider any k-inner predecessor j of i. If i−j > 2c, then
property (2) for a = c guarantees that j ∈ PLZ(i− j) only if
j ∈ PLZ(i). If 1 < i− j ≤ 2c, then i− j−1 ∈ A. Since j is a
predecessor of j + 1, j ∈ PLZ(j + 1) = PLZ(i− (i− j − 1))
and i− j − 1 < 2c. Case when i− j = 1 is trivial.

For a given world w with a type t, we define a universal
requirements of w, denoted by UR(w), as the subset of t that



consists of formulas of the form �ϕ. Moreover, we define
predecessors requirements of w, denoted by PR(w), as the
set of the universal requirements of the predecessors of w,
i.e.,

⋃
{UR(v)|v is a predecessor of w}.

Clearly, property (3) implies that for all i ≥ k

PR(i) =
⋃

a∈A,a<2c

PR(i− a) ∪ UR(i− 1) ∪ PRni(i) (4)

where PRni(wi) is a sum of requirements given by those
predecessors of i that are not k-inner.

Now, we are ready to design an alternating algorithm
that guesses a tree-based structure in top-down manner.
For input ϕ, it starts from guessing and verifying first
k levels. Then, the algorithm recursively calls procedure
verify(head, URs, PR, �ψ) where
• head contains information about the first k levels of

structure;
• PRs is a list of predecessors requirements of previous

2c k-inner worlds;
• CR is a set of predecessors requirements for the current

world;
• ♦ψ is a subformula of ϕ.

The procedure guesses a type t that satisfies ψ and all
requirements. Then it guesses a subset of subformulas of
ϕ in order to provide all witnesses for the current world,
and for each of them guesses whether they are k-inner. For
each witness that is k-inner it simply guesses and verifies the
remaining levels (at most k − 1). For all others witnesses, it
universally calls itself for this subformula with PRs and CR
updated using Equation (4).

The algorithm described above verifies if ϕ has a model,
but it may run forever. So we add one more parameter to
procedure verify: a list of visited configurations (i.e. triples
(PRs,CR,♦ψ)), and additional condition: return “Yes” if the
same configuration is visited second time.

It is not hard to see that if this algorithm returns “Yes”, then
it is possible to build a model. Also, thanks to the property
(i) of Lemma 5, if ϕ has a model, then it has a tree-based
model such that all witnesses for the world at the level k are
realized at the level k + 1. In such tree-based model, worlds
are connected only if they are on the same path in tree and,
moreover, k-inner worlds v, w are connected if and only if
hT (v) and hT (w) are. Such a canonical model can be guessed
and verified by the algorithm. What remain to be explained is
that this algorithm works in polynomial time.

The key observation here is that predecessors require-
ments cannot shrink, i.e., if we have two configurations
(PRs1, CR1, �ψ1) and (PRs2, CR2, �ψ2) such that the al-
gorithm visits the second one after the first one, then for
each r ∈ PRs1 ∪ {CR1} (we abuse a notation here since
no confusion will result) there is r′ ∈ PRs2 ∪ {CR2} such
that r ⊆ r′. It means that the number of possible PRs lists
along a fixed path can be bounded by |ϕ|2c · (2c)! , and
the number of all configurations (along a fixed path) can be
bounded by |ϕ|2c+1 · (2c)! · |ϕ|, which is clearly polynomial
in |ϕ|. Therefore, after a polynomial number of steps some

configuration must occur twice. Since APTIME = PSPACE, it
leads to the membership is PSPACE in both global and local
case.

Formulas that force long and backward edges. We prove
that this case is not possible — S3 is inconsistent with the
tree-compatible model property.

Let Φ satisfy S3 for some m > 0. Let k = g(|Φ|) and
w = 0k. By Lemma 13 we see that there are edges from
0k+(i+1)(m−1) to 0k+i(m−1) in C(T∞) for any i ≥ 0. Define
h : LZ → C(T∞) as h(x) = 0k−x(m−1) for x < 0 and
h(x) = 0k1x otherwise. Clearly h is an morphism, and by
Observation 7 it is also a morphism from CΦ(LZ) to C(T∞).
Since in CΦ(LZ) there is an edge from 1 to 1− 3m+ 1, there
is also an edge from 0k1 to 0k+1−3m+1 and therefore w is
not forking.

