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Abstract. Weighted automata is a basic tool for specification in quanti-
tative verification, which allows to express quantitative features of anal-
ysed systems such as resource consumption. Quantitative specification
can be assisted by automata learning as there are classic results on
Angluin-style learning of weighted automata. The existing work assumes
perfect information about the values returned by the target weighted au-
tomaton. In assisted synthesis of a quantitative specification, knowledge
of the exact values is a strong assumption and may be infeasible. In our
work, we address this issue by introducing a new framework of partially-
observable deterministic weighted automata, in which weighted automata
return intervals containing the computed values of words instead of the
exact values. We study the basic properties of this framework with the
particular focus on the challenges of active learning partially-observable
deterministic weighted automata.

1 Introduction

Finite automata is a fundamental computational model with a wide range of
applications spanning from computational complexity, through AI [17] to formal
methods [7]. In some applications, however, the qualitative answers returned by
finite automata, i.e., each word is accepted or rejected, are insufficient. For in-
stance, in formal verification, one can check the existence of execution trances
violating a given specification, but violating traces come from a model rather
than the actual system and their severity may differ from critical, which are
likely to occur in the actual system to one, which are unlikely to be repro-
duced. Similarly, while checking whether a system has no deadlocks, one can ask
whether every request is eventually fulfilled, which lacks performance guarantees
involving a bound on the timeframe for fulfilment.

To address these issues, there has been proposed quantitative verification, in
which the specification refers to quantitative features of the system. Quantitative
verification is based on weighted automata, which return numeric values for
words rather than accept/reject words. Weighted automata and their extensions
have been extensively studied [9, 5, 6]. These models can express the severity of
errors [11] and various performance metrics such as average response time [6].
The expressive power of such models entails hardness of specification.



2 J. Michaliszyn and J. Otop

Specifying quantitative properties may be difficult because in addition to de-
scribing events (such as a system failure) one has to come up with the associated
values. This is especially difficult for properties of an approximate nature such
as the aforementioned severity of a failure. Furthermore, the precise values are
often not that important as we would be typically interested whether the num-
ber is within some acceptable interval, e.g., does not exceed our resources. For
instance, the exact value of average response time depends on the computing
environment, e.g., its cache size, which is typically not modeled precisely. For
the same reason, assigning reasonable values of the average response time to
traces is considerably more difficult than specifying a deadlock.

In this paper, we address the issue of construction of quantitative speci-
fications. To ease the specification process, we propose a new framework, in
which automata do not reveal the exact values. We study this framework from
the specification-synthesis perspective , i.e., we ask whether it is possible to
semi-automatically produce quantitative specifications using automata-learning
approach. The conditions may be more involved; for example, we may want to
express properties stating that the values 0-10 are good, 11-20 are satisfactory,
and anything over 20 is bad.

1.1 Our framework

We introduce partially-observable deterministic weighted automata (PODWA).
These automata behave as regular deterministic weighted automata over Z, but
return an interval (from a given finite set of possible intervals) that contains the
computed value rather than the value itself. The choice of intervals as partial ob-
servations is natural. Other choices are possible, but can increase the complexity
— even making the membership problem undecidable.

Our motivation comes from the specification-synthesis via automata learn-
ing. The idea is that we would like to be able to synthesize quantitative prop-
erties without necessarily providing exact values. For that reason, we focus on
problems related to active automata learning. First, we study the equivalence
problem. It is fundamental in automata learning as one needs to answer whether
the learned automaton is admissible. Second, learning algorithms typically con-
struct the structure of an automaton with no weights [2], which leads to the
weight synthesis question: given a PODWA A; and an automaton structure Ao
(a deterministic finite automaton) without weights, is there a weight assignment
for As, which makes it equivalent (w.r.t. partial observations) to A;? Specifi-
cally, assuming that such a weight assignment does exist, is there one such that
weights vales are of polynomial order w.r.t. weights from A;? Finally, active
automata learning algorithms construct minimal automata [1,2,14]. Thus, to
assess feasibility of learning weighted automata in our framework, we study the
minimization problem for PODWA.
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1.2 Results

The main contribution of the paper is identifying obstacles in developing a
polynomial-time active learning algorithm for the new model. We start with
the basic properties of the model. We show that the class of PODWA can ex-
press more than regular languages and is closed under the complement, but not
under the union or the intersection. Then, we show that:

— the equivalence problem for PODWA is cONP-complete in general, and it
can be solved in polynomial time if weights are given in unary,

— there is a PODWA A with weights —1,0, 1, such that all equivalent minimal-
state automata are isomorphic and have exponential weights, and

— the minimization via state-merging for PODWA with unary weights is NP-
complete.