B. The tree-incompatibility

Let Φ be a formula without the tree-compatible model
property. We start with the observation that says that if we
have two equivalent worlds with the same types, then we can
remove one of them.

Observation 17: Let M = 〈W,R, π〉 be a structure such
that 〈W,R〉 |= Φ, and ϕ be a modal formula such that M |=
ϕ. Let We ⊆ W be a set of equivalent worlds in M and
w ∈ We. If for all ψ ∈ tpϕM(w) there exists w′ ∈ We \ {w}
such that ψ ∈ tpϕM(w′), then for W ′ = W \ {1} we have
〈W ′, R�W ′〉 |= Φ and M�W ′ |= ϕ.

The proof is straightforward — the types of remaining
worlds do not change.

Let M be a tree-based model based on the frame C(T ). We
denote by level i of M the set of worlds from M such that
the length of the path from root to w in T (notice that T is a
tree) is equal i.

Observation 18: Let ϕ be a formula and M be a tree-based
model of Φ and ϕ. Then there is a model of Φ and ϕ such
that the size of each level of M is bounded polynomially in
|ϕ|.

First, observe that the number of worlds at level i ≤ 2g(|Φ|)
can be bounded by |ϕ|i because Lemma 5 guarantees that the
degree of the tree is bounded by |ϕ|. Thanks to Lemma 14, Φ
does not fork at level g(|Φ|). It follows from Lemma 15 that
for all worlds w at the level g(|Φ|) and all i ≥ 2g(|Φ|), all
descendants of w at the level i are equivalent. Therefore we
can remove all but |ϕ| of them. Since the number of worlds
at the level g(|Φ|) can be bounded by |ϕ|g(|Φ|), the number of
worlds at the level i > 2g(|Φ|) can be bounded by |ϕ|g(|Φ|) ·
|ϕ|, so polynomially in |ϕ|.

Observation 18 says that we can reduce the number of
worlds needed at each level by some polynomial of |ϕ|.
The existence of such models can be verified by a non-
deterministic machine working in polynomial space that first
guesses first 2g(|Φ|) levels, and then recursively guesses and
verifies the consecutive levels, similarly to the tree-compatible
case. Since the number of worlds needed at each level can
be bounded polynomially in |ϕ|, such an algorithm would
work in NPSPACE=PSPACE [14]. We can conclude that here



the satisfiability problem is in PSPACE. This ends the proof
of Theorem 1. However, it does not lead to the optimal
complexity.

VI. SHARPENING THE COMPLEXITY

In this section, we study the satisfiability problems more
carefully to obtain the precise complexity. The complexity will
by summarized in Table I.

A. Formulas with TCMP

Proposition 19: For a given UHF formula Φ, if Φ has the
tree-compatible model property and satisfies S2, then global
KΦ-SAT is in NP.

Proof: Let Φ satisfy S2 for some l, a1, . . . , al bounded by
g(|Φ|) and let c be the product of all ai and M be a T -based
model of ϕ from KΦ. We prove that ϕ has a model satisfying
Φ with the number of types bounded by |ϕ| · c.

We say that a world w at the level i (of T ) is saturated
if for all k and every successors w′ of w at levels i + kc,
PR(w) = PR(w′).

Observe that in M there is a world w such that the
subtree rooted in w contains only saturated worlds. Let M′

be this subtree. Of course, M′ is a KΦ-model of ϕ. For each
subformula ♦ψ of ϕ and each i < c, if there is a world in
M′ at level jc+ i for some j that satisfies ψ, then we take a
1-type of such a world and call it tψ,j . It is not hard to see
that there exists a model M′′ that contains only w and worlds
of this types — we can construct such a model starting from
w, and then recursively constructing new levels that contains
all needed witnesses for the previous level.