These results highlight challenges in learning weighted automata under par-
tial observation. In order to obtain polynomial-time algorithm for active learn-
ing of PODWA, we need to focus on automata with unary weights. However,
equivalence up to partial observation is too permissive to have an active learn-
ing algorithm. One needs a more rigid equivalence notion, which would make
minimization decidable in polynomial time, and prevent exponential blow-up of
weights in the minimization process.

1.3 Related work

Typically, the partial observation term applies to equivalence on the set of con-
trol states, which has been used to model decisions under imperfect informa-
tion in Markov decision processes (partially observable Markov decision pro-
cess [18]), graph games (games with imperfect information [8]), or multi-agent
system (multi-player games with imperfect information [3,10]). In contrast, in
this work, the state space is intact, and partial observability refers to the re-
turned value. This is related to games with interval objectives [13], in which one
of the players objective is to make the numeric outcome of the game fall into a
set being a finite union of intervals.

This work is motivated by active automata-learning algorithms, which have
been developed for deterministic finite automata [1], deterministic weighted word
automata [2] and deterministic weighted tree automata [14] and other types
of automata. Similar algorithms have recently been developed for infinite-word
automata: deterministic Biichi automata (DBA) [16] and deterministic limit-
average automata [15]. These algorithms work in polynomial time even though
minimization, closely related to active learning, is NP-complete for DBA. It
was made possible thanks to in-depth difficulty assessment of problems related
to active learning, which indicated how to extend the learning framework to
make polynomial-time learning algorithms possible [16]. We conduct such an
assessment in this work to pave the way for the development of active learning
algorithms.
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2 Preliminaries

A word w is a finite sequence of letters from a finite alphabet Y. By X* we
denote the set of all words over X. By w[i] we denote the ith letter of a word w,
and wli, j] stands for the subword w(iJw[i 4+ 1]...w[j] of w. The empty word is
denoted by e.

Automata and runs. A deterministic weighted automaton (DWA) is a tuple
(X,Q, qo, 9, c) consisting of

1. an alphabet X,

2. a finite set of states @,

3. an initial state gg € @,

4. a transition function §: Q x X — @, and
5. a weight function c:Q x X — Z.

The size of a DWA A, denoted by |.A|, is its number of states plus the sum of
the lengths of all the weights given in binary.

We extend & to 6:Q x ¥* — Q inductively: for each g, we set 5((1,6) =q,
and for all w € X*,a € X, we set 0(¢q,wa) = 6(3(¢,w), a). The run 7 of a DWA
A on a word w is the sequence of states qog((]o7 w[l])é(qo, w[1,2]).... We do not
consider any acceptance condition here.

The semantics of a DWA A is a function £(.A) from non-empty words X\ {¢}
into integers. For a non-empty word w of length k, we define £L(A)(w) as the
sum of weights of transitions along the run of A on w:

L(A)(w) = (g0, wl1]) + ¢(6(go, w[1]), w[2]) + - .. + ¢(6(go, w[L, k — 1]), w[k]).

Remark 1. The tropical seminring The weighted automata model considered in
this paper is an instance of a more general framrework of weighted automata over
semirings [9], where the semiring is the tropical semiring restricted to integers.

3 Our framework

A Partially-Observable DWA, PODWA, is a pair A = (A,S) consisting of a
DWA A and a set of a finite number of pairwise-disjoint intervals S covering
Z called observations. We assume that intervals are enumerated by {0,..., s}
according to the order on Z. The language of a PODWA A, denoted as £(A), is
a function from X* \ {€} to {0,...,s} such that £(A)(w) is the number of the
interval containing £(A)(w).

A binary PODWA is a special case of PODWA having only two intervals:
(—00,0] and (0,+00). We consider words ending in the interval (0,400) as ac-
cepted. Then, the function £(A) is essentially a characteristic function of a set
that can be seen as a classic language.

Ezample 1. Consider a single-state automaton A over X' = {a, b, c¢}. The weights
of the transitions over a, b, c are, respectively, —1,0, 1. Consider the set of in-
tervals S = {(—00,0],(0,4+00)} and the binary PODWA A = (A,S). Then,
L(A)(w) =1 if w contains more occurrences of ¢ than a, and 0 otherwise.
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Binary PODWA can define all regular languages (without the empty word)
and some non-regular languages (see Example 1). All PODWA-recognizable lan-
guages are context-free and can be emulated by a deterministic one-counter
automaton. On the other hand, deterministic one-counter automata define lan-
guages that cannot be expressed by binary PODWA, as the former rely on the
counter value at every transition while the latter are agnostic of the counter
value. For instance, a pumping argument shows that the language of words that
have the same number of (occurrences of) a and b between every pair of ¢ can-
not be expressed by a binary PODWA (or any other PODWA with a reasonable
language definition).

Binary PODWA can be easily complemented — it suffices to multiply all the
weights by —1 and adjust the initial state (for words with value 0). We show that
the class of languages recognizable by binary PODWA is not closed under union
nor intersection. We will prove the former; for the latter observe that closure
under intersection implies closure under union as the union operation can be
expressed by the intersection and complement operations.

Let £y be the language of words w that the number of occurrences of ¢ is
greater than the number of occurrences of b or is greater than the number of
occurrences of a. Observe that L, is the union of two PODWA-recognizable
languages L,, Ly, they can be defined as in Example 1. A simple pumping
argument shows that £ is not PODWA-recognizable.

Lemma 1. L is not PODWA-recognizable.

Proof. Assume a PODWA A = (A, {(—00,0], (0, +00)}) with less than N states
that recognizes L.

Consider the word w = a™VbN N+t Clearly, w € £ because there are more
occurrences of ¢ than a.

Since A has less that N states, there is k > 0 and [ > 0 with k 4+ < N such
that the states 6(go, a*) and 6(qo, aF*) are the same.

Since the automaton is deterministic, for any j the states S(qo, a®) and
) (qo, a¥*7') are the same. Notice that since the automaton is deterministic, this
implies that for any j we have S(qo, aV) = S(QU, aNtih),

Let w; = a***!. We argue that A(w;) — A(wg) > 0. Notice that for any j
we have A(wjt1) — A(w;) = A(wy) — A(wp). If this number was negative, for a
sufficiently large 7 we would have

A(aNJrjleCNJrl) S 0

which contradicts the fact that this words belongs to L.

Similarly, there is k¥’ > 0 and I’ > 0 with k' + 1’ < N such that the states
(g0, a™Mb*") and 6(qo, a¥ b+ are the same.

Let w) = aVb¥+71' . As before, we can show that A(w}) — A(w}) > 0.

Now consider wp = aV+tpN+' ¢N+1 The above reasoning shows that A(wp) >
A(w). However, since A recognizes L, we have A(wp) < 0 and A(w) > 0, which
is a contradiction. O
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3.1 Sample fitting

We briefly discuss the following counterpart of the sample fitting problem, which
is related to passive learning: given a set of pairs consisting of a word and an
interval, called the sample, and a number n, is there a PODWA with n states
that is consistent with the sample? The sample fitting problem is NP-complete
for PODWA; it is NP-complete even for DFA. However, we discuss it here as
the hardness proof is simple and robust.

For membership in NP, observe that if n is larger than the number of letters
in the sample (and the sample does not contain a direct contradiction, i.e., a
word with different intervals), then such a PODWA always exists (and can be
a tree). Otherwise, we can nondeterministically pick a PODWA and check it in
polynomial time.

For hardness, consider an instance ¢ of 3-SAT with variables pi,...,ppm.
Consider n = 1, X' = {¢q} U{p;,p1 | i < m}, and S = {(—0,0),[0,1],[2,4+00)}.
The sample consists of:

- (Q7 [05 1])’ (QQ7 [2’ +OO))
- (pi7 [Oa 1])7 (Ea [07 1})7 (pl]Tlv [07 1]) (pllTlCL [27 +OO)) for each ¢
— (xyzq, [2,+00)) for each clause x V y V z of ¢ (we identify —p; with p;).