The non-deterministic algorithm proceeds as follows. First,
it guesses sets of requirements PR0, PR1, . . . , PRc−1,
and a subset of types of the form tψ,j . If this types are
consistent with requirements and for each tψ,i we can find
tψ1,i+1 mod c, . . . , tψs,i+1 mod c such that these types pro-
vides all needed witnesses for a world of type tψ,i, then it
returns “Yes”, otherwise it returns “No”. Clearly, it works in
polynomial time and solves global KΦ-SAT.

Proposition 20: For a given UHF formula Φ, if Φ has the
tree-compatible model property, then KΦ-SAT is PSPACE-
hard.

This proposition can be proved by reducing the QBF
problem, adjusting the usual technique (see e.g. [13]).

B. Formulas without TCMP that do not force long edges

Proposition 21: For a given UHF formula Φ, if Φ does not
have the tree-compatible model property and satisfies S1, then
it has a polynomial model property for the local satisfiability
problem.

Proposition 21 follows from the fact that in the local
satisfiability case for any tree-based model M based of C(T )
such that of M0, 0 |= ϕ, we can simply remove all worlds
w that are at the levels greater than d, the quantifier depth of
ϕ. Indeed, S1 says that there are only short edges in closures
and therefore the removed worlds were not reachable by ϕ.
The resulting model contains at most |ϕ|2g(|Φ|)+1 worlds at

first 2g(|Φ|) levels and then at most |ϕ| worlds at each of
remaining d− 2g(|Φ|) levels, so clearly a polynomial number
of worlds.

Proposition 22: For a given UHF formula Φ, if Φ does not
have the tree-compatible model property and satisfies S1, then
global KΦ-SAT is PSPACE-hard.

Proof: To make the proof more readable, we consider
only the formula Φ = {sRt∧ tRy∧ sRx⇒ xRy}. Proofs for
other cases are similar.

A domino system is a tuple D = (D,DH , DV ), where D is
a set of domino pieces and DH , DV ⊆ D×D are binary rela-
tions specifying admissible horizontal and vertical adjacencies.
The bounded-space domino problem is defined as follows. For
a given triple 〈D,VD, HD〉, where VD, HD ⊆ D × D, and
n = |D|, is there a tiling t : Zn × N → D such that for all
k < n and l ∈ N, (t(k, l), t(k, l+ 1)) ∈ VD and if k < n− 1,
then (t(k, l), t(k + 1, l)) ∈ HD? It is well-known that this
problem is PSPACE-complete.

Let 〈D,VD, HD〉 be an instance of the bounded-space
domino problem. We define a formula ϕ = ψc ∧ψv ∧ψh ∧ψe
over variables {t0, . . . , tn−1} ∪D where:
• ψc =

∨
d∈D d ∧

∧
d,d′∈D,d6=d′(¬d ∨ ¬d′);

• ψe =
∧
i<n ♦ti;

• ψv =
∧
i<n

∧
d∈D(ti ∧ d⇒ (

∨
(d,d′)∈VD

�(ti ⇒ d′)));
• ψh =

∧
i<n−1

∧
d∈D(�(ti ∧ d) ⇒

(
∨

(d,d′)∈HD
�(ti+1 ⇒ d′))).

Clearly, the reduction is polynomial. Suppose that M is a
model of Φ and ϕ and v0 is any world of M. We define tiling t
by repeating the following procedure. For a given i, we define
vj,i as a successor of vi that satisfies tj and we put t(j, i) = d,
where d is satisfied in vj,i. Note that ψe guarantees that such
a successor exists, ψv guarantees that if there is more than
one such successor, then all of them satisfy the same d, and
ψc guarantees that all worlds satisfy precisely one d. Finally,
we set vi+1 equal to any successor of vi that satisfies t0.

It is not hard to see that for all k < n−1 and l ∈ N property
(t(k, l), t(k+ 1, l)) ∈ HD is guaranteed by ψh since both vk,l
and vk+1,l are successors of vl. To check the other property,
consider any l ∈ N and k < n. Since vlRvl+1, vl+1Rvk,l+1,
and vlRvk,l, Φ guarantees that we have vk,lRvk,l+1 and
therefore ψv guarantees that (t(k, l), t(k, l + 1)) ∈ VD.

We showed that if ϕ has a model that satisfies Φ, then the
domino problem has a solution. It should be now easy to see
that the converse is also true.

C. Formulas without TCMP that force only long forward
edges

Proposition 23: For a given UHF formula Φ, if Φ does not
have the tree-compatible model property and satisfies S2, then
global and local KΦ-SAT are NP-complete.

Proof: Let Φ be a UHF formula that does not have
the tree-compatible model property and satisfies S2 for some
l, a1, . . . , al, ϕ be a modal formula and M be a tree-based
model of Φ and ϕ. Let c = a1 ·· · ··al and for a world w at level
g(|Φ|) and i > g(|Φ|), set Cwi be the set of all descendants
of w at level i. According to previous observations we may



Properties of Φ global-KΦ-SAT KΦ-SAT
Φ is inconsistent P P
Φ is consistent and bounded NP-c NP-c
Φ is consistent, unbounded, . . .
. . . has the TCMP and satisfies S1 EXPTIME-c PSPACE-c
. . . has the TCMP and satisfies S2 NP-c PSPACE-c
. . . has the TCMP and satisfies S3 impossible
. . . and does not have the TCMP and satisfies S1 PSPACE-c NP-c
. . . and does not have the TCMP and satisfies S2 NP-c NP-c
. . . and does not have the TCMP and satisfies S3 NP-c NP-c

Table I
A SUMMARY OF A COMPLEXITY OF A SATISFIABILITY PROBLEM FOR MODAL LOGIC DEFINED BY HORN FORMULAS.

assume that the size of each such set is polynomial in |ϕ|.
Our goal is to show that for any w, it is enough to consider
only polynomially many non-isomorphic sets Cwi . Clearly, it
will make the algorithm described above run in the polynomial
time.

In Section V-A we showed similar property, but the tech-
nique used there is not sufficient for this case — now, it is
not enough just to satisfy one formula of the form ♦ψ at each
level. We solve this problem in the following way: in each Cwi ,
we put as many witnesses as possible. We extend the notation
from Section V-A defining PR(X) =

⋃
w∈X PR(w). Note

that since all worlds in Cwi are equivalent, for any v ∈ Cwi
we have PR(v) = PR(Cwi ). Moreover, Properties (1) and (2)
also holds in this case.

Observation 24: Let w, v be worlds such that v ∈ Cwj for
some j and let i be such that g(|Φ|) < i < j and c divides
j − i. If UR(v) ⊆ PR(Cwi+1) and PR(v) = PR(Cwi ), then
model obtained by adding a copy v′ of v to Cwi satisfies both
Φ and ϕ.

Note that the set of successors of v is a subset of the set
of successors of v′, and therefore v has all needed witnesses.
Moreover, the set of predecessors of v′ is a subset of the set
of predecessors of v, so v′ does not violate any predecessor
requirements. Finally, v′ does not add any new requirements,
it should be clear that new model satisfies ϕ. Therefore the
new model satisfies ϕ and, in an obvious way, Φ.

Observation 25: Let w be a world at level g(|Φ|), let i >
g(|Φ|), and let A = {0, 1, . . . } be a (possibly finite) set of
consecutive numbers. Let C =

⋃
{Cwi+ac|a ∈ A} be such that

for all j, j′ ∈ A, PR(Cwj ) = PR(Cwj′ ) and PR(Cwj+1) =
PR(Cwj′+1). Then, we can define a set C ′ with |C ′| ≤ |ϕ|
such that each element of

⋃
C can be replaced by a copy of

an element from C ′ in a way such that the obtained model is
still a model of ϕ and Φ.

Let C =
⋃
C. We define a C ′ ⊆ C in the following way.