If there is a single-state automaton consistent with this sample, then each
letter has a value corresponding to the only transition over this letter. The value
of each letter is an integer. The first condition guarantees that the value of ¢
is 1. The second guarantees that exactly one letter among p;, p; has value 1
and the other has the value 0 (we rely on the fact that the weights are over
integers). Thus, the values define a valuation of variables p1, ..., py, from . The
last condition guarantees that this valuation satisfies every clause of ¢, and thus
it satisfies .

4 Towards active learning PODWA

The sample fitting problem is intractable for one-state automata, which is a
strong negative result for passive learning. In this section, we now focus on ac-
tive learning of automata. The classic L*-algorithm for active learning of DFA
asks membership and equivalence queries. While in the PODWA framework,
answering a membership query amounts to evaluating the DWA over the in-
put word and returning the interval containing the value, answering equivalence
queries is more involved.

4.1 Equivalence

PODWA A, Ay are equivalent if £(A1) = L(Az). The sets of intervals may be
different and hence PODWA equivalence is invariant to linear operations, which
are consistently applied to all weights and intervals. The equivalence problem asks
whether two given PODWAs are equivalent. We show its CONP-hardness via
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reduction from (the complement of) the subset sum problem [12]. Let aq, ..., ag
be a list of integers and T" be the target value represented in binary. W.l.o.g.
we assume that aq,...,ax are even. We construct two binary PODWA A; =
(A1,8), Ay = (A2, S) (where S = {(—o0,0],(0,400)}) such that 4; computes
the possible values of sums of subsets of {a1,...,a;} minus T, and A returns
the value in A; plus 1, i.e., L(A2)(w) = L(A1)(w) + 1. Observe that A; and Ag
are not equivalent if and only if A; returns 0 for some word. For such a word
As returns 1, which is in a different interval than 0. Thus, the PODWAs are not
equivalent if and only if the subset sum problem has a solution.

Lemma 2. The equivalence problem for (binary) PODWA is CONP-hard.
Proof. We discuss the construction of DWA A;, A5 such that PODWA (A4, .S)

and (Az,S) are equivalent if and only if there is no subsequence of aq, ..., a,
which sums up to 7.
Without loss of generality, we assume that all values aq,...,a; and T are

even. The automaton A; works over the alphabet {0,1} and input words are
interpreted as the characteristic sequence of picked numbers minus 7, i.e., the
weighted accumulated over a word w € {0,1} equals the sum of a; such that
i€{l,...,k} and w[i] = 1 with T subtracted. One can easily construct such an
automaton with k 4 2 states qq, ..., qr+1: it moves from ¢; to g;11 regardless of
the letter if ¢+ < k — 1; the transition over 1 have weight a;11 and the transition
over 0 has weight 0. Then, from ¢ it moves to g1 with both transitions of the
weight —T'. Finally, in g1 it has self-loops of the weight 0.

Next, the automaton A, has the same structure as A;, but the last weight
is =T 4 1 rather than —T'. Observe that if there is a word w distinguishing
L((A1,S5)) and L((Asg,S)), then it has to have the value 0 in A; and 1 in Ay —
since the values of the two automata differ by 1 and the values of A; are even. So
the two automata are not observationally equivalent exactly when the word w
encodes the solution for the considered instance of the subset sum problem. O

The subset sum problem has a pseudo-polynomial time algorithm and hence
the hardness result from Lemma 2 relies on weights having exponential values
w.r.t. the automata sizes. Assuming unary weights in automata and the interval
endpoints leads to a polynomial-time algorithm for equivalence of PODWA. More
precisely, a PODWA (A, S) is unary if weights in A and interval ends in S are
represented in unary.

Theorem 1. The equivalence problem is CONP-complete for PODWA and in
PTIME for unary PODWA.

Proof. The lower bound for the binary case follows from Lemma 2. For the
upper bound, we show that PODWA equivalence reduces to Z-reachability in
2-dimensional vector addition systems (VASS), i.e., reachability in which values
of counters may become negative. The weights in the resulting VASS are from
the weighted automata. The Z-reachability problem for fixed-dimension VASS
is NP-complete if vectors’ values are represented in binary, and it is in PTIME
if they are represented in unary [4].
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First, consider PODWA A; = (A,51) and Ay = (As, Ss). If they are not
equivalent, then there is i # j and a word w such that A;(w) belongs to an i-th
interval and As(w) belongs to a j-th interval. Without loss of generality, ¢ < j
and hence there are values A\, Ay such that A;(w) < Ay and As(w) > Aa. There
are |S1| - |S2| candidates for pairs A1, Ay and one can verify all pairs. Therefore,
we assume that Ay, Ao are given and focus on finding w such that A;(w) < A
and .Ag(’w) 2 /\2.

We construct a VASS V of dimension 2 such that there is a path from the
initial state so with counters (0,0) to the final state ¢ with counters (0,0) if and
only if there is a word w such that A;(w) < A; and Az(w) > Xo. The VASS V
is as a product of automata A; and Ay, where each transition is labeled by a
vector of the weights of the corresponding transitions in A; and As. The V has
an additional sink state ¢, which is the terminal state, such that from any other
state one can reach ¢ over a transition labeled by (—A; 4+ 1, —A2). Additionally,
t has self-loops labeled by (1,0) and (0, —1). Finally, the initial state s of V is
the pair consisting of initial states of A; and As.

Formally, for ¢ = 1,2 let A; = (X, Qi, Go, 9, ¢i). The VASS V = (Q, g0, 7)
is defined as follows: Q@ = Q1 x Q2 U {t}, g0 = (¢0,1,90,2), and 7 C Q X Z* x Q
consist of three types of tuples:

— tuples ((q, s),z, (¢, ")), for all ¢,¢" € Q1,s,8 € Q2 such that there exists
a € X satisfying 01(a,q) = ¢, 61(a,s) = ¢, and = (c1(q, a,¢'),ca(s,a,s’))

— tuples ((g,s), (A1 + 1,=X2),t), for all ¢ € @1, s € Q2, and

— tuples (¢, (1,0),¢) and (¢, (0,—1),t).

Now, assume that there is a word w such that A;(w) < A\; and As(w) > As.
Then we construct a path in V corresponding to w, which leads from s with
counter values (0,0) to some state with counter values (a,b), where a < Ay and
b > Xo. Since weights are integers, a < A\; — 1. Next, we take a transition to ¢
and the counter values change to (a’,b') such that ¢’ < 0 and b’ > 0. Finally, we
can reach counter values (0,0) by taking self-loops over ¢ labeled by (1,0) and
(0, —1). Conversely, consider a path 7 in V from s with counter values (0, 0) to
t with counter values (0,0). Then, let s’ be the last state before reaching ¢ and
(z,y) be the counter values at that position. Observe that z < A\ —1 and y > Ao
and hence the prefix of 7 up to s’ with (z,y) corresponds to a word w such that
Al(w) < A1 and .AQ(U}) > g O

4.2 Unary weights

Theorem 1 suggests that restricting the attention to unary PODWA can make
learning feasible. However, below we show that minimization of automata with
bounded weights from {—1,0, 1} may involve exponential-blow up weights, i.e.,
the decrease in the number of states is possible only through introduction of
weights of exponential value:

Theorem 2. There exists a sequence of PODWA A,, = (A,,S), forn > 1, with
weights —1,0,1 such that for all n > 1 every PODWA (B,S) equivalent to A,
with B having the minimal number of states, has exponential weights in n.
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a:2!
b:—2!

Fig. 1. a) The automaton A,. The omitted edges lead to s with weight 0. b) A minimal
automaton equivalent to An.

Proof. We define, for each n > 1,a PODWA A,, = (A, {(—00,0),[0,0], (0, +o0)})
over X = {a,b,i} with weights {—1,0,1} such that the minimal equivalent
PODWA to A, needs weights exponential in n.

The automaton A, is depicted in Figure 1 a). Intuitively, the value of the
word depends on its first n + 1 letters. If the word starts with the prefix i*a,
where 0 < k < n, then it has the value +1 unless it is followed by b"~*, in which
case its value is 0 (and symmetrically with i*b and —1). Words i* have value 0.