For every subformula of ϕ of the form ♦ψ, if there is a type t
satisfying ψ such that t is realized in infinitely many elements
of C, then we take one world of this type and add it to C ′. If
there is no such type, but there is a world in C that satisfies
ψ, then we find a maximal j ∈ A such that there is such a

world v ∈ Cwi+jc and we add v to C ′. Clearly, |C ′| ≤ |ϕ|.
Then, we define C ′i+jc = C ′ ∩

⋃
a∈A,a≥j C

w
i+ac and replace

each Cwi+jc by C ′
i+jc. Note that such a model satisfies both

ϕ and φ.
Let w be a world at level g(|Φ|) and i be

such that g(|Φ|) ≤ i < g(|Φ|) + c. property
(1) still holds and shows that the sequence
PR(Cwi ), PR(Cwi+c), PR(Cwi+2c) . . . never shrinks, and the
same holds for PR(Cwi+1), PR(Cwi+c+1), PR(Cwi+2c+1) . . . .
Therefore, the sequence Cwi , C

w
i+c, C

w
i+2c can be split into

at most |ϕ|2 subsequences that satisfy the requirements of
Observation 25, so the number of different sets of the form
Cwi can be bounded by |ϕ|3. Taking into account all possible
w and i, we can bound the number of possible sets Cwi by
|ϕ|g(|Φ|) · c · |ϕ|3, which is clearly polynomial in ϕ.

D. Formulas without TCMP that force long and backward
edges

Proposition 26: For a given UHF formula Φ, if Φ does not
have the tree-compatible model property and satisfies S3, then
it has a polynomial model property.

Suppose that Φ does not have the tree-compatible model
property and satisfies S3 for some k,m. Observe that in
CΦ(LZ) for all i > k and l ≥ 0, worlds i and i+ lm are
equivalent. Let M be a model of ϕ. It follows from Lemmas
14 and 15 that for all w at the level g(|Φ|) and all i, all
descendants of w at levels 2g(|Φ|) + i, 2g(|Φ|) + i + m,
2g(|Φ|) + i + 2m, . . . are equivalent. We can remove all but
polynomially many of them and obtain a smaller model that
still satisfies ϕ. We may repeat this procedure for all such w,
finally obtaining model of polynomial size in |ϕ|.

VII. HORN FORMULAS AND THE EQUALITY

In this section, we prove Theorem 2. It is not hard to see
that each negative occurrence of equality may be eliminated by
simply identifying variables. Thus, in the rest of this section
we focus on formulas without negative occurrences of equality.
For a given Φ ∈ UHF=, let Φ# contain all the clauses of Φ
except for those with the positive occurrence of equality. We
define three properties of UHF= formulas.



Properties of Φ global-KΦ-SAT KΦ-SAT
Satisfies E1 The same as for Φ#

Satisfies E2 NP-c NP-c
Satisfies E3 NP-c NP-c

Table II
A SUMMARY OF A COMPLEXITY OF A SATISFIABILITY PROBLEM FOR

MODAL LOGIC DEFINED BY CONSISTENT HORN FORMULAS WITH
EQUALITY.

Definition 27: We say that Φ ∈ UHF= satisfies

E1 if for each tree T , CΦ#(T ) satisfies Φ.
E2 if there is a tree T and two worlds w, v at different levels

in T such that some clause of Φ of the form Ψ ⇒ x =
y is not satisfied in CΦ#(T ) for some instantiation that
substitute x with w and y with v.

E3 if it does not satisfy E2 and there is a tree T and two
worlds w, v at the same level in T such that some clause
of Φ of the form Ψ ⇒ x = y is not satisfied in CΦ#(T )
for some instantiation that substitute x with w and y with
v.

A quick check shows that each formula satisfy E1, E2, or
E3. It is also not hard to see that if a formula satisfies E1, then
a modal formula has a model based on a frame of KΦ# if and
only if it has a model based on some frame from KΦ. Since
Φ# is UHF formula, we can simple apply previous result. The
remaining two cases are more interesting.

If Property E2 holds, then let T be a tree and w, v be
worlds at different levels in T such that for some clause
Ψ ⇒ x = y we have Ψ(w, v). Consider the morphism hT
and worlds hT (w) and hT (v). Since Φ ∈ UHF, we may
simply apply Observation 7 to verify that in CΦ(LZ) we have
Ψ(hT (w), hT (v)). By the definition of hT we know that
hT (w) 6= hT (v), and therefore CΦ(LZ) is not a model of
Φ. It is easy to verify that this imply that Φ is bounded and
therefore it has the polynomial model property.

For the case when Φ satisfies E3 we need the following
definition. We say that (possibly infinite) directed acyclic
graph (DAG) is proper if it has a root r such that all vertices
of this DAG are reachable from r, and for all elements v, v′

all path from v to v′ have the same length. Clearly, trees are
special cases of proper DAGs.

Now we can adjust Lemma 5: if ϕ is KΦ-satisfiable, then
there exists a proper directed acyclic graph T with the degree
bounded by |ϕ| and a labeling πT , such that 〈T , πT 〉 is a
model of ϕ and 〈CΦ(T ), πT 〉 is a model of ϕ that satisfies Φ.

As for trees, we define the level of v in DAG as the length
of path from the root to v. Therefore, morphism πT is well-
defined also for DAGs. Then, we adjust Lemma 15: if, for any
proper DAG T , w is a world at level g(|Φ|) in CΦ(T ), then
for all i, there is at most one g(|Φ|)-followed descendant of w
at level 2 ·g(|Φ|)+ i in the frame T . It means that the number
of worlds at each level can be bounded by |ϕ|g(|Φ|). Then we
show, as in the case of tree-incompatibility, that it is enough

to consider polynomial number of different types of levels,
and therefore that both the global and the local satisfiability
problems are NP-complete.

VIII. INEQUALITY LEADS TO THE UNDECIDABILITY

In this section we prove Theorem 3. We work with signa-
tures consisting of a single binary symbol R, and a number
of unary symbols, including Pij , Aij , and ei for 0 ≤ i, j ≤ 2.
Structures over such signatures can be naturally viewed as
Kripke structures in which R is the accessibility relation, and
unary relations describe valuations of propositional variables.

First, we define a formula Γ and we prove that global KΓ-
SAT is undecidable. Then we adapt the technique from [4] to
show that also local KΓ′ -SAT is undecidable, for a formula Γ′

being a simple modification of Γ.
In the proof of the undecidability, we use the inequality

only to say that the out-degree of a vertex is large. That is, we
define an abbreviation deg≥k(v) that uses the fresh variables
uv1, . . . , u

v
k as follows.

deg≥k(v) =
∧

1≤i≤k

(vRuvi ) ∧
∧

1≤i<j≤k

uvi 6= uvj

For example, the formula deg≥5(v) ⇒ vRz says that all
the worlds with out-degree greater than five are connected to
all worlds.

Now, we the formula Γ that gives us undecidability as

xRy∧xRu∧uRz∧deg≥2(x)∧deg≥4(u)∧deg≥2(z)⇒ yRz

The formula Γ contains only one Horn clause. Note that the
structure GN illustrated in Fig. 3 is a model of Γ.

The idea of the proof is similar to the proof of the undecid-
ability presented in [5]. In both cases, we show how to enforce
that models are extensions of the standard grid and then we
encode a domino system in it. Below we show how to use
the modal logic to define a grid-like structure in KΓ. For the
details of encoding the domino systems in grids the reader is
referred to [5]. Notice that both proofs work also for the finite
satisfiability problem, i.e. satisfiability over the class of finite
structures from KΓ.

To get the undecidability we construct a modal formula τ
such that any model M |= τ from KΓ locally looks like a
grid. Namely, τ says that:

(i) each element is labeled with exactly one of the variables
from the set {Pij |i, j ∈ {0, 1, 2}} ∪{Aij |i, j ∈ {0, 1, 2}}
∪{ekij |i, j, k ∈ {0, 1, 2}}.