An example of a minimal automaton equivalent to A,, is depicted in Figure 1
b). To show its minimality, observe that for j, k € {0,...,n+ 1} s.t. j < k, the



10 J. Michaliszyn and J. Otop

S = {(—00,0], (0, +00)}

* 12
a:—1
b:2
start —>

Fig. 2. Two binary PODWA that are equivalent and minimal but not isomorphic.

words i/ and i* have to lead to different states, because £(A,)(i/i"/a) = 2 and
L(A,) (%" a) = 0.

There are infinitely many minimal automata equivalent to A,, though. For
example, one can multiply all the weights of the automaton in Figure 1 b) by 2.
We can show that all automata equivalent to A, with the minimal number of
states are structurally isomorphic to the automaton in Figure 1 b); this proof is
relegated to the appendix.

In all such automata for any j < n we have c(g;,a) = —ZZ:j+1 c(qk,b)
and similarly c(g;,b) = — ZZ:]- 11 c(gk, a). Therefore, one can inductively show
that for j < n — 1 we have c(g;,a) = —c(g;,b) = 2"7772(c(gn-1,a) + c(gn, a)).
Since ¢(gn_1,a) and ¢(g,,a) are both positive (because i"~!, i" have the value
0 and i""'a, i"a have positive values), we conclude that the value of c(qo,a) is
exponential in n. a

4.3 Minimization

The L*-algorithm relies on the right congruence relation, which has its natural
counterpart for DWA. The right congruence relation defines the structure of the
minimal DWA (which is unique) and hence the active learning algorithm can
be applied to minimize DWA. Observe that minimal-size PODWA need not be
unique.

Ezxample 2. Consider the two binary PODWA presented in Figure 2. They both
define the language such that all word have positive values exept for the word a,
which has a negative value. Both PODWA are equivalent and minimal; if there
was an equivalent PODWA with the underlying DWA of a single state ¢, then
either ¢(q,a) > 1, which would contradict the value for a, or ¢(gq,a) < 0, which
would contradict the value for aa. Clearly, the automata are non-isomorphic.

Remark 2 (The right congruence for DWA). For a function f : X* \ {e} — Z,
consider a relation = defined on non-empty words w, v as follows:

w =y v if and only if for all u € X* we have f(wu) — f(w) = f(vu) — f(v).

The relation = is a counterpart of the right congruence relation for DWA and
one can easily show the counterpart of the Myhill-Nerode theorem: f is defined
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by some DWA if and only if = has finitely many equivalence classes, and the
relation =¢ defines the structure of the minimal DWA. This relation cannot
be straightforwardly adapted to PODWA as the result f(wu)— f(w) cannot be
inferred from observations for wu and w. More generally, Example 2 implies that
there is no counterpart of =y for PODWA as it would imply the uniqueness of
the structure of minimal PODWA.

We discuss the complexity of minimization for PODWA, assuming that the
set of intervals S is fixed and weights are given in unary. We say that DWA Aj is
observationally equivalent to a PODWA (A4, S), it PODWA (A4, S) and (Az, S)
are equivalent. The O-minimization problem is to find a minimal-size DWA A,
that is observationally equivalent to a given PODWA (A4;,S). We study the
decision variant of the O-minimization problem obtained by stating bound k& on
As, ie., given a PODWA A = (A;,S5) and k > 0, is there a DWA Ay with at
most k states, which is observationally equivalent to A.

Minimization by merging. A natural approach to minimization of automata is
to define an equivalence relation on the set of states of the input automaton
A, corresponding to states being semantically indistinguishable, and construct
the output automaton B based on the equivalence classes. In that approach,
semantically indistinguishable are merged into a single state. Minimization by
merging alleviates the problems arising from ambiguity of minimal automata,;
it guarantees that the input automaton and the minimized one are structurally
related. We study minimization by merging for PODWA.

A DWA B is obtained from a DWA A by merging if there is a surjective
(partial) function f: Q4 — Qp from the set of reachable states of A onto the set
of states B such that d4(q,a) = ¢’ if and only if 05(f(q),a) = f(¢).

The unary O-minimization by merging problem is, given an unary PODWA
(A,S) and k > 0, is there a DWA B, with at most k states and (the absolute
value of) weights bounded by the weights of A, obtained by merging from A
that is observationally equivalent to (A, S).

Theorem 3. The unary O-minimization by merging problem is NP-complete.