(ii) every element satisfying Pij has three R-successors: one
in P(i+1 mod 3)j , one in Pi(j+1 mod 3), and one in Aij ;

(iii) every element satisfying Aij has four successors: one in
P(i+1 mod 3)(j+1 mod 3), one in e0

ij , one in e1
ij , and one

in e2
ij

(iv) every element satisfying ekij has a successor satisfying
Aij .

All those properties are easy to express in modal logic.
Observe that each model of this formula contains a world
satisfying P00. If we consider now any world ax satisfying,
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Figure 3. The structure GN. Its universe is N× N.

e.g., P00 in a model, we see that the property (ii) of τ enforces
the existence of its horizontal successor ay satisfying P10,
its vertical successor ay′ satisfying P01 and its upper-right
diagonal successor au satisfying A00 (see Fig. 3). By (iii),
the element satisfying A00 has four successors, including az
satisfying P11. It should be clear that when we instantiate Γ
with the worlds ax, ay (or ay′ ), au, and az , then the antecedent
of the Γ is satisfied, and that implies the edges from ay and
a′y to az (see Fig. 3, dotted edges).

Local satisfiability Observe that the trick from [4], that
reduces the local satisfiability problem to the global one,
requires a formula which is not a Horn formula (one of its parts
is of the form ¬xRx⇒ xRy), so we cannot use it. It turns out,
however, that only a slight modification is needed. Observe
that our proof of the undecidability of global satisfiability over
KΓ works for the subclass of models such that the out-degree
of each world is bounded by four. Now, we enforce by a modal
formula the existence of a world with out-degree 5 and, by a
first-order formula, we make it connected to all worlds. Such a
universal world can be then used to reach all relevant elements
in the model.

Γ′ = (deg≥5(u) ∧ u 6= v ⇒ uRv) ∧ Γ

In the modal formula we use a fresh symbols f1, . . . , f5

to guarantee that a world with the degree at least 5 exists.
Now, for each modal formula ϕ we define its local version
ϕl by

∧
i∈{1,...,5} ♦fi∧

∧
1≤i<j≤5 ¬♦(fi∧fj)∧�ϕ such that

ϕl is locally satisfiable over KΓ′ iff ϕ is globally (finitely)
satisfiable over KΓ. This ends the proof of Theorem 3.

See subsection 5.6 of [4] for the details of the outlined trick.

IX. FUTURE WORK

In this paper, we focused on the case when the first-order
formula is fixed. However, the question about the precise
complexity of the satisfiability problem when both formulas
are parts of instances is also interesting. Is this problem in
PSPACE for the case of local satisfiability?

The ultimate aim of our research is to give the complete
characterization of the decidability of the elementary modal

logics. One of possible solution would be to prove the de-
cidability of the following problem. For a given (universal)
first-order formula Φ, is KΦ-SAT decidable?

One more natural question concerns other classes of for-
mulas that lead to decidable logic. For instance, in [4] the
question about the class of the universal first-order formulas
that imply transitivity was stated. It can be easily shown that
the finite satisfiability for such formulas is decidable, but the
general solution remains unknown.
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[10] E. Grädel and I. Walukiewicz, “Guarded fixed point logic,” in Fourteenth
Annual IEEE Symposium on Logic in Computer Science, 1999, pp. 45–
54.

[11] J. Michaliszyn, “Decidability of the guarded fragment with the transitive
closure,” in ICALP (2), 2009, pp. 261–272.

[12] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic, ser. Cambridge
Tracts in Theoretical Computer Scie. Cambridge: Cambridge University
Press, 2001, vol. 53.

[13] R. E. Ladner, “The computational complexity of provability in systems
of modal propositional logic,” Siam Journal on Computing, vol. 6, pp.
467–480, 1977.

[14] W. J. Savitch, “Relationships between nondeterministic and deterministic
tape complexities,” J. Comput. Syst. Sci., vol. 4, pp. 177–192, April 1970.