Proof. The problem is in NP as one can non-deterministically pick a weighted
automaton with unary weights A’ along with the homomorphism witnessing
that A’ can be obtained by merging from A. Next, we can check observational
equivalence of A4 and A’ in polynomial time (Theorem 1).

We show NP-hardness via reduction from the k-coloring problem. Let G =
(V, E) be a graph — for readability we assume it is a directed graph. We construct
a binary PODWA Aq = (Ag, {(—0,0], (0,400)}), which can be O-minimized
to an automaton with k + 2 states if and only if the vertices of G can be colored
with k colors such that each edge connects vertices with different colors.

Let ¥ = {et,e” | e € E} where E = {ey,...,en}. The states of Ag are
go,qf and {g, : v € V}. For an edge e¢; = (v,u) we define 6(go,e; ) = v and
(5(q0,ei+) = u, i.e., over e¢;, el the automaton reaches both ends of e. All the

107
remaining transitions lead to gy.
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We define weights function ¢ so that pairs of states g, g, can be merged if
and only if they correspond to vertices u, v not connected in G. For any e € E we
will ensure that in Ag the values of words e~e™,ete™ are negative and the value
of words e~e™,eTe™ are positive. This guarantees that et and e~ cannot lead
to the same state. Intuitively, after e~ the state in Ag has outgoing transitions
over e~, et where the weight of eT is strictly greater than the weight of e~, and
for the state reachable over e™, the order of weights is the opposite.

For every e; = (v,u) € E we define ¢(qo, €; ) = c(go, ;) = —3i— 1. Then, for
¢, we define c(q,,e; ) = 3i and c(q,, ;") = 3i + 2. For g, we define c(q,,e; ) =
3i+2 and c(qy, e}, qr) = 3i. For u that is not an endpoint of e; we set ¢(qy, e;) =
C(Quyej_) = 35 + 1. The weights c(gy, *) are all 0.

We show that G is k-colorable if and only if Ag can be O-minimized to an
automaton with k + 2 states. First, observe that the values e; e; and e e} in
Ag are —1 and the values e e;" and ej‘ei_ are 1 and hence ¢, and ¢, cannot
be merged. Second, go and ¢y cannot be merged with one another or any other
state; all words starting from qq are negative, and all word starting from ¢y retain
their values. No other state has such a property. Therefore, if Ag is minimized
by merging to an automaton with k + 2 states, then k is at least equal to the
chromatic number of G.

Conversely, assume that \: V' — {1,...,k} is a valid coloring of G. We con-
struct a DWA A{; with the same structure as A, with the property that states
corresponding to nodes of the same color have the same values of outgoing edges.
Recall that for u that is not an endpoint of e; we set c(qu,€;) = c(qu,ej) =
3j + 1. Changing any such weight to 3j or 35 + 2 leads to an equivalent au-
tomaton. Indeed, the state ¢, can be reached with values —3i — 1, where i # j
and hence the values —3i — 1+ 35,—-3i — 1+ 35+ 1,—-3i — 1 + 35 + 2 are either
all positive or all negative. With that observation, we can modify weights in
Ag such that for u,v with the same color, the weights of all outgoing transi-
tions from ¢;, ¢, are the same and hence the states can be merged. Assume that
u[l],...,u[k] have the same color; then for every edge e at most one of these
vertexes can be an endpoint of e; if there is such u[i] then we fix weights of all
transitions (qupj,€7), .-, (qupk), €~ ) to be the same as the weight of (g, e™).
If there is no such vertex, we do not change the weights. We fix weights over e*
accordingly. Observe, the in the resulting automaton states q,1), . .., qu[x) have
all the outgoing transitions to ¢y, and transitions over the same letter have the
same weight. Therefore, they all can be merged into the same state. O

5 Conclusions

This paper introduces partially-observable deterministic weighted automata,
which address the difficulty in specification synthesis originating from the need
of feeding the exact values to the specification procedure. We have studied the
basic properties of the model as well as problems related to specification synthe-
sis via automata learning: equivalence and minimization. The main contribution
of the paper is identifying obstacles in developing polynomial-time active learn-
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ing algorithm for the new model. While our framework is unlikely to admit
such an algorithm, it is possible that restricting the equivalence notion may lead
framework admitting polynomial-time active learning algorithm.
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